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Abstract 

This thesis presents an investigation into the modelling, control and performance 

optimisation of renewable energy systems including: Pressure Retarded Osmosis 

(PRO), Photovoltaic (PV), and Wind Turbine (WT). In doing so, various traditional 

and machine learning based approaches have been reviewed and their performance 

compared.   

The PRO process is modelled and optimised in terms of key operating parameters to 

extract maximum power from the system. The optimisation process is carried out 

based on different salinity gradients between the feed and draw solutions in a PRO 

process consisting of one to four modules packed in series. This study has revealed 

that the recommended operating pressure and the ratio of feed or draw solution to 

the total mixture solution, 0.5, in a laboratory scale PRO unit or in an ideal PRO 

process are not valid in a non-ideal full-scale PRO module. The optimisation of 

hydraulic pressure resulted in a 4.4% increase of the energy output in the PRO 

process. Conversely, optimisation of feed fraction in the mixture has resulted in 28% 

to 70% higher energy yield in a single-module PRO process and 9% to 54% higher 

energy yield in a four-modules PRO process. The net energy generated in the 

optimised PRO process is higher than that in an unoptimised (normal) PRO process. 

The findings of this study also reveal the significance of incorporating nature 

inspired machine-learning algorithms in the optimisation of a PRO process and in 

identifying the preferable operating conditions in a non-ideal system.  

In the PV system, a new performance index is proposed to develop a variable step-

size based adaptive model predictive control (MPC) algorithm for maximum power 
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point tracking (MPPT). The algorithm is validated with relatively large additions of 

process and environmental noise to emulate real operating operational conditions.  

Finally, a strategy in controlling a permanent magnet synchronous generator (PMSG) 

driven by a wind turbine (WT) is also proposed in this investigation to deliver a 

desired reduced amount of power as required is also proposed in this study.  The WT 

is regulated in a way that the generator delivers the demanded power output to the 

load. 
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Chapter 1 Introduction 

1.1    Background 
Renewable energy is emphasized to be used all over the world in order to mitigate 
the increasing green-house gas emissions challenge. Research in renewable energy 
sources is being increased day by day to facilitate the sustainable development of the 
whole human race. Compared to conventional energy sources such as fossil fuels, 
renewable energy has viable long-term benefits. In order to diminish global carbon 
emissions, it is essential that environment-friendly sources of energy are required to 
be explored across the world. Several renewable and sustainable energy technologies 
such as solar power and wind power are already being exploited to resolve the global 
climate change and the energy shortage problems, which are growing at accelerating 
rates. However, there are other renewable energy sources, such as salinity power that 
can be extracted through pressure retarded osmosis (PRO), with a huge potential to 
contribute to solving world energy problem as well as environmental pollution by 
cutting greenhouse gas emissions.   

In 1975, Pressure Retarded Osmosis (PRO) was firstly proposed by Sidney Loeb [1-
2] as a production from the salinity gradients. The energy can be generated from the 
spontaneous mixture of two different salinity solutions, namely the draw solution 
and feed solution. The potential of PRO energy is significant. Research shows that 
the potential power can be obtained is in the units of -tera watts (TW) when sea water 
and the river water mixing [3]. As one of the osmotic power sources, this technology 
has become a promising renewable source. 

Pressure retarded osmosis (PRO) has been broadly investigated for power generation 
from a salinity gradient resource [4-5]. For the purpose to obtaining the potential 
power using PRO and improving the power efficiency, extracting the maximum 
power from the salinity gradient energy is a significant work. Therefore, the control 
of renewable energy generation is becoming popular with the purpose of extracting 
more osmotic energy. In this field, the most widely investigated approach to obtain 
maximum power from a renewable energy sources are called Maximum Power Point 
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Tracking (MPPT) that aims to track the maximum power point under various 
operational conditions.  

Examples of MPPT algorithms to extract maximum energy from scaled-up PRO 
systems have been investigated. The algorithms studied for a scaled-up PRO process 
include incremental mass resistance (IMR) method and perturb & observe (P&O) 
method [6-7]. The above techniques are all inspired by the well-known MPPT 
methods in the photovoltaic (PV) system. In the case of a MPPT approach, the power 
efficiency directly depends on two main components: convergence speed and the 
obtained maximum power. A faster tracking time and higher extracted maximum 
power results in less steady state oscillations and less power loss in the output, and 
vice versa. Both P&O and IMR algorithms must find a balance between the 
oscillations and the response speed, which causes more power loss. Therefore, a 
robust and efficient MPPT method is required for a scaled-up PRO system.  

As described above, the PRO process converts chemical potential across a 
semipermeable membrane into a hydraulic energy using concentrated draw solution 
and diluted feed solution salinity gradient. The feed and draw solutions have a 
significant impact on the energy output of the PRO process, which can be increased 
by optimising the applied hydraulic pressure on the draw solution side [8]. 
Additionally, the energy output in the PRO process is sensitive to the volume of the 
feed or draw solution in the total mixture[4, 9]. Optimisation of the PRO process is, 
therefore, a critical process to maximize the energy output from a salinity gradient 
resource. The technology has been demonstrated in pilot and laboratory scales with 
the potential of being commercialized as a source of renewable energy [10-11]. 
However, former studies focused mostly on the optimisation and performance of the 
PRO in a laboratory scale experiments or assuming an ideal system that ignored the 
intrinsic properties of the process such as concentration polarization effects [8, 12]. 
This has resulted in a misunderstanding of the capability of the PRO process and 
widened the discrepancies between laboratory and field results. To date, studies 
carried out on the performance and optimisation of a full-scale PRO module are, 
unfortunately, scarce. 

Among renewable energy sources, photovoltaic (PV) systems and wind turbines 
(WT) are taking the lead. These PV systems are expected to make a crucial effect in 
future electricity supply instead of the traditional energy structure, for it has plenty 
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of merits such as: sufficiency and abundance, environmentally friendly, 
inexhaustible due to sustainable solar radiant energy, etc.   

PV resources are not only easy to get because of its ubiquity, but they are also free 
of cost. A PV cell can directly convert sunlight into electricity at an atomic level by 
the photovoltaic effect [13]. Several PV cells make a PV module, and a PV system 
consists of several PV modules. The basic device of a PV system is the PV cell, 
which is basically made up of semiconductor materials like mono-crystalline or 
poly-crystalline silicon [14]. In an actual sense a PV cell is a semi-conductor diode 
which has its p-n junction exposed to light. Sunlight consists of little parkers of solar 
energy called photons. When a PV cell is exposed to sunlight, electrons are knocked 
loose from the atoms in the semiconductor material and then the p-n junction of 
semiconductor forms a new hole called electron pairs. Under the action of a p-n 
junction, holes from the n region move to the p region while electrons flow from p 
region to the n region. As the material absorbs photons, energy is transferred into the 
solar cell. If electrical conductors are attached to the positive and negative sides, an 
electrical circuit will be formed, and the electrons can be captured in the form of an 
electric current, which is electricity. However, there are two main challenges posed 
by a PV system. One is that the conversion efficiency of most solar panels is less 
than 15% [7]. Although PV energy is free of cost, a PV system requires a high 
installation charge. Consequently, Maximum Power Point Tracking (MPPT) control 
method is significant to maximize the utilization efficiency of a PV system. Another 
hindrance is that the nonlinear Current-Voltage (I-V) and Power-Voltage (P-V) 
characteristics of a PV panel vary with external conditions such as inside temperature, 
solar irradiance and output voltage of PV modules. [8]. The DC micro grid was 
proposed several years ago with the purpose of integrating various renewable energy 
system. In a DC micro grid, droop control is a basic control method for load current 
sharing. In a PV based DC micro-grid system, the DC link voltage is kept constant 
and the power coming out of the converter (and the power coming out of the PV 
array) can be boosted by increasing the current going into it with this method.  

The appearance of high-efficiency photovoltaic system makes the development of 
Direct Current (DC) power grid supplied by DC-DC converter. Its efficiency exceeds 
that of a typical traditional high voltage AC-AC (Alternating Current) 50 hertz (hz) 
transformer. Instead of the classical unidirectional power flow in the present AC 
power grids, DC power grids is not the traditional one-direction power flow, but bi-
directional, which are suitable for power supply to medium and low voltage grids. A 
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main issue is to control the energy distribution throughout the whole power grid 
while also balancing the energy generation and energy demand. Therefore, DC 
power grids can not only integrate renewable energy, but also allow continuous 
control of the power flows in and out of the grid. 

Research on Wind Turbine (WT) systems using advanced control methods has been 
increasing more recently. Hur [15]  presents MPC for maximum power tracking of 
variable speed wind turbines, and it gives a better performance comparing with two 
loop separation frequency (2LPSF). Moreover, an offset predictive control was 
proposed for variable speed wind turbines [16]. Hosseini [17] also presents a variable 
speed wind system through MPC base on INC to improve the dynamic response of 
the wind turbine. Yaramasu [18] proposed a predictive control method for medium 
voltage wind energy conversion systems. Later, a finite-control-set MPC (FCS-MPC) 
technique for low-voltage, ride-through (LVRT) enhancement of wind turbine 
system was proposed [19]. Dizqah [20] proposed a coordinated optimal energy 
management strategy for a PV and wind turbine system of a DC micro-grid.  

1.2    Recent Developments 
The focus of this research project is mainly on modelling, control and performance 
optimisation of renewable energy systems. Within the field of renewable energy 
sources, this study is mostly limited to three renewable energy systems, which are 
the PRO, PV and WT systems. 

PRO systems  

Energy generation from saline water using  pressure retarded osmosis (PRO) was 
first proposed by Loeb [2] in 1975 as a novel alternative clean energy. Since then  
PRO has been investigated increasingly as a promising energy source by several 
researchers [6, 21-24]. This osmotic pressure gradient-based energy extraction 
method is easy to scale-up and can harvest free energy using membrane-based 
technologies spontaneously without being affected by wind variations or solar 
irradiance. In a typical PRO process, fresh water, such as river water forms the feed 
solution on one side of a semi-permeable membrane. The draw solution, for example 
seawater is on the other side of the semi-permeable membrane and has higher saline 
concentration and provides a natural salinity gradient across the membrane. When 
two solutions with different salt concentrations are present, the less concentrated 
saline water diffuses across the membrane and the differential pressure energy can 



30 

 

be extracted [21]. For instance, with the seawater and the river water which are the 
draw and feed solutions, respectively. In theory, when seawater and river water 
mixed, the worldwide potential chemical salinity  pressure from the two sides of the 
membrane is equivalent to a 270m waterfall – free energy of mixing up to 
0.81kWh/mj[22-24]The potential power on the earth that can be tapped during the 
mixing process by the PRO system is estimated to be equivalent to be 1.4-2.6TW 
[23], which is a significant amount of renewable power. The value is estimated when 
all global river water mixing seawater, though, the reported amount of produced 
power can be reduced in reality. The globally availability of produced gradient 
power is around 60% of potential power regarding energy conversion techniques[23, 
25], which remains an enormous resource. Thus, tracking the maximum power that 
can practically be extracted from the PRO system is one of the most significant topics 
in renewable energy generation. 

To make energy generation from a PRO process practically feasible, its production 
cost needs to be comparable with that of the other renewable energy sources such as 
wind, hydro and solar. This will require increasing the efficiency of a PRO process 
through several developments including inexpensive membrane design and 
fabrication tailored for a PRO process, novel PRO process design, such as multi-
stage PRO, and the design of appropriate control methodologies to extract maximum 
power from a PRO process. However, while a significant number of state-of-the-art 
MPPT techniques exist for wind and solar energy, very limited work has been carried 
out on the design of novel control techniques to extract maximum power from a PRO 
process with comparatively faster speed. A few MPPT strategies have been proposed 
to improve the efficiency of a PRO module and yield the maximum energy; these 
include Perturb & Observe (P&O), Incremental Mass Resistance (IMR) and Mass 
Feedback Controller (MFC) [6]. Similar to the P&O methods for the PV system, the 
P&O for PRO system involves a perturbation in the pressure on the draw side of 
PRO system. However, it results in oscillations at the maximum power point (MPP) 
due to the variations in the perturbations around the MPP. IMR was subsequently 
proposed to reduce the oscillation as well as the power loss by calculating the slope 
of the PRO power curve. The idea was inspired by the Incremental Conductance (IC) 
technique for the PV system [25]. The performance of the PRO system using IMR 
depends on the incremental pressure. The merit of IMR is that it is more flexible and 
stable compared with P&O. Yet the accompanying oscillations persist. Furthermore, 
a feedback control-based technique, MFC was proposed to improve the efficiency. 
Inspired by the PID controller, the MFC is implemented to minimize the error of the 
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power slope. The weighted sum of both the slope and the change of the slope is 
utilised to determine the error, resulting in fast convergence and lower power loss. 
The challenge is to balance three designed PID controller gains under the effect of 
disturbances and uncertainties from the system. When the system encounters a 
variation in the operating environment such as salinity and temperature, IMR 
algorithm may be less robust in performance.  

In a PRO osmotic power plant, under rapidly changing salinity and operational 
conditions, the need for a trade-off between oscillation and the tracking speed is an 
unavoidable complication that reduces the efficiency of the overall system 
significantly. Therefore, a better performing method is required to find the global 
maximum power point [25]. In order to track the global maximum power point, a 
novel evolutionary algorithm, Whale Optimisation with Differential evolution 
(WODE) is studied as an alternative approach.  The Whale Optimisation Algorithm 
(WOA), proposed by Mirjalili et al. [26], is an evolutionary computing approach 
inspired by the hunting strategy of humpback whales in the ocean. The proposed 
novel algorithm can handle the non-linear objective functions and performs well as 
a new optimising tool for the design of closed loop control systems. 

Furthermore, several applications based on this meta-heuristic technique have been 
evaluated in literature[27-28]. The novelty of the WODE-based MPPT is found to 
have the ability to track the global best-peak position in a few steps with oscillation-
free convergence. Additionally, this algorithm requires fewer iterations, converges 
faster and has less computational burden owing to fewer search particles being 
needed to find the best solution. This results in lower steady state oscillation as well 
as less power loss in the output. However, after a thorough literature survey, it was 
noted that the advantages of WODE are yet to be exploited in optimising a PRO 
system for a better performance. Thus, WODE-based MPPT of a PRO system is 
proposed in this work, which aims to design a better-performing MPPT controller 
for a classic scaled-up PRO system. The design also aims to improve the 
performance of a the scaled-up PRO system with various physical constraints and 
salinity profiles 

Performance of the PRO process in a full-scale module is different to that in a flat-
sheet laboratory scale unit. Based on the laboratory size experiments, most studies 
have used equal feed and draw solutions flow rates, which ignored the effect of 
dilution and concentrations along the PRO module [8,29]. Masaru and Masayuki [10] 
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performed a pilot plant test for power generation using eight 10-in, hollow fiber 
membrane modules. The PRO achieved a power density equal to 4.4 W/m2, which 
is closer to the minimum theoretical threshold value suggested for an economic PRO 
process [11]. The study did not perform an optimisation process to enhance the 
energy output in the PRO process.  Achilli et al, [12] conducted a laboratory test on 
a flat sheet PRO unit and concluded that maximum power density occurs at a 
hydraulic pressure equal to . The study, however, did not investigate the effect 
of varying the feed or draw solution flow rate on the power generation in the PRO 
process. Elimelch et al, [8] investigated energy yield from various salinity gradient 
resources in the PRO process. The study presented the performance of the PRO 
module and suggested that the maximum specific energy was achieved at hydraulic 
pressure and feed or draw fraction in the mixture equal to and 0.5 
respectively. The study assumed an ideal system and ignored the effects of 
concentration polarization in the PRO process. Altaee et al, [29] performed a 
thermodynamic analysis study on a full scale PRO module and found that increasing 
the number of modules in the pressure vessel maximized the energy yield of the PRO 
system. The study was performed at hydraulic pressure and feed or draw fraction in 
the mixture equal to and 0.5 respectively. In a different study, Altaee 
et al, performed PRO performance analysis considering the impact of feed and draw 
slow rates, hydraulic pressure, and membrane area on the energy output in the PRO 
process [30]. The study showed that increasing the flow rate of feed and draw 
solution reduced the effects of concentration polarization and improved the 
performance of PRO process. The stud, however, considered neither the impact of 
concentration polarization nor the impact of module length of the process 
performance.  Yang and co-workers developed a numerical simulation procedure for 
a counter-current flow PRO process [31]. The numerical model predicted the flow 
rates and salt concentrations along the membrane channels for any feed fractions. 
However, the modelling results are only valid for an ideal PRO process and ignored 
the effects of concentration polarization along the PRO module. 

Salinity gradient processes experiences dynamic changes in the full-scale PRO 
element due to the continuous dilution and concentration of the draw and feed 
solutions, respectively [9, 29]. Furthermore, the pressure vessel may contain several 
PRO elements packed in a series and operates under a constant hydraulic pressure 
while the concentrations of the feed and the draw solution undergo continuous 
changing along the PRO module and in each module in the pressure vessel. As such, 
the optimum value of hydraulic pressure for a laboratory scale PRO unit and equal 
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to  would not be valid for a full-scale PRO element or a pressure vessel 
of multi PRO elements. Although the optimum value of hydraulic pressure 

 has been validated on a laboratory scale unit, but it is still used in pilot 
plant tests. Module optimisation requires large system setup and testing, which is 
time and labour intensive.  

PV systems 

Over the years, several researchers have worked on the PV panel and studied PV 
characteristics including factors that affect them. It is essential to provide a robust 
model of PV cells. Sera [32] provides a PV panel model based on manufacturer’s 
data sheets in Standard Test Conditions (STC). However, it depends on only one 
operating condition. Villalva [13] proposes an effective and straightforward solution 
to fit the mathematical equation of the nonlinear I-V characteristic with three crucial 
points of a practical PV array, but it is only suitable for single-diode models. 
Krismadinata [33] defines both mathematical model and simulation model employed 
in the MATLAB/ Simulink environment. Soto [34] proposes a five-parameter model 
for four different cell technologies. Though effective, this research lacks the study 
on the choice of tilt angle. Costa [35] and Armstrong [36] mainly propose the 
temperature control law and the methodology to choose the optimum tilt angle for a 
PV panel respectively. Patel [37] proposes a MATLAB-based modelling and 
simulation scheme under partial shaded conditions. Dolara [38] compares three 
physical models of PV cells using actual weather data.  

PV arrays have their specific non-linear characteristics and the maximum power 
point (MPP) depends on conditions like temperature, insolation and so on. Also, the 
low conversion efficiency of PV systems is a considerable hindrance [39]. There are 
a few ways to improve the efficiency of solar power. These include: promoting the 
Review on Maximum Power Point Tracking (MPPT) algorithm, automatic tracking 
systems, increasing conversion efficiency of PV panels and better power storage 
technology [40]. The effective MPPT technique is developed and harnessed to locus 
the maximum power point and produce better efficiency [41]. In the literature, 
various MPPT methods have been studied by researchers, like Perturbation and 
Observation (P & O) [42], Incremental Conductance (InC) [43], Fuzzy Logic (FL) 
[44], Neural Network (NN) [45], etc. The relative achievements are discussed in [39].  

2/pD=DP
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There are two stages to connect photovoltaic power to DC power grid. Firstly, 
through the DC-DC converter is regulated by the controller from the PV modules to 
yield the maximum power. A DC-DC converter is utilised to provide an output 
voltage. A regulated power supply is implemented [46]. DC-DC converters are 
intrinsically non-linear in their dynamic behaviour. Considering not only all parasitic 
inputs but simulate their effects on the dynamic response of dynamic models, it is 
not easy to obtain the model accurately. Due to variations of power input, the DC 
voltage output of this system can be subject to a wide range of transient conditions. 
Amato et al [47] discussed the feedback control in the application to the stabilization 
of linear state bilinear systems. It was applied to a Ćuk DC-DC converter design, he 
effectiveness of this method was verified, 

For the purposes of controlling the DC voltage, the power output driven voltage 
variations should be adequately compensated to guarantee a regulated, steady 
voltage output. The DC voltage control is realized by controlling the power exchange 
between the converter and the grid, using a converter interface. The converter 
interface delivers a current to the DC grid at a constant voltage. It is also controlled 
actively by continuously switching the output current and voltage whenever they 
exceed or fall below a reference value. Controller with switch mode based on MPC 
technique is utilised for MPPT and for regulating the grid voltage. MPPT controllers 
are verified to be efficient in photovoltaic systems under different conditions, to 
track the maximum energy [48]. Several researchers have presented various MPPT 
methods for a PV system [42-49]. These include:  i) short circuit technique, ii) open 
circuit algorithm, iii) P&O method [42], iv) incremental conductance technique [43], 
v) ripple correlation control, vi) single cycle control using an inverter [49]. Most of 
these algorithms can be implemented adaptively, or with the state estimator coupled 
to compensate for the lack of some measurements. The output power can also be 
generated using suitable MPPT techniques in each case. Among these methods, the 
most popular technique is “P&O” as it does not require short-circuit current or open-
circuit voltage [43]. The principle of P&O is simple. The distribution in voltage or 
current at the maximum power point reduces the output power. Otherwise the 
operating point moves in the direction of increasing power.  

Kakosimos et al.[50] have designed  a MPC based two-step MPPT algorithm. The 
control principle is a modification of the incremental conductance (INC) algorithm 
with two-step predict control method. A MPC controller is proposed by Gonzalez et 
al.  [51] to adjust the converter powered by a photovoltaic power. Sajadian and 
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Ahmadi [52] present an optimal MPC method for PV system based on the use of 
single-stage grid-tied Z-source inverter. The possibility of developing a high voltage 
DC bus to facilitate the energy transport in the smart grids was studied [54-55], using 
high efficiency DC-DC converters. Shadmand et al.  [55] have developed a P&O 
method which uses MPC with fixed step size, and the insolation varies rapidly. The 
utilise of MPPT based MPC technique predicts errors before applying switching 
signals to fly back DC/DC converter by introducing a control loop. Later, an MPC-
based MPPT and droop regulator are evaluated to connect PV module to a DC 
distribution system [40]. Hu et al. [56] have also applied the MPC methodology to 
direct power control of a grid-connected inverter fed by a PV system. Geyer et al. 
[57] have developed a new method for the modelling and controller design problem 
associated with fixed-frequency converters. Adhikari and Li [58] have designed a 
coordinated and integrated controller for PV generators with MPPT. In a doctoral 
thesis, Jiang and Jaber [59] developed a new method of load current adaptive step 
size MPPT controller.  

One of the most popular methods to regulate the output voltage of power grid is the 
droop control technique. Li et al. [60] and Fuente et al. [61] have developed methods 
of analysis for droop controlled DC micro-grids and used droop control to serve as 
a stable voltage source for power management or power management of DC micro-
grid flow. For droop control, the DC link voltage is generally regulated while the 
power output of the converter (and the power output of the PV array) may vary due 
to variations of the current supply. However, beyond the optimum operating point 
the DC link voltage begins to droop as the voltage output of the source reduces with 
increasing current. Thus, the current input is maintained at a value just prior to when 
the DC link voltage begins to droop. 

WT systems 

The conventional method of power generation from a wind turbine has been based 
on the use of a doubly fed induction generator. However, there has been a growing 
interest in the development of small-scale wind turbine power generating units, 
which typically drive a permanent magnet synchronous generator (PMSG). There 
have been many recent studies related to the dynamic model and control of wind 
turbines driving a PMSG. Elbeji et al. [62] have investigated the dynamic model and 
control of a PMSG driven by a wind turbine. They have investigated several suitable 
control schemes. Hussein et al. [63] have considered the application of simple 
control schemes to control both the generator side and grid side of the PMSG system. 
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There have been several applications related to the maximum power point tracking 
(MPPT) control. Rolan et al. [64] reported the implementation of a MPPT system by 
simple speed adjustment of the wind turbine. Aliprantis et al. [65] discussed the 
modelling and active control of a stall-regulated variable-speed PMSG driven by a 
wind turbine. Camara et al. [66] developed a MPPT system for PMSG speed control 
as well as active and reactive power control, management of the DC-bus voltage and 
battery’s power control. Tafticht et al. [67] have discussed the estimation of power 
quality, control strategies for MPPT and the connection of the wind turbine to a 
variety of storage or grid systems. Hamatwi et al. [68] have implemented rotor speed 
control for MPPT using phase lag compensation. Other important studies related to 
wind turbines driving a PMSG include the control of the inertial frequency response 
using a full-rated Voltage Source Converters (VSC), by Cheah-Manee et al. [69] and 
the development of a systematic approach to model reduction by Hackl et al. [70]. 
The important issue of the coupled stability and control of the permanent magnet 
synchronous generator (PMSG) when driven by a wind turbine was considered by 
Hamied et al. [71]. However, it appears that most of the focus of the current 
research’s focus has been on the control of the electrical side of PMSG’s driven by 
a wind turbine, and a few important issues haven’t been explored yet.  

1.3 Motivation 
Research on control algorithms has been an area of my interest since my 
undergraduate studies. The future of energy consumption is an issue with regard to 
climate change and scarcer fossil fuels. Sustainable development in various types of 
energy is of importance to everyone in the world at large. However, the global 
environment faces the risk of a lack of access to clean and modern energy services 
due to today’s rapidly increasing energy demand and the rapidly depletion in 
conventional energies. Carbon dioxide released by burning fossil fuels has led to a 
myriad of problems, such as global warming and environmental pollution. The Great 
Smog in London in 1952 mostly had its origins in the use of coal. More recently, 
China has begun to suffer from a smog problem for the same reason. 

In recent times, PRO, PV and WT systems have become the three most promising 
renewable energy systems. As introduced above, there are several challenges with 
these sources. Thus, the motivation is to investigate and design high-efficiency 
renewable energy systems, PRO, PR and WT, using control and optimisation 
techniques.  
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1.4 Aims and objectives 
The main aim of this study is to investigate energy efficiency improvement of three 
sustainable energy systems: PRO, PV and WT systems by system modelling, control 
and operating parameter optimisation. The aim and objective of the thesis is firstly 
to develop mathematical models for these three renewable energy systems and study 
their system characteristics, in which environmental and operational variables are 
taken into account to improve their simulation accuracy. For each individual 
renewable energy system, model-based control methods and performance 
optimisation techniques are proposed and evaluated through simulation under 
different case studies in order to validate the systems’ behaviours and robustness.  

The specific objectives of this research are depicted below: 

o investigate efficient extraction techniques for a scaled-up PRO system subject to 
various salinity profiles. 

o optimise operating parameters on a number of salinity gradients in a PRO process to 
enhance overall energy extraction.   

o design and implement effective control mechanism for a PV system and develop a 
performance index and to investigate a bi-linear PV model under disturbances. 

o develop de-coupled dynamic and equilibrium models of a permanent magnet 
synchronous generator (PMSG) driven by a variable speed wind turbine system and 
to develop an MPC method to achieve desired power generation. 

1.5 Chapter outline and organization 
A brief outline of the thesis is shown below.  

• Chapter 2 presents an analytical model of a scale-up PRO osmotic power 
plant. Based on the module-scale PRO process, the non-linear characteristic 
of the PRO system ∆V − ∆𝑃 characteristics and 𝑊h − ∆𝑃 characteristics are 
studied and used to explore the osmotic energy efficiency. Further, a full-
scale PRO model is developed. Four types of salinity gradient resources 
(Dead Sea-seawater, Dead Sea-Reverse Osmosis brine (ROb), seawater-
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wastewater effluent, and ROb-wastewater effluent) were evaluated for 
power generation in the PRO process along the membrane. 

• Chapter 3 depicts four salinity gradient resources following the 
mathematical full-scale PRO model derived in Chapter 2. A computer model 
is applied to predict the performance of the PRO process and the system 
optimisation has been carried out. In this study, GWO is used to suggest the 
optimal values of key operating parameters for a maximum energy 
extraction. The net energy generated in the optimised PRO process is higher 
than that in the unoptimised (normal) PRO process. 

• Chapter 4 presents an evaluation on maximum power point tracking using 
various MPPT methods including P&O, IMR and PSO based the developed 
module-scale PRO characteristics, the performance curve and modelling 
framework of a scaled-up PRO system in Chapter 2. Furthermore, a novel 
evolutionary optimisation algorithm WOA based MPPT method was 
proposed and implemented, which is verified to be superior to previous 
methods.  

• Chapter 5 presents a mathematical model of PV cells. A model predictive 
control (MPC) algorithm is utilised for maximum power point tracking 
(MPPT) and for regulating the power output from a PV panel. A novel 
feature of the proposed methodology is that the parameters of the converter 
are chosen to always guarantee stability to ensure the robustness of the 
system. Another novel feature of the proposed variable step size algorithm 
is that it is adaptive. It has been validated with relatively large additions of 
process and environmental noise to emulate real operational conditions. This 
chapter also emphasises the main features of the controllers that can adjust 
the output power of a PV system. In addition, PV thermal analysis is studied 
and evaluated based on the weather condition in Egypt to examine the 
effectiveness of a seawater cooled PVT cell.  

• Chapter 6 analysed and developed a common strategy in controlling a 
permanent magnet synchronous generator (PMSG) driven by a wind turbine 
for the maximization of output power of the wind turbine. The stability of 
the wind turbine system is analysed, and a blade pitch controller is designed, 
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based on the linearised, parameter-varying, model-predictive control and is 
validated. Moreover, the blade pitch control system also performs the key 
function of augmenting the stability of the wind turbine, for the right choice 
of the gains. 

• Chapter 7 presents the conclusions of this research investigation, discussion 
and an outline of future work. 
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Chapter 2 Modelling of Pressure 

Retarded Osmosis plant 

2.1 Introduction 
Pressure retarded osmosis (PRO) has been broadly investigated for power generation 

from a salinity gradient resource [4, 29]. The technology has been demonstrated in 

pilot and laboratory scales with the potential of being commercialized as a source of 

renewable energy [10, 11]. The PRO process converts chemical potential across a 

semi-permeable membrane into a hydraulic energy using concentrated draw solution 

and diluted feed solution salinity gradient. As mentioned before, today the 

experiment for PRO system in a development stage. Therefore, when analysing, an 

accurate mechanical model of PRO process is of important.  

In this Chapter, two PRO models are developed and considered. Firstly, basic 

principles of a module-scale PRO model are introduced and investigated with 

regards of the detrimental effects. The three essential operational elements, namely 

draw and feed flow rates and applied pressure are thus developed to evaluate the 

generated energy. The characteristic of a module-scale PRO power plant considering 

RSP, ICP and ECP is then analysed under different operational conditions.  

Furthermore, an existing full-scale PRO power plant is investigated and analysed 

under non-ideal operating conditions. Performance of the PRO process in a full-scale 

module is different to that in a flat-sheet laboratory scale unit. Salinity gradient 

experiences dynamic changes in the full-scale PRO element due to the continuous 

dilution and concentration of the draw and feed solutions, respectively [9, 29]. 

Moreover, the pressure vessel may contain several PRO elements packed in a series 

and operates under a constant hydraulic pressure while the concentrations of the feed 

and the draw solution undergo continuous changing along the PRO module and in 

each module in the pressure vessel. In this work, four different types of gradient 

resources (Dead Sea(DS)-seawater, Dead Sea-Reverse Osmosis brine(ROb), 
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seawater-wastewater effluent, Rob-wastewater effluent) were investigated for PRO 

power generation models.   

Performance of the PRO process in a full-scale module is different to that in a flat-

sheet laboratory scale unit. Salinity gradient experiences dynamic changes in the 

full-scale PRO element due to the continuous dilution and concentration of the draw 

and feed solutions, respectively [9, 29]. Furthermore, the pressure vessel may 

contain several PRO elements packed in a series and operates under a constant 

hydraulic pressure while the concentrations of the feed and the draw solution 

undergo continuous changing along the PRO module and in each module in the 

pressure vessel. 

2.2 Modelling of the Pressure Retarded Osmosis 
System 
Four types of salinity gradient resources (Dead Sea-seawater, Dead Sea-Reverse 

Osmosis brine (ROb), seawater-wastewater effluent, and ROb-wastewater effluent) 

were evaluated for power generation in the PRO process. These salinity gradients 

were commonly investigated in literature and represented as Dead Sea (~5M NaCl), 

seawater (~0.6M NaCl), Reverse Osmosis brine (~1.2M NaCl), and wastewater 

effluent (~0.02M NaCl) [8, 29, 75]. In chapter 4, A computer model was applied to 

predict the performance of the PRO process and the system optimisation was 

performed using GWO algorithms.  

A pre-developed computer model was applied to estimate water flux in the PRO 

module [4]. Water flux in the PRO membrane was calculated using Eq 2.1 [4, 29]: 

(2.1) 

where, ∅  is number of ions in the solution, 𝑅  is the gas constant, and T is the 

temperature in Kelvin. 𝐴^ and 𝐵 were assumed to be 1.23 L/hm2·bar and 2.6 kg/hm2 

respectively, 𝑘C = 𝑘D = 0.18 m/h, and 𝐾 = 31	h/m [6]. Equation 2.1 accounts for 
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concentration polarization and external resistance in the PRO membrane [9], [73]. It 

calculates the water flux in a PRO membrane operating in the PRO model (draw 

solution faces the membrane active layer; DS-AL).  Detailed information about the 

derivation of Equation (2.1) is found in literature [29]. The fractions of draw and 

feed volumes, 	𝜃@  and 𝜃A  respectively, in the mixture were calculated from the 

following equations: 

                                     (2.2) 

                         𝜃A =
op

oqrop
                      (2.3) 

where, 𝑉@ and 𝑉A are the volumetric flow rate of draw and feed solutions. Different 

𝜃@  and 𝜃A  ratios were tested and their effects on the PRO performance were 

investigated. Furthermore, in a full-scale PRO process, the specific energy output 𝐸s 

can be calculated at different operating conditions using the following expression [8, 

30]:  

                                                   (2.4) 

where, ∆𝑃 is the hydraulic pressure of the draw solution entering the hydroturbine 

(bar) and 𝑄Q, 𝑄@, 𝑄A are the permeate, draw solution and feed solution flow rates, 

respectively. Specific energy output from the optimised PRO system was compared 

with that from the unoptimised PRO process. In practice, internal and external 

concentration polarizations, ICP and ECP respectively, can be mitigated by varying 

the feed and flow rates in the PRO module [21, 22].  However, this would also 

compromise the specific energy output in the PRO process according to Equation 4 

unless the flow rates are carefully optimised. In the following study, optimised 

method was applied to find the optimum flow rates in the PRO system comprising a 

single and multi-module. 

2.3 Characteristics of a Pressure Retarded Osmosis 
System 
The complete mechanism of a typical module-scale PRO salinity power plant is 

shown in Fig.2.1 [74]. Here, the PRO membrane model is connected to the external 
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devices, the pressure of the high-pressure pump is controlled by the MPPT controller. 

The overall PRO process is presented in Fig. 2.1. 

 

Figure 2.1: Block diagram of the PRO system with MPPT controller 

In above block diagram,  

ERD: energy recovery device; 

HP: high-pressure pump; 

BP: boost pump; 

HT: hydro-turbine. 

In the previous research, various PRO models incorporating detrimental effects (D-

PRO) of external polarization concentration (ECP), reverse salt permeation (RSP) 

and internal polarization concentration (ICP) are studied [75]. In this section, the D-

PRO model is implemented and used to derive the MPPT algorithm. This model is 

analogous to an equivalent circuit model with purely resistive elements in the circuit, 

albeit nonlinear in general. This implies that we have used purely a quasi-static 

model. The authors [22, 78, 79] developed the model based on the following 

assumptions: i) to simplify, a constant density is assumed for both draw and feed 

solution [75]; ii) the difference of osmotic pressure is assumed based on the van’t 

Hoff law [22]; iii) constant hydraulic pressure difference owing to neglected pressure 

loss [76]. The mathematical formulation of the power density in a PRO system is 

described as following [12]: 
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                         W = 𝐽 ∆𝑃                          (2.5) 

In (2.5) ∆𝑃 is the hydraulic pressure and 𝐽  is the water permeation flux in L·m-2·h-

1·. The water permeation flux 𝐽  for the D-PRO model incorporating the detrimental 

effects of ECP, RSP and ICP is defined as following using experimentally 

measurable parameters [77]:  

         𝐽 = 𝐴(t uqevwx/yzupevwx{/q

|r}/~x�evwx{/qzevwx/y�
� − ∆𝑃)                            (2.6) 

In (2.6) A, B, S and D are the membrane water permeability, salt permeability, 

substrate structural parameter and the bulk diffusion coefficient, respectively. 

𝜋@	and 𝜋A  are the osmotic pressure of the draw solution and the feed solution, 

respectively. 𝑘 is the boundary layer mass transfer coefficient which is represented 

as 𝑘 = 𝐷/𝛿, where 𝛿 is the boundary layer thickness. The actual power density can 

be formulated as 

         W = 𝐴(t uqevwx/yzupevwx{/q

|r}/~x�evwx{/qzevwx/y�
� − ∆𝑃) × ∆𝑃                          (2.7) 

The solution on the draw side is diluted while the concentration of the feed water 

increases along the flow direction owing to the direct and the reverse water 

permeation. The reverse solute flux 𝐽I in L·m-2·h-1 regarding the detrimental effects 

is represented as[77] 

         𝐽I = 𝐵(� �qevwx/yz�pevwx{/q�

|r}evwx{/q/~xzevwx/y
� − ∆𝑃)                          (2.8) 

The water flux can be calculated from the mass balance of the feed solution at the 

steady state. The mass flow rate of the permeated water,∆𝑚Q is represented as[75] 

                             d�∆𝑚Q� = 𝜌G𝐽 𝑑(𝐴N)                                         (2.9) 

Similarly, the mass flow rate of the reverse water ∆𝑚I can be expressed as 

                             d(∆𝑚I) = 𝜌@𝐽I𝑑(𝐴N)                                         (2.10) 
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In (2.9)-(2.10) 𝜌G  and 𝜌@  denote the density of permeating water and the draw 

solution in kg/ m3·. 𝐴N the membrane exposed area. The flow rates of the draw and 

feed solution can be updated by[21] 

 𝑞@ = 𝑞@X + ∆𝑞Q (2.11) 

 𝑞A = 𝑞AX − ∆𝑞Q (2.12) 

 

The superscript 0 specifies the initial value, namely the variables at the inlet. From 

the mass change between two sides, the flow rates of both solutions are exhibited as 

 𝑐@ =
�q
�[q

�z∆N�
[q
�r∆[�

 (2.13)  

 𝑐A =
�p
�[p

�r∆N�
[p
�z∆[�

 (2.14) 

In a module-scale PRO system, the average power density (APD) 𝑊h  is used to 

explore the efficiency considering the detrimental effects, which is expressed as the 

ratio of the specific energy extraction (SEE)	𝐸 and the membrane area 𝐴N. In the 

expression, ∆𝑉G/𝑉AXis called dimensionless permeated water volume [22].  

 E = ∆G∆o�
op
�  (2.15)  

In which E is the extractable energy SEE. 𝑉AX  presents the flow rate of the feed 

solution. ∆𝑉G is the flow rate of the permeated water per volume in m3/h.  

 𝑊h = �
��

 (2.16)  

The SEE is defined to highlight the efficient application of the osmotic energy. 

From (2.16) it is obvious that when the membrane area is fixed, the operation of 

APD and SEE is same. Overall, a scaled-up PRO discharge model can be obtained 

from the above key equations. Furthermore, the APD is used in this paper to 

evaluate different MPPT algorithms. 

2.3.1 System Description  

The non-linear characteristics of the PRO system can be achieved from its mathematic model. 

The performance of the non-linear PRO model is influenced by membrane parameters and 
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operating conditions. In Table 2.1, all values of parameters utilised in the module-scale PRO 

system are clearly illustrated. 

 

Table 2.1: Parameters applied in a scaled-up PRO process 

Parameter Symbol Value 

Water permeability A 1.74 L·m-2·h-1·bar-1 
Salt permeability 

 B 0.16 L·m-2·h-1 

Structural parameter S 307e-6μm 

diffusion coefficient D 
3600*1.490*10^-6 m2 s1 

 
 

boundary layer mass 
transfer coefficient k 138.6 m·s-1 

 

Efficiency of HP η�G 70% 

Efficiency of HT 
 η�� 90% 

Efficiency of ERD η��@ 95% 

draw solution concentration 𝑐@ 35-55g/kg 

feed solution concentration 𝑐A 0.1g/kg 

draw solution flow rate 𝑞@ 1-4kg/h 

feed solution flow rate 𝑞A 1kg/h 

Membrane area 𝐴N 0.1m2 per 1 L/h feed solution 
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 (c)  

    

 

                                                                 (d)   

Figure 2.2: ∆V − ∆𝑃  characteristics and 𝑊h − ∆𝑃  characteristics of the PRO plant with 
respect to various concentrations on the draw shown in (a) and (b), respectively; 	∆V − ∆𝑃 
characteristics and 𝑊h − ∆𝑃 characteristics of the PRO plant with respect to various flow rate 
on the draw shown in (c) and (d), respectively. 
 

∆V 

∆P 

∆P 

𝑊h  
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The performance with different membrane performance is studied in the literature 

[23, 81]. In this work, the operational conditions, namely the concentration and the 

flow rate of the salinities are taken into account to test the effectiveness of the 

proposed method. The concentration on the draw solution is changing during the 

PRO process, from seawater to the concentrated water. Figure 2.2 (a) and (b) 

illustrate the permeation-pressure (∆V − ∆𝑃) characteristics and the power-pressure 

(𝑊h − ∆𝑃) characteristics of the PRO model with respect to various concentrations 

on the draw. In Figure 2.2 (c) and (d), the process characteristic curves of PRO with 

different mass flow rates on the draw side is clearly indicated. The maximum power 

point is clearly observed from the 𝑊h − ∆𝑃 characteristics in (b) and (d). 

2.4 Summary 
This chapter presents the analytical model of the PRO system. Firstly, the 

mathematical modelling and theoretical analysis of a scale-up PRO process is 

detailed described in this section. The study explored the extractable energy per 

volume.  

Based on the mathematical model, the extractable energy and average power density 

concepts for a scaled-up PRO model is evaluated which is suitable for capturing 

nonlinear behaviour of a scaled-up PRO discharge process. Based on a scaled-up 

PRO process, the non-linear characteristic of the PRO system is achieved and used 

to explore the osmotic energy efficiency. The energy efficiency and maximum power 

was investigated in a module-scale PRO system using specific energy extract(SEE), 

which is calculated by the extractable energy per volume. However, in a full-scaled 

PRO osmotic energy system, it cannot be used. The volumetric maximum energy is 

only suitable to low concentrated feed solution [79]. 

Therefore, the output energy of a full-scale model is developed analytically but 

encountered challenges in determining an accurate extractable energy [79]. Previous 

optimisation methods evaluated the extractable energy per volume, which cannot be 

utilised on a full-scale PRO process.  
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Chapter 3 Optimisation of a Pressure 

Retarded Osmosis process using 

Machine Learning for Maximum Energy 

Extraction 

3.1 Introduction  
In recent times, maximum power point tracking (MPPT) for the PRO system have 

been investigated using incremental mass resistance (IMR) and perturb & observe 

(P&O) methods [6, 25] widely used to ensure maximum energy harvesting from 

photovoltaic (PV) systems. The efficiency of a MPPT algorithm is rated using two 

main criteria: convergence speed and the obtained maximum power level. The less 

tracking time and higher extracted maximum power result in less power loss in the 

output, and vice versa. Faster tracking speed may also lead to more steady state 

oscillations. Both P&O and IMR algorithms have to find a balance between the 

oscillations and the response speed, which causes more power loss. Therefore, a 

robust and efficient MPPT method is required for a scaled-up PRO system. It is also 

observed that the authors in [6, 25] only optimised the hydraulic pressure in a scaled-

up PRO system to enhance energy extraction. However, more controlled variables 

such as the flow rates on the draw side and feed side are also needed to be optimised 

to yield the maximum energy along the PRO module. 

Machine learning based metaheuristic optimisation algorithms offer unique merits 

in enhancing performance of engineering methods and systems [83-86]. These 

include i) being nature-inspired, these algorithms result in simple concepts which 

can be employed easily; ii) they offer derivative-free optimisation method suitable 

to be used in a wide range of applications; iii) the population-based strategy of these 

algorithms results in the local optimal stagnation avoidance; iv) they are also well 
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suited to be implemented in multi-objective problems, for example, the multi-peak 

MPPT problem.  

The Grey Wolf Optimisation (GWO) method, proposed in 2014 by Mirjalili and 

Lewis [82], is a metaheuristic algorithm inspired by the leadership pyramid 

mechanism in the hunting process of grey wolves in nature. Although GWO is a 

relatively new member of the metaheuristic algorithms family, it has attracted 

significant attention from the scientific community to design efficient control and 

optimisation techniques in engineering applications including MPPT design. For 

example, Sultana et. al. [83]  used a GWO algorithm for the optimisation of system 

components in power plants. Later, a GWO algorithm was applied for a multi-

objective problem in the electric power systems by Aziziyahed et. al. [84]. 

Researchers [83-85] proposed a GWO combined with Maximum Power Point 

Tracking (MPPT) algorithms for PV system. Also, a GWO is used to solve the MPPT 

problem in the Wind Turbine (WT) system [83]. However, GWO-based MPPT 

design for a PRO system has not yet been reported in the literature to utilise the 

unique merits of this optimisation mechanism in extracting the maximum power 

from a scaled-up PRO process.  

The current study proposes a GWO based novel MPPT design for a scaled-up PRO 

system comprising multiple modules. The GWO was applied not only to identify the 

optimum hydraulic pressure but also to find the optimum feed and draw solution 

fractions in the mixture for a number of salinity gradient resources. Impact of adding 

PRO modules and concentration polarization on the energy yield in the PRO process 

was evaluated by the GWO. The optimum hydraulic pressure and feed and draw 

fractions in the mixture was obtained for each salinity gradient resource.  

3.2 Grey Wolf Optimiser 
The Grey Wolf Optimisation (GWO) is a metaheuristic method proposed by Mirjalili 

and Lewis [82]. It mimics the leadership hierarchy and the hunting process of the 

grey wolves in nature. The social dominant hierarchy includes three different types 

of grey wolves in GWO: the leader, namely 𝛼, the second level grey wolf, namely 𝛽 

and the third level grey wolf, namely 𝛾 . The grey wolf 𝛼  is the leader of the 

navigation whereas α, β and 𝛾  are responsible for providing promising solutions. 
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The hunting and navigating behaviour for every grey wolf is the same.  When the 

hunting mechanism is introduced in designing the GWO technique, three main 

characteristics of grey wolves are taken into consideration: tracking prey, encircling 

prey and attacking towards prey.  

In the mathematical GWO model, the prey is considered as the optimum. The above 

hunting strategy is simulated as the optimisation process. The three-dominant 

hierarchy  𝛼, 𝛽 and 𝛾 are considered as the best solution, the second fittest solution 

and the third fittest solution, respectively. The next move of the current search agent 

is decided based on the current best solution and the global best three candidate 

solutions  𝛼, 𝛽 and 𝛾. 

3.2.1 Encircling mechanism 

In the encircling model, the grey wolves encircle the prey during the hunting. The 

updating position is estimated with respect to 𝐷����⃗ , which is the distance between the 

position of the 𝑖𝑡ℎ searching grey wolves and the prey. This is an exploitation phase; 

the search agents sense the prey and start to encircle with a circular motion. The 

mathematic model of this motion is formulated as [82]. 

 
𝐷����⃗ = |𝐶. 𝑋����⃗ (𝑘) − 𝑋⃗(𝑘)|     (3.1) 

 
𝑋⃗(𝑘 + 1) = 𝑋����⃗ (𝑘) − 𝐴. 𝐷����⃗    (3.2) 

In which 𝑘  is the current iteration. 𝐴  and 𝐶  donate coefficient vectors, 𝑋⃑  is the 

positon vector, 𝑋Q����⃑   depicts the position vector of the prey.  The coefficient vectors 

𝐴 , 𝐶  are calculated in each iteration as 

 
𝐴 = 2 ∗ 𝑎⃗. 𝑟|���⃗ − 𝑎⃗   (3.3) 

 
𝐶 = 2 ∗ 𝑟¦���⃗    (3.4) 

 
𝑎⃗ = 2 − 𝑘 ∗ ¦

J§e¨
   (3.5) 

where ‘iter’ is the maximum iteration. 𝑟|���⃗  and 𝑟¦���⃗  are random vectors in [0, 1].  
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The position around the prey is adjusted based on the components 𝐴 and 𝐶. The 

purpose of the parameter 𝐴 is emphasizing the searching phase and the attacking 

phase which is analyzed further in the following section. The random vector 𝐶 is 

employed to define the weight of the prey in the interval [0,2]. This coefficient vector 

provides a stochastic behaviour during the optimisation. When the weight 𝐶 > 1, the 

effect of the prey is emphasized in calculating the distance between the prey and the 

search agent. In contrast if 𝐶 < 1, the effect is deemphasized.  

The random parameters of GWO mentioned above is utilised to force search agents 

reach any location in the search space. 

3.2.2 Searching and attacking phase 

It can be obtained from equation (3.3) that the vector 𝐴  is decreasing with the 

parameter 𝑎⃗  in [−𝑎,���⃗ 𝑎]���⃗ . As previously discussed, this vector is used to emphasize 

the searching and attacking phase as Fig.3.1 depicts [82]. 

 

                                    (a)                                                      (b) 

Figure 3.1: Searching mode and attacking mode with respect to the vector 𝐴 

If the value of the coefficient parameter 𝐴 is greater than 1 or less than -1, the next 

position of the current grey wolf is set to do the searching job stochastically as 

Fig.3.1(a) illustrates. The searching mode is an exploration phase which is very 

useful to avoid trap in the local solutions.  

Consequently, when the absolute value of the coefficient vector 𝐴 is less than 1, the 

current search agent converges to the prey and attack it as shown in Fig.3.1(b). The 
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coefficient parameter 𝑎⃗ is an iteration dependent value range in [0, 2] derived from 

equation (3.5). It linearly decreases from 2 to 0 during the iterations in order to mimic 

the grey wolf approaching the prey.  

It is significant to point out that the operators, such as the coefficient vector  𝐴  and 

𝐶 , are utilised to assist solving the MPP tracking problems resulting in the local 

optima stagnation avoidance in the GWO-based MPPT algorithm. Furthermore, it 

can be implemented for the multi-peak control systems. 

3.2.3 Hunting strategy 

The hunting process is the main optimisation procedure. It is supposed that the three 

best searching wolves, namely  𝛼, 𝛽 and 𝛾 have better knowledge about the prey 

position. Thus, the hunting behaviour of the grey wolves mainly depends on 𝛼, 𝛽 

and 𝛾. Take the grey wolf 𝛼 as an example, the position is updated by the following 

equations [82]: 

 
𝐷­�����⃗ = |𝐶|����⃗ . 𝑋­����⃗ (𝑘) − 𝑋⃗(𝑘)|     (3.6) 

 
𝑋|����⃗ (𝑘 + 1) = 𝑋­����⃗ (𝑘) − 𝐴|����⃗ . 𝐷­�����⃗    (3.7) 

The positions guided by 𝛽 and 𝛾 follow the same regard. As mentioned above, the 

position of prey is defined by these three candidate positions which is the three best 

solutions of the problem obtained so far. In the next iteration, each grey wolf 

estimates the prey position and update its position randomly within a circle with 

respect to the potential location of the prey. The mathematical model of this hunting 

strategy are formulated in this regard [82].  

 
𝑋⃗(𝑘 + 1) = ®¯�����⃗ (°r|)r®±�����⃗ (°r|)r®²�����⃗ (°r|)

j
   (3.8) 

It is important to point out that for each grey wolf, all the random parameters and the 

coefficient vectors are independent.  
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3.3 Grey Wolf based MPPT Application 

3.3.1 Overview of the Proposed MPPT Method 

The objective of the problem investigated in this section is the MPPT design which 

is specifically for a scaled-up PRO plant. Varying operating environment, such as 

the concentration and the flow rate of the saline water, yield different properties of 

the PRO system as illustrated in Fig. 3.2. The power generated from the PRO module 

come from HT and is sensed by the GWO-based MPPT controller. The controller is 

assumed to be able to sense the parameters including the instantaneous flow rate and 

concentration value from the PRO module. Then the MPPT algorithm is executed to 

generate the pressure signals to the HP. The high-pressure pump works on the draw 

solution and the pressure is assumed to be instantaneous values at this stage. In this 

work, the specific problem and the application of GWO for the MPPT design is 

clearly depicted in the following section. 

 

Figure 3.2: The operation of the PRO system with GWO algorithm 

3.3.2 Problem Description 

The maximization process is subject to the constraints as below. The problem is 

mathematically formulated as follows: 

Consider:  𝑥 = [𝑥|𝑥¦, 𝑥j] 

Objective function: 𝑓(𝑥) = max	(𝐸(𝑥)) 
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Constraints:  𝑥 ≥ 𝑙𝑜𝑤𝑒𝑟	𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

       𝑥 ≤ ℎ𝑖𝑔ℎ𝑒𝑟	𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

3.3.3 Application of GWO in MPPT Design 

The fitness function of the GWO algorithm is defined to find three best solutions 

values  𝛼, 𝛽 and 𝛾 as 

 𝐸�(𝑥⃗)J°� > 𝐸�(𝑥⃗)J°z|�     (3.9) 

In the mathematical optimisation model, the solution of the current search agent is 

defined as 

 𝐷­�����⃗ = |𝐶|����⃗ . 𝑋­����⃗ (𝑘) − 𝑋⃗(𝑘)|     (3.10) 

 𝑋|����⃗ (𝑘 + 1) = 𝑋­����⃗ (𝑘) − 𝐴|����⃗ . 𝐷­�����⃗    (3.11)  

 𝐷Â�����⃗ = |𝐶¦����⃗ . 𝑋Â����⃗ (𝑘) − 𝑋⃗(𝑘)|  (3.12)  

 𝑋¦����⃗ (𝑘 + 1) = 𝑋Â����⃗ (𝑘) − 𝐴¦����⃗ . 𝐷Â�����⃗   (3.13) 

 𝐷Ã����⃗ = |𝐶j����⃗ . 𝑋Ã����⃗ (𝑘) − 𝑋⃗(𝑘)|  (3.14) 

 𝑋j����⃗ (𝑘 + 1) = 𝑋Ã����⃗ (𝑘) − 𝐴j����⃗ . 𝐷Ã����⃗   (3.15) 

 𝑋⃗(𝑘 + 1) = ®¯�����⃗ (°r|)r®±�����⃗ (°r|)r®²�����⃗ (°r|)
j

  (3.16) 
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Figure 3.3: Flowchart of the proposed GWO-MPPT algorithm 
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The random parameter 𝐶 is utilised to weight the distance between the search agent 

and the prey in [0,2]. The random coefficient vector 𝐴 of GWO is decreasing as the 

decline of 𝑎⃗, which is employed to define the searching mode and the attacking mode. 

During the process, the correlated vector 𝑎⃗ declines following the equation 

 
𝑎⃗ = 2 − 𝑘 ∗ ¦

J§e¨
    (3.17) 

When the global optimum is reached, and hunting process finished, the parameter 𝑎⃗ 

is decreased to 0. 

To sum up, the procedure of the implementation is as follows. First, the grey wolf 

algorithm is initialized. The PRO model is initialized. The initial fitness values are 

set to infinitely small. Then the loop starts. The position of the current grey wolf is 

updated according to the GWO algorithm with respect to the cost function (3.9) at 

each iteration. Then its fitness is updated and compared with the three candidate 

solutions. If the current fitness solution 𝑖  is larger than the fittest solution 𝛼 , 

both the fitness and the position of  𝛼 are replaced by which of the current search 

agent. Similarly, if its fitness is less than the best solution but fitter than the second-

best solution, the second-best solution 𝛽 is replaced by the current grey wolf  𝑖. 

Consequently, the third best solution 𝛾 will be replaced if the current fitness is less 

than the solutions 𝛼 and 𝛽 but fitter than 𝛾. All search agents are employed to find 

the global best three solutions in the search space. After this, 𝛼, 𝛽 and 𝛾 as well as  

their corresponding positions are updated at each iteration. Finally, the GWO 

parameter is updated with regard of the GWO algorithm using equations (3.10)-

(3.15). The probable prey position is estimated according to 𝛼, 𝛽  and 𝛾  using 

equation (3.16). The process is then repeated with respect to the potential prey 

location obtained from the previous iteration. At the end of the iterations, the solution 

obtained by the leader grey wolf  𝛼 is considered as the optimum solution in the 

GWO-MPPT design.  

This GWO-based MPPT algorithm utilises multiple grey wolves to chase the prey 

position guided by the best three grey wolves. In other word, the hunting 
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(optimisation) of every search agent considers their own fittest solution as well as 

the best three fitness 𝛼, 𝛽 and 𝛾 from the group. It is significant to point out that both 

𝐴 and 𝐶 are generated stochastically, so they vary at each calculation. These random 

values which are generated over the course of iterations favours avoiding the local 

optima. For each study, the GWO algorithm was utilised on the problem and the 

statistical results obtained by the GWO-MPPT controller are reported. 

3.4 Application of GWO to PRO Optimisation 
GWO was applied for the optimisation of the PRO process and identifying the 

optimum operation conditions. For a given salinity gradient resource, hydraulic 

pressure and flow rates are the most critical operating parameters that affect the 

energy output of the process. These parameters were considered in the optimisation 

of the PRO process. 

In the optimisation process for the full-scale PRO process, parameters implemented 

in the model are listed in Table 3.1. 

Table 3.1: Selected parameters applied in a full-scale PRO system 

Parameter Symbol Value 

number of ionic species in 
solution n 2 

universal gas constant R 8.314e-2J/mol K 

Structural parameter T 293K 

distance x 0.1m 
 

mass transfer coefficient 

 

k 0.0026 m·s-1 
 

water permeation 
coefficient Aw 1.23e-3 L/m2h.bar 

Membrane area 𝐴N 24m2 
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3.4.1 Optimisation of Hydraulic Pressure 

As reported in the literatures, the hydraulic pressure is the most critical operating 

parameter that controls the efficiency of the PRO process [8, 30]. Most studies 

agreed that the maximum power generation in the PRO process occurs at ∆𝑃 =

∆𝜋/2 [8, 12]. However, this conclusion was based on a laboratory scale PRO unit or 

an ideal PRO system (ignoring the effects of concentration polarizations)  [8]12]. 

We performed GWO optimisation to identify the optimum operating pressure for a 

PRO system comprising multi-modules packed in a pressure vessel and results were 

compared with a conventional PRO system. The assumptions made here are i) PRO 

module length is 1 metre and ii) 1 to 4 modules are packed in the pressure vessel. 

Energy output in the PRO system consisting of 1 to 4 PRO modules was calculated 

at 𝑄A = 𝑄@ and ∆𝑃 = ∆𝜋/2 and compared with that of the optimised PRO system 

at 𝑄A = 𝑄@ and optimal ∆P. GWO results show 1 to 4.5% increase in the specific 

energy output was achieved by adjusting the hydraulic pressure (Figure 3.4). Most 

interestingly, maximum specific energy output occurred at a hydraulic pressure less 

than ∆π/2 and that was for all salinity gradients (Figure 3.4A). It is also observed 

that the maximum specific energy increased by increasing number of the PRO 

modules (Figure 3.4B).  Adding extra PRO modules improves the process of 

chemical potential conversion into a hydraulic energy and hence maximized the 

amount of energy yield from the salinity gradient resource.   

Figure 3.4A shows that the optimum hydraulic pressure was 12 bar for 0.6M-0.02M 

salinity gradient and the number of PRO modules in the pressure vessel did not 

significantly affect it. For the rest salinity gradients, the optimum hydraulic pressure 

decreased with the increase of PRO modules in the pressure vessel. In a four-

modules system, 5M-0.6M salinity gradient showed the largest difference in the 

hydraulic pressure between the optimised and unoptimised PRO process followed 

by 2M-0.02M, 5M-1.2M and 0.6M-0.02M salinity gradients, respectively.  
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(B) 

Figure 3.4: GWO optimisation of hydraulic pressure in the PRO process consisting of 1 to 4 
modules in the pressure vessel A) hydraulic pressure in optimised PRO and PRO process B) 
percentage increase in specific energy output in the optimised PRO compared to PRO process. 
PRO element is 1 meter long, unoptimised PRO process operates at ∆𝑃 = ∆𝜋/2. 

For 5M-0.6M salinity gradient, the optimum hydraulic pressure in a PRO system 

consisting of four modules packed in series was 87 bar and the maximum specific 

energy output was 0.99 kWh/m3. The corresponding hydraulic pressure and 

maximum specific energy output in the normal PRO process (without optimisation) 

were 106 bar and 0.94 kWh/m3 respectively. The optimisation of the PRO process 

resulted in a slight improvement in the energy output (~4.5%) but there was also a 

tangible drop in the optimum operating pressure. In practice, this suggests that 

optimised PRO system require lower pressure and pumping energy than a normal 

system for operation. Furthermore, characteristics of the membrane, such as 

mechanical strength, are different in the optimised and unoptimised PRO process 

since the former is operating at lower hydraulic pressure. Experimental works 

demonstrated that a high hydraulic pressure promotes membrane fouling [85]; hence 

it can be reservedly assumed that the fouling propensity of the optimised PRO 

system would be also less than that of normal PRO system. 
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3.4.2 Optimisation of draw solution flow rate 

Mixing ratio of feed and draw solutions has significant impact on the performance 

of the PRO process [30]. Elimelech and co-workers demonstrated that a maximum 

energy output in irreversible PRO process is achieved at 50% mixing ratio and a 

hydraulic pressure equal to ∆𝑃 = ∆𝜋/2  [8]. The study ignored the effects of 

concentration polarization in the PRO module, which questions its applicability on 

field studies. Laboratory scale experiments demonstrated that performance of the 

osmotically driven processes were highly dependent on the flow rates of draw and 

feed solutions [30]. We performed a GWO process to determine the optimum flow 

rate of the draw solution that results in a maximum output in a non-ideal PRO process 

operated at ∆𝑃 = ∆𝜋/2.  

Figure 3.5 shows the optimum volumetric flow rate of the draw solution to maximize 

the energy yield of the PRO process. For all salinity gradients, the fraction of draw 

solution, θD, increased with the number of the PRO modules in the pressure vessel 

(Figure 3.5A). Technically, this is to offset the dilution of draw solution in 

subsequent PRO module and maintain permeation flow across the membrane. The 

optimum 𝜃@ was less than 0.5 for all salinity gradients and number of PRO modules 

in the pressure vessel. This contradicts with the findings of previous studies that 

assumed an ideal PRO process (ignored concentration polarization) or the impact of 

feed and draw solution dilution and concentration, respectively, along the PRO 

module [8, 12, 89]. 𝜃@ optimisation maximized the energy output in the PRO process 

as shown in Figure 4B. Compared of a normal PRO process, GWO maximized the 

specific energy output in the PRO process and resulted in up to 21.9% higher energy 

yield in the case of four modules 0.6M-0.02M salinity gradient (Figure 3.5B). 

Compared of an unoptimised PRO process, GWO maximized the specific energy 

output in the PRO process and resulted in up to 21.9% higher energy yield in the 

case of a single module and 0.6M-0.02M salinity gradient (Figure 3.5B). 0.6M-

0.02M salinity gradient demonstrated the largest percentage increase in the energy 

yield due to process optimisation followed by 1.2M-0.02M, 5M-1.2M, and 5M-0.6M 

salinity gradient, respectively. Apparently, 5M-0.6M salinity gradient was less 

affected by the optimisation process than other salinity gradients with 9.9% increase 

in a single module PRO process. This was due to the significant osmotic pressure 

driving force in the 5M-0.6M PRO process, which rendered the increase of the draw 

solution flow rate less effective in enhancing the osmosis flux. Furthermore, the 
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optimisation process had insignificant impact on the energy output in a four-modules 

PRO process particularly for 5M-0.6M and 5M-1.2M salinity gradients. It is 

apparent from Figure 4A that 𝜃@  values for 5M-0.6M and 5M-1.2M salinity 

gradients using four modules was 0.5 and 0.49, which make the operating conditions 

similar to that in an unoptimised PRO process. Optimisation process resulted in a 

2.4% and 0.1% increase in the energy output in 0.6M-0.02M and 1.2M-0.02M 

salinity gradients, respectively. For a given salinity gradient, increasing the number 

of PRO modules results in a larger permeation flow. This requires a higher flow rate 

to compensate the dilution of draw solution and maintain water flux.   

The results suggest that energy yield in the PRO process increases with the number 

of PRO modules (Figure 3.5C) because of the larger permeation flow. However, this 

depends on the quality of feed and draw solutions to avoid membrane fouling [88, 

90]. Good pre-treatment is required to ensure the quality of feed and draw solutions 

in a closed-loop PRO process that recycles the draw and feed solutions. Larger water 

flux may cause the membrane fouling in osmotically driven membrane processes if 

the pre-treatment was insufficient in the removal of fouling materials. However, 

multi PRO modules can be used in series in the pressure vessel when the feed and 

draw solutions are of good quality or in a closed loop PRO process when the pure 

draw and feed solution are recycled.  
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Figure 3.5: GWO optimisation of draw solution fraction in the PRO process A) optimised 
draw solution fraction 𝜃@, in PRO system consists of 1 to 4 elements B) percentage increase 
in specific energy in the optimised PRO compared to a normal PRO process C) impact of 
number of modules in the PRO process on the specific energy generation. PRO element is 1 
meter long, hydraulic feed pressure is ∆𝑃 = ∆𝜋/2.  

3.4.3 Optimisation of feed solution flow rate 

Feed solution is an important parameter that affects the performance of the PRO 

process. Recent studies demonstrated that ICP could be mitigated by changing the 

flow rate of feed solution [73]. Similarly, the volumetric flow rate of the feed 

solution needs to be optimised to maximize the energy output of the PRO process. 

The optimisation of feed solution flow rate was carried out using GWO method 

(Figure 3.6). Compared to unoptimised PRO operating at ∆𝑃 = ∆𝜋/2and 0.5 feed 

solution fraction in the mixture, 𝜃A was less than 50% in the optimised process for 

all salinity gradient resources (Figure 3.6A). For 5M-0.6M and 5M-1.2M salinity 

gradients, 𝜃A increased with the number of PRO modules in the pressure vessel but 

was higher in the 5M-0.6M salinity gradient (Figure 3.6A). The optimised 𝜃A in the 

1.2M-0.02M was equal to that in the 0.6M-0.02M salinity gradient but lower than 

that in the 5M-0.6M and 5M-1.2M salinity gradients. In fact, the optimised 𝜃A value 

was 9% in a single PRO module system and increased to 13% in two to four PRO 

modules system.  
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Optimisation of 𝜃A resulted in a considerable improvement in the energy output in 

the PRO process (Figure 3.6B). Between 9.4% and 70.2% higher energy yield was 

achieved in the PRO process due to the optimisation of 𝜃A. The maximum energy 

yield in the PRO process decreased with the number of PRO modules in the pressure 

vessel. This was probably due to the higher ICP effects in the subsequent PRO 

modules in the pressure vessel. The largest percentage increase in the specific energy 

was 70.2% in a single module PRO process and 0.6M-0.02M salinity gradient 

followed by 69%, 33.6% and 28.3% for 1.2M-0.02M, 5M-0.6M, and 5M-1.2M 

salinity gradient resource, respectively. 5M-1.2M salinity gradient had the lowest 

percentage of energy output increase due to 𝜃A  optimisation because of the high 

concentration of feed solution. In contrast, 1.2M-0.02M and 0.6M-0.02M salinity 

gradients demonstrated a large improvement in the energy yield due to the low feed 

concentration that can be relatively easy to alleviate. Technically, ICP can be 

decreased by increasing the flow rate of the feed solution but it is less effective at 

high feed concentrations due to the intensive ICP. 𝜃A  optimisation has a greater 

impact than 𝜃@  on the extractable specific energy from salinity gradients. Therefore, 

in the optimisation process of the PRO the impact of 𝜃A  on the specific energy 

generation should to be considered seriously.  

𝜃A  optimisation increased the energy output in the PRO process. The maximum 

specific energy generation in four modules PRO process was 0.73, 0.41, 0.29, and 

0.098 kWh/m3 for 0.5M-0.6M, 5M-1.2M, 1.2M-0.02M, and 0.6M-0.02M salinity 

gradients, respectively. The corresponding 𝜃A  ratios were 31, 35, 13, and 13%, 

respectively (Figure 3.6C). Theoretically, it was possible to use low feed flow rates 

in order to maximize the energy output but that will strongly depend on the quality 

of feed solution and the pre-treatment method.  

The results show that 𝜃A  was more effective than 𝜃@  to improving the specific 

energy output in the PRO process due to the complicated nature of the ICP that 

occurs in the support layer and affect the permeation flow in the PRO process [4, 

87]. Mitigation of ICP is possible through increasing the feed flow rate as indicated 

in recent studies [30, 76]. Furthermore, comparing Figures 3.5A and 3.6A shows that 

𝜃A  was lower than 𝜃@  for all salinity gradient resources; i.e. lower feed to draw 

solution ratio. At low 𝜃A  ratio, the concentration of draw solution would be 

sufficiently highly in the subsequent PRO modules to maintain the permeation flow 
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and specific energy generation. Using low feed flow rates, however, is not always 

practically feasible and it depends on the quality of feed solution. With low quality 

feed flow rates, the propensity of membrane fouling would be high and there is a 

risk to apply low feed flow rates. Though, it is possible to apply low feed flow rates 

in a closed-loop PRO process in which a pure feed and draw solutions are recycled 

in the PRO process or when good pre-treatment facilities are available.  
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Figure 3.6: Optimisation of feed flow rate, 𝜃A, in PRO system consists of 1 to 4 elements 
A) optimised feed solution fraction 𝜃A, in PRO system B) percentage increase in specific 
energy in the optimised PRO compared to a normal PRO process C) impact of number of 
modules in the PRO process on the specific energy generation. PRO element is 1 meter 

long and all results were obtained at ∆𝑃 = ∆𝜋/2. 
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3.4.4 Optimisation hydraulic pressure and feed flow rate  

Results reveal that the optimisation of 𝜃A was more effective than 𝜃@ in improving 

the specific energy generation in the PRO process. Therefore, results from section 

3.2 were further evaluated to determine the optimum hydraulic pressure in the PRO 

process. Optimisation was performed for all salinity gradient resources using the 

optimum 𝜃A from section 3.2 and the optimum hydraulic pressure was obtained in 

PRO processes consisting of one to four modules in the pressure vessel (Figure 3.7). 

Results in Figure 3.7A show that the specific energy generation increased with the 

number of modules in the optimised PRO process and was higher than that in the 

unoptimised PRO process. The maximum specific energy generation in an optimised 

PRO process consisting of four modules was 0.75, 0.42, 0.29, 0.10 kWh/m3 for 5M-

0.6M, 5M-1.2M, 1.2M-0.02M, and 0.6M-0.02M salinity gradients, respectively. 

This was 11.6% to 58.2% higher than the specific energy that can be harvested from 

the same salinity gradients in unoptimised four-modules PRO processes (Figure 

3.7B).   

Figure 3.7C shows that the percentage increase of the specific energy generation 

decreased with the number of modules in the PRO process. For example, there was 

45% increase of the maximum energy generation from 5M-0.06M salinity gradient 

by increasing number of modules from 1 to 2 modules (Figure 3.7A). Adding a third 

PRO module, however, resulted in 17% increase in the energy generation while 

increasing the number of PRO modules to four brought out only 9% increase in the 

energy generation. Furthermore, the optimised PRO process was operated at a 

hydraulic pressure lower than ∆𝑃 = ∆𝜋/2 that is recommended in an unoptimised 

PRO process (Figure 3.7C). The optimum hydraulic pressure predicted by GWO was 

2.2 to 16 bar lower than ∆𝑃 = ∆𝜋/2 and always decreases with the number of 

modules in the PRO process (Figure 3.6C). The optimum pressure for 5M-0.6M 

salinity gradient was decreased from 100 bar to 89 bar as the number of modules 

increased from 1 to 4 modules. Compared to an unoptimised PRO process operated 

at 106 bar, an optimised PRO process consisting of 4 modules required 16% less 

hydraulic pressure. 5M-0.6M salinity gradient with four PRO modules demonstrated 

the largest decrease in the operating pressure, from 106 to 89 bar, followed by 0.6M-

0.02M, 1.2M-0.02M, and 5M-1.2M salinity gradient, respectively. For 0.6M-0.02M 

and 5M-1.2M salinity gradients, there was no change in the optimum operating 

pressure when the number of modules decreased from 4 to 3 modules. As mentioned 
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before, reducing the operating hydraulic pressure would reduce the size of high-

pressure pump and pumping energy. Practically, the net energy output in the PRO 

process should account for all energy input that includes pumping and pre-treatment 

energy of feed and draw solutions.  
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Figure 3.7: Optimisation of hydraulic pressure, ∆P, in PRO system consists of 1 to 4 elements 
A) impact of number of PRO modules on the specific energy generation B) percentage 
increase in specific energy in the optimised PRO compared to a normal PRO process C) 
optimised hydraulic pressure in the PRO process compared to a normal PRO process. PRO 
element is 1 meter long, results are already optimised for feed flow rate fraction, 𝜃A. 
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3.4.4 Application of Whale Optimisation to PRO 

Another nature-inspired metaheuristic technique called Whale Optimisation with 

Differential Evolution algorithm is introduced and compared in Chapter 4. The 

above optimisation performances and results are double confirmed using whale 

optimisation algorithm. All of the optimal values in this chapter are validated by 

whale optimisation methods. 

3.5 Net power generation in optimised PRO process 

Net power generation in the PRO process is, normally, less than the amount of 

energy output from the process since there is an energy incurred for the pretreatment 

of feed and draw solution, pumping, and loss in the pressure exchanger (PX). 

Thermodynamically, energy input in a feasible PRO process should be less than the 

energy output. The amount of energy input varies and depends on the type of salinity 

gradient resources. Previous works identified the amount of energy required for 

pretreatment, pumping from source, pumping into the module and lost in the PX [4, 

91]. In general, the specific energy for the pretreatment of Dead Sea (5M NaCl) and 

seawater (0.6M NaCl) is 0.3   kWh/m3 [4], [91-92]. Wastewater effluent requires a 

minimum pretreatment with estimate power consumption equal to 0.1 [4, 93]. ROb 

(1.2M) is already pretreated for the RO process and hence no further pretreatment is 

required in the PRO process [4]. Previous studies suggested that pumping from the 

source to the PRO plant consumes 0.03 kWh/m3, assuming 1 bar pumping pressure 

[91]. Studies also proposed that ROB is slightly pressurized when it leaves the 

energy recovery device and hence does not require an extra energy for pumping from 

the source to the PRO plant [4], [88]. There is also a small energy equal to 0.05 

kWh/m3 for pumping the feed and draw solution into the PRO module [4]. 

Furthermore, there is an energy loss in the PX, which operates at 98% efficiency. 

This energy varies from a salinity gradient to another and it depends on the operating 

pressure [4].  

Table 3.1 shows the energy input in the PRO process represented by pre-treatment, 

pumping from source, pumping in module, and loss in PX in the optimised and 

unoptimised PRO process. The total energy input in the optimised PRO process was 

slightly lower than that in the unoptimised process due to the lower operating 
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pressure in the former process (Table 3.1). In practical terms, this will reduce 

operating and capital cost of the PRO process since the high-pressure pump and 

membrane are made to lower specifications. Table 3.2 shows that the net energy 

output in the optimised PRO process consisting of four modules in the pressure 

vessel is higher than that in the unoptimised PRO process. The energy output was 

67% higher in the optimised 5M-0.6M PRO process compared to the unoptimised 

PRO process; 0.32 kWh/m3 and 0.191 kWh/m3, respectively. 5M-1.2M salinity 

gradient showed 14.5% increase in the energy output upon the optimisation. For 

1.2M-0.02M, the net energy output was almost doubled in the optimised PRO 

process compared to unoptimised PRO process.  Unfortunately, 0.6M-0.02M salinity 

gradient requires more energy input than output for both optimised and normal PRO 

process and hence I may be unsuitable for the PRO process.  

Table 3.2: Net energy generation in the optimised and normal (unoptimised) PRO 
processes 

 

Process Description 

Energy kWh/m3 

5M-0.6M 5M-1.2M 1.2M-0.02M 0.6M-0.02M 

Pretreatment 0.3 0.15 0.05 0.225 

Pumping from source 0.03 0.015 0.015 0.03 

Pumping in module 0.05 0.05 0.05 0.05 

Loss in PX (unopt) 0.059 0.051 0.016 0.008 

Loss in PX (opt) 0.050 0.04 0.01 0.007 
Total energy input 

(unopt) 0.439 0.266 0.131 0.313 

Total energy input 
(opt) 0.43 0.255 0.125 0.312 

Energy output 
(unopt) 0.63 0.38 0.19 0.064 

Energy output (opt) 0.75 0.42 0.30 0.1 
Net Energy output 

(unopt) 0.191 0.144 0.059 - 

Net energy input 
(opt) 0.32 0.165 0.175 - 

%Diff in net energy 67.5 14.5 200%  
Pressure bar (unopt) 

Pressure bar (opt) 
106 
89 

91 
80 

28 
24 

14 
12 
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In general, optimisation of the operating parameters effectively improved the energy 

output in the PRO process. Depending on the type of the salinity gradient recourse, 

optimisation of the PRO process resulted in up to 200% increase of the energy output. 

Furthermore, the optimised PRO process can be operated at hydraulic pressures 

lower than that in the unoptimised PRO process. The results also revealed that the 

operating pressure and mixing ratio of feed or draw solution in the mixture to achieve 

a maximum energy output in a full scale optimised PRO process are different to that 

in a laboratory scale PRO unit or an ideal PRO process. As such, the optimum 

pressure of ∆𝑃 = ∆𝜋/2 and feed or draw solution fraction of 50% in the mixture is 

only valid for a laboratory scale PRO unit or an ideal PRO process. It is noteworthy 

that upon using low feed flow rates as suggested by the GWO caution should be paid 

as membrane fouling may occur. However, such concerns are less likely in a closed-

loop PRO process or when the pretreatment process is well designed.   

3.6 Summary 
In a full-scale PRO system, the study evaluated the performance of the PRO process 

using GWO method to optimise key operating parameters for a number of common 

salinity gradient resources. The optimised PRO process demonstrated a higher 

energy output increase from 14.5% to 200% compared to the unoptimised PRO 

process. This shows the significance of performing process optimisation in 

engineering fields. The study revealed that the optimum operating pressure and 

mixing ratios in the laboratory-scale PRO process are not valid in an ideal and full-

scale PRO process. The optimised PRO process can be operated at lower pressure 

and feed or draw solution fractions in mixture than an ideal PRO system. The energy 

output in the PRO process also increased with increasing the number of the PRO 

module from 1 to 3 modules but a slight improvement in the energy output was 

achieved by adding a fourth module. Most of the investigated salinity gradients 

showed potential for commercial applications apart from 0.6M-0.02M because of 

the insufficient energy generation. The study also reveals the importance of applying 

machine learning approaches such as GWO method in the optimisation of 

engineering systems.  
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Chapter 4 Enhanced Energy Extraction 

from a scaled-up Pressure Retarded 

Osmosis process with a Whale 

Optimisation based Maximum Power 

Point Tracking 

4.1 Introduction  
As stated in chapter 1, the MPPT strategies that have been proposed to improve the 

efficiency of the PRO module include the Perturb & Observe (P&O), the Incremental 

Mass Resistance (IMR) and the Mass Feedback Controller (MFC) method [6]. 

Similar to the P&O methods for the PV system, the P&O for PRO system introduces 

a perturbation in the draw solution pressure of the PRO system. However, it results 

in oscillations at the maximum power point (MPP) due to the variations in the 

perturbations around the MPP. The IMR was subsequently proposed to reduce the 

oscillation as well as the power loss by calculating the slope of the PRO power curve. 

The idea was inspired by the Incremental Conductance (IC) technique for the PV 

system [25]. The performance of the PRO system using IMR depends on the 

incremental pressure. The merit of the IMR method is that it is more flexible and 

stable compared to the P&O method. Yet the accompanying oscillations persist. 

Furthermore, a feedback control-based technique, the MFC was proposed to improve 

the efficiency of energy extraction from a PRO system. Inspired by the PID 

controller, the MFC is implemented to minimize the error of the power slope. The 

weighted sum of both the slope and the change of the slope is utilised to determine 

the error, resulting in fast convergence and lower power loss. The challenge is to 

balance three designed PID gains under the disturbances and uncertainties from the 

system. When the system encounters the variation in the operating environment such 

as salinity and temperature, the IMR method may present low robustness. Therefore, 

there is a need for a novel and robust MPPT controller for a PRO process that can 
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offer (i) no or very limited oscillations at the maximum power point, (ii) more 

flexibility and stability in the face of disturbance and uncertainties, and (iii) faster 

convergence and less power loss. The controller also needs to be easy to design and 

implement for a scaled-up PRO system. It is noted that in a PRO based osmotic 

power plant, under rapidly changing salinity and operation conditions, the need for 

a trade-off between oscillation and the tracking speed is an unavoidable complication 

that reduces the efficiency of the overall system significantly. Therefore, the MPPT 

method will require to find the global maximum power point as fast as possible. 

With these in view, a novel MPPT control method for a scale-up PRO process is 

designed in this work based on the Whale Optimisation with Differential evolution 

(WODE) algorithm proposed by Mirjalili et al. [26] and is known as the Whale 

Optimisation Algorithm (WOA). This algorithm uses an evolutionary computing 

approach inspired by the hunting strategy of humpback whales in the ocean and is 

able to handle the non-linear objective functions and performs well as an optimising 

tool for the design of closed loop control systems. To design the MPPT controller 

for a PRO plant, based on this algorithm, first the permeation-pressure (∆𝑉 − ∆𝑃) 

relations and the average power density-pressure (W− ∆𝑃) characteristics of the 

PRO process, including the primary detrimental effects, is studied. Then the WODE 

algorithm, developed on the basis of humpback whales’ unique bubble-net feeding 

behaviour during hunting, is introduced and modelled. Finally, the WODE-based 

MPPT controller is implemented on a scaled-up PRO process and its performance is 

assessed through a sequence of simulation-based study.   

The developed WODE-based MPPT controller is found to be able to track the best-

peak position in a few steps with oscillation-free convergence. Additionally, the 

controller requires fewer iterations, converges faster and has less computational 

burden owing to fewer search particles being needed to find the best solution. This 

has resulted in lower steady state oscillation as well as less power loss in the output. 

The findings are found to be in conformity with that of the WODE-based MPPT 

methods in the case of PV [27, 28].  The developed method is easy to implement on 

a scaled-up PRO process with various physical constraints and salinity profiles. 

Moreover, the development of the proposed method for a scaled-up PRO process 

indicates that the method is suitable to be implemented on PRO processes of 

different sizes.  



79 

 

4.2 Whale optimisation with differential evolution 

algorithm 

4.2.1 Mathematic Model of the Whale Optimisation 

Algorithm 

The WODE imitates the unique hunting mechanism of humpback whale’s bubble-

net feeding behaviour in the ocean, which is a meta-heuristic method proposed by 

Mirjalili and Lewis and is represented in Figure 4.1 [26].  

 

  (a)   

 

                                                         (b) 

Figure 4.1: (a) The humpback whale’s bubble-net feeding behaviour; (b) Strategy of a 
whale during hunting process. 
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In the mathematical model of the WODE, the search agents are considered to be the 

whales. In each iteration, all search agents find the fittest solution within the 

constraints in the same way as the whales find the prey during hunting. The fitness 

function comes from the PRO model aiming to tracking the maximum power point.  

Figure 4.1 shows the bubble-net behaviour of the whales when they swim around 

the prey, namely upward-spirals and the double-loop behaviour which consist of a 

spiral model and the encircling model, respectively. These two phases are utilised to 

design the WODE for performing optimisation. Figure 4.1 (b) illustrates a simple 

rationale of the hunting strategy in the research space. In which 𝐗∗, 𝐘∗ denote the 

current best position of a search agency. GMPP is the global maximum power point. 

The spiral position model and the encircling model are both constantly updated. The 

two differential evolutions of the whale optimisation are introduced in the following 

sections. 

4.2.2 Spiral Model  

In the spiral model, the whale swim along a helix-shaped path as Fig.3 (a) shows. 

The spiral updating position is estimated with respect to 𝐷JÇ, which is the distance 

between the location of the search agent and the prey. This is an exploitation phase, 

the global best prey is already sensed by the current searching whale with a circular 

motion. The mathematic model of this motion is formulated as [26]  

 
𝐷�Ç����⃗ = È𝑋∗����⃗ (𝑘) − 𝑋⃗(𝑘)È     (4.1) 

 
𝑋⃗(𝑘 + 1) = 𝐷�Ç����⃗ . 𝑒LÉ. 𝑐𝑜𝑠(2𝜋𝑙) + 𝑋∗����⃗ (𝑘)     (4.2) 

 

Where 𝑋∗����⃗ , 𝑌∗����⃗  denote the current best position of a search agent, b is a constant 

value, i is a random constant in [-1, 1] and 	𝑋∗����⃗ (𝑡)	specifies the current global 

best position. The hunt is usually guided by the best positions achieved so far. 



81 

 

4.2.3 Searching Mechanism  

As the whale swims around the prey within a shrinking circle, two phases including: 

the exploration phase and the exploitation phase [26]. These two phases are 

determined by a coefficient vectors 𝐴. If È𝐴È ≥ 𝟏, the performance is utilised to 

emphasize the global search as the whale move far away from the reference position. 

In contrast, the vector È𝐴È < 1 indicates the shrinking encircling movement. In the 

exploration phase, the whales perform a global search randomly. The position can 

be updated by the following equations [26]:  

 
𝐷��⃗ = È𝐶. 𝑋¨ÍfC�����������⃗ − 𝑋⃗È     (4.3) 

 
𝑋⃗(𝑘 + 1) = È𝑋¨ÍfC�����������⃗ − 𝐴.���⃗ 𝐷��⃗ È     (4.4) 

In (4.1) 𝑘 is the current iteration. 𝐴, 𝐶 and 𝐷��⃗  represent coefficient vectors, 𝑋⃗ is the 

positon vector, 𝑋¨ÍfC�����������⃗  is a random position vector (a random whale) from the 

population. The coefficient vectors 𝐴, 𝐶 are updated in each iteration [26]  

 
𝐴 = 2𝑎⃗. 𝑟|���⃗ − 𝑎⃗     (4.5) 

 
𝐶 = 2𝑟¦���⃗      (4.6) 

 
𝑎⃗ = 2 − 𝑡 ∗ ¦

J§e¨
     (4.7) 

where ‘iter’ is the maximum iteration. The value of the coefficient vector 𝑎⃗ 

is linearly decreased from 2 to 0 as (4.7) depicts.	𝑟| and 𝑟¦ are random vectors 

in [0, 1]. The positions around the prey are adjusted based on the values of 𝐴 

and 𝐶.  

4.2.3 Encircling Mechanism  

When the coefficient value È𝐴È < 1 , the current searching agent recognize the prey 

and start the exploitation phase. The current best prey is known to it and force the 

whale towards to this global best prey instead of a random prey. Therefore, (4.8) and 

(4.9) can be modified as follows [26]:  
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𝐷��⃗ = È𝐶. 𝑋∗����⃗ (𝑘) − 𝑋⃗(𝑘)È   (4.10) 

 
𝑋⃗(𝑘 + 1) = È𝑋∗����⃗ (𝑘) − 𝐴.���⃗ 𝐷��⃗ È  (4.11) 

The new position of a search agent is updated with respect to the best solution 

obtained at the current iteration. The two phases of the humpback whales go 

simultaneously. Thus, the probability of each phase is considered as 50%. During 

the optimisation, the position is updated as follows:  

 
𝑋⃗(𝑘 + 1) = Î

𝐷�Ç����⃗ . 𝑒LÉ. 𝑐𝑜𝑠(2𝜋𝑙) + 𝑋∗����⃗ (𝑘),																				𝜌 < 0.5
È𝑋⃗(𝑘) − 𝐴.���⃗ 𝐷��⃗ È,																																											𝜌 > 0.5

  (4.12) 

where 𝜌 is a random constant in [0, 1]. 

4.3 The Proposed WODE-based MPPT Method  

4.3.1 Problem Description 

The objective of this problem is to maximum the total cost (average power density) 

of the PRO module. The WODE is then be equipped with a constraint handling 

method. It is challenging because the fitness function directly effects the updating 

position of the search agents. The optimum design must satisfy constraints on the 

searching domain.  

The design variable is the actuated pressure(∆𝑝) . The optimisation problem is 

formulated as follows: 

Consider  𝑥⃗ = [𝑥|] =[∆𝑝], 

Maximum  𝑓(𝑥⃗) = 	𝑓(∆𝑝) = 𝑊h (∆𝑝)	 

Variable range       ∆𝑝NJf ≤ ∆𝑝 ≤ ∆𝑝NÍÑ 
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where ∆𝑝 represents the pressure of the high-pressure pump, 𝑊h(∆𝑝) specifies the 

average power density of the PRO module.  

This optimisation problem was solved by He et al.[6, 25] with an improved 

P&O controller and also by employing  a PID controller. The proposed 

WODE was employed on this problem, the optimisation results are provided 

in the following section. 

4.3.2 Application of WODE for MPPT Design  

WODE is a metaheuristic method inspired by hunting strategies adopted by whales. 

The whales search the best position within a range of variables, while the differential 

evolution (DE) enhances the performance of the search. The block diagram of the 

proposed WODE-based MPPT design for the PRO system is shown in Figure 4.2 

[6]. At every time interval, variables of the PRO system such as the membrane states, 

the concentration and the flow rate of the saline water are sensed by the MPPT-

WODE controller. To implement the WODE-based nature-inspired MPPT method, 

the MPPT controller evaluates the average power density extracted from the hydro-

turbine (HT) and actuates the hydraulic pressure. The actuated pressure ∆𝑃  is 

playing the same role as a whale. The target pressure transition on the draw solution 

can be obtained by the variable frequency drive [95, 96]. In the proposed method, 

WODE is combined with the direct instantaneous hydraulic pressure with the MPPT 

controller.  
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Figure 4.2: The operation of the PRO system with WODE algorithm 

At the spiral moving stage, the whale 𝑖  swimming around the best solution is 

expressed as the following equations [26]:  

 
𝐷JÇ = |∆𝑃J∗(𝑘) − ∆𝑃J(𝑘)|  (4.13) 

 
∆𝑃J(𝑘 + 1) = 𝐷JÇ. 𝑒LÉ. 𝑐𝑜𝑠(2𝜋𝑙) + ∆𝑃J

∗(𝑘)  (4.14) 

where  𝑖 donates the number of the current whale. 𝐷JÇ represents the distance between 

the whale 𝑖 and the best solution at the current iteration.  

During the exploration phase, the whale 𝑖 searches for the best solution with the 

following equations:  

 
D = |𝐶. (∆𝑃J)¨ÍfC − ∆𝑃J(𝑘)|  (4.15) 

 
∆𝑃J(𝑘 + 1) = |(∆𝑃J)¨ÍfC − A. D|  (4.16) 

Similarly, when the whale 𝑖 encircling the best solution at the exploitation phase, the 

mathematic model is defined as[26]   

 
D = |C. ∆𝑃J∗(𝑘) − ∆𝑃J(𝑘)|  (4.17) 

 
∆𝑃J(𝑘 + 1) = |∆𝑃J∗(𝑘) − A. D|  (4.18) 

    Consequently, the fitness function of the WODE algorithm is defined as 

 
𝑊h (∆𝑝)J° > 𝑊h (∆𝑝)J°z|  (4.19) 
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When the MPP is found by the search agent, the correlated coefficient vector 𝑎⃗ 

reduces to zero. Fig. 4.3 illustrates the flow chart of the proposed MPPT 

algorithm. The MPPT control starts from the initial setting of both the WODE 

algorithm and the PRO profile. The initial pressure of the hydro-turbine 

pressure is set to 1 bar. At every iteration k, all search agents are used to find 

the optimum solution. For each search agent 𝑖 , the fitness function is 

calculated and compared with the current global best solution. The position 

of each agent is updated with respect to the WODE algorithm, which contains 

three position-updated strategies inspired by the natural hunting behaviour of 

whales.  

The position updating strategy is defined by the random value ρ. If ρ > 0.5, 

the position updating method for the current whale 𝑖 is the spiral model. On 

the contrary, if the random value ρ < 0.5, the current whale 𝑖 follows the 

spiral encircling model. In terms of the encircling mechanism, the phase of 

the current search agent is defined by the random coefficient vector 𝐴.  If the 

coefficient vectors È𝐴È ≥ 𝟏, the search agent 𝑖 is in the exploration phase; 

conversely the search agent follows the exploitation phase. 

For every search agent, if the calculated power density deviates from the 

previous power density, the current best fitness value and the global best 

solution are compared. If the current optimum position performs better than 

the previous best position, the current solution is set to be the global best 

position. At the current iteration, the whale 𝑖 finds its best position following 

the above steps. In the mathematic model, the current best MPP for the PRO 

system is found by the search agent 𝑖. Then turn to next iteration and repeat 

the process. 
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Figure 4.3: Flowchart of the proposed WODE-MPPT algorithm 



87 

 

4.4 Results and analysis 

The purpose of the proposed MPPT method is to ensure the maximum power is 

derived from the PRO process at any operational condition. The performance of the 

PRO system using the proposed WODE-MPPT method has been compared with 

other typical and popularly used methods, namely the Perturb & Observe (P&O), the 

Incremental Mass Resistance (IMR), the Mass Feedback Controller (MFC) MPPT 

algorithms investigated by He et al [6, 25]. All these methods are model-free 

methods, where the instantaneous variables are used to produce the control signals. 

MPPT based P&O, IMR and MFC strategies for the PRO system are presented as 

those techniques have already demonstrated their merit in the control performance. 

In addition, among the meta-heuristic techniques to extract optimum power from 

different renewable energy sources, the Particle Swarm Optimisation (PSO) method 

is employed extensively. Therefore, the PSO has been evaluated and compared in 

the work to validate the efficacy of the proposed method. Thus, four methods, P&O, 

IMR, PSO and WODE, have been implemented in this study to find the MPP under 

fluctuation of operating conditions.  It is noted here that the P&O and IMR are classic 

MPPT algorithms, while PSO is a conventional evolutionary computation technique 

simulating the social behaviour. 

4.4.1 Case1: Start-up  

The WODE-MPPT method are tested and compared with the conventional methods 

for tracking the maximum power of PRO. At the beginning, the pressure on the draw 

side is set to an initial value for the control system, then different algorithms are 

employed to the MPPT controller to track the maximum power density. The initial 

value of the pressure in the simulation setup is 1 bar. For the P&O and IMR 

algorithms, the increment is set to be 0.1 bar. In the PSO algorithm, inertia Weight 

and inertia Weight Damping Ratio are set to be 1 and 0.99, respectively; personal 

learning coefficient and global learning coefficient  are set as 1.2 and 2.0, 

respectively; applied hydraulic pressure is employed as the particle.  The WODE 

algorithm with 70 search agents under two case studies has been evaluated on the 

problem. 

1c 2c
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Fig. 4.4 shows comparison of results obtained with the P&O, IMR, MFC, PSO and 

WODE methods operating from the initial pressure. All of these five techniques are 

all parameter dependent methods. As shown in Fig. 4.4, the proposed WODE 

algorithm provides a better result. It is inferred that the oscillation reduces 

significantly using the proposed WODE-MPPT controller, also the tracking time is 

shorten notably compared with other four MPPT methods. 

 

Figure 4.4: The osmotic power of PRO system with different MPPT algorithms 

 

Table 4.1: Comparison of Five MPPT Techniques 

Methods Convergence (W/m2) Tracking time (s) 

P&O 0.070804 10.2 

IMR 0.070872 9.8 

MFC 0.070885 4.1 

PSO 0.070885 3.6 

WODE 0.070885 1.1 
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Specifically, the detailed average power density is shown in Table 4.1. It is clear that 

the proposed method is able to locate the MPP of more than 0.07 W/m2 with the 

fastest respond time, then the same value is found by PSO-MPPT and MFC-MPPT 

algorithm with oscillations. Simultaneously, both P&O and IMR miss the maximum 

power point as they are not that precise to find the MPP resulting in steady-state 

oscillations. This is because both methods need to balance the trade-off between the 

convergence speed and the oscillation. 

The specific maximum values of the generated osmotic power investigated by all 

methods are presented in Table I. The data depicts that both the MFC-MPPT, PSO-

MPPT and the WODE-MPPT methods are capable to converge to the MPP of 

0.070885 W/m2, where WODE is more stable and faster than the MFC and PSO 

methods.  The P&O and the IMR get the maximum values to be around 0.07080395 

W/m2 and 0.07087187 W/m2 due to the chosen perturbation or increment. The trade-

off between the tracking speed and the oscillations have to be considered. As a result, 

these conventional techniques cannot get rid of the steady-state oscillations. 

However, at the MPP, the best applied pressure found by the search agent is constant 

at the steady state using the oscillation-free WODE algorithm. Furthermore, the 

reduced power loss from the reduced oscillation provides a higher system efficiency. 

It is important to point out that more power can be extracted from a two-stage PRO 

process compared to a single-stage process [97, 98]. In that case the proposed MPPT 

algorithm will be able to harvest more energy due to its higher efficiency compared 

with other methods. Overall, the maximum power density evaluated from the 

proposed method for the PRO system performs better compared to other techniques. 

WODE-MPPT controller for the PRO system is proved not only robust and efficient 

to track the MPP, but also capable to mitigate the oscillation around the MPP for the 

PRO system.   

4.4.2 Case2: Variations of concentrates  

Moreover, the implementation of the proposed strategy is presented at the operations 

with fluctuation in the saline water. Firstly, a simple variation of the concentration 

on the draw solution is shown in Fig. 4.5. At the beginning, the initial concentration 

on the draw side is set to 35g/kg and increases to 40g/kg at 40s. Then the draw 

concentration rises to 55g/kg from 70s. This case study is evaluated to test the 
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performance of the WODE-MPPT strategy. The proposed method is compared with 

P&O, IMR and PSO techniques in this section. 

 

Figure 4.5: Fluctuation profiles of the concentration on the draw solution 

 
Figure 4.6: The osmotic power of PRO system with P&O, IMR, PSO and WODE based 
MPPT algorithm under rapidly changing flow rate on the draw solution of the salinities 

The convergence process characteristics are shown in Fig. 4.5 in which the P&O, 

IMR, PSO and WODE strategies are evaluated. In the simulation, the characteristics 

indicate that the WODE algorithm outperforms over the other three algorithms under 

rapidly varying saline conditions. The proposed algorithm provides a shorter respond 

time period to the variations of the PRO plant, whereas P&O and IMR require a long 

respond time to catch the MPP, followed by PSO. The operating point oscillations 

around the MPP increase power loss of the system; additionally, the slow response 

of the techniques under rapidly variation results in a lower efficiency of the PRO 

system. Furthermore, the specific maximum power density derived from the plant is 
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shown in Fig. 4.6. According to the results, the faster convergence to the MPP 

subject to various operating conditions is obtained by the WODE-MPPT method. It 

is clear that the WODE strategy is capable to find the maximum power compared to 

the general methods. Moreover, the proposed method is robust and stable around the 

MPP. From Table II, it is observed that the WODE method is better in terms of both 

tracking speed and tracking efficiency than that of the conventional methods. 

Table 4.2: Performance Comparison of Results Operating with Variations of Salinities 

Method 

Convergence (W/m2) Tracking time (s) 

Pattern-1 Pattern-2 Pattern-3 Pattern-
1 

Pattern-
2 

Pattern-
3 

P&O 0.070804 0.090832 0.160233 13.7 4.8 7.6 

IMR 0.070872 0.090903 0.160206 10.8 4.2 5.9 

PSO 0.070885 0.090948 0.160304 5.2 3.9 5.7 

WODE 0.070885 0.090948 0.160815 2.1 1.3 1.8 

 
Pattern 1 to 3 are the three different concentration conditions on the draw side.  
Pattern-1: 35kg/g; Pattern-2: 40kg/g; Pattern-3: 55kg/g. 

 

4.4.3 Case3: Variations of concentrations and flow rates 

In addition, the simulation is repeated for a more complex operational configuration, 

namely co-varied flow rate and concentration of salinities. Both the varied 

concentration and the flow rate shown in Fig. 4.7 are considered as the operating 

conditions. The proposed algorithm is compared to two conventional techniques. In 

this case study, the draw concentration at the start is set to 35g/kg while the flow rate 

is set to 1kg/h in pattern-1. At 25s, the draw concentration jumped to 50g/kg and the 

draw flow rate decreases to 0.5kg/h simultaneously in pattern-2 as illustrated in Fig. 

4.7. 
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      (a)  

 

 (b) 

Figure 4.7: (a) Fluctuation profiles of the draw concentration; (b) Fluctuation profiles of the 
draw flow rate 

The results are shown in Fig. 4.8 in which the WODE-MPPT controller is capable 

to yield higher tracking speed under the variations of the saline water in a PRO plant. 

The results indicate that the associated WODE-based MPPT technique can be readily 

utilised to more complex variation problems. In this case, the variation is both 

concentration and mass flow rate on the draw side. The results also indicate that the 

proposed method has ability to deal with other complex variation problems. 
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Figure 4.8: The osmotic power of PRO system implementing i) P&O, ii) IMR, iii) PSO, iv) 
WODE based MPPT algorithm under the co-variant of the flow rate and the concentration 

of the salinities. 

Table 4.3 depicts the detailed quality of the maximum power density obtained by the 

four algorithms. It is observed from the results that the value achieved is higher at 

the average power density compared to that reached by the conventional methods. 

When the flow rate and the concentration on the draw side of the salinities changed 

at 26s, the MPPT strategies get restarted. The WODE-MPPT and PSO-MPPT 

technique converge to the MPP of 0.107125 W/m2, while IMR-MPPT and P&O-

MPPT fails to reach MPP and get settle under 0.10711 W/m2, subject to the complex 

condition. In both patterns, WODE is able to obtain the maximum energy with the 

fastest tracking speed, followed by the PSO, IMR and P&O. According to the results, 

it can be summarized that the proposed WODE-MPPT method is capable to track 

higher power point. Also, the oscillations disappeared quickly compared to the P&O, 

IMR and PSO algorithms. Therefore, it is essential to consider the impact of the 

proposed method on loss reduction and PRO profile improvement. 
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Table 4.3: Performance Comparison of Results Operating with Variations of Salinities 

Method 
Convergence (W/m2) Tracking time (s) 

Pattern-1 Pattern-2 Pattern-1 Pattern-2 

P&O 0.070804 0.107080 11.2 7.8 

IMR 0.0708719 0.107108 10.5 6.8 

PSO 0.070885 0.107125 4.9 3.2 

WODE 0.070885 0.107125 1.1 1.6 
 

Pattern 1 and 2 are different conditions in terms of the DS concentrations and mass flow rates. 
Pattern-1: 35g/kg, 1kg/h; Pattern-2: 50g/kg, 0.4kg/h. 

4.4.4 Case4: Performance comparison under various 

operational conditions 

To assess the efficiency of the proposed WODE-MPPT strategy, various salinity 

conditions such as the concentration and the co-varied flow rate and the 

concentration of the PRO system are studied. The simulation results are shown in 

Figs. 4.6, 4.8 and 4.10 illustrate that the proposed WODE algorithm can handle the 

MPPT problem for a PRO system effectively and outperforms the general methods 

with advantage of higher respond speed and steady state oscillation-free. Further, 

qualitative comparisons among various MPPT techniques are presented in Tables 

4.1, 4.2 and 4.3. According to Table 4.1, the maximum power available, as estimated 

by the WODE method is exactly the same as that obtained by the MFC method. 

Moreover, according to Table 4.2 and Table 4.3, the maximum power density 

available, as estimated by the WODE methods, exceeds the same obtained by any 

other method. Furthermore, more generated energy is considered from a two-stage 

PRO[97-98]. Thus, the Figures in the tables clearly depict that the proposed method 

performed better with respect to the reduced power loss resulting in a higher power 

efficiency. To sum up, the WODE method is generally more stable than all other 

methods.  

In order to show the agreement of the speed and convergence performance of the 

proposed method in MPPT, the results obtained using WODE for PV systems from 
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literature are illustrated in Table 4.4.  Kumar and Rao [27] and Kumar et al. [28] 

have compared the performance of WODE with PSO in terms of the extraction of 

the maximum power and the tracking time as depicted in Table IV. Kumar and Rao 

[27] evaluated the performance of the method in simulation, while Kumar et al. [28] 

validate the results through implementation of the method in hardware. In both cases 

the WODE is proven to extract more power with less tracking time.  

Table 4.4: Comparison of MPPT Techniques in Literature 

Method 

Convergence (W) Speed (s) 

Pattern-
1 

Pattern-
2 Pattern-3 Pattern-1 Pattern-

2 Pattern-3 

PSO [27] 350.72 293.82 352.44 9.6 10.8 13.8 

WODE 
[27] 363.25 300.91 438.79 4.9 4.6 6.2 

 Pattern-
4 

Pattern-
5 Pattern-6 Pattern-4 Pattern-

5 Pattern-6 

PSO [28] 2428.66
7 

2632.03
2 2177.538 7.57 8.32 8.27 

WODE 
[28] 2430.32 2636.24

1 2179.29 1.43 1.56 1.41 

 
Pattern 1 to 3 are three different PV configurations in the shading pattern [27]. Pattern-1: 
6S; Pattern-2: 3S2P; Pattern-3:2S3P. 
Pattern 4 to 6 are different PV curve patterns under shading [28]. Pattern-4: 3 peaks; 
Pattern-5: 5 peaks; Pattern-6: 4 peaks. 

4.5 A MPPT Design Based on Grey Wolf 
Optimisation Algorithm for a Scaled-up PRO System 

4.5.1 Introduction 

The overall PRO power plant with the MPPT controller is clearly shown in Fig.4.9. 

The PRO membrane model is connected to the external devices including an energy 

recovery device (ERD), a high-pressure pump (HP), a hydro-turbine (HT) and a feed 

pump (FP). The pressure of the high-pressure pump is controlled by the MPPT 
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controller. The aim of the MPPT controller is to track the maximum power. 

Therefore, the input of the MPPT controller measures the power feedback at each 

time interval. The control variable is the transit pressure from the high-pressure 

pump. 

  

Fig. 4.9: Block diagram of a typical PRO system with MPPT controller I suggest to change 
BP to feed pump and brackish water may be changed to brine waste (since it will not 
necessarily be brackish after dilution, TDS>10 g/L) 

4.5.2 Application of GWO in MPPT Design 

The fitness function of the GWO algorithm is defined to find three best solutions 

values α, 𝛽 and γ as 

 𝑊h�(𝑥⃗)J°� > 𝑊h �(𝑥⃗)J°z|�     (4.20) 

In the mathematical optimisation model, the solution of the current search agent is 

defined as 

 𝐷­�����⃗ = |𝐶|����⃗ . 𝑋­����⃗ (𝑘) − 𝑋⃗(𝑘)|     (4.21) 

 𝑋|����⃗ (𝑘 + 1) = 𝑋­����⃗ (𝑘) − 𝐴|����⃗ . 𝐷­�����⃗      (4.22) 

 𝐷Â�����⃗ = |𝐶¦����⃗ . 𝑋Â����⃗ (𝑘) − 𝑋⃗(𝑘)|        (4.23) 

 𝑋¦����⃗ (𝑘 + 1) = 𝑋Â����⃗ (𝑘) − 𝐴¦����⃗ . 𝐷Â�����⃗    (4.24) 
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 𝐷Ã����⃗ = |𝐶j����⃗ . 𝑋Ã����⃗ (𝑘) − 𝑋⃗(𝑘)|    (4.25) 

 𝑋j����⃗ (𝑘 + 1) = 𝑋Ã����⃗ (𝑘) − 𝐴j����⃗ . 𝐷Ã����⃗    (4.26) 

 𝑋⃗(𝑘 + 1) = ®¯�����⃗ (°r|)r®±�����⃗ (°r|)r®²�����⃗ (°r|)
j

 (4.27) 

The random parameter 𝐶 is utilised to weight the distance between the search agent 

and the prey in [0,2]. If 𝐶 > 1, the effect of the prey is emphasizing in defining the 

distance, and verse visa. 

The random coefficient vector 𝐴, of GWO is decreasing as the decline of 𝑎⃗, which 

is employed to define the searching mode and the attacking mode. If the absolute 

value of the coefficient vector 𝐴 > 1, the search agent diverges from the current best 

solution following the exploration phase. If the absolute value of the vector 𝐴 < 1, 

the search agent converges towards the current best solution according to the 

exploitation phase. During the process, the correlated vector 𝑎⃗ declines following 

the equation 

 𝑎⃗ = 2 − 𝑘 ∗ ¦
J§e¨

 (4.28) 

When the global optimum is reached, and hunting process finished, the parameter 𝑎⃗ 

decreased to 0. 

To sum up, the process of the implementation is as follows: First, the grey wolf 

algorithm is initialized. The PRO model is initialized. The initial fitness values 𝛼, 𝛽 

and 𝛾 are set to infinitely small. Then the loop starts. The position of the current grey 

wolf is updated according to the GWO algorithm with respect to the cost function 

(4.28) at each iteration k. Then its fitness is updated and compared with the three 

candidate solutions. If the current fitness solution 𝑖 is larger than the fittest solution 

α , both the fitness and the position of α  are replaced by which of the current search 

agent. Similarly, if its fitness is less than the best solution but fitter than the second-

best solution, the second-best solution 𝛽  is replaced by the current grey wolf 𝑖. 
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Consequently, the third best solution γ  will be replaced if the current fitness is less 

than the solutions α and 𝛽  but fitter than γ. All search agents are employed to find 

the global best three solutions in the search space. After this, 𝛼, 𝛽 and 𝛾 and their 

corresponding positions are updated at each iteration. Finally, the GWO parameter 

is updated with regard of the GWO algorithm using (4.21)-(4.27). The probable prey 

position is estimated according to 	𝛼, 𝛽  and 𝛾  using (4.28). The process is then 

repeated with respect to the potential prey location obtained from the previous 

iteration. At the end of the iterations, the solution obtained by the leader grey wolf  

is considered as the optimum solution in the GWO-MPPT design.  

This GWO-based MPPT algorithm utilises multiple grey wolves to chase the prey 

position guided by the best three grey wolves. In other word, the hunting 

(optimisation) of every search agent considers their own fittest solution as well as 

the best three fitness 𝛼, 𝛽 and 𝛾 from the group. It is significant to point out that both 

A and C are generated stochastically, so they are various at each calculation. These 

random values which are generated over the course of iterations favors avoiding the 

local optima. For each case study, the GWO algorithm was run 50 times on the 

problem and the statistical results obtained by the GWO-MPPT controller are 

reported for the comparison. 

4.5.3 Results and discussion 

The proposed MPPT design for the PRO system is object to extract the maximum 

power under various operational conditions, including the temperature and the 

salinity profiles. The performance evaluation of the proposed GWO-based MPPT 

algorithm is performed by using a boost pump which is illustrated above.  

To test these three methods, the improvements of the MPPT performance are 

evaluated by simulations in this section. Two case studies aiming to rapidly changing 

temperature and salinity operational conditions are then presented in this paper. The 

performances were probed with the highly popular ‘P&O’ and ‘IMR’ methods to 

verify the superiority of the proposed technique [6, 25]. These methods are model-

free methods, where the instantaneous variables are used to produce the control 

signals. It is important to point out that there are two assumptions at the early stage: 
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firstly, the pressure is adjusted by a stable and fast controller. Secondly, the instant 

sample period is larger than the pressure transition time at each step.  

Case study: Rapidly Changing Salinity Levels  

  

     (a) 

 

                                            (b) 

Figure 4.10: (a) Fluctuation profiles of the draw concentration; (b) Fluctuation profiles of the 
dimensionless flow rate 



100 

 

 

Figure 4.11: Osmotic power of PRO system with P&O, IMR, PSO, WOA and GWO based 
MPPT algorithms under rapidly changing operating conditions 

 

Table 4.5: Performance Comparison of Results Operating with Variations of Salinities 

Met
hod 

Convergence (W/m2) 
Tracking 

time 
(step) 

Pattern-1 Pattern-2 Pattern-3 Pattern-4 Patte
rn-1 

Patte
rn-2 

Patter
n-3 

Patte
rn-4 

P&
O 

0.051493
91786 

0.090903
18523 

0.139234
53977 

0.189261
35716 10 4 2 4 

IMR 0.051378
79625 

0.090831
96469 

0.139199
64890 

0.189353
47161 9 3 3 3 

PSO 0.051496
4159 

0.090947
7604 

0.139267
0086 

0.189358
7011 1 1 1 1 

GW
O 

0.051496
4163 

0.090947
7657 

0.139267
01500 

0.189358
67846 1 1 1 1 

WO
A 

0.051496
4161 

0.090947
7612 

0.139267
01357 

0.189358
68170 1 1 1 1 

Table 4.5: Pattern 1 to 4 are the four different operational conditions.  

 

For better comparing the effectiveness of the proposed methods GWO and WOA, a 

more complex operational condition is investigated, and the simulation is repeated. 

In this section, the variations in the concentration and the flow rate on the draw side 
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of the saline water are both considered, which pattern is shown in Fig.4.10. The 

MPPT controller using GWO, WOA, PSO, IMR and P&O techniques are all 

implemented under this operational condition. The result is represented in Figs. 4.10 

and 4.11. 

In the results of Figure 4.10, under dynamic change condition regarding concentrates 

and flow rates, classic MPPT algorithms P&O and IMR show limited ability to find 

the maximum power efficiently. P&O takes 10 intervals at the beginning and 4 

intervals for the salinity change from pattern-2 to pattern-3 to reach the MPP. In the 

case of IMR, the performance is improved for both situations, it takes 9 and 3 time 

instant to track the MPP. In this situation, the PSO, WOA and GWO performs 

significantly well and has the capability to catch the MPP only in 1 instant 

(acceptable error: 0.001%). 

 

 

Figure 4.12: Detailed osmotic power of PRO system with PSO, WOA and GWO based 
MPPT algorithms under rapidly changing operating conditions 

The complete comparison of the respond time is shown is Table 4.5. These results 

again illustrate that the proposed metaheuristic algorithm has the ability to reach the 

MPP with the fastest speed among the four general techniques, favoring oscillations 

avoidance and less power loss. Again, the superior performance of the optimisation 

technique based MPPT method over all methods can be obviously confirmed during 

the dynamics. At the beginning, the MPP extracted from GWO is 0.0514964161W, 
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where IMR reaches MPP of 0.05137879625 W and P&O algorithm settled at 

0.05149391786 W. It means the tracking ability of the GWO is higher favouring a 

higher power efficiency.  

Moreover, the detailed comparison among PSO. WOA and GWO is presented in Fig. 

4.11. The detailed data is also presented in Table4.5. This table shows that there is 

improvement in tracking the maximum power point utilizing WOA and GWO 

algorithm, comparing with PSO. GWO performs slightly better than WOA. 

Furthermore, all of them give a fast-tracking speed under rapidly changing 

operational conditions. It is important to point out that more power can be extracted 

from a two-stage PRO process compared to a single-stage process [94]. 

The simulation results reveal that the GWO-based MPPT metaheuristic algorithm 

outperforms P&O and IMR techniques with respect to reduced steady state 

oscillation, faster tracking speed and higher tracking efficiency. Furthermore, the 

convergence time and the maximum power obtained by the five methods are briefly 

summarized in Table 4.5 with the purpose of the qualitative comparison. It can be 

clearly seen that the proposed technique outperformed other methods. From all the 

results, the proposed GWO-MPPT method is proved to be capable to handle the 

MPPT problem with efficiency and robustness. 

4.6 Summary 

In a scaled-up system, a novel evolutionary computing approach, namely whale 

optimisation with differential evolution method is implemented to track the 

maximum power in the dynamic as well as the steady state conditions. The superior 

performance of the proposed WODE-based MPPT algorithm in solving MPPT 

problem is proved to be efficient for the PRO system. The results also demonstrate 

that GWO method can show a high performance not only on unconstrained problems 

but also on constrained problems. Furthermore, this proposed algorithm validates the 

ability solve the multi-peak MPPT problem. Finally, the results of the design 

problems also illustrate that the WOA-based and GWO-based MPPT metaheuristic 

algorithms have high performance in challenging search spaces. 
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In this chapter, the comprehensive study illustrates that both the proposed WOA-

based and GWO-based MPPT metaheuristic algorithm has merit among the current 

MPPT strategies. The simulation results on the MPPT problem showed a substantial 

improvement of power efficiency compared to current approaches, showing the 

applicability of the proposed MPPT method in solving real problems. 

For a full-scale PRO power system, GWO algorithm is used to obtain the optimum 

operating parameters of the PRO process. Optimisation performed on a full-scale 

module operating under non-ideal conditions. Optimum operating parameters in 

bench PRO unit are invalid in a full-scale module. For a scaled-up PRO power 

system, a novel maximum power point tracking approach for a pressure retarded 

osmosis process is proposed. The method is based on the Whale Optimisation with 

Differential Evolution algorithm, which is able to overcome lower tracking 

efficiency and steady state oscillations. Moreover, the technique guarantees 

maximum power extraction in the face of rapid salinity variation. The efficacy and 

robustness of the scheme are evaluated with a scaled-up PRO system.  
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Chapter 5 Design and Development 

of Model Predictive Controller for a 

Photovoltaic Power System 

5.1 Introduction 

From the literature review on the utilisation of MPC algorithm based MPPT 

controller, it is noted that the methods were generally suitable for controlling the 

power output of PV panels. However, it was observed that the algorithm had not 

been validated with noisy variations of the ambient temperature and the local wind 

speed. It also seemed essential to speed up the algorithm for MPPT applications, 

particularly in the presence of environmental noise. For this reason, in this section, 

a new performance index will be proposed and used to develop a variable step size 

MPC algorithm based MPPT for PV systems. The algorithm with an adaptive droop 

controller was also coupled to adjust the bus voltage when multiple photovoltaic 

power supply buses are used, introducing a variable step size MPC method.  

5.2 Mathematical modelling of a PV cell 

Over the years, several researchers have worked on the PV panel and studied PV 

characteristics and factors that affect them. It is essential to provide a robust model 

of PV cells. Sera[32] provides a PV panel model based on manufacturer’s data sheets 

in Standard Test Conditions(STC). However, it depends on only one operating 

condition. Villalva [13] proposes an effective and straightforward solution to fit the 

mathematical equation of the nonlinear I-V characteristic with three crucial points 

of a practical PV array, but it is only suitable for single-diode models. Soto [34] 

proposes a five-parameter model for four different cell technologies. Though 

effective, these researches lack the study on the choice of tilt angle. Costa[35] and 

Armstrong [36] mainly propose the temperature control law and the methodology to 
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choose the optimum tilt angle for a PV panel respectively. Dolara [38] compares 

three physical models of PV cells using actual weather data.  

There are a few types of equivalent circuit models, such as single diode model, two 

diode model and dynamic model. Besides, there are five key parameters of single 

diode which are light generated current (IPV), diode reverse saturation current (I0), 

series resistance (Rs), parallel resistance (Rp) and diode ideal factor (a). 

5.2.1 Ideal PV Cell  

To understand the working principle of this device better, a PV cell equivalent circuit 

model is required. An ideal PV cell model can be represented as a current source in 

parallel with a light-sensitive diode. When there is no light generated, the PV cell 

behaves like a diode. The light photons are absorbed by the materials, if photon 

energy is higher than the band of materials, the conduction band will excite the 

electrons. When an external load connects to the output of PV cells, then the 

electricity will be generated. An ideal single-diode model of PV cell is shown in 

Fig.5.1.  

 

Figure 5.1: Theoretical single-diode model of PV cell 

The output current of a theoretical PV cell is acquired by equation [96]  

 I = Ipv − Id  (5.1) 

 𝐼C = 𝐼X[𝑒𝑥𝑝 Ô
[o
Í°�

Õ − 1] (5.2) 

In which  𝐼C stands for current from the diode, Ipv stands for the photocurrent, 𝐼X is 

the saturation current of the diode, 𝑞 stands for the electron charge of value 1.6 × 10-

19 Coulombs, V stands for the measured cell voltage, a stands for ideal diode constant 
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(typically between 1 and 2), k stands for the Boltzmann constant with the value of 

1.3806503 × 10-23, T stands for the p-n junction temperature in Kelvin.  

5.2.2 Modelling the PV Array  

The ideal model does not consider the internal losses of the current. In practice, the 

observation of PV characteristics requires the series residence Rs and the parallel 

residence Rp. Fig.5.2 illustrates the equivalent circuit.  

 

Figure 5.2: Model of a practical PV cell 

From Kirchhoff law,  

 𝐼 = 𝐼QÖ − 𝐼C − 𝐼Q (5.3) 

The equation that mathematically depict the I-V characteristic of a practical PV array is [32] 

 𝐼 = 𝐼QÖ − 𝐼X[𝑒𝑥𝑝 Ô
or��`
Ío×

Õ − 1] − or��`
��  (5.4) 

Where Vt = NskT/q is the thermal voltage of PV arrays with Ns being the number of 

PV cells connected in series. Rs is the equivalent series resistance and Rp is the 

equivalent parallel resistance.  

The I-V characteristics of PV devices is determined by internal influences like Rp and Rs, as 

well as external factors such as temperature [62].The output current of PV cells are influenced 

by temperature and solar irradiance according to equation [32]  
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 𝐼QÖ = (𝐼QÖ,f + 𝐾`∆𝑇)
Ø
ØÙ (5.5) 

Where Ipv,n is the photocurrent in Ampere at nominal conditions (25◦C, 1000 W/m2), 

𝐾` is the short circuit current coefficient in Ampere, ∆𝑇 = 𝑇 − 𝑇f in Kelvin with T 

is the actual temperature and 𝑇f is the nominal temperature, G and Gn is the actual 

irradiance on the device surface and nominal irradiance in watts per square meter 

respectively.  

Table 5.1: KC200GT solar array Parameters at STC  [97] 

PV Parameter Symbol Nominal Value 

Nominal short-circuit 
current 𝐼I�f 8.7 amps 

Array current at MPP 𝐼NQ 8.2 amps 

Nominal array open-circuit voltage 
 𝑉Ú� 37.7 V 

Array voltage at MPP 𝑉NQ 30.1 V 

Series resistance 𝑅I 0.221 Ω 

Parallel resistance 𝑅Q 415.405 Ω 

Voltage-Temperature coefficient 𝐾o -0.123 V/K 

Current-Temperature coefficient 𝐾` 0.0032 A/k 

Array output peak power 𝑃NÍÑ 246.82W 

5.2.3 Parameter Determination  

Chapter 2 The above parameters are normally provided by experimental data or the 

manufacturer’s datasheet. Take the M2543BB solar array as a research plant, the 

parameters of KC200GT from KYOCERA at Standard Test Conditions (STC) is 

shown in table 5.1 [97].  
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Simulations results  

By using the mathematical equations and Figures discussed above, the I-V 

characteristic and P-V characteristic curve is obtained in the MATLAB/Simulink 

environment (see Appendix). Fig.5.3 and Fig.5.4 illustrates the I-V characteristics 

and P-V characteristics respectively under different solar irradiance levels.  

 

Figure 5.3: I-V model characteristics of the solar array under different irradiance, 25◦C 

 

Figure 5.4: P-V model characteristics of the solar array under different irradiance, 25◦C 
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Figure 5.5: PV characteristic curves at different irradiance with constant 25◦C temperature 

 

5.3 Modelling of PV panels with environmental 

disturbances 

A typical equivalent circuit of a PV type photovoltaic cell is used, in which use 

several diodes to simulate the dark current branch. It is generalization of the 

equivalent circuit of Figure 8.12 of Vepa [98], which is used simulate the single 

diode dark current flow. 

Based on a multi-diode model, we may express the current  in the series resistor 𝑅s as 

 𝑖 = 𝑖QÖ − 𝑖X| �exp Ô
Ö�r�{J
f¯ÖÜ

Õ − 1� − ÔÖ�r�{J
Ý�

Õ + 𝑖fÚJIe (5.6) 

where the photo-current  is calculated as 

   (5.7) 

In which  depends mainly on the solar irradiance ratio  and the operating 

temperature . 
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The quantity of thermal voltage  is related to the Boltzmann constant  and the 

electronic charge  by the relation 𝑣� = 𝑛I𝑘𝑇ÚQ/𝑞. In which the number of diodes is 

connected in series.  is the diodes ideal factor in parallel line. The quantity of the diodes 

reverse saturation current  is in parallel line and can be expressed as a function of the 

operating temperature . It can be expressed at a reference temperature  as 

   (5.8) 

In which  and  are constants. Furthermore, in the Laplace transform domain, 

𝑍G = 𝑅G/(1 + 𝑠𝐶𝑅G). Assuming  is very small,	𝑍G = 𝑅G.  

The cell operating temperature  is function of the ambient temperature , the 

solar irradiance ratio and the wind speed .  

It is given by [99] 

   (5.9a) 

with 

   (5.9b) 

The effect 3 different wind speeds on the power output of a PV cell is shown in Fig. 

5.6, which clearly indicates that the power output may increase by about 15-20% 

due to the cooling of the cell. Furthermore, both the wind speed 𝑊I and the ambient 

temperature  are assumed to contain additive noise which generated from a 

random variable with a Weibull distribution [99]. The reason for choosing a Weibull 

distribution is not only because the hourly variation of wind speeds follows a 

Weibull probability density function, but also because the noise generated in this 

manner can be highly impulsive. The impulsive noise is particularly useful for 

validating our algorithms with disturbance attenuation and for demonstrating 

robustness of the control laws. 
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Figure 5.6: Effect of wind speed on the power output of a PV cell 

A solar panel is assumed to be constructed from 𝑁G strings of identical cells connected in 

parallel and with each string having 𝑁s identical solar cells connected in series. The panel 

output current is given by 

  (5.10) 

A similar formula is derived for non-identical cells. To solve for the current, we 

adopt as iterative scheme such as the Newton-Raphson method.  

The output of the PV panel simulation was verified by comparing it with the output 

of a hardware PV simulator, the CHROMA 52000H-150S, and correlates well with 

it. 

5.4 Design of a DC-DC boost converter 

DC-DC converter is a typical switching system. It can be composed of four end 

network modelling, in which the source end by an inductance L connected in series 

to a PV system. The equivalent circuits with two statuses of idealized switching 

signal is displayed as Fig.5.7.  
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Figure 5.7: Equivalent circuits of DC/DC converter with binary switching status 

When s=1, the ideal switch is open; s=0, the ideal switch is closed. Fig.5.8 and 

Fig.5.9 is demonstrated to make it clear.  

 

Figure 5.8: Equivalent circuits of DC/DC converter with switch closed 

 

Figure 5.9: Equivalent circuits of DC/DC converter with switch open 

The model illustrated above is a boost converter, the principle of a buck converter, 

buck-boost converter and so on are similar.   

From Fig.5.9, the converter operation can be depicted by the systems as equation (5.11) and 

(5.12) when the switch is open and be considered as equation (5.13) and (5.14) when the 

switch is closed.  

 J�á
C§
= − |

â
𝑖QÖ +

|
â
𝑣QÖ  (5.11)  

 Öã
C§
= − |

�ä
𝑣� +

|
ä
𝑖QÖ  (5.12) 
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As switch is open, which means s=0 as Fig.11, equation system is of the following form:  

 J�á
C§
= − |

â
𝑖QÖ +

|
â
𝑣QÖ  (5.13)  

 Öã
C§
= − |

�ä
𝑣�  (5.14)  

The discrete time system of equations can be derived as follows with sampling time 

Ts. By implementing these equations, at sampling time k, controlled variables ipv 

and vc can be predicted at the next sampling time k+1. MPC method is utilised to 

predict the error in next sampling time and is based on minimizing the cost function 

g so as to get switching state for the present time and a future time.  

As switch open and closed:   

 𝑖QÖ(𝑘 + 1) = 𝑖QÖ(𝑘)−
��
â
𝑣�(𝑘) +

��
â
𝑣QÖ(𝑘) (5.15)  

 𝑣�(𝑘 + 1) = (1− |
�ä
)𝑣�(𝑘) +

|
ä
𝑖QÖ(𝑘)  (5.16)  

 𝑖QÖ(𝑘 + 1) = 𝑖QÖ(𝑘) +
��
â
𝑣QÖ(𝑘) (5.17)  

 𝑣�(𝑘 + 1) = (1− |
�ä
)𝑣�(𝑘) (5.18)  

Combining these equations, the following equations are obtained:  

 𝑖QÖ(𝑘 + 1) = 𝑖QÖ(𝑘)−𝑠 ∗
��
â
𝑣�(𝑘) +

��
â
𝑣QÖ(𝑘) (5.19)  

 𝑣�(𝑘 + 1) = − |
�ä
𝑣�(𝑘) + 𝑠 ∗

|
ä
𝑖QÖ(𝑘) (5.20)  

In which the switching variable s=1 when the switch is open while s=0 when it is 

closed and 𝑇I presents sampling time.  

The foregoing equation system can be expressed in the following matrix form:  

 å
𝑖QÖ(𝑘 + 1)
𝑣�(𝑘 + 1)

æ = ç
1 −𝑠 ∗ ��

â

𝑠 ∗ ��
ä

1 − ��
�∗ä

è ∗ å
𝑖QÖ(𝑘)
𝑣�(𝑘)

æ + é
��
â
0
ê ∗ 𝑣QÖ(𝑘) (5.21)  
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Furthermore, the discrete time equation system can be extended to n-step horizon. Better 

performance can be obtained when increasing the step number n [50], which will be 

accomplished in the next chapter.  

 𝑖QÖ(𝑘 + 𝑛 + 1) = 𝑖QÖ(𝑘 + 𝑛)−𝑠 ∗
��
â
𝑣�(𝑘 + 𝑛) +

��
â
𝑣QÖ(𝑘 + 𝑛) (5.22)  

 𝑣�(𝑘 + 𝑛 + 1) = − |
�ä
𝑣�(𝑘 + 𝑛) + 𝑠 ∗

|
ä
𝑖QÖ(𝑘 + 𝑛) (5.23)  

5.5 MPPT control techniques 

5.5.1 P&O MPPT method 

The Perturbation and Observation method is the simplest one for MPPT and needs 

only the value of power. It is also called Hill Climbing technique, while both of them 

describe the same method on how it is employed. Based on the sampling method, in 

P & O systems, the current value is confided to the past data that gives the difference 

in power (∆P). Considering a light change (perturbation) on the voltage, if (∆P) is 

positive, then this change is in the right direction or else it is reversed [100]. Though 

simple, there are a few drawbacks. Immense perturb values will lead to oscillations. 

Also, the oscillations around MPP causes the loss of energy at the steady state. Its 

response to rapid vibrations is poor. To overcome these disadvantages, modified P& 

O methods is studied in literature. Abdelsalam [101] processes a method of fixed 

perturb, but the hindrance is to choose a desirable perturb step. Khaehintung [102] 

proposes the step-size method, which can achieve a faster response.  

The P&O method is the most popular MPPT method using in the PV system due to 

the simplicity [39] [103]. The principle of P&O method is based on the derivation 

of the output power to voltage is zero at the MPP from the P-V characteristics. When 

operating at the left side of the MPP with an incrementing voltage, the output power 

will increase, and verse visa. Therefore, if the perturbation of the voltage and the 

observation of the output power are in the same direction, it is noted that the 

operating point is in the left side of the MPP. The subsequent perturbation should be 

kept and move the operating point towards the MPP. 
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Similar principle at the right side of the MPP on the P-V curve. When the given 

perturbation is an increment operating voltage leading to a decreasing output power, 

the operating point is at the right of the MPP. The P&O method reverse the direction 

of the perturbation to change the point to reach the MPP. The basic strategies in the 

P&O method is given as Table 5.2, where the symbols + and – are positive and 

negative, respectively. The perturb and observe technique is employed reputably 

until obtained the MPP. The P&O method has a few disadvantages: i) it is not stable 

under rapidly changing operational conditions; ii) it has to balance the trade-off 

between the tracking dynamics and the steady state oscillations. Therefore, the 

improved methods are evaluated in the following sections. 

Table 5.2: Strategies in P&O Technique 

Perturbation Change in Power Next Perturbation 

+ + + 

+ - - 

- + - 

- - + 

 

5.5.2 Improved INC MPPT method 

The INC method is demonstrated in Fig.5.10. The INC method is utilised widely 

because of its good stability under rapid changes. However, it requires complex 

circuits. To solve this problem, improved InC algorithm is studied by researchers. 

Tey [104] proposes a modified INC to modulate the duty cycle of the dc-dc converter, 

with the purpose of tracking the global maximum power point (GMPP) under partial 

shading conditions and load variation. Liu [105] proposes a modified variable step 

size INC technique to improve the MPPT speed and accuracy. Punitha [45] proposes 

a neural network based modified InC algorithm, which provides a higher percentage 

of maximum power with less time. 



116 

 

 

Figure 5.10: Flow chat of classic INC method 

The modified INC algorithms utilised in this chapter have two main contributions 

with MPC technique:  
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Figure 5.11: Flowchart of improved Incremental conductance algorithm imposing the 
reference current 

1. The INC method aims to regulate the value of reference current to the MPC 

controller (current based).2. The increments of the reference current are the 

measured current of the PV system instead of the reference current in previous 

sampling time. The INC algorithm combined with MPC technique predicts the error 

one step ahead compared with the formal INC technique.  
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The output power and the current are taken into consideration in tracking MPP. In 

the maximum power point, the slope of I-P curve is equal to zero. Fig.5.11 illustrates 

the proposed INC method that used in this chapter intuitively. 

5.5.3 fixed-step size MPC MPPT method 

Two main forms of green energy are studied in the literature based on MPC, PV 

generation and wind power generation [106]. In terms of PV, the MPP tracking with 

combination of INC and MPC algorithm is implemented, where MPC method gives 

advantages of fast response under variation and its ability to extract MPP under 

various conditions [107]. Shadmand [55] proposed a MPP tracking method using 

modified P & O through a fixed step MPC of a flyback converter. The error is 

predicted before switching states. Kakosimos [50] proposed an implementation of 

PV array MPPT through MPC. A modified INC technique combined with two-step 

horizon MPC is employed in the controller for tracking the MPP. These algorithms 

contain two stages, first stage is to yield a reference value by modified INC algorithm, 

then MPC is implemented to control the PV module and to reach the maximum 

power point.  

Overall Frame  

 

Figure 5.12: Brief outline of PV system structure utilizing MPPT-MPC algorithm 
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Model predictive control is utilised with MPPT at this stage. MPC is one of the best 

controllers because addition of MPC in tracking MPP can not only reach steady state 

faster, but also make a faster response under different condition [41].  

Fig.5.12 illustrate the integrated frame using Model Predictive Control based 

Maximum Power Point(MPC-MPPT) method [50, 110]. It comprises of a few units:

  

A: PV module which can produce power straight from solar radiation.  

B: DC/DC converter which will be defined below.  

C: MPPT module gets current and voltage from PV system as inputs. Simultaneously, 

it determines the MPPT reference output current for predictive controller.  

D: The MPC method that used in this study. Current reference from MPPT, DC/DC 

converter output voltage, current and voltage from PV array are formed as adequate 

inputs to predict the error in the next sampling time, as well as to decide the switching 

state for DC/DC converter based on cost function. The switching signal is a binary 

output, which is believed to be open when it is 1 and equal to 0 when it is closed.  

E: The control strategy. It consists of two main components: MPPT and MPC 

module. 

F: DC link.  

G: A DC/DC converter.  

Principle of Predictive Control  

Early application of Model Predictive Control(MPC) dates back to the 1980s with 

low switching frequency [40]. With the development of high-speed microprocessors, 

MPC methods have developed greatly [106]. The basic idea of MPC is the receding 
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method. The model for predictive control used in this research is discrete-time model, 

with main strategy: 1) At current time, assuming as step k, the future desired control 

outputs y(k + i|k) is predicted confide to the past input and output, as well as a 

reference signal r(k + i|k) during the predictive horizon Hp. 2) The cost function 

used to optimise the switching state is employed as a criterion. 3) Only the first 

predicted element in the resulting optimal sequence is applied for the process. When 

finished, repeat the optimisation over the future horizon.  

The most obvious merits of MPC are the speed and reliability, which refer to the 

ability to handle multivariable control problems by assigning different levels of 

importance to each input and output. Also, this method takes account nonlinearities 

and constraints. On the contrary, one of the limitations of MPC is the required 

computational effort [108].  

The most significant part in MPC is the cost function, which is used to optimise the 

switching state. Cost function is given as:  

g = λi gi + λv gv           (5.24)  

Where gi is the absolute error between the reference current and DC voltage 

predictive value, while gv is the absolute error between the reference voltage and its 

predictive value. λi and λv are the weighting values of gi and gv respectively.  

The cost function is a linchpin of MPC algorithm which is utilised to constrain the 

deviation from reference values iref and vref, wA, wB is employed to define the 

proportion[9].The cost function for the MPC technique is:  

                           g = wA ·|ipv(k+1)−iref|+wB ·|vpv(k+1)−vref|        (5.25) 

In this study, one-step horizon predictive control is implemented. Ipv, vpv, vc and 

iref , vref are considered as inputs for the controller. By evaluating the cost function 

twice for each switch status, the binary variable s is determined to satisfy the 
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minimum cost g. Fig.5.13 depicts the process of the control scheme for one step 

horizon MPC. 

 

Figure 5.13: 1-step horizon MPC-MPPT procedure 
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Implementation and discussion  

A PV system was developed using MATLAB to confirm the controls. A typical PV 

system configuration is implemented to test the proposed MPC-MPPT control 

technique under abrupt solar intensity. The solar configuration in this chapter is 

shown below: 

 

Figure 5.14: 2-step horizon MPC-MPPT procedure 
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5.5.4 Variable step size INC MPPT method  

The incremental conductance controller introduced in the previous section is fixed 

step size. a smaller step size contributes to relatively less oscillations in the stead 

state. However, it causes slower dynamics resulting a comparatively low efficiency. 

Also, under rapidly changing conditions, it may get lost in the wrong direction 

around the MPP [109]. This conflicting situation can be fixed by a larger step size. 

Though the speedy tracking achieved, oscillations around the MPP are increased. 

During the rapid changing operational conditions, the excessive oscillations lead to 

a high-power loss. 

In fact, not only the INC method, other conventional methods such as P&O method 

are characterized by the dilemmas between the oscillations and the reaction speed, 

which resulting to a low efficiency. Dedicating to deal with this trade-off between 

the dynamics and the tracking accuracy, the variable step size INC technique is 

proposed by researchers [109]-[105]. In the proposed technique, the step size is 

changed according to the atmospheric conditions, contributing to a faster dynamic, 

less oscillations and a higher power efficiency.  

The MPPT controller is connected with a DC/DC boost buck converter and tune the duty 

cycle iteration step size of the converter. The V and I are the voltage and the current outputs 

of the PV array. D is the duty cycle. To simplify the system, the PV power output is adopted 

directly to control the duty cycle. The variable step size INC MPPT method is given as [108-

112]  

 𝐷(𝑘) = 𝐷(𝑘 − 1) + 𝑁 ∗ ëCG�á
Co�á

ë (5.26) 

In which 𝐷(𝑘)  and 𝐷(𝑘 − 1)  are the converter duty cycle at the instant k and k-1, 

respectively. N is the scaling factor adjusted manually by at the beginning. 𝑑𝑃QÖ and 𝑑𝑉QÖ 

are the power derivate and the voltage derivate, respectively. They are updated by 

 𝑑𝑃QÖ(k) = 𝑃QÖ(k) − 𝑃QÖ(k − 1) (5.27) 

 𝑑𝑉QÖ(k) = 𝑉QÖ(k) − 𝑉QÖ(k − 1) (5.28) 
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The difference between fixed step size law and variable step size is shown in Fig. 

5.15.  

As shown in Fig 5.15, the derivative of the output power to voltage is used to determine the 

size of the step for the INC algorithm [105]. Later, an modified variable step size INC 

algorithm is investigated and verified with experimental by Loukriz [109]. The rule in the 

proposed variable step size INC technique is updated as  

 𝐷(𝑘) = 𝐷(𝑘 − 1) + 𝑁 ∗ ë CG�á
Co�ázC`�á

ë (5.29) 

In which 𝑑𝐼QÖ is updated by 

 𝑑𝐼QÖ(k) = 𝐼QÖ(k) − 𝐼QÖ(k − 1) (5.30) 

 

 

Figure 5.15: Variable size and fixed step size behaviour 

5.6 Nonlinear discrete time model in a switching 

system 

By using the state space averaging method proposed in 1970s, the small signal 

mathematical models of DC power converters are established in the state space 

average signal equations near rated little change. The product term of any two small 

signal distributions is ignored. Therefore, the state space average leads to the 



125 

 

equivalent linear dynamic model. Instead of transistor switches technology allows 

the ideal switches, developing models for their 'ON' state and the 'OFF' state and 

evaluate ideal equivalents of transistor switches. Moreover, they could also be in the 

duty ratio and the 'OFF' state of the state is weighted, during a single power cycle.  

5.6.1 Improved model in a PV system 

Modeling the DC-DC Converter for Stability  

A typical generic DC-DC converter is a semiconductor based, PWM controlled, 

switched state system. It can be modelled a four-terminal network, in which the 

source end is connected with PV module through a series inductor as illustrated in 

Fig.5.16.  In the boost mode the switch is as shown while in the buck mode, the roles 

are reversed. The model shown is that of a boost converter. Two parameters may be 

used to define the operation of the converter,  and . For the boost operation, 

 and  where  is the converter duty cycle time. For buck operations, 

 and . 

The power supply voltage is  . and are input current and output voltage, 

respectively. The output is connected to a capacitive load.  and  are the load 

resistance and capacitance connected  in parallel. Thus, the voltage across the 

inductance is given by 

                                          (5.31) 

The current equation is obtained by applying Kirchhoff’s current law on the output 

side. They are used to derive the discrete time equation for the converter. 

 

k a
1=k dT-= 1a dT

1-=k dT=a

pvv pvi cv

R C

( )cpvpvL vvkdtdiLv a-==
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Figure 5.16: Equivalent circuit of a DC-DC converter 

In the boost mode, the dynamics is governed by the pair of discrete time recursive 

equations [40, 47]  

   (5.32a) 

   (5.32 b) 

where  is the sampling time. In the ‘OFF’ state, or when the switch is or open, 

the switching variable ;  when the switch is in the ‘ON’ state or closed, . 

Bilinear Discrete Time Model and Stability 

The equations(5.32) can be expressed in matrix form as follows: 

            (5.33) 

In which 𝑠 is a binary control variable. There must be adequate stability margins for 

those roots whose magnitudes are strictly less than unity, which will guarantee the 

stability and the robustness of the open/closed loop system for any value of the 

binary control variable	𝑠. The binary control variable can be updated based on the 

following equation:  

        (5.34) 

In which the values of 	𝑠  and  will be explained below. The above equations 

(5.33) are not linear in controlling the state vector  with three elements. In 

addition, the system of equations represent a typical bilinear system, the principle of 
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the linear control law [47]. The three key controlled variables are ,  and . 

These three variables are predicted for the next sampling instant in order to generate 

the control action  for both the current and future times. A predictive controller 

that uses a one-step horizon is achieved according to four measured values of , 

,  and	𝑠. The control input  is Estimated, the performance of the controlled 

variables in the future are predicted based on the evaluation of a cost function and 

the current value of	𝑠. 

5.6.2 Performance Index in Model Predictive Controller  

 

Figure 5.17: General MPC block diagram 

 

Fig. 5.17 depicts the general principle of a predictive controller. The future 

behaviour of the control variables can be predicted from (8). In terms of PV system, 

and are obtained by predictive control law, while is 

extracted from the I-V characteristics of PV cell from Fig. 5.17. 

The predictive variables are compared using the cost function, which is expressed as 

 

pvi cv s
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   (5.35) 

Generally, (5.36) can be extended as a discrete time equation as following: 

 

   (5.36) 

The system defined in the preceding section is a bilinear system. The control input 

is . A linear control law can be defined to control the bilinear system without the 

need to change the bilinear character of the system. To determine the linear control 

input , a nonlinear MPC synthesis approach is adopted. First a suitable 

performance index is defined. To this end the cost function  is defined as 

   (5.37) 

Where is obtained by P&O method using MPPT algorithm. The proposed 

method will show a faster response than traditional P&O method under rapid 

changing conditions. 

Moreover, the performance variable is expressed as  

 𝐽 = 𝑔(𝑘, 0) − 𝑔(𝑘, 1)  (5.38) 

Essentially 	𝐽 is evaluated as the plant which is switched from one state to the 

other. Therefore, the values of the variables and the current state of the switch 

based on control  is calculated as shown in Table 5.3. 
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Table 5.3: Choice of ∆𝑠 

S=1 AND J<0 ∆𝒔 = −𝟏 

S=0 AND J>0 ∆𝑠 = 0 

S=1 AND J>0 ∆𝑠 = 0 

S=0 AND J>0 ∆𝑠 = 1 

 

The reference current is estimated at the Maximum Power Point, b increasing or 

decreasing until the MPP is obtained. In most PV arrays, because insolation varies 

greatly, better performance variable is required. 

Consider the change in the power output of a PV system at a reference operating 

point, the derivation of output power can be expressed as  

      (5.39) 

Thus,  

    (5.40) 

A modified performance function is then defined as 

      (5.41) 

where it is assumed that . When , no power is being 

delivered by the PV system. Thus,  is set to zero and 

      (5.42a) 

The corresponding performance variable is 
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      (5.43b) 

The resistance increment is equal to the instantaneous resistance of PV cells at MPP.  

Step size adaptation law 

Adaptive searching and reduction of appropriate step size can accelerate the speed 

of the algorithm. The incremental change in the power output of a PV system can be 

alternately expressed as, 

           (5.43a) 

where  

    (5.44b) 

is known as the incremental resistance while instantaneous array resistance in a PV 

module is expressed as 

    (5.44c) 

Then, a new performance index  can be defined as 

   (5.44) 
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Figure 5.18: Step Size Adaption Control Law 
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Figure 5.19: Variable size and fixed step size behaviour 

 

When the initial operating point is near the MPP,  the speed of this technique is 

relatively fast. Therefore, the above algorithm is preserved when the operating point 

is close to the MPP. Otherwise, the best step size is chosen using a second algorithm. 

As shown in Fig.5.18, the behaviour in a PV module is related to the step size 

because of its nonlinear characteristics. 

In terms of the new performance index , the variable step size control law with 

positive and small constants 𝜀ï, 𝑗 = 1,2 is defined as following:  

i) If 𝑑𝑖QÖ > 0,Jnew< 𝜀| , there is no change made to the step size; 

ii) If 	𝑑𝑖QÖ > 0,Jnew >	𝜀| , the step size is expressed as  where 

 is constant; 

iii)	𝑑𝑖QÖ < 0,	𝑑𝑣QÖ < 𝜀¦ , there is no change made to the step size; 

newJ

( ) ( ) newJkdtkdt l+=+1
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iv)	𝑑𝑖QÖ < 0, 𝑑𝑣QÖ > 𝜀¦, the step size is expressed as  where 

γ is constant, where the variable step size value λ and γ can be found from [109]- 

[107]. The difference between fixed step size law and variable step size is shown in 

Fig. 5.18. 

Flow chart of variable step MPC method is illustrated in Fig. 5.19. In the following 

sections, the proposed performance indices based on the model predictive controller 

will be evaluated and compared with the other algorithms including the fixed step 

size control law. 

Droop Control law 

Droop control is implemented to achieve parallel operation of micro-power supply 

in micro grid. In power system, droop control has been used in control systems for 

regulating the power output by simulating the droop characteristics or traditional 

generators. Generally, droop control is used to adjust the converter output impedance 

to balance the bus voltage when supplied by multiple power sources. In the case of 

PV systems, when the converter provides a larger current, the technique is utilised 

to reduce the output voltage in order to achieve a constant bus voltage. The converter 

can consequently maintain the bus voltage based on the load line equation which is 

formulated as  

     (5.45) 

In which is the droop factor. It is designed for a stable bus voltage by 

regulating bus voltage considering the converter output current [62, 113]. The 

principle problem is the choice of the droop factor. Here are the solutions: the ratio 

 is assumed to be maintained as a constant between 0.5 to 1. In which 

and  are the output resistance of a DC converter and the corresponding droop 

factor of converter i, respectively. It might be obliging to change the droop 

coefficient  adaptively in practice. It is noted that any increment in  

will only result in the power loss. Thus, is advised to be small when 
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increasing its value. While when decreasing, a much larger number should be 

considered. 

Considering two DC converters with output voltages 𝑣�Úf,| and 𝑣�Úf,¦, 

                          𝑣LñI = 𝑣�Úf,| − 𝑅C¨ÚÚQ| 𝐼�Úf,| = 𝑣�Úf,¦ − 𝑅C¨ÚÚQ¦                      (5.46) 

the adaptation law is expressed as 

                    𝑅C¨ÚÚQ| (𝐾 + 1) = 𝑅C¨ÚÚQ| (𝑘) + 𝑠𝑖𝑔𝑛(𝑣�Úf,| − 𝑣�Úf,¦)𝑖�Úf,|𝐾     (5.47a) 

where the constant 𝐾 is chosen based on numerical simulations as follows: 

𝐾 = 𝐾(𝑣) = 0.0005	to 0.001 when 

      𝑣 = 𝑠𝑖𝑔𝑛�𝑣�Úf,| − 𝑣�Úf,¦� > 𝛿  (5.48b) 

𝐾(𝑣) = 0.01	to 0.02 when  

 𝑣 = 𝑠𝑖𝑔𝑛�𝑣�Úf,| − 𝑣�Úf,¦� < −𝛿  (5.48c) 

𝛿  being a small positive number. In practice, in order to make the simulations 

realistic, Gaussian distributed White noise of appropriate strength has been added to 

the outputs of the converter 𝑣�Úf,| as shown in equations, based on the data provided 

in [58]. 

Considering the inherent load-dependent voltage variation of a PI controller is one 

classic technique to define the control law in a control system. In doing so, the bus 

voltage level is measured and compared with the desired voltage. The output of the 

lead filter is introduced to change the droop factor.  

Given  the controlled bus voltage is obtained by adjusting it and takes the 

form 

droopR
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   (5.48a) 

 ,   (5.49 b) 

   (5.49 c) 

The proposed adaptive law and performance indices are evaluated independently. 

They are validated and compared with several traditional methods in the following 

section. The droop controller lead to a reduction in the output power in a PV system. 

It is significant to keep this reduction within limits. 

5.7 Typical simulation results 
The I–V characteristic of the PV system used in this paper for different irradiance 

levels are illustrated in Fig. 5.20. 

 

Figure 5.20: I–V characteristics of the PV cell 

Table 5.4 illustrated the parameters of the PV cell and a converter/controller system. 

Some of the other parameters used in the two cases with the performance index 

 and  are also given for simulating the PV cells in the module. The 

implementation involving the performance indicator  including the adaptive 

adjustment. In this case the time step is considered to be variable. 
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Table 5.4: Typical Values of the System Parameters 

PV Parameter Nominal 
Value 

Other 
Parameters 

Nominal 
Value 

Iscn 8.7 amps Imp 8.2 amps 

Vocn 37.7 volts Vmp 30.1 volts 

𝛼   415.405 Ω 

 0.221 Ω T 298.15  

K -0.12064 Ki -0.002784 

 

To make simulations realistic, the Gaussian distributed White noise of appropriate 

strength to the output of the PV cell based on experimental data reported in [40] is 

also been added. Therefore, the algorithms are tested with noise included. In the 

results section, the proposed MPC based MPPT algorithm is firstly implemented and 

compared to the traditional P&O technique. The sampling time is set to be 50μs. The 

simulation results are shown in Fig. 5.21. In order to make simulation results more 

practical, the distributed White noise is introduced as the disturbance. Furthermore, 

the results based on the variable step size with the MPC and those of the P&O 

method are compared in Fig.5.22. The initial operating power level is 2000 W. The 

characteristics of the two approaches are summarized in Table 5.4.  

In Fig. 5.22, the oscillations in the results from the application of the P&O method 

are comparatively reduced in the corresponding results obtained by the MPC method. 

There is a trade-off which has to be considered in all of the conventional approaches, 

including the P&O method. When the size of the increments is increased in the P&O 

technique, the speed of response will be faster but there are also more oscillations, 

and verse visa. Thus, it is difficult to increase the speed of response while also 

reducing the magnitude of the oscillations. From the comparison results illustrated 

in Fig. 5.23, it is obvious that the reaction of the variable step size method is 

significantly superior to the conventional P&O method. Also, it is seen that the 

disturbances are well attenuated in the presence of White noise in the output of the 

PV cell. 

5.1 pR

sR K!
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Figure 5.21: Comparison of the power and the voltage output using the P&O and the MPC 

methods 

In order to validate the proposed methods, the model for predicting the air 

temperature is used to simulate the real environmental conditions [111]. The latitude 

value used in the model is 51.5074 which is the value of London. The time range is 

set to from 9am to 4pm. Also, the Gaussian distributed random variable is 

transformed to simulate a Weibull distributed value of the air temperature.  The 

system is tested for eight maximum operating power levels. The results are 

illustrated in Figs. 5.23 and 5.24 under the proposed condition. In the two Figures, 

the powers obtained by using the performance indices  and  are 

compared with the corresponding results obtained by using the P&O method. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time(s)

200

400

600

800

1000
Po
w
er
(W

/m
2 )

Power

P&O
MPC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time(s)

15

20

25

30

35

Vo
lta
ge
(V
)

Voltage
P&O
MPC

modJ newJ



138 

 

Starting at 𝑡 = 0.5𝑠, the temperature level is set to be rapidly reduced due to the 

variations of the air temperature in the model. At 𝑡 = 3𝑠 a step increment is involved 

in the operating temperature level and thus the operating temperature starts to 

increase. It is seen from the simulation results that the variable adaptive step 

algorithm based on  has superiority in response speed under rapidly changing 

operational conditions. Not only the proposed methods are verified to be more 

effective in terms of both the speed of response and a reduction in the magnitude of 

the oscillation, but also show a robust performance particularly with parameter 

variations, which results in a higher extracted energy for a real PV system. 

 

Figure 5.22: Comparison of the power output and the voltage using the P&O and the Step 
size methods 
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Table 5.5: Characteristics of Different MPPT Algorithms 

 Cost function Controller Increment 

P&O None P&O Fixed 

Jmod 
 

MPC Fixed 

Jnew  MPC Variable 

 

 

Figure 5.23: Comparison of the power output and the voltage using the P&O algorithm and 
the MPC method from 9am to 4pm with White noise in temperature and wind speed 
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Figure 5.24: Comparison of the power output using the P&O and the Variable step size 
techniques from 9am to 4pm with White noise in temperature and wind speed 

The ability to maintain the bus voltage within limits along with the superior of the 

proposed droop control method is illustrated in Fig. 5.25. The variations of the 

converter voltage  are compared for two converters connected to the bus. The 

results show how they converge towards each other after a disturbance. 
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Figure 5.25: The power and the bus voltage of two converters with time, using droop 
control in operation 

5.8 Discussion and Conclusions 

In the PV system, two MPPT procedures for photovoltaic applications and another 

for the droop control of the bus voltage when several solar cell packs are feeding 

into a single bus are presented. The first MPPT technique is based on a fixed step 

MPC while the second involves an adaptive variable step MPC. The two techniques 

were tested and compared. Results shows that the variable time step algorithm is 

generally faster. A novel feature of the proposed algorithms is that they are both 

adaptive and can handle variable step sizes. These algorithms have been tested with 

relatively large additions of process noise to emulate real experimental conditions. 

The advantages of the proposed techniques are evaluated and verified that they are 

able to yield the maximum energy under different insolation and environmental 

conditions. Furthermore, responds to the rapidly variation in case studies such as 

solar irradiance, the proposed variable step algorithm is confirmed to be more 
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efficient and stable comparing to the conventional fixed time step algorithms. 

Moreover, the parameters of the circuit model for the DC-DC converter are chosen 

to maximize the stability margin within the permissible limits. This ensures that the 

system is sufficiently robust. Moreover, both disturbance attenuation and the 

robustness of the controller are validated by simulation. In addition, the performance 

of a droop control method for parallel DC-DC converters used in standalone 

photovoltaic systems is also investigated. For different irradiance of multiple PV 

arrays the droop control system is tested and verified.  
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Chapter 6 Wind Turbine Modelling and 

Control 

6.1 Introduction 
In this chapter, a linearised parameter varying dynamic modelling of the nonlinear 

wind turbine system including wind disturbances is developed. The stability of the 

wind turbine system is first considered, and a blade pitch control system is designed, 

based on the linearised, parameter-varying model. The basis of the controller is 

model predictive control which is then validated. Thus, the wind turbine is regulated 

in a way that the generator delivers the desired power to the load. Operation at the 

maximum power point is also shown to be feasible. Moreover, the blade pitch control 

system also performs the key function of augmenting the stability of the wind turbine 

system. 

6.2 Dynamic modelling of the PMSG and the Wind 
Turbine 
The simplified block diagram of a wind turbine model is illustrated in Fig.6.1.  

 

Figure 6.1: Plots of the torque coefficient 𝐶� = 𝐶Q(𝜆, 𝛽)/𝜆 
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The dynamics of the PMSG is modelled in the well-known d-q co-ordinates. For 
example, Vepa [98] and the currents in the d-q axes satisfy the differential equations 
given by 

 å
𝐿C 0
0 𝐿[

æ C
C§
å
𝑖C
𝑖[
æ = å

−𝑅Í 𝐿[𝑝𝜔N
−𝐿C𝑝𝜔N −𝑅Í

æ å
𝑖C
𝑖[
æ + å 0

−𝑝𝜔N∅N
æ + ó

𝑢C
𝑢[ô     (6.1) 

The electro-magnetic torque generated is given by [98] 

       𝑇eN = j
¦
𝑝(�𝐿C − 𝐿[�𝑖C𝑖[ + ∅N𝑖[)           (6.2) 

Furthermore, the electrical frequency is related to the mechanical speed by the 

relation , where  is the number of generator pole pairs. Thus, given the 

driving torque generated by the wind turbine, dynamics of the mechanical shaft 

speed of the turbine is governed by 

 J Cö�
C§

+ 𝐵𝜔N = 𝑇C¨ − 𝑇eN    (6.3) 

The power output of the wind turbine can be modelled in terms of the power 

coefficient  which is function of both the tip speed ratio and the blade 

collective pitch angle . The wind power output is formulated by 

 𝑃 = 𝑇C¨𝜔N = |
¦
𝜌𝐴𝑉j𝐶Q(𝜆, 𝛽)    (6.4) 

where 𝜆 = 𝜔N𝑅/𝑉  which is the tip speed ratio, 𝐶Q(𝜆, 𝛽)  is the output power 

coefficient and the torque driving the PMSG is calculated by 

 𝑇C¨ = 𝑇 § =
Gx
ö�

= |
¦ö�

𝜌𝐴𝑉j𝐶Q(𝜆, 𝛽)    (6.5) 

me pww = p

( )bl,pC

b
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In (6.5), the turbine hub atmospheric air density is 𝜌, which is assumed to be at a 

height H. R is the outer radius of the rotor. An approximate expression for the power 

coefficient is given by 

 𝐶Q(𝜆, 𝛽) = 0.5176 Ô||û
üý
− 0.4𝛽 − 5Õ 𝑒

z±¯ÿý + 0.006795𝜆J (6.6) 

where 𝜆J is given by 

 𝜆J = 1
|

ürX.X"Â
− X.Xj#

|rÂ²
$  (6.7) 

The maximum pitch angle 𝛽NÍÑ is assumed to be 30°. 

A generic expression for the power coefficient 𝐶Q(𝜆, 𝛽) is 

 𝐶Q(𝜆, 𝛽) = 𝐶| Ô
ä±
üý
− 𝐶j𝛽 − 𝐶&𝛽ä' − 𝐶ûÕ 𝑒

z()ÿý + 𝐶"𝜆J (6.8) 

In which 𝜆J is calculated as 

 𝜆J = 1
|

ürä*Â
− ä¯�

|rÂ²
$  (6.9) 

Table 6.1 lists the approximations to constant parameters 𝐶J, in the power 

coefficient 𝐶Q(𝜆, 𝛽) (from Wijewardana, Shaheed and Vepa [114]).  Plots of the 

power coefficient 𝐶Q(𝜆, 𝛽) and the torque coefficient 𝐶Q(𝜆, 𝛽)/𝜆 are respectively 

compared in Figs 6.1 and 6.2, for increasing values of the blade pitch angle. 

The blade pitch angle actuator is assumed to be represented by the first order 

dynamics given by 

 𝜏L𝛽̇ + 𝛽 = 𝑢� (6.10) 
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Table 6.1: Approximations to the parameters 𝐶J,𝑖 = 1,2, … ,10 in the expressions for the 
Power Coefficient C,(λ, β) 

Mode

l 

Our 

Model 

Voltolini et al 

[112] 

Heier 

[113] 

Constant speed 

operation 

Variable speed 

operation 

 0.5176 0.5176 0.5 0.44 0.73 

 116 116.0 116.0 125.0 151.0 

 0.4 0.4 0.4 0 0.58 

 0 0 0 0 0.002 

 0 0 0 0 2.14 

 5 5 5 6.94 13.2 

 21 21 21 16.5 18.4 

 0.006795 0.006795 0 0 0 

 0.08 0.08 0.08 0 ˗0.02 

 0.035 0.035 0.035 ˗0.002 ˗0.003 

 

1C

2C

3C

4C

5C

6C

7C

8C

9C

10C
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Figure 6.2: Plots of the power coefficient 𝐶Q(𝜆, 𝛽) 

In which 𝜏L is the blade actuator time constant, and 𝑢� is the blade angle control 
input which may be expressed in terms error between the blade angle feedback and 
the demanded blade angle as	𝑒 = 𝛽 − 𝛽C. 

 
Figure 6.3: Plots of the torque coefficient 𝐶� = 𝐶Q(𝜆, 𝛽)/𝜆 

At any location on the Earth’s surface, the wind is distributed probabilistically. The 

Weibull distribution best describes the probability distribution of the wind. Since the 

wind power is proportional to the third power of the wind speed, as a consequence 

of the fact that the wind is a random variable, the actual mean wind power at a 



148 

 

particular location can be expressed in terms of the parameters of the Weibull 

distribution and is given by 

 𝑇C¨𝜔N = |
¦
𝜌𝐴𝑉---j𝐶Q(𝜆, 𝛽)

|
� ̅²
Γ(1 + j

°
) (6.11) 

Where c- = Γ(1 + j
0
) . In which 𝑐 ̅ and  are the parameters of Weibull distribution, 

𝑉---	is mean wind speed, Γ is the Gamma function. 

Finally, one may specify the desired power output as follows: 

When 𝑉--- below cut-off, which is 𝑉---<𝑉�ñ§_ÚDD----------,  

 𝑃C = 0; 	𝛽 = 𝛽NÍÑ (6.12) 

For 𝑉�ñ§_ÚDD---------- ≤ 𝑉--- < 𝑉 Í§eC,  

 𝑃C = 𝑃--- = |
¦
𝜌𝐴𝑉---j𝐶Q(𝜆, 𝛽)

|
� ̅²
Γ(1 + j

°
);𝛽 = 0 (6.13) 

For 𝑉 Í§eC ≤ 𝑉--- < 𝑉NÍÑ,  

𝑃C =
|
¦
𝜌𝐴𝑉 Í§eC

j𝐶Q(𝜆, 0)
|
� ̅²
Γ(1 + j

°
);𝑃--- = |

¦
𝜌𝐴𝑉---j𝐶Q(𝜆, 𝛽)

|
� ̅²
Γ(1 + j

°
) (6.14) 

For 𝑉--- ≥ 𝑉NÍÑ， 

 𝑃C = 0; 	𝛽 = 𝛽NÍÑ (6.15) 

Hence, given the expression for the rated 𝐶Q(𝜆, 𝛽) = 𝐶Q(𝜆, 0)（
o34×56²

ox----
² ）and the 

actual operational value of the power coefficient 𝐶Q(𝜆, 𝛽), the problem is often 
reduced to one finding the value to be set for  to achieve the desired value of the 
power coefficient𝐶Q(𝜆, 𝛽). 

k

b
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6.3 De-coupling the electrical and mechanical 
subsystems 
To simplify the design of the controller for the wind turbine it is useful to decouple 

the electrical and mechanical subsystems. Thus, to decouple the electrical and 

mechanical sub-systems, re-consider the electrical sub-system dynamics given by 

(6.1)  

å
𝐿C 0
0 𝐿[

æ C
C§
å
𝑖C
𝑖[
æ = å

−𝑅Í 𝐿[𝑝𝜔N
−𝐿C𝑝𝜔N −𝑅Í

æ å
𝑖C
𝑖[
æ + å 0

−𝑝𝜔N∅N
æ + ó

𝑢C
𝑢[ô (6.16) 

With electrical feedback 

  ó
𝑢C
𝑢[ô = å

𝐿[𝑝𝜔N𝑖[
𝑅C𝑖[X + 𝑝𝜔N∅N + 𝐿C𝑝𝜔N𝑖C

æ (6.17) 

 

one has 

 å
𝐿C 0
0 𝐿[

æ C
C§
å
𝑖C
𝑖[
æ = å−𝑅Í 0

0 −𝑅Í
æ å

𝑖C
𝑖[zJ7�

æ (6.18) 

The electro-magnetic torque generated is given by 

 𝑇eN = j
¦
𝑝(�𝐿C − 𝐿[�𝑖C𝑖[ + ∅N𝑖[) (6.19) 

Thus, the electrical and mechanical subsystems are coupled, and the controllers can 
be independently synthesized. Moreover, the stability can be independently assessed. 

6.4 The State Space Model 
The dynamics of the PMSG driven by the wind turbine may now be expressed in 

state space domain. Define the state vector 
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  x = [𝑖C 𝑖[ 𝜔N 𝛽]� (6.20) 

Equation (6.16) can be rewritten as 

  å
𝐿C 0
0 𝐿[

æ C
C§
ó
𝑥|
𝑥¦ô = å

−𝑅Í 𝐿[𝑝𝑥j
−𝐿C𝑝𝑥j −𝑅Í

æ ó
𝑥|
𝑥¦ô + å

0
−𝑝𝑥j∅N

æ + ó
𝑢C
𝑢[ô(6.21) 

On the other hand, based on the decoupled model 

 å
𝐿C 0
0 𝐿[

æ C
C§
ó
𝑥|
𝑥¦ô = å−𝑅Í 0

0 −𝑅Í
æ ó

𝑥|
𝑥¦ − 𝑥¦Xô (6.22)  

 𝑇eN = j
¦
𝑝(�𝐿C − 𝐿[�𝑥|𝑥¦ + ∅N𝑥¦) (6.23) 

The mechanical dynamics in terms of the states is,  

 𝐽𝑥j + 𝐵𝑥j = 𝑇C¨ − 𝑇eN (6.24) 

In which 𝑇C¨ can be expressed as 

 𝑇C¨ = 𝑇 § = ÔGx
Ñ²
Õ = |

¦
𝑥j𝜌𝐴𝑉j𝐶Q(𝜆, 𝑥&) =

|
¦
𝜌𝐴𝑉¦𝑅𝐶� (6.25) 

In which 𝐶� is calculated by 

 � = 𝐶Q(𝜆, 𝑥&)/𝜆 (6.26) 

Where 𝜆 = 𝑥j𝑅/𝑉 . (6.10) can be expressed as 

 𝜏L𝑥&̇ = 𝑢� − 𝑥&  (6.27) 
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6.5 Linearised Dynamics of the Wind Turbine 
The complete dynamics may now be linearised and the conditions for equilibrium 

and stability may be established. The derivative of the mechanical torque driving the 

PMSG is 

  CäÜ
Cü

= C
Cü
Ôä�

(ü,Â)
ü

Õ = |
ü
(Cä�

(ü,Â)
Cü

− ä�(ü,Â)
ü

) (6.28) 

Thus, linearising the expression for 𝑇C¨ gives 

 𝑇C¨ =
|
¦
𝜌𝐴𝑉¦ C

Cü
Ôä�

(ü,Â)
ü

Õ (𝜆 − 𝜆X) +
|
¦
𝜌𝐴𝑉¦ C

CÂ
Ôä�

(ü,Â)
ü

Õ 𝛽 (6.29) 

In terms of the states of the system,  

 𝑇C¨ =
|
¦
𝜌𝐴𝑉¦ C

Cü
Ôä�

(ü,Â)
ü

Õ �
ox
(𝑥j − 𝑥jX) +

|
¦
𝜌𝐴𝑉¦ C

CÂ
Ôä�

(ü,Â)
ü

Õ 𝛽   

(6.30) 

where  

C
CÂ
Ôä�

(ü,Â)
ü

Õ = 𝐶| 8𝐶¦𝑔 Ô1 −
ä)
üý
Õ − 𝐶j(1 − 𝐶9𝛽𝑔): − 𝐶|(𝐶&𝛽ä'z|(𝐶# − 𝐶9𝛽𝑔) −

𝐶û𝐶9𝑔)	𝑒
z()ÿý    (6.31) 

In which g is formulated as 

 𝑔 = ä*
(ürä*Â)±

+ jÂ±ä¯�ä¯¯
(|rä¯¯Â²)±

 (6.32) 

Thus, the derivative of the power coefficient 𝐶Q(𝜆, 𝛽) with the tip speed ratio	𝜆 is 

calculated as 

  C
Cü
𝐶Q(𝜆, 𝛽) = 𝐶" Ô1 + 𝐶9𝜆

C[ý
Cü
Õ − 𝐶9𝐶Q(𝜆, 𝛽)

C[ý
Cü
+ 𝐶|𝐶¦𝑒

zä)[
67ý
6ÿ (6.33) 
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where 

 𝑞J =
|
üý
= |

ürÂä*
− ä¯�

|rä¯¯;²
 (6.34) 

 C[ý
Cü
= ( |

ürÂä*
)¦ (6.35) 

In which 𝜆 = 𝑅𝜔N/𝑈.     

The nominal dynamic pressure force on the wind turbine disc is denoted as 𝑓C =
|
¦
𝜌𝐴𝑉---¦. Hence, after after linearising,  is expressed as 

 𝑇C¨ =
C
Cü
Ôä�

(ü,Â)
ü

Õ D6�
ox
(𝑥j − 𝑥jX) +

D6
ü
Cä�(ü,Â)

CÂ
𝛽 (6.36) 

The linearised driving torque is expressed as 

 𝑇C¨ = 𝑑e¨|(𝑥j − 𝑥jX) + 𝑑e¨¦𝛽 (6.37) 

where the stability derivatives 𝑑e¨| are 𝑑e¨¦	are defined as,  

 𝑑e¨| =
CäÜ
Cü

D6�
ox

= C
Cü
Ôä�

(ü,Â)
ü

Õ D6�
ox

 (6.38) 

 𝑑e¨¦ =
D6
ü
Cä�(ü,Â)

CÂ
 (6.39) 

drT
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Figure 6.4: Stability derivative of the power coefficient 

Plots of the derivatives of the power coefficient 𝐶Q(𝜆, 𝛽) and the derivatives of the 
torque coefficient   𝐶� ≡ 𝐶Q(𝜆, 𝛽)/𝜆 are respectively shown in Figs 6.2a and 6.2b, 
for increasing blade pitch angle. 

 
Figure 6.5: Stability derivative of the torque coefficient 

It is clear from the Figs. 6.2-6.5 that wind turbine’s power coefficient is effectively 

fully controllable only beyond λ equal to about 9. Positive 𝐶Q(𝜆, 𝛽)  values are 

feasible for . Thus, if one requires to reduce the value of the output power, 

or the value of 𝐶Q(𝜆, 𝛽), one must necessarily increase the speed of the wind turbine. 

After linearising, 𝑇eN can be formulated as 

139 ££ l
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 𝑇eN = j
¦
𝑝�𝐿C − 𝐿[�𝑥|X𝑥¦ + ∅N𝑥¦ +

j
¦
𝑝�𝐿C − 𝐿[�𝑥|𝑥¦X (6.40) 

Equation (6.40) is expressed as,  

 𝑇eN = 𝑑e¨j𝑥| + 𝑑e¨&𝑥¦ (6.41) 

where the stability derivatives 𝑑e¨j and 𝑑e¨& are defined as,  

 𝑑e¨j
j
¦
𝑝�𝐿C − 𝐿[�𝑥¦X ≈ 0 (6.42) 

 𝑑e¨& =
j
¦
𝑝�𝐿C − 𝐿[�𝑥|X + ∅ = j

¦
𝑝�𝐿C − 𝐿[�𝑖CX + ∅N (6.43) 

Thus, the complete linear model is given as follows:  

  x = [𝑖C 𝑖[ 𝜔N 𝛽]� (6.44) 

with 

å
𝐿C 0
0 𝐿[

æ C
C§
ó
𝑥|
𝑥¦ô = å

−𝑅Í 𝐿[𝑝𝑥jX
−𝐿C𝑝𝑥jX −𝑅Í

æ ó
𝑥|
𝑥¦ô + å

𝐿[𝑝𝑥¦X
−𝐿C𝑝𝑥|X − 𝑝∅N

æ 𝑥j + ó
𝑢C
𝑢[ô 

(6.45) 

or in decoupled form, with the electrical feedback,  

 å
𝐿C 0
0 𝐿[

æ C
C§
ó
𝑥|
𝑥¦ô = å−𝑅Í 0

0 −𝑅Í
æ ó

𝑥|
𝑥¦ − 𝑥¦Xô (6.46) 

The electromagnetic torque is expressed as 

  𝑇eN = j
¦
𝑝(�𝐿C − 𝐿[�𝑥|𝑥¦ + ∅N𝑥¦) (6.47) 
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     𝑇C¨ =
Gx
Ñ²
= |

¦
𝑥j𝜌𝐴𝑉j𝐶Q(𝜆, 𝑥&) =

|
¦
𝜌𝐴𝑉¦𝑅𝐶�  (6.48) 

 𝐶� = 𝐶Q(𝜆, 𝑥&)/𝜆 (6.49) 

Where 𝜆 = 𝑥j𝑅/𝑉 .  

 C�5�
CÑ±

= j
¦
𝑝(�𝐿C − 𝐿[�𝑥| + ∅N) ,  𝑇eN = C�5�

CÑ±
𝑥¦ (6.50) 

The mechanical dynamics is,  

 𝐽𝑥j + 𝐵𝑥j = 𝑇C¨ − 𝑇eN, 𝑇eN = 𝑑e¨j𝑥| + 𝑑e¨&𝑥¦ (6.51) 

Thus, eliminating , the linear mechanical dynamics is,  

 𝐽𝑥j̇ = −𝑑e¨j𝑥| − 𝑑e¨&𝑥¦ − 𝐵𝑥j + 𝑑e¨|(𝑥j − 𝑥jX) + 𝑑e¨¦ (6.52) 

and 

 𝜏L𝑥&̇ = 𝑢� − 𝑥& (6.53) 

6.6 Equilibrium and Stability of the Wind Turbine 

The steady state conditions for equilibrium point operation are used to define the 
steady state rotor mechanical speed  and the steady state q (quadrature) axis 
current,	𝑖[I. 

Thus, the steady state rotor mechanical speed is,  

  (6.54) 

Hence, it follows that,  

drT

msw

msw

emdrms TTB -=w
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  (6.55) 

It also follows that, the steady state (quadrature) axis current, 𝑖[I  is,  

   (6.56) 

To consider the stability, since the electrical system is decoupled and stable it is only 

essential to consider the mechanical subsystem. Thus,  

  (6.57) 

  (6.58) 

Hence the open loop stability is guaranteed when, , or in terms of the 

stability derivative  as,  

  (6.59) 

  (6.60) 

Since the expression on the right-hand side of the preceding equation is generally 

small as , the stability condition is approximately reduced to,  

  (6.61) 

Referring to Fig. 6.6, the actual point of operation is determined by the equilibrium 
point which lies on the  performance curve to the right of the peak of the curve. 
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For an equilibrium point on the left any disturbance causing an increase in the 
mechanical speed, will result in an increased torque, which in turn will drive the 
wind turbine to run faster. Hence all equilibrium points to the left of the peak in the 

curve are unstable while those to the right of the peak are stable. Thus, 
operation at the maximum power point is also seen to be feasible as it is to the right 
of the peak of the .  

 

Figure 6.6: Stability diagram 

To analyse the closed loop stability, assume a full state control law of the form,  

  (6.62) 

The last equation is,  

  (6.63) 

The characteristic polynomial is,  

  (6.64) 

It reduces to,  

l-TC
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  (6.65) 

The characteristic polynomial expands to,  

    (6.66) 

Thus, in principle,  and  may be chosen to guarantee stability. Ensuring that 

the coefficient of the second order characteristic polynomial (64), are positive,  

  (6.67) 

  (6.68) 

The second condition (66) may be expressed as,  

  (6.69) 

provided,  

  (6.70) 

In particular when , the second condition (6.66) is expressed entirely in terms 

of the stability derivatives as,  

  (6.71) 

Thus, the closed loop stability is guaranteed by a proper choice of   and , 
which is feasible as long as, the stability derivative . Clearly when 

, the controller synthesis must be done while also ensuring that at the 
equilibrium point the stability derivative . This may require operating with 
the tip speed ratio  being sufficiently large, which is beyond the maximum power 
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point. This indicates that the benefits of blade pitch control can be marginal, unless 
the operating set point is chosen appropriately. 

6.7 Control Law Synthesis: Nonlinear Model 
Predictive Control 
In this section we shall briefly consider the synthesis of a control law for the 

nonlinear plant by locally linearising the plant dynamics and then applying the 

methodology of model predictive control at each time step. The concept of MPC is 

explained by Rawlings [115]. The methodology considered is based on the 

implementation due to Vepa [116]. To illustrate the process of synthesis of a linear 

control law at each time step, a typical discrete time system is defined as,  

      ,                     (6.72) 

A control input sequence is defined as , j = 0,1,2…N− 1, let the sequence of 

control inputs be expressed as a single vector defined by,  

  (6.73) 

The objective is to minimize a performance index which is function of the output 

sequence y(k), the control input sequence , the terminal state over the horizon, 

y(N) and a terminal weighting matrix  and is assumed to be given by,  

  (6.74) 

In (6.74) q and 	r  are scalar scaling parameters. They are primarily used to re-scale 

the relative contributions of the states and the control inputs to the cost function. One 

may also define the sequence of state vectors expressed as a single vector as,  

  (6.75) 

( ) ( ) ( ) ( ) ( )kkkkk uBxAx +=+1 ( ) ( ) ( )kkk xCy =

( )ju

( ) ( ) ( )[ ]TTTT N 110 -= uuuU !

( )ju

NQ

( )( ) ( ) ( ) ( ) ( ){ }å +=
-

=

1

0
,0

N

k

TT krkkqkJ RuuQyyUx ( ) ( )NqN N
T yQy+

( ) ( ) ( ) ( )[ ]NN TTTT xxxxX 121 -= !



160 

 

It may be noted that the state vector 	x(k)  represents the state at the following instant 

of time. The cost function J may be written as,  

 𝐽(𝑥(0),𝑈) = 𝑞𝑥�(0)𝐶�(0)𝑄𝐶(0)𝑥(0) + 𝑞𝑋�𝑄-𝑋 + 𝑟𝑈�𝑅-𝑈  (6.76) 

where the block diagonal matrix   is one with the matrices , 	k =

0,1,2…N− 1,  along the diagonal except the last element which is . 

The block diagonal matrix   is one along the diagonal with the matrix R. The next 

step is to construct a prediction model,  

  (6.77) 

where,  

 ,         (6.78) 

It has been assumed for simplicity that B is constant but not A. The cost function 

could be expressed compactly in the form,  

                    (6.79) 

with,  

 ,  and    (6.80) 

To obtain the optimal control sequence one may set the gradient of the cost function 

with respect to the sequence of control inputs, U to zero. By this process the cost 

function J is minimized resulting in,  

      
(6.81) 
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Considering only the receding horizon, the optimal control input sequence is given 

by,  

  (6.82) 

It is recursively obtained over successive prediction windows of the control sequence. 

The product  is expressed as 

  (6.83) 

The parameter q may be set to 1, and (6.83) reduces to,  

  (6.84) 

where r is treated as a free parameter to be chosen. 

It must be emphasized that the MPC based control ensures the closed loop stability 
of the wind turbine. Thus, it is important to focus on the steady state operating point. 

6.8 Determining the optimum operating set point 

To establish the steady state operating point, it is important to recognize the desired 
output power is our primary requirement. Thus, based on the demanded power and 
the current operating speed, the desired steady state operating point is determined. 
The desired power coefficient is then determined from the demanded power output 
and the nominal or current operating speed. Once desired power coefficient is known, 
for the given tip speed ratio 𝜆 , the desired maximum value of the pitch angle 
command is determined from the power coefficient,  model defined 
in (8) relating the power output coefficient to blade collective pitch angle 𝛽 and the 
tip speed ratio 𝜆. This requires inverting the relationship  given by 
(8) for a fixed tip speed ratio 𝜆 to determine the blade collective pitch angle 𝛽 =
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𝛽C,NÍÑ. This inversion is done by minimising the norm of the error between the 
desired power output coefficient and the mathematical model relating it to the tip 
speed ratio 𝜆 and blade collective pitch angle	𝛽. Thus this is done by employing the 
Grey Wolf optimisation of Long and Xu [117] as well as by the MATLAB function 
provided for unconstrained optimisation, ‘fminunc.m’ for obtaining the solution for 
desired blade collective pitch angle	𝛽 = 𝛽C,NÍÑ.  

 
Table 6.2: Typical parameter values for simulation 

Parameter Value 

C,_CDE 0.38 

R 5m 

RFDDG 9.3564m 

𝐽 5 × 10z#𝑘𝑔𝑚¦ 

L[ 5mH 

LC 5mH 

  

𝑃 10 

B 0.2J 

V̂  10m/s 

τL 0.01 

PCDE 60 kW 

λCDE 8 

N 3 

It must be recognized that although the commanded pitch angle is 𝛽C,NÍÑ, the actual 
steady state pitch angle is . The control law only tracks the desired 
power and maintains stability but does not track 𝛽C,NÍÑ  . This is because the 
mechanical speed and hence the tip speed ratio 𝜆 is not forced to track a demanded 
value but is a free variable. 

mf ( )2/4.4 sradNm

max,0 dss bb ££
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It must be said that the MPPT algorithm may also be implemented. It is exactly same 
algorithm implemented by Vepa [118]. Briefly the current drawn from the generator 
is increased slowly till the maximum power point is reached, so the wind turbine is 
operating just beyond the maximum of the  curve. The details can be found in 
Vepa [118] and will not be repeated here.  

Finally, the case of active stall control is not considered as in this case the relation 
for the power coefficient given by (6.8) is no longer valid. This case will be 
considered independent using a set of complementary controller synthesis tools and 
reported separately. 

6.9 Typical Simulations and Results 

A typical three bladed wind turbine is simulated and controlled as application of the 
above theory. The system parameter is listed in Table II. The nominal time step for 
integrating the equations of motion is ∆t = 0.0001s. The prediction window to 
obtain the control input at each time instant is 10 time-steps. The actual nominal 
power output of the wind turbine is about 60kW. The desired power output is 
nominally set at 50kW but could be chosen as desired.  

Initially the wind turbine is operating in steady state with 𝑖C  equal to 40 amps, 	
𝑖[ equal to 0, the power output being 62.58 kW, and the mechanical speed being 23.7 
rads/s. It is sought to reduce the power output to 0.7 of the initial power outputs. The 
change is initiated after 0.04 secs and the results are shown in Fig. 6.6.  

l-pC
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Figure 6.7: Current, mechanical speed and power output response of the wind turbine in 

response to power reduction command 

 
Figure 6.8: Response of the blade collective pitch angle during the reduction in power 

From Fig 6.7 it is clear that the power responds to the desired power output that has 
been set. This implies a reduction in the q axis current𝑖[. The current in the d axis 
continues to remain at zero. However, it is observed that the mechanical speed has 
gone up implying an increase in the tip speed ratio, as well, which is up by almost 
50%. In Fig. 6.8 the change in the collective blade pitch angle is plotted. 
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The steady state pitch angle is observed to be just over 1° while the commanded 
pitch angle (not shown on the Fig.) was about 3.4°. Thus, although the control system 
does not track the commanded pitch angle it does respond to the power demanded 
set point and delivers the demanded power in the steady state. 

6.10 Summary 

In this paper, de-coupled dynamic and equilibrium models of a PMSG driven by a 
variable speed wind turbine were presented and used in the analysis of the stability 
and the synthesis of a power output controller. The generator is modelled in the 
synchronous rotating d-q reference frame and de-coupled from the turbine by 
feedback. Based on de-coupled dynamic model, parameter bounds for the stability 
of the wind turbine are derived. The stabilisation and the active blade pitch control 
of the wind turbine with the PMSG for power output regulation has been validated 
and successfully demonstrated. The issue of the instability of the wind turbine has 
been addressed by a linear feedback control law that stabilizes the system and also 
delivers the desired power output. The control law, which is designed by applying 
the MPC procedure, and which has the structure of a proportional-derivative 
stabilizing control law that ensures the demanded power output is delivered, has been 
validated. Moreover, the power delivered is tracked by consideration of the 
equilibrium conditions, using a generic non-dimensional mathematical model for the 
power-speed characteristics. For this reason, the controller can be applied to any 
wind turbine driving a PMSG, even when a turbine-specific matched mathematical 
model is not available. 
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Chapter 7 Conclusions and Future 
Work 

7.1    Conclusion 

In the thesis, control techniques and optimisation methods for three different renewable 

energy systems are evaluated with the purpose of improving their energy efficiency and 

system performance. First the scaled-up and full-scale PRO model, nonlinear PV model and 

WT model are mathematically derived and simulated. Following these three models, the 

performances of these three systems are analysed and optimised using various state-of-the 

art effective approaches including machine learning, optimisation techniques. The main 

contributions of this investigation are listed as follows: 

o A novel maximum power point tracking (MPPT) scheme for efficient extraction of 

maximum power from a scaled-up pressure retarded osmosis process subject to rapid 

salinity variation is proposed. The scheme is designed using the Whale Optimisation 

with Differential Evolution (WODE) algorithm, which has facilitated the development 

of a maximum power point tracking controller with features that have helped overcome 

limitations such as lower tracking efficiency and steady state oscillations as encountered 

in the conventional methods. It is observed from results that the proposed method not 

only outperforms other widely used methods but is also more robust.  

o Pressure Retarded Osmosis (PRO) process is optimised using Grey Wolf Optimisation 

(GWO) algorithms, which has suggested the optimal values of key operating parameters 

for a maximum energy extraction. The findings of this study reveal the significance of 

incorporating nature inspired machine-learning algorithms such as the GWO in the 

optimisation of a PRO process and identifying the preferable operating conditions in a 

non-ideal system.  

o A new performance index is proposed for the development of a variable step-size based 

adaptive model predictive control (MPC) algorithm for maximum power point tracking 

and regulating the power output from a PV panel. A novel feature of this methodology 

is that the parameters of the converter have been chosen to always guarantee stability. 

It is shown not only that the algorithm is more efficient than traditional techniques, but 

it also maintains the bus voltage in the presence of both ambient temperature and wind 

speed variations under disturbance attenuation.  
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o A linearised parameter varying dynamic model of the nonlinear wind turbine system 

including wind disturbances is developed. The stability of the wind turbine system is 

analysed, and a blade pitch controller is designed, based on the linearised, parameter-

varying, model-predictive control and is validated. The wind turbine is regulated in a 

way that the generator delivers the demanded power output to the load. Moreover, the 

blade pitch control system also performs the key function of augmenting the stability of 

the wind turbine, for the right choice of the gains. 

7.2   Deliveries 
Publication and submitted articles extracted from this research and above 
contributions are listed below. 

Journal Articles 

Y. Chen, R. Vepa, and M. H. Shaheed, “Enhanced and Speedy Energy Extraction 
from a scaled-up Pressure Retarded Osmosis process with a Whale Optimisation 
based Maximum Power Point Tracking,” Energy, Apr. 2018, 
10.1016/j.energy.2018.04.052.  

Y. Chen, A. Ali and M. H. Shaheed, “Optimization of a Pressure Retarded Osmosis 
process using Machine Learning for Maximum Energy Extraction,” Energy, under 
review.   

Y. Chen, R. Vepa, and M. H. Shaheed, “Stabilization and Active Blade Pitch 
Control of a Wind Turbine driven PMSG for Power Output Regulation,” Wind 
Energy, under review.   

A. Altaee, Y. Chen, A. Braytee, and M. H. Shaheed, “ Optimization of Dual Stage 
Pressure Retarded Osmosis for Maximum Power Generation,” Applied Energy, 
under review.  

A.Monjezi, Y. Chen, R. Vepa, and M. H. Shaheed, “Development of a Solar Energy 
powered off-grid Desalination System for Continuous Production of Freshwater with 
Integrated PVT Cooling,” in preparation. 

o  
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7.3    Suggestions for Future Work 

Due to the high demand of the sustainable power production, the renewable energy 

resources such as solar, wind and water have attracted considerable interest from the 

energy industry over the last decade. In this research, the renewable energies 

including PRO, PV and WT systems have been modelled analytically and optimised 

using several proposed methods for a better performance. The control methodologies 

for these systems are evaluated to improve their efficiency. There are a few 

suggestions for future work below: 

1. PRO is a recently investigated energy source. It needs further study and 

evaluation from various perspectives. Firstly, there are several researches on 

the chemical properties exist in the literature, however, only a few control 

algorithms are included in PRO systems for a better performance. The 

published work including MPPT method for a PRO system is all model- and 

simulation- based. Thus, collaboration is required between materials 

scientists and engineering scientists, with the purpose of driving a better 

PRO model in preparation for practical implementation. Moreover, dual-

stage PRO systems can be studied and optimised using control methods, 

which can give a better performance than using a single-stage PRO system.  

2. From a mechanical engineering point of view, other optimisation and control 

methods can be utilised in a PRO system to maximize the generated power. 

For instance, the MPC method can be used in a more complex PRO model. 

Furthermore, considering the cost of PRO membrane, optimisation methods 

can also be used to determine optimal costs in the PRO system.  

3. Three main renewable energy systems are investigated in the work. Hybrid 

systems can be utilised from this research. However, wind energy and 

photovoltaic energy have a few limitations owing to the wind speed and the 

variability of solar irradiance, resulting in restricted operational time frames. 

Thus, scientists can investigate alternative renewable energy generation 

methods, such as a hybrid system combining all three modules. Moreover, a 
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PRO system combined with FO or RO modules for desalination can be a 

popular topic or interest.  
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Appendix   Source Code of the simulation 
programmes 

The source codes of all the programmes developed in this research are presented in 
this part.  

The codes related to the PRO model are written in two separate files; the first file is 
used to describe full-scale PRO process, which forms and prepares the data for the 
full-scale PRO power plant and the second file deals with the scaled-up PRO model 
(chapter 3).  

format long 

n=2;R=8.314e-2;T=293;Wid=1;area=24;P=105.7144;x=0.1; 

Aw=1.23e-3; B=0.0026;K=30.71581197;k=0.180; 

Qdi=2000;Qfi=2000; 

cdo=5;cfo=0.6;Qp=0; 

%%%%%%%%%%%%%%%%% changing parameters %%%%%%%% 

% parameters; 

i=1;w2=1; 

% i=1; 

for i=1:40 

%     Cdi=cdi(i);Cfi=cfi(i); 

    Cdi=cdo;Cfi=cfo; 

    iii=1; 

%     %%%%%%%%%%%%%%%%train Jw%%%%%%%%%%%%%%%%%%%%% 

     for j=1:0.001:24 
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        C63=j; 

% %         C63=Jw_initial(i); 

        %%%%%%%%%%%%%%%%%%%%%Jw%%%%%%%%%%%%%%%%%%%%% 

  

        

pdb=((n*0.082*T*Cdi)*(1+(1/(1+(C63*Wid*x/(Qdi/area+sum(Qp))))

)))/2; 

        pfb=((n*0.082*T*Cfi)*(1+(1/(1-

(C63*Wid*x/(Qfi/area+sum(Qp)))))))/2; 

        B61=(pdb*exp(-C63/(1000*k))-

pfb*exp((C63*K/(1000))+(C63/(1000*k)))); 

        

B62=(1+(B*1000/C63)*(exp((C63*K/(1000)+(C63/(1000*k))))-exp(-

C63/(1000*k)))); 

        Jw_trial(iii)=Aw*(B61/B62-P)*1000; 

        pdi(iii)=pdb; 

        pfi(iii)=pfb; 

        diff(iii)=(abs(Jw_trial(iii)-C63)); 

        Jw_c(iii)=C63; 

        iii=iii+1; 

     end 

     [w1 w2]=min(diff); 

    Jw_1(i,1)=Jw_c(w2); 

    Pdb=pdi(w2); 

    Pfb=pfi(w2); 
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    Jw(i,1)=Jw_trial(w2); 

    %%%%%%%%%%%%%%%%%%%%%Qp%%%%%%%%%%%%%%%%%%%%% 

    Qp(i,1)=Jw(i,1)*x*Wid; 

    %%%%%%%%%%%%%%%%%%%%%Cdo,Cdi%%%%%%%%%%%%%%%%%%%%% 

    Cdo(i,1)=(Pdb/n/0.082/T)*2-Cdi; 

    cdo=Cdo(i,1); 

    Cfo(i,1)=(Pfb/n/0.082/T)*2-Cfi; 

    cfo=Cfo(i,1); 

    %%%%%%%%%%%%%%%%%%%%%deltaG,eff%%%%%%%%%%%%%%%%%%%%% 

    deltaGi(i,1)=((n*R*T)*(Cdi-Cfi)^2)/(4*36*(Cdi+Cfi)); 

    deltaGo(i,1)=((n*R*T).*(Cdo(i,1)-    

Cfo(i,1))^2)/(4*36.*(Cdo(i,1)+Cfo(i,1))); 

    eff(i,1)=deltaGo(i,1)/deltaGi(i,1); 

 end 

 

In a scaled-up PRO process, the osmotic power model is simulated in MATLAB as 
follows (chapter 4): 

 

clear all 

format long 

Cos=0.7307; 

delta_p=0:25; 

mem=0.1; 

A=1.74; 
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B=0.16; 

S=307e-6; 

D=3600*1.490*10^-6; 

k=138.6; 

c_d0=35; 

c_f0=0.1; 

q_f0=1; 

%%%%%%%%%%%%%%%%%%%%%%%%Change fai %%%%%%%%%%%%%%%%%%%%%%%%% 

fai=0.2; 

q_d0=q_f0*(1-fai)/fai; 

l=length(delta_p); 

for i=[1:l] 

con=PRO_co_mem([c_d0,q_d0,c_f0,q_f0,delta_p(i),mem],[A,B,S,D,

k]); 

c_d=con(2);  

c_f=con(3); 

V_ad(i)=con(1); 

E_ad(i)=con(6); 

%%%%%%%%%%%%%%%%%%%%%%%%%Update Jw %%%%%%%%%%%%%%%%%%%%%%%%%% 

%%AD-PRO 

C1=1+(S.*B)./D+B./k; 

Jw_AD=A*(Cos*(c_d-c_f)/C1-

delta_p(i))/(1+A*Cos*(c_d/k+c_f*S/D)/C1); 

%%Ideal-PRO 
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Jw_id=A*(Cos*(c_d-c_f)-delta_p(i)); 

V_id(i)=Jw_id; 

E_id(i)=V_id(i).*delta_p(i)*10^5/(3600*10^3); 

end 

%%%%%%%%%%%%%%%%%%%%%%%% 

plot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Figure(1) 

hold on 

plot(delta_p,E_ad,'hexagram'); 

ylim([0 0.5]) 

xlabel('applied hydraulic pressure'); 

ylabel('Extractable energy'); 

Figure(2) 

% plot(delta_p,V_id); 

hold on 

plot(delta_p,V_ad,'hexagram'); 

ylim([0 1]) 

xlabel('applied hydraulic pressure'); 

ylabel('Mass rate of permeated water'); 

 

The following codes, PV_model.m, includes all calculation of a PV cell. The 
parameters included in the code is the same as which in the manufacturer’s sheet 
(chapter 5).  
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function I_ou=pv_sim_G(Vin,G) 

%Imp=7.61;Vmp=26.3;Pme=200.143;Isc=8.21;Voc=32.9;Kv=-

0.123;KI=0.0032; 

Rp=415.405;Rs=0.221; a=1.3; I0=9.825e-08;Ipvn=8.2;I02=9.825e-

08;a2=1;Ns=54; 

T=300;q=1.60217646e-19;k=1.3806503e-23; 

Vt=Ns*k*T/q; 

Ipv=Ipvn*G/1000; 

nv=size(Vin,2); 

I_ou=[]; 

    for j=1:nv 

        V=Vin(j); 

        I_inn=8.1; 

        for iter=1:100 

            I_in=I_inn; 

            I_out=Ipvf(Ipv, V, I0, I_in,Rs, Rp, Vt, a); 

            if abs(I_out-I_in)<1.0e-03 

                break 

            else 

            I_in=I_out; 

            end 

        end 

        I_ou=[I_ou I_out]; 

    end 
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function I_out=Ipvf(Ipv, V, I0, I_in,Rs, Rp, Vt, a) 

i=I_in; 

v=V+Rs*i; 

e=exp(v/(Vt*a))-1; 

I_out=Ipv-I0*e-v/Rp; 

 

The codes related to the WT model are shown below, which is used to develop de-
coupled dynamic and equilibrium models of a permanent magnet synchronous 
generator (PMSG) driven by a variable speed wind turbine system (chapter 6). 

close all 

clear all 

clc 

global Lambda thetaref thetaref0 Cpref rpr 

format long g 

pi=4*atan(1.);% pi=3.141592653589793238462643; 

rads=pi/180; 

N=1500; 

dt=0.0001; 

ns=4; 

  

% wms=280; 

iqs=40;% was 40 

R=1/sqrt(3); 
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R=5; 

Lq=0.005;Ld=Lq; %9*0.405*1.0e-03 

Rs=0.425; %0.9067 

Kt=4.4;%Nm/(rads/s)^2;was 4.4 

P=10; 

vw0=14; % Mean wind speed 

wms=8*vw0/R; 

vwsig=0; 

vw=vw0+vwsig*randn(1, 1); 

Lambda=wms*R/vw; 

Jeq=0.5e-04;%0.00062 

Beq=0.2*Jeq;% 0.5*Jeq 

%wn=2*pi*10; 

%zetan=0.1; 

toub=0.01; 

Pe_nom=60000; 

H=60; 

thetaref=0.0; 

thetaref0=0.0; 

Kfbk=0; 

x0=[0 iqs wms 0]'; 

xin=x0; 
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Xf=[];time=[];V3ph=[];I3ph=[];Pw=[];Qw=[];Vdc=[];V_vsc=[];vsa

=[];vsb=[];vsc=[]; 

kubl=400; 

t0=0; 

t=t0; 

Np=10;Nc=10;Rc=0.1;Qc=2*eye(4);ro=1;Kfbt=zeros(1,5);Amat=zero

s(4,4,Np); 

blc=0;% blade control 

Pms=0; 

for k=1:N 

   

  kstar=k-100*floor(k/100) ; 

  if kstar==0 

      k 

  end 

  tspan=[t t+dt]; 

  options = odeset('RelTol',1e-4,'AbsTol',1e-5); 

  if k>300 

      options = odeset('RelTol',1e-01,'AbsTol',1e-3); 

  end 

  if k==kubl 

      wms=x0(3); 

      beta=x0(4); 

      Pms=Pow; 
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      losses=0.0; 

      rpr=0.7-losses; % reduced power ratio 

      model=0; 

        if model==0 

        coefs=[0.5176;116;0.4;0;0;5;21;0.006795;0.08;0.035; 

1]; 

        end 

      Lambda=wms*R/vw; 

      rho=1.225-H*1.194e-04; %kg/m3 density of air 

            kw=3.06; % For Egypt 

            kwi=1/kw; 

            cb=gamma(1+kwi); 

            fac=gamma(1+3*kwi)/(cb^3); 

        fac=1; 

        Pdemand=Pms*rpr; 

            

Cpref=0.381513129441701; %thetaref=0.0601067970493237. 

%         Cpref=Pdemand/(0.5*fac*rho*pi*R*R*vw^3); 

        %Cpref=rpr*Cp; 

        thetaref1=thetaref+1*(thetaref-thetaref0); 

        jgw=1; 

        if jgw==0 

        % Using fminunc instead of Grey_wolf 
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        options = 

optimoptions(@fminunc,'Display','off','Algorithm','quasi-

newton'); 

        Best_pos = (pi/180)*fminunc(@(x) power_fun(x,Lambda, 

Cpref, coefs),thetaref1*180/pi, options); 

        else 

%         [Best_pos,Best_score]=Grey_Wolf_Main(thetaref1);  

        Best_pos=0.0600995076471497; 

        end 

        thetaref0=thetaref; 

        thetaref=Best_pos; 

         

  end 

  if k<kubl 

  if k==601 

      wms=x0(3); 

  end 

  if k==1001 

      wms=x0(3); 

  end 

  end 

  if k>kubl 

      blc=1; 
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  end 

    if blc==1 

        [a, b]=vs_hawt_PMSG_linear_eqns_2018(x0,H, R, 

Lq,Ld,Rs,Kt, P, Jeq, Beq, toub, vw); 

        a=eye(ns)+a*dt; b=b*dt; 

        %size(a); size(b) 

        for ii=1:ns 

        for jj=1:ns 

            Amat(ii,jj,1)=a(ii,jj); 

        end 

        end 

        Kfbtm=mpclint(Amat,b,eye(ns),ro,Qc, Rc, Nc,Np); 

        Kfbt=Kfbtm(1,:); 

    end 

  [tf, xf]=ode45(@(t,y)vs_hawt_PMSG_eqns_2018(t,y,H, R, 

Lq,Ld,Rs,Kt, P, Jeq, Beq, wms, Pms, toub, vw, 

blc,iqs,Kfbt),tspan,x0); 

  [nt nj]=size(xf); 

  x0n=xf(nt,:); 

  x0n=x0n'; 

  x0=x0n; 

  time=[time tf(nt)]; 

  Xf=[Xf x0]; 

  t=t+dt; 



182 

 

  iq=x0(2);wm=x0(3);id=x0(1); 

  Pow=wm*(3/2)*(P*(Ld-Lq)*id*iq+P*Kt*iq);  

  Pw=[Pw Pow]; 

end 

  

figure(1) 

subplot(4,1,1) 

plot(time,Xf(1,:),'k-', 'LineWidth',1,'MarkerSize',2) 

grid on 

title('d axis current') 

subplot(4,1,2) 

plot(time,Xf(2,:),'k--', 'LineWidth',1.5,'MarkerSize',2)   

grid on 

title('q axis current') 

subplot(4,1,3) 

plot(time, Xf(3,:),'k--', 'LineWidth',1.5,'MarkerSize',2)  

grid on 

title('mechanical speed') 

subplot(4,1,4) 

plot(time,Pw,'k--', 'LineWidth',1.5,'MarkerSize',2) 

grid on 

title('Power generated') 
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figure(2) 

plot(time,Xf(4,:),'k-', 'LineWidth',1,'MarkerSize',2) 

grid on 

title('Theta') 
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