

UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Hans Raukas

Some Approaches for Software Defect

Prediction

Bachelor’s Thesis (9 ECTS)

Supervisor: Helle Hein

Tartu 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/237084538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Some Approaches for Software Defect Prediction

Abstract:

The main idea of this thesis is to give a general overview of the processes within the soft-

ware defect prediction models using machine learning classifiers and to provide analysis

to some of the results of the evaluation experiments conducted in the research papers cov-

ered in this work. Additionally, a brief explanation of the algorithms used within the soft-

ware defect prediction models covered in this work is given and some of the evaluation

measures used to evaluate the prediction accuracy of software defect prediction models are

listed and explained. Also, a general overview of the processes within a handful of specific

software defect prediction models is provided.

Keywords:

Software defect prediction, machine learning, evaluation measures

CERCS: P175 informatics, systems theory

Mõningatest tarkvara vigade hindamise mudelitest

Lühikokkuvõte:

Käesoleva töö peamiseks eesmärgiks on anda üldisem ülevaade protsessidest tarkvara vi-

gade hindamise mudelites, mis kasutavad masinõppe klassifikaatoreid, ja analüüsida

mõningaid hindamiseskperimentide tulemusi, mis on läbi viidud antud töös refereeritud

uurimistöödes. Lisaks on antud lühike selgitus antud töös vaadeldavates tarkvara vigade

hindamise mudelites kasutatud algoritmidest ja tuuakse välja ning seletatakse lahti mõned

hinnangumõõdikud, mida kasutatakse tarkvara vigade hindamise mudelite hindamistäp-

suste mõõtmiseks. Tuuakse välja ka üldine ülevaade vaadeldavates tarkvara vigade

hindamise mudelites toimuvatest protsessidest.

Võtmesõnad:

Tarkvara vigade hindamine, masinõpe, hinnangumõõdikud

CERCS: P175 informaatika, süsteemiteooria

3

Table of Contents

1 Introduction ... 5

2 General Process of a Software Defect Prediction Model .. 6

2.1 Definitions .. 6

2.2 General Defect Prediction Process ... 6

3 Algorithms Used by Software Defect Prediction Models ... 7

4 Evaluation Measures for Software Defect Prediction Models 9

5 Examples of Software Defect Prediction Models ... 11

5.1 FixCache ... 11

 Bug Localities ... 11

 Operation of the Cache .. 12

5.2 HYDRA .. 14

 Overall Architecture .. 14

 Metrics for Defect Prediction .. 15

 Defect Prediction Model ... 15

5.3 TCA+ .. 16

5.4 Peters Filter ... 17

 Filtered TDS (Training Data Set) .. 17

5.5 ExtRF .. 18

 Overview of the extRF Model ... 18

5.6 TCANN .. 19

 TCANN Model .. 19

5.7 P-SVM .. 20

6 Prediction Results Analysis ... 21

6.1 Answers to Research Questions ... 25

4

7 Conclusions ... 26

8 References ... 27

Appendix I ... 29

Appendix II ... 31

Appendix III .. 32

Appendix IV .. 34

I. License ... 36

5

1 Introduction

Software defects are an inevitable coproduct of software development. Additionally, soft-

ware quality assurance is complex and time-consuming. Different software projects do not

usually have enough time and people available to eliminate all the faults before the release

of a given product and the overall quality of the product and possibly the reputation of a

company delivering the product might suffer because of it. In such a situation, the poten-

tial value of different methods that can provide alternative ways to assure software quality

is huge. Software defect prediction approaches can help focus quality assurance activities

on the most defect-prone code and allocate additional resources to fix critical problems.

But what kind of software defect prediction models exist and which to choose for the best

results?

The present thesis looks to answer the following research questions in regard to the soft-

ware defect prediction models covered in this work:

RQ1: What kind of defect prediction models have been developed?

RQ2: Which is the best defect prediction model for cross-project defect prediction?

RQ3: Which is the best defect prediction model for within-project defect prediction?

The remainder of this thesis is organized as follows: Section 2 introduces the general pro-

cess of a software defect prediction model and lists some definitions. Section 3 lists and

explains the general idea of the algorithms used within the software defect prediction

models covered in Section 5 of this work. Section 4 lists and explains the evaluation

measures used in the research covering the software defect prediction models covered in

Section 5 of this work. Section 5 shows the general processes within specific software

defect prediction models. Section 6 presents some of the results of the evaluation experi-

ments conducted on the software defect prediction models covered in Section 5 of this

work in addition to analysis of some of theses results. Section 7 concludes this work.

6

2 General Process of a Software Defect Prediction Model

2.1 Definitions

First, a few key definitions need to be given to explain some of the processes in a software

defect prediction model.

Software metrics are measures of a specific software property. In software defect predic-

tion a set of software metrics are used to extract information about different properties of a

software instance (e.g. a file, class, module).

Some of the software metrics are very simplistic whereas others are more complex, e.g. a

simple software metric is the LOC (Lines of Code) metric, which is used to measure the

total number of lines of code in the instance that it is applied to. A full list of metrics used

by some of the software defect prediction models that are covered in Section 5 of this

work can be found in Appendices I – IV.

Feature extraction is the process of applying software metrics to a software instance.

Labels are values used to mark whether software instances are defective (i.e. a defect is

known to exist within the instance) or clean (i.e. no defects exist within the instance).

Classifiers are machine learning methods that can be used as predictors of a software de-

fect prediction model, predicting the label (or classification) of a software instance.

2.2 General Defect Prediction Process

In the case of a software defect prediction model using a machine learning classifier, the

general process contains the following steps. A dataset consisting of a set of instances with

known labels (i.e. defective or clean) is used as an input for the software defect prediction

model. Feature extraction is used on each instance in the dataset extracting the specified

set of metrics from each instance. Next, all the sets of metrics combined with the corre-

sponding label of the software instances are used to train a prediction model that is using a

machine learning classifier. Finally, after the prediction model has been trained, the model

is given new software instances without a label and the model predicts whether they

should be labelled defective or clean.

7

3 Algorithms Used by Software Defect Prediction Models

In this section of the work, the algorithms used within the software defect prediction mod-

els covered in Section 5 of this work will be listed with the general idea behind the process

of each algorithm regarding software defect prediction.

Logistic Regression (LR) – a statistical method used for classification in dataset where

there are one or more independent variables that determine the outcome. The classification

result is the value of one of two possible outcomes.

Naïve Bayes (NB) – a classification method based on the Bayes’ rule that finds the condi-

tional probability of an instance being labelled with a specific value from the set of labels.

The label with the highest probability is chosen as the final classification.

Random Forest (RF) – a classification method consisting of a collection of tree predic-

tors that are each used to classify an unknown instance. The final classification for the

unknown instance is chosen using the majority result of the trees’ predictions.

K-Nearest Neighbour (KNN) – non-parametric decision procedure which classifies an

unknown instance in the category of its nearest neighbour.

Support Vector Machine (SVM) – a machine learning method that can be used for clas-

sification. Given a set of labelled data where there are two possible label classes, the algo-

rithm builds a model mapping the data as points in a space so that the two separate classes

of labelled data are divided by a clear gap as wide as possible. The model is then used to

map unknown data into the previously mentioned space and predict the label class of the

unknown data based on which side of the gap they are mapped.

Artificial Neural Network (ANN) – a machine learning method based on a model that

can be used for classification. An ANN model consists of layers of units called neurons.

The layers are typically called the input layer, hidden layer and output layer. More than

one hidden layer can exist between the input and output layers. Training the ANN model

with a set of data with known labels, the ANN model can learn to predict the values of

unknown data.

8

K-Means Clustering (KM) – a method used to partition a set of data into a specified

number of clusters in which each instance from the dataset belongs to the cluster with the

nearest mean value.

Particle Swarm Optimization (PSO) – a method that can be used for optimizing parame-

ter values. Particles move around in a search space trying to improve in terms of a given

measure of quality. The movement of each particle is influenced by its best known posi-

tion, but is also guided toward the best known positions in the search space by other parti-

cles. This is expected to move the swarm of particles toward the best solution.

Inter Quartile Range function (IQR) – a method used to detect where the bulk of the

values lie in a dataset. If the range of the dataset is from the minimum value in the dataset

to the maximum value, this method can be used to help detect the values ranging from

25% to 75%.

Genetic Algorithm (GA) – a method that can be used for optimizing parameter values.

An initial population of candidates to a solution is randomly selected from the search

space. The population is then evolved towards a better solution by mutating and altering

the properties of the candidates.

Ensemble Learning (EL) – a machine learning method that can be used to improve the

prediction accuracy of machine learning classifiers. Multiple classifiers are trained to

solve the same problem and then combined for stronger generalization ability.

Transfer Learning (TL) – a machine learning approach that aims to transfer the

knowledge learned on one dataset and use that knowledge to help solve problems in a dif-

ferent dataset.

Boosting (B) – a machine learning method that can be used to improve the prediction ac-

curacy of machine learning classifiers by combining a set of weak classifiers to create a

strong classifier.

9

4 Evaluation Measures for Software Defect Prediction Models

In this section of the work, some of the measures used to evaluate the performance of

software defect prediction models covered in Section 5 of this work will be listed and ex-

plained.

In the case of software defect prediction models, there are four possible outcomes for an

entity after a prediction is made about whether the entity is defective or clean. The out-

comes are as follows [1]:

 A defective entity is classified as defective (true positive, TP)

 A defective entity is classified as clean (false negative, FN)

 A clean entity is classified as clean (true negative, TN)

 A clean entity is classified as defective (false positive, FP)

Based on these outcomes, measures for evaluating the accuracy of a software defect pre-

diction model are defined. The most popular measure used for evaluating the performance

of a defect prediction model in the research covering the software defect prediction models

in this work is F-score, which is the harmonic mean of precision and recall. Higher F-score

is an indication of a better model. Precision, recall and F-score can be defined as follows:

Precision: the proportion of entities correctly classified as defective (TP) among all enti-

ties classified as defective (TP + FP).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (1)

Recall: the proportion of entities correctly classified as defective (TP) among all defective

entities (TP + FN).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2)

F-score: harmonic mean of precision (1) and recall (2).

F-score =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (3)

10

F-score is not the only measure used in the research covering the software defect predic-

tion models of this work to evaluate the prediction accuracy of a defect prediction model.

A few other measures that were used are accuracy and G-measure. Accuracy can be de-

fined as follows:

Accuracy: the proportion of entities correctly classified (TP + TN) among all the entities

(TP + TN + FP + FN).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (4)

To define G-measure, a few additional measures are defined as follows:

Probability of False Alarm (PF): the proportion of clean entities wrongly classified as

defective (FP) among all clean entities (FP+TN).

𝑃𝐹 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (5)

Specificity: the proportion of clean entities correctly classified as clean (TN) among all

clean entities (FP + TN).

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 1 − 𝑃𝐹 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
 (6)

G-measure: the harmonic mean of recall (2) and specificity (6).

G-measure =
2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

𝑅𝑒𝑐𝑎𝑙𝑙+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
 (7)

Out of 7 software defect prediction models covered in Section 5 of this work, F-score is

reported in the research of 4 models (HYDRA [2], TCA+ [3], TCANN [4], extRF [5]),

accuracy is reported in the research of 2 models (FixCache [6], P-SVM [7]) and G-score is

reported in the research of 1 model (Peters filter [1]) for evaluating the performance of the

model.

11

5 Examples of Software Defect Prediction Models

In this section of the work, the general process of the following software defect prediction

models will be covered: FixCache [6], HYDRA [2], TCA+ [3], Peters Filter [1], extRF [5],

TCANN [4], P-SVM [7].

5.1 FixCache

FixCache [6] is a software defect prediction algorithm that uses the concept of bug locali-

ties to predict future faults in a software system at the file and entity level. The algorithm

uses the change history of a software project, yielding a small subset of the project’s files

or functions/methods that are most fault-prone and with each fix caches the location of the

fixed fault itself, any locations changed together with the fault, recently added locations

and recently changed locations. The cache can be used by a developer or a tester at the

moment a fault is fixed to detect likely fault-prone locations that may contain additional

software faults, which is useful for prioritizing verification and validation resources in a

software project.

 Bug Localities

FixCache uses the concept of bug localities to fetch files or entities into the cache. Four

localities are used as an assumption about where software faults may appear.

Temporal locality is based on the intuition that faults are not introduced individually and

uniformly over time, but rather appear in bursts within the same entities. “In other words,

when a fault is introduced to an entity, another fault will likely be introduced to the same

entity soon.” An explanation for such bursts is that the changes a programmer makes

might be based on a poor or incorrect understanding, thus injecting multiple faults into the

software in the process of making changes.

Spatial locality relies on the intuition that when an entity has a fault, other nearby entities

might also be faulty. The explanation for such intuition is that when a programmer makes

changes based on incorrect or incomplete knowledge, they likely cannot assess the impact

of their modifications.

Spatial locality uses the notion of nearby entities. The distance between software entities

in this algorithm is measured through logical coupling which is defined as follows: “Two

12

entities are close to each other (logically coupled) when they are frequently changed to-

gether.” The distance between any two entities e1 and e2 is computed using formula (8)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑒1, 𝑒2) = {
1

𝑐𝑜𝑢𝑛𝑡({𝑒1,𝑒2})
 , 𝑐𝑜𝑢𝑛𝑡({𝑒1, 𝑒2}) > 0,

∞ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 (8)

where count({e1, e2}) is the number of times e1 and e2 have been changed together.

Changed-entity locality is based on the idea that a recently changed entity is likely to

contain a fault.

New-entity locality is similar to changed-entity locality, but is based on the idea that an

entity added to a system most recently likely contains a fault.

 Operation of the Cache

FixCache maintains a cache of what it has chosen as the most fault-prone entities. There

are several parameters, techniques and policies that can be modified in the cache algorithm

affecting the size of the cache and the content maintained by the cache. The basic process

of the cache algorithm is shown in Figure 1.

FixCache waits until a fault is fixed and the cache is then updated based on the localities

that existed at the time the fault was introduced. The hit rates are computed at the time of

the fix.

When a fault is missed in an entity, the algorithm uses spatial locality to load nearby enti-

ties into the cache. The notion of block size from cache terminology is used to describe the

upper bounds on how many entities are loaded. With block size b, b-1 closest entities

along with the faulty entity itself are loaded. Block size is also a configurable parameter in

this algorithm.

13

Figure 1. Basic process of the cache algorithm.

Pre-fetching techniques are used to improve the hit rate of the cache. Entities are loaded

into the cache for which a fault has not yet been encountered. This is to avoid the inevita-

ble misses when starting with an empty cache. Also, it would otherwise be impossible to

predict faults for entities with just one fault in their lifetime. Pre-fetching is done at two

different parts of the algorithm: for initializing the cache with entities and per revision.

Initially, entities likely to have faults as predicted by greatest lines of code (LOC) are

loaded into the cache. With each revision pre-fetching is used to load entities that were

14

modified or created between two revisions starting with entities that have the highest

number of LOC. In addition, entities that were deleted between revisions are unloaded

from the cache. The maximum number of pre-fetches per revision is controlled by the pre-

fetch size parameter and can be modified.

Cache replacement policies are used by the algorithm when the cache is full to unload

entities from the cache and make room for new entities. These policies describe which

entities to unload first. Three policies were tested in the research [6] for the algorithm:

 least recently used (LRU) - unloads the entity that has the least recently found

fault,

 LRU weighted by number of changes (CHANGE) - unloads the entity with the

least number of changes,

 LRU weighted by number of previous faults (BUG) - unloads the entity with the

least number of faults.

5.2 HYDRA

HYDRA (Hybrid Model Reconstruction Approach) [2] is a cross-project software defect

prediction approach that contains two steps: the model building step where the defect pre-

diction model is built and the prediction step where an entity is predicted to be defective or

clean. Cross-project defect prediction approaches take training data from different projects

to predict defects in a target project. This can be useful, because a new project might not

have enough usable data to train a defect prediction model.

 Overall Architecture

The overall architecture of HYDRA can be seen in Figure 2. HYDRA contains two steps

which are model building and prediction. In the model building step a cross-project pre-

diction model is built using the information learned from the instances (i.e., a class , file or

module) of the multiple source projects and 5 percent instances from the target project.

Both source project instances and target project instances used have to be previously la-

belled as either defective or clean. In the prediction step, the model is applied to predict if

an unlabelled instance in the target project has defects or not.

15

Figure 2. Overall architecture of HYDRA [2].

Various types of metrics are used from the source projects and the target project (Step 1)

to build a cross-project defect prediction model based on the previously used metrics (Step

2). The built model is a machine learning classifier that labels an instance to be defective

or clean based on the metrics of the instance. After the model is constructed, previously

used metrics are extracted from an unlabelled instance of the target project (Step 3) and

the values of these metrics are used in the prediction model (Step 4). The model will then

output the prediction result for the unlabelled instance predicting it to be either defective

or clean (Step 5).

 Metrics for Defect Prediction

Different types of metrics can be used for building a software defect prediction model. A

list of metrics used for building the prediction model in the evaluation experiments of

HYDRA can be found in Appendix II.

 Defect Prediction Model

The defect prediction model in HYDRA is built in two phases: genetic algorithm (GA)

phase and ensemble learning (EL) phase. The built model is shown in Figure 3.

16

Figure 3. Model built using HYDRA [2].

In the GA phase, a classifier Mi is built for each source project Si and training target data

Tt. A total of (N+1) classifiers are built in this phase. After the classifiers are built, HY-

DRA finds the best composition of these classifiers using genetic algorithm (GA). The

composition found is referred to as the GA classifier. In the EL phase, the GA phase is run

multiple times producing multiple GA classifiers that are composed according to their

training error rate.

5.3 TCA+

TCA+ [3] is an improved version of the transfer learning method TCA (Transfer Compo-

nent Analysis) [8] which is used for cross-project software defect prediction. „TCA aims

to find a latent feature space for the data of both the source and target projects by minimiz-

ing the distance between the data distributions while preserving the original data proper-

ties“ [3]. After finding the latent space, data of both the source and target projects are

mapped onto it for the purpose of discovering a new feature representation for both of the

projects. The discovered representation is used to transform the data to reduce the data

distribution difference between the source and target projects. At the end, a classifier is

trained on the transformed source project data and applied to the transformed target project

data for prediction. TCA+ improves TCA on choosing a suitable normalization, a data

preprocessing technique [9], before applying TCA for prediction.

17

5.4 Peters Filter

Peters filter [1] is a cross-project software defect prediction approach that creates a filtered

set of training data for a defect predictor to train on which then predicts the instances of a

target project to be defective or clean.

 Filtered TDS (Training Data Set)

The idea behind the Peters filter is that carefully chosen training data can result in better

cross-project defect prediction performance [10]. To create a filtered set of training data

Peters filter labels instances from training data sets with their nearest instance from the test

data set. Then, each of the test instances reports the closest training instance and the fil-

tered training data set is formed by combining the reported training instances into a single

set of data. Visual representation of the processes in the Peters filter are shown in Figure 4.

White circles are test instances and black circles with colored borders are training instanc-

es from different projects.

Figure 4. Illustration of the processes in the Peters filter [1].

As seen in Figure 4, having the instances from the training data set select their nearest test

instance can leave some test instances without a candidate to contribute to the filtered set

of training data. In this case, test instances do not contribute a candidate for the filtered set

of training data. In addition, if the nearest training instance is a duplicate of the test in-

stance, it will not be chosen for the filtered set of training data and instead the next closest

instance is selected (if one exists).

18

5.5 ExtRF

ExtRF [5] is a within-project semi-supervised software defect prediction approach that is

an extension of the Random Forest (RF) approach.

 Overview of the extRF Model

Visual representation of the processes within the extRF approach are shown in Figure 5

and briefly explained below.

Figure 5. Overview of the extRF Approach [5].

The extRF approach contains four steps. First, a small sample of labelled data from a pro-

ject’s history is used to train a Random Forest (RF) prediction model (Step 1). The result-

ing model is then used to predict whether unlabelled data is defective or not (Step 2). Con-

fidence of the data samples is calculated using the majority voting schema and the most

confident data samples with their voting labels are combined with the initial labelled da-

taset to form a new dataset. Then, a boosting process is carried out assigning weights to

each of the data samples in the new dataset (Step 3). Finally, the resulting classifier is used

for defect prediction on new software entities (Step 4).

19

5.6 TCANN

TCANN (Transfer Component Analysis Neural Network) [4] is a cross-project software

defect prediction approach that combines methods for noise reduction in data, transfer

learning between source and target datasets and for dealing with class imbalance.

 TCANN Model

The TCANN model consists of three components: a data preprocessing component, a data

transfer component and a dynamic sampling component based on a neural network. Visual

representation of the model is shown in Figure 6.

Figure 6. Processes of the TCANN model [4].

First, the source and target datasets are preprocessed to remove noise from the data. This is

done using the Inter Quartile Range (IQR) function to detect and remove outliers from the

data. Next, TCA (Transfer Component Analysis) [8] will be used to reduce the data distri-

bution differences between the source and target data. Finally, to manage the problem of

class imbalance, a situation where “the number of instances in one class greatly outnum-

bers the number of instances in the other class” [11], an artificial neural network (ANN) is

used. The neural network also acts as the final classifier that labels the entities and outputs

the result.

20

5.7 P-SVM

P-SVM [7] is a within-project software defect prediction model using Particle Swarm Op-

timization (PSO) and Support Vector Machine (SVM) algorithms. The P-SVM model was

proposed due to the fact that the prediction accuracy of the SVM model is greatly influ-

enced by its parameters and the SVM model usually adopts the trial-and-error method for

determining its parameters, which can lead to poor prediction results. The P-SVM model

uses PSO to optimize the parameters for SVM and then uses SVM with the optimized pa-

rameters to predict whether software entities are defective or not. A general overview of

the processes within the P-SVM model is shown in Figure 7.

Figure 7. Overview of the processes in the P-SVM model [7].

21

6 Prediction Results Analysis

In this section of the work, the prediction results of the software defect prediction models

will be covered and some of the results analyzed.

The software defect prediction models covered in this work have been evaluated with a

number of different evaluation measures. One of the common measures used for evalua-

tion is F-score. In addition to evaluation measures, the experiments conducted for evaluat-

ing the models have many other differences. Some of the differences between the evalua-

tion experiments with averaged prediction results can be seen in Table 1.

Table 1. Average F-score results of evaluation experiments conducted on TCA+, HYDRA,

Peters Filter, TCANN, extRF and P-SVM.

Model (Classifier) Dataset Within-Project /

Cross-Project

Average F-score

TCA+ (LR) [3] ReLink Cross-Project 0.61

TCA+ (LR) [3] AEEEM Cross-Project 0.41

TCA+ (LR) [2] PROMISE Cross-Project 0.43

HYDRA (LR) [2] PROMISE Cross-Project 0.54

Peters Filter (LR)

[2]

PROMISE Cross-Project 0.40

TCANN (ANN) [4] ReLink Cross-Project 0.66

TCANN (ANN) [4] AEEEM Cross-Project 0.41

TCANN (ANN) [4] ReLink Within-Project 0.71

TCANN (ANN) [4] AEEEM Within-Project 0.54

extRF (extRF) [5] Eclipse Set Within-Project 0.53

P-SVM (SVM) [7] JM1 Within-Project 0.82

In Table 1, the average F-score result was calculated manually for P-SVM, because the

research covering the model [7] did not provide an F-score result, but presented data about

22

the outcomes of the prediction results using the model (i.e. true positive, true negative,

false positive, false negative) and characteristics of the testing data (i.e. number of total

data, number of defective data, number of clean data). The classifiers used within the

models are Logistic Regression (LR), Artifician Neural Network (ANN) and Support Vec-

tor Machine (SVM). The datasets that the experiments were conducted on are as follows:

PROMISE refers to the dataset used in the experiments of HYDRA, that was originally

collected by Jureczko et al. [12], AEEEM and ReLink refer to the datasets used in the ex-

periments of TCANN and TCA+, that were originally collected by D’Ambros et al. [13]

and Wu et al. [14] respectively, Eclipse Set refers to the dataset used in the experiments of

extRF [5], which come from the Eclipse platform, JM1 refers to the dataset used in the

experiments of P-SVM [7], that come from a project of NASA. The change burst software

metrics [15] associated with the experiments of extRF can be found in Appendix I. The

software metrics associated with the experiments performed on the datasets of PROMISE

[12], AEEEM [13] and ReLink [16] can be found in Appendix II, Appendix III and Ap-

pendix IV respectively.

Each row of Table 1 shows the average F-score result of all the results obtained from ex-

periments using a given combination of model, dataset and model training approach. For

example, two of the TCANN experiments were conducted on the same dataset (ReLink),

but they use different approaches to train the prediction model. In the first case, the predic-

tion model is trained using training and testing data from the same project (within-project

defect prediction) within the dataset. A dataset usually consists of data from many differ-

ent projects. An evaluation experiment of the model is conducted on each project in the

dataset resulting with an F-score measuring the prediction accuracy of the model. All of

these F-score results are then added together and divided by the number of results to ob-

tain the average F-score. However, in the second case the prediction model is trained using

training data from one project and testing data from another project (cross-project defect

prediction) within the dataset. In such cases, experiments are conducted for all possible

combinations of using a project both as a source for training data (source project) and as a

target for testing data (target project) and similarly to the first case, the average F-measure

is calculated over all the results divided by the number of results.

The first observation from Table 1 is based on the average F-score results of the previous

example (TCANN, ReLink, Within-Project compared to TCANN, ReLink, Cross-Project)

23

which are 0.71 and 0.66 for within-project and cross-project model training approaches

respectively. The within-project approach has a better performance compared to the cross-

project approach. Another example of similar results in Table 1 can be seen for the

TCANN experiments done on the AEEEM dataset with the average F-scores for those

experiments being 0.54 and 0.41 for the within-project approach and cross-project ap-

proach respectively. These results alone are not conclusive enough to make a generaliza-

tion about the performance of within-project defect prediction models being better com-

pared to cross-project defect prediction models, but they serve as an example to support

the results of the research done by Turhan et al. [10]. A possible reason for the difference

in performance is that a model that is trained on one project might not generalize well to

other projects [17].

The second observation from Table 1 is that the average F-score results for the same

model using the same model training approach differ from each other based on the dataset

that the experiments were conducted on. For example, the average F-score results for

TCA+ are 0.61, 0.41 and 0.43 for experiments conducted on the ReLink, AEEEM and

PROMISE datasets respectively. While the difference in the average F-score result be-

tween the AEEEM and PROMISE datasets is minor (0.02), the differences between the

results of AEEEM and PROMISE compared to the result of ReLink are notable (0.2 and

0.18 respectively). Similar results can be seen for TCANN experiments conducted on Re-

Link and AEEEM with the average F-score result being 0.66 and 0.41 respectively for the

experiments using the cross-project approach, 0.71 and 0.54 respectively for the experi-

ments using the within-project approach. This might be caused due to the data distribution

in the specific datasets. A good example to support this claim can be seen in the experi-

ment results of the extRF model [5] where extRF achieves high F-score results in the ex-

periments conducted on 2 out of 4 datasets used for the experiments and on the other 2

datasets where the results were lower, the overall percentage of defective modules within

the datasets was under 40%.

The third observation from Table 1 is that the best defect prediction model for cross-

project defect prediction based on the average F-score result achieved by a model is

TCANN with an average F-score result of 0.66 achieved in the experiment conducted on

the ReLink dataset. However, this result may only reflect the TCANN model’s ability to

achieve high F-score results in optimal conditions as the experiments were conducted on

24

the ReLink dataset which are shown to yield high average F-score results for all models in

Table 1 that used the ReLink dataset for evaluation experiments. Alternatively, when leav-

ing aside the results of the experiments conducted on the ReLink dataset and look at the

results of the other cross-project experiments conducted on the AEEEM and PROMISE

datasets, HYDRA is shown to achieve the best average F-score of 0.54 on the PROMISE

dataset. Also, the results of the experiments using the AEEEM and PROMISE datasets are

more generalised compared to the results of ReLink as the AEEEM and PROMISE da-

tasets are both much larger compared to ReLink in terms of overall amount of data in the

dataset and the amount of projects in the dataset.

The fourth observation from Table 1 is that the best defect prediction model for within-

project defect prediction based on the average F-score result achieved by a model is P-

SVM with an average F-score result of 0.82 achieved in the experiment conducted on the

JM1 dataset. However, similarly to the previous observation about the best cross-project

defect prediction model, this result may only reflect the P-SVM model’s ability to achieve

high F-score results in optimal conditions as the experiments were conducted on a 1000

randomly chosen modules from the JM1 dataset [7]. The next best result is obtained by

TCANN with the average F-score being 0.71 on the ReLink dataset, but this again might

not generalise well to other projects due to ReLink being a small dataset and showing high

results for all experiments conducted on it. Leaving the results of these two experiments

aside, TCANN still achieves the next best average F-score of 0.54 on the AEEEM dataset,

but compared to the average F-score of 0.53 achieved by the extRF model on the Eclipse

Set, no clear winner of the two can be chosen based on the average F-score results

achieved. Due to these reasons and the difference between the average F-scores of P-SVM

and the next best TCANN result (0.11), it would still be reasonable to believe that P-SVM

is the best defect prediction model for within-project defect prediction out of the models

covered in this work.

25

6.1 Answers to Research Questions

RQ1: What kind of defect prediction models have been developed?

The specific software defect prediction models in the literature have been covered in Sec-

tion 5 of this work, however due to only a small number of software defect prediction

models being covered in this work, no conclusive answer can be given.

RQ2: Which is the best defect prediction model for cross-project defect prediction?

Considering the third observation from the results analysis, the best defect prediction

model for cross-project defect prediction based on the average F-score alone is TCANN.

However, the result achieved is questionable in terms of the model’s ability to generalise

well to other projects. Additionally, HYDRA shows the next best result on a larger dataset

consisting of more data and projects, which is a basis for considering HYDRA to be the

best cross-project defect prediction model out of the other cross-project models covered in

this work.

RQ3: Which is the best defect prediction model for within-project defect prediction?

Considering the fourth observation from the results analysis, the best defect prediction

model for within-project defect prediction based on the average F-score alone is P-SVM.

However, similar concerns in regards to RQ2 and the third observation arise about the P-

SVM model’s ability to generalise well to other projects, but due to reasons listed in the

fourth observation P-SVM can still be considered the best defect prediction model for

within-project defect prediction out of the other within-project defect prediction models

covered in this work.

26

7 Conclusions

One of the aims of this work was to give a general understanding of some of the processes

of software defect prediction models. In that regard, the general process of software defect

prediction models using machine learning classifiers was explained and some key defini-

tions for understanding the processes within the software defect prediction models were

given. Additionally, algorithms used within the specific software defect prediction models

covered in this work were listed with a brief explanation of what the algorithm does.

Some of the evaluation measures used to evaluate the prediction accuracy of software de-

fect prediction models covered in this work were listed and explained to better help under-

stand how these measures are formulated and what these measures indicate.

A handful of specific software defect prediction models were presented and a brief over-

view of the processes within those software defect prediction models was given. In addi-

tion, some of the results of the evaluation experiments conducted in the research of the

models covered in this work were listed. These results were analyzed with the purpose of

providing answers to some of the research questions set in this work.

Future work can be done by studying one of the software defect prediction models more

extensively to find out if a practical application of the model in the context of a software

engineering company would be beneficial in terms of quality assurance.

27

8 References

[1] F. Peters, T. Menzies, and A. Marcus, "Better cross company defect prediction," 2013

10th Working Conference on Mining Software Repositories (MSR), pp. 409-418,

May 2013.

[2] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X. Wang, "HYDRA: Massively

Compositional Model for Cross-Project Defect Prediction," IEEE Transactions on

Software Engineering, vol. 42, no. 10, pp. 977-998, October 2016.

[3] J. Nam, S. J. Pan, and S. Kim, "Transfer Defect Learning," 2013 35th International

Conference on Software Engineering (ICSE), pp. 382-391, September 2013.

[4] Q. Cao, Q. Sun, Q. Cao, and H. Tan, "Software defect prediction via transfer learning

based neural network," 2015 First International Conference on Reliability Systems

Engineering (ICRSE), pp. 1-10, October 2015.

[5] Q. He, B. Shen, and Y. Chen, "Software Defect Prediction Using Semi-Supervised

Learning with Change Burst Information," 2016 IEEE 40th Annual Computer

Software and Applications Conference (COMPSAC), pp. 113-122, June 2016.

[6] S. Kim, T. Zimmermann, E. J. Whithead Jr., and A. Zeller, "Predicting Faults from

Cached History," 29th International Conference on Software Engineering (ICSE ’07),

pp. 489–498, May 2007.

[7] H. Can, X. Jianchun, Z. Ruide, L. Juelong, Y. Qiliang, and X. Liqiang, "A new model

for software defect prediction using Particle Swarm Optimization and support vector

machine," 2013 25th Chinese Control and Decision Conference (CCDC '13), pp.

4106-4110, May 2013.

[8] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, "Domain Adaption via Transfer

Component Analysis," IEEE Transactions on Neural Networks, vol 22, no. 2, pp.

199-210, February 2011.

[9] J. Han, M. Kamber, and J. Pei, "Data mining: concepts and techniques," 3rd ed.

Waltham, Mass.: Elsevier/Morgan Kaufmann, 2012.

[10] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, "On the relative value of

cross-company and within-company data for defect prediction," Empirical Software

Engineering, vol. 14, no. 5, pp. 540–578, October 2009.

28

[11] B. X. Wang, and N. Japkowicz, "Boosting support vector machines for imbalanced

data sets," Knowledge and Information Systems, vol. 25, no. 1, pp. 1-20, October

2010.

[12] M. Jureczko, and L. Madeyski, "Towards identifying software project clusters with

regard to defect prediction," Proceedings of the 6th International Conference on

Predictive Models in Software Engineering (PROMISE '10), pp. 1-10, September

2010.

[13] M. D'Ambros, M. Lanza, and R. Robbes, "An extensive comparison of bug prediction

approaches," 2010 7th IEEE Working Conference on Mining Software Repositories

(MSR '10), pp. 31-41, May 2010.

[14] R. Wu, H. Zhang, S. Kim, and S. Cheung, "ReLink: recovering links between bugs

and changes," Proceedings of the 19th ACM SIGSOFT symposium and the 13th

European conference on Foundations of software engineering (ESEC/FSE '11), pp.

15-25, September 2011.

[15] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy, "Change Bursts

as Defect Predictors," 2010 IEEE 21st International Symposium on Software

Reliability Engineering (ISSRE), pp. 309-318, November 2010.

[16] Scientific Toolworks, Understand

https://scitools.com/support/metrics_list/?metricGroup=complex (11.05.2017)

[17] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, "Cross-project

defect prediction: a large scale experiment on data vs. domain vs. process,"

Proceedings of the 7th joint meeting of the European software engineering conference

and the ACM SIGSOFT symposium on The foundations of software engineering

(ESEC/FSE '09), pp. 91-100, August 2009.

29

Appendix I

Nr. Metric Description

1 NumberOfChanges Number of builds in which a specific com-

ponent has changed

2 NumberOfConsecutiveChanges Number of consecutive builds for a given

gap size

3 NumberOfChangeBursts Number of change bursts for a given gap

size and burst size

4 TotalBurstSize Number of changed builds in all change

bursts

5 MaximumChangeBurst Maximum number of changed builds in all

change bursts

6 NumberOfChangesEarly Same as 1, but calculated for the first 80%

of the project’s lifetime

7 NumberOfConsecutiveChangesEarly Same as 2, but calculated for the first 80%

of the project’s lifetime

8 NumberOfChangeBurstsEarly Same as 3, but calculated for the first 80%

of the project’s lifetime

9 TotalBurstSizeEarly Same as 4, but calculated for the first 80%

of the project’s lifetime

10 MaximumChangeBurstEarly Same as 5, but calculated for the first 80%

of the project’s lifetime

11 NumberOfChangesLate Same as 1, but calculated for the last 20%

of the project’s lifetime before release

12 NumberOfConsecutiveChangesLate Same as 2, but calculated for the last 20%

of the project’s lifetime before release

13 NumberOfChangeBurstsLate Same as 3, but calculated for the last 20%

of the project’s lifetime before release

14 TotalBurstSizeLate Same as 4, but calculated for the last 20%

of the project’s lifetime before release

30

15 MaximumChangeBurstsLate Same as 5, but calculated for the last 20%

of the project’s lifetime before release

16 TimeFirstBurst Occurrance of the first burst normalized to

the total number of builds

17 TimeLastBurst Occurrance of the last burst normalized to

the total number of builds

18 TimeMaxBurst Occurrance of the burst with the most

changes normalized to the total number of

builds

19 PeopleTotal Number of people who ever committed a

change to a specific component

20 TotalPeopleInBurst Number of people involved across all

bursts

21 MaxPeopleInBurst Maximum number of people involved in a

burst across all bursts

22 ChurnTotal Total churn over the lifetime of a compo-

nent

23 TotalChurnInBurst Total churn in all change bursts

24 MaxChurnInBurst Maximum churn across all bursts

31

Appendix II

Nr. Metric Description

1 WMC Weighted methods per class

2 DIT Depth of inheritance tree

3 NOC Number of children

4 CBO Coupling between objects

5 RFC Response for a class

6 LCOM Lack of cohesion in methods

7 LCOM3 Modified lack of cohesion in methods

8 NPM Number of public methods

9 DAM Data access metric

10 MOA Measure of aggregation

11 MFA Measure of functional abstraction

12 CAM Cohesion among methods of class

13 IC Inheritance coupling

14 CBM Coupling between methods

15 AMC Average method complexity

16 Ca Afferent couplings

17 Ce Efferent couplings

18 MaxCC Maximum value of McCabe’s cyclomatic

complexity

19 AvgCC Arithmetic mean of McCabe’s cyclomatic

complexity

20 LOC Number of lines of code

32

Appendix III

Nr. Software Metric Description

1 WMC Number of weighted methods

2 DIT Depth of inheritance tree

3 RFC Response for a class

4 NOC Number of children

5 CBO Coupling between objects

6 LCOM Lack of cohesion in Methods

7 FanIn Number of other classes that reference the

class

8 FanOut Number of other classes referenced by the

class

9 NOA Number of attributes

10 NOPA Number of public attributes

11 NOPRA Number of private attributes

12 NOAI Number of attributes inherited

13 LOC Number of lines of code

14 NOM Number of methods

15 NOPM Number of public methods

16 NOPRM Number of private methods

17 NOMI Number of methods inherited

18 All Bugs Number of bugs

19 Non trivial bugs Number of bugs with greater than trivial

severity

20 Major bugs Number of bugs with greater than major

severity

21 Cricital bugs Number of bugs with critical or blocker

33

severity

22 High priority bugs Number of bugs with greater than default

priority

23 HCM Every file modified is considered equally

24 WHCM Modified files are considered with a

weight

25 EDHCM Earlier periods have exponentially reduced

contribution

26 LDHCM Earlier periods have linearly reduced con-

tribution

27 LGDHCM Earlier periods have logarithmically re-

duced contribution

34

Appendix IV

Nr. Software Metric Description

1 AvgCyclomatic Average cyclomatic complexity for all

nested functions or methods

2 AvgCyclomaticModified Average modified cyclomatic complexity

for all nested functions or methods

3 AvgCyclomaticStrict Average strict cyclomatic complexity for

all nested functions or methods

4 AvgEssential Average Essential complexity for all nest-

ed functions or methods

5 AvgEssentialStrictModified Average strict modified essential complex-

ity for all nested functions or methods

6 CountPath Number of possible paths, not counting

abnormal exits or gotos

7 Cyclomatic Cyclomatic complexity

8 CyclomaticModified Modified cyclomatic complexity

9 CyclomaticStrict Strict cyclomatic complexity

10 EssentialStrictModified Strict Modified Essential complexity

11 Knots Measure of overlapping jumps

12 MaxCyclomatic Maximum cyclomatic complexity of all

nested functions or methods

13 MaxCyclomaticModified Maximum modified cyclomatic complexity

of nested functions or methods

14 MaxCyclomaticStrict Maximum strict cyclomatic complexity of

nested functions or methods

15 MaxEssential Maximum essential complexity of all nest-

ed functions or methods

16 MaxEssentialKnots Maximum Knots after structured pro-

gramming constructs have been removed

17 MaxEssentialStrictModified Maximum strict modified essential com-

35

plexity of all nested functions or methods

18 MaxInheritanceTree Maximum depth of class in inheritance tree

19 MaxNesting Maximum nesting level of control con-

structs

20 MinEssentialKnots Minimum Knots after structured program-

ming constructs have been removed

21 RatioCommentToCode Ratio of comment lines to code lines

22 SumCyclomatic Sum of cyclomatic complexity of all nest-

ed functions or methods

23 SumCyclomaticModified Sum of modified cyclomatic complexity of

all nested functions or methods

24 SumCyclomaticStrict Sum of strict cyclomatic complexity of all

nested functions or methods

25 SumEssential Sum of essential complexity of all nested

functions or methods

26 SumEssentialStrictModified Sum of strict modified essential complexi-

ty of all nested functions or methods

27 Essential Essential complexity

36

I. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Hans Raukas,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public, including for ad-

dition to the DSpace digital archives until expiry of the term of validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu, including via

the DSpace digital archives until expiry of the term of validity of the copyright,

of my thesis

Some Approaches for Software Defect Prediction,

(title of thesis)

supervised by Helle Hein,

(supervisor’s name)

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property rights

or rights arising from the Personal Data Protection Act.

Tartu, 11.05.2017

