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A B S T R A C T

Aim: Chronic stress increases disease vulnerability factors including inflammation, a pathological characteristic
potentially regulated by the gut microbiota. We checked the association between the gut microbiome and
psychosocial stress in children/adolescents and investigated which stress parameter (negative versus positive
emotion, self-report versus parental report, events versus emotions, biomarker cortisol versus parasympathetic
activity) is the most relevant indicator herein.
Methods: Gut microbiome sequencing was completed in fecal samples from 93 Belgian 8-16y olds. Stress mea-
sures included negative events, negative emotions, emotional problems reported by parents, happiness, hair
cortisol and heart rate variability (pnn50 parameter reflecting parasympathetic activity). Alpha diversity, beta
diversity and linear discriminant analysis were the unadjusted analyses. Age, sex, socio-economic status, diet,
physical activity, sleep and weight status were adjusted for via a redundancy analysis and differential abundance
via zero-inflated negative binomial regression.
Results: High stress as reflected by low pnn50 and more negative events were associated with a lower alpha
diversity as indicated by the Simpson index. Happiness and pnn50 showed significant differences between high
and low stress groups based on weighted UniFrac distance, and this remained significant after confounder ad-
justment. Adjusted and unadjusted taxonomic differences were also most pronounced for happiness and pnn50
being associated respectively with 24 OTU (=11.8% of bacterial counts) and 31 OTU (=13.0%). As a general
pattern, high stress was associated with lower Firmicutes at the phylum level and higher Bacteroides,
Parabacteroides, Rhodococcus, Methanobrevibacter and Roseburia but lower Phascolarctobacterium at genus level.
Several genera gave conflicting results between different stress measures e.g. Ruminococcaceae UCG014,
Tenericutes, Eubacterium coprostanoligenes, Prevotella 9 and Christensenellaceae R7. Differential results in pre-
adolescents versus adolescents were also evident.
Conclusion: Even in this young healthy population, stress parameters were cross-sectionally associated with gut
microbial composition but this relationship was instrument specific. Positive emotions and parasympathetic
activity appeared the strongest parameters and should be integrated in future microbiota projects amongst other
stress measures.

1. Introduction

The body’s goal in acute stress situations is to maintain stability
through changes in the nervous and endocrine system for an

appropriate amount of time, but also to turn off these reactions im-
mediately afterwards. In contrast, chronic stress leads to prolonged
activation or inefficient management of these systems, with detrimental
physiological consequences (McEwen, 1998, 2007). Consequently,
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chronic stress increases vulnerability to diseases like cardiovascular
pathology (Ghike, 2016; Rohleder, 2014; Rosmond, 2005; Wirtz and
von Kanel, 2017), even during childhood this associations is already
present (Berens et al., 2017; Pervanidou and Chrousos, 2012). The
underlying complex processes and mechanisms are still poorly under-
stood but can help in designing prevention and treatment strategies.
Apart from subjective reports, biological stress measures are necessary
in this type of research because the nature and the chronicity of the
stressor, as well as the individual’s vulnerability and stress perception,
are important in determining the physiological stress response and thus
the adverse effects of chronic stress (Miller et al., 2007). Two main
physiological stress systems exist (Charmandari et al., 2005). The first
stress system is the hypothalamic-pituitaryadrenal (HPA) axis with
cortisol as the end product. The second stress system is the autonomic
nervous system with the catecholamines adrenaline and noradrenaline
as end products. Heart rate variability (HRV) is often used as a non-
invasive biomarker to indirectly measure cardiac parasympathetic and
sympathetic activity (Task Force of ESC/NASPE, 1996).
In the stress-disease link, a possible explanation and intervention

target might be the gut microbiota since there is bidirectional com-
munication between the gut microbiota and the brain, (Aroniadis et al.,
2017; Grenham et al., 2011; Moloney et al., 2014; Wang and Kasper,
2014) and the gut microbiome has been associated with metabolic
syndrome (de Clercq et al., 2017). This relationship is sometimes called
the ‘microbiota-gut-brain axis’ as the gut microbiota play an active role
in the gut-brain communication. This microbiota-gut-brain axis consists
of neural (autonomic and enteric nervous system), neuro-immune and
neuro-endocrine (gut-epithelial enterochromaffin cells, the cortisol axis
and bacterial-produced neuroactive molecules) components. Instability
(compositional flux, rapid changes, easy disruption) and immaturity
(low diversity, certain taxa not yet present) of the gut microbiota during
childhood and adolescence increases the susceptibility to environ-
mental insults such as stress and poor diet, which could result in gut
dysbiosis and a deterioration in physical and mental health (Borre et al.,
2014). The gut microbiota thus represents a potential therapeutic
target.
The impact of stress on the gut microbiota is a topic on intense

research scrutiny. Although several articles have been published on
clinical depression cases (Jiang et al., 2015; Kelly et al., 2016; Lin et al.,
2017; Naseribafrouei et al., 2014; Zheng et al., 2016), the relationship
with gut bacteria is quite conflicting e.g. alpha diversity is sometimes
decreased, sometimes non-significant and occasionally increased. On
the other hand, gut microbiota transplantation from patients with de-
pression into rodents successfully induced a depressive phenotype in
these animals, demonstrating the powerful influence the gut microbiota
can exert on behavior (Kelly et al., 2016; Zheng et al., 2016). A meta-
analysis has shown an overall improvement of psychological outcomes
in healthy humans by probiotics, i.e. by supplementation with health-
beneficial bacteria (McKean et al., 2017). Observational research in
healthy participants is scarce and often with limited results: reduced
fecal lactic acid bacteria during exam periods (Knowles et al., 2008), no
associations at all of gut microbiome with depressive symptoms or
perceived stress (Kleiman et al., 2017), less emotional arousal with
higher fecal Prevotella abundance (Tillisch et al., 2017) and fecal genera
differences depending on mood but no clear patterns for depressed,
anxious or angry mood (Li et al., 2016). Therefore, our goal was to see
whether this link from stress/psychiatric symptoms to alterations in gut
microbial composition/function translates to subthreshold psycholo-
gical variation in healthy individuals i.e. children/adolescents. After all,
childhood is an important period during which host-microbiome in-
teractions establish appropriate stress responses. Indeed, work from
Sudo and colleagues illustrated that there are critical time windows for
gut microbiota assembly during early life, outside of which aberrant
phenotypes may not be amenable to rescue (Sudo et al., 2004).
Indeed, both the main biological stress axes i.e. the HPA axis (Farzi

et al., 2018) and the nervus vagus (Bonaz et al., 2018) system are

important components of the gut-brain axis, the framework through
which the gut microbiota communicates with the central nervous
system. For example, probiotic supplementation provoked in rats vagal
afferent nerve impulses and suppressed stress-induced cortisol activa-
tion (Takada et al., 2016). Nevertheless, stress biomarkers are seldom
applied in the observational human microbiome studies, with the
parasympathetic activity in particular being under-researched. There-
fore, we wanted to check how well stress biomarkers, including cortisol
and autonomic nervous system markers, behave compared to ques-
tionnaires when studying the gut microbiota.
Taken together, we want to cover two neglected aspects of stress-

microbiota research. Our first general aim was to check whether the
cross-sectional association between gut microbiome and psychosocial
stress already exists in children/adolescents. Secondly, we wanted to
detect which reports (events versus emotions; positive versus negative
emotions; parental versus self-report) and which biomarkers (cortisol
versus HRV) are the most relevant indicator of these interactions.

2. Methodology

2.1. Study participants

Participants were Dutch-speaking Belgian children recruited for the
longitudinal ChiBS study (Michels et al., 2012). Inclusion criteria at that
moment were living in the region Aalter and age. During March-May
2015, an extra study wave took place when the participants were be-
tween 8 and 16 years old. At that time, a fecal sample was collected and
stress was measured by hair cortisol analysis, HRV analysis and ques-
tionnaires (negative events, negative emotions, emotional problems
and happiness). None of the participants had a reported diagnosis of
Cushing/Addison disease, auto-immune disease, heart disease, chronic
bowel disease or acute infection. Nobody took oral anti-inflammatory
drugs or selective serotonin reuptake inhibitors in the 3months before
sample collection. One participant using oral corticosteroids and one
participant using antibiotics in the previous 3months were excluded.
No information was available on psychiatric diagnosis or intervention.
From the 242 participants, 104 collected a valid fecal sample for se-
quencing (optional module). After excluding those with low quality
sequencing (n=11), 93 remained. All these participants had complete
data on questionnaires but HRV data was missing in 7 of them and hair
cortisol data was missing in 28. Thus, only 61 had full data on both
biomarkers. Those with biomarker info had more emotional problems
than those without biomarker info but did not differ in the tested
confounders. The study was conducted according to the guidelines laid
down in the Declaration of Helsinki and the project protocol was ap-
proved by the Ethics Committee of the Ghent University Hospital. A
written informed consent was obtained from the parents and a verbal
assent from the minors.

2.2. Fecal samples

Participants received a flushable toilet seat cover for stool collection
(Fe-Col®, Col-group, Amsterdam, The Netherlands) and a plastic screw
cap container with spoon. In this way, fecal collection occurred in a
participant-friendly manner without contamination by toilet water. The
participants were asked to store the samples immediately at −20 °C and
after at-home collection (as soon as possible, on average within one
week) samples were transferred on ice to the laboratory for further
storage at −80 °C.

2.2.1. DNA extraction
Bacterial DNA was extracted as described earlier (Vilchez-Vargas

et al., 2013), using a Lysis Buffer (TrisEDTA, NaCl, PVP40, SDS, water)
and glass beads for FastPrep. Extraction was performed with phenol-
chloroform and EtOH/NaOAc was used for precipitation (Boon et al.,
2003). Samples were dissolved in TrisEDTA 1X and stored at −20 °C.
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Concentration and quality were verified by Glomax Multi Detection
system (Promega, USA) and 2% agarose gel electrophoresis.

2.2.2. Polymerase chain reaction
All samples were prepared starting from 1:100 dilutions. Using a

thermocycler (2720 Thermal cycler, Applied Biosystem, Foster City,
USA), DNA was denaturated for 5min at 94 °C and then 30 cycles of
denaturation 1min at 95 °C, hybridization for 1min at 53 °C, elongation
for 2min at 72 °C were run, to end with a final elongation of 10min at
72 °C.

2.2.3. Illumina sequencing
Samples were analyzed by LGC Genomics (Berlin, Germany) on an

Illumina Miseq Platform for the V3-V4 region 16S rDNA. Three hundred
base pair paired-end reads were assembled using FLASH (FLASH: fast
length adjustment of short reads to improve genome assemblies).
Further processing of paired-end reads including quality filtering based
on a quality score of> 25 and removal of mismatched barcodes and
sequences below length thresholds was completed using QIIME (version
Version 1.9.0). Denoising, chimera detection and clustering into op-
erational taxonomic unit (OTU) grouping were performed using
USEARCH v7 (64-bit) (Edgar, 2010). OTUs were aligned using PyNAST
(PyNAST: a flexible tool for aligning sequences to a template alignment)
and taxonomy was assigned using BLAST against the SILVA SSURef
database release 123. Samples with less than 10.000 OUT counts were
excluded. Joining efficiency was around 90% and only 0.9% chimera’s
were found. After removal of short reads, chimera’s and singletons, a
mean of 24,655 OTU-linked sequences/sample was obtained
(SEM=1121; maximum was 66512). No rarefaction was executed;
1039 different OTUs were included in the analyses.

2.3. Hair cortisol

Hair cortisol has recently been established as a reliable marker of
chronic stress exposure (Wester and van Rossum, 2015). Only the most
proximal 3 cm of the hair strands from the vertex posterior were ana-
lyzed. Since hair grows approximately 1 cm each month, this 3 cm re-
flects the exposure during the last 3months. On 15mg hair, extraction
and liquid chromatography coupled with tandem mass spectrometry
(AB Sciex 5500 triple-quadrupole) was performed at the Laboratory for
Hormonology, Ghent University Hospital. Data processing was per-
formed through MultiQuant version 2.0.2. Inter-assay CV for cortisol
was 10.8% with a limit-of-quantification of 1.6 pg/mg hair.

2.4. Heart rate variability

To define HRV, each participant was individually examined in a
quiet room in supine position (i.e. lying down with the face up) during
10 min. Participants were asked to refrain from strenuous physical
activity on the measurement day. The participant was encouraged to be
calm, to breath normally and not to speak or move during the HRV
measurement. The heart rate belt was fixed around the chest and
measurements were started after a couple of minutes when the signal
was stabilized. RR-intervals were recorded at a sampling rate of
1000 Hz with the elastic electrode belt Polar Wear link 31 using a Wind
link infrared computer transmitter. This low-cost device has a proven
validity compared to the gold standard of an electrocardiogram device,
also in children (Gamelin et al., 2008). Data processing was performed
with the free, professional HRV Analysis Software of the University of
Kuopio (Niskanen et al., 2004). The middle 5 min were manually
checked on their quality and if necessary, another appropriate 5 min
interval was chosen. The RR series were de-trended using the
Smoothness priors method with alpha= 300 and a cubic interpolation
at the default rate of 4 Hz was done. In the time domain analysis, pnn50
(percentage of successive normal sinus RR intervals> 50ms) was used
as marker of the parasympathetic activity.

2.5. Negative events

The Coddington Life Events Scale for Children (CLES-C) is a vali-
dated and well-established 36-item questionnaire (test-retest r= 0.69,
parent-child agreement ICC=0.45) (Coddington, 1999). By child self-
report, it assesses the prevalence, frequency and timing of stressful life
events relevant for this age group during the last year. By measuring
significant life events in terms of Life Change Units depending on
timing, frequency and severity, the questionnaire can provide insight
into recent events that may affect the child’s health. For the current
analyses, only negative events were considered.

2.6. Negative and positive emotions reported by self-report

Participants had to report how they mostly feel (not only on the
examination day). The feelings happy, anger, anxiety and sadness were
rated on a 0 to 10 Likert-scale (0 ‘not at all’ to 10 ‘very strong’). The sum
of anger, anxiety and sadness was used to represent ‘negative emotions’.
We have validated this parameter with the PANAS-C questionnaire
(Laurent et al., 1999) in a sample of 153 9–12 years old children: our
negative emotions score showed a Spearman correlation of r= 0.48
(p < 0.001) with the negative affect score of the PANAS-C.

2.7. Emotional problems reported by the parent

Parents were asked to complete the standardized ‘Strengths and
Difficulties Questionnaire’ for their child (Goodman, 1997) (Cronbach’s
alpha=0.53–0.76, test-retest stability r= 0.88, concurrent validity
r= 0.7–0.87). The subscale on emotional problems over the past
6months (proxy-report) with 5 items was used.

2.8. Potential confounders

Age was calculated and gender reported. To represent socio-eco-
nomic status, parental education level was assessed by questionnaire
according to the International Standard Classification of Education.
BMI was calculated by dividing measured weight with height squared
(kg/m2). The Flemish growth reference data of 2004 were used to
compute the z-score of BMI (zBMI) to adjust for age and gender (Cole
and Lobstein, 2012). Based on a food-frequency questionnaire (Lanfer
et al., 2011), intake frequency of fiber-rich food, protein-rich food,
sweet food and fatty food were calculated. Daily sleep duration was
calculated from weighted weekday and weekend day sleep duration:
weekday*5+weekend day*2/7. Mean physical activity per day was
calculated from reported active time outside and sport club hours.

2.9. Statistical analyses

Descriptive statistics were retrieved in SPSS using Spearman’s rank
correlation coefficient. Median, 25th percentile and 75th percentiles
were also reported. Statistical significance was considered at a
P < 0.05 level of confidence after False Discovery Rate correction
except for the explorative correlation matrix. For every analysis, the six
stress parameters were considered (negative events, negative emotions,
emotional problems, happiness, pnn50, cortisol). All stress data was
continuous but was dichotomized where necessary for some analyses:
tertiles were used to create a 2/3th subsample with low stress versus 1/
3th with high stress. To detect developmental differences, analyses
were also repeated for preadolescents (< 12y, n=64) and adolescents
(≥12y, n=47).
Alpha diversity/richness indices (observed species, Chao1 and

Simpson diversity) were calculated in QIIME (Caporaso et al., 2010)
and then used as outcomes in linear regression adjusted for age, gender,
parental education, zBMI, protein, fiber, sweet, fat intake, physical
activity and sleep. For beta diversity, principal coordinates analysis
(PCoA) was performed using unweighted and weighted UniFrac
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distances and significant differences between stress groups were de-
termined by permutational multivariate analysis of variance using the
vegan package in R (Oksanen et al., 2018). Taking the phylogenetic
framework of microbial communities into account, a distance based
redundancy analysis was also carried out using weighted UniFrac dis-
tances as described in (Shankar et al., 2017). This constrained form of
ordination assesses which of the continuous stress variables are driving
the changes seen in microbial communities between samples while
partialling out the variation from confounding variables.
Taxonomic features distinguishing between high and low stress

groups were identified using the linear discriminant analysis (LDA)
effect size (LEfSe) method for biomarker discovery, which emphasizes
both statistical significance and biological relevance (metagenomic
biomarker discovery and explanation). LEfSe uses the Kruskal–Wallis
rank-sum test with a normalized relative abundance matrix to detect
features with significantly different abundances between assigned taxa
and performs LDA to estimate the effect size of each feature (Segata
et al., 2011). Cladograms (implemented using the Galaxy framework at
http://huttenhower.sph.harvard.edu/lefse/) are shown for effect
size> 2.0. As this technique does not allow to adjust for confounders,
we also assessed the differential distributions of microbial communities
based on a zero-inflated negative binomial (ZINB) regression model as
outlined by (Chen et al., 2018a). Differences in distributions between
low and high stress groups with adjusted p-value<0.1 were found
based on a chi squared statistic that takes into account both the a-
bundance (mean) and dispersion (SD) of OTU counts as well as pre-
valence of zeros in the data, while adjusting for the distributions of
confounders.

3. Results

3.1. Descriptive data

Table 1 summarizes descriptive data and the Spearman correlation
coefficients for stress variables, confounders, bacterial phyla and alpha-
diversity. From the stress reports, negative emotions (self-report) and
emotional problems (parental report) were positively significantly re-
lated to each other and happiness was negatively related with negative
emotions. The two stress biomarkers were not related to each other,
only pnn50 was positively related to happiness and borderline nega-
tively to some other reports. In these 93 participants, only 3.2% were
overweight. Based on questionnaire specific cut-offs, 31% were at risk
for stress by experienced events and 24.7% were at risk for stress based
on their emotional report. Most abundant families were Rumino-
coccaceae (43%; most frequent genus Faecalibacterium), Lachnospir-
aceae (15%, most frequent genus Pseudobutyrivibrio) and Bacter-
oidaceae (4%; most frequent genus Bacteroides). Top 10 abundant OTU
represented together 25.6% of all OTU counts and were in descending
order Ruminococcus2 for 3.7%, Dialister, Faecalibacterium, Faecali-
bacterium, Subdoligranulum, Pseudobutyrivibrio, Dialister, Ruminococca-
ceae UCG002, Pseudobutyrivibrio and Ruminococcus2.

3.2. Alpha diversity

The relation of stress measures with alpha diversity is shown in
Table 2. High stress as reflected by more negative events and low pnn50
was significantly related to lower diversity as indicated by the Simpson
index. In preadolescents after splitting by age, the same observations
stayed significant but with additionally negative events being also re-
lated to less observed species (p=0.015; mean low 324 vs high 256)
and Chao1 (p= 0.03; mean low 394 vs high 332) and negative emo-
tions being related to more observed species (p= 0.006, mean low 290
vs high 368). On the other hand, no significant differences in alpha
diversity by stress were found in the adolescent sample.Ta
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3.3. Beta diversity

Weighted and unweighted Unifrac PCoA was carried out. Only for
pnn50 and happiness a significant separation between high and low stress
groups was found (see Fig. 1). The plots for the four other stress measures
and for the two separate age-groups can be found in Appendix A. When
separated by age-group, happiness and pnn50 still showed significant mi-
crobiome separation in preadolescents but not in adolescents. In agreement
with this finding, dbRDA (Fig. 2) also found that especially happiness
followed by pnn50 contributed significantly to the variance in microbial
communities between samples. Split by age group, happiness contributed
significantly to microbial variety in preadolescents (p=0.031), while
pnn50 contributed only borderline in adolescents (p=0.074).

3.4. Phylogenetic differences

To detect which taxonomic differences distinguished stress levels,
LEfSe was executed. As can be seen in Fig. 3, again pnn50 and happy
gave the clearest distinction in microbiota composition and also had
several mutual distinctive taxa. On phylum level, low pnn50 or hap-
piness and thus high stress was associated with a lower Firmicutes re-
lative abundance, mainly the order Clostridiales (most often genera
under the family of Lachnospiraceae and Ruminococcaceae). The
phylum Bacteroidetes abundance was also associated with low

happiness, mainly the order Bacteroidales. The only other significant
phylum was the Euryarchaeota, with higher Methanobrevibacter in the
low happiness group. Differential taxa for the other stress parameters
had less consistency or overlap.

Table 2
Alpha diversity for the six stress parameters.

negative events negative emotions self-report emotional problems
parental report

happy pnn50 hair cortisol

low high p low high p low High p low high p Low high p low high p

Observed
species

325 295 0.120 305 336 0.103 311 319 0.852 329 308 0.312 300 320 0.326 323 312 0.754

Chao1 394 372 0.351 376 412 0.092 382 392 0.814 416 375 0.187 373 392 0.435 394 381 0.801
Simpson

diversity
0.964 0.949 0.022* 0.957 0.962 0.403 0.955 0.966 0.116 0.950 0.962 0.201 0.948 0.964 0.024* 0.960 0.962 0.644

Based on linear regression adjusted for age, gender, parental education, zBMI, fiber, protein, sweet food, fatty food intake, physical activity and sleep.

Fig. 1. Weighted and unweighted Unifrac Principal Coordinates Analysis for pnn50 and happy.

Fig. 2. Unifrac distance based redundancy analysis plot for the six stress
measures. Biplot of Weighted Unifrac distance based redundancy analysis
where each red dot represents a sample and vectors represent the continuous
stress measures each pointing to the direction to which they exhibit the
strongest association while their magnitude indicates the strength of the vari-
able in explaining the dispersion observed. The variance contributed by age,
zBMI, gender, parental education, diet, physical activity and sleep has been
partialled out. Associations were significant for pnn50 and happiness only.
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When separating by age group (see Appendix B), very often different
stress-differentiating taxa appeared for preadolescents versus adolescents.
For happiness and pnn50, there were more differentiating taxa in pre-
adolescents than in adolescents, while the opposite was true for the other
stress parameters. On phylum level, lower Firmicutes with higher stress was
found in both age groups, while lower Bacteroidetes with higher pnn50 (i.e.
low stress) was only present in adolescents, and the association between
happiness and lower Proteobacteria was only true in preadolescents.

Using differential abundances by zero-inflated binomial regression
based on OTU’s and adjusted for confounders (see Table 3 for sum-
marized data and Appendix C for full data), several of these findings
were confirmed. Effect sizes in terms of Cohen’s d ranged from small
(< 0.2) to very high (maximum observed=1.8) but mostly the dif-
ference in specific OTU between high and low stress was around a half
to one standard deviation. The amount of significant OTU's differed per
stress parameter: 1 OTU (=0.8% of all counts) for hair cortisol, 16 OTU

Negative emotions

Hair cortisol

Negative events

Emotional problems

pnn50
happy

Fig. 3. Linear discriminant analysis effect size
(LEfSe) cladogram for the six stress parameters.
Negative events: a) Prevotellaceae UCG001, b)
Prevotellaceae, c) Veilonellaceae uncultured, d)
Sneathia, e) Leptotrichiaceae, f) Brachyspira, g)
Brachyspiraceae, h) Spirochaetales. Negative
emotions: a) Coriobacteriaceae uncultured, b)
Rikenellaceae, c) Faecalibacterium, d) Veillo-
nellaceae, e) Selenomonadales, f) Methylo-
philaceae uncultured, g) Methylophilaceae, h)
Methylophilales, i) Sulfurovum, j) Helico-
bacteraceae, k) Campylobacterales. Emotional
problems: a) Coprobacter, b) Clostridiales Vadin
BB60 uncultured, c) Clostridiales Vadin BB60, d)
Pseudobutyrivibrio, e) Ruminococcaceae UCG. Hair
cortisol: a) Bacteroidales S24-7 uncultured, b)
Sediminibacterium, c) Lachnospiraceae UCG005,
d) Ruminococcaceae uncultured, e) Phascolarcto-
bacterium, f) Acidaminococcaceae, g) Alcalige-
naceae, h) Burkholderiales. Pnn50: a) Rhodococcus,
b) Nocardiaceae, c) Corynebacteriales, d) Family
XIII UCG001, e) Coprococcus2, f) Lachnospira, g)
Roseburia, h) Eubacterium ventriosum, i)
Ruminococcus gauvreauii, j) Lachnospiraceae un-
cultured, k) Ruminococcaceae UCG014, l) Rumino-
coccus1, m) Clostridiales. Happy: a) Methano-
brevibacter, b) Methanobacteriaceae, c) Methano-
bacteriales, d) Rhodococcus, e) Nocardiaceae, f)
Corynebacteriales, g) Bacteroides, h) Bacteroi-
daceae, i) Porphyromonas, j) Rikenellaceae, k)
Bacteroidales, l) unclassified, m) unclassified, n)
Lactococcus, o) Lachnoclostridium, p) Lachno-
spiraceae NK4A136, q) Lachnospiraceae UCG008, r)
Roseburia, s) Ruminococcus gauvreauii, t) Lachno-
spiraceae uncultured, u) Ruminococcus1, v)
Eubacterium coprostanoligenes group, w) Clostri-
diales, x) Coprobacillus, y) Sneathia, z) Lepto-
trichiaceae, a0) Escherichia-Shigella, a1)
Enterobacteriaceae, a2) Enterobacteriales.
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(=4.7%) for negative events, 25 OTU (=5.9%) for emotional problems,
15 OTU (=6.2%) for negative emotions, 24 OTU (=11.8%) for happy
and 31 OTU (=13.0%) for pnn50. Taken all stress measures together,
35 genera seemed distinctive towards stress. Genera with highest effect
size were Ruminococcaceae UCG014, Bacteroides, Phascolarctobacterium,
Tenericutes uncultured, Eubacterium coprostanoligenes, Methobrevibacter
and Blautia. The most consistent finding was a positive association with
Bacteroides for 5 of the 6 stress parameters, followed by three positive
associations with Parabacteroides, three negative associations with
Phascolarctobacterium, two negative associations with Lachnospiraceae
NK4A136 and two positive associations with Rhodococcus,

Methanobrevibacter and Roseburia. Significant OTU-stress associations
for most stress parameters but in opposite directions (i.e. sometimes
positive, sometimes negative) were found for Ruminococcaceae
UCG014, Tenericutes, Eubacterium coprostanoligenes, Prevotella 9 and
Christensenellaceae R7. Overall, differential abundances depending on
stress levels were seen within the phyla Actinobacteria, Bacteroidetes,
Euryarchaeota, Firmicutes, Verrucomicrobia and Tenericutes. Results
separated by age group can be found in Appendix B. As a small sample
size reduces performance of the zero-inflated binomial regression, only
few significant taxa appeared in both children and adolescents.

Table 3
Significant differential abundances by zero-inflated binomial regression for the six stress parameters.

+: increased, −: decreased: +/− sometimes increased and sometimes decreased in the high stress group. Analyses were adjusted for age, gender, parental
education, zBMI, fiber, protein, sweet and fat food intake, physical activity and sleep.
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4. Discussion

Our goal was to see whether the association between gut microbiota
and stress is visible in the full spectrum instead of focusing on the ex-
tremes (i.e. those suffering from a psychiatric illness). Therefore, data
was used from a group of 8-16y old children from the general popu-
lation. More specifically, our goal was to detect which stress measures
in the format of four questionnaires and two biomarkers would be the
most sensitive in relation to gut microbiota composition. After all,
Table 1 showed that only a few of them are significantly interrelated
and our previous research has shown that cortisol and HRV can reflect
different stress exposures (Michels et al., 2013). This is the first study to
consider the use of hair cortisol, HRV and positive emotions. For the
first time, we show that a surrogate marker of the parasympathetic
response to stress (i.e. pnn50) clearly corresponds to microbial com-
position. Similar findings were present for happiness. Indeed, pnn50
and happiness were positively correlated with each other (see Table 1).
High stress as reflected by low pnn50 and more negative events was
associated with lower alpha diversity by Simpson index. Pnn50 and
happiness were found to significantly drive overall differences in mi-
crobiome variation between samples, based on weighted Unifrac PCoA
and confounder adjusted RDA, thus independent of diet. Taxonomic
differences based on LEfSe analyses were also most pronounced for
pnn50, followed by happiness and negative emotions, while hair cor-
tisol showed the least significant differences. Low pnn50 and thus high
stress was associated with a decreased Firmicutes frequency. Based on
differential distribution analysis of microbial communities, a consistent
finding over at least 2 stress measures was the higher level of Bacter-
oides, Parabacteroides, Rhodococcus, Methanobrevibacter and Roseburia
but lower Phascolarctobacterium and Lachnospiraceae NK4A136. Several
genera gave conflicting results between different stress measures e.g.
Ruminococcaceae UCG014, Tenericutes, Eubacterium coprostanoligenes,
Prevotella 9 and Christensenellaceae R7. Developmental issues seem im-
portant as the overall findings were more pronounced in preadolescents
than adolescents and a lot of taxonomic differences existed between the
two age-groups.
Most of the existing research has been done in rodent models, by

selected probiotic intervention and as case-control studies in depres-
sion. Comparison with the existing literature should thus be done with
caution. Studies on depression often include patients that take medi-
cation, have different severity/duration of depression or have co-
morbidities with inflammatory status while often no adjustments are
done for confounders like diet. In our child/adolescent population, the
stress measures were not consistently associated with inflammation
(unpublished data) and participants taking medication were excluded.
Moreover, subtle differences might exist in gut microbiome alterations
as a consequence of stress-exposure versus as a consequence of clinical
depression per se, although stress and depression share similar neuro-
biological pathways including HPA axis and autonomic dysfunction.
Depression is a stress-related disorder and stress-induced depression-
like behavior that manifests concurrently with stress-induced micro-
biota alterations is a feature of the preclinical literature. In rodents, the
precise magnitude and direction of the microbiota shift may vary be-
tween different mouse strains and/or models of stress (Bharwani et al.,
2016).

4.1. Alpha and beta diversity

We detected a decreased alpha diversity using the Simpson diversity
matrix in stress reflected by negative events and pnn50. Although
greater bacterial diversity is potentially beneficial to human health, its
role in brain function remains subject to debate. In patients with de-
pression, either no alterations in alpha diversity, sometimes less di-
versity and occasionally higher diversity have been reported (Kuo and
Chung, 2018). In terms of beta diversity, conflicting results in literature
have also been reported with either significant separations in humans

between groups or not (Kuo and Chung, 2018). In healthy women, no
significant gut microbiome diversity differences depending on stress,
anxiety or depression were found (Kleiman et al., 2017). In accordance
with this, our negative emotions parameter did not show significant
alpha or beta diversity. Nevertheless, significant separation of the stress
groups was evident by PCoA plot and a clear association was seen using
dbRDA for positive emotions. Indeed, positive and negative emotions
have been shown to exhibit distinct effects on the human gut micro-
biota (Li et al., 2016). No studies have yet examined diversity based on
cortisol or parasympathetic activity but we have now shown that
parasympathetic activity (measured with pnn50) is a discriminator in
the PCoA plot. The PCoA based on weighted Unifrac was more pro-
nounced so it concerns rather shifts in relative abundance than the pure
absence/presence of bacteria.

4.2. Overall taxonomic differences

At a phylum level we observed lower Firmicutes (mainly the order
of Clostridiales) for stress as reflected by low pnn50 or low positive
emotions, with then a counter reaction in Bacteroidetes (mainly the
order of Bacteroidales) for positive emotions. Consequently, a lot of
Lachnospiraceae and Ruminococcaceae OTU differences appeared in
the more detailed analyses but with positive and negative associations.
In general, a higher gut Firmicutes/Bacteroidetes ratio has been related
with ill health like obesity, but this has recently been challenged (John
and Mullin, 2016). In major depression, Firmicutes is more often un-
derrepresented in fecal samples, while Bacteroidetes has a quite in-
conclusive trend of abundance (Kuo and Chung, 2018). In fact, research
shows that disease is more than just the imbalance between phyla. In-
deed, fecal OTU specific differences in e.g. Firmicutes have been de-
tected with either increases or decreases in a social stress rodent model
(Bharwani et al., 2016) and in a major depression group (Zheng et al.,
2016).
Therefore, we looked further into the genus level. In major de-

pression, fecal Bacteroides and Blautia are often overrepresented while
Bifidobacterium, Faecalibacterium and Dialister are often under-
represented (Kuo and Chung, 2018). In addition, fecal Alistipes, Pre-
votella and Roseburia were reported to have opposite direction of
abundance across human studies (Kuo and Chung, 2018). In healthy
adults, fecal Prevotella was twice positively related to stress parameters
(Hantsoo et al., 2018; Tillisch et al., 2017). Thirty-five different genera
appeared significant in our OTU-based regression. We limit the dis-
cussion towards our most consistent genera.

Bacteroides, the most frequent genus of the Bacteroidetes in our
population, was increased for most stress parameters, while
Parabacteroides was decreased. This is in agreement with the general
findings on gut microbiota in human depression (Kuo and Chung, 2018)
and healthy adults (Li et al., 2016). Related to this, fecal Bacteroides
have been reproducibly associated with high-fat, high-protein Western-
style diets, thus as a biomarker of unhealthy lifestyle. Another genus of
this phylum, Prevotella, showed often inconsistent associations with
four stress parameters and this inconsistent pattern is also mentioned in
a review on human depression (Kuo and Chung, 2018). The other
phylum with several stress associations was Firmicutes. Herein, Rumi-
nococcaceae UCG014 was the only genus associated with all six stress
parameters but with mixed findings. In human depression, fecal Ru-
minococcaceae have been reported to be increased (Zheng et al., 2016)
or decreased (Painold et al., 2018) but this depended on the specific
genus. Phascolarctobacterium was negatively associated with three stress
measures, thus corroborating some human studies (Hantsoo et al.,
2018; Li et al., 2016; Zheng et al., 2016). Roseburia was positively as-
sociated with two stress measures, which corroborates some human
studies (Chen et al., 2018b; Jiang et al., 2015) while contradicting
others (Li et al., 2016; Zheng et al., 2016) that also indicate fecal Ro-
seburia as a source of beneficial butyrate. Lachnospiraceae NK4A136 was
negatively related to two stress measures. Although the family of
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Lachnospiraceae in fecal samples has indeed been negatively related to
human depression (Naseribafrouei et al., 2014; Zheng et al., 2016), we
could not find reports of this specific genus in the stress literature. In
general this family is known for the health beneficial butyrate and
general short chain fatty acid production as also observed in children
(Dong et al., 2018). The same fact of no current report in stress research
was true for fecal Christensenellaceae, Tenericutes uncultured and Eu-
bacterium coprostanoligenes, which showed inconsistent associations
with stress. Finally, a positive association with two of our stress para-
meters was seen for Rhodococcus and Methanobrevibacter, fecal genera
which are not really cited in stress research yet. Fecal Rhodococcus has
been linked to human gut dysbiosis like ulcerative colitis (Sasaki and
Klapproth, 2012). Fecal Methanobrevibacter is mainly known as me-
thane producing and energy-efficient genus that is increased in people
with anorexia while decreased in overweight (Million et al., 2013).

4.3. Associations with stress reports

Happiness was the stress measure which exhibited the strongest
confounder adjusted association with gut microbiota. Still, all ques-
tionnaires resulted in 15 to 24 significant OTU associations. The finding
that negative emotions are less relevant corroborates the findings of
two other studies in healthy people. In 91 healthy women, fecal mi-
crobiota status was not at all associated with anxiety, depression or
perceived stress (Kleiman et al., 2017). In three people in a closed en-
vironment, anxiety, anger and depressive mood seemed less related to
fecal bacterial changes over time than vigor (as a positive state) and
confusion (as a negative state) (Li et al., 2016). We can thus confirm the
importance of positive emotions/mood. Nevertheless, there might be
differences depending on the psychological report as a probiotic study
found decreases in anxiety and depression but not in perceived stress
(Messaoudi et al., 2011). Probiotic intake has been shown to control
emotion processing as measured by lab tests on cognitive reactivity to
sad mood (using the validated ‘revised Leiden index of depression
sensitivity scale’) and functional magnetic resonance imaging in mid-
brain, insula and somatosensory cortex on brain connectivity and
emotional attention task responsivity in healthy individuals
(Steenbergen et al., 2015; Tillisch et al., 2013), with a higher abun-
dance of fecal Prevotella in particular being related to worse emotion
regulation and thus increased emotional arousal (Tillisch et al., 2017).
In our sample, Prevotella was related to both positive and negative
emotions but in an inconsistent direction. Positive mood has in one
study been associated with fecal Roseburia, Phascolarctobacterium,
Lachnospira, and Prevotella while negative mood with Faecalibacterium,
Bifidobacterium, Bacteroides, Parabacteroides and Anaerostipes and inter-
individual opposite findings for Lachnospiraceae uncultured and Rose-
buria (Li et al., 2016). We could confirm the positive relation of Bifi-
dobacterium, Bacteroides and Parabacteroides with negative emotions
and the negative relation of Phascolarctobacterium while Prevotella
showed inconsistent associations and high Roseburia levels were asso-
ciated with more stress.

4.4. Associations with cortisol

To our knowledge, no studies exist that document the relationship
between hair cortisol as a marker of long-term stress exposure and
microbiota composition as measures have been limited to blood/urine/
saliva measures of cortisol that are less representative of chronic stress
exposure. Probiotic interventions have shown a decrease in salivary or
urinary cortisol in humans at baseline (Kato-Kataoka et al., 2016;
Messaoudi et al., 2011; Schmidt et al., 2015; Takada et al., 2016), after
stress-induction (Allen et al., 2016) and blood corticosterone in rodents
(Bravo et al., 2011; Sudo et al., 2004). Nevertheless, there are also a few
non-significant findings for probiotics with Lactobacillus species on
human plasma cortisol levels (Rudzki et al., 2018) and the salivary
cortisol response to a lab stressor (Kelly et al., 2017). Similarly,

transplantation of a depression-associated human microbiota to rodents
did not change their plasma corticosterone (Kelly et al., 2016). Al-
though saliva cortisol and stress reports during pregnancy did not
correlate with each other, both were related to infant gut microbiota:
infants of mothers with high cortisol/stress values had higher abun-
dance of some Proteobacteria while lower abundance of lactic acid
bacteria and Bifidobacteria (Zijlmans et al., 2015). We could only find
one study that reported direct associations between human blood cor-
tisol levels and specific taxa: the cortisol response to stress in pregnant
women was positively related with abundance of Rikenellaceae and
Dialister and negatively with Bacteroides (Hantsoo et al., 2018). In our
population, hair cortisol was only related to a higher relative abun-
dance of Ruminococcaceae UCG014.

4.5. Associations with HRV

Some rodent studies showed that the effect of probiotics on anxiety/
depression was dependent on the nervus vagus as vagotomization
nullified the behavioral and physiological results (Bercik et al., 2011;
Bravo et al., 2011; Takada et al., 2016). However, probiotic effects are
very strain-specific and vagus-independent pathways also exist since
vagotomy failed to block certain signals. Certain bacteria like Lacto-
bacillus, Escherichia and Bacillus can produce neurotransmitters like
norepinephrine and acetylcholine (Cryan and Dinan, 2012). The nervus
vagus can sense metabolites (direct bacterial products like short chain
fatty acids or indirect by enteroendocrine cell activity) via receptors on
its afferent nerves to signal to the brain; in the other direction stress
depresses nervus vagus activity with then reduced suppression of in-
testinal permeability and inflammation. Nevertheless, human observa-
tional or interventional studies on depression or stress have not yet
considered the role of the parasympathetic nervous system. In our
study, the parasympathetic parameter was one of the strongest readouts
correlated with microbiota composition.

4.6. Strengths and limitations

This is the first study to describe gut microbial differences de-
pending on stress parameters in children/adolescents. Most research
has been done in patients with depression (case-control or intervention)
and a few papers on healthy adults exist. The use of hair cortisol and
HRV, both reliable physiological stress measures, is a novel feature of
this report and important in establishing stress-microbiome associa-
tions. In addition, we included positive emotions to confirm the only
study that made the distinction between positive and negative mood (Li
et al., 2016). We present both raw associations as well as analyses
adjusted for important confounders like diet, physical activity, sleep
socio-economic status and overweight. Nevertheless, diet factors were
retrieved from a food frequency questionnaire, so no information on
total energy intake was available.
A first limitation is the cross-sectional nature that withholds any

statement of the direction of the relationship (stress influencing mi-
crobiota, microbiota influencing stress). Although our sample size is
larger than most other stress-microbiota papers (e.g. 48 healthy
women), some parameters like cortisol were only available in a subset
resulting in less power and much larger populations are necessary in
future studies. Large European cohorts have reported high levels of
inter-individual variation in microbiota composition and suggest that
any individual factor would probably have only a very modest effect
size e.g. depression could explain 0.2% of variance while all tested
predictors together still explained lower than 20% (Falony et al., 2016;
Zhernakova et al., 2016). Another limitation is the representativeness of
our population. There was enough variety in stress level as around
25–30% were at risk for stress, but all participants came from the same
city with rather high socio-economic status and very low prevalence of
overweight individuals. Inter-individual difference in mood-taxa cor-
relations in healthy humans have been shown (Li et al., 2016), thus
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illustrating these findings might be inherent to population character-
istics. Finally, we used a method of 16S rRNA analysis which does not
give a high level of resolution i.e. we cannot distinguish beneficial and
harmful taxa as that often requires species-level resolution and we have
no information on functional activity of the taxa i.e. metatran-
scriptomics. Therefore, whole-genome metagenomic shotgun sequen-
cing is recommended. After all, even OTUs from the same genus gave
sometimes contradictory results.

5. Conclusion

First, our hypothesis was confirmed that in children/adolescents
stress parameters are also cross-sectionally related to gut microbial
composition independent of dietary intake. Second, a unique finding of
this study was that mainly positive emotions (in contrast to negative
emotions) and the parasympathetic system (reflected by pnn50) seemed
to distinguish different microbial compositions. Thus these measures
should be integrated in future microbiota projects to confirm our
findings in longitudinal and interventional research. However, these
parameters are not yet used in standard psychological/psychiatric
clinical practice as their applicability needs to be validated first.
Moreover, the use of several questionnaires is recommended as taxa
associations were highly instrument specific. Third, many associations
were OTU specific. This highlights the complex structural alterations
and the sensitivity of certain bacterial groups to stress exposure. Fourth,
we could confirm the literature on lower Firmicutes on phylum level,
increased Bacteroides and Parabacteroides with stress and decreased
Phascolarctobacterium in high stress groups but found some new stress-
sensitive taxa in association with high stress like higher Rhodococcus
and Methanobrevibacter, lower Lachnospiraceae NK4A136 and mixed
findings for several genera.
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