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1 Introduction 

1.1 The Pancreas 

1.1.1 Anatomy  

The pancreas is an elongated, glandular organ located in the posterior abdominal wall 

behind the stomach. Anatomically, the pancreas is divided in three regions, the pancreas 

head, the body and the tail (Parsons, et al. 1992). The majority of the pancreatic mass is 

concentrated in the head, which connects to the duodenum through the pancreatic duct. The 

body of the pancreas is thinned and stretches over the duodenojejunal intestine and extends 

to the narrow pancreas tail at the hilum of the spleen (Pandol 2010).  

On the functional level, the pancreas is subdivided into two distinct cell lineages, exocrine 

and endocrine. The exocrine compartment consists of acinar cells and complex ductal 

networks and makes up approximately 98 % of the mature pancreatic organ. Acinar cells 

produce digestive enzymes in order to break down carbohydrates, fat and proteins in the 

duodenum. Moreover, epithelial cells lining at the ducts produce and secrete bicarbonate to 

neutralize the acid coming from the stomach. Together, this pancreatic juice is guided 

through the ductal network to be delivered into the duodenum. Secretion of these enzymes is 

regulated by hormones released by the stomach and duodenum in response to food intake 

(Means and Leach 2001). Interspersed within the exocrine parenchyma are small clusters of 

several hundreds to thousand endocrine cells, namely the islets of Langerhans. These micro-

organs play a critical role in maintaining glucose homeostasis by secreting cell type specific 

hormones into the bloodstream (Sakula 1988). In order to deliver these hormones sufficiently 

into the circulation system, the pancreas facilitates a unique and complex vascular network. 

Pancreatic anatomic studies showed that the blood flow from the pancreas enters capillaries 

of the exocrine tissue surrounding the individual islets before entering the circulation system 

(Ballian and Brunicardi 2007). Venous drainage from the body and tail of the pancreas flows 

into the splenic vein, whereas the head region drains into the superior mesenteric vein 

(Bockman, et al. 1983). 
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1.1.2 Development 

Not surprisingly, islet organogenesis has been shown to differ between human and 

mouse, however key developmental events seem to be roughly conserved (Nair and Hebrok 

2015). Rodent pancreas development has been divided into three main transition phases 

(Fig. 1), each characterized by organ morphology and a controlled cascade of gene 

activation by the expression of key transcription factors (Rutter, et al. 1968; Kim, et al. 1997). 

The first transition phase, from embryonic day (E) 8.5 to 12.5, is characterized by the 

occurrence of morphological changes in the pancreatic epithelium and first specification of 

different pancreatic cell types takes place. Within the second transition phase, between 

E12.5 and E16.5, the majority of endocrine cell specification occurs. Finally, in a third 

transition phase from E16.5 to birth, differentiated endocrine cells migrate to form the islets of 

Langerhans (Rutter, et al. 1968; Pictet, et al. 1972; Herrera, et al. 1991; Pan and Wright 

2011). 

Morphologically, pancreas development begins with the evagination and thickening of a 

dorsal pancreatic bud from the embryonic foregut endoderm. This is followed by the 

emergence of the anlage of the ventral pancreatic bud and the common bile duct from the 

ventral foregut endoderm. The subsequent expansion and branching of both pancreatic buds 

is a tightly regulated process which relies on signaling from the notochord and active 

crosstalk between the pancreatic epithelium and the surrounding mesenchyme. During the 

second transition phase, rapid expansion, branching and fusion of the pancreatic dorsal and 

ventral buds occurs. As a result of gut tube rotation and stalk expansion, the two pancreatic 

buds eventually fuse into a single interconnected organ.(Wessells and Cohen 1967; Pictet, et 

al. 1972; Jorgensen, et al. 2007). This process includes the fusion of the pancreatic ducts, 

leaving a single common bile duct (duct of Wirsung) that runs the entire length of the 

pancreas. These morphological events coincide with the formation of the three main 

pancreatic cells types, endocrine islet cells and exocrine acinar and ductal cells (Pictet, et al. 

1972; Schwitzgebel, et al. 2000). Lineage tracing experiments showed that all pancreatic 

cells derive from the same origin of multipotent pancreatic progenitor cells which have the 

capacity to differentiate into any of the three pancreatic lineages. These progenitor cells are 

characterized by the expression of pancreatic and duodenal homeobox 1 (Pdx1) (Ohlsson, et 

al. 1993; Gu, et al. 2002). The initial expression of Pdx1 starts already at E8.5 and defines 

the pancreatic cell fate before first morphological signs are visible. As organogenesis 

continues, Pdx1 expression mainly persists in the pancreatic regions, but expands to a few 

epithelial cells of the later stomach and duodenum (Ohlsson, et al. 1993; Offield, et al. 1996). 

Yet, pancreatic cell fate specification is determined by the co-expression of Pdx1 and 
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pancreas specific transcription factor 1a (Ptf1a). Studies showed that both transcription 

factors play a critical role for proper pancreas specification and were identified to contribute 

to all three pancreatic lineages. However, Ptf1a expression becomes restricted to exocrine 

acinar cell differentiation later during development (Krapp, et al. 1996; Hald, et al. 2008). The 

first sign for endocrine cell specification is the expression of the basic helix-loop-helix 

transcription factor Neurogenin 3 (Ngn3) (Gu, et al. 2002). Transcription of Ngn3 is observed 

in two distinct temporal waves from E8.5 until 15.5, starting with relatively low levels at the 

time of pancreatic budding, followed by a major peak at E14.5 and rapid decline thereafter 

(Schwitzgebel, et al. 2000). Interestingly, this biphasic expression pattern correlates with the 

first and second transition phase of pancreatic organogenesis and confirms the essential 

contribution of Ngn3 expression in pancreatic endocrine lineage commitment. During the last 

decades studies have identified Ngn3 as a master regulator of endocrine cell specification 

and its absence during development leads to a lack of endocrine cell formation, whereas the 

exocrine and ductal compartments develop normally (Gradwohl, et al. 2000; Schwitzgebel, et 

al. 2000; Gu, et al. 2002). Unlike multipotent pancreatic progenitor cell lineages, Ngn3 

expressing precursor cells have been shown to be less proliferative giving rise to only one 

single endocrine cell (Desgraz and Herrera 2009). The mechanisms inducing Ngn3 

expression are not completely clarified, but several studies revealed that Notch signaling 

functions as a negative regulator of Ngn3. Inhibition of Notch signaling on the other hand 

leads to overexpression of Ngn3 and enhanced formation of beta cells (Apelqvist, et al. 1999; 

Murtaugh, et al. 2003; Nakhai, et al. 2008). Furthermore, it has been shown that Pdx1 

expressing progenitor cells that transiently induce Ngn3 go through competence windows 

each allowing the generation of specific endocrine subtypes (Apelqvist, et al. 1999; 

Gradwohl, et al. 2000; Gu, et al. 2002; Jorgensen, et al. 2007). Thus, early Ngn3 expression 

around E9.5 exclusively leads to the formation of alpha cells, whereas its expression around 

E11.5 suggests the predominant differentiation of beta and PP cell phenotypes. Finally, Ngn3 

activity from E14.5 onwards favors delta cell differentiation (Ohlsson, et al. 1993; 

Schwitzgebel, et al. 2000; Johansson, et al. 2007). 

After endocrine cell fate is specified by the initiation of Ngn3 expression, endocrine 

progenitor cells delaminate out of the epithelium and further differentiate towards distinct 

endocrine cell types. This process is influenced by expression of several downstream 

transcription factors of Ngn3 signaling, including aristaless related homeobox (Arx), paired 

box gene (Pax4), neuronal differentiation 1 (NeuroD1), homeobox protein Nkx2.2 and Nkx6.1 

(Bonal and Herrera 2008; Gouzi, et al. 2011). Numerous gene knockout studies have given 

insights into the different pathways controlling the selection of endocrine cell fates (Sander, 

et al. 2000; Collombat, et al. 2003; Matsuoka, et al. 2004; Collombat, et al. 2005). For 
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instance, Arx and Pax4 expression have opposite roles in the process of islet cell fate 

differentiation. While Pax4 expression leads to beta and delta lineage commitment, Arx 

promotes alpha and epsilon lineage specification (Collombat, et al. 2003) Furthermore, 

enhanced levels of Pdx1, MafA and Nkx6.1 eventually lead to beta cell formation, whereas 

Arx and MafB expression is restricted to alpha cells (Kataoka, et al. 2002; Matsuoka, et al. 

2004; Jensen, et al. 2005; Artner, et al. 2007). Accordingly, absence of these transcription 

factors leads to loss of alpha and beta cells resulting in a subsequent increase of delta cells 

(Sussel, et al. 1998; Collombat, et al. 2005).  

Finally, within the last transition phase of pancreatic development the differentiated 

endocrine cells migrate away from the progenitor cell domain and form clusters within the 

pancreatic mesenchyme (Pictet, et al. 1972; Jorgensen, et al. 2007). By the end of gestation, 

these clusters of pancreatic endocrine cells have been fully generated and assembly into 

mature islets has been completed (Herrera, et al. 1991).  

The development of human islets in comparison to mouse, shows some important 

differences including delayed appearance of key differentiation markers, a single transition 

phase of endocrine differentiation as well as dissimilarities in the timing of endocrine cell 

specification (Nair and Hebrok 2015). During the phase of pancreatic lineage separation, 

extended presence of SOX9 is found in the human acinar cells and prolonged expression of 

NKX6.1 in the endocrine lineage (Jennings, et al. 2013). Most contrary to mouse 

development is the appearance of only a single phased induction of NGN3 expression 

leading to endocrine cell differentiation. However, timing of NGN3 peak occurrence and 

expression in non-proliferative cells was consistent compared to mouse data (Salisbury, et 

al. 2014). Moreover, absence of NKX2.2 expression was detected in human progenitor cells 

and did first appear after endocrine lineage commitment by NGN3 expression (Jennings, et 

al. 2013). This might explain the differences in temporal differentiation of endocrine cell types 

compared to mouse. While mouse development revealed the formation of alpha cells prior to 

beta, PP and delta cells, first endocrine cells to arise in human are beta cells (Schwitzgebel, 

et al. 2000; Johansson, et al. 2007; McDonald, et al. 2012).  

Summarily, human and mouse organogenesis display differences in presence and timing of 

developmental transcription factors, however key events in endocrine lineage commitment 

are comparable.  
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Figure 1: Scheme for rodent development of the three terminally differentiated cell types in 
the pancreas. According to Pan and Wright, 2011. 
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1.2 Islets of Langerhans 

1.2.1 Islet architecture 

The pancreatic islets were first described in 1869 by the german pathological anatomist 

Paul Langerhans. Although he provided a detailed description of these cell clusters their 

function remained unclear until 1893, when Édouard Lagusse, a french scientist, 

rediscovered the islet cells and postulated that they might serve an endocrine function 

(Sakula 1988). During the next century, numerous studies facilitated the discovery that the 

islets of Langerhans are complex micro-organs composed of five endocrine cell types, 

responsible for the maintenance of glucose homeostasis (Ceranowicz, et al. 2015). 

The adult pancreas is composed of approximately 1-2 % endocrine cells and cluster size 

varies in a range from 40 up to 500 µm (Saito, et al. 1978; Bosco, et al. 2010). The islets of 

Langerhans are innervated by the autonomous nerve system (Smith and Porte 1976) and 

consist of multiple secretory endocrine cells, namely insulin secreting beta cells, glucagon 

producing alpha cells, somatostatin containing delta cells, the pancreatic polypeptides 

secreting (PP) cells and ghrelin containing epsilon cells (Brissova, et al. 2005). The most 

abundant cells within the islets are alpha and beta cells, but studies performed on the 

cytoarchitecture of pancreatic islets revealed that there are differences in islet composition 

among the different species (Brissova, et al. 2005; Cabrera, et al. 2006; Kim, et al. 2009; 

Bosco, et al. 2010). Islets of mice and other rodents contain approximately 75 % beta cells 

predominantly located in the central core of the islets, surrounded by a periphery forming 

mantle of alpha and delta cells. In contrast, human islets show a high heterogeneity in terms 

of cellular composition with beta cell fractions varying between 28 and 75 % (Brissova, et al. 

2005). Moreover, pancreatic islets are highly vascularized by a dense network of capillaries 

(Zanone, et al. 2008) which also has been shown to differ substantially between human and 

rodent islets (Cabrera, et al. 2006; Brissova, et al. 2015; Cohrs, et al. 2017). Cohrs et al. 

provided evidence that human islets are less vascularized than mouse islets, as a result of 

reduced vessel diameter and density (Cohrs, et al. 2017). Moreover, their cellular 

arrangement differs compared to rodents, as the beta cells are intermingled by alpha and 

delta cells aligned along the blood vessels (Kim, et al. 2009; Bosco, et al. 2010; Cohrs, et al. 

2017). The unique cellular composition of human pancreatic islets has been postulated to 

affect beta cell function, allowing the cells to respond to lower glucose concentration 

(3-5 mM) to which rodent islets are blind for (Henquin, et al. 2006; Dufrane, et al. 2007; Dai, 

et al. 2012). 
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1.2.2 Islet cell function 

Beta cells represent the most abundant cell type in pancreatic islets and play a critical 

role in the maintenance of glucose homeostasis. The primary function of beta cells is to 

secrete insulin in response to increasing blood glucose levels. In order to precisely meet the 

metabolic demand, insulin biosynthesis and secretion has to be tightly controlled. Insulin is a 

peptide hormone first synthesized as a single polypeptide called preproinsulin. After 

cleavage, the precursor molecule proinsulin is packed in secretory vesicles and finally 

cleaved into insulin and C-peptide in equimolar amounts. Both are stored inside secretory 

granules waiting to be exocytosed from the cell upon intracellular signaling (Huang and 

Arvan 1995; Fu, et al. 2013). Unlike insulin, C-peptide is not metabolized by the liver and 

therefore represents a better measure of insulin secretion than insulin itself (Oram, et al. 

2015). The rich vascularization within the islet and the close proximity of endocrine cells to 

this microvasculature, ensures rapid sensing of plasma glucose changes to allow prompt and 

appropriate secretory responses (Cabrera, et al. 2006; Cohrs, et al. 2017). Glucose is 

transported into the beta cells via specific transmembrane glucose transporters (GLUT1 in 

humans and GLUT2 in rodents). Within the cell, glucose is phosphorylated via glucokinase, 

and subsequently undergoes glycolysis to be metabolized to pyruvate which then enters the 

tricarboxylic acid cycle (TCA) in the mitochondria to produce adenosine triphosphate (ATP). 

The generation of ATP in the TCA increases the ATP/adenosine diphosphate (ADP) ratio, 

which serves as a second messenger to promote closure of ATP sensitive potassium 

channels (KATP-channels), leading to the depolarization of the plasma membrane. 

Consequently, opening of voltage gated calcium channels leads to Ca2+ influx which in turn 

initiates exocytosis of insulin granules (Wollheim, et al. 1987; Ashcroft, et al. 1994). This 

signaling cascade describes one of the two major signaling pathways to control insulin 

secretion and is called the triggering pathway. Alone, this pathway would not lead to 

sufficient insulin release, thus glucose also activates metabolic amplifying signals leading to 

an augmented triggering Ca2+ signal (Henquin 2000). However, these pathways are 

hierarchical, meaning the amplifying pathway depends on the initial triggering signal to affect 

the magnitude of insulin secretion (Kalwat and Cobb 2017). 

Although glucose represents a primary stimulus for the secretion of insulin, it can also be 

regulated by several other nutrient factors. Beta cells can metabolize free fatty acids by beta-

oxidation in the TCA, also leading to the production of ATP (Itoh, et al. 2003). Moreover, 

amino acids can be transported actively into the beta cells mediating membrane 

depolarization (Thams and Capito 1999).  
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The second main cell type within the islets of Langerhans is represented by the alpha cells, 

which make up approximately 19 % of the rodent and 35 % of the human endocrine cells 

(Brissova, et al. 2005). Their main function is to secrete glucagon in response to low glucose 

concentrations and thus maintain blood glucose levels within a glycemic range. Similar to 

beta cells, alpha cells store glucagon in secretory granules that are released by exocytosis 

upon intracellular Ca2+ influx (Brereton, et al. 2015). Glucagon secretion exerts systemic 

effects through the glucagon receptor (GR), especially in the liver, mobilizing glucose through 

gluconeogenesis, glycogenolysis and ketogenesis and therefore restoring blood glucose 

levels (Unson 2002). Cellular regulation of glucagon secretion is under debate, but paracrine 

signaling by released factors of neighboring beta and delta cells (Unger and Orci 2010) as 

well as neuronal regulation have been proposed mechanisms (Taborsky, et al. 1998).  

Somatostatin (SST) producing delta cells represent with approximately 6 % (Brissova, et al. 

2005) the third most abundant cell type of the pancreatic islet. This peptide hormone is also 

synthesized and secreted by neuroendocrine cells in other tissues including the 

hypothalamus, the central nervous system, peripheral neurons and the gastrointestinal tract 

(Arimura, et al. 1975; Hokfelt, et al. 1975). Basically, there are two bioactive forms of 

somatostatin. SST-14, consisting of 14 amino acids, which is the predominant form in the 

brain and released by the pancreatic delta cells, while SST-28 (28 amino acids) is a product 

of the intestinal cells (Francis, et al. 1990). Both forms bind to five specific membrane 

receptor subtypes (SSTR1-SSTR5), which are also expressed in alpha and beta cells 

(Kumar, et al. 1999). Although no absolute specificity of any receptor subtype was identified, 

the individual islet cell types have been demonstrated to prefer expression of certain 

receptors. Thus, in rodent islets beta cells predominantly contain SSTR5, whereas alpha 

cells mostly express SSTR2 (Ludvigsen, et al. 2004). In human islets on the other hand the 

SSTR2 has been shown to be predominantly expressed in both, alpha and beta cells (Kailey, 

et al. 2012). The wide distribution and short half life time of SST (less than 1 min) implies 

inhibitory action via paracrine signaling (Lewin 1992). However, knowledge about 

somatostatin secretion in the pancreas is limited, but similarities in the stimulus-response 

pathways of beta and delta cells have been suggested (Hauge-Evans, et al. 2012). Although 

it has been shown, that somatostatin exerts a paracrine inhibitory function on insulin and 

glucagon secretion (Orci and Unger 1975), its physiological relevance still remains unknown. 

Studies performed on Somatostatin knock out mice showed increased insulin and glucagon 

secretion upon glucose stimulation in vivo as well as in vitro (Hauge-Evans, et al. 2009). 

Excluding neuroendocrine cells as a source of SST release by islet isolation, this study 

demonstrated that the observed effect on hormone secretion is most likely attributed to the 
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absence of somatostatin secretion by the delta cells within the islets, confirming the 

importance of SST as a negative regulator of alpha and beta cell function. 

In summary, the islets of Langerhans are well organized cellular networks and their 

characteristic architecture serves to facilitate strong interactions among the different cell 

types, which allows coordinated signaling for tight control of glucose homeostasis. Changes 

in cellular composition, dysfunction or loss of cells might affect the balance between 

hormone and counter regulatory hormone release and therefore lead to metabolic disorders 

like diabetes mellitus.  

1.3 Diabetes Mellitus 

1.3.1 Etiology of diabetes 

Diabetes mellitus is a set of metabolic diseases with common characteristics like 

chronically hyperglycemia and glucose intolerance caused by insulin deficiency, defects in 

insulin secretion and action, or both. Chronic hyperglycemia is associated with long-term 

damage, dysfunction, and failure of various organs, especially the eyes, kidneys, nerves, 

heart, and vascular system (Skyler 2012). Throughout the world an estimated 418 million 

people suffer from diabetes, which makes it necessary to develop novel therapeutic 

approaches to overcome this major health burden (IDF Diabetes Atlas, 2017). 

Type 1 diabetes (T1D), one of the three main diabetes types, is an autoimmune disease 

characterized by the selective destruction of insulin-producing beta cells. The disease occurs 

as a consequence of genetic susceptibility and environmental factors, however the cause of 

this disorder is not clearly defined (Skyler and Ricordi 2011; Jerram and Leslie 2017). T1D is 

often first diagnosed when symptoms occur, although the pathogenic development of the 

disease usually begins years before that. Disease progression is initiated by islet cell 

autoimmunity characterized by elevated levels of pancreatic autoantibodies leading to a 

gradual decline of beta cell mass and function. Enhanced cell death during this prediabetic 

phase ultimately leads to a massive reduction in beta cell mass and subsequent onset of 

hyperglycemia and disease manifestation (von Herrath, et al. 2007; van Belle, et al. 2011). 

The second main form, namely type 2 diabetes (T2D), accounts for the majority of diagnosed 

patients (95 %) (Wu, et al. 2017). T2D results from a combination of resistance to insulin 

action, inadequate insulin secretion, and excessive or inappropriate glucagon secretion 

(Skyler 2012). Although the mechanisms of disease progression are still incompletely 

understood, it is suggested that an inactive lifestyle, over-nutrition and genetic predisposition 

significantly contribute to the risk of T2D development (Kaneto, et al. 2013). T2D is a 

progressive disease initiated by a long prediabetic phase and associated with chronic 
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glucose intolerance and peripheral insulin resistance. Initially, this can be compensated by 

increased beta cell function and mass (Hanley, et al. 2010). However, prolonged insulin 

resistance and subsequently increasing beta cell work load results in cellular exhaustion and 

elevated cell death (Butler, et al. 2003). Finally, a gradual decline of beta cell mass and 

function leads to the development of T2D (Leahy, et al. 2010; Meier and Bonadonna 2013). 

Gestational diabetes mellitus (GDM) describes another form of diabetes characterized by 

glucose intolerance resulting in hyperglycemia first detected during pregnancy. With a 

prevalence of 2-6 % of all European pregnancies, it represents one of the most common 

pregnancy disorders (Buckley, et al. 2012). Pregnancy is accompanied with severe changes 

in glucose metabolism and therefore demands enormous plasticity of the endocrine pancreas 

(Soma-Pillay, et al. 2011). The development of insulin resistance serves as a physiological 

adaptation in order to decrease maternal glucose consumption and supply the developing 

fetus with sufficient nutrients. This leads to an increased demand for insulin and is 

compensated by increased beta cell function and islet mass expansion (Parsons, et al. 1992; 

Sorenson and Brelje 1997; Butler, et al. 2010; Rieck and Kaestner 2010). If this adaptation 

fails, gestational diabetes might develop (Sonagra, et al. 2014). During pregnancy, GDM is 

associated with fetal overgrowth leading to an increased risk of Caesarean section (Schmidt, 

et al. 2001). Even though gestational diabetes is a transient condition occurring during the 

last period of pregnancy, women have a higher risk of developing type 2 diabetes later on 

(Kim, et al. 2002). Moreover GDM has been demonstrated to facilitate long-term 

consequences for the offspring as well, including increased risk of diabetes, obesity, 

cardiovascular diseases and structural hypothalamic changes (Silverman, et al. 1991; Fraser 

and Lawlor 2014). 

1.3.2 Therapeutic approaches 

Unfortunately there is no cure for any of the disease types and existing treatment 

possibilities are still limited and accompanied by long-term side effects (Halban, et al. 2014). 

In some cases, T2D patients manage to achieve glycemic control by oral medications in 

combination with diet changes and exercise. However, the progressive nature of the disease 

leads more frequently to inevitable oral agent treatment in combination with basal insulin 

therapy as glycemic targets cannot be maintained at a certain point (Swinnen, et al. 2009). In 

contrast, patients suffering from type 1 diabetes are highly dependent on treatment with 

exogenous insulin to maintain normal blood glucose levels due to the absolute insulin 

deficiency. Nevertheless, this treatment cannot prevent long-term complications including the 

risk of hypoglycemic episodes, heart disease, nerve damage and moreover a decreased life 

expectancy. A promising treatment option for diabetic patients represents whole pancreas 



Introduction 

 
11 

 

transplantation, which is currently the only long-term treatment that restores glycemic control 

without exposing patients to the risk of severe hypoglycemia (Gruessner and Gruessner 

2013). However, this procedure is an invasive surgery accompanied with life-long 

immunosuppression to prevent graft rejection and autoimmune islet destruction. 

Consequently, pancreas transplantation holds the risk of severe side effects and morbidity. 

The concept of allogenic islet transplantation represents a novel clinical approach by which 

healthy pancreatic islets are isolated from cadaveric organs and infused into the portal vein 

of the diabetic patient’s liver. This treatment holds the promise of insulin independence 

without the invasiveness of whole organ pancreas transplantation (Samy, et al. 2014). 

Although, beta cell replacement therapy by either pancreas- or islet transplantation can 

reduce hypoglycemic episodes and improve life quality, the organ shortage and necessity of 

immunosuppressive medication are two major issues that prevent broad clinical application 

of the treatment (Bruni, et al. 2014). As an alternative approach pig to human islet 

xenotransplantation represents an encouraging strategy to overcome the shortcoming of 

organ donor shortage. However, this strategy is still experimental and needs further 

validation in order to assess the infectious risk of xenotransplantation across species barriers 

(Abrahante, et al. 2011) as well as solving the issue of T-cell mediated rejection (van der 

Windt, et al. 2012). These limitations, together with a shortage of donor organs has directed 

research to alternative beta cell sources for transplantation and led to identification of 

pluripotent human embryonic stem cells (ESCs) (Thomson, et al. 1998) and induced 

pluripotent stem cells (iPSCs) (Takahashi and Yamanaka 2006). Both are capable of 

developing into any cell type and could therefore replace the missing beta cells. However, 

utilization of these new sources still requires further optimization as there are problems 

associated with mutagenesis, tumorigenicity and immunogenicity (Pappas and Yang 2008; 

Gutierrez-Aranda, et al. 2010). 

Therefore, another promising but yet unknown branch of research for diabetes therapy 

represents the usage of the body´s own regenerative capacity. Unfortunately, our 

understanding of mechanisms that control adaptive beta cell mass expansion and survival 

are still limited. Uncovering the plasticity of pancreatic endocrine mass under physiological 

conditions might unravel novel therapeutic approaches and represent a next fundamental 

step for future diabetes therapy. 
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1.4 Plasticity of the pancreatic endocrine mass 

Throughout life, pancreatic beta cell mass is maintained by the equilibrium of cell 

replication, renewal and apoptosis (Bonner-Weir 2000). However, it has been demonstrated 

that beta cell mass slowly increases during lifetime in tight parallelism to the total body 

weight at any time (Montanya, et al. 2000). Nevertheless, beta cell mass is capable of 

dynamic adaptations to compensate changing metabolic conditions such as pregnancy, 

obesity or aging (Van Assche, et al. 1978; Defronzo 1979; Rieck and Kaestner 2010; Saisho, 

et al. 2013). For instance, during late pregnancy or obesity the increase in beta cell mass 

and the improvement of secretory activity serves as a physiological adaptation to meet the 

metabolic demand and to compensate insulin resistance. The lack of this adaptive process 

might lead to impaired insulin secretion and is in part related to the development of type 2 

diabetes (Fonseca 2009). An autopsy study performed in 1985 revealed that not only beta 

cell mass is increased in nondiabetic obese patients, but also that type 2 diabetes is linked to 

a loss of pancreatic beta cell mass (Kloppel, et al. 1985). Subsequent studies suggested the 

decrease in mass is a result of combined stresses specifically directed at the beta cells 

(Halban, et al. 2014). Taken together, these findings suggest that the ability of beta cell mass 

expansion under increased metabolic conditions might be a key factor in preventing T2D. 

Although it is known for decades, that changes in metabolic conditions are associated with a 

compensatory increase in beta cell mass and function (Green and Taylor 1972), the 

mechanisms involved are still not completely clarified. In general, three main mechanisms 

responsible for the formation of new beta cells have been suggested (Fig. 2): replication of 

existing beta cells, beta cell neogenesis via differentiation of new beta cells from endocrine 

progenitors or stem cells and transdifferentiation of non-beta cells to beta cells (Toselli, et al. 

2014).  

1.4.1 Replication of preexisting beta cells 

Although multiple mechanisms have been implicated to be involved in adult beta cell 

mass maintenance and renewal, it has been demonstrated that replication of preexisting beta 

cells represents the major source for beta cell mass during adult life (Dor, et al. 2004). 

Moreover, beta cells have been shown to be very long lived and to maintain their capacity to 

replicate throughout lifespan (Teta, et al. 2005). In a study performed by Montanya and 

colleagues the rate of beta cell replication and apoptosis was determined throughout the first 

20 month of life, in Lewis rats. While potent beta cell proliferation was observed during the 

initial 7 month of life, replication was progressively reduced thereafter. Moreover, it has been 
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shown that hypertrophy was responsible for beta cell mass increase in response to increased 

metabolic demands in the aged cohort, whereas levels of apoptosis remained stable from 1 

to 20 month of life (Montanya, et al. 2000).  

Similarly, islet cell proliferation in the human pancreas was shown to correlate with age 

(Meier, et al. 2008). While high frequencies of beta cell replication were observed within the 

first year of life, a rapid decline during early childhood marks proliferation in the adult human 

pancreas as an extremely rare event (Kassem, et al. 2000). However, postnatal expansion 

has been demonstrated to follow the same pattern as seen in mouse, namely by an increase 

in islet size rather than islet number (Georgia and Bhushan 2004). 

Although turn-over rates have been shown to be rather low in the adult pancreas, beta cells 

are capable to compensate metabolic challenges by increased proliferation which has been 

suggested by various studies using genetic mouse models of obesity (Bock, et al. 2003; 

Georgia and Bhushan 2004; Hull, et al. 2005; Cox, et al. 2016). More precisely, Bock et al. 

could show a total islet volume increase of 3.6 fold in ob/ob mice, a mouse strain with a 

mutation in the leptin encoding gene resulting in profound obesity. Interestingly, total islet 

numbers did not differ in comparison to ob/+ mice, suggesting islet cell hypertrophy and 

hyperplasia as main mechanism for beta cell mass expansion (Bock, et al. 2003). Similar 

results have been observed by Cox and colleagues using an inducible leptin receptor 

deficient mouse resulting in a threefold beta cell mass increase as a consequence of 

increased proliferation (Cox, et al. 2016). Furthermore, experimental models of pancreas 

injury confirmed that the initiation of proliferation represents the major mechanism of beta cell 

regeneration. Work performed by Nir and colleagues demonstrated that, after diphtheria toxin 

induced beta cell ablation with an efficiency of 70-80 %, the remaining pool of beta cells 

showed enhanced proliferation rates in the adult mouse and lead to recovery of glucose 

tolerance over time (Nir, et al. 2007). Moreover, lineage tracing experiments revealed that all 

beta cells contribute homogenously to islet growth, regeneration and maintenance 

(Brennand, et al. 2007). 

A physiological model for a marked increase in pancreatic beta cell mass is represented by 

pregnancy, as increased insulin demand is compensated by beta cell mass expansion (Rieck 

and Kaestner 2010). Multiple studies performed in rats and mice demonstrated a massive 

beta cell growth primarily due to proliferation of preexisting beta cells (Parsons, et al. 1992; 

Sorenson and Brelje 1997; Beamish, et al. 2017). Also human pregnancy is associated with 

an increase in islet mass of up to 2 fold (Van Assche, et al. 1978). However, beta cell 

adaptation was mainly due to an increase in islet density represented by the appearance of 

increased numbers of small islets (Butler, et al. 2010). This suggests the influence of beta 

cell neogenesis rather than proliferation of existing beta cells during human pregnancy.  
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In summary, these and other studies have demonstrated that adult beta cell growth primarily 

occurs by self-duplication and that metabolic demand resembles the most powerful stimuli for 

beta cell mass expansion. Nevertheless, knowledge about contribution of endocrine non-beta 

cells or progenitor cells is lacking and might also play a crucial role in physiological 

adaptation of beta cell mass. 

1.4.2 Beta cell neogenesis 

Islet cell neogenesis describes the formation of new pancreatic endocrine cells and is 

known to be responsible for the initial formation of the endocrine pancreas during 

embryogenesis (Herrera, et al. 1991; Gu, et al. 2002). During pancreas development, 

multiple transcription factors are involved in the differentiation of pancreatic progenitor cells 

towards endocrine lineage commitment (Jensen, et al. 2005). It has been demonstrated, that 

the regenerative capacity of beta cells declines very rapidly after the first days of life and that 

neogenesis derived from precursor cells is not readily activated thereafter (Wang, et al. 

1996). Yet, regeneration of beta cell mass might occur under certain physiological conditions. 

Thus, lineage tracing experiments by Abouna et al. have identified the contribution of non-

beta cell progenitors to beta cell mass expansion during pregnancy. Moreover, it has been 

suggested that these precursor cells are associated with ductal epithelium (Abouna, et al. 

2010). Remaining morphological evidence for beta cell regeneration derives from studies 

performed in experimental models of beta cell destruction or injury (Bouwens and Rooman 

2005). Thus, Xu and colleagues observed the generation of new beta cells induced by partial 

duct ligation (PDL) in the pancreas of the adult mouse. Lineage tracing revealed the 

activation of highly proliferative, Ngn3 expressing cells within the ductal lining. After isolation, 

these cells gave rise to functional beta cells in vitro. These findings suggest the contribution 

of multipotent progenitor cells in the ductal lining that activate Ngn3 expression to induce 

beta cell regeneration upon injury by PDL (Xu, et al. 2008). A follow up study using selective 

Ngn3 ablation, confirmed the key role of this transcription factor and its contribution in the 

neogenesis of beta cells in the injured pancreas of adult mice (Van de Casteele, et al. 2013). 

An alternative mechanism was described using an experimental model of beta cell 

destruction caused by alloxan in adult Bl/6 mice. Alloxan treatment mediated beta cell 

destruction and induced hyperglycemia after 1 day. Treatment with a combination of gastrin 

and epidermal growth factor (EGF) through an implanted pump, lead to enhanced beta cell 

growth and restoration of glycemia within 4 days. The authors observed the occurrence of 

newly formed islets without the influence of proliferation or hypertrophy, demonstrating the 

involvement of neogenesis from precursor cells. Moreover, these precursor cells are vastly 
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proliferative and express ductal cytokeratin, suggesting a transition of ductal cells towards 

endocrine beta cells (Rooman and Bouwens 2004)]. 

In summary, the mechanism of islet neogenesis from progenitor cells can lead to vigorous 

expansion and partial regeneration of beta cell mass, yet this pathway seems to be exclusive 

in embryonic development, postnatal growth and in response to severe pancreatic injury or 

beta cell destruction. Only little evidence supports the influence of islet cell neogenesis under 

physiological conditions and its quantitative contribution remains unknown. Nevertheless, the 

induction of endogenous beta cell neogenesis may provide a promising path to replenish 

beta cell mass in diabetes 

1.4.3 Transdifferentiation of non-beta cells 

Transdifferentiation is a process described by the conversion of a differentiated cell 

into another type of cell and depends on cellular reprogramming. A representative example 

for the occurrence of transdifferentiation in the pancreas is acinar to ductal metaplasia. This 

process is observed under severe stress conditions such as pancreatitis, and describes the 

differentiation of acinar cells into duct cells in order to replenish the damaged organ (Schmid 

2002; Grippo and Sandgren 2012). Although acinar cells undergo morphologic and 

transcriptional conversion, they do not fully become ductal cells (Murtaugh and Keefe 2015; 

Beer, et al. 2016). These cells adopt in terms of gene expression pattern, however resemble 

embryonic progenitor cells properties (Chuvin, et al. 2017). Thereby, these cells remain 

highly proliferative and have the capacity to regenerate, whereas mature acinar and ductal 

cells are largely quiescent (Jensen, et al. 2005; Mills and Sansom 2015). Likewise, acinar 

cells have the ability to adopt an insulin-producing phenotype. This has been shown by in 

vivo reprogramming of acinar cells, using a combination of the three transcription factors 

Ngn3, Pdx1 and MafA. The re-expression of this key developmental regulators results in the 

differentiation of insulin producing cells in a glucose sensitive manner to restore glucose 

homeostasis after destruction of the endogenous beta cells (Zhou, et al. 2008). Moreover, 

there is evidence for transdifferentiation within pancreatic islets after injury, shown by the 

potential of alpha cells to differentiate into beta cells. Thorel et al. used the glucagon-TetO 

system to label alpha cells prior to diphtheria toxin induced beta cell ablation. Lineage tracing 

experiments revealed that large fractions of regenerated beta cells derived from conversion 

of alpha cells (Thorel and Herrera 2010). A study performed by Collombat and colleagues 

confirmed alpha to beta cell conversion after overexpression of the Pax4 gene in alpha cells. 

Conversion was observed under reactivation of the developmental transcription factor Ngn3 

(Collombat and Mansouri 2009). Moreover, the group of Collombat could demonstrate that 

the long-term administration of gamma-aminobutyric acid (GABA) leads to alpha to beta like 
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cell conversion in vivo. Subsequently, alpha cells are replaced by mobilization of duct-lining 

progenitor cells that reactivate the endocrine developmental program, adopt an alpha cell 

identity and migrate towards the islets (Ben-Othman, et al. 2017). Interestingly, Chera and 

colleagues could show that prior to puberty, pancreatic delta cells are capable to 

transdifferentiate into insulin producing beta cells, rather than alpha cells. This has been 

demonstrated by lineage tracing experiments and diphtheria toxin induced beta cell ablation 

two weeks after birth (Chera, et al. 2014).  

 

 

 
 

Figure 2: Mechanisms involved in the dynamic regulation of beta cell mass. Illustration of 

different mechanisms involved in beta cell mass regulation. Beta cell dependent mechanisms, such as 

replication of preexisting cells and hypertrophy are shown on the left side. Beta cells derived from non-

beta cell sources, like neogenesis from ductal cells or transdifferentiation from other mature pancreatic 

cell types are shown on the right side. Reduction of beta cell mass can result from increased apoptotic 

cell death and is demonstrated at the bottom. 
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In summary, the pancreas is capable of adapting to metabolic challenges by different 

potential mechanisms that can modulate beta cell mass. However, knowledge about the 

induction of these processes was only provided using experimental model systems of 

pancreas injury and extreme metabolic conditions. Therefore, it remains unclear whether the 

induction of endocrine plasticity is a physiological or entirely artificial process of beta cell 

mass expansion and requires further investigation.  

 

1.5 Pregnancy as a physiological model system for endocrine cell plasticity  

1.5.1 The physiology of pregnancy  

Pregnancy resembles a unique physiological event, characterized by complex 

metabolic adaptation processes under which influence pancreatic islets have to undergo 

major short-term structural and functional changes to adapt the increased demand for insulin 

(Parsons, et al. 1992). All endocrine and metabolic changes occurring within pregnancy 

represent an indispensable adaptation to meet the energy demand of the growing fetus and 

to prepare the maternal organism for labor and lactation. The adaptations during pregnancy 

also affect the maternal glucose and lipid metabolism (Grimes and Wild 2000). As the 

developing embryo uses glucose as a main source of energy, carbohydrates are redirected 

towards the fetus and the maternal energy production is switched towards lipid metabolism. 

This results in increased maternal levels of circulating free fatty acids, triglycerides, 

cholesterol and phospholipids (Catalano, et al. 1999). Transport of glucose represents a 

passive process via glucose transporters across the placenta and therefore glucose delivery 

depends on a concentration gradient between the maternal and fetal circulation system 

(Baumann, et al. 2002). In general, alterations in maternal metabolism can be divided in an 

anabolic and a catabolic phase. The anabolic phase is characterized by enhanced fat 

deposition in the maternal tissues and takes place during the first 2 trimesters of pregnancy. 

Multiple factors, including de novo lipogenesis (Palacin, et al. 1991) and enhanced 

lipoprotein lipase (LPL) activity (Alvarez, et al. 1996) have been reported to promote fat 

deposition. The switch to a catabolic metabolism occurs in the third trimester of pregnancy 

and leads to increased breakdown of these fat depots as a consequence of increased energy 

demand (Kurpinska, et al. 2015). As part of the systemic metabolic changes, the maternal 

body develops a physiological insulin resistance resulting in a 50-60 % decrease in insulin 

sensitivity with ongoing gestation (Catalano, et al. 1999). A condition of insulin resistance 

typically develops in the phase of pronounced fetal growth between the second and third 

trimester of gestation. On the other hand, beta cell function is increased leading to enhanced 
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insulin secretion already during the first trimester and steadily increases to a maximum in the 

third trimester (Sivan, et al. 1997). Although reduced insulin sensitivity does not reflect a 

pathological condition, similarities to impaired insulin action in T2D can be observed. It has 

been indicated, that the development of insulin resistance is associated with a decrease in 

the postreceptor insulin signaling cascade, primarily due to a decreased expression of the 

insulin receptor substrate 1 protein that drives tyrosine phosphorylation of the receptor 

(Friedman, et al. 1999). However, clinical studies have reported that maternal insulin 

sensitivity is completely restored approximately one year postpartum, starting to increase 

shortly after delivery (Sivan, et al. 1997; Berggren, et al. 2015). Studies using the euglycemic 

clamp technique confirmed comparable insulin sensitivity in comparison to non-pregnant 

women within three days after delivery. Moreover, enhanced insulin sensitivity was 

accompanied with an increase in insulin receptor concentration and protein expression, 

confirming the reversal of the underlying metabolic adaptation processes occurring during 

pregnancy (Kirwan, et al. 2004). 

Studies in rodents have demonstrated that the changes in the metabolic state during 

pregnancy and the adaptions on beta cell function coincide with the rise of steroid hormones 

and placental lactogens (Fig. 3). These include progesterone, estrogens, chorionic 

gonadotropin, placental lactogen, prolactin and growth hormones (Brelje, 1993; Ernst, 2011 

Galosy,1995; Georgia, 2010; Kim, 2010; Kosaka, 1988; Ryan, 1988; Sorenson, 1997; 

Soares, 2004). They are produced and secreted either by the pituitary gland, the corpus 

luteum, a temporary endocrine gland within the ovaries or later during pregnancy by the 

placenta. Studies in mice could demonstrate that hormonal secretion by the corpus luteum 

within the ovaries is essential to start and maintain pregnancy during the first and second 

trimester (Parkes 1928; Rubinstein and Forbes 1963). This is most likely linked to its 

secretion of the steroid hormone progesterone, which prepares the uterine lining for a 

potential pregnancy after ovulation. In case of fertilization, chorionic gonadotropin is secreted 

by cells of the blastocyst which signal the corpus luteum to further increase progesterone 

secretion and maintain pregnancy. If no fertilization takes place, the corpus luteum breaks 

down, resulting in decreasing progesterone levels and the endometrium is expelled (in 

humans) or lining degenerates back to normal size (in rodents) (Kumar and Magon 2012). 

Serum progesterone levels have been intensively studied in mice showing a sharp increase 

already during the first 2-3 days of pregnancy followed by a plateau until beginning of the 

third trimester. Within the last trimester of pregnancy, progesterone levels further increase 

and reach a peak at gestational day 16-18. The dramatic drop of serum progesterone levels 

at the end of gestation serves as a signal for the maternal body to induce labor (Murr, et al. 

1974; Barkley, et al. 1979; Kosaka, et al. 1988).  Besides its stimulatory effect on food intake 
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and fat deposition (Ladyman, et al. 2010), progesterone has been shown to induce glucose 

intolerance by decreased insulin binding and glucose transport (Nelson, et al. 1994). Similar 

to progesterone, also estrogen levels increase early during pregnancy although not as 

tremendous. Serum estrogen levels steadily increase with progress of pregnancy and decline 

shortly before delivery (Barkley, et al. 1979). Estrogen has been proven essential for embryo 

implantation (McCormack and Greenwald 1974), to maintain pregnancy (Albrecht, et al. 

2000) and plays a fundamental role in the biosynthesis of progesterone (Albrecht and Pepe 

1990). Moreover, it has been shown that the presence of estrogens amplifies the 

physiological effects of progesterone (Kastner, et al. 1990). 

In the second and third trimester, the placenta takes over the production of hormones and 

releases a series of lactogens in addition to the described steroid hormones, resulting in a 

progressive augmentation of serum hormone levels with ongoing gestation. The most 

abundant lactogenic hormone secreted by the placenta is placental lactogen (PL). In humans 

it is secreted into the maternal and the fetal circulation system after the sixth week of 

pregnancy. In mice, placental lactogen-I (PL-I) is produced immediately after implantation 

and its expression increases until mid-gestation when it is replaced by PL-II until term. Both 

forms are synthesized by trophoblast giant cells (Galosy and Talamantes 1995). PL 

expression is associated with insulin resistance, increased insulin secretion and shown to 

promote lipolysis, which consequently inhibits gluconeogenesis (Brelje, et al. 1993; Kumar 

and Magon 2012). 

During pregnancy there is also a progressive increase of maternal serum growth hormone 

(GH), which is produced by the pituitary gland during the first trimester. The expression of 

GH is replaced by a variant growth hormone (GH-V), which is synthesized by the placenta at 

about mid gestation. Levels of placental growth hormone increase gradually throughout 

pregnancy  and have been indicated to reflect placental function and fetal growth (Lonberg, 

et al. 2003). Both, GH and PL have been observed to stimulate insulin-like growth factor 

(IGF) production to modulate the maternal metabolism and consequently contribute in 

redirecting carbohydrates towards the developing fetus (Handwerger and Freemark 2000). 

Another relevant lactogenic hormone during gestation is prolactin (PRL), secreted by the 

pituitary gland. Prolactin levels increase dramatically when pregnancy gets to term as it 

regulates the onset of lactation and the synthesis of milk (Brelje, et al. 2004). Before, pituitary 

PRL secretion is inhibited by placental lactogens produced by the placenta (Galosy and 

Talamantes 1995). The effect of declining estrogen and progesterone levels in late 

pregnancy sharply increase PRL secretion (Grattan and Averill 1990; Bonafede, et al. 2011). 

These observations indicate that pregnancy induces a tightly regulated hormonal network 

with complex interactions among the different hormones. Finally, the secretion of lactogenic 
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hormones (PL, PRL and GH), has been shown to effect the regulation of islet mass increase 

and improves islet cell function during pregnancy (Parsons, et al. 1992; Brelje, et al. 1993; 

Brelje, et al. 2004; Georgia and Bhushan 2010; Ernst, et al. 2011). 

 

1.5.2 Adaptation of islets of Langerhans in response to pregnancy  

The adaptation of islets of Langerhans is necessary to comply with the higher insulin 

demand caused by the increase in maternal insulin resistance and to counteract excessive 

carbohydrate supply towards the fetus (Zeng, et al. 2017). Failure of this adjustment is 

believed to be an underlying cause of gestational diabetes. The detailed mechanisms of 

morphological and functional beta cell compensation are not fully understood. However, 

several studies performed on isolated islets and perfused extracted pancreata from pregnant 

rodents have shown lowered glucose thresholds for insulin synthesis and increased glucose 

metabolism (Green and Taylor 1972; Bone and Taylor 1976; Parsons, et al. 1992). More 

precisely, Weinhaus and colleagues have observed an increase in glucose metabolism as 

result from elevated activity of glucokinase, hexokinase and glucose transporter 2 in isolated 

islets from pregnant rats (Weinhaus, et al. 1996). Moreover, the authors could observe the 

 
Figure 3: Changes in plasma hormone levels during mouse pregnancy. Serum levels of 

progesterone (red line) adapted from Murr, 1974; estradiol (blue line) adapted from Barkley, 1979; 

placental lactogen I and II (grey lines) and prolactin (green dashed line) adapted from Soares, 

2004. 
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same changes after PL and PRL treatment in vitro, suggesting that adaptive metabolic 

changes during pregnancy might be mediated by lactogen regulated events. Furthermore, 

elevated lactogen levels during late gestation lead to enhanced beta cell coupling via gap 

junctions and results in improved glucose induced insulin secretion (Sheridan, et al. 1988). 

Morphological studies in rodents found a 1.6-4 fold increase in beta cell mass largely 

attributed to enhanced beta cell duplication and hypertrophy as predominant mechanism for 

beta cell mass expansion during pregnancy (Parsons, et al. 1992; Sorenson and Brelje 1997; 

Rieck and Kaestner 2010) BrdU incorporation in pregnant rats (Parsons, et al. 1992) and 

Ki67 labeling in mice (Rieck, et al. 2009) has demonstrated that the increase in beta cell 

proliferation is first observed within the second trimester, peaks around gestational day 14 

and then gradually declines to control levels by the end of pregnancy. Moreover, insulin DNA 

contentincreased about 32 % and protein content was elevated about 62 % when measured 

in isolated islets from pregnant rats at term (Green and Taylor 1972). A recent study by Kim 

et al. provided evidence that the downstream of lactogenic signaling acts as a paracrine 

factor to initiate beta cell mass expansion during pregnancy. The authors found that 

activation of the prolactin receptor by lactogenic hormones increases transcription of the 

rate-limiting enzyme in serotonin synthesis. Consequently the serotonin receptor gene Htr2b, 

expressed on the beta cell surface, stimulates cell cycle progression and increases beta cell 

replication (Kim, et al. 2010). Furthermore, it has been shown that serum of pregnant women 

is capable to stimulate beta cell proliferation of neonatal rat islets in vitro. More precisely, 

proliferative activity was increased gradually with progression of gestation, while serum from 

non-pregnant women did not have an effect on cell replication. The mitotically active serum 

fraction contained placental lactogen, serum albumin and peptides involved in blood 

coagulation like fibrinogen and kininogen-1 (Nalla, et al. 2014). 

The question whether other mechanisms than proliferation of preexisting beta-cells might 

also contribute to the enhanced beta cell mass, still remains unclear. Lineage tracing 

experiments using an inducible transgenic mouse strain to label endogenous beta cells prior 

to pregnancy indicated the role of non-beta progenitor cells due to a dilution of labeled beta 

cells during pregnancy (Abouna, et al. 2010). Likewise, Toselli and colleagues showed a 

drop from 97 % to 87 % beta cell fraction by mid-gestation using another beta cell lineage 

tracing mouse model (Toselli, et al. 2014). Moreover, Ngn3 signaling was shown to be 

involved in the contribution of non-beta cells to beta cell mass increase during pregnancy. 

Further evidence for beta cell neogenesis has only been reported during human pregnancy. 

A morphological study, performed on pancreata obtained from autopsies of pregnant women, 

demonstrated an increased density of small islets during pregnancy and post-partum. 

Moreover, increased beta cell replication and apoptosis was not observed during pregnancy, 
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suggesting beta cell formation by other sources than replication of preexisting beta cells 

(Butler, et al. 2010). However, a study performed by van Assche and co-workers reported a 

2-fold increase of islet mass attributed to increased number of beta cells and hyperplasia 

(Van Assche, et al. 1978). Thus, both human and rodent pregnancy is characterized by beta 

cell mass expansion to counteract insulin resistance and meet the growing metabolic 

demand. Yet, the underlying mechanisms are still not clarified and might differ among the 

species. Whereas beta cell proliferation and hypertrophy seem to be the most prominent 

mechanisms in rodent pregnancy, there is growing evidence that beta cell formation in 

humans arises in part from other sources than beta cell replication. However, the quantitative 

contribution can only account for a minor fraction to the total beta cell mass. Thus, there is 

need to clarify the role and extend of neogenesis in contributing to beta cell plasticity during 

pregnancy. 
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1.6 Aim 

Although it is known for decades that pregnancy is associated with a compensatory increase 

in beta cell mass and function, the mechanisms involved are still not completely clarified. In 

general, the replication of existing beta cells, beta cell neogenesis via differentiation of new 

beta cells from endocrine progenitors or stem cells and transdifferentiation of non-beta cells 

have been suggested as main mechanisms responsible for the formation of new beta. 

However, knowledge about contribution of non-beta cell progenitors is lacking. Since the 

population of beta cells in the pancreas of diabetic patients is massively reduced, replication 

of surviving beta cells would not represent a reasonable therapeutic option. However, the 

induction of neogenesis or cellular reprogramming towards beta cell identity could provide a 

new beta cell population that can be further expanded by replication. Thus, understanding 

this intrinsic regenerative capacity of the endocrine pancreas might help to develop new 

treatments for diabetes therapy. 
Therefore, the overall aim of this thesis is to study the mechanisms involved in the adaptation 

of beta cell mass and function during pregnancy, as a physiological model of islet plasticity. A 

first aim is to assess changes in pancreatic mass expansion at different time points during 

and after pregnancy and to investigate the role of proliferation. Although it has been 

demonstrated that proliferation of preexisting beta cells is the main mechanism for mass 

expansion during mouse pregnancy, the role of non-beta cell progenitors or reprogramming 

from differentiated non-beta cells is still lacking. Therefore, a second aim is to investigate the 

role of neogenesis or cellular reprogramming, indicated by the recurrence of progenitor gene 

expression of Ngn3 in the compensatory response during early pregnancy. To fulfill this aim, 

in vivo experiments in transgenic reporter mice will be performed, combined with in situ 

analyses in tissue slices and in vitro studies on isolated islets. 
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Table 1 : Overview of the applied mouse stains 

Mouse strain Abbreviation Reference Supplier 
C57BL/6J BL/6 - Janvier Labs 

Tg(Neurog3-cre/Esr1)Dam/J Ngn3-CreER Gu et al.,2002 
The Jackson 

Laboratory 

Gt(ROSA)26Sortm4(ACTB-
tdTomato,-EGFP)Luo/J 

mTmG Muzumdar et al., 2007 
The Jackson 

Laboratory 

B6.FVB(Cg)-Tg(Neurog3-
cre)C1Able/J + 

Gt(ROSA)26Sortm1(EYFP)Cos 
Ngn3-YFP Mellitz et al., 2004 

Gerard 

Gradwohl 

Somatostatin-Cre; R26-
YFP 

Sst-Cre;YFP Chera et al., 2014 
F.M. Gribble 

Camebridge 

B6(Cg)-Ins1tm1.1(cre)Thor/J Ins1-Cre Thorens et al., 2015 
Bernard 

Thorens 

Gt(ROSA)26Sortm1(CAG-
tdTomato,-EGFP)Ees 

nTnG Prigge et al., 2013 
The Jackson 

Laboratory 

 

2 Material and Methods 

2.1 Mice 

All mouse experiments were conducted in accordance with the German Animal 

Welfare Act, following the guidelines of the European Convention for the protection of 

Vertebrate Animals Used for Experimental and Other Scientific Purposes and approved by 

the Committee on the Ethics of Animal Experiments of the State Directory of Saxony (24-

9168.11-1/2014-9; DD24-5131/339/21(TVV A 20/2015)). Mice were housed in a licensed 

animal facility on a 12h day-night cycle. The animals were maintained in groups of max. 5 

animals per cage and had free access to water and chow (SNIFF rat/mouse maintenance 

10 mm). All mouse experiments were conducted using one of the strains listed below (Table 

1). 

 

2.1.1 Genotyping of mice 

To determine the genetic variants of the animals, genotyping was performed by 

polymerase chain reaction (PCR). Biopsies were conducted from the tail tip at weaning and 

genomic deoxyribonucleic acid (DNA) was extracted. Therefore, tail tips were transferred in 



Material and Methods 

 
25 

 

1.5 mL reaction tubes (VWR) and 25 µL tail lysis buffer (TLB, see Table 2) containing 

1 mg/mL Proteinase K (Sigma Aldrich) was added. The reaction was incubated for 60 min at 

55°C in a heating block, while shaking at 450 rpm (TMix, Analytik). Tissue was mashed 

thoroughly by using disposable spatula (Sarstedt) and further incubated for additional 60 min 

at 55°C. The suspension was heated for 10 min at 99°C and 175 µL ddH2O was added and 

mixed properly. After 2 min centrifugation at 21100x g the supernatant was taken and 

analyzed by PCR. Reactions were performed with the respective primers for each mouse line 

(Table 3) according to the protocols given by the respective mouse supplier in a PCR cycler 

(Mastercycler, Eppendorf).  

 

Table 3: Primers for Genotyping 

Strain Forward Primer (5´ 3´) Reverse Primer (5´ 3´) 
Ngn3-YFP 
(wildtype) TCTCGCCTCTTCTGGCTTTC CGGCAGATTTGAATGAGGGC 

Ngn3-YFP 
(mutant) AGGGCGAGGAGCTGTTCA TGAAGTCGATGCCCTTCAG 

Ngn3CreER AACCTGGATAGTGAAACAGGGGC TTCCATGGAGCGAACGACGAGACC 
mTmG 

(wildtype) CTCTGCTGCCTCCTGGCTTCT CGAGGCGGATCACAAGCAATA 

mTmG 
(mutant) CTCTGCTGCCTCCTGGCTTCT TCAATGGGCGGGGGTCGTT 

Cre CATTTTGGGCCAGCTAAACATT CCCGGCAAAACAGGTAGTTA 
YFP 

(wildtype) CTGGCTTCTGAGGACCG GACAACGCCCACACA 

YFP  
(mutant) AGGGCGAGGAGCTGTTCA TGAAGTCGATGCCCTTCAG 

nTnG 
(wildtype) AAAGTCGCTCTGAGTTGTTAT GGAGCGGGAGAAATGGATATG 

nTnG 
(mutant) AAAGTCGCTCTGAGTTGTTAT CCAGGCGGGCCATTTACCGTAAG 

 

Table 2: Composition of tail lysis buffer 

Reagent Company Final concentration 
Tris HCl (pH 8.0) Merck 50 mM/L 

NaCl Roth 100 mM/L 
EDTA SPO 100 mM/L 

Tween 20 Merck 0.5 % 
NP-40 Sigma 0.5 % 
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2.1.2 Mating and pregnancy control 

Female mice at the age of 8-12 weeks were mated with male mice of the 

corresponding strain and a vaginal plug check was performed every morning and afternoon. 

The day of plug detection was defined as gestational day 0 and female animals were 

separated immediately. In order to assess the progress of pregnancy, body weight of female 

mice was determined before mating and every 2-6 days during pregnancy. Non-fasting blood 

glucose levels were measured by a glucometer (AccuCheck Aviva, Roche) before mating 

and on the day of sacrifice, in a drop of blood from the tail tip. Animals were sacrificed by 

cervical dislocation and the accurate gestational stage was verified on the basis of embryo 

size. 

 

2.2 Tamoxifen preparation and application 

The Ngn3-CreER;mTmG reporter mouse strain was used for in vivo labeling of Ngn3 

positive cells during pregnancy. The Ngn3 promoter driven expression of the inducible 

Cre/LoxP reporter system with the double-fluorescent mTmG indicator allows visualization of 

Ngn3 positive cells during a desired timeframe in the adult pancreas when exposed to 

tamoxifen (TAM). The reporter mouse ubiquitously expresses membrane bound tdTomato 

switching to GFP after TAM administration in Ngn3 expressing cells.  

Tamoxifen (Sigma) powder was dissolved in 96 % ethanol to obtain a stock solution of 

100 mg/mL. For subcutaneous (sc) injection, stock solution was further diluted in filter-

sterilized corn oil (Sigma) to a final concentration of 20 mg/mL. Female animals received an 

absolute dose of 5 mg TAM in a total volume of 200 µL. 

 

2.3 Experiments on isolated pancreatic islets  

2.3.1 Pancreatic islet isolation   

The islets of Langerhans were isolated from 8-12 week old female mice by enzymatic 

digestion. Collagenase type V from Clostridium histolyticum (Sigma) was dissolved in RPMI-

1640 medium (Life Technologies) to a final concentration of 0.45 mg/mL and filtered through 

a 0.2 µm filter (Filtropur S 0.2, Startstedt AG). The collagenase solution was kept in 5 mL 

syringes with a 30-gauge cannula (BD Microlance) and stored on ice until injection. 
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Animals were sacrificed by cervical dislocation and the pancreas was exposed by abdominal 

incision. The major duodenal papilla was clamped underneath the ampulla of Vater and 3 mL 

of cold collagenase solution was injected into the common bile duct. The injected pancreas 

was removed and transferred in a 50 mL Falcon tube containing 2 mL of collagenase 

solution stored on ice. Digestion was performed in a water bath at 37°C for 8.5 min without 

and 1 min with gentle shaking by hand. The reaction was stopped by placing the tube on ice 

and addition of 45 mL ice-cold RPMI-1640 medium containing 10 % fetal bovine serum 

(FBS). After 2 min centrifugation at 900 rpm, supernatant was discarded and the pellet was 

resolved in RPMI medium with 10 % FBS. Subsequently, the solution was poured through a 

small sterile metal strainer (sieve size 422 µm, Sigma) placed on top of a sterile beaker. The 

solution was centrifuged for 2 min in a cooled centrifuge at 900 rpm and the supernatant was 

discarded. To purify islets a discontinuous Ficoll (Sigma) gradient 1.108, 1.096 and 1.037 

g/mL was created on top of the pellet followed by centrifugation for 18 min at 1900 rpm with 

gentle start and stop. Purified islets were collected between the 1.096 and 1.037 g/mL layers 

and transferred into 50 mL tubes and filled up to 50 mL with RPMI medium containing 5 % 

FBS. The solution was centrifuged for 2 min at 1000 rpm and the pellet was collected from 

the bottom of the tube using a 10 mL pipette. For further washing, islets were transferred in a 

50 mL falcon and 40 mL RPMI medium with 5 % FBS was added. After a 2 min 

centrifugation at 900 rpm, islets were placed into a 60 mm suspension culture dish (Corning) 

filled with RPMI medium with 5 % FBS. Finally, islets were handpicked, counted and rested 

overnight in an incubator at 37°C and 5 % CO2. 

 

2.3.2 Culture of pancreatic islets 

For culture experiments, RPMI-1640 with 5.5 mM/L or 11.1 mM/L glucose, 1 % FBS, 

100 U/mL penicillin and 100 µg/mL streptomycin was used. In order to simulate early 

pregnancy conditions, 100 ng/mL progesterone (P4; Sigma), 150 ng/mL estradiol (E2, Sigma) 

or both were added. Islets were kept in 24 well plates filled with 0.5 mL medium under a 

humidified atmosphere consisting of 95 % air and 5 % CO2 at 37°C. Culture was performed 

for 5 days and media change was performed after 24 hrs. 

2.3.3 Cell dispersion 

Isolated islets were handpicked from the dish and transferred to a 15 mL falcon tube. 

Islets were washed twice with 10 mL sterile 1x phosphate buffered saline (PBS; Life 

technologies) and centrifuged at 300 rpm for 1 min at 4°C with soft start and stop. Islets were 

dissociated by adding 5 mL of a 1:1 mix accutase (Sigma) and dissociation solution (Sigma) 
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in a water bath at 37°C for 9-12 min, depending on islet size and number. To stop digestion, 

5 mL of cold FBS were added and mixed thoroughly with a 1000 µL pipette (15x) to 

dissociate the cells. The solution was centrifuged at 1000 rpm for 2 min with fast start and 

stop and the cell pellet was resuspended in 1 mL of sterile PBS. For cell counting, a 

Neubauer cell chamber was used and 4 individual squares were counted to calculate the 

mean. The cells were placed on ice for transportation to the flow cytometer. 

 

2.3.4 FACS sorting 

Dissociated islet cells were sorted as bulk by flow cytometry. In order to sort only 

viable cells, 1 µL propidium iodide (PI; Life technologies) was added and mixed properly. 

Cells were sorted on a LSRII flow cytometer (Becton Dickson) according to their fluorescent 

signals and their relative cell size. Fluorescence activated cell sorting (FACS) experiments 

were performed together with Anne Gompf from the FACS facility (CRTD). For qRT-PCR, 

300 YFP+ and 300 YFP- -cells were sorted individually into PCR tubes containing 2 µL of 

lysis buffer. 

 

2.3.5 Quantification by qRT-PCR 

Isolated islets from Sst-Cre;YFP virgin and pregnant female mice were dispersed 

directly after isolation procedure and sorted by flow cytometry. Bulk samples containing 

either 300 YFP+ or 300 YFP- cells were collected in PCR tubes with 2 µL lysis buffer and 

further processed by the sequencing facility for RNA extraction and cDNA synthesis. Due to 

the low amount of cells, cDNA was amplified using the Smart-seq2 method with 12 cycles. 

Yields of 0.8-2 ng/µL cDNA were collected.  

For quantitative real time-PCR (qRT-PCR) using an AriaMx Real-Time PCR System (Agilent 

Technologies), cDNA was diluted 1:50 with distilled water. Reactions were performed in 

duplicates with SYBR®Green qPCR SuperMix (Promega) according to the protocol 

described in Table 4. The master mix for each well consisted of 2.5 µL diluted cDNA, 10 µL 

SYBR®Green and 5.5 µl ddH2O. Appropriate primers (100 pM) were used in a 1:20 dilution 

and 2 µL of diluted primer pairs were added to the individual wells prior to the master mix. 

Primer sequences were optimized by melting curve analysis and are listed in Table 5. 

Technical replicates were performed for each probe and Ct values were obtained by 

automatic Ct analysis of the AriaMx Real-Time PCR System. For data quantification Ct 

values were averaged and determination of individual gene expression was performed as 
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relative quantification against two housekeeping genes by the 2-∆∆Ct method (Livak, 2001). 

Values were normalized to the control probes set as 100 %. 

 

 

2.4 Immunohistochemistry 

2.4.1 Preparation of pancreatic tissue sections 

Tissue sections were prepared from pancreata received from female virgin mice or 

mice at different stages during or after pregnancy. Animals were sacrificed by cervical 

dislocation and the abdomen was opened to extract the pancreas. The organ was fixed for 

2 hrs in 4 % para-Formaldehyde (PFA) in PBS at 4°C and subsequently transferred into 

30 % sucrose solution in PBS overnight. Afterwards, the pancreas was embedded in Tissue-

TEK® optimum cutting temperature (OCT) (A. Hartenstein) and snap frozen in 2-methylbutan 

(Roth) chilled liquid nitrogen. Frozen tissue sections of 10 µm thickness were prepared using 

a Cryostat (Nx70, Mnf. Thermo). The entire pancreas was sectioned in 6 consecutive stacks 

and sections were collected on clean, fat-free superfrost glass slides (StarFrost®, 

Engelbrecht GmnH) at -20°C. One entire set of 11-14 slides was used for mass analysis. 

Table 4: qRT-PCR protocol 

 Temperature Time Repeats 

hot start 95°C 10 min 1x 
amplification   45x 
denaturation 95°C 15 sec  
annealing 58°C 30 sec  
ligation 72°C 30 sec  
melting 58°C – 95°C 30 sec Ramp 2x/°C 

 
Table 5: Pimers for qRT-PCR 

Gene Forward (5’  3’) Reverse (5’  3’) 
Actb GAGGTATCCTGACCCTGAAG GGTCATCTTTTCACGGTTG 
B2M GCTATCCAGCGTACTCCAAA TGCTGCTTACATGTCTCGAT 

HPRT TGGACAGGACTGAACGTCTT TATGTCCCCTGTTGACTGGT 
Gcg AGGCTCACAAGGCAGAAAAA CAATGTTGTTCCGGTTCCTC 
Ins2 CAGCAAGCAGGAAGCCTATC GCTCCAGTTGTGCCACTTGT 

NeuroD1 AACAGGAAGTGGAAACATGACC TCTTCCTCCTCCTCCTCTCC 
Ngn3 AGTCGGGAGAACTAGGATGG GGCAGTCACCCACTTCTG 

Nkx2.2 CCTCCAATACTCCCTGCAC GTAGGTCTGCGCTTTGGAG 
Pdx1 AGTGGGCAGGAGGTGCTTA ACGGTTTTGGAACCAGATTT 
Sst CACCGGGAAACAGGAACT CAGCCTCATCTCGTCCTG 
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2.4.2 Preparation of pancreatic tissue slices  

Pancreatic tissue slices were prepared from female virgin mice and pregnant mice at 

gestational day 6 (Marciniak, 2014). Briefly, 1.25 % low melting point agarose (Roth) was 

melted in extracellular solution (ECS) composed of 5 mM KCl, 140 mM NaCl, 2 mM 

NaHCO3, 1 mM NaH2PO4, 1.5 mM CaCl2, 1.2 mM MgCl2, 3 mM glucose and 10 mM HEPES 

using a microwave oven and was kept at 37°C in a water bath. Animals were euthanized by 

cervical dislocation and the abdominal cavity was opened using surgical scissors. Mice were 

placed under a stereomicroscope and the common bile duct was clamped off at the ampulla 

of Vater. 3 mL low melting point agarose solution was injected steadily using a 5-mL syringe 

and a 27-gauge needle. After injection, the hardened pancreas was resected and 

subsequently transferred into a 60-mm petri dish filled with ECS. Tissue was further 

processed by removing connective and adipose tissue and cut into smaller blocks of 

approximately 3-5 mm³ size. Tissue pieces were transferred into a 35-mm petri dish and the 

dish was filled with agarose solution until tissue was fully submerged. After agarose was 

solidified, individual agarose blocks containing pancreatic tissue were excised and mounted 

on a probe plate. Slicing procedure was performed using a semi-automated Vibratome 

(Leica, VT 1200s) at an amplitude of 1.0 mm, speed of 0.2 mm/s and a step thickness of 150 

µm. Slices were either kept in a 60-mm petri dish filled with Krebs-Ringer bicarbonate 

HEPES buffer (KRBH) (137 mM NaCl, 5.36 mM KCl, 0.34 mM Na2HPO4, 0.81 mM MgSO4, 

4.17 mM NaHCO3, 1.26 mM CaCl2, 0.44 mM KH2PO4, 10 mM HEPES, 0.1 % BSA, 3 mM 

glucose, pH 7.3) for functional assays or fixed for 30 min in 4 % PFA in PBS at 4°C and 

washed in PBS at room temperature.  

 

2.4.3 Staining 

Immunohistochemistry on slices was accomplished in 24-well plates with a total 

volume of 300 µL / well. Using 2 slices per well, staining was performed in blocking solution 

containing 1 % goat serum, 0.6 % Triton-X 100, 900 mM NaCl and 40 mM sodium phosphate 

buffer in deionized water (goat serum diluent buffer (GSDB) 0.6 % Triton-X 100). Primary 

antibodies (Table 6) were diluted in GSDB 0.6 % Triton-X and incubated over night at 4°C, 

shaking. Afterwards, slices were washed 3 times in PBS for at least 10 min and secondary 

antibodies (Table 7) diluted in GSDB 0.6 % Triton-X was applied and incubated overnight at 

4°C, shaking. Three additional washing steps were applied using PBS and slices were stored 

in fresh PBS until imaging.  
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Table 7: Secondary antibodies and dilutions 

Antigen Conjugate Company Cat. no. Dilution 
donkey anti-goat IgG Alexa Fluor® 405 Abcam AB175664 1:200 
donkey anti-goat IgG Alexa Fluor® 633 Invitrogen A-21082 1:200 

goat anti-guinea pig IgG Alexa Fluor® 405 Abcam AB175664 1:200 
goat anti-guinea pig IgG Alexa Fluor® 488 Invitrogen A-11073 1:200 
goat anti-guinea pig IgG Alexa Fluor® 633 Invitrogen A-21105 1:200 

goat anti-rabbit IgG Alexa Fluor® 488 Invitrogen A-11008 1:200 
goat anti-chicken lgG Alexa Fluor® 488 Invitrogen A-11039 1:200 

goat anti-rat IgG Alexa Fluor® 546 Invitrogen A-11081 1:200 
goat anti-rat IgG Alexa Fluor® 633 Invitrogen A-21094 1:200 
 

Table 6: Primary antibodies and dilutions 

Antigen Conjugate Company Cat. no. Dilution 
GFP rabbit Life technologies A-111222 1:1000 
GFP chicken Abcam AB13970 1:1000 

Insulin guinea-pig DAKO A0564 1:200 
Ki-67 goat Santa Cruz Biotech. sc-7846 1:100 

Somatostatin goat Santa Cruz Biotech. sc-7819 1:200 
Somatostatin rat Millipore MAB354 1:100 

  

 

Pancreatic cryosections were stained using GSDB solution containing 0.3 % Triton-X 100. 

Therefore, 4 slides of each mouse were adjusted to room temperature and washed with PBS 

for 5 min. Primary antibodies (Table 6) were diluted in GSDB 0.3 % Triton-X and 200 µL 

staining solution were applied on each slide and incubated overnight at 4°C in a humidified 

staining chamber. Slides were washed three times in PBS for at least 10 min and 

subsequently incubated for 2.5 hrs at RT with secondary antibodies (Table 7) diluted in 

GSDB 0.3 % Triton-X solution. After three additional washing steps in PBS, slides were 

covered in Mowiol (Carl Roth) and mounted with a glass coverslip (No.1, Engelbrecht 

GmbH). Slides were stored at 4°C until imaging.  

Isolated islets were stained in 24-well plates containing a total volume of 250 µL/well. For 

optimal permeabilization, islets were kept in PBS with 1 % Triton X for 3 hrs at RT, shaking. 

Then islets were picked into fresh wells containing diluted primary antibodies (Table 6) in 

GSDB 1 % Triton-X solution and incubated over night at 4°C, shaking. Islets were washed for 

at least one hour in PBS and stained with conjugated secondary antibodies (Table 7) diluted 

in GSDB 1 % Triton-X overnight at 4°C shaking. Finally, islets were washed in PBS for 1 

hour and embedded into a fibrinogen gel (3:1:1 HBSS, fibrinogen (10 mg/mL), thrombin 

(50 U/mL)) in a 35-mm dish and covered with PBS and stored at 4°C. 
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2.4.4 Data aquisition  

Tissue slices were imaged in a 60-mm dish containing PBS and kept in place using a 

slice anchor (Warner instruments). Isolated islets were imaged in gels within a 30-mm dish 

containing PBS and cryosections were imaged with a mounted coverslip. Images from 

individual islets in slices, sections and isolated islets were acquired by confocal imaging 

(upright LSM780; Zeiss) using a C-Apochromat 20x/1.2 water corrected objective and 

pinhole was adjusted to one airy unit. Images were acquired individually in single track mode 

for each fluorophore. Fluorescence of GFP and Alexa Fluor 488 were excited at 488 nm 

laser wavelength and emission was detected from 490 to 560 nm, Tomato, Alexa Fluor 546 

and 555 were excited at 561 nm and detected at 569 to 621 nm, Alexa Fluor 633 was excited 

at 633 nm and detected at 638 to 755 nm. DAPI was excited at a wavelength of 405 nm and 

emitted light was detected in a range from 410 to 510 nm. Images for the assessment of the 

fractional beta cell area were acquired using a slide scanner (Axio Scan.Z1; Carl Zeiss).  

2.4.5 Data analysis 

Data quantification was performed manually using Imaris (Bitplane AG, versions 8.2 

and 8.3) and FIJI. Single planes of pancreatic cryosections were analysed in 2D for islet 

composition. Analysis was carried out by manual cell counting with FIJI using the cell counter 

plugin. For the assessment of pancreatic mass total pancreatic area and endocrine area 

were measured manually by FIJI. For every islet a single region of interest (ROI) was created 

and the area was measured. Tissue slices were analysed in 3D using Imaris. A 3D surface of 

the first 30 planes (45 µm) was assessed by the surface creation tool. Channels were 

masked and surface volume of the individual tracks was assessed by semiautomatic 3D 

volume reconstruction. Cell counting within the individual volumes was measured using the 

semiautomatic spot analysis tool. Double fluorescent cells were analysed using the spot 

function tool. 

2.5 Tissue slice perifusion 

Slices were pre-selected by identifying slices rich in islets using transmitted light. 

Selected slices were trimmed using forceps and scalpel to reduce the agarose surrounding 

the tissue. Slices were then rested for 90 min in KRBH buffer (3 mM glucose) containing 

0.1 mg/mL Soybean Trypsin Inhibitor (Sigma) on a shaker at room temperature. After resting 

time, slices were transferred into closed perifusion chambers (Warner instruments) and 
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connected to a perifusion system (Biorep). A perifusion protocol (Table 8) with different 

glucose concentrations was applied with a flow rate of 100 µL/min and a sampling rate of 

1 min. Prior to the actual stimulation protocol, a 90 min flushing step with 3 mM KRBH buffer 

was included, in order to wash out accumulated hormones and enzymes from the tissue. 

Perfusates were collected in 96-well plates and stored at -20°C. After perifusion, slices were 

collected in 500 µL acid ethanol (2 % HCl [37 %, 12 M] in absolute ethanol) and stored at 

-20°C. Finally, insulin secretion and content was assessed by measuring perfusates and 

slice lysates with an ultrasensitive insulin HTRF (Cisbio). 

 

2.6 Hormonal profiling 

2.6.1 Blood sampling and processing 

Whole blood was taken from the retro-orbital plexus and collected in heparinized 

capillary tubes (Siemens Healthcare Diagnostics). Mice were anesthetized and 500-800 μl of 

blood was taken prior to euthanasia by cervical dislocation. Blood samples were immediately 

centrifuged at 2000x g for 20 min at 4°C and plasma was stored in aliquots of 10 μl at -80°C. 

Individual aliquots were thawed on ice prior to measurements. For the assessment of blood 

glucose levels blood was obtained by small incisions on the tail vein of the animal and 

concentrations were measured using a glucometer (Accu-Chek Aviva, Roche).  

 

2.6.2 Glucose tolerance test 

Intraperitoneal glucose tolerance tests were performed on mice fasted for 6 hrs. 

Animals were weight and blood glucose levels were assessed prior to the experiment. 

Subsequently, glucose (2 g/kg bodyweight) was injected intraperitoneally using a 1 mL 

syringe with a 23 gauge cannula. Blood glucose levels were determined at 15 min, 30 min, 

60 min, 90 min and 120 min post injection. Additionally, 100 µL blood was taken from the tail 

vein at 0 and 30 min for the assessment of plasma insulin levels. Collected blood was 

Table 8: Mouse tissue slice perifusion protocol 

Step Time [min] Flow rate 
[µL/min] 

Sampling rate 
[sec] solution 

1 90 100 180 3 mM KRBH 
2 10 100 60 3 mM KRBH 
3 40 100 60 16.7 mM KRBH 
4 20 100 60 3 mM KRBH 
5 10 100 60 16.7 mM KRBH + 60 mM KCl 
6 10 100 60 3 mM KRBH 
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centrifuged at 2000x g for 20 min at 4°C and plasma collected in aliquots of 10 μl at -20°C. 

Plasma insulin levels were assessed in duplicates by applying a sample volume of 5 µL 

using a mouse ultrasensitive Insulin ELISA kit (Chrystal Chem) according to the 

manufacturer’s instructions. Absorbance was measured at a wavelength of 405 nm and 

630 nm using a plate reader (TECAN, infinite F200 Pro). Analysis was performed on 

averaged duplicates  

 

2.6.3 Plasma hormone levels 

Plasma hormone concentrations of several characteristic pregnancy hormones were 

determined from whole blood samples. Plasma collection and storage was accomplished as 

described above. Hormone levels were measured using the following ELISA kits in 

accordance to the manufacturer’s instructions provided with each kit (Table 9). 

 
All measurements were performed in duplicates and measured using a plate reader (TECAN, 

infinite F200 Pro) at a wavelength of 450 nm.  

 

2.7 Statistical analysis 

Statistical analyses were performed using Prism 6 (Prism; GraphPad Software, San 

Diego, CA). Data is expressed as mean ± SEM. Statistics were analyzed using Prism 6. Data 

was compared by one- or two-way ANOVA or by an unpaired, two-tailed student’s t-test. 

Multiple comparisons were adjusted by Šidák correction. Significant differences are indicated 

as: *p < 0.0 05, **p < 0.01, ***p < 0.005 or ****p < 0.001.  

 

 

Table 9: List of ELISA kits  

ELISA company sample volume dilution 
mouse/rat 

progesterone Alpco 5 µL 1:5 

mouse/rat estradiol  Calbiotech 5 µL 1:5 

mouse prolactin RayBio 100 µL 
1:5 
1:50 

mouse placental 
lactogen  Bluegene 50 µL none 

mouse chorionic 
gonadotropin 5 MyBioSource 50 µL none 
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3 Results 

3.1 Metabolic characterization of pregnancy 

Pregnancy is accompanied with systemic metabolic changes of the maternal body in 

order to provide sufficient nutrients to the developing fetus. This includes profound changes 

in hormonal regulation and glucose metabolism. To investigate these physiological 

adaptations C57BL/6J mice (Bl/6) were examined to establish a detailed metabolic and 

hormonal profile before, during and after pregnancy. In total 5 time points were monitored, a 

pre gestational state (PreG) and 4 time points during gestation, one to cover changes within 

every trimester of pregnancy, namely gestational day (G) 6, 12 and 18. Selected tests were 

additionally performed at G14, the phase of maximal fetal growth. Furthermore, the time 

point 4 weeks after birth (28 post-partum) was assessed to study adaptations that might 

occur after pregnancy.  

3.1.1 Weight gain and glucose homeostasis  

The assessment of body weight gain during pregnancy showed a gradual increase 

after the first trimester from 20.5 ± 0.53 g in non-pregnant controls and 22.2 ± 0.71 g at G6 to 

27.83 ± 0.73 g at G12, 31.04 ± 0.30 g at G14 and further to 35.39 ± 2.77 g at G18 (Fig. 4A). 

Body weight changes during gestation are mainly attributed to litter growth and size, which 

was comparable among all groups (data not shown). Moreover, pancreas weight was 

observed to increase similar to the total body weight until G14. Thereafter organ weight did 

not further increase although body weight did. However, this might be related to litter 

development as this phase represents the time of maximal growth. A significant increase of 

pancreas weight was first observed at G14 with 0.29 ± 0.02 g and at G18 with 0.30 ± 0.02 g 

in comparison to the non-pregnant control group with 0.22 ± 0.01 g (Fig. 4B).  
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In order to characterize alterations in glucose metabolism throughout pregnancy, fasting 

blood glucose levels were measured after 6 hours starvation, followed by an intraperitoneal 

glucose tolerance test (ipGTT) prior to pregnancy (PreG) and at G6, G12, G18 and 4 weeks 

after delivery (PP28). To keep an appropriate distance between GTTs during pregnancy, 

tests were either performed at PreG, G6, G18 and PP28 or at PreG, G12 and PP28. 

Statistical analysis was performed on the combined dataset, however graphs have been 

divided for better visualization (Fig. 5B-C).  

Fasting blood glucose levels did not demonstrate any significant changes during early and 

mid-gestation with glucose levels of 151.10 ± 5.48mg/dL at G6 and 150.00 ± 9.19 mg/dL at 

G12 in comparison to PreG with 140.64 ± 4.25 mg/dL. Interestingly, fasted blood glucose 

levels were significantly lower by the end of pregnancy at G18 with 121.30 ± 5.3 mg/dL and 

remained lower even 4 weeks after delivery 120.55 ± 4.27 mg/dL (Fig. 5A). 

Glucose tolerance tests revealed that pregnant mice within the first two trimesters displayed 

significantly increased blood glucose levels 30 min after glucose challenge with values of 

377.63 ± 8.61 mg/dL at G6 (Fig. 5B) and 393.00 ± 9.82 mg/dL at G12 (Fig. 5C) compared to 

the levels prior to pregnancy with 334.17 ± 13.56 mg/dL. At G18, mice displayed significantly 

improved glucose clearance after 90 min (Fig. 5B). Moreover, glucose tolerance was 

observed to be significantly improved after pregnancy at PP28 with blood glucose values of 

290.22 ± 10.14 mg/dL after 30 min and 179.67 ± 6.54 mg/dL after 60 min glucose challenge 

(Fig. 5C).  

 
 

Figure 4: Body- and pancreas weight changes during mouse pregnancy. Body weight (A) and 

pancreas weight (B) gain during the different time course of pregnancy. Data are presented as 

mean ± SEM with n = 5-6 mice per group, analyzed by one-way ANOVA.  
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Figure 5: Glucose metabolism during and after mouse pregnancy. Fasting blood glucose levels 

after 6 hrs starvation (A). Blood glucose clearance over time at PreG, G6 and G18 (B) and at PreG, 

G12 and PP28 (C) Data are presented as mean ± SEM with  n = 7-12 mice per group, analyzed by 

two-way ANOVA.  
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3.1.2 Hormonal profile during mouse pregnancy 

Since changes in the hormonal profile are not only necessary to establish and 

maintain pregnancy but have been shown to contribute to important pancreatic endocrine 

adaptations, blood plasma samples were collected longitudinally prior to pregnancy and at 

G6, G12 and G18. The assessment of plasma concentrations of the steroid hormones 

progesterone (P4) and estradiol (E2) as well as of the lactogenic hormones prolactin (PRL) 

and placental lactogen (PLI and PLII) were measured by ELISA. 

 

 
 

 

 
 

Figure 6: Hormonal changes during pregnancy. Plasma hormone levels of female BL/6 mice 

before and during pregnancy determined by ELISA. Plasma concentrations of progesterone (A), 

estradiol (B), prolactin (C) and placental lactogen (D). Data are presented as mean ± SEM with 

n = 5 mice per group, analyzed by one-way ANOVA.  
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Plasma P4 levels (Fig. 6A) were observed lowest prior to pregnancy with 3.49 ± 1.50 ng/mL. 

Notably, early gestation was accompanied with a rapid increase in P4 levels to 

24.66 ± 1.35 ng/mL, resulting in a significant seven-fold augmentation already at G6. P4 

levels remained high during mid-gestation with 28.08 ± 8.05 ng/mL at G12 and decreased 

towards the end of pregnancy at G18 with plasma P4 concentrations of 12.37 ± 5.80 ng/mL. 

In contrast, plasma E2 levels (Fig. 6B) were observed to increase steadily during gestation, 

resulting in significantly increased plasma level at G18 of 125.90 ± 11.19 pg/mL compared to 

81.76 ± 6.37 pg/mL prior to pregnancy.  

PRL concentrations (Fig. 6C) were observed to remain low throughout the first two trimesters 

of pregnancy with plasma levels comparable to the pre-gestational state 

(con 230.70 ± 37.7 ng/mL, G6 211.71 ± 21.66 ng/mL, G12 149.83 ± 12.10 ng/mL). However, 

by the end of pregnancy at G18, PRL concentration was increased significantly to a 

maximum of 761.63 ± 152.32 ng/mL.  

Plasma concentrations of PL (Fig. 6D) displayed a similar activity pattern like E2 

concentrations with gradually increased values from 1.36 ± 0.02 µg/mL before gestation up 

to 1.41 ± 0.01 µg/mL at term. 

While P4 levels were elevated already very early during pregnancy and decreased prior to 

delivery, estradiol and lactogenic hormones rather increased with ongoing gestation, 

resulting in significantly increased concentration first observed by the end of pregnancy.  

 

3.2 Islet mass adaptations during pregnancy 

3.2.1 Assessment of endocrine mass 

In order to study the expansion of endocrine cell mass during pregnancy, the entire 

pancreas of female mice at different stages of gestation and 4 weeks after delivery was 

sectioned and cryosections were imaged with a slide scanner. Pancreatic mass was 

assessed manually by measuring endocrine and exocrine area and total islet number was 

counted. Changes in islet mass were quantified by calculation of either endocrine weight, 

using the measured pancreas weight and the endocrine area, or by calculation of islet area 

as percentage of total pancreatic area (Fig. 7A-B).  

A significant increase, both in mass and area, could be observed first at G14. Islet mass was 

found to increase 2 fold from 1.00 ± 0.08 mg in virgin female mice to 2.05 ± 0.24 mg at G14 

and 2.00 ± 0.21 mg at G18. Interestingly, islet mass remained elevated also 4 weeks after 

delivery with 2.14 ± 0.29 mg and was therefore comparable mass at term (Fig. 7A-B).  
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Although the total amount of islets present within the pancreas during early and mid-

gestation steadily increased from a mean of 817.40 ± 72.93 in control mice to 

1361.20 ± 113.47 islets at G14 (data not shown), islet density did not differ significantly 

among the various stages of gestation or afterwards (Fig. 7C). This might be related to the 

increase in organ size, as islet density is calculated by the number of islets within the total 

assessed pancreatic area. However, mean islet size increased during pregnancy, with a 

significant elevation first observed at G18 of 4523.00 ± 353.32 µm² in comparison to 

3185 ± 83.16 µm² in the control group. Interestingly, mean islet size was observed to 

increase after pregnancy even further to a peak area of 5667.60 ± 497.93 µm² (Fig. 7D). 

 
 

Figure 7: Islet mass and size adaptations during and after pregnancy. Islet mass increase at 

different stages of pregnancy calculated as mg (A) and percent (B) of total pancreatic mass/area. 

Islet density (C) calculated by the total amount of islets per µm² pancreas area. Mean islet size (D) 

measured by average islet area of all assessed islets. Data are presented as mean ± SEM with 

n = 5-6 mice per group, analyzed by one ANOVA. 
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In addition to islet mass expansion, individual islet size distribution was assessed throughout 

pregnancy. Therefore, islets were divided in four groups of different size (Fig. 8A-D).  

 

 
Contribution of small islets with a diameter up to 50 µm (Fig. 8A), did not change significantly 

throughout pregnancy, but was found to decrease significantly at PP28 (con 34.80 ± 1.08 %, 

PP28 25.79 ± 2.00 %). In pregnancy the frequency of middle sized islets between 50 and 

100 µm (Fig. 8B) decreased from 33.85 ± 1.51 % in non-pregnant control to 27.40 ± 0.82 % 

at G14 and 26.52 ± 1.17 % at PP28. Islets with a diameter between 100 and 150 µm (Fig. 

8C) were not found to differ in percentage of contributing endocrine mass during or after 

 
 

Figure 8: Islet size distribution during and after pregnancy. Islets with a diameter of 0-50 µm (A), 

50-100 µm (B), 100-150 µm (C) and > 150 µm (D), calculated as percent of total counted islets. Data 

are presented as mean ± SEM with  n = 5-6 mice per group. Data were analyzed by one-way ANOVA. 
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pregnancy. Finally, percentage of islets bigger than 150 µm (Fig. 8D) increased gradually 

from 9.00 ± 1.09 % in virgin female mice to a significant increase of 16.48 ± 1.30 % at G12 

and demonstrated an even more pronounced increase after delivery at PP28 with 

27.66 ± 2.86 %. These results indicate a major contribution of proliferation to the observed 

islet mass increase during pregnancy.  

 

3.2.2 Contribution of proliferation to endocrine mass expansion during 
pregnancy 

To assess the contribution of islet cell proliferation at the different stages of gestation, 

sections were stained for the cellular marker Ki67 and the expression of insulin using 

immunohistochemistry. This approach allows to investigate the proliferative activity in 

general, but also to assess the fraction of proliferating beta cells throughout pregnancy. The 

ratio of endocrine cell division was calculated as percent of total islet cells and showed that 

0.45 ± 0.02 % of islet cells underwent DNA synthesis under control conditions. This rate was 

significantly increased by more than 2-fold as early as G6 with 1.23 ± 0.15 % (Fig. 9A). 

Moreover, proliferation rates remained elevated with ongoing pregnancy at G12 with 

1.07 ± 0.22 % and G14 with 1.27 ± 0.35 %. Endocrine cell division rates returned to pre-

gestational levels already by the end of pregnancy at G18 with a percentage of 

0.46 ± 0.10 % and seemed consistent even 4 weeks after delivery with 0.44 ± 0.11 % at 

PP28 (Fig. 9A). A similar profile could be observed for beta cell proliferation calculated as 

percentage of dividing beta cells within the beta cell fraction (Fig. 9B). Interestingly, 

throughout pregnancy the majority of dividing cells are represented by beta cells. However, 4 

weeks after delivery significantly less beta cells underwent DNA synthesis in comparison to 

pregnant or non-pregnant animals (PP28 50.28 ± 5.46 %, Fig. 9C).  

This data confirmed that proliferation seems to play a major role in the compensatory 

response during pregnancy, but due to the low proliferative activity it might not be the only 

mechanism involved in this process. 



Results 

 
43 

 

 
 

Figure 9: Islet cell proliferation during and after pregnancy. Percentage of Ki67 positive cells 

of total islet cells (A). Amount of Ki67 positive beta cells (B), calculated as percent of the beta cell 

fraction. Percent of proliferating insulin positive cells (C), calculated as percentage of all 

proliferating cells. Data are presented as mean ± SEM with n = 5-6 mice per group with 

>4000 cells/mouse. Data were analyzed by one-way ANOVA.  
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3.3 Influence of neogenesis on pregnancy 

Besides proliferation of preexisting cells, islet cell mass increase can be achieved by 

other mechanisms like neogenesis, dedifferentiation or transdifferentiation. While islet cell 

neogenesis describes the formation of new pancreatic endocrine cells from pancreatic 

progenitor cells or stem cells which are localized within the exocrine compartments (Herrera, 

et al. 1991; Gu, et al. 2002), de- and transdifferentiation require the cellular transition of 

existing mature endocrine cells. This transition may occur directly from one pancreatic cell 

into another (transdifferentiation) or via an intermediary transition cell stage 

(dedifferentiation) followed by re-differentiation towards another cell type (Puri, et al. 2015). 

To investigate the contribution of these mechanisms to the increase in islet mass during 

pregnancy the recurrence of the progenitor gene Ngn3 was assessed in vivo. As all 

pancreatic islet endocrine cells arise from Ngn3 expressing precursor cells during 

development (Gradwohl, et al. 2000; Gu, et al. 2002; Gouzi, et al. 2011), a re-activation of 

this endocrine progenitor during pregnancy is therefore proposed to indicate adult beta cell 

neogenesis or dedifferentiation through a precursor cell state. For the purpose of in vivo 

labeling of Ngn3 positive cells during pregnancy the double transgenic Ngn3-CreER;mTmG 

reporter mouse strain was used and pulse chase experiments by TAM administration were 

performed. The Ngn3 promoter driven expression of the inducible Cre/LoxP reporter system 

with the double-fluorescent mTmG indicator allows the visualization of Ngn3 positive cells 

during a desired timeframe in the adult pancreas, when exposed to tamoxifen (TAM). The 

reporter mouse ubiquitously expresses membrane bound tdTomato switching to GFP after 

tamoxifen induced Cre-mediated recombination in Ngn3 expressing cells. Only those cells 

that express Ngn3 in the presence of tamoxifen, as well as any subsequent daughter cells, 

will express GFP.  

 

3.3.1 Ngn3 expression in the endocrine pancreas 

As differentiation of exocrine acinar or ductal cells into endocrine cells has been 

observed to represent the major mechanism of endocrine beta cell neogenesis (Bonner-

Weir, et al. 1993; Wang, et al. 1995; Jensen, et al. 2005), the occurrence of Ngn3 expressing 

cells during pregnancy was first investigated in the exocrine part of the pancreas. 

Surprisingly, Ngn3 expression was mainly observed in the endocrine pancreas, with only 

very few cells located within the exocrine tissue (Fig. 10).  
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3.3.2 Increased Ngn3 promotor activity during early pregnancy 

As Ngn3 expression is limited to the endocrine pancreas, dynamics of intra-islet Ngn3 

promotor activity were further investigated by immunohistochemistry and manual cell 

counting analysis. For Cre-dependent recombination, mice were injected a single dose of 

TAM at different gestational days and sacrificed 2 days afterwards (Fig. 11A). Surprisingly, 

already under non-pregnant conditions Ngn3 expression could be observed in 1.92 ± 0.34 % 

of all islet cells. Moreover, a significant increase of Ngn3 promotor activity, visualized by GFP 

expression was shown only during the first trimester of pregnancy at G4-6 with 

5.38 ± 0.67 %. Thereafter Ngn3 promotor activity declined back to control levels (Fig. 11B-

D). 

 
 

Figure 10: Ngn3 expression during pregnancy is limited to the endocrine pancreas. 
Representative images of a pancreatic tissue section from Ngn3-CreER;mTmG mice after TAM 

administration for 2 days in a pregnant mouse at G4-6 showing recombined GFP positive cells 

(green) and tomato positive cells (orange) (A), and GFP expression only (B). Dotted lines indicate 

islets. Scale bar = 200 µm. Percentage of GFP expressing cells in non-pregnant controls within the 

exocrine and endocrine tissue (C), calculated as percent of all pancreatic cells. Data are presented 

as mean ± SEM with n = 5 mice with >100000 cell/mouse, analyzed by an unpaired, two-tailed t-

test.  
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To exclude proliferation as possible mechanism for the observed increase in Ngn3 

expression during early gestation, a lineage tracing experiment was performed by labeling 

preexisting Ngn3 positive cells prior to pregnancy. Studies have shown that TAM 

administration may continue to label significant amounts of cells for up to 4 weeks after 

treatment (Reinert, et al. 2012). Thus, the labeling protocol was adjusted and included a 4 

week waiting period after TAM administration to prevent further recombination thereafter 

 
 

Figure 11: Recombination efficiency of Ngn3 promotor activity during pregnancy. 
Experimental setup for TAM administration in vivo (A). Intra-islet Ngn3 expression indicated by GFP 

expression, calculated as percentage of all islet cells (B). Representative images of islets from 

pancreatic tissue sections of Ngn3-CreER;mTmG mice after TAM administration of a virgin (A) and 

pregnant mouse at G4-6 (B). Ngn3 indicated by GFP expression (green) and stained for DAPI (blue). 

Dotted line indicates an islet. Scale bar = 25 µm, n = 5-6 mice per group with >10000 cells/mouse. 

Data are presented as mean ± SEM, analyzed by one-way ANOVA. 
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(Fig. 12A). Ngn3 lineage tracing experiments revealed that the observed increase during 

pregnancy does not result from replication of preexisting Ngn3 positive islet cells as the 

number of labeled cells in virgin and pregnant female mice did not differ significantly 

(1.40 ± 0.30 % control and 2.00 ± 0.70 % pregnant, Fig. 12B). 

 

 

 
 

Figure 12: Lineage tracing of Ngn3 positive cells.  Scheme of TAM administration in vivo (A). 

Recombination frequency calculated as percent GFP positive cells of total analysed islet cells (B). 

Data are presented as mean ± SEM, n = 5-6 mice per group with >4000 cells/mouse, analyzed by an 

unpaired, two-tailed t-test. 

 

The emergence of intra-islet Ngn3 positive cells during early pregnancy was visualized by 

GFP expression using the TAM dependent induction of Cre activity in Ngn3-CreER;mTmG 

reporter mice as surrogate for Ngn3 expression. To verify the accurate function of this 

reporter system the Ngn3-YFP reporter mouse strain was used in addition to analyse Ngn3 

expression during early pregnancy (Fig. 13A-C). Here, Ngn3 promotor activity leads to 

transient expression of the yellow fluorescent protein (YFP) independent of Cre-

recombination. The 3-dimensional analysis of islets in stained pancreatic tissue slices from 

Ngn3-YFP mice revealed that Ngn3 is already expressed in non-pregnant control mice, 

similar to the results obtained from the Ngn3-CreER,mTmG mice. Moreover, mice at G6 of 

pregnancy showed a significantly increased amount of 7.66 ± 0.65 % YFP positive cells 

(Fig. 13C). 
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In summary, both mouse strains confirmed a dynamic on- and offset of intra-islet Ngn3 

expression within a narrow time frame during early gestation as a result of de novo promotor 

activity. 

 

3.3.3 Origin and fate of Ngn3-positive cells  

In order to further characterize the emerging Ngn3 positive cells, sections were 

examined for insulin, glucagon and somatostatin hormone expression by 

immunohistochemistry. Quantification of hormone expression in GFP positive cells revealed 

that under control conditions only 28.06 ± 1.27 % of the Ngn3 expressing cells stained 

positive for insulin and 12.34 ± 1.64 % for glucagon, while the majority was positively labeled 

for somatostatin (67.66 ± 3.96 %) (Fig. 14A-C). Interestingly, at the peak incidence of Ngn3 

positive cells during pregnancy, G4-6, the somatostatin positive stained fraction significantly 

decreased (52.00 ± 5.50 %), whereas the insulin and glucagon fractions remained constant. 

Moreover, co-staining for all three endocrine hormones confirmed an increase in GFP 

positive, hormone negative (Ins-/Gcg-/Sst-) cells from 3.50 ± 0.77 % in the control group to 

19.87 ± 2.64 % at G4-6 (Fig. 14D-F). The observed loss of somatostatin expression and 

increase in hormone negative cells might indicate a loss of delta cell phenotype during 

pregnancy induced by Ngn3 expression. 

 
 

Figure 13: Ngn3 expression during early pregnancy. Representative images of islets from 

pancreatic tissue slices of Ngn3-YFP mice of a virgin mouse (A) and a pregnant mouse at G6 (B). 

Ngn3 indicated by YFP expression (green) and islet backscatter (grey). Scale bar = 25 µm. 

Recombination efficiency in islets (C), calculated as percentage of YFP positive cells in all islet 

cells, n = 5 mice per group with >5000 cells/mouse. Data is presented as mean ± SEM, analyzed 

by one-way repeated measure ANOVA and Sidak’s multiple 
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Figure 14: Hormone composition of emerging Ngn3 positive cells. Composition of GFP positive 

cells, calculated as percent of GFP positive cells for insulin (A), glucagon (B) or somatostatin (C). 

Representative image of an islet from a TAM treated G4-6 pregnant mouse (D) with recombined GFP 

positive cells (green) stained for insulin, glucagon and somatostatin (magenta) and the nuclear marker 

DAPI (blue). Dotted line represents a GFP positive, triple hormone negative cell. Scale bar = 25 µm. 

Percent of GFP positive, triple hormone negative cells (E) calculated as fraction of all GFP positive cells. 

Cell type distribution (F) of insulin positive (black), glucagon positive (white) and somatostatin positive 

(grey) cells calculated as fraction of all GFP positive cells. Data are presented as mean ± SEM, n = 5-6 

mice per group with >2500 cells/mouse, analyzed by an unpaired, two-tailed t-test.  
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3.3.4 Occurrence of islet cell dedifferentiation during pregnancy 

To investigate if early pregnancy leads to Ngn3 promotor activity and subsequent loss 

of hormone expression in delta cells, the Sst-Cre;YFP mouse line was used to harvest 

pancreatic organs at different states of gestation and thereafter. The Cre-mediated 

recombination under the somatostatin promotor results in irreversible expression of the 

fluorescent reporter YFP and therefore allows to lineage trace delta cells over time. Analysis 

of YFP positive cells was performed by immunofluorescence staining for somatostatin and 

insulin positive cells in pancreatic cryosections (Fig. 15 A-C).  

Results showed that the fraction of delta cells (YFP+/Sst+) dropped significantly from 

96.96 ± 1.00 % to 87.12 ± 1.83 % already within the first trimester of pregnancy at G6 (Fig. 

15D). The percentage of this cell fraction remained significantly lower in comparison to virgin 

mice until mid-gestation. At the same time, an increase in YFP positive cells that did not 

express somatostatin nor insulin (YFP+/Ins-/Sst-), could be observed from 1.54 ± 0.39 % 

under control conditions to 11.05 ± 1.36 % at G6 and 9.50 ± 1.63 % at G12 (Fig. 15E). This 

fraction of YFP+/Ins-/Sst- cells declined with proceeding pregnancy and was not significantly 

different to non-pregnant control levels at G18 or after pregnancy at PP14 and PP28. 

Moreover, a steady increase of YFP+ cells expressing insulin (YFP+/Ins+) was observed 

throughout pregnancy with a significantly elevated value of 5.38 ± 0.74 % at G18 compared 

to 1.50 ± 0.75 % under control conditions (Fig. 15F). 

This data suggests that a substantial number of somatostatin expressing delta cells lose their 

cell identity and become hormone negative at G6-12. With ongoing pregnancy these cells 

might partially convert into insulin producing beta cells. 

 

Due to the increasing islet cell mass and elevated cell division rates during pregnancy, 

alterations in cell fractions can also be the result of diverse changes in cell mass and might 

not be related to cell conversions. For instance, the opposite development of YFP+/Sst+ and 

YFP+/Ins-/Sst- cell fractions could be caused by a selective enhancement of the YFP+/Ins-

/Sst- cell mass. To evaluate the influence of cell mass changes on these findings, pancreatic 

mass during pregnancy was assessed by manual measurements of pancreatic endocrine 

and exocrine area of consecutive pancreas cryosections. Measurements of endocrine area 

and islet composition data were used to calculate the individual mass changes of the 

different YFP+ cell types in order to visualize the absolute changes of each fraction (Fig. 15G-

H).  
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Figure 15: Lineage tracing of delta cells. Images of representative islets of a non-pregnant 

control mouse (A), a pregnant mouse at G6 (B) and a pregnant mouse at G18 (C) with recombined 

YFP+ cells (green), stained for somatostatin (orange), insulin (magenta), and DAPI (blue). Square 

indicates the magnification of a single YFP+/Sst+ cell (A), YFP+/Ins-/Sst- cell (B) and YFP+/Ins+ cell 

(C). Scale bar = 25 µm. Composition of YFP positive cells shown as YFP+/Sst+ (D), YFP+/Ins-/Sst- 

(E) and YFP+/Ins+ (F) cells calculated as percent of all YFP positive cells. Combined analysis of 

endocrine mass and composition of the YFP+ cell fractions during pregnancy (G-H). Cell mass 

changes of YFP+/Sst+ (orange), YFP+/Ins-/Sst- (green) and YFP+/Ins+ (purple) cells (G). Combined 

mass changes of all YFP+ islet cells (H). Data are presented as mean ± SEM, n = 5-6 mice per 

group, analyzed by one-way repeated measure ANOVA. 
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Interestingly, YFP+/Ins-/Sst- cell mass was found to be significantly increased from 

1.15 ± 0.23 µg in non-pregnant female mice to 9.09 ± 1.09 µg at G6 of pregnancy, while the 

YFP+/Sst+ cell mass did not show a significant drop in comparison to virgin mice (con 

78.37 ± 5.90 µg, G6 71.65 ± 8.39 µg). The mass of the YFP+/Ins-/Sst- cell- fraction was 

further increased to 10.87 ± 2.08 µg at G12 and dropped to 7.45 ± 1.19 µg at G18 (Fig. 15G). 

YFP+/Ins+ cell mass was shown to gradually increase with a significant mass expansion not 

before G18 from 1.11 ± 0.56 µg to 8.74 ± 1.40 µg. The YFP+/Sst+ cell mass was shown to 

increase progressively from mid-gestation to term, with a significant increase at G18 from 

78.37 ± 5.90 µg to 136.99 ± 21.98 µg, which might be related to a high proliferative rate 

during the third trimester. 

In summary, the combined analysis of islet mass and islet cell composition at different 

phases of pregnancy revealed that fractional changes precede mass expansion and 

therefore rule out proliferation as major mechanism for the initial reprogramming of delta cells 

towards a hormone negative state. 

 

 

In addition to their different hormone expression, beta and delta cells vary significantly in 

their cell morphology. The cell shape of individual islet cells was assessed by manual 

measurements of longest versus shortest cell axis of the islet using FIJI. While delta cells 

(YFP+/Sst+) displayed an elongated cell shape with a cell axis ratio of 4.03 ± 0.07 under 

control conditions, beta cells (YFP-/Ins+) showed an almost round shape with a ratio of 

 
Figure 16: Cell shape of different islet cell types during pregnancy. Cell shape, calculated as 

ratio between width and length of cells under control conditions (A), during pregnancy (B) at G6, 

G12 and G18 and after pregnancy (C) at PP14 and PP28. Data are presented as mean ± SEM, 

n = 5-6 mice per group with >400 cells/mouse, analyzed by an unpaired, two-tailed t-test.  
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1.52 ± 0.03. Interestingly, converted beta cells (YFP+/Ins+) showed an identical axis ratio like 

beta cells with 1.53 ± 0.13 (Fig. 16A-C). This specific cell shape did not change significantly 

during (G6, G12 and G18) or after pregnancy (PP14 and PP28). Moreover, cells that lost 

delta cell identity (YFP+/Ins-/Sst-) showed a significantly smaller cell axis ratio in comparison 

to delta cells during pregnancy with 3.67 ± 0.11 and after pregnancy with 3.79 ± 0.18. 

3.3.5 Detection of Ngn3 mRNA levels in vitro 

To investigate whether explicitly delta cells activate Ngn3 expression during early 

pregnancy, Ngn3 mRNA expression in delta and non-delta cells was assessed by qRT-PCR. 

To do so, the Sst-Cre;YFP mouse line was used and islets were isolated islets from non-

pregnant and pregnant mice at G6, dispersed into single cells and sorted for their YFP 

expression. Ngn3 expression and its downstream target NeuroD1 were clearly detectable in 

cells from virgin and G6 pregnant female mice. While YFP negative cells did not show any 

changes in Ngn3 expression at G6 compared to virgin females, Ngn3 expression in the delta 

cells significantly increased by 2.78 ± 0.41 fold during pregnancy (Fig. 17A-B). Likewise, 

NeuroD1 expression was increased by 2.64 ± 0.93 fold only in the YFP positive cells during 

pregnancy, yet this augmentation was not statistically different (Fig. 17C-D). 

 

 
Thus, emergence of Ngn3 expression during pregnancy was shown to be significantly 

activated in delta cells and might lead to loss of somatostatin hormone expression. 

 
 

Figure 17: mRNA expression of Ngn3 and NeuroD1 in vitro. Quantification of mRNA levels by 

qRT-PCR of FACS sorted cells. Ngn3 expression calculated as fold change to the normalized 

mean control value of YFP positive cells (A) and YFP negative cells (B). Quantified mRNA levels of 

NeuroD1 calculated as fold change to the normalized mean control value of YFP positive cells (C) 

and YFP negative cells (D). Data are presented as mean ± SEM, n = 5-6 mice per group with 300 

cells/mouse, analyzed by an unpaired, two-tailed t-test.  
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3.3.6 Progesterone induces delta cell conversion in vitro 

Increased Ngn3 promotor activity and partial loss of delta cell phenotype occurred 

within a time window during early and mid-gestation. During this phase of pregnancy also 

metabolic and hormonal plasma concentrations were significantly altered. In particular the 

plasma steroid hormone P4 levels were increased and glucose tolerance decreased. In order 

to elucidate whether there is a correlation between glucose homeostasis, hormonal changes 

and the loss of hormone expression in delta cells, in vitro studies with isolated islets of 

Sst-Cre;YFP female mice were performed. 

Isolated islets were cultured for a prolonged period of 5 days in the presence of steroid 

hormones and elevated glucose concentrations. To elucidate the impact of every applied 

stimulus, islets were fixed after culture and stained by immunohistochemistry (Fig. 18A). This 

approach allows to perform lineage tracing of the delta cells and to quantify the specific effect 

of elevated glucose and/or increased hormone levels as a trigger to induce loss of 

somatostatin hormone expression in delta cells. Glucose concentrations were chosen 

according to fasting conditions by utilizing 5.5 mM glucose and elevated glucose 

concentrations, simulating the phase of insulin resistance occurring during pregnancy with 

11.1 mM glucose concentration in the media.  

Three dimensional analyses revealed no effect of elevated glucose concentrations per se on 

hormone expression levels in delta cells. However, slightly elevated fractions of YFP+/Sst- 

cells could be observed under basal conditions compared to the results obtained in vivo 

( 6.43 ± 1.37 % in vitro; 1.54 ± 0.39 % in vivo). This might be an artifact of stress induced by 

the islet isolation procedure or in vitro culture itself. Interestingly, the presence of P4 in the 

media resulted in a loss of somatostatin staining in YFP positive cells and thus, in an 

increase of YFP+/Sst- cells from 6.43 ± 1.37 % cultured in 5.5 mM glucose to 12.57 ± 1.36 % 

after culture in 5.5 mM glucose supplemented with P4 (Fig. 18C). This effect was 

independent of the applied glucose concentration as elevated glucose of 11.1 mM did not 

reveal a significant increase compared to basal glucose (17.27 ± 1.85 %). The opposite 

development was observed in the YFP+/Sst+ cell fraction with a decrease from 

93.57 ± 1.37 % cultured in 5.5 mM glucose to 87.43 ± 1.36 % after culture in 5.5 mM glucose 

and P4 (Fig 18B). Remarkably, this effect was absent when islets were cultured in medium 

supplemented with a combination of P4 and E2 with values of 5.47 ± 1.03 %. Likewise, E2 

alone did not demonstrate any significant changes on YFP+/Sst- cell fraction (Fig. 18C). 

Significantly increased plasma E2 levels were only observed during the last trimester of 

pregnancy when loss of somatostatin expression seemed to be completed. This effect of 
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combined hormone concentrations in the culture media might therefore suggest E2 as an 

inhibitor of P4 induced delta cell phenotype loss. 

 

 
In summary, P4 alone has been demonstrated to induce loss of hormone expression in delta 

cells in vitro, visualized by an increased fraction for YFP+/Sst- cells, whereas a combination 

of P4 and E2 demonstrated suppressive effects. 

 
Figure 18: Effects of glucose concentration and presence of steroid hormones on isolated 
islets in vitro. Isolated islets from Sst-Cre;YFP mice were cultured for 5 days and stained by 

immunohistochemistry. Representative image of a stained islet for GFP (green), somatostatin 

(orange), insulin (magenta) and DAPI (blue). Scale bar = 25 µm (A). Percentage of YFP+/Sst+ cells 

(B) and YFP+/Sst- cells (C) after 5 day culture in 5.5 mM glucose (G5.5), 5.5 mM glucose 

supplemented with progesterone (G5.5+P4), 11.1 mM glucose (G11.1), 11.1 mM glucose 

supplemented with progesterone (G11.1+P4), 11.1 mM glucose supplemented with estradiol 

(G11.1+E2) and 11.1 mM glucose supplemented with progesterone and estradiol (G11.1+P4+E2) 

(B). Data are presented as mean ± SEM, n = 5-6 mice per group with > 2000 cells/mouse, 

analyzed by one-way repeated measure ANOVA. 
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3.3.7 Delta cell dedifferentiation leads to increased beta cell function in vivo 
and in vitro 

Early pregnancy initiated loss of delta cell identity resulting in significantly decreased 

amounts of somatostatin producing delta cells (Fig. 15D). This might impact insulin release 

as somatostatin produced by pancreatic delta cells is supposed to have an inhibitory function 

on beta cells (Hauge-Evans, et al. 2009). In order to elucidate the effects of early pregnancy 

on insulin secretion, pancreatic tissue slices were utilized to assess hormone secretion in 

response to different stimuli by perifusion (Fig. 19 A-C). For this purpose, tissue slices were 

generated from female virgin and pregnant Bl/6 mice at G8, corresponding to the phase of 

delta cell reprogramming between the first and second trimester of pregnancy. Slices were 

placed in closed perifusion chambers and connected to a perifusion machine.  

Dynamic insulin secretion of perifused tissue slices revealed an increased glucose stimulated 

insulin secretion in pregnant mice at G8 compared to control mice, expressed as stimulation 

index over the mean basal insulin secretion (Fig. 19A). Quantification of stimulated insulin 

secretion, calculated by the area under the curve, showed a significant increase while total 

insulin content of perifused slices was comparable (Fig 19B-C). This data clearly showed 

increased glucose stimulated insulin secretion during mid-pregnancy at G8. However, this 

data could not prove whether the observed response is a result of diminished inhibition of 

beta cells via somatostatin secretion or linked to increased beta cell function. As in vitro 

culture of isolated islets in the presence of P4 demonstrated an induction delta cell 

dedifferentiation, this stimulus was used to address whether delta cell dedifferentiation has 

an effect on islet cell function.  

After a 5 day culture period, perifusion experiments were performed on isolated islets using 

the same protocol as before. Quantification of insulin kinetics in response to glucose 

demonstrated that prolonged culture with P4 indeed alters glucose stimulated insulin 

secretion (Fig. 19D). The observed increase correlated well to the effect seen during 

pregnancy (Fig. 19A). Assessment of dynamic insulin secretion by the area under the curve 

confirmed increased beta cell function after P4 culture (Fig. 19E). Notably, both conditions 

revealed a comparable total insulin content (Fig. 19F), indicating no changes in total beta cell 

mass after prolonged culture. Thus, elevated plasma hormone levels of P4 during early 

pregnancy might be responsible for increased islet function via delta cell dedifferentiation. 
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Figure 19: Dynamic insulin release during pregnancy and after culture in vitro. Insulin secretion 

from perifused pancreatic tissue slices of virgin and pregnant Bl/6 mice at G8 (A-C) and isolated 

islets cultured for 5 days with and without progesterone (D-F). Insulin response is calculated as 

stimulation index over the mean baseline response from tissue slices (A) and isolated islets (D). 

Quantification of stimulated insulin response, calculated as area under the curve in tissue slices from 

pregnant mice (B) and after in vitro culture (E). Total insulin content of perifused pancreatic tissue 

slices (C) and cultured islets (F). Data are presented as mean ± SEM, n = 5-6 mice per group with 

4 slices or 30 islets respectively. Analysis was performed by one-way ANOVA.  
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4 Discussion 

Pancreatic beta cells produce and secrete insulin, and are therefore responsible for 

lowering blood glucose concentrations. The amount of secreted insulin depends on the 

functional beta cell mass, determined by the absolute number and size of beta cells as well 

as their potential to secrete insulin. The population of beta cells is dynamic as they are 

capable to react to changes in metabolic demand over a short time period. Beta cell 

replenishment and death is regulated by cellular processes including replication of 

preexisting cells, hypertrophy, neogenesis and apoptosis. Throughout life these processes 

are balanced, resulting in a sufficient beta cell mass to maintain euglycemia within a narrow 

range. One of the most impressive physiological challenges for beta cell mass represents 

pregnancy, a unique metabolic condition demanding enormous structural and functional 

plasticity of the endocrine pancreas. Profound changes in hormonal regulation and 

metabolism favor glucose supply to the developing fetus, resulting in progression of maternal 

insulin resistance and subsequent compensation by beta cell mass and function (Green and 

Taylor 1972; Parsons, et al. 1992; Sorenson and Brelje 1997). The significance of this 

adaptation is illustrated by the progression of gestational diabetes, a condition that develops 

when beta cells fail to meet the elevated physiological demand (Barbour, et al. 2007) and 

can lead to deleterious short- and long-term effects on the fetus and the mother. While fetal 

overgrowth, underdevelopment of organs and premature birth are potential short-term risks 

for the developing fetus, predisposition to the development of metabolic syndrome and T2D, 

as well as cardiovascular diseases, represent the most significant long-term consequences 

for mother and child (Buckley, et al. 2012; Fraser and Lawlor 2014). However, only little is 

known about the contributing mechanisms of the compensatory response of beta cell mass 

during pregnancy that protect from the development of GDM. Although beta cell mass 

expansion has been mainly attributed to increased proliferation rates (Sorenson and Brelje 

1997; Xue, et al. 2010; Beamish, et al. 2017), the influence of mechanisms including non-

beta cell sources have not been fully clarified yet. Moreover, even less attention was 

attracted to responsible mechanisms in the early functional compensation. Therefore, this 

thesis aimed to assess metabolic adaptions occurring during and after pregnancy and to 

obtain more accurate data on the contribution of individual cellular processes underlying 

increased beta cells mass and function. These findings are essential for broader 

understanding of pancreas plasticity and to identify the underlying responsible signaling 

factors leading to beta cell mass adaptation. Moreover, deeper understanding of the intrinsic 

mechanisms involved in beta cell adaptations during pregnancy can provide novel targets 
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that could be used to enhance endogenous beta cell regeneration as potential future 

treatment options of diabetes. 

 

4.1 Functional adaptations precede islet mass expansion during pregnancy 

In this study, the physiological changes on maternal metabolism were comprehensively 

characterized across the different phases of rodent pregnancy and thereafter. Assessment of 

weight changes demonstrated significant and progressive weight gain from mid-gestation 

onwards, which in large parts results from size and growth of the litter. Notably, pancreatic 

weight increased similar to the total body weight during the first 14 days of pregnancy, 

indicating adaptations of this organ to the increased food intake and metabolic demand. 

Within the last trimester organ growth did not further increase and might indicate that 

compensatory mechanisms, at least in the exocrine pancreas that makes up 98 % of the 

entire mass, are mostly completed. Characterization of glucose homeostasis revealed that 

glucose intolerance developed already during early pregnancy and further progressed at 

mid-gestation, while pregnancy at term and even 4 weeks later revealed a better 

performance in glucose clearance with significantly lowered fasting blood glucose levels. 

Insulin sensitivity was measured under fasting conditions and after glucose challenge by 

insulin ELISA. However, these data were inconclusive which might be attributed to the 

prolonged sample storage, leading to partial degradation of the plasma insulin. These 

experiments will be repeated using C peptide as readout for beta cell function to circumvent 

the complications. Nevertheless, several studies already demonstrated significantly 

increased plasma insulin levels and suggest a significant rise in insulin secretion as 

pregnancy advances (Green and Taylor 1972; Bone and Taylor 1976; Parsons, et al. 1992; 

Catalano, et al. 1993; Sonagra, et al. 2014) Serum insulin levels were found significantly 

elevated by 75 % until mid-gestation and therefore demonstrate that the development of a 

transient insulin resistance is a hallmark of early to mid-pregnancy (Costrini and Kalkhoff 

1971; Green and Taylor 1972). The increased demand for insulin during this stage is most 

likely compensated by enhanced beta cell function with negligible contribution of beta cells 

mass as a significant expansion could not be observed until the third trimester. Thus, beta 

cell function makes a major contribution during the first two trimesters of pregnancy whereas 

islet mass is of minor influence during that time and rather accounts for late adaptations. 

The compensatory mass increase within the third trimester, also previously reported by 

others (Sorenson and Brelje 1997; Xue, et al. 2010), could be verified in this thesis, 

demonstrating a significant 2-fold increase by G18. Strikingly, no reduction of islet cell mass 
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could be observed up to 4 weeks post-partum and also mean islet size further increased. 

This data is contrary to literature, as it has been reported that beta cell volume returned to 

pre-gestational values shortly after birth (Rieck and Kaestner 2010). More precisely, 

regression of endocrine mass was shown to occur within ten days post-partum through 

decreased proliferation, elevated apoptosis and beta cell size reduction (Scaglia, et al. 1995; 

Beamish, et al. 2017). However, this effect could not be observed in this thesis. 

Taken together, these results reveal that during rodent gestation a physiologic reduction of 

insulin sensitivity leads to distinct compensatory dynamics of beta cell function and mass. 

 

4.2 Non-proliferative mechanisms contribute to the mass adaptations during 
pregnancy 

Analyses of the proliferation rates by the cellular marker Ki67 demonstrated increased 

cell division rates with comparable levels throughout pregnancy, from G6 to G14. Notably, 

proliferative activity returned to pre-pregnancy levels shortly before parturition. Moreover, 

assessment of islet size distribution throughout pregnancy demonstrated a clear shift 

towards bigger islet diameter as pregnancy proceeds. These observations are in line with 

previous studies (Parsons, et al. 1992; Sorenson and Brelje 1997; Beamish, et al. 2017) 

showing elevated endocrine cell proliferation during pregnancy, however peak occurrence at 

about two-thirds of gestation could not be observed in this thesis. This might be related to the 

different experimental methods that were used, as labeling wit bromodeoxyuridine (BrdU) in 

vivo might result in a prolonged experimental windows and higher labeling efficiency 

compared to endpoint labeling with Ki67. Taken together, this data confirms previous reports 

and suggests proliferation as a major mechanism for endocrine mass expansion during 

pregnancy.  

Several studies attributed the increased DNA synthesis to increased levels of hormone 

concentrations (Brelje, et al. 1993; Galosy and Talamantes 1995; Kim, et al. 2010). While 

progesterone has been shown to rise rather early during gestation (McCormack and 

Greenwald 1974; Murr, et al. 1974) with a suggested effect in beta cell function (Ashby, et al. 

1978, 1981), lactogenic hormones were proposed to induce beta cell proliferation (Nielsen 

1982; Brelje, et al. 1993; Sorenson, et al. 1993). Characterization of hormonal changes 

during pregnancy in this thesis confirmed that only the steroid hormone progesterone was 

significantly elevated during early and mid-gestation, while lactogenic hormones and 

estradiol increased gradually with significantly elevated plasma concentrations exclusively at 

term. These findings confirm the concept that placental lactogen and prolactin stimulate islet 
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proliferation at later stages of pregnancy resulting in endocrine mass expansion (Ryan and 

Enns 1988; Brelje, et al. 1993; Brelje, et al. 2004; Georgia and Bhushan 2010; Kim, et al. 

2010). However, the observed proliferation rates in this thesis were rather low suggesting 

that other mechanisms cannot be excluded in the contribution of compensatory beta cell 

mass adaptation during pregnancy. Assessment of size distribution further support this 

hypothesis, as the fraction of small islets (0-50 µm diameter) remained constant during the 

course of gestation, indicating the influence of neogenesis. Furthermore, increasing size 

towards islets bigger than 150 µm might also be partially due to neogenesis of endocrine 

cells into preexisting islets.  

In summary, the data shown in this thesis could confirm previous reports in terms of 

proliferation accounting predominantly for mass adaptations during mid- and late gestation, 

yet the influence of non-beta cell sources cannot be excluded. 

 

4.3 Recapitulation of Ngn3 promotor activity during early pregnancy 

Since the source of beta cell mass expansion during gestation has not been entirely 

identified, this thesis aimed to determine whether other mechanisms, like neogenesis or 

dedifferentiation, under the re-activation of the developmental pathway involving Ngn3 

expression contribute. 

Neogenesis of islet cells is defined as the new formation of endocrine cells from pancreatic 

progenitor or stem cells, frequently described to originate from the ductal compartment 

(Bonner-Weir, et al. 2004). This pathway has been shown to occur during embryonic 

development (Herrera, et al. 1991; Gu, et al. 2002), postnatal growth (Chintinne, et al. 2010) 

and in response to extreme artificial beta cell loss (Xu, et al. 2008; Van de Casteele, et al. 

2013). Cellular reprogramming on the other hand defines the transition from a fully 

differentiated endocrine cell into another and can happen in two different ways, namely trans- 

and dedifferentiation. In case of transdifferentiation, a mature islet cell converts directly into 

another (Thorel and Herrera 2010). If the process occurs via an intermediate transition phase 

towards a multi-progenitor cell stage, it is called dedifferentiation and can be followed by a 

re-differentiation into a mature cell state (Puri, et al. 2015). Recent studies describe islet cell 

dedifferentiation as a mechanism of cell failure caused by cellular exhaustion and 

dysfunction associated with disease progression, e.g. T2D (Cinti, et al. 2016). This study 

however did not link dedifferentiation as a consequence of stress or exhaustion, but as a 

physiological adaptation. 
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It has been well established, that the transcription factor Ngn3 plays an essential role in 

endocrine differentiation and that all islet cells derive from Ngn3 positive precursors 

(Gradwohl, et al. 2000; Gu, et al. 2002; Gouzi, et al. 2011). Expression of Ngn3 in the adult 

pancreas on the other hand is contrary. Its transient induction has been observed in hormone 

negative cells, leading towards differentiation of the endocrine lineage. These derive from 

cells located along the ductal lining (Xu, et al. 2008; Van de Casteele, et al. 2013) or acinar 

cells (Sostrup, et al. 2014) and initiation of Ngn3 expression would subsequently lead to 

migration towards existing islets. 

Contrary to literature, analysis on histological pancreas sections from adult mice 

demonstrated the emergence of Ngn3 positive cells to be located within the islets themselves 

and not in the exocrine or ductal compartments. Yet, this is an endpoint approach, so Ngn3 

induction within the ductal or acinar cells followed by migration towards the islets of 

Langerhans cannot be fully excluded. However, the narrow time window and absence of 

elevated GFP expression in the exocrine cells during pregnancy makes this hypothesis 

highly unlikely.  

Interestingly, low amounts of intra-islet Ngn3 activity were observed in adult non-pregnant 

mice, indicating that Ngn3 expression is indeed present in the adult pancreas. Nevertheless, 

pregnancy lead to a transient increase of Ngn3 promotor activity, resulting in a considerable 

higher amount of GFP positive islet cells in the first trimester of pregnancy, dropping back to 

control levels at mid-term. Notably, G4 was the earliest tolerated time for TAM administration 

during pregnancy. Thus, it is possible, that induction of Ngn3 activity might be initiated at an 

earlier time point. Moreover, the actual fraction of GFP positive cells in pregnant and control 

mice is likely to be higher, but limited due to the Cre-dependent recombination efficiency 

limited. Therefore, accurate function of Ngn3 promotor activity was verified using a Cre-

independent mouse line, the Ngn3-YFP. Remarkably, augmentation of Ngn3 promotor 

activity correlated nicely under control conditions as well as during pregnancy at G6. As 

expected, Cre-independent YFP expression resulted in slightly higher Ngn3 promotor activity 

under control and pregnancy. However, pregnant mice at G6 revealed a similar 2.5-fold 

increase compared to virgin control mice, demonstrating the faithful recapitulation of 

endogenous Ngn3 activation during pregnancy. 

These findings demonstrate that re-activation of the endocrine progenitor marker Ngn3 also 

occurs under the physiological stress of pregnancy, which was contradictory discussed in 

literature (Teta, et al. 2007; Abouna, et al. 2010; Butler, et al. 2010; Xiao, et al. 2013). 

Further evidence of the recapitulation of the embryonic developmental pathway to regenerate 

functional beta cells has only been reported under artificial conditions of extreme 
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regenerative pressure, like beta cell ablation (Rooman and Bouwens 2004) or partial duct 

ligation (Xu, et al. 2008).  

Nonetheless, it is well-known that islet cells exhibit a remarkable proliferative potential during 

pregnancy (Sorenson and Brelje 1997; Beamish, et al. 2017) and also this study has shown 

increased cell division rates at that time point of gestation. Thus, it might be possible, that the 

observed augmentation resulted from replication of preexisting cells, instead of newly onset 

Ngn3 promotor activity. To rule out this hypothesis, lineage tracing experiments were 

performed on Ngn3-CreER;mTmG pregnant and virgin mice, by pre-labeling of Ngn3 

expressing cells. Results revealed no significant increase in GFP positive cell fractions, 

indicating de novo Ngn3 promotor activity initiated by early pregnancy.  

 

4.4 Onset of endogenous Ngn3 activity during early pregnancy is delta cell 
specific 

Although, Ngn3 activity was shown to be induced with the onset of pregnancy, the 

origin of these cells still remains unknown. Moreover, low GFP expression levels of 1.92 % 

were observed almost exclusively within the endocrine compartments under control 

conditions. This suggests the constant presence of the progenitor cell marker Ngn3 in mature 

islet cells.  

Studies have indicated the existence of precursor cell population located within the islet cells 

that also express Ngn3 at both, embryonic and adult stages under normal physiological 

conditions (Jensen, et al. 2005). Additionally, these cells were reported to be hormone 

negative and fractional loss was observed with onset of pregnancy (Toselli, et al. 2014). 

Contrary to these findings, co-labeling with antibodies for three hormones (insulin, glucagon 

and somatostatin) revealed almost no hormone negative, GFP expressing cells under control 

conditions. These results indicate that Ngn3 is expressed in a subpopulation of mature 

hormone expressing islet cells. Whether this cell population constantly expresses Ngn3 or if 

it is transiently expressed among the islet cells remains unknown. Moreover, the time delay 

between recombination and fluorescent visualization did not allow precise identification of the 

exact origin of Ngn3 activity, as it cannot be excluded that these cells derive from exocrine 

tissue and migrate into the islets after Ngn3 expression. However, the consistency of the 

obtained data suggests the presence of Ngn3 expression predominantly located within the 

somatostatin expressing delta cell population. A more beneficial approach would be the use 

of direct Ngn3 staining at the individual stages of pregnancy. Unfortunately, intensive staining 
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trials during this thesis did not result in reliable Ngn3 staining in the adult pancreas due to the 

lack of a sensitive anti-Ngn3 antibody. 

The expression of Ngn3 in mature hormone expressing islet cells has already been 

demonstrated although only under conditions of regenerative stress and with much lower 

protein levels than during embryogenesis (Wang, et al. 2009). Yet, the authors propose that 

transient high levels of Ngn3 allow the cell to gain autonomy along the endocrine 

differentiation pathway (Apelqvist, et al. 1999; Jensen, et al. 2005). Low expression levels on 

the other hand have been suggested to preserve the mature phenotype and maintain islet 

cell function (Wang, et al. 2009). 

Likewise, this study demonstrated a transient increase of Ngn3 expression initiated during 

early pregnancy by genetic lineage tracing as well as RNA expression levels. In order to 

address the cell fate of emerging Ngn3 expressing cells during early pregnancy, a detailed 

characterization of endocrine phenotypes was performed by immunohistochemistry for 

insulin, glucagon and somatostatin hormone expression by manual, morphological analysis. 

Surprisingly, more than half of the Ngn3 positive cells, indicated by GFP expression, were 

labeled for somatostatin under normal physiological conditions. Moreover, peak occurrence 

of Ngn3 positive cells goes along with an increase in hormone negative cells in the GFP 

fraction, suggesting a dedifferentiation of mature islet cells towards a hormone negative cell 

state. Whether this resembles an endocrine progenitor cell state, an intermediate 

differentiation cell stage or just a lack of hormone secretion in a differentiated endocrine cell 

cannot be determined at this point. Yet, exclusively the amount of somatostatin expressing 

delta cells in the GFP fraction decreased during this time.  

These results suggest that early pregnancy might rather lead to a dedifferentiation of delta 

cells by recapitulation of the endocrine developmental pathway through Ngn3 induction, than 

islet neogenesis induced by the exocrine compartment. The surprising absence of Ngn3 

within the exocrine compartments further supports this hypothesis although it did not exclude 

islet neogenesis via a different mechanism. 

4.5 Early pregnancy induces partial loss of delta cell identity 

To confirm the occurrence of delta cell reprograming during pregnancy, the Sst-

Cre;YFP mouse line was utilized. Lineage tracing was performed during pregnancy as well 

as 2 and 4 weeks post-partum by staining for somatostatin and insulin hormone expression. 

Interestingly, a considerable amount of somatostatin expressing delta cells seem to lose 

hormone expression within the first and second trimester of pregnancy, while a gradual 
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increase of YFP positive cells expressing insulin, showing a similar cell shape to beta cells 

was observed towards G18. 

Taken together, these results indicate that the physiological changes during early pregnancy 

induce cellular reprogramming of somatostatin producing delta cells to insulin secreting beta 

cells. This process seems to involve re-expression of the developmental factor Ngn3, 

suggesting that a subpopulation of delta cells lose their cell fate, become hormone negative 

and re-differentiate into beta-cells. 

The possibility of islet cell dedifferentiation from a mature hormone expressing endocrine cell 

type into beta-like cells has been described in recent studies (Collombat, et al. 2009; Chera, 

et al. 2014; Ben-Othman, et al. 2017). For instance, Collombat and colleagues demonstrated 

that long-term GABA administration induces continuous conversion of alpha to beta-like cells 

(Collombat, et al. 2009). Moreover, resulting alpha cell deficiency was compensated by 

constant alpha cell neogenesis through reactivation of the Ngn3 controlled endocrine 

developmental program of duct-associated cells and subsequent migration towards the islets 

(Ben-Othman, et al. 2017). This study demonstrated the enormous plasticity of the pancreas, 

yet only under artificial conditions of extreme beta cell loss and the involvement of the 

exocrine compartment. Delta to beta cell conversion in particular has been described by 

Herrera and his group (Chera, et al. 2014). Importantly, conversion occurred in a defined 

sequence starting with dedifferentiation into hormone negative cells, replication followed by 

either re-differentiation back to delta cells or activation of Ngn3 and subsequent 

differentiation into insulin producing beta cells. This process describes precisely the 

individual progressions of delta cell dedifferentiation also observed in this thesis. However, 

Chera et al. could only observe this conversion after total beta cell ablation and more 

importantly only in juvenile mice. Therefore, this thesis describes for the first time, the 

dedifferentiation of mature islet cells under the physiological conditions of mouse pregnancy. 

Furthermore, the physiological appearance of cellular reprogramming could also be 

demonstrated by changes in the specific cell shapes of the cells. Rodent delta cells are 

frequently described to exhibit a neuronal morphology, showing dendrite-like extensions that 

allow distinct interconnections and paracrine crosstalk within the islet (Grube and Bohn 1983; 

Baskin, et al. 1984; Gopel, et al. 2004). This elongated cell shape could be confirmed by 

measurements of x and y axis of individual YFP and somatostatin expressing cells. 

Moreover, a majority of the delta cell population was located at the periphery of the islet while 

beta cells with an almost round cell structure were predominantly found in the islet core. 

Interestingly, cell shape was demonstrated to differ significantly in cells undergoing 

conversion during pregnancy indicating their morphological adaptation.  
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However, all evidence leading to the hypothesis of delta cell dedifferentiation is based on the 

observation of changing fractions of hormone negative and insulin positive YFP expressing 

cells. Given that all of these cell types could be found already under non-pregnant conditions 

and considering elevated proliferation rates during pregnancy, this observation could be an 

artefact of different cell division rates of the individual cell types during the stages of 

pregnancy. In order to exclude this possibility, islet composition data was combined with 

pancreatic mass assessments in order to include the adaptive compensation of endocrine 

mass occurring during gestation. This analysis clearly demonstrated a significant increase in 

hormone negative YFP cells, while the total YFP mass remains unchanged at G6. Notably, 

somatostatin expressing YFP positive cell mass was observed to decrease slightly, yet 

statistical significance could not be observed. This might be linked to the low amount of delta 

cells in rodent islets and the high standard error at this time point. Although the mass of 

insulin expressing YFP positive cells was significantly elevated at G18, re-differentiation of 

hormone negative YFP cells towards insulin expressing YFP positive cells cannot be 

concluded, as total YFP positive cell mass was increased significantly at this point. 

Moreover, mass changes within the hormone negative YFP cells between the second and 

third trimester were not shown to be significantly decreased, meaning that proliferation of 

preexisting insulin expressing YFP positive cells might also be a possible mechanism for the 

elevated mass at term. 

In summary, this data suggests loss of delta cell identity rather than proliferation of 

preexisting hormone negative cells as underlying mechanism during early pregnancy. After 

all, the re-differentiation of these cells towards a beta cell identity cannot be concluded for 

certain, as proliferation especially within the third trimester of pregnancy leads to increased 

YFP mass.  

4.6 Progesterone initiates cellular reprogramming of delta cells 

Lineage tracing data indicated that intra-islet cell conversion of delta to beta cells via 

Ngn3 expression can be visualized under physiological conditions of rodent pregnancy. Still, 

the responsible signaling factors leading to the onset of this mechanism are not clarified. 

Early pregnancy is characterized by profound alterations in glucose homeostasis and steroid 

hormone activity. A progressive insulin resistance commences already by the end of the first 

trimester resulting in a compensatory response by increased beta cell function and 

subsequent elevated plasma insulin levels (Costrini and Kalkhoff 1971; Green and Taylor 

1972; Parsons, et al. 1992). Compensatory changes in beta cell mass controlled by 

hypertrophy and increased proliferation represent cellular processes that have been 
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observed predominantly from mid-pregnancy to term (Sorenson and Brelje 1997; Rieck and 

Kaestner 2010). Therefore, distinct functional adaptations precede mass at this point of 

pregnancy. Several studies during the last decades demonstrated correlations between 

changes in maternal islet growth and function with increased levels of circulating lactogenic 

hormones, like prolactin (PRL) and placental lactogen (PL) (Ryan and Enns 1988; Parsons, 

et al. 1992; Brelje, et al. 1993; Galosy and Talamantes 1995; Brelje, et al. 2004; Ladyman, et 

al. 2010). Notably, both PRL and PL, bind to the prolactin receptor, which is supposed to 

possess increased expression levels during pregnancy (Clarke and Linzer 1993; Moldrup, et 

al. 1993). Effects of these lactogenic hormones were suggested to increase insulin secretion 

and beta cell proliferation in vitro (Brelje, et al. 1993; Weinhaus, et al. 1996) and in vivo 

(Nielsen 1982; Vasavada, et al. 2000). In this thesis however, prominent alterations in 

lactogenic activity of prolactin and placental lactogen could not be observed before the third 

trimester of gestation in the utilized mouse model. Thus, lactogenic hormones might be 

responsible for adaptations at later stages of pregnancy, but did not induce cellular 

reprogramming by Ngn3 activation. In contrast, changes in steroid hormone levels, especially 

progesterone are shown to rise very early during pregnancy (McCormack and Greenwald 

1974; Murr, et al. 1974) and therefore correlate with the onset of islet cell conversion.  

In order to investigate the particular effect of steroid hormones on delta cell conversion in 

vitro studies on isolated Sst-Cre;YFP mouse islets were performed and cell composition was 

assessed after prolonged culture. Strikingly, only the presence of progesterone lead to 

significantly increased amounts of converting delta cells, while no additional effect was 

observed with elevated glucose concentrations. Moreover, combined culture with estrogen 

and progesterone seemed to inhibit this effect. This results determined elevated 

progesterone levels as a potential signal to induce delta cell identity loss in vitro. Moreover, 

gradually rising levels of estrogen to significant values during the third trimester correlate with 

the decrease in hormone negative YFP expressing cells and the potential differentiation 

towards beta cells in vivo. Still, it is not entirely certain, whether progesterone induces the 

loss of the delta cell phenotype via the onset of Ngn3 expression or by a different 

mechanism. Therefore, further culture experiments followed by quantitative real-time PCR 

are planned in order to assess mRNA expression levels of progenitor gene activity in order to 

correlate expression patterns with a loss in somatostatin gene translation.  
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4.7 Loss of delta cell identity leads to increased beta cell function  

Since the completion of delta to beta cell conversion lasts over the entire duration of 

pregnancy and the total beta cell gain of this process is fairly low, this mechanism most likely 

serves a different purpose than beta cell mass compensation. Therefore, the initiation of 

cellular reprogramming itself might be an essential process in the early functional 

compensation during gestation. 

The local secretion of Somatostatin produced by the pancreatic delta cells is supposed to act 

as an inhibitory regulator on glucose stimulated insulin secretion as well as arginine- induced 

glucagon secretion, which has been demonstrated in vivo and in vitro (Schuit, et al. 1989; 

Strowski, et al. 2000; Cejvan, et al. 2003). Studies using SST knock-out models 

demonstrated enhanced insulin and glucagon secretory responses further indicating its role 

in the negative regulation of alpha and beta cell function (Hauge-Evans, et al. 2009; Hauge-

Evans, et al. 2012). Given the fact, that early pregnancy results in increased beta cell 

function, in the absence of mass adaptations, it can be hypothesized, that partial loss of delta 

cell identity serves as an indirect early compensatory mechanism to increase insulin 

secretion.  

In order to test this hypothesis, pancreatic tissue slices were used to assess the dynamic 

insulin release in response to glucose of virgin and pregnant mice in the second trimester at 

G8. Insulin secretion kinetics clearly demonstrated an increased glucose stimulated insulin 

response in pregnant mice at G8 compared to non-pregnant age matched mice. Given that 

SST is a strong inhibitor of insulin secretion, it is surprising that low glucose concentrations 

did not reveal any elevated insulin response. However, it has been demonstrated that SST 

secretion is dose dependent and only released at glucose levels above 4 mM (Vieira, et al. 

2007). Therefore, it has been proposed that SST is first released at glucose levels which are 

supposed to diminish glucagon secretion, thus preventing over-secretion of insulin and 

glucagon (Brereton, et al. 2015). Nevertheless, the here presented experiment only proves 

enhanced beta cell function during mid-pregnancy and is no evidence for diminished SST 

release due to a lower delta cell fraction. Thus, delta cell conversion was stimulated in vitro in 

the presence of progesterone and beta cell function was assessed by islet perifusion. 

Quantification of insulin kinetics demonstrated elevated insulin secretion when cultured with 

P4. This effect nicely correlated with insulin responses visualized at G8 of pregnancy, 

supporting the hypothesis that delta cell dedifferentiation might serve as an early 

compensatory mechanism to increase beta cell function.  
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Subsequently, direct assessment of somatostatin secretion would be essential to illuminate 

the functional relevance of delta cell dedifferentiation during early pregnancy on increased 

beta cell function. However, this is a rather difficult approach due to the limited amount of 

delta cells and consequently low hormone release. So far, ELISA kits are not sensitive 

enough to measure somatostatin secretion using a reasonable amount of islets. To 

circumvent these limitations further investigations on delta cell function by measuring 

intracellular calcium dynamics are ongoing. These experiments might not only give further 

insights into delta cell signaling and alterations during pregnancy, but also unravel the 

functional similarities between beta cells and insulin expressing YFP positive cells. 
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4.8 Conclusion and perspectives 

Pregnancy leads to increased maternal beta cell function and mass to compensate 

insulin resistance and increased metabolic demand. While mass expansion is mainly 

attributed to increased proliferative rates with peak occurrence in the third trimester of 

pregnancy, beta cell function is compensated already during early and mid-pregnancy 

resulting in elevated plasma insulin levels. This early functional compensation coincides with 

a transient increase of intra-islet Ngn3 promotor activity predominantly in somatostatin 

producing delta cells. The subsequent partial loss of delta cell identity towards a hormone 

negative cell state is initiated by elevated progesterone levels. Estradiol on the other hand 

was identified as a repressor of this mechanism and might therefore lead to the offset of this 

process with preceding pregnancy when estradiol concentrations rise. Furthermore, delta cell 

dedifferentiation correlates with increased glucose stimulated insulin secretion at mid 

gestation. These findings indicate that delta cell dedifferentiation, initiated by Ngn3 

expression, might represent a compensatory mechanism to increase beta cell function during 

early pregnancy. These observations might uncover a novel role for delta cells and could be 

translatable to humans in order to provide new therapeutic opportunities to enhance beta cell 

function and foster the formation of beta cells. 
 

 

 
Figure 20: Sequence of delta cell dedifferentiation during pregnancy. Delta cells dedifferentiate 

in part and reprogram towards insulin producing cells during the course of pregnancy in Sst-Cre;YFP 

mice.  
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It is tempting to hypothesize that partial loss of delta cell identity leads to decreased amounts 

of secreted somatostatin and therefore less inhibitory action on insulin secretion to promote 

insulin secretion. However, the kinetics of somatostatin secretion need to be further 

investigated. One of the major limitations is the assessment of somatostatin secretion, due to 

the low amount of cells within rodent islets and the lack of sensitive readouts. Ongoing 

experiments measuring the intracellular calcium dynamics in delta cells might circumvent 

these limitations and give further insights into the role and function of delta cells during early 

pregnancy. Moreover, it remains uncertain whether reprogrammed delta cells further 

differentiate towards the beta cell state due to the dynamic adaptations in endocrine mass 

occurring within the last phase of pregnancy. Further studies addressing the proliferative 

capacity of these cell types over time would be necessary to draw more precise conclusions. 

Additionally, it will be very interesting whether this process is reversible after pregnancy and 

if so, to define the signals involved in this mechanism. Finally, it has to be investigated 

whether this mechanism also occurs during human pregnancy and if this is triggered by the 

same signaling cascade. If so, the findings in this thesis might have uncovered a novel role 

for delta cells and could provide new therapeutic opportunities to enhance beta cell function 

and foster the formation of beta cells. 
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5 Summary 

Background 
Diabetes mellitus is a set of metabolic diseases with common characteristics such as 

chronic hyperglycemia and glucose intolerance caused by insulin deficiency, defects in 

insulin secretion and action, or both. Up to now, there is no cure for this disease types as 

existing treatment possibilities are still limited and accompanied by long-term side effects. A 

promising approach in this regard would be the restoration of endogenous beta cell mass by 

induced regeneration. A requirement for the development of such an approach is to 

understand the regenerative capacities of endogenous beta cells and uncover the underlying 

signaling factors of this mechanism.  

It is well established that functional beta cell mass is capable of dynamic adaptations to 

compensate changing metabolic conditions. Pregnancy represents a physiological setting for 

adaptive beta cell mass expansion and increased function as the maternal body undergoes 

enormous physiological adaptations in order to provide sufficient nutrients to the developing 

fetus. Although these compensatory changes are known for decades, the mechanisms 

involved are still not completely clarified.  

Aim 
The objective of this thesis was to study the mechanisms involved in the 

compensatory response of beta cell mass and function during pregnancy. Especially the role 

of non-beta cell sources, indicated by the re-activation of the developmental transcription 

factor neurogenin 3 (Ngn3) was investigated. 

Methods 
Characterization of metabolic adaptations during pregnancy was assessed by 

glucose tolerance tests, plasma insulin levels and hormonal profiling. To address the 

individual adaptations occurring during pregnancy, a combined approach of in vivo 

experiments in transgenic reporter mice, in situ analysis in tissue slices and in vitro studies 

on isolated islets was utilized. 

Pancreatic mass adaptations were quantified by point morphometry of stained cryosections 

from Bl/6 mice. Furthermore pancreatic tissue sections were stained from different reporter 

mouse lines at multiple stages during gestation and islet composition was assessed by 

immunohistochemistry and point counting analysis. Pancreatic tissue slices were utilized to 

investigate glucose stimulated insulin secretion during pregnancy and isolated islets were 
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cultured in the presence of pregnancy hormones to investigate their role in functional and 

morphological adaptions.  

Results 
Characterization of mouse pregnancy confirmed current knowledge from literature 

that pregnancy induces insulin resistance, increased insulin secretion and beta cell 

proliferation resulting in elevated endocrine mass. Mass expansion gradually increased from 

the second trimester leading to a two fold increase by the end of pregnancy and remained 

elevated even post-partum. Increased proliferative rates were visualized already in the first 

trimester and declined with pregnancy at term. Although, proliferation seemed to play a major 

role in the compensatory response during pregnancy, it might not be the only mechanism 

involved in this process. A subpopulation of islet cells was identified to initiate transient Ngn3 

promoter activity during the first trimester of pregnancy. A majority of these cells was 

characterized as somatostatin secreting delta cells. Interestingly, peak occurrence of Ngn3 

activity, lead to an increase in hormone negative, Ngn3 expressing cells, indicating an 

endocrine progenitor cell state. Lineage tracing experiments revealed a fractional loss of 

delta cells and might be followed by differentiation towards a beta cell identity throughout the 

duration of pregnancy. Notably, the onset of Ngn3 expression and consequent delta cell 

reprogramming correlated with changes in plasma steroid hormone levels, whereas delta cell 

dedifferentiation coincides with increased plasma insulin levels. In vitro culture of isolated 

islets demonstrated that indeed the presence of elevated progesterone concentrations in the 

media lead to a partial delta cell identity loss. Moreover, functional characterization revealed 

that progesterone also increased glucose stimulated insulin secretion after a 5 day culture 

period.  

Conclusion  

These findings provide evidence for a functional role of delta cells in the early 

compensatory adaptations during pregnancy. During early gestation a considerable amount 

of somatostatin expressing delta cells reprogram and might differentiate towards a beta cell 

identity. This process seemed to involve the re-expression of the developmental transcription 

factor Ngn3 reinforced by plasma progesterone levels. Although the functional relevance of 

delta cell conversion needs further investigation, a major implication on early compensation 

to increase insulin secretion via less somatostatin mediated inhibition is suggested. 
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6 Zusammenfassung 

Hintergrund 
Diabetes Mellitus umfasst eine weit verbreitete Gruppe von 

Stoffwechselerkrankungen, die durch chronisch erhöhte Blutzuckerspiegel und Glukose 

Intoleranz gekennzeichnet sind. Den Krankheitsformen liegen unterschiedliche 

Mechanismen zugrunde, jedoch haben alle Formen einen Mangel an Insulin produzierenden 

Beta Zellen gemein. Bis heute gibt es keine Heilung und existierenden 

Behandlungsmöglichkeiten sind meist begleitet von Nebeneffekten. Ein vielversprechender 

Ansatz für die neuartige Diabetestherapie bietet die Wiederherstellung der körpereigenen 

Betazellmasse durch induzierte Regeneration. Als notwendige Voraussetzung für die 

Entwicklung einer Zellbasierten Therapie wird das umfassende Verständnis der 

körpereigenen Mechanismen zur Erneuerung dieser Zellen vorausgesetzt. 

Es ist bekannt, dass Beta Zellen in ihrer Funktion anpassungsfähig sind und so kurzzeitig auf 

eine veränderte Stoffwechselsituation reagieren können. Schwangerschaft repräsentiert 

einen solchen physiologischen Zustand, da der mütterliche Körper sich enormen 

Anpassungen unterzieht um den Fetus optimal zu versorgen. Während der Schwangerschaft 

wächst die funktionell wirksame Betazellmasse um dem gesteigerten Insulin Bedarf gerecht 

zu werden. Obwohl diese Leistungssteigerung schon lang bekannt sind, konnten die 

zugrundeliegenden Mechanismen bisher nicht vollständig aufgeklärt werden. 

Ziele 
Ziel dieser Arbeit war die Charakterisierung der unterschiedlichen Mechanismen der 

Anpassung von Betazellmasse und Funktion während der Trächtigkeit von Mäusen. Hierbei 

sollte besonders die Rolle der Zellerneuerung unter Aktivierung embryonaler Signalwege 

eingehender untersucht werden. 

Methoden 
Die Erfassung der Stoffwechselveränderungen während der Trächtigkeit wurden 

durch intraperitoneale Glukosetoleranztests und Blutplasmawerte untersucht. Um die 

verschiedenen Anpassungsprozesse zu adressieren, wurde ein kombinierter Ansatz von in 

vivo Experimenten mittels Reportermausstämmen, sowie in situ Analyse an lebenden 

Gewebeschnitten und in vitro Studien mit isolierten, kultivierten Inseln durchgeführt. 

Die Erhöhung der endokrinen Zellmasse wurde über die manuelle Auswertung gefärbter 

Längsschnitte der Bauspeicheldrüse quantifiziert. Zusätzlich wurde eine detaillierte Analyse 

der Zusammensetzung der Langerhans´scher Inseln vor, während und nach der Trächtigkeit 
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mittels unterschiedlichen Hormonfärbungen erstellt. Zur Ermittlung der endokrinen Funktion 

im trächtigen Tier wurden vitale Gewebeschnitte der Bauchspeicheldrüse verwendet. 

Zusätzlich wurden Inseln isoliert und mit verschiedenen Zusätzen kultiviert, um die Rolle 

einzelner Faktoren auf die Funktion und Morphologie der Inselzellen zu beurteilen. 

Ergebnisse 
 Die Charakterisierung der Stoffwechselveränderungen während der Trächtigkeit in 

Mäusen konnte den aktuellen Wissensstand der Literatur bestätigen. So wurde eine gestörte 

Glukosetoleranz, erhöhte Insulin Ausschüttung und vermehrte Zellproliferation von Beta 

Zellen festgestellt. Auch die Gesamtmasse der endokrinen Zellen war zum Ende der 

Trächtigkeit signifikant erhöht. Eine Erniedrigung innerhalb der ersten vier Wochen nach 

Trächtigkeit konnte im Gegensatz zur Literatur nicht festgestellt werden. Obwohl die erhöhte 

Zellteilung während der Trächtigkeit zum Großteil für den Massenzuwachs verantwortlich ist, 

kann der Einfluss anderer Mechanismen, wie Neogenese oder Dedifferenzierung 

existierender Inselzellen nicht ausgeschlossen werden. So wurde eine Teilpopulation 

innerhalb den Langerhans´schen Inseln erkannt, die während des ersten Trimesters der 

Trächtigkeit den Transkriptionsfaktor Neurogenin 3 (Ngn3) exprimiert. Die Mehrheit dieser 

Zellen wurde als Somatostatin sezernierenden Deltazellen identifiziert. Die höchste Ngn3 

Aktivität ging mit einer Erhöhung der Hormon negativen Zellen einher und legt die 

Vermutung eines Vorläuferzellstatus nahe. Rückverfolgung der Zellidentität mittels 

transgener Mäuse ergab eine prozentuale Erniedrigung der Deltazellen im ersten Trimester, 

gefolgt von der Differenzierung entgegen einer Betazellidentität zum Ende der Trächtigkeit. 

Weiterhin konnte gezeigt werden, dass der Anstieg an Ngn3 Aktivität mit einem erhöhten 

Steroid und Insulin Hormonspiegel korreliert. Kulturexperimente mit isolierten Inseln konnten 

Progesteron als möglichen Auslöser für den partiellen Verlust an Deltazellidentität und 

gesteigerter Insulin Sekretion identifizieren.  

Schlussfolgerung 
 Die Ergebnisse der vorliegenden Arbeit weisen möglicherweise auf eine neue 

funktionelle Rolle von Deltazellen während der Trächtigkeit hin. Im ersten Trimester führt 

eine Erniedrigung der Somatostatin produzierenden Zellmasse durch Aktivierung von Ngn3 

und zur Umwandlung in einen Hormon negativen Zellstatus und später zur Differenzierung 

von Beta Zellen. Als möglicher Auslöser für diesen Mechanismus wurde eine erhöhte 

Progesteron Konzentration im Blut identifiziert. Obwohl die funktionelle Relevanz dieses 

Prozesses nicht vollständig aufgeklärt wurde, wird die gesteigerte Betazellfunktion durch 

eine verringerte Somatostatin vermittelte Hemmung vermutet. 
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