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A B S T R A C T

Evermore, novel and traditional business applications leverage the advantages of a graph
data model, such as the offered schema flexibility and an explicit representation of relation-
ships between entities. As a consequence, companies are confronted with the challenge of
storing, manipulating, and querying terabytes of graph data for enterprise-critical appli-
cations. Although these business applications operate on graph-structured data, they still
require direct access to the relational data and typically rely on an rdbms to keep a single
source of truth and access.

Existing solutions performing graph operations on business-critical data either use a
combination of sql and application logic or employ a graph data management system.
For the first approach, relying solely on sql results in poor execution performance caused
by the functional mismatch between typical graph operations and the relational algebra.
To the worse, graph algorithms expose a tremendous variety in structure and function-
ality caused by their often domain-specific implementations and therefore can be hardly
integrated into a database management system other than with custom coding. Since the
majority of these enterprise-critical applications exclusively run on relational dbmss, em-
ploying a specialized system for storing and processing graph data is typically not sensible.
Besides the maintenance overhead for keeping the systems in sync, combining graph and
relational operations is hard to realize as it requires data transfer across system boundaries.

A basic ingredient of graph queries and algorithms are traversal operations and are a
fundamental component of any database management system that aims at storing, ma-
nipulating, and querying graph data. Well-established graph traversal algorithms are stan-
dalone implementations relying on optimized data structures. The integration of graph
traversals as an operator into a database management system requires a tight integra-
tion into the existing database environment and a development of new components, such
as a graph topology-aware optimizer and accompanying graph statistics, graph-specific
secondary index structures to speedup traversals, and an accompanying graph query lan-
guage.

In this thesis, we introduce and describe Graphite, a hybrid graph-relational data man-
agement system. Graphite is a performance-oriented graph data management system
as part of an rdbms allowing to seamlessly combine processing of graph data with rela-
tional data in the same system. We propose a columnar storage representation for graph
data to leverage the already existing and mature data management and query process-
ing infrastructure of relational database management systems. At the core of Graphite

we propose an execution engine solely based on set operations and graph traversals. Our
design is driven by the observation that different graph topologies expose different algo-
rithmic requirements to the design of a graph traversal operator. We derive two graph
traversal implementations targeting the most common graph topologies and demonstrate
how graph-specific statistics can be leveraged to select the optimal physical traversal opera-
tor. To accelerate graph traversals, we devise a set of graph-specific, updateable secondary
index structures to improve the performance of vertex neighborhood expansion. Finally,
we introduce a domain-specific language with an intuitive programming model to ex-
tend graph traversals with custom application logic at runtime. We use the llvm compiler
framework to generate efficient code that tightly integrates the user-specified application
logic with our highly optimized built-in graph traversal operators.

Our experimental evaluation shows that Graphite can outperform native graph man-
agement systems by several orders of magnitude while providing all the features of an
rdbms, such as transaction support, backup and recovery, security and user management,
effectively providing a promising alternative to specialized graph management systems
that lack many of these features and require expensive data replication and maintenance
processes.
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1I N T R O D U C T I O N

We are all living in a highly connected world. This connectedness influences almost every
part of our daily life and can be found in a large variety of situations—from the phenome-
nal growth of the World Wide Web to epidemics and financial crises in our modern society.
The interrelationships between a set of things can be represented as a graph (network).1

Graphs can be found in an enormous heterogeneity of domains and applications, ranging
from making recommendations in social media platforms to analyzing protein interactions
in bioinformatics.

The potential to acquire new business insights from graph-shaped data through graph
analytics is increasingly attracting companies from a variety of industries, ranging from
web companies to traditional enterprises. Increasingly, companies offer and advertise—in
conjunction with their products—social media platforms that allow connecting customers
with each other to share ideas, discuss products and features/extensions, and take part in
competitions. The recent advent of connected fitness is one prominent example, where cus-
tomers build large communities and report fitness results, compete in monthly challenges,
and share common consumption interests. Gartner (Valdes, 2012) classifies the consumer
web, a domain with a steeply rising market share, into five graphs: (1) the social graph,
(2) the intent graph, (3) the mobile graph, (4) the interest graph, and (5) the consumption/-
payment graph.

The main challenge, however, lies not only in storing graph-structured data, but also
in performing complex queries efficiently on it to derive new insights that can help to
create personalized advertisements and to react faster to the consumption behavior of
customers. Enterprise applications, target a wider range of use cases, including network
impact analysis to find potential multiplicator persons, route finding to improve delivery
times of transportation companies, collaborative filtering to give recommendations according
to the buying behavior of users, supply chain management and logistics to find bottlenecks
in supplier networks, fraud detection, and knowledge graphs to find domain experts using
semantic search technology in a company (digital asset management).

Coherently with the widespread adoption of graph data to model and represent real-
world entities and their relationships, the size of graphs is growing to an unforeseen scale.
Table 1.1 depicts a graph sizing classification by Burkhardt and Waring (2013). If we com-
pare the presented numbers with the largest freely available real-world graph data set
(partial hyperlink graph, common web crawl, 2012)2, consisting of about 129 · 10

9 edges,
we can reason that—even compared to the smallest predicted scale—the size of graph
data is about to exceed current scales by multiple orders of magnitude. Although the table
only provides numbers of the graph topology, there is evidence that attributes associated
with vertices and edges will multiply the raw size of a graph on disk by several orders of
magnitude.

One of the most promising solutions to overcome the sheer flood of data to be stored and
processed are NoSQL database systems. These systems target an immense variety of data
models and application domains, including key-value stores, document dbms, graph dbms

(gdbms), and multi-model dbms among others. NoSQL systems aim at providing horizontal
scaling to growing data sizes and achieve this by softening up strong transaction guaran-
tees by employing eventual consistency instead of strong consistency. Driven by a growing
customer adoption, especially gdbms received a considerable amount of attention in both
the research community and the industry. In a recent study Forrester Research (Yuhanna
et al., 2014) reported that over 25% of enterprises will be using graph database technology
by 2017, resulting in a growth of 500% since 2013.

1 We use the two terms synonymously in the course of this thesis
2 http://webdatacommons.org/hyperlinkgraph/

1
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2 introduction

Table 1.1: Different graph scales and their (predicted) characteristic key numbers, including the
number of vertices and edges, and the raw size of the graph topology in a csv for-
mat (Burkhardt and Waring, 2013).

# of vertices # of edges Raw size (csv format)

Social Scale ∼ 10
9 ∼ 10

11
2.92 TB

Web Scale ∼ 5 · 10
10 ∼ 10

12
29.50 TB

Brain Scale ∼ 10
11 ∼ 10

14
2.84PB

Specifically, novel and traditional business applications leverage the advantages of a graph
data model, such as schema flexibility and an explicit representation of relationships
between data records. Although these business applications mainly operate on graph-
structured data, they still require direct access to the relational data. Typically, these in-
dustries rely on mature rdbms technology to keep a single source of truth and access.
Although graph structure is already latent in the database schema and inherently rep-
resented by foreign key relationships, managing native graph data is moving into the
focus as it allows rapid application development due to the absence of an upfront defined
database schema. Existing solutions performing graph operations on business-critical data
either use a combination of sql and application logic or employ a graph management sys-
tem (gms), such as Neo4j or Sparksee, or distributed graph systems, such as GraphLab

or Apache Giraph. For the first approach, relying only on sql typically results in poor
execution performance caused by the functional mismatch between a graph algebra and
the relational algebra. Even worse, the relational query optimizer is not graph-aware, i.e.,
it does not keep statistics about the graph topology nor about graph query patterns, and
is likely to build a suboptimal execution plan. The other alternative is to process the data
in a native gms to overcome the unsuitability of the relational algebra to express complex
graph queries in an rdbms.

In the following we further elaborate on the characteristics of modern data management
system landscapes as can be found in most large companies. In the course of this thesis, we
describe the most important problems and challenges that we see for graph data manage-
ment and outline one possible solution for graph processing in modern data management
system landscapes.

1.1 heterogeneous data management system landscapes

In the era of Big Data, companies face tremendous challenges when processing data of
different shape, size, and velocity. These challenges are the key drivers that led to the
separation of dbmss into isolated data silos and the proliferation of diverse dbms land-
scapes. Specifically, these challenges are driven by the following characteristics of typical
data management system landscapes: (1) Data is ingested from a large number of differ-
ent data sources—ranging from structured to unstructured data—and (2) there is a broad
range of modern business applications with specific needs in terms of data storage, con-
sistency guarantees, schema flexibility, and scalability to handle larger data volumes. The
heterogeneity of the dbms landscape and its separation into data silos, however, poses
the challenges of orchestrating query processing and assuring data consistency across sys-
tem boundaries. Even a modest-size dbms landscape of an enterprise can easily consist
of several thousands of isolated dbmss, partially coordinated in a common middleware
layer (Brodie and Liu, 2010).

Traditionally, row-oriented, disk-based rdbmss were designed for transactional busi-
ness processing with frequent updates to the database and short-running point queries.
Although row-oriented rdbmss are still used for processing transactional data in most
business-critical applications, they cannot serve novel business applications demanding a
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different set of supported functionality, data models, and query languages. Stonebraker
and Çetintemel (2005) raise the question whether the sermonized “One Size Fits All” par-
adigm still holds true for row-oriented rdbmss and whether they should be considered
as the only valid answer to an arbitrary data problem and workload. Specifically, they
propose to build specialized dbmss for these non-traditional workloads, focusing on the
specific requirements of the data model and the query workload during the design phase
of the dbms. The recent NoSQL movement is one indicator of this paradigm shift from tra-
ditional, row-oriented rdbmss tailored to business transaction processing towards highly
specialized systems for non-traditional workloads, such as graph processing, stream pro-
cessing, and statistical operations (Mohan, 2013).

Incoming transactional data is usually processed by a few operational systems that rely
on mature rdbms technology to store, manipulate, and query the data. System stability,
security, and reliability are of utmost importance for these systems since a database corrup-
tion or a security leak can have a tremendous negative business impact. Specialized data
management systems are usually not designed to cope with these kinds of non-functional
requirements, which is why they are mainly used to run on replicated data only (Mohan,
2013).

A typical business application built on top of an rdbms interacts with the database
through some common relational query interface, such as sql. If the specialized dbms

should replace the rdbms, it has to offer an equivalent query interface and other important
functionalities required by the business application, such as transaction support or backup
& recovery.

Another option would be to replicate the data by filtering and “massaging” the data
(etl) into a dedicated dbms and to facilitate the query capabilities of the system directly.
This approach requires online data replication and demands strong consistency guarantees
across both systems, which is difficult to realize for online transaction processing with
frequent updates to the data. For batch query processing not requiring an up-to-date view
on the data, replicating the data into a specialized dbms might be practical.

1.2 cross-data-model query processing

A graph does not consist of a topology only but also has a rich set of attributes attached to
vertices and edges. For example, road networks do not only contain a topology, but also
store information about road names, geographic coordinates denoting the intersections of
roads, and represent an edge as a line segment using a geospatial data type. Similarly, so-
cial networks do not only represent the current state of the graph, but also have a temporal
dimension that tracks when certain connections between entities have been established. Or
consider a knowledge graph, where all shapes of data are integrated into a single graph in-
stance describing certain facts and entities in the form of documents, videos, or structured
data, and their interrelationships.

To issue queries that access data from different data models and types seamlessly, the
data should be ideally stored in a single dbms. Moreover, specialized query processing
engines in the dbms are tailored towards efficient query execution on the data. If one
would want to issue the same query against a diverse system landscape, one would need
a large number of specialized systems and an additional orchestration layer to merge
intermediate results. Further, the graph data has to be accessible from the sql interface to
also allow non-graph applications to query the data via traditional relational queries.

To cope with these issues, there are ongoing efforts driven by industry leaders to consol-
idate the dbms landscape where possible and to allow online querying even on the most
recent data snapshot that is not necessarily relational. One of the most promising possible
solutions is the development of a data platform (Färber et al., 2012). A data platform is a
multi-engine dbms accommodating native support for a large variety of data models and
query processing capabilities. Such a data platform lowers the total cost of ownership, sim-
plifies the administration of the system landscape, and provides a unified view of the data
to the application developer.
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Figure 1.1: General overview of the thesis structure.

1.3 contributions

In the course of the thesis, we describe the system architecture of a graph processing run-
time as part of an operational rdbms and discuss its fundamental components. Our main
concern is the development of a graph runtime as an extension of an rdbms that is com-
petitive in terms of execution performance with native graph processing systems while
retaining strong guarantees required by enterprise-critical applications, including transac-
tion support, backup & recovery, and security management. To that end, we describe the
system architecture and core components of Graphite, a prototypical implementation of
a graph runtime, which is integrated into an existing rdbms kernel. Figure 1.1 illustrates
our major contributions in the context of Graphite.

graph storage . The physical graph representation is based on the assumption that
graph data originally resides in relational tables and can be transformed into a dedicated
tabular graph storage. We extend the simple graph representation based on universal tables
with strategies to improve the data compression and attribute access of vertices and edges.
We discuss the graph representation and the data reorganization techniques applied to
vertices and edges in Chapter 4. Parts of the material presented in Chapter 4 have been
developed together with Michael Rudolf, Radwan Deeb, and Wolfgang Lehner and have
been partly published in Rudolf et al. (2013).

graph traversal operators . In Chapter 5 we introduce our notion of a graph
traversal operation, which is inspired by a breadth-first traversal, but allows performing
a graph traversal configured by a user-defined traversal specification. A traversal configu-
ration describes the subgraph to traverse through an optional vertex and edge filter. The
traversal is specified by the traversal boundaries defining the maximum traversal depth
and the traversal iteration from where to start collecting visited vertices. Based on the
logical definition of a graph traversal operator, we outline two implementations targeting
different traversal configurations and underlying graph properties. We describe a common
cost model for both implementations based on collected graph statistics. Parts of the ma-
terial have been developed together with Wolfgang Lehner and have been published in
Paradies et al. (2015).

graph index structures . We introduce two graph-specific secondary index struc-
tures in Chapter 6, which we use to accelerate the execution of neighborhood queries and
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graph traversal operations. One of the major drawbacks of most graph index structures
is the lack of update support, which is an essential requirement for an index structure
to be used in an operational environment. Therefore, we developed an index structure
called Gratin (graph traversal index), which is a clustered, block-based lightweight index
structure and mimics a compressed-sparse-row (csr) storage format in a relational table.
Further, we introduce a high-performance adjacency list as a secondary index structure,
which is updatable and maintains logical pointers between the index and the relational
base tables. This allows seamlessly combining relational predicate evaluation with graph-
oriented topological queries. Parts of the material presented in Chapter 6 have been devel-
oped together with Sebastian Rode, Matthias Hauck, and Wolfgang Lehner and have been
published in Paradies et al. (2014) and Hauck et al. (2015), respectively.

travel — a dsl for graph analytics . In Chapter 7 we describe TraveL (traversal
language), a domain-specific language for traversal-based graph algorithms. To write graph
algorithms that are tailored to a specific domain, simple graph traversals are not expressive
enough nor do they allow customization to the user’s needs. To cope with this issue, graph
database vendors provide—in addition to declarative graph query languages—procedural
interfaces to write user-defined graph algorithms. Imperative interfaces are a powerful
tool, but they also have major drawbacks. A procedural programming interface is cumber-
some to use and requires the user to specify the graph algorithm against a low-level graph
api in a general-purpose language, such as c++ or Java. To the worse, writing graph al-
gorithms in a general-purpose language prevents exploiting data- and domain-dependent
optimizations at runtime and certain query optimization and rewriting techniques, such
as filter push-down and exploiting intra-query parallelism, are not possible.

We introduce a programming model based on traversal hooks, a powerful concept to ex-
tend and manipulate graph traversal implementations with domain-specific code provided
by the user. Traversal hooks follow an event-based programming model and provide an
interface for a variety of traversal events, such as the discovery of a new edge or the visit
of an already discovered vertex. Traversal hooks are expressed in TraveL and we use the
llvm framework to glue together the traversal code with the traversal hooks at runtime
and generate efficient user-defined traversal operators.

Before we start and describe the components of Graphite in detail, we provide a broad
overview of graph data management in Chapter 2 and classify therein several alternative
graph systems, algorithms, graph index structures, and programming models. In each of
the chapters, where we describe core components of Graphite in detail, we will discuss
the related work for each component individually. The last chapter summarizes the con-
tributions and findings made in the thesis and discusses several directions for follow-up
projects and future research. In Appendix A we give a detailed overview of computed
graph properties of real-world and synthetic graph data sets that we use in the course of
the thesis.
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With the ever-growing availability of graph-structured data from public, freely accessible
data sources like Wikipedia and Stackoverflow, there has been a growing interest in
mining and understanding the properties of these graphs. Popular repositories, which
offer deep insights about the properties and the structure of the contained graphs, are
Snap

1, the WebGraph Framework (Boldi and Vigna, 2004), and Konect
2 (Kunegis, 2013).

In addition to the availability of graph data sets, graph libraries, such as Snap (Leskovec
and Sosic, 2016) and the Boost graph library (bgl) (Gregor and Lumsdaine, 2005), have
been developed to gather insights from the data.

2.1 data models

There is a zoo of available graph data models to choose from. Graphs appear in many fla-
vors, resulting in a large variety of graph data models, which are usually tailored towards
a specific domain or use case (Rodriguez and Neubauer, 2010b). Angles and Gutierrez
(2008) give a detailed survey of the evolution of graph data models, with the so-called
property graph data model described by Rodriguez and Neubauer (2010b) as the latest mem-
ber of the family of graph data models. In the following we briefly introduce the basic
mathematical model of a graph, the rdf data model, which gained quite some popularity
in the semantic web and linked data community, and the property graph data model. For
a detailed survey we refer the reader to Angles and Gutierrez (2008).

2.1.1 Mathematical Data Model

In the following we define fundamental notations and introduce basic concepts used in
the course of this thesis.

Definition 1 (Graph) A directed, multi-relational graph G is a pair of sets with G := (V ,E),
where V is the set of vertices and E ⊆ V × V is the set of edges. Each vertex is uniquely identified
by a vertex identifier. Two vertices u, v are equal, iff id(u) = id(v). An edge e ∈ E is written as
〈u, v〉 with u, v ∈ V . We consider each edge as directed, i.e., ∀u, v ∈ V : 〈u, v〉 6= 〈v,u〉 must hold.

A vertex v is incident with an edge e, if e = 〈u, v〉 ∈ E∨ e = 〈v,u〉 ∈ E. Two vertices u, v
are adjacent (neighbors) if 〈u, v〉 ∈ E∨ 〈v,u〉 ∈ E. We call a vertex u the source vertex of an
edge e, if 〈u, v〉 ∈ E. Likewise, we call a vertex v the target vertex of an edge e, if 〈u, v〉 ∈ E.

Definition 2 (Path) A path of length k is a non-empty, acyclic graph P = (V ,E) with V =

{v0, . . . , vk} and E = {〈v0, v1〉, 〈v1, v2〉, . . . , 〈vk−1, vk〉}.

2.1.2 The RDF Data Model

The Resource Description Framework (rdf) has been initially proposed and designed as
a data model for the semantic web, but recently also received a wider adoption in knowl-
edge management applications (RDF, 2014). The fundamental concept of rdf is the ability
to make statements about resources using so-called triples. A triple consists of a subject, a
predicate, and an object. Each entity in rdf is identified via an internationalized resource
identifier (iri), where subjects and predicates are always represented by their correspond-
ing iri, and objects can be represented by a iri or a value. The total of all triples in an rdf

data set form a directed, multi-relational labeled graph.

1 Stanford Large Network Dataset Collection — http://snap.stanford.edu/data/ (Last accessed: April 2017)
2 Konect Network Datasets — http://konect.uni-koblenz.de/networks/ (Last accessed: April 2017)

7
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2.1.3 The Property Graph Data Model

The property graph data model is based on a directed, multi-relational graph and an arbi-
trary number of attributes attached to vertices and edges in a key-value pair fashion (Ro-
driguez and Neubauer, 2010b). It received a wide adoption from the industry, especially
from graph database management systems (gdbms) like Neo4j and Sparksee, but also
other rdbms-based systems that support graph processing like sap hana and SQLGraph.
As pointed out by Rodriguez and Neubauer (2010b), the property graph model subsumes
simpler graph data models by adding or removing certain constraints imposed on the spe-
cific data model. Neo4j and sap hana use variations of the property graph data model by
extending it with support for type (label) information that can be attached to vertices and
edges. While Neo4j treats vertex/edge labels as normal attributes (except for querying),
sap hana has a concept of allowing type subsumption over a hierarchy of semantic types,
called terms (Bornhövd et al., 2012). There is ongoing work trying to reconcile the rdf data
model and the property graph data model (Hartig, 2014).

2.2 graph properties

Throughout the course of the thesis, we will use fundamental graph properties, such as
the number of vertices |V |, the number of edges |E|, the minimum/maximum/average
in/outdegree of vertices, and the (effective) diameter, and define them in the following.

Definition 3 (Vertex Degree)
The outdegree degout of a vertex u is

degout(u) := |{〈u, v〉 ∈ E}| (2.1)

The indegree degin of a vertex u is

degin(u) := |{〈v,u〉 ∈ E}| (2.2)

The outdegree (indegree) represents the number of vertices that are connected to a given
vertex via outgoing (incoming) edges. In addition to the per-vertex degree information, we
define the average outdegree degavg

out , the maximum outdegree degmax
out , and the minimum

outdegree degmin
out . The indegree measures are defined equivalently. Another important

graph-global property is the diameter of a graph G, which describes the longest shortest
path for any given pair of vertices.

Definition 4 (Graph Diameter) The diameter of a graph G is:

diam(G) := max { shortestPath(u, v) ∀u, v ∈ V ,u 6= v } (2.3)

The n-percentile (effective) diameter is often used to disregard long outlier paths:

diamn(G) := percentilen { shortestPath(u, v) ∀u, v ∈ V ,u 6= v } (2.4)

In practice, the effective diameter diam0.9(G) is often used to describe the all-but-longest
distance between any pair of vertices in a graph.

The availability of graph data sets also spawned research in the area of social network
analysis. For example, the small-world phenomenon, first observed by Milgram (1967), states
that every human being knows every other human being along six hops. In fact, Back-
strom et al. (2012) confirmed the general observation of the small-world phenomenon for
the Facebook social graph, resulting in a diameter of 4.74. In a recent study, Meusel et al.
(2014) analyzed a web graph crawl provided by the Common Crawl Foundation containing
over 3.5 billion web pages and 128.7 billion links between them. They report an average
distance of 12.84. Similar studies have been performed for detecting and characterizing
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communities in graphs, i.e., sets of vertices that share more connections to other vertices
in the community than to vertices outside of the community (Leskovec et al., 2008).

In contrast to the calculation of graph properties on a static snapshot, Leskovec et al.
(2005) investigate the evolution of the degree distribution and the diameter of a graph
over time. They report that graphs tend to become denser over time, i.e., the average degree
increases and the graph diameter shrinks over time. Monitoring these properties on a static
graph as well as over a period of time is an important tool to improve the quality of graph
data generators to capture realistic properties (Chakrabarti and Faloutsos, 2006).

2.2.1 Graph Statistics

The collection of graph statistics about global properties of the graph topology, such as
the degree distribution (Ribeiro and Towsley, 2012; Zhang et al., 2013), diameter estima-
tion (Kang et al., 2011b; Roditty and Vassilevska Williams, 2013), and neighborhood size
estimation (Lipton and Naughton, 1989; Cohen, 1997; Palmer et al., 2002; Boldi et al., 2011;
Boldi and Vigna, 2013; Cohen, 2013), has been an active area of research for almost three
decades. With the advent of social network analysis and the need to compute graph-global
measures, novel estimation and sampling techniques have been developed (Lovász, 1993;
Wei et al., 2004). Since graphs do not only consist of a topology, but usually also contain
a rich set of attributes, cardinality estimation techniques known from the relational world
have been applied to graphs as well. One prominent example is the notion of characteristic
sets, which estimates the cardinality of a set of vertices exposing certain attributes (Neu-
mann and Moerkotte, 2011).

2.3 query languages

Although early proposals of query languages for gdbms date back to the 1980s, there
has been made only little effort lately to develop new or to adapt existing graph query
languages. Wood (2012) gives an extensive overview of graph query language proposals
over the last 25 years. In contrast to the rdf data model and its corresponding query
language sparql (SPA, 2013), there are currently no standardization efforts in the field of
graph query languages for the property graph data model. In Figure 2.1 we depict the most
recent graph query language proposals and classify them in two directions: (1) targeted
application area and (2) language paradigm.

2.3.1 Pattern-Matching-Based Query Languages

The most prominent graph query languages target the subgraph isomorphism problem
and follow a declarative language paradigm (Sakr et al., 2012; Panzarino, 2014; Raman
et al., 2014; SPA, 2013). G-Sparql (Sakr et al., 2012) is an extension of sparql with spe-
cific language constructs to query property graphs, including the specification of edge
attribute filters and unbounded traversals to support reachability queries. The limitation
of sparql 1.0 of not being able to specify unbounded path expressions has been solved
with the sparql 1.1 language specification. Cypher, the declarative query language of
Neo4j, is internally transformed into an execution plan and further optimized based on
collected graph statistics (Panzarino, 2014). Inspired by sparql and Cypher is pgql, a
declarative graph pattern matching query language for the property graph model that is
part of pgx (Raman et al., 2014). pgx exposes both sparql and pgql, and supports the
automated conversion of a subset of sparql into equivalent pgql statements.

2.3.2 Traversal-Based Query Languages

Traversal-based query languages provide native support for graph traversals as part of the
language, examples are gem (Rudolf et al., 2013), the graph query language of sap hana,
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Figure 2.1: Classification of graph query languages according to their main targeted application area
and the language paradigm.

and Gremlin (Tin). Gremlin is a Java-based graph traversal language and is as part of
the Apache TinkerPop

3 graph computation framework available on top of many graph
processing systems, including Neo4j, Sparksee, and SQLGraph. Gremlin is one of the
few graph query languages that received a wide adoption from the graph community by
relying on a vendor-agnostic interface named BluePrints, the graph api of Apache Tin-
kerPop. Gremlin provides rich query and manipulation capabilities and can be further ex-
tended through Java and Groovy interfaces, for example to define domain-specific graph
traversal semantics. On the downside, most vendors offering a Gremlin interface do not
perform any query optimizations, with SQLGraph being the only exception. SQLGraph,
however, does not offer a BluePrints backend, but instead directly translates (read-only)
Gremlin statements into sql.

2.3.3 Query Languages for Graph Analytics

Increasingly, more applications target graph analytics or graph mining, i.e., algorithms that
traverse the entire graph, possibly multiple times. While imperative programming models,
such as vertex-centric or edge-centric computation models, are gaining popularity, they are
lacking a high-level exposition to the end user. GreenMarl (Hong et al., 2012, 2013b)
is among the first domain-specific graph query languages targeting graph analytics and
exposes high-level constructs, such as graph traversals and parallelized loops. Similar in
that spirit are SociaLite, a declarative query language based on Datalog (Lam et al.,
2013), and our language proposal TraveL, a traversal-based domain-specific language,
and a corresponding TraveL code generator that emits executable code (cf. Chapter 7).
GraphiQL (Jindal and Madden, 2014) is an imperative query language that exposes im-
portant primitives, such as loops, recursion, and neighborhood operations, to the end user.
GraphiQL runs on top of an rdbms and the corresponding compiler translates GraphiQL
statements into a series of sql commands.

3 Apache TinkerPop— http://tinkerpop.incubator.apache.org/ (Last accessed: April 2017)

http://tinkerpop.incubator.apache.org/
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2.4 graph algorithms

Graph algorithms have witnessed an everlasting interest in the theoretical computer sci-
ence community with applications in various domains, including routing, electronic cir-
cuit design, proteomics, and chemistry. They range from simple graph traversals, such as
breadth-first traversals (bft) and depth-first traversals (dft) (Cormen et al., 2001), graph
summarization algorithms, including the detection of strongly connected components (Tar-
jan, 1972; Hong et al., 2013a; Slota et al., 2014) and minimum spanning trees (see algorithms
by Borkuvka (1926), Prim (1930), and Kruskal (1956)), to complex graph optimization prob-
lems, such as traveling salesman or the Chinese postman problem (Christofides, 1973),
which are not computable in polynomial time.

Despite the availability of more computing resources and an increased level of avail-
able parallelism, graph algorithms can hardly fully benefit from the available hardware
resources. Lumsdaine et al. (2007) analyze the root causes of the performance problems of
parallel graph processing and make the following observations:

• Graph algorithms are data-driven

• Graph algorithms expose a poor data locality

• Graph algorithms belong to the data-crunching category

Many well-known graph algorithms have been successfully implemented in a multi-core
environment by fully leveraging all available compute cores, such as depth-first traver-
sal (Crauser et al., 1998), strongly connected components (Hong et al., 2013a; Slota et al.,
2014), and triangle counting (Sevenich et al., 2014). In addition to exploiting the available
parallelism, several recent studies explore improvements of graph algorithms on specific
hardware aspects, such as exploiting the memory hierarchy and available cache levels by
avoiding data cache misses (Cong and Makarychev, 2011), instruction cache misses (Green
et al., 2014), or by avoiding remote memory accesses on non-uniform distributed memory
(numa) machines (Zhang et al., 2015). Several programming models and corresponding ab-
straction layers have been proposed to provide the basis for writing performance-oriented,
hardware-conscious graph algorithms (Nguyen et al., 2013; Shun and Blelloch, 2013; Harsh-
vardhan et al., 2014).

2.4.1 Graph Traversals

Graph traversals are a fundamental building block for more complex graph algorithms,
such as detecting connected components, bipartite graph matching, finding shortest paths
in unweighted graphs, and appear in domain-specific use cases, such as 3d computer
graphics (Hanrahan, 1986), image processing (Silvela and Portillo, 2001), and solving bool-
ean satisfiability (sat) instances (Motter and Markov, 2002).

Increasing graph data sizes and the proliferation of parallelism on different hardware
levels as well as heterogeneous processor environments encouraged researchers to revise
well-known graph algorithms and to propose novel implementations on high-end comput-
ers with a large number of cores and heterogeneous processor types in a single machine.

There are two fundamental traversal strategies to visit all vertices in a graph: breadth-
first and depth-first (Cormen et al., 2001). In a breadth-first traversal, the traversal starts
at a root vertex and visits vertices in a level-synchronous manner, i.e., by first visiting all
adjacent vertices before the traversal continues with the next level. A depth-first traversal
visits recursively one adjacent vertex at a time and continues the traversal from there. If the
traversal reaches a vertex with no adjacent vertices, it continues at the unfinished vertex,
which is the closest to the root vertex.

In the course of this thesis, we will investigate breadth-first traversals in detail. We chose
breadth-first traversals over depth-first traversals since breadth-first traversals can be im-
plemented more efficiently in a multi-core environment. In contrast, depth-first traversals
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are inherently sequential and can be hardly parallelized to scale to large server machines
with dozens of available computing units. This observation led to the development of par-
allel graph algorithms, which are originally based on a dft, but in practice implemented
using a parallelized bft (McLendon III et al., 2005).

Single-Node Breadth-First Traversals

A large body of research has been conducted on efficient parallel graph traversals on a
single server (Brodal et al., 2004; Agarwal et al., 2010; Pearce et al., 2010; Chhugani et al.,
2012; Cui et al., 2012; Beamer et al., 2012; Yuan et al., 2012; Hong et al., 2011; Xia and
Prasanna, 2009; Kernert et al., 2014; Then et al., 2014; Berrendorf and Makulla, 2014; Yasui
et al., 2014). State-of-the-art parallel graph traversals use a level-synchronous strategy and
parallelize the work to be done at each level. Early work by Xia and Prasanna (2009) adapts
the number of worker threads at each level in the traversal according to the working
set size. Several implementations optimize for specific hardware characteristics, such as
minimizing data cache misses (Brodal et al., 2004; Agarwal et al., 2010; Yuan et al., 2012;
Chen et al., 2013) and reducing remote memory accesses (Agarwal et al., 2010; Yasui et al.,
2014; Chhugani et al., 2012; Cui et al., 2012). Especially maximizing temporal and spatial
memory locality is important for achieving optimal traversal performance (Yuan et al.,
2012; Chen et al., 2013).

An effective optimization for scale-free graphs with a low diameter has been proposed
by Beamer et al. (2012). They describe a direction-optimized traversal, which switches the
execution order during the traversal from a top-down traversal to a bottom-up traversal.
While a top-down traversal searches for children of a set of frontiers, a bottom-up traversal
searches for a set of unvisited vertices for parents. This optimization leverages the fact that
traversals on scale-free graphs tend to expose a large frontier set after the first 2–3 traversal
iterations, making it more efficient to switch the execution mode.

A different interpretation of a breadth-first traversal originates from the observation that
it can be implemented as a repeated matrix-vector multiplication of the sparse adjacency
matrix (Kernert et al., 2014). Hong et al. (2011) propose a breadth-first traversal implemen-
tation that leverages cpu and gpu processing resources in a hybrid execution. While most
breadth-first traversal implementations focus on the acceleration of a single traversal opera-
tion utilizing all available resources, Then et al. (2014) propose a multi-source breadth-first
traversal, which shares commonly explored frontier sets between graph traversals to re-
duce the amount of work to be performed. Such a work sharing between concurrent graph
traversals can be exploited in graph algorithms that have to issue a traversal from each
vertex in the graph and on scale-free graphs with a low diameter. Berrendorf and Makulla
(2014) provide an in-depth experimental analysis of several level-synchronous bft imple-
mentations and discuss several optimization techniques and measure their performance
impact.

Breadth-First Traversals on Co-Processors

Graph traversals, specifically breadth-first traversals, have been an active application area
for high-performance computing on specialized hardware, such as graphics processing
units (gpu) (Harish and Narayanan, 2007; Merrill et al., 2012; Bisson et al., 2014; Gharaibeh
et al., 2013; Sallinen et al., 2015; Fu et al., 2014; Slota et al., 2015), Intel

® Many Integrated
Core (mic) (Gao et al., 2014; Slota et al., 2015), and tree-based memory models (St. John
et al., 2012). While initial proposals focus on the pure implementation of breadth-first
traversals, typically based on cuda, recent works have focused on providing a higher
level abstraction that either guarantees portability to different classes of many-core proces-
sors (Slota et al., 2015) or provides a vertex-centric api through a scatter-gather interface (Fu
et al., 2014; Sundaram et al., 2015).
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Distributed Breadth-First Traversals

If the graph size exceeds the memory capacity of a single server, the graph can be ei-
ther processed from semi-external memory, such as a hard disk or a flash-based storage
medium (Pearce et al., 2010), or can be distributed among several servers in a cluster. There
are multiple implementations targeting distributed memory graph traversals, which differ
mainly in their initial graph partitioning scheme and the strategies to minimize communi-
cation across the network (Yoo et al., 2005; Buluç and Madduri, 2011; Lv et al., 2012; Beamer
et al., 2013; Shang and Kitsuregawa, 2013; Checconi and Petrini, 2014). One of the first dis-
tributed graph traversals is described by Yoo et al. (2005), who implement a breadth-first
traversal on a large cluster installation of a BlueGene/L with up to 32,000 processors and
achieve up to 100 million traversed edges per second (teps). They avoid the expensive all-
to-all communication by applying a two-dimensional partitioning on the adjacency matrix.
In a related study, Checconi and Petrini (2014) investigate breadth-first traversals on a clus-
ter with 64,000 BlueGene/Q nodes and achieve an impressive number of 15.3 trillion teps.
Among several algorithmic tricks, they changed the initial two-dimensional partitioning to
a one-dimensional vertex partitioning. Beamer et al. (2013) discuss the direction-optimized
traversal strategy, which switches from a top-down to a bottom-up traversal evaluation dur-
ing execution, on a distributed memory cluster. Shang and Kitsuregawa (2013) propose a
novel distributed graph traversal by applying a degree-based partitioning, which provides
a balanced execution on skewed vertex degree distributions. To reduce the communica-
tion overhead in distributed traversals, Lv et al. (2012) propose message compression to
minimize the size of communication messages.

2.5 graph data generators and benchmarking

There have been early discussions on the design of benchmarks for graph processing sys-
tems, mainly driven by the graph database community (Dominguez-Sal et al., 2010, 2011)
and the high-performance community (Gra). While the high-performance community uses
bft to measure the execution performance of supercomputers, major gdbms vendors are
interested in showing the performance and scalability of their systems for a wider range of
use cases and applications. One of the main distinguishing factors of gdbms is the ability
to perform topological queries, such as graph traversals, faster than their rdbms equiva-
lents using chained self-joins. Therefore, the main focus for gdbms benchmarking has been
on graph traversals (Ciglan et al., 2012). With the more widespread adoption of pattern-
matching-based query processing on property graphs with a large number of attributes
attached to vertices and edges, new benchmarking initiatives, such as the Linked Data
Benchmarking Council (ldbc)4 (Erling et al., 2015), emerged.

R-MAT Data Generator

The r-mat data generator proposed by Chakrabarti et al. (2004) creates graphs with a
skewed degree distribution (power-law distributed), a community structure, and a small
diameter. Figure 2.2 depicts the general data generation model of r-mat. The data gener-
ation works on the adjacency matrix of the graph and recursively subdivides the matrix
into four equal-sized partitions a, b, c, and d. Each partition is subsequently divided into
four partitions, until a partition size of one is reached. Each edge to be inserted is added
with a given probability that is taken from the input parameters a, b, c, and d. Thereby,
the precondition a+b+ c+d = 1 must hold. To generate a power-law degree distribution,
a community structure, and a small diameter, the authors recommend choosing the input
parameters such that a > b∧ a > c∧ a > d holds. For example, the Graph500 benchmark
uses a data generator similar to r-mat (the Kronecker data generator) and relies on the
following parameter configuration: 〈a = 0.57,b = 0.19, c = 0.19,d = 0.05〉5. Although the

4 Linked Data Benchmarking Council — http://ldbcouncil.org/ (Last accessed: April 2017)
5 Graph500 Specification — http://www.graph500.org/specifications#sec-3_2 (Last accessed: April 2017)

http://ldbcouncil.org/
http://www.graph500.org/specifications##sec-3_2


14 foundations of graph data management

b

c d

b

c d

a b

c d

Vertices

V
er

tic
es

Figure 2.2: r-mat data generation model (adapted from Chakrabarti et al. (2004)).

r-mat data generator solves some of the problems of generating large graphs with realistic
properties, it does not capture attributes attached to vertices and edges. We use the r-mat

data generator in our experimental evaluations to easily generate realistic graph topologies
of different scale.

LDBC Social Network Benchmark

The ldbc social network benchmark provides the first graph data generator that generates
a realistic graph topology, but also a set of attributes attached to vertices and edges. It
represents a social network application with user activities during a period of time (Erling
et al., 2015). The data is used in the interactive, the business-intelligence, and the algo-
rithmic workload (Capotă et al., 2015) of the ldbc social network benchmark. It contains
persons, tags, forums, messages, likes, organizations, and places as vertices and about 20

different relations between them. The backbone of the graph is a fully connected com-
ponent of users and their friendship relationships. The ldbc data generator puts a spe-
cial emphasis on correlated attributes and structural correlations, such as the correlation
between person’s first names and their gender or the correlation between the places of
study/common interests and the probability of establishing a friendship connection be-
tween two users (Pham et al., 2012). The attribute dictionaries are extracted from DBpedia
and are assigned using a skewed value distribution. Finally, an implicit time dimension
allows representing trending topics and the number of messages, comments, and posts are
skewed to reflect occurring political and sport events as well as natural disasters.

2.6 graph processing systems

In this section we review, compare, and classify the most popular graph processing sys-
tems available that target different graph applications, programming models, and com-
putation environments. We classify them into: (1) single-node graph processing systems,
(2) distributed graph processing systems, (3) graph processing systems as extensions of
rdbms, and (4) graph database management systems (gdbms). We provide a summary of
our classification on all reviewed single-node graph processing systems, including graph
processing systems on top of rdbms and graph database management systems, in Table 2.1.
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2.6.1 Single-Node Graph Systems

Out-of-Core Graph Systems

The initial experimental results of GraphChi (Kyrola et al., 2012), which demonstrate that
a carefully implemented disk-based single-node graph processing system can outperform
a large cluster installation, triggered an ever-growing interest in processing billion-scale
graphs on a single commodity machine (Han et al., 2013; Roy et al., 2013; Cheng et al.,
2015; Wang et al., 2015; Zhu et al., 2015; Zheng et al., 2015; McSherry et al., 2015).

GraphChi (Kyrola et al., 2012) is among the first implementations of a disk-based,
single-node graph processing system running on commodity hardware and targeting ap-
plications dealing with billion-scale graphs. GraphChi avoids random access read opera-
tions on the graph stored on hard disk or ssd by transforming them into more disk-friendly,
sequential read patterns. The authors propose a parallel sliding window (psw) approach
and distribute the vertex space into disjoint intervals that are subsequently mapped to
so-called shards. A shard stores all edges whose target vertex is in the corresponding in-
terval and sorts them by their source vertices. GraphChi implements a variation of the
bulk-synchronous processing (bsp) model through an asynchronous vertex-centric execu-
tion model, but writes updated values directly instead of sending messages to adjacent
vertices. The execution model is based on a one-interval-at-a-time paradigm—one shard
(the memory shard) is fetched completely into memory and other subsequent shards are
also read from ssd to fetch the outgoing edges of a given vertex set.

TurboGraph (Han et al., 2013) is comparable to GraphChi and is a disk-based graph
engine to process billion-scale graphs and leverages multi-core parallelism and parallel,
asynchronous i/o of ssds to efficiently interleave i/o and cpu processing. TurboGraph

proposes a novel execution model, called pin-and-slide, which is based on the column view
of a matrix-vector multiplication. For a given set of vertices, TurboGraph identifies the
required pages and pins them in the in-memory buffer pool. If some of the pages reside al-
ready in the buffer pool, one execution thread per page starts processing the vertex update
function. While the first pages are being processed, TurboGraph issues asynchronous i/o

calls to the ssd device to fetch the missing pages into the buffer pool. Whenever a page is
fetched into the buffer pool, the execution engine is notified and can proceed to process the
pages. Once TurboGraph finishes the processing of a page, it unpins the page explicitly
and the buffer pool eventually evicts it. Thereby, TurboGraph slides over the pages of the
graph.

In contrast to the vertex-centric systems GraphChi and TurboGraph, X-Stream (Roy
et al., 2013) relies on an edge-centric programming model. In the scatter and gather phase, X-
Stream iterates over edges and performs updates on edges rather than on vertices. An
edge-centric approach avoids expensive random access operations to the edges of the
graph. Instead of minimizing random accesses on vertices, X-Stream minimizes random
accesses on edges, under the assumption that the number of edges is much larger than the
number of vertices in the graph. To overcome the random access pattern on the vertices,
X-Stream partitions the set of vertices such that it fits into memory or the cpu cache. While
GraphChi requires the entire shard, including vertices and incoming/outgoing edges, to
be in memory, X-Stream only requires the vertex state to be in memory.

Yuan et al. (2014) propose to use a path-centric computation model instead of a vertex-
or edge-centric model. PathGraph partitions the graph into trees and stores each tree in
dfs order to improve the disk and memory locality and uses data compression to further
reduce the size of the graph on disk. Further, PathGraph clusters highly correlated paths
together and parallelizes the execution at the tree partition level.

Lin et al. (2014) explore an alternative strategy to read graph data efficiently from disk by
reusing the memory mapping facilities provided by the operating system. This is in contrast
to systems like GraphChi and TurboGraph, which manage memory and page tables by
themselves.
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Zheng et al. (2015) propose FlashGraph, a semi-external memory graph processing
system running on an array of ssds. FlashGraph is built on top of a user-space ssd file
system called set-associative file system. It stores vertex state in memory and the edge lists on
ssds. Similar to TurboGraph, FlashGraph also overlaps i/o with the actual computation
and merges i/o requests where possible.

Venus (Cheng et al., 2015) exhibits a vertex-centric programming model and loads a
graph from disk sequentially in a streamlined fashion. Such a streaming approach allows
interleaving data loading from disk with the computation by exploiting the large sequen-
tial bandwidth of the disk.

GridGraph (Zhu et al., 2015) stores the vertices of the graph in 1D partitions and the
edges in 2D partitions using a level partitioning during the preprocessing phase. Similar to
GraphChi, GridGraph also applies a sliding window technique to stream the edges from
disk. In contrast to other vertex- or edge-centric processing models, GridGraph combines
the scatter and the gather phase into a single streaming-apply phase allowing to minimize
the number of reads for a block of edges.

GraphQ (Wang et al., 2015) proposes an interesting alternative to processing analytic
queries on the complete graph: a large graph is represented as multiple levels of abstrac-
tions and a query is executed through an iterative refinement across the abstraction levels.
The general assumption is that many use cases do not require a complete solution on the
entire graph, but instead can also rely on a partial result derived from a small fraction
of the input graph. Query processing in GraphQ performs repeated lock-step check-refine
calls, until the query returns the desired result or the given query budget, e.g., memory or
cpu, is exhausted. The check phase processes the query on each individual graph partition.
If no query in the check phase returns successfully, the refine phase identifies inter-partition
edges and adds them back to the graph. Finally, the procedure continues with the check
phase in the next iteration.

In-Memory Graph Systems

Galois (Nguyen et al., 2013) is a task-based parallelization system that is particularly well-
suited for irregular computations, such as graph algorithms. It exposes a sophisticated
programming model with autonomous and coordinated scheduling and with or without spe-
cific application priorities to provide correctness guarantees for autonomous scheduling.

Ligra (Shun and Blelloch, 2013; Shun et al., 2015) is a graph processing library tailored
to large multi-core shared-memory machines and for traversal-based graph applications,
such as breadth-first search, betweenness centrality, graph radii estimation, graph connec-
tivity, PageRank, and single-source shortest path. A graph in Ligra can be either a graph
topology solely or a weighted graph and stored in two arrays, one for storing the incoming
edges and one for storing the outgoing edges for each vertex. Both arrays are partitioned
(sorted) by source vertex (for outgoing edges) and target vertex (for incoming edges). Each
vertex maintains the positions of its adjacency using an index into the array and degree
information for incoming and outgoing edges. For weighted graphs, the edge attribute
is interleaved with the target vertices and stored as a tuple in the outgoing adjacency. If
additional vertex attributes are required, they have to be stored and processed in the ap-
plication layer. Ligra supports two fundamental data types: graphs and sets of vertices.
Vertex identifiers have to be continuous, discrete in the range from 0 to |V |− 1. Depend-
ing on the size, a vertex set can be represented either as an integer array or as a bitset.
Ligra provides a simplistic programming interface to formulate graph algorithms. The
core functions are: (1) an edge map function taking as input the graph, a vertex set U, an
edge function, and a vertex function C, (2) a vertex map taking as input a vertex set and a
vertex function, and (3) a cardinality function that returns the size of a given vertex set.

In an edge map call, Ligra applies the edge function to all edges with a source vertex in
the input vertex set U and target vertex satisfying the vertex condition C. For each active
edge (u, v), the edge map returns the target vertex v in the result vertex set. Internally,
Ligra provides two variations of the edge map, one that deals with large vertex sets and
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one that deals with small vertex sets. Which version is selected by Ligra during runtime
is determined by a threshold. The threshold is computed as the sum of the size of the
vertex set and the sum of the out-degrees of all vertices in the vertex set. For the vertex
map, Ligra applies the vertex function on each vertex in the input vertex set and returns
a (possibly reduced) vertex set of all vertices satisfying the vertex function condition. To
scale the algorithms to multi-core machines, Ligra uses CilkPlus to parallelize loops that
call the edge map and the vertex map functions and synchronizes concurrent access to
shared data structures using compare-and-swap operations.

Polymer (Zhang et al., 2015) is a graph analytics engine tailored to large numa machines
and implements a vertex-centric programming interface. Its main goal is to co-locate graph
data and graph computation in memory as much as possible by minimizing the number
of random remote memory accesses. Polymer treats a numa machine as a distributed sys-
tem and partitions vertices and edges across memory nodes under the assumption that
the graph topology is immutable. It indexes vertices from 0 to |V |− 1 and evenly assigns
them to n disjoint vertex sets that are stored on n memory nodes. Further, in/out-edges
in the graph are partitioned by their source/target vertex and assigned to memory nodes.
Polymer stores application-defined data along with their owning vertices on the memory
nodes. To tackle the mismatch between data allocation threads and computation threads—
caused by Linux’ first-touch policy to bind virtual pages to physical frames—Polymer uses
local threads to allocate and initialize data with a memory node. To further reduce random
remote memory accesses, Polymer uses a lightweight vertex replication scheme and du-
plicates vertices, including partial topology information, such as the start of neighboring
vertices and degree information, onto multiple memory nodes. To achieve load balancing,
the authors propose to partition the graph by edges and to evenly distribute the edges to
groups on different memory nodes—in contrast to the general partitioning by vertex.

The combinatorial blas library (Buluç and Gilbert, 2011) follows a recent trend to repre-
sent simple, traversal-based graph algorithms as a composition of linear algebra operators,
such as sparse matrix-matrix multiplication and sparse matrix-vector multiplication. While
combinatorial blas exposes the linear algebra primitives directly to the end user, Graph-
Mat (Sundaram et al., 2015) proposes a translation layer that maps vertex-centric programs
to a composition of linear algebra operations. The authors achieve an acceptable slowdown
of a factor of 1.2 over the hand-optimized code and demonstrate the feasibility of an ad-
ditional abstraction layer by bringing together the insights on sparse matrix operations
from the high-performance community with the vertex-centric computation model from
the graph community.

pgx (Raman et al., 2014) is a parallel subgraph isomorphism and graph analytics en-
gine. It is specifically designed for handling large graphs with billions of edges. pgx stores
the graph topology in a csr data structure consisting of two arrays and separate arrays
for properties. Property lookups can be further accelerated by secondary index structures.
Supported property types include primitive types, string, string-set, and datetime. pgx has
an accompanying declarative graph pattern matching query language (pgql) that can be
used to query rdf and property graph data. To run a pgql query, the query string is parsed,
translated into native c++ code, compiled during runtime, and finally executed. The pat-
tern matching algorithm is based on the conventional backtracking algorithm, but uses a
parallelized breadth-first search implementation and matching stages. At each stage, each
worker thread stores the generated partial matching result in the thread-local storage. Fi-
nally, a merge operation unions all partial matching solutions. Partial matching solutions
are not represented as conventional vertex tuples, but due to the fixed matching order
of query nodes only stored as data nodes and accessed via position in the partial solu-
tion buffer data structures. To gracefully handle a large number of partial solutions, all
of them are inlined and physically stored in a single large buffer structure. Further, pgx

provides a backend for GreenMarl (Hong et al., 2011), a domain-specific language for
graph analytics, that is compiled into native c++ code.

LLama (Macko et al., 2015) is an in-memory graph processing system for high-per-
formance graph analytics in the presence of vertex and edge updates. It is based on a
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mutable csr data structure and supports batch updates. We discuss the internal storage
representation of LLama in detail in Chapter 6. To formulate queries, LLama provides a
general purpose programming model that can be used to write edge- and vertex-centric
graph applications.

SociaLite (Lam et al., 2013) is a declarative query language and an accompanying com-
piler based on Datalog. SociaLite uses nested tables to represent the graph topology in
an adjacency-like data structure and heavily relies on recursively-defined aggregate func-
tions.

System-G (Xia et al., 2014; Tanase et al., 2014) is a graph processing system, includ-
ing a native graph storage, hardware-conscious graph data structures and algorithms,
and graph visualization. Its architecture is tailored towards providing a multi-core, multi-
socket-friendly solution focusing on scale-up scenarios, but still providing support for
scale-out scenarios via rdma. Graph data in System-G is persisted in a graph key-value
store on disk. System-G provides a simple, low-level graph api that allows retrieving
attributes of vertices and edges, neighboring vertices, and other basic graph operations.
Multiple properties on vertices and edges are stored in map data structures. System-G
provides multiple graph storage representations, depending on the desired graph applica-
tion, including multi-property graphs and mutable/immutable graphs. To select the most
appropriate graph storage representation, System-G provides a set of different storage lay-
outs that a user can choose from. For graph traversals on read-only graphs, System-G uses
a compressed vertex format adapted from a csr. To allow parallelized graph processing,
System-G partitions the original graph into nearly independent subgraphs.

EmptyHeaded (Aberger et al., 2015) is a graph pattern matching engine leveraging
worst-case optimal join algorithms to compile graph pattern queries into boolean algebra
operations—set intersection and union. The development is driven by two major observa-
tions: (1) algorithmic advances, especially the development of worst-case optimal joins and
(2) the general availability of wide vector registers for simd processing on modern cpus.
We discuss the internal storage representation of EmptyHeaded in detail in Chapter 6.

Grace (Prabhakaran et al., 2012) is a graph-aware, in-memory, transactional graph man-
agement system that is specifically designed for low-latency graph applications. Its design
is tailored to single-node, large-scale multi-core machines with non-uniform memory ac-
cess. To query a graph stored in Grace, the user writes a vertex-centric program in the
bulk-synchronous model against an imperative programming interface. The authors pro-
pose several optimizations to minimize inter-core communication and ensure maximum
hardware utilization through update message batching, dynamic thread scheduling, and
work stealing. We discuss the internal storage representation of Grace in detail in Chap-
ter 6.

Ringo (Perez et al., 2015) is an interactive graph exploration system built for big-memory
machines that can store all-but-the-largest graphs in main memory. Internally, Ringo is
based on Snap (Leskovec and Sosič), a parallelized graph library with over 200 built-in
graph functions, and exposes the functionality through a Python frontend. Ringo sup-
ports several efficient loading and transformation mechanisms, i.e., to load and process
graph data that is initially stored in relational tables.

While most graph processing systems are able to process immutable graphs solely, Ki-
neoGraph (Cheng et al., 2012), ImmortalGraph (Miao et al., 2015), and Chronos (Han
et al., 2014b) are tailored to storing and processing time-varying graphs that evolve over
time. A time-varying graph captures all changes made to the structure and the attributes
of the graph and their time stamps. Such a graph is then a collection of graph snapshots,
where each snapshot corresponds to the static graph at a given point in time.

Recent advances in hardware/software co-design also have an impact on the develop-
ment of graph processing systems. Nelson et al. (2011) emulate a multithreading system
like the Cray XMT on commodity hardware to hide the memory latency problem preva-
lent in many graph algorithms through massive parallelism. Other examples that leverage
modern hardware to accelerate graph processing include processing-in-memory (pim) as



20 foundations of graph data management

proposed by Ahn et al. (2015) and field-programmable gate arrays (fpga) (Nurvitadhi et al.,
2014).

2.6.2 Distributed Graph Systems

The abundance and diversity of massive-scale, graph-structured data and the ever-growing
interest of large enterprise companies to analyze them are the key drivers of the recent ad-
vances in graph data management research. From a systems perspective, there is a plethora
of distributed graph processing systems tailored to different use cases and exposing var-
ious programming models to choose from (Kang et al., 2009; Stutz et al., 2010; Malewicz
et al., 2010; Gonzalez et al., 2012, 2014; Kang et al., 2011a; Khayyat et al., 2013; Low et al.,
2012; Murray et al., 2013; Salihoglu and Widom, 2013; Sarwat et al., 2012; Seo et al., 2013;
Shao et al., 2013; Tian et al., 2013; Wang et al., 2013; Bu et al., 2014; Fli; Roy et al., 2013).

Graph Processing based on MapReduce

Two of the first representatives of distributed graph processing systems are PeGaSus (Kang
et al., 2009) and GBase (Kang et al., 2011a), which run on top of the Hadoop ecosystem
and are based on the MapReduce programming model to formulate graph queries. PeGa-
Sus and GBase both rely on generalized iterative matrix-vector multiplications. Although the
original MapReduce programming paradigm has proven to significantly simplify batch
processing tasks, iterative computations, as required by many graph algorithms, are not
well-supported due to loops of MapReduce jobs with spilling to disk in between consecu-
tive jobs.

Vertex-Centric Graph Processing Systems

Based on the limitations of the MapReduce programming paradigm, Low et al. (2010) in-
troduced GraphLab, a parallel programming framework for iterative, asynchronous com-
putations, as they are prevalent in machine learning and graph algorithms. There are two
main computations in GraphLab, namely update and sync. While the update function per-
forms stateless, local computations on the neighborhood of a vertex in the data graph,
a sync function describes a global aggregation operation. Both, the update and the sync
function, can run concurrently in GraphLab, where a task scheduler selects, based on the
selected scheduling strategy (synchronous or asynchronous) and the desired data consis-
tency policy, the most suitable scheduling of function calls. The general idea of GraphLab

has been extended to run on large cluster setups Low et al. (2012). PowerGraph, an exten-
sion of GraphLab, specifically targets the skew in the vertex degree distribution and the
resulting imbalanced computation and resource utilization (Gonzalez et al., 2012). Power-
Graph can eliminate the dependency on the degree of the vertex by directly exposing the
gather and scatter operations.

With the advent of the vertex-centric programming model, as introduced by Malewicz et al.
(2010), numerous systems have been developed that improve distributed graph processing
on a large cluster of commodity machines. The vertex-centric programming model per-
forms a graph computation in so-called supersteps. In each superstep, each vertex in the
graph receives messages from adjacent vertices, performs a local computation, and gener-
ates new messages to be sent to adjacent vertices. There is a global synchronization barrier
at the end of each superstep guaranteeing that all local computations finished, before the
next iteration can start. This computation model is inspired by Valiant’s bulk-synchronous
programming model (Valiant, 1990), which simplifies local parallelization through indepen-
dent computations on the vertex level. There are multiple efforts to provide an open-
source implementation of Pregel, including Apache Giraph (Gir) and gps (Salihoglu
and Widom, 2013). gps extends the original proprietary Pregel implementation with a
master.compute() function to simplify the development of graph algorithms that require
multiple vertex-centric computations and global computations. Further, gps dynamically



2.6 graph processing systems 21

repartitions the graph to achieve an optimal load balancing during the computation. gps

handles graphs with a skewed degree distribution through the partitioning of large adja-
cencies across multiple compute nodes. To simplify writing programs for gps, a backend
for GreenMarl has been added (Hong et al., 2014).

To cope with the problem of a large number of messages being transferred between
computing nodes and the slow convergence of the vertex-centric model, Tian et al. (2013)
propose the think-like-a-graph programming model. The graph-centric approach is in con-
trast to the vertex-centric employed by the majority of distributed graph processing sys-
tems. The authors implemented the graph-centric programming model in Giraph++, an
extension of Apache Giraph, allowing the user to fully control and exploit the local struc-
ture of a graph partition. Giraph++ supports asynchronous, vertex-centric processing as
well as graph mutation, which is often required in graph summarization and coarsening
algorithms.

Khayyat et al. (2013) introduce Mizan, an adaptive Pregel-based system that proposes
fine-grained load balancing during supersteps based on collected computation statistics on
a vertex level. This is in contrast to an initial static partitioning of the data graph, where
graph-specific properties and communication patterns of the graph algorithm have to be
known in advance.

Similar to the asynchronous execution mode provided in GraphLab, Wang et al. (2013)
introduce asynchronous graph processing in Grace

6. In contrast to GraphLab, which
exposes the asynchronous execution model directly to the end user—burdening the appli-
cation developer with the handling of concurrency issues—Grace exposes a synchronous
programming model and executes the program in an asynchronous execution mode. They
achieve this by allowing the user to relax certain constraints on the message passing phase.
In a follow-up publication, the same authors extend Grace to improve the execution per-
formance for computationally light applications that only perform a few operations per
vertex update (Xie et al., 2013). For this kind of graph algorithms, adding more hardware
resources, i.e., by providing more hardware threads, does not improve performance, since
the algorithm is bounded by the available memory bandwidth. To solve this issue, the
authors propose to group vertex updates together into block updates and parallelize on the
level of a block.

Han and Daudjee (2015) propose a new programming model coined barrierless asyn-
chronous parallel (BAP) that improves the asynchronous programming model by eliminating
the need for distributed locking and by reducing the frequency of global barriers. Their im-
plementation extends Apache Giraph and implements the complete synchronous Pregel

API, but executes the program asynchronously.
Xie et al. (2015) build on the ideas of Khayyat et al. (2013) and rely on collected execution

statistics, including the convergence speed and the number of active vertices, using online
sampling and offline profiling. In a detailed study they show that synchronous and asyn-
chronous can supersede each other, depending on the graph algorithm and the input data.
Even worse, graph algorithms, such as single-source shortest path, demand an adaptive
switching between the two execution modes to achieve the optimal execution performance.
The authors extend PowerGraph and implement hsync, an adaptive vertex-centric graph
processing framework that can automatically switch between the two execution modes
during runtime.

To cope with the load imbalance of vertex-centric computations on power-law distrib-
uted graphs, Chen et al. (2015) propose PowerLyra, a distributed graph system, which
performs a differentiated processing on high-degree and low-degree vertices. Contrary to
other distributed graph systems, which process all vertices similarly, PowerLyra uses a
hybrid-cut partitioning algorithm. More specifically, PowerLyra distributes low-degree
vertices and accompanying edges among machines (similar to edge-cut partitioning) and
distributes edges of high-degree vertices among machines (similar to vertex-cut partition-
ing).

6 not to be confused with the single-node system Grace developed by Microsoft



22 foundations of graph data management

Graph Processing on Dataflow Systems

Recently, distributed dataflow frameworks, such as Spark (Zaharia et al., 2010) and Na-
iad (Murray et al., 2013), gained popularity not only for relational data processing but also
as distributed graph processing systems. GraphX is an extension of Spark and adds graph
processing capabilities on top of Spark’s dataflow engine (Xin et al., 2013; Gonzalez et al.,
2014). The GraphX abstraction employs a variation of the vertex-centric programming
model and extends it by the gather-apply-scatter decomposition of GraphLab. GraphX
performs query processing on Spark collections that hold vertices and edges and reuses
existing dataflow operators, including join, group-by, and map.

Naiad (Murray et al., 2013) is a distributed dataflow engine specifically designed for
iterative and incremental computations. It employs timely dataflow, a computation model
that does not only capture the topology of the flow graph, but also permits cyclic flow
graphs with structured (nested) loops. The foundation for this are logical timestamps, which
not only keep the timestamp itself, but also information about the loop progress through
lightweight loop counters.

Pregelix (Bu et al., 2014) is a Pregel-based implementation on top of the Hyracks

general-purpose dataflow execution engine. It reuses the existing data-parallel operators
of Hyracks and implements the full Pregel interface, including in-memory and out-of-
core processing.

Other Graph Processing Systems

While most graph processing systems target offline graph analytics, Horton (Sarwat et al.,
2012) is a distributed graph processing system for interactive graph query processing.
Horton employs a query language to express simple patterns on the data graph and
an accompanying graph query optimizer, which selects from an enumeration of possible
execution plans the most cost-efficient one.

Trinity (Shao et al., 2013) is a distributed graph processing system that combines online
query processing with offline graph analytics within the same query engine. At the storage
layer, Trinity keeps the graph in an in-memory distributed key-value store that is shared
across all computing nodes in the cluster. Trinity supports online querying in the form
of traversal queries and subgraph pattern matching as well as offline graph analytics by
exposing a vertex-centric programming model.

Seo et al. (2013) extend the SociaLite system to also run in a distributed environment.
SociaLite provides Datalog extensions for graph analytics tasks and relies on recursive
monotone aggregate functions using semi-naive query evaluation. SociaLite allows the user to
define the data partitioning across the different machines and automatically infers the nec-
essary distributed computation and communication from the partitioning and the given
Datalog program.

Recently, various studies on the scalability and performance of several distributed graph
processing systems (Lu et al., 2014; Han et al., 2014a; Satish et al., 2014). Although dis-
tributed graph engines show good scalability to large graphs, properly implemented out-
of-core graph systems can perform similarly well. Interestingly, even single-core, ssd-based
implementations can outperform distributed graph processing systems for certain sce-
narios, which is an indicator of the system complexity of distributed systems and the
added overhead caused by the programming model and communication/synchronization
costs (McSherry et al., 2015).

2.6.3 Graph Processing in RDBMS

Traditionally, rdbms have been used extensively to store rdf data either in a single, large
triples table with three columns for subjects, predicates, and objects or in so-called property
tables (Abadi et al., 2007; Sidirourgos et al., 2008; Neumann and Weikum, 2010; Erling,
2012; Bornea et al., 2013). A property table reassembles semantic entities from the rdf data
model into database records and groups attributes that are exposed frequently together
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in a single table. Abadi et al. (2007) propose to vertically partition the rdf data into two-
columnar tables, one for each distinct property in the data set. They use C-Store, an
open-source columnar dbms prototype, and showcase that a vertically-partitioned storage
representation of rdf data can outperform a naive triple table.

Virtuoso (Erling, 2012) is a hybrid columnar relational/graph dbms with a sparql in-
terface. Internally, Virtuoso translates sparql queries into sql queries with graph-specific
extensions, for example the transitive7 keyword enabling transitive closure computations
on a tailored operator.

Sakr (2009) investigates how an rdbms can be leveraged to store and process graph
data efficiently. In contrast to other related work, they assume the graph data to contain a
large number of small graphs compared to a single graph with a large number of vertices
and edges. They employ several query optimization techniques, such as join ordering,
pruning to reduce the search space, and filter evaluation accelerated by secondary index
structures (Sakr and Al-Naymat, 2010b).

Bornhövd et al. (2012) propose an extension to sap hana in the form of a schema-flexible
data management system that is based on a graph data model. The graph data model is
similar to the property graph data model, but extends it with optional semantic type
information, which can be associated with vertices and edges. The graph can be queried
using wipe, a declarative query language with built-in support for graph traversals and
set operations. wipe is internally translated into a set of sql statements and issued against
the underlying rdbms engine.

SQLGraph (Sun et al., 2015) is an extension to a row-oriented rdbms that provides graph
querying and updates without side effects based on Gremlin, a traversal-based query and
manipulation language. SQLGraph translates Gremlin on the basis of pipes and repre-
sents each pipe as a table—either a materialized table or a common table expression. A
query builder translates Gremlin queries into a combination of pure sql functions, user-
defined functions, common table expressions, and stored procedures. The latter ones are
only used for graph updates without side effects and for recursive traversal queries with-
out a recursion depth boundary. The authors propose several optimization and rewriting
techniques, such as predicate rewriting to avoid unselective filter pipes and the invalida-
tion of to-be-deleted vertices (instead of deleting them right away).

TeraData Aster (Simmen et al., 2014) is a large-scale analytics platform that supports
analytics on multiple types of data, ranging from structured data to unstructured data.
The primary focus of the extension for graph processing is on graph analytics through an
iterative vertex-oriented Java-based programming abstraction that can be used to imple-
ment bulk-synchronous graph algorithms. All graph analytics functions (pre-built as well
as custom implementations) are modeled as a polymorphic table operator, can be invoked
directly from a sql query, and can operate on tables, files, and other data formats that are
accessible from the TeraData Aster storage interface. TeraData Aster supports the com-
bination of analytics functions, such as the combination of graph analytics with sentiment
text analytics, and can ingest graph data via graph projections from a wide variety of data
sources.

Although rdbms have proven to be competitive with specialized gdbms if properly
tuned, there are still use cases where it might be sensible to migrate the relational data
into a gdbms. De Virgilio et al. (2013) investigate techniques to migrate data as well as
queries from an rdbms to a gdbms. Attributes that are often accessed together are repre-
sented as vertex attributes and queries are transformed from sql into a traversal-oriented
query language that is inspired by xpath.

Increasingly, rdbms functionality, including recursive queries, common table expres-
sions, and secondary index structures, is extensively used to process several graph al-
gorithms. Examples include the evaluation of single-source shortest path (Gao et al., 2011;
Welc et al., 2013), subgraph isomorphism queries (Gubichev and Then, 2014), and traver-
sal/reachability queries (Ordonez et al., 2014).

7 http://www.openlinksw.com/dataspace/doc/vdb/weblog/vdb%27s%20BLOG%20%5B136%5D/1435

(Last accessed: April 2017)

http://www.openlinksw.com/dataspace/doc/vdb/weblog/vdb%27s%20BLOG%20%5B136%5D/1435
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A slightly different path is followed by Sakr et al. (2012). They store a graph in a hybrid
storage, where the graph topology resides in memory and the attributes of vertices and
edges are stored in an rdbms. While this solution might work for some use cases, trans-
actional guarantees are challenging, since the in-memory representation entirely lacks a
transaction context. Query processing is split on top of the rdbms and relational parts of
the query are pushed down to the rdbms execution engine while topological queries are
evaluated on the in-memory representation of the graph topology.

The recent advances in distributed graph processing and the growing interest in pro-
viding a high-level abstraction based on the vertex-centric programming model triggered
the development of extensions to popular rdbms with support for vertex-centric compu-
tations (Jindal et al., 2014a,b; Fan et al., 2015). Vertexica is an extension of Vertica, a
columnar rdbms and enables vertex-centric computation through a mapping onto stored
procedures and sql queries. Similarly, Fan et al. (2015) extended SQL Server with sup-
port for a vertex-centric computation model. Both solutions rely on materialized, tabular
intermediate results and implement message passing through shared message tables.

Recently proposed novel join algorithms, such as LeapFrog TrieJoin and Minesweeper,
achieve worst-case optimality or sometimes even beyond worst-case optimality. Nguyen et al.
(2015b) investigate whether these new join algorithms can speed up graph pattern match-
ing and close the performance gap to specialized graph processing systems (extended
version: Nguyen et al. (2015a)).

Path traversals implemented as recursive queries in rdbms have been in the focus of
research for more than 20 years now (Agrawal, 1988). There have been proposals for
extending relational query languages with support for recursion in the past and even
the SQL:1999 standard offers recursive common table expressions. However, commer-
cial database vendors often provide their own proprietary functionality, if they do at all.
Magic-set transformations are a query rewrite technique for optimizing recursive and non-
recursive queries, which was originally devised for Datalog (Bancilhon et al., 1986) and
has been extended for sql (Mumick and Pirahesh, 1994). Since graph traversals can be ex-
pressed as recursive database queries, the magic-sets transformation could also be applied
to them.

Trissl (2012) discusses graph processing in the context of rdbms and employs a cost-
based optimizer, graph operators, including a reachability operator, a distance operator,
a path operator, and a path-length operator. The implementations of all four operators
heavily rely on a secondary index structure, entitled Gripp, which provides a concise
representation of the graph topology.

sap hana is the first full-fledged rdbms that tightly integrates graph processing into the
database kernel allowing to seamlessly combine relational and graph operations within
the same database engine (Färber et al., 2012; Bornhövd et al., 2012; Rudolf et al., 2013).
sap hana is extended by a set of graph-specific operators, such as graph traversals, that
are not mapped to relational operators but instead implemented as core operators in the
rdbms execution engine (Paradies et al., 2015).

2.6.4 Graph Database Management Systems

A different direction is followed by gdbms, such as Neo4j (Robinson et al., 2015), Spark-
see (Martínez-Bazan et al., 2007, 2012), InfiniteGraph (Inf), TitanDB (Tit), and multi-
model dbms, such as OrientDB (Ori) and ArangoDB (Ara). While Neo4j relies on a disk-
based storage accelerated by a buffer pool to store recently accessed parts of the graph,
Sparksee allows manipulating and querying the graph in memory. Neo4j is fully trans-
actional and provides support for the BluePrints api, Gremlin, and its own declarative,
pattern-matching-based query language Cypher.

Sparksee is a fully transactional gdbms with out-of-core capabilities. The Sparksee inter-
nal data structures rely on efficient bitmaps, which represent the set of vertices and edges
describing the graph (we discuss the storage representation in detail in Chapter chapter 6)
and additional index structures can be specified to accelerate attribute access operations.
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Although Sparksee does not offer a graph query language, it implements a BluePrints

backend and thereby automatically supports Gremlin.
Although ArangoDB is mainly a document-oriented dbms, it allows providing keys to

documents and also connecting documents with each other (graph). ArangoDB is fully
transactional and provides a dedicated declarative query language aql, which is derived
from sql and inherits many concepts, such as joins, aggregations, results projection/fil-
tering, sorting, grouping, unions, and intersections. For convenient access to document
structure, aql can traverse documents and the edges between them as well as iterate over
lists. ArangoDB can be extended through JavaScript programs that are executed simi-
larly to stored procedures in the database kernel.

OrientDB is in spirit similar to ArangoDB and is also a multi-model dbms storing
documents, key-value pairs, graphs, and objects. In contrast to ArangoDB, OrientDB
extends sql with native support for graph traversals. Further, OrientDB is fully compliant
with Apache TinkerPop and provides as a complementary query language for graphs
native support for Gremlin.

TitanDB is a distributed gdbms with transactional guarantees, either fully acid or even-
tual consistency, and runs on a cluster of machines. It supports several storage backends—
Apache Cassandra, Apache HBase, Oracle BerkeleyDB —which can be chosen accord-
ing to the desired properties following the CAP theorem. Similar to the other gdbms, Ti-
tanDB provides a native integration with the Apache TinkerPop stack, including the
Gremlin query language and the BluePrints graph api. Similar to TitanDB is Infinite-
Graph, another fully acid-compliant distributed gdbms. InfiniteGraph stores the graph
natively and exposes Gremlin to the end user.

2.7 summary

In this chapter we gave a broad overview of graph data management, including a discus-
sion on graph data models, graph query languages, and graph algorithms. Moreover, we
gave a detailed overview of available graph processing systems, ranging from single-node
systems to distributed, cluster-based graph processing systems.

Based on the gained insights from the discussion of related work in this chapter, in
the following chapter we emphasize the need for a novel system architecture that tightly
integrates graph processing capabilities into an rdbms, devise requirements that have to
be fulfilled by such a system, and finally introduce our system proposal.
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In this chapter we propose and discuss the set of requirements that have to be met by a
graph processing system (gps) to be used in a representative enterprise data management
landscape as sketched in Chapter 1. In particular, we propose a set of functional and
non-functional requirements for a graph storage component and an accompanying low-
level graph access layer as part of an artificial gps. Finally, we introduce Graphite, our
prototypical graph processing system that aims at fulfilling all these requirements.

3.1 system requirements

3.1.1 Functional Requirements

In the following we describe the functional requirements that we anticipate for a graph
storage design and define a set of low-level graph access and manipulation operations.
We use the Property Graph Model as the underlying data model, which we introduced
in Chapter 2.1. The property graph model exposes a multi-relational graph model, i.e.,
multiple edges between the same pair of vertices and of the same edge type are allowed. A
vertex can be uniquely identified by its vertex identifier. An edge has no system-provided
unique identifier—the user, however, can specify an artificial unique edge identifier.

Query Operations

We distinguish two general classes of low-level read operations on graphs: (1) graph topol-
ogy queries and (2) vertex/edge attributes queries. In Table 3.1 we list fundamental op-
erations to get access to the graph topology and the attributes of vertices and edges, re-
spectively. To specify the operations, we use a simplified syntax inspired by gem

1, the
graph query language of sap hana (Bornhövd et al., 2012). A read operation can expose
the following result set types: (1) a single vertex or edge, (2) a set of vertices or edges,
(3) a single vertex/edge attribute value, and (4) a set of attribute values. For performance
reasons, more complex types of operations, such as graph traversals and shortest path
computations, and result sets, such as paths and subgraphs, could be also introduced. In
our prototypical implementation, however, they can be easily mimicked and built on top
of the described fundamental read operations.

An attribute access operation returns the attribute value for a given vertex/edge and
attribute name. A vertex/an edge exposes an attribute, if the corresponding attribute value
is not NULL. Optionally, the user can return the values of all exposed attributes for a single
vertex/edge. The result set of attribute values is represented as a set of records with one
record per requested vertex/edge.

The evaluation of existential predicates, which probe the graph for the existence of an
entity (a vertex or an edge), is a fundamental query type required in many graph applica-
tions. The evaluation of an existential predicate returns true, if the queried entity is present
in the graph, false otherwise.

Topological operations, i.e., queries that return the adjacent vertices for a given vertex
or a set of vertices, are a fundamental building block of many graph algorithms, including
breadth-first and depth-first traversals. A topological query is a 1-hop traversal via incom-
ing ($v<--) or outgoing ($v-->) edges. Further, given an edge, the attached head and tail
vertices can be returned.

Predicate evaluation is an important operation for subgraph isomorphism queries on
graphs with attributes associated with vertices and edges. A predicate filter can be either

1 The former graph query language wipe has been recently renamed to gem.
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Table 3.1: Overview of fundamental read operations that should be supported by a graph storage.

Operation Description

$v@a, $e@a Given a vertex $v (an edge $e), return the value of at-
tribute a

$v@*, $e@* Given a vertex $v (an edge $e), return all attribute values

EXISTS($v), EXISTS($e) Given a vertex $v (an edge $e), check whether $v ($e) ex-
ists

EXISTS(EDGE($u,$v)) Given two vertices, check whether there exists (at least)
one edge from $u to $v

$v--> Given a vertex, find all vertices via outgoing edges

$v<-- Given a vertex, find all vertices via incoming edges

HEAD($e), TAIL($e) Given an edge $e, return connecting vertices (either head
or tail vertex)

FILTER($VERTICES, p) Given a predicate p, return all matching vertices

FILTER($EDGES, p) Given a predicate p, return all matching edges

evaluated on the complete graph ($VERTICES,$EDGES) or on a vertex/edge subset. We de-
fine a predicate as a propositional formula consisting of atomic attribute predicates that
can be combined by the logical operators ∧, ∨, and ¬. The result type of a predicate
operation is the set of matching vertices or edges.

Manipulation Operations

The ability to handle graph topologies where the structural shape of vertices and edges
evolves over time is a fundamental requirement of an operational dbms. Structural changes
describe modifications to the structure of a single vertex/edge, i.e., the addition, manip-
ulation, and removal of attributes on vertices and edges. Especially use cases that target
social networks and communication networks demand a flexible and scalable graph persis-
tence that can cope with frequent updates to vertex/edge attributes as well as changes to
the graph topology. By topological changes we refer to modifications of the graph topology,
i.e., the addition and removal of vertices and edges. More specifically, we classify graph
manipulation operations into two classes: (1) data definition operations (ddo) and (2) data
manipulation operations (dmo).

A ddo modifies the structural shape of a vertex or an edge, i.e., by adding, changing,
or removing attributes and by adding constraints to vertices or edges. Since a property
graph instance does not necessarily expose an upfront rigid database schema definition,
a flexible data storage that follows a data-driven storage model is desirable. A data-driven
storage model does not require an upfront database schema definition, but instead derives
required schema information during insert time. This contrasts with a traditional rdbms

following a schema-first approach, where a ddo operation is explicitly issued by the user
before running any dmo operation. If the necessary data type information is missing or
cannot be derived from a given value, a default data type should be used to store the value
without losing information (e.g., as a varchar).

A dmo operation allows inserting and deleting vertices/edges and accompanying at-
tribute values in the graph. We distinguish between entity-level and attribute-level graph
manipulation operations and list them in Table 3.2. Besides the addition and deletion of
vertices/edges, the graph storage should also support changing the attribute value of a
specific vertex/edge or unsetting the attribute value. The insertion of a new vertex is com-
posed of a unique identifier chosen by the application and a set of attribute key-value
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Table 3.2: Overview of fundamental graph manipulation operations.

Operation Description

ADD VERTEX($v), ADD EDGE($e) Addition of a vertex $v (edge $e)

DELETE VERTEX($v), DELETE EDGE($e) Removal of a vertex $v (edge $e)

SET $v@a=val Addition/change of an attribute

UNSET $v@a Unsetting an attribute

pairs—optionally enriched by information about the data type. An edge is composed of a
tuple denoting the source vertex and the target vertex. Similar to vertices, attributes can be
assigned to edges on a key-value pair level. Additionally, we define the following global
constraints that have to be met during each vertex/edge insertion: (1) the vertex identifier
has to be globally unique in the graph and (2) dangling edges (edges with a nonexistent
source or target vertex) are not allowed.

Transaction Support

Since the graph storage will be part of an operational dbms, it also has to provide transac-
tional guarantees comprising atomicity, consistency, isolation, and durability. Specifically,
we target snapshot isolation, i.e., a guarantee that all query operations see a consistent snap-
shot taken at the beginning of the transaction. The most popular concurrency control
method is multiversion concurrency control, which provides point-in-time consistent views
and is implemented in most commercial rdbms products.

Interplay with Data Types and Models

We anticipate a tight integration into the existing database kernel of an rdbms to leverage
available data types, such as ordinary data types, geospatial, json, and text data types.
The graph storage shall be able to store attributes along with vertices/edges and thereby
ideally reuse already existing storage containers. For example, geospatial data is usually
stored in a binary, interpreted format. From a data model perspective, we wish to integrate
the property graph data model with the relational and the temporal relational/graph data
model.

The graph storage shall be able to process all available data types and seamlessly com-
bine operations on different data types within a single graph query. For example, a graph
traversal operation on a road network might be restricted by a geospatial bounding box
predicate limiting the traversal to a specific geospatial region in the graph. All graph op-
erators should support different output formats, including graph-oriented and relational
output formats. A relational output format guarantees that the result of a graph operator
can be consumed by the subsequent (possibly relational) plan operator.

Figure 3.1 depicts a physical execution plan that combines relational operators with
graph operators in a single execution plan. The query fetches data from the vertex and
edge column groups, performs an initial predicate evaluation on vertices and edges based
on some selection criteria, feeds the intermediate results—a subgraph—to the graph traver-
sal operator, which then performs a breadth-first search returning visited vertices and their
level of discovery. The output of the traversal operator can be joined with the vertex table
and finally projected to some selected attributes, such as first name and birthday.

Deep Integration

The graph storage should not be an isolated component in the rdbms, but instead be
integrated and interoperable with core database components on different layers in the
database architecture. From a query language perspective, we want to be able to inject
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Figure 3.1: Heterogeneous execution plan with relational and graph operators.

graph queries as subqueries into a relational sql query and vice versa. Further, metadata
information, including catalog information and granted privileges, should be shared be-
tween the rdbms and the graph storage. We aim at a holistic solution to offer a deep
integration of graph processing with other data models and data types, such as relational,
spatial, temporal, and text. Each data type and data model have own plan operators that
should be composable within unified, heterogeneous logical and physical query execution
plans.

On the query optimization layer, we aim at extending the query optimizer of the rdbms

to become graph-aware, i.e., to treat graph operators as first class citizens in the query
optimization process and to use graph-specific statistics, such as degree distributions, the
graph diameter, and centrality measures, for cardinality estimation of graph operators. If
a graph query consists of operations that are not graph-specific—for example, order by,
top-k, and selections—all graph operators have to be configurable to return a relational,
tabular output structure to be consumed by the subsequent operator in the execution plan.
We also envision basic operator push-down into graph operators, such as the push-down
of a relational predicate into a graph traversal operator.

3.1.2 Non-Functional Requirements

Besides functional requirements, we pose a set of non-functional requirements to a graph
storage and discuss them in the following.

Resource Efficiency

Based on the assumption that the graph data already resides in relational tables, the graph
storage should be space-efficient, i.e., it should reuse the primary storage representation of
the graph where possible and avoid replicating data into specialized data structures. Since
our system should reside on a single machine, an efficient graph representation is essential
to be able to store even large graphs of multiple hundreds of giga bytes in the memory of
a single machine. If the uncompressed graph does not fit into memory, the graph storage
should offer lightweight compression techniques, such as dictionary encoding or delta
encoding, to compact reoccurring attribute values and low dimensional attributes.

Saving memory bandwidth is an important design goal for memory-resident data struc-
tures. We aim at providing cpu-friendly algorithms that make efficient use of the memory
hierarchy, vectorization, and efficient processing on numerical values. Further, the data
should be organized in such a way that processing it allows efficient memory prefetching
into the caches of the cpu, avoid branch mispredictions in code where possible to improve
out-of-order execution, and increasing spatial and temporal data locality of memory ac-
cesses.
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Extensibility

The graph storage should be extensible such that specific components can be exchanged
with alternative implementations, such as enhanced adjacency list handling based on the
neighborhood degree and distribution. There should be a minimal and well-defined pro-
gramming interface that all graph storage instances have to implement. Further, the graph
storage has to be extensible for novel data types, such as text, geospatial, and other com-
plex, composed data types. Ideally, the graph storage should not only support the property
graph data model but also simplified variations thereof, such as a graph topology without
additional vertex/edge attributes. In general, the graph storage should not assume a spe-
cific shape of graph topology nor assume specific graph characteristics and optimize for
them. Our aim is to offer a holistic solution targeting a large variety of graph applications.
We envision, however, that graph-specific secondary index structures can be tailored to
specific graph topologies and can be added using a plugin mechanism.

Scalability

We target large multi-core server machines with possibly several terabytes of available
ram and therefore see scalability to larger graph instances (in terms of the number of
vertices/edges and attributes) as well as scalability to more available hardware resources
as key requirements. Concerning graph size, we aim at providing a graph storage that can
keep the largest freely available real-world graph data sets in the memory of a single large
server machine. Further, all write-oriented data structures have to be multi-thread safe and
accessible from multiple concurrent writers. Regarding multi-socket machines, we aim at
minimizing cross-socket communication to avoid numa effects as much as possible.

Stability

To rely on the mature components of an operational rdbms and the expected higher system
stability has several advantages over a green-field approach, especially for business-critical
applications. First of all, a native operational graph processing system will likely duplicate
the coding of a transaction manager of an rdbms and consequently will result in a signif-
icant development and maintenance overhead. Our goal is to reuse existing components
of an rdbms where possible, especially for infrastructure-related tasks, such as transaction
handling, logging, locking, recovery, and privilege granting and authorization.

In some places, however, we extend relational components with customized implemen-
tations, especially the graph processing stack and additional secondary index structures.
This contrasts with related work, which either follows the green-field approach by imple-
menting a native graph processing system—possibly with limited functionality compared
to a mature rdbms—or translates graph queries into their relational counterparts, resulting
in poor performance compared to hand-crafted graph queries in specialized systems.

3.2 graphite system overview

There are two main approaches for adding graph processing capabilities to the operational
data management landscape, namely by adding a native gms next to an rdbms or by
syntactically extending an rdbms with a graph abstraction.

While a gms offers a native graph abstraction and data structures and algorithms tai-
lored to graph processing, it is logically and physically separated from the rdbms and can
only run on a snapshot of the operational data (cf. Figure 3.2a). To close the functional
gap between the operational rdbms and a native graph processing system, recent works
propose to add a query translation layer on top of the rdbms (Sun et al., 2015; Jindal et al.,
2014b). These extended rdbms expose a graph programming model—based on pattern
matching or on vertex-centric programming, which is accessible through an imperative
API or a graph query language. Subsequently, the rdbms translates the graph program
into a relational execution plan, typically involving chained self-joins, recursive common
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Figure 3.2: Architecture alternatives for graph processing.

table expressions, and user-defined functions. Although in general these graph programs
can be translated into sql or a lower-level counterpart, they typically suffer from poor
execution performance due to a suboptimal graph storage representation and inefficient
representation of intermediate results in relational structures.

To overcome the disadvantages of the two main alternatives, we developed Graphite,
a hybrid relational/graph solution that combines the best of both worlds. Graphite is a
high-performance columnar graph runtime that is embedded into an operational rdbms.
The general architecture and the integration of Graphite into an operational rdbms are de-
picted in Figure 3.2b. One of the major design goals of Graphite is to be embeddable into
an rdbms by selectively extending the database kernel with graph-specific components.
Graphite inherits many of the concepts that can be found in columnar in-memory rdbms,
such as dictionary encoding, column compression, vectorized execution, and late materi-
alization. In contrast to a graph processing system residing next to an rdbms, Graphite

is integrated as a runtime component into an rdbms. Located next to a relational runtime
stack, a graph runtime allows querying graph data on top of a common relational storage
engine. Besides graph-specific operators, such as traversals, Graphite facilitates graph in-
dex structures and extends the relational query optimizer by graph statistics and graph
operator cost models. One of the advantages of this tight integration is the ability to ex-
press cross-data-model operations that combine data from different data models and types,
such as the combination of relational, text, geospatial, temporal, and graph (Abadi et al.,
2014) within a single query.

For example, a clinical information system might store patient records in an rdbms. Pro-
viding graph analytics on the knowledge graph of patient records and their relationships
helps physicians to improve diagnostics and identify complex co-morbidity conditions.
Such a medical knowledge graph does not only contain information about the relation-
ships between diagnoses and patients, but also unstructured data, such as text, from pa-
tient records and temporal information about prescriptions.

3.3 summary

In this chapter, we discussed a list of functional and non-functional requirements that have
to be fulfilled by a gms in a database management landscape as described in Chapter 1. We
defined a minimal set of read and write operations as a low-level programming interface
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to a graph storage and discussed several non-functional requirements, which arise from a
tight integration into a heterogeneous system landscape.

Finally, we introduced Graphite, a hybrid relational/graph solution that is embeddable
into an operational rdbms while still providing execution performance guarantees compa-
rable to native graph processing systems. In the next chapters, we will look at several
important building blocks of Graphite, such as the graph storage, graph operators, index
structures, and the query interface.





4G R A P H S T O R A G E

In this chapter we propose a general graph data storage representation and an accompany-
ing low-level programming interface. Specifically, we discuss several data reorganization
techniques to improve the query performance and to lower the overall memory consump-
tion. We concentrate our optimization efforts on the following performance goals: (1) max-
imizing spatial and temporal memory locality for data accesses to minimize data cache
misses, (2) leveraging available multi-core parallelization on large server machines, and
(3) minimizing the memory footprint of the graph, i.e., by applying data reorganization
and compression techniques. In the experimental evaluation, we compare two in-memory
graph representations with respect to query performance and memory consumption and
evaluate our in-memory graph representation for read and write operations on several
real-world graph and generated graph data sets.

4.1 related work

In this section we extend the discussion of related work on graph processing in rdbmss, in
particular we review several storage alternatives for representing graph data in relational
tables, and also discuss related compression techniques that are similar to the ones we
propose in this chapter. For a detailed review of related work on native storage layouts for
graphs, such as adjacency lists and matrices, we refer the reader to Chapter 6.1.

4.1.1 Graph Processing in RDBMS

Traditionally, rdbms have been used extensively for storing rdf data either in a single,
large triples tables with three columns for subjects, predicates, and objects or in so-called
property tables. A property table reassembles semantic entities from the rdf data model into
database records and groups attributes that are exposed frequently together in a single
table. Abadi et al. (2007) propose to vertically partition the rdf data into two-columnar
tables, one for each distinct property in the entire data set. They use C-Store, an open-
source columnar dbms prototype, and demonstrate that a vertically-partitioned storage
representation of rdf data can outperform a naive triple table implementation.

rdf-3x is a risc-style dbms designed and optimized for efficient rdf processing and
provides a generic solution for storing rdf data, thereby eliminating the need for a physical
design tuning (Neumann and Weikum, 2010). rdf triples are stored in a single, large triple
table with three columns representing subject, predicate, and object.rdf-3x maintains an
extensive set of index structures—implemented as clustered B+-trees—to index all possible
permutations of subject, predicate, and object. Further, rdf-3x stores aggregated indexes
storing only a composition of two of the three columns and for each entry the value
occurrence of the pair in the full set of triples. Finally, rdf-3x maintains another three
indexes for storing for each possible value of subject, predicate, and object the value count.
All triples are dictionary encoded and stored in the leafs of the B+-trees. The dictionary
encoding is implemented as a B+-tree to retrieve the value code for a value and as a direct
mapping index to retrieve the value for a given value code. Triples on a single leaf page are
further byte-compressed and delta encoded. Storing the triples sorted on a leaf page allows
rdf-3x converting sparql patterns into a set of merge joins and simple range scans. rdf-3x

maintains six differential indexes for all possible permutations of subject, predicate, and
object. During the query processing, rdf-3x injects additional merge join operations into
the execution plan to unite the partial results from the main indexes and the differential
indexes.

35
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rdf-3x uses staging to allow fast insertions of triples and buffers incoming triples in a
session-private in-memory heap. When the operation finishes, the heap is written into glob-
ally shared differential indexes. A differential index is implemented as an uncompressed
clustered B+-tree that is periodically merged into the main indexes. In-place updates in
rdf-3x are implemented as a pair of a deletion and an insertion operation. To delete a
triple, rdf-3x inserts the corresponding triple into the workspace of the query session
and the differential indexes with a special deletion flag. During query processing, triples
tagged with the deletion flag are ignored.

Bornea et al. (2013) propose a different storage representation of rdf data in a rdbms

by relying on an entity-based approach. They store rdf data in a direct primary hash table,
in which each logical entity (a subject and all its associated predicates and objects) are
stored in a single database record. Specifically, it contains a series of 〈predi, vali〉 column
pairs storing the predicate and the corresponding object. If a row is full, a spill record is
created which contains the remaining predicate-object pairs. Multi-valued predicates are
stored in a separate table, called direct secondary hash, and map an system-generated key
representing the multi-value to a list of database records. For a multi-valued predicate,
the direct primary hash table only contains a foreign key to the direct secondary hash
table. The authors propose two techniques to minimize the number of required columns:
(1) hashing predicates to columns, or (2) using graph coloring to assign predicates to
columns. The overall optimization goal is to ensure that predicates that co-occur together
are never assigned to the same database column. Similarly, they also store the reverse
relationship—the incoming edges to a subject—by providing a reverse direct primary hash
and a reverse direct secondary hash.

SQLGraph (Sun et al., 2015) is an extension to an rdbms that provides graph querying
and updates without side effects based on Gremlin, a traversal-based query and manip-
ulation language. A graph is stored in a composite of relational and non-relational data
types. For the adjacency list, they propose a relational storage layout and combine that
with a storage layout for vertex and edge attributes that is based on json (cf. Figure 4.1).
The adjacency list is conceptually derived from the rdf representation proposed by Bornea
et al. (2013) and hashes multiple edge labels into a smaller set of columns to avoid sparsely
populated columns. If there is more than one incoming/outgoing edge of a specific type,
a secondary adjacency list is created and referenced in the primary adjacency list via a for-
eign key relationship. Consequently, each neighborhood lookup of a vertex requires a join
of the primary and the secondary adjacency list. If there are conflicts during the hashing
phase, SQLGraph creates a spill record, resulting in multiple rows representing the adja-
cency list of a single vertex. Vertex attributes are stored in the vertex table, which contains
a unique primary key denoting the vertex identifier and a json column containing all at-
tributes of that vertex. The edge table duplicates the information about the graph topology
by representing each edge by its identifier, its source vertex, its target vertex, its edge label,
and a set of attributes that is represented as a json object. To efficiently support Gremlin
queries on this shredded graph representation, SQLGraph uses heavy indexing on the
queried attribute keys, the vertex id primary key, the key of the secondary adjacency list,
and the source and target vertex columns of the edge table.

TeraData Aster (Simmen et al., 2014) is a large-scale analytics platform that supports
analytics on multiple types of data, ranging from structured data to unstructured data. A
graph is hash-partitioned by vertex identifier and stored in graph partitions of vertex and
edge tables. Each graph partition stores the vertex and all of its outgoing edges. In the
case of an out-of-memory situation, TeraData Aster can spill graph data structures into
a disk-based key-value store (LevelDB).

The AIS system proposed by Bornhövd et al. (2012) represents a graph as a set of In-
foItems—the vertices—and a set of Associations—the edges. Each InfoItem can have an arbi-
trary number of attributes assigned and a semantic type, called Term. Data in AIS is stored
in an rdbms in a set of relational tables. In contrast to our approach, the authors rely on
a schema-fixed storage representation and avoid explicit NULLvalue representations where
possible. They propose a vertical schema layout, where attribute values are stored in so-
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Figure 4.1: Example graph representation in SQLGraph (Sun et al., 2015).

called value tables that store triples of object identifier, attribute name, and value. Each
technical data type has its own value table. In addition, Associations are stored in a sec-
ond triple table consisting of source object, target object, and semantic type. In contrast
to the general property graph model, Bornhövd et al. (2012) do not consider attributes on
Associations.

4.1.2 Compression Techniques

Several light-weight compression techniques for column stores have been proposed in
recent years. Lemke et al. (2009) propose several compression techniques, including dic-
tionary encoding, run-length encoding, sparse encoding, cluster encoding, and indirect
encoding for the in-memory column store sap hana. Important database operators, such
as scans and aggregations, can operate directly on the compressed data using simd in-
structions (Lemke et al., 2010). They apply column-wise compression and reorder rows in
a table to improve the overall compression rate. Identifying the optimal row order that min-
imizes the memory consumption of the table is known to be an NP-complete problem (Als-
berg, 1975). sap hana uses several heuristics to identify promising column candidates for
reordering, and sorts rows so that blocks contain only few distinct values. The heuristics
are based on collected statistics about the value distribution in the column—most com-
mon value, average value occurrence, number of distinct values—and select candidates
one after the other. Thereby, the most promising candidate is selected first, a global row
reordering is applied, and then the next iteration continues with the unsorted remainder
in the second column. The benefit of compression therefore decreases with every selected
column. Such a column-wise greedy strategy and reordering rows lexicographically makes
this approach not well suited for wide tables with a large number of columns.

Abadi et al. (2006) propose complementary light-weight compression techniques to the
work of Lemke et al. (2009) but do not discuss how row reordering can improve the com-
pression ratio. Rather, they assume that the data is already sorted by the system to increase
query performance. An active row reordering, however, is not provided.

Lemire and Kaser (2009) investigate the effect of sorting on the total number of runs of
repeating values to improve rle compression in columns. They show that for tables with
uniformly distributed data sorting the columns in the order of increasing column cardi-
nality is asymptotically optimal. Further, the authors evaluate other sorting criteria, such
as ordering by gray codes and ordering by Hilbert space-filling curves. In the experimen-
tal evaluation, they show that a sorting criterion based on Hilbert space-filling curves is
suboptimal for minimizing the number of runs within a column.

Multiple-Lists is another heuristic proposed by Lemire et al. (2012), which is based
on the Nearest Neighbor heuristic. The Nearest Neighbor heuristic, which runs in
O(n2), chooses the next tuple to append to the table by computing a nearest neighbor
function value. The core idea of Multiple-Lists is to solve the scalability problem of the
Nearest Neighbor heuristic by reducing the number of potential neighbors for each tuple.
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(c) Graphite.

Figure 4.2: Graph processing and different levels of integration into an rdbms.

The authors propose to construct a graph representation from the table, where each row
represents a vertex. An edge is constructed by sorting the table by several columns and
subsequently connecting vertices (rows) that represent consecutive rows in each sort. The
number of different orders k is an input parameter to the algorithm; If k = c!, where c
is the number of columns, the Multiple-Lists heuristic is functionally equivalent to the
Nearest Neighbor heuristic. The second heuristic proposed by Lemire et al. (2012) is
Vortex, which aims at forming long runs of repeating elements. The evaluation indicates
that Vortex shows promising results by improving rle compression by a factor of 3.

Herrmann et al. (2014) tackle the problem of handling wide and sparsely populated
tables from a different angle. Instead of relying on light-weight compression techniques,
they propose to horizontally partition the table instead. Such a set of partitioned tables
does not require a dedicated compression handling and query processing can be applied
only to those partitions that exhibit the queried attributes. Incoming records are probed
against all available partitions and a rating is computed for each partition. The record is
inserted into the partition that received the highest rating. When even the highest rating
is to low (negative), a new partition is created. If a partition is full, it is split into two
new disjoint partitions. Computing these ratings is conceptually similar to our proposed
reorganization technique, except we compute the partitioning only once upon creation of
the read-optimized data structures and do not need to handle incremental updates to the
database.

4.2 physical graph representation

In this section we discuss the physical storage representation of graph data in Graph-
ite. Figure 4.2 depicts the different levels of integration of graph processing capabilities
into an rdbms. Native gdbms, such as Neo4j or Sparksee, provide their own storage rep-
resentations that are tailored to storing graphs efficiently, own transaction management,
graph-specific index structures, and a graph-aware runtime system (cf. Figure 4.2 (a)). In
contrast to a native gdbms, we discussed several approaches to perform graph processing
on top of an rdbms as shown in Figure 4.2 (b). For these approaches, all components ex-
cept for the query language component are shared with the relational stack and the graph
query language is translated into a sequence of sql statements. Our approach in Graphite

(cf. Figure 4.2 (c)) combines both worlds by reusing transaction management and storage
representation of an rdbms and extending the system by graph-specific operators, index
structures, and query languages.
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id: 1
name: John
type:User

id: 2
title: Shining
type: Product

id: 3
title: It
type: Product

id: 4
name:Horror
type:Category

id: 5
name: Literature
type:Category

type: category

type: similar

type: belongs

type: belongs

type: rated
rating: 4.0

type: rated
rating: 5.0

Figure 4.3: Example of a property graph instantiation representing products, users, and product
ratings.

4.2.1 General Storage Layout

Graphite supports the property graph model, which has emerged as the de-facto standard
data model for general purpose graph processing in enterprise environments (Rodriguez
and Neubauer, 2010a). The property graph model describes a multi-relational, directed
graph by a set of vertices and a set of edges. Both, vertices and edges, can have an arbitrary
number of attributes assigned as key/value pairs. Figure 4.3 depicts an example graph
representing data from a e-commerce platform, such as Amazon or Ebay. We represent
users, products, and product categories as vertices and their relationships as directed and
typed edges.

Since graph data usually has no upfront defined and rigid database schema, finding a
suitable normalized database design for it is a nontrivial and tedious task. One approach to
overcome this is to store vertices and edges in a single physical universal table, respectively.
A universal table maps each distinct attribute to a separate column and each object—a
vertex or an edge—is represented as a single record in the table. This allows reconstructing
a vertex/an edge through a selection and a subsequent attribute projection. Such a join-
free approach dramatically simplifies query processing as it completely eliminates join
operations for constructing the final result set of vertices/edges. Besides for storing graph
data, wide universal tables are commonly used for storing product classifications and
product catalogs from online shopping portals as well as semistructured data, such as
json, xml, or rdf data.

In Graphite we use a common storage infrastructure that is shared with the relational
runtime stack and store a graph in two physical column groups, one for the vertices and
one for the edges, respectively. A column group is a vertically partitioned physical univer-
sal table, where a new attribute can be added by appending a new column to the column
group (Abadi, 2007). Figure 4.4 depicts an example representation of the vertices and edges
from the example graph shown in Figure 4.3. We map each vertex and edge to a single
entry in the column group and each attribute to a separate column. Each vertex has a
unique identifier as the only mandatory attribute. An edge is drawn from the columns Vs
and Vt that represent the source vertex and the target vertex of an edge, respectively. The
edge direction is implicitly given by the assignment to the source and the target vertex col-
umn, respectively. We use a foreign-key constraint to guarantee that all source and target
vertices already exist in the vertex column group to avoid dangling edges.
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id type name title . . .

1 User John – . . .

2 Product – Shining

3 Product – It . . .

4 Category Horror –

5 Category Literature – . . .

(a) Vertex column group.

Vs Vt type rating . . .

2 3 similar – . . .

2 4 belongs –

3 4 belongs – . . .

1 3 rated 5.0

1 2 rated 4.0 . . .

4 5 category –

(b) Edge column group.

Figure 4.4: Mapping of a property graph to column groups.

Representing each distinct attribute as a separate column allows the application to use
all available basic and composite data types in the rdbms. Further, by reusing the relational
storage infrastructure, we can directly benefit from available data compression techniques,
transaction management, crash recovery mechanisms, and efficient predicate evaluation.

For heterogeneous data with a polymorphic set of entities, however, a column group
can become quite wide as it represents each attribute as a separate column and most
columns are sparsely populated. Even worse, a wide table is generally considered to be
problematic for vertically partitioned tables due to the random access behavior for single-
record selections and insertions. Further, a large number of sparsely populated columns
sacrifices memory consumption for schema flexibility. We address both challenges, the
wideness and the sparseness of column groups, in Section 4.3.1.

4.2.2 Read- and Write-Optimized Storage

We divide the graph storage into a read-optimized and a write-optimized data container.
Such a separation is commonly used in columnar rdbms to allow fast read operations on
the compressed read-optimized store while retaining a high data ingestion rate on the
write-optimized store (Erling, 2012; Sikka et al., 2012; Raman et al., 2013; Larson et al.,
2013). Therefore, we store a dynamic graph in Graphite in two read-optimized column
groups for vertices and edges, respectively, and two write-optimized column groups for
vertices and edges, respectively.

Figure 4.5 depicts an example graph topology and the internal representation in Graph-
ite. The vertex column group consists of one column storing the vertex identifier. The
edge column group stores the graph topology in the source and target vertex columns.
In the example graph, solid lines indicate that the corresponding vertex/edge resides in
the read-optimized column group, a dashed line indicates that the vertex/edge resides in
the write-optimized column group. Since we separate the storage of vertices and edges, it
is possible that although two vertices reside in the write-optimized column group, their
connecting edge can reside in the read-optimized column group.

We employ two levels of data compression, the first level is dictionary encoding, the
second level uses lightweight compression techniques to compact reoccurring values. We
apply dictionary encoding on each column and map each distinct value in the column to
a fixed-length numerical value code. Consequently, each column is a composite structure
of a dictionary providing mappings between values and their corresponding value codes
and a data vector only containing the value codes instead of the actual values. In a read-
optimized column group, the dictionary is sorted to allow the efficient evaluation of range
predicates and to enable binary search to locate the value code for a given value. To re-
trieve the value for a value code, we use direct addressing to fetch the corresponding value
code. A dictionary creates a dense domain by guaranteeing that all value codes are drawn
from [1, |D|], where |D| refers to the number of distinct values in the column. Since the data
vectors contain only fixed-length numerical values, we can exploit vectorization capabili-
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(b) Read-optimized data store.
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(c) Write-optimized data store.

Figure 4.5: Example dynamic graph and the data representation in Graphite.

ties of modern processors, i.e., simd, to facilitate fast column scans (Willhalm et al., 2009).
On the second compression level, we apply lightweight compression on the data vector,
for example to compact reoccurring values through run-length encoding (cf. Section 4.3.1).

The read-optimized column group is immutable, i.e., all data insertions and updates are
redirected to the write-optimized column group. We handle deletions through a validity
vector, which indicates whether a record is visible and accessible in the specific transaction
context. To guarantee fast query processing, we periodically merge the write-optimized
column group into the read-optimized column group. During this so-called delta merge, all
dictionaries and data vectors are recreated. The dictionary of the write-optimized column
group does not rely on a sorted data organization, but instead provides an append-only
interface and an additional B+-tree to accelerate the lookup of a value code for a given
value.

4.3 graph data reorganization techniques

Our proposed columnar graph storage has two major shortcomings: (1) through the ex-
plicit representation of NULL values in sparsely populated columns, the memory consump-
tion is higher than for an equivalent normalized database schema and (2) the materializa-
tion of a complete row is more expensive since more columns have to be accessed although
most of them only contain NULL values.

4.3.1 Graph Compression

Lightweight compression algorithms, such as run-length encoding, sparse encoding, indi-
rect encoding, and prefix encoding, are a key component of in-memory columnar rdbms to
lower the overall memory footprint and fully utilize the available memory bandwidth by
compacting the data stored in columns. Typically, a columnar rdbms compresses columns
independently from each other by applying—depending on the data distribution and
characteristics—the optimal compression algorithm. It is well-known that reordering rows
within a table can improve the overall compression ratio significantly (Lemire et al., 2012).
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Figure 4.6: Tetris workflow.

For wide and sparsely populated column store tables, we consider two major problems to
solve: (1) lowering the memory footprint by compressing NULL values and (2) providing
efficient access to all exposed attributes of an entity.

In this section we introduce Tetris, a row reordering technique specifically designed
for wide and sparse vertically partitioned tables. Tetris runs as a preprocessing step be-
fore the actual compression and reorders rows for minimizing the memory footprint. We
address both challenges by following the general idea of automatically detecting and de-
riving the logical semantic types of each entity in the table and by subsequently grouping
records of the same type physically together. Compared to previous solutions, we do not
analyze columns independently to find an optimal row reordering, but instead rely on fin-
gerprinting to characterize each row in the table. Based on the collected fingerprints, we
apply row clustering to group records with similar fingerprints together and to reorder the
rows based on their cluster membership. Our experimental results demonstrate that this
reordering approach achieves a significantly better compression ratio than conventional
column-based approaches.

4.3.1.1 Tetris Workings

Tetris is based on a novel criterion for reordering rows to improve the overall data com-
pression ratio on wide and sparsely populated tables. Examples for this type of table in-
clude graph applications, product catalog classifications, and shredding on non-relational
data models, such as xml, json, and rdf. Since NULL values are the most frequent value in
such scenarios, Tetris compresses the table by producing long runs of NULL values within
a column and by subsequently applying run-length compression on each column.

In contrast to traditional row reordering approaches based on lexicographical sorting
and heuristics for candidate column selections, Tetris relies on clustering techniques ap-
plied on row level. To find the optimal row reordering that enables a run-length based
compression algorithm to produce maximal length runs of repeating values is known to
be NP-hard.

Although our main goal is to improve the overall compression ratio, there are positive
side effects that the rdbms execution engine can leverage to improve the overall query per-
formance. Naturally, Tetris groups records with a similar set of exposed attributes close
to each other in the table, resulting in a logical partitioning of records semantically belong-
ing to the same type. This observation can be used to implement advanced scan routines
that restrict the scan range to certain groups of records in the table. Further, materializ-
ing attribute values—for example for SELECT * FROM MYTABLE queries—the collected row
fingerprints can be used to only materialize values that are different from NULL.

Figure 4.6 depicts the overall workflow of Tetris. First, we generate for all records in
the table a representative fingerprint, which is used in a subsequent step to apply the
clustering algorithm by assigning each row to a cluster. In the reordering phase, we sort
the table by cluster identifier and apply further sort order optimizations. Finally, we apply
run-length compression on the sorted columns.

fingerprint generation. We generate for each record in the table a fingerprint that
represents the set of exposed attributes. We use fingerprints to compute a normalized
distance measure between any two records in the table. Naturally, a record fingerprint
can be represented as a bitset, where each bit represents an attribute and the status of
the bit bi indicates whether the attribute is exposed (bi = 0) or is NULL (bi = 1). We
use here the logical representation of a bitset and discuss the physical implementation
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Row Data Initial
values

Scan
col. #1

Scan
col. #2

Scan
col. #3

Scan
col. #4

1 a b - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

2 - b c d 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

3 - - a b 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0

4 d - - - 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1

5 f a - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

6 - f d b 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

Table 4.1: Column-wise scanning and construction of fingerprints.

alternatives in Section 4.3.1.3. Table 4.1 depicts the process of generating fingerprints for
a table with six rows and four possible attributes. To compute the fingerprints, we scan
the table column by column for each attribute Ai with a filter predicate “Ai IS NULL” and
update the corresponding fingerprints after each scan. From the generated fingerprints,
we derive information about the similarity of records in terms of exposed attributes. For
example, records 2 and 6 expose the same set of attributes, records 4 and 5 differ in one
attribute, and records 1 and 3 are dissimilar. The overall time complexity is O(|R| · |A|) and
the space complexity is O(|R| · |A|) for |R| referring to the number of rows and |A| referring
to the number of attributes.

row clustering . We apply the clustering on all generated row fingerprints and as-
sign each record to exactly one cluster. As a result, all entities belonging to the same cluster
expose a similar set of attributes and are more likely to represent entities of the same se-
mantic type. Before we describe the applied clustering technique in detail, we discuss
properties that the clustering algorithm in Tetris has to fulfill. The clustering should be
partitional and not hierarchical, i.e., no relationship between clusters and no containment
information between clusters has to be maintained. We assign each record to exactly one
cluster, resulting in an exclusive clustering. We define the clustering as a binary relation-
ship between the rows and the clusters, i.e., a single row either belongs to the cluster or it
does not belong to the cluster. The clustering is complete—we assign each record to exactly
one cluster, even if the entity exposes all attributes. Finally, the clustering has to be able to
generate groups with a potentially varying but fixed number of elements.

Based on the required clustering properties, we select two algorithms that are generally
suitable for Tetris: DBSCAN and k-means clustering. DBSCAN, however, has a time com-
plexity of O(n2), which makes it less suitable for tables with a large number of rows
n. Contrary, the time complexity for k-means is O(qdnk), where q is the number of itera-
tions, k is the number of clusters, n is the number of rows, and d is the number of columns.
Further, DBSCAN relies on the input parameter ε, which is drawn from the range [1,d].
For epsilon ε = 1, two fingerprints within the same cluster can differ by at most one posi-
tion. For small values of ε, DBSCAN considers almost all entities as noise points and for
a large value of ε, all entities are assigned to the same cluster. Due to the sensitivity of
DBSCAN to the input parameter ε, it is difficult to achieve consistently good results. To
this end, we choose k-means clustering to group similar records into clusters and describe
in the following specific modifications that we did on the original algorithm to adapt it to
Tetris.

We use a hamming distance function d(x,y) between two vectors x and y, where the dis-
tance is defined by the number of positions in which they differ. In Tetris, the hamming
distance is a measure to describe how similar two records are. In an information theoreti-
cal interpretation, the hamming distance describes the minimum number of substitutions
required to change one vector into the other. For example, for two vectors x = 001101
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Algorithm 1: Selection of initial center µ for cluster Cµ
Input :X = {x1, . . . , xn} : input samples
Input :µ1, . . . ,µq−1 : existing cluster centers
Input :q : cluster index
Output :µq : cluster center

1 begin
2 maxDist← 0;
3 for i← 1 to n do
4 minDist← Dist(xi,µ1);
5 idx← 1;
6 for j← 2 to q− 1 do
7 if Dist(xi,µj) < minDist then
8 minDist← Dist(xi,µj);
9 idx← j;

10 if Dist(xi,µindex) > maxDist then
11 µq ← µindex;

and y = 010101, the hamming distance d(x,y) is 2. We implement the computation of the
hamming distance by computing the bit-wise XOR between the two arguments, followed
by a count of the number of bits set in the result of the XOR operation.

The basic variant of the k-means algorithm selects the initial centroids randomly, which
can result in a suboptimal clustering result as the quality of the clustering depends on
the selection of the initial centers. In Tetris we select the initial centroids methodically
by choosing k samples such that the total distance between them is maximized. More
specifically, we select the value which maximizes the minimum distance to all other centers
and repeat this procedure k times. Algorithm 1 illustrates our procedure for selecting
initial centroids for k clusters.

In contrast to the basic k-means algorithm, Tetris does not require an upfront defined
number of target clusters k, but instead adjusts the number of clusters automatically dur-
ing the clustering phase. We use Bayesian statistics to dynamically determine the value
of k. Bayesian statistics measures the relation—the distance—between two objects as a
continuous value instead of a binary value. By the two objects, we refer to the entity to
associate to a cluster and the candidate cluster. When the distance is larger than a config-
urable, system-internal threshold λ, the entity is considered unrelated to the cluster and
the algorithm continues with the next cluster. If no cluster satisfies the cluster membership
criterion, we create a new cluster and add the entity to the cluster.

In the basic k-means algorithm, the final centroids do not necessarily represent actual
entities but instead correspond to a mean value. Tetris guarantees that the final centroids
represent an existing entity in the table by choosing the entity that is closest to the centroid.
Algorithm 2 illustrates the modified k-means algorithm used in Tetris.

reordering . After the clustering phase, each entity is assigned to a cluster of similar
entities. We construct an artificial, temporary column denoting the cluster membership
of each record and generate a mapping vector that assigns each old position to an new
position in the table. In a final step, we apply the mapping to all columns in the table and
sort the columns accordingly.

4.3.1.2 Optimizations

inter-cluster reordering . So far we only considered to reorder rows in ascending
lexicographical order by their corresponding cluster identifier. We can, however, reduce
the memory footprint even further by applying a row reordering based on gray codes.
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Algorithm 2: K-means algorithm with bayesian inference
Input :X = {x1, . . . , xn} : input samples
Input : λ : Cluster penalty parameter
Output :k : number of clusters
Output :C = {c1, . . . , ck} : output clusters
Output :L = l1, . . . , ln} : cluster labels

1 begin
2 k← 1;
3 c1 ← {x1, . . . , xn};
4 µ1 ← globalMean();
5 forall xi ∈ X do
6 li ← 1;

7 while not converged do
8 forall xi ∈ X do
9 minDist← minDistance(xi,µj) : j ∈ [1, k];

10 if minDist > λ then
11 k← k+ 1;
12 li ← k;
13 µk ← xi;
14 else
15 li ← argjminDistance(xi,µj) : j ∈ [1, k];

16 generate clusters c1, . . . , ck based on l1, . . . , ln : cj = {xi ∈ X∨ li = j}

updateCenters();
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(b) Gray ordering (10 blocks).

Figure 4.7: Cluster reordering by gray code.

Reordering rows by gray code is a commonly used technique to minimize the total number
of runs of repetitive values (Faloutsos, 1986; Lemire et al., 2012). A gray code, also known
as reflected binary code, is a binary numeral system where two consecutive values differ
by a single bit. For example, for two bit values, the ascending order of gray codes is
[00, 01, 11, 10] while the lexicographic ordering is [00, 01, 10, 11]. We apply this technique on
the cluster level by treating each cluster as a single block and by reordering those blocks
by the gray code of their row fingerprint centroids. Figure 4.7 depicts two example row
orderings, one based on lexicographical ordering and the other based on gray ordering.
By applying a reordering based on the gray code of the center fingerprints, we can reduce
the number of blocks of repetitive values from 14 to 10 blocks. This reduction of almost
30% is caused by the increased size of runs of repeated values. Algorithm 3 depicts the
pseudo code for applying gray code ordering on a table. It receives as input a set of k
clusters C1, . . . ,Ck and a set of center fingerprints f1, . . . , fk. For each center fingerprint,
we convert the bit sequence into the corresponding gray code, collect all computed gray
codes in F ′, and finally sort the clusters by their gray codes. The algorithm outputs the
set of clusters in ascending order sorted by gray code of their corresponding fingerprint
centers.
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Algorithm 3: Inter-cluster reordering by gray code.
Input : C = {C1, . . . ,Ck} : clusters, F = {f1, . . . , fk} : center fingerprints
Output :C : Clusters sorted by gray code

1 begin
2 F ′ ← ∅;
3 forall f ∈ F do
4 f ′ ← f⊕ (f� 1); // Convert to gray code

5 F ′ ← F ′
⋃
{f ′};

6 sort C by F ′;
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(b) Alternate ascending/descending sorting.

Figure 4.8: Alternating the sort order in consecutive clusters.

intra-cluster reordering . To further decrease the total number of runs of non-
NULLvalues within a column, we use lexicographical sorting within each cluster. A cluster is
bounded by a range of start row and end row. For each cluster, we determine its boundaries
and subsequently apply lexicographical sorting within the cluster.

Since sorting each cluster independently might result in larger value gaps between clus-
ter, we sort clusters alternating ascending and descending. This allows forming even larger
runs of consecutive values across cluster boundaries. Figure 4.8 depicts an alternate sort-
ing between different clusters. In the example, this techniques reduces the total number of
runs from six to four.

4.3.1.3 Implementation Details

We implemented Tetris as an alternative row reordering heuristic in Graphite. In the
following we provide details on the implementation, specifically we discuss various data
structures to store row fingerprints and the implementation of the k-means clustering
algorithm.

A row fingerprint is a compact representation of all the exposed attributes of a single
entity in a table. Figure 4.9 depicts an example row fingerprint of a table with 12 columns,
where columns 1, 2, 5, 7, 8, 10 and 11 expose values different from NULL and columns 3, 4,
6, 9 and 12 denote columns with a NULLvalue. The resulting fingerprint is 001101001001.

We investigate alternative data structures to store row fingerprints, namely integer num-
bers, uncompressed bitsets, compressed bitsets, and bloom filters, and evaluate them in
terms of memory consumption and query performance (elapsed time to compute the ham-
ming distance between two row fingerprints). For tables with less than or equal to 64

columns, we use a numerical value with the minimum number of required bits (8, 16, 32
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8 8 - - 8 - 8 8 - 8 8 -
- NULL value
8 Non-NULL valuefingerprint: 001101001001

Figure 4.9: Row fingerprint represented as a bitset.

and 64). For wider tables we rely on sparse data structures, such as bitsets and bloom
filters.

In the most general form, a bitset is an array of bits allowing to set, unset, and test a
single bit as well as to perform set operations based on the boolean algebra to intersect and
union two bitsets. For a table of 30,000 columns and 1 million rows, each row fingerprint
occupies about 30 kbit, accumulating to about 3.5GB for all row fingerprints. If the number
of bits set is small, the memory overhead of the bitset compared to a dense array-based
representation can be significant.

A compressed bitset has a lower memory footprint for sparsely populated bitsets, but
has an increased processing overhead for testing whether a bit is set. Further, our im-
plementation is based on EWAH-bitsets and does only allow setting bits in increasing or-
der (Lemire et al., 2010). This limits the potential of parallelization during the construction
of the row fingerprints since columns cannot be processed in parallel.

A bloom filter is a probabilistic data structure with a fixed width, a set of hash functions,
and operations to test whether a certain element is in the set. All elements in the set are
hashed and stored at the position of the hashed value. Due to the randomness of the
hash function and the limited width of the bloom filter, more than one element can be
hashed to the same position in the data structure possibly resulting in false positives during
membership testing. To check, however, whether an element is not in the set is guaranteed
to deliver a correct result.

We distinguish two variations of computing and storing the pairwise distances between
row fingerprints: (1) to pass all row fingerprints to Tetris and compute the hamming
distance between any pair of fingerprints on demand or (2) to cache already computed
distances in a dissimilarity matrix for later usage. Caching the hamming distances is advan-
tageous, if the distance between two row fingerprints is frequently requested and can be
directly fetched from the cache. On the downside, the dissimilarity matrix has a quadratic
space overhead of O(n2) for n rows in the table.

Determining the cluster threshold λ is critical to achieve a good clustering result. We use
data statistics and the standard deviation of the data distribution as initial value for the
clustering threshold λ. If the input elements are close to each other in terms of the utilized
distance function, the standard deviation value is small and therefore Tetris will output
clusters with small diameters.

4.3.2 Edge Ordering

The basic implementation of topological queries does not rely on a particular ordering
of the edges in the edge column group. To fully leverage the benefits of an in-memory
graph storage, however, we can use data reorganization techniques that lead to a more
memory-friendly data access pattern. A physical reorganization of records is a common
optimization strategy to reduce data access costs (Abadi et al., 2006). In the following, we
describe two strategies to further reduce the overall execution time of topological queries
by maximizing the spatial locality of memory accesses and by reducing the total number
of records to scan.

4.3.2.1 Edge Type Clustering

Typically, real-world graph data sets are modeled with a widespread and diverse set of
edge types that connect the vertices in the graph. Conceptually, an edge type describes a
subgraph and can be interpreted as a separate layer or view on top of the original data
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Figure 4.10: Clustering by source vertex and edge type.

graph. Such multi-relational graphs with multiple edge types are common in a variety of
scenarios, such as product batch traceability, social network applications, or material flows
graphs. For example, a product rating website might store different relationships between
entity types rating, user, and product, such as rating relationships, product hierarchies, and
user fellowships. To that end, topological queries are specific with regard to which parts
of the graph they refer to. We propose to arrange edges sharing the same type physically
together, allowing a topological query to operate directly on the subgraph instead of the
entire original graph. Thus, a graph that comprises n different edge types results in n
different subgraphs. A subgraph is associated with an area in the column that contains
all edges forming the subgraph. Figure 4.10 illustrates an edge column group with two
different edge types. Here, a topological query that refers to edges of type b would only
have to scan the corresponding subgraph. The portion of the column for edge type b
is indicated by the dashed lower rectangle. If the edge predicate contains a disjunctive
condition, for example to traverse only over edges of type a or b, the execution engine
spawns two parallel scan operation and unions the partial scan results thereafter.

4.3.2.2 Edge Clustering

The most fundamental component of any complex graph algorithm is to retrieve the set of
adjacent vertices for a given vertex. Therefore, an efficient graph algorithm implementation
should provide efficient access to adjacent vertices located in memory. To achieve this,
we introduce the notion of topological locality in a graph. Topological locality describes a
concept for accessing all vertices adjacent to a given vertex v ∈ V . If a neighboring vertex
of a vertex v is accessed, it is likely that all other vertices adjacent of v are also accessed.

We translate topological locality in a graph directly into spatial locality in memory by
grouping edges based on their source vertex. Such an edge clustering increases spatial
locality, i.e., all edges sharing the same source vertex are stored consecutively in memory.
Maximizing spatial locality for memory accesses results in a better last-level cache utiliza-
tion and minimizes the amount of data to be loaded from memory into the last-level cache
of the processor (Manegold et al., 2000). Figure 4.10 sketches an example for edge clus-
tering on vertex A. All edges with vertex A as source vertex are stored consecutively in
the edge column group. To that end, applying first clustering by type and then by source
vertex extends the physical reorganization on a second level. Especially the materializa-
tion step of a topological query benefits from an increased spatial locality while fetching
adjacent vertices from the Vt column.

Besides the spatial locality, column decompression plays an important role in materializing
adjacent vertices. Major in-memory database vendors rely on a two-level compression strat-
egy. The first level is dictionary encoding, where a value is represented by its numerical
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value code from the dictionary and stored in a bit-packed, space-efficient data container.
Here, a lightweight, but still notable decompression routine is used to reconstruct the ac-
tual value code. If adjacent vertices are not stored in a consecutive chunk of memory, the
decompression routine might decompress unnecessary value codes. A similar behavior
can be observed on the second level of compression, the value-based block compression.
Edge clustering allows retrieving blocks of value codes that can be reconstructed efficiently
by leveraging simd instructions.

4.4 experimental evaluation

We evaluate the columnar graph representation of Graphite on a variety of real-world
and generated data sets and demonstrate the effectiveness of our data reorganization
techniques—edge clustering and Tetris—on graph query and manipulation operations.
Further, we conduct experiments to quantify the memory consumption of the graph topol-
ogy and their vertex/edge attributes in Graphite for different scale factors of the ldbc

data set. We evaluate several lightweight compression schemes, including dictionary en-
coding, run-length encoding based on Tetris, bit-compression, and elias-delta encoding.
Finally, we evaluate the graph storage of Graphite in terms of single-user read queries,
including topological access, attribute access, and predicate evaluation.

4.4.1 Setup and Data Sets

We conducted all experiments on an Intel
® Xeon

® E5-2660v3 machine with 2 sockets, 10

cores per socket, each core running at 2.6GHz. The machine runs on sles 12 sp1 and is
equipped with 128GB of ddr4 ram and 25MB last level cache.

We use an extensive number of real-world and generated data sets for our experimental
evaluation. Table A.1 summarizes the evaluated data sets—whenever we refer to one of the
data sets, we either use the long identifier for mentions in the text or the short identifier
for referencing in plots. In addition to the real-world data sets, we use generated data sets
from the WideTable data generator.

WideTable Data Generator

The WideTable data generator is specifically designed for producing data that is hetero-
geneous, but still contains a configurable number of implicit semantic types, which could
be stored in a single wide and sparsely populated table. Our main objective for creating
our own data generator is two-fold: (1) real data sets are difficult to collect, or if freely
available, are too small (both in terms of total number of entities and number of distinct
properties) and (2) we are particularly interested in evaluating the effect of specific param-
eter configurations, such as changing the number of distinct attributes. The WideTable

generator outputs a comma-separated file with data of five possible data types: Boolean, In-
teger, Float, Char, and String. Specifically, the WideTable data generator can be configured
by the following parameters:

• Total number of entities. Controls the total number of rows in the table.

• Total number of distinct attributes. Sets the total number of columns in the table.

• Total number of groups. Controls the total number of input groups to be generated.
An input group loosely corresponds to a semantic type and represents entities that
expose similar attributes.

• Group size distribution. Modifies the size distribution of the input groups. Allowed
configurations are uniform distribution (all groups contain the same number of enti-
ties) and normal distribution (the group size distribution follows a Gaussian curve and
can be further configured by the standard deviation σ).
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Figure 4.11: Results for the evaluation of vertex attribute access operations in Graphite on ldbc data
sets for scale factors 1 to 100. We report the elapsed time of the full materialization of
all exposed attributes of a vertex with ( ) and without ( ) Tetris.

• Attribute sparsity. Controls the fuzziness of the input groups by specifying the spar-
sity within an input group to model optional attributes within a semantic type. For
example, although cars share in general most attributes, electro cars exhibit addi-
tional attributes, such as the charge time of the battery.

4.4.2 Read Operations

In this section we evaluate the graph storage of Graphite for the read operations that
we defined in Chapter 3.1.1. Specifically, we report experimental results for attribute ac-
cess operations with single and group attribute access, topological queries to retrieve the
adjacent vertices for a given vertex, and predicate evaluation queries that return a set of
vertices/edges matching a filter condition.

4.4.2.1 Attribute Access

In this experiment we evaluate the overhead of the graph storage of Graphite for attribute
access operations that either return a single or multiple attribute values for a given vertex.
We conducted all experiments on the ldbc data set for scale factors 1 to 100 and on gener-
ated data sets using the WideTable data generator. Specifically, we evaluate the following
two dimensions: (1) the impact of the total data size, and (2) the performance implications
of the wideness and sparseness of the column group.

In Figure 4.12 we present the results for single-attribute access and all-attribute access,
where we compare Graphite using Tetris against Graphite without using Tetris. For
the single-attribute access experiments, we generated 1,000 queries containing a randomly
selected vertex identifier and a randomly selected attribute. Figure 4.12 (a) depicts the
mean elapsed time for single-attribute access operations on the vertex column group.

A single-attribute lookup consists of a positional lookup in the data vector, followed by a
positional dictionary lookup and the retrieval of the actual value. Both operations require
constant time and are therefore independent of the overall data set size and the number of
attributes present in the column group. Since the dictionary size is fixed for different scale
factors, the variation in the execution time between different scale factors can be explained
by caching effects on the data vector. For a smaller scale factor it is more likely that we
access the attribute of the same vertex or some other vertex that is spatially co-located
again than for larger scale factors.
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Figure 4.12: Results for the evaluation of attribute access operations in Graphite on WideTable data
sets with a sparsity s = 0.25 and s = 0.75, respectively. We report the elapsed time on the
full materialization of all exposed attributes of a record with ( ) and without ( )
using Tetris and compare our approach with a naive, normalized database schema
( ).

Figure 4.12 (b) depicts the mean elapsed time for all-attribute access operations on ver-
tices with ( ) and without ( ) using Tetris on the ldbc data set. A vertex in the ldbc data
sets exposes about 4 attributes, which is about 20 % of the total number of attributes on ver-
tices. Without using Tetris, all attribute values have to be fetched from the column group
and eventually discarded, if the attribute value is NULL. When using Tetris, we only read
those attributes that are likely to have attribute values different from NULL. With Tetris,
we achieve an performance improvement of factor 3 compared to the approach without
Tetris, which is caused by the limited number of column accesses.

To investigate the effect of the sparseness and the wideness of a column group on the
attribute projection operation, we generated data sets using the WideTable data generator
with 1 million rows each, a varying number of columns ranging from 10 to 1,000, and a
column sparsity of 0.25 and 0.75, respectively. Our comparison includes operations lever-
aging Tetris ( ), an implementation without Tetris iterating over all columns ( ),
and a normalized database schema with one column group per vertex type ( ).

Figures 4.12 (a) and (b) depict the experimental results for all-attribute access operations.
For both plots, we can see that attribute access operations perform best on a normalized
schema since a column group only contains attributes, for which the vertex exposes at-
tribute values. In contrast, the time required to materialize a single vertex in a wide and
sparsely populated column group grows linearly with the number of columns. Tetris

shows a similar query performance as a normalized schema by utilizing additional data
structures derived from semantic information about the vertex types and their exposed
attributes. Ideally, an all-attribute access operation with Tetris performs equally well to
a normalized database schema and significantly outperforms a naive implementation that
has to read all columns of a single row. For wider column groups, the benefit of Tetris

becomes even more noticeable, resulting in an performance improvement of a factor of 2

for the denser data set with a sparsity of 25 % and an improvement of a factor of 8 for
the sparser data set with a sparsity of 75 %. Compared to a normalized database schema,
Tetris adds a moderate overhead of less than 5 % on average to the overall elapsed time,
which is due to the additional lookup to fetch the attributes to be read from the Tetris

clusters.
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Table 4.2: Run time distribution (in ms) for simple neighborhood queries of pattern $v-->.

Data Set 1
st Quartile Median 3

rd Quartile 99
th Percentile

Cali 0.45 0.63 0.81 1.43

Skitter 0.84 0.95 1.11 1.46

Patents 1.99 2.12 2.25 2.64

Pokec 5.37 5.47 5.60 5.90

LiveJournal 14.61 14.76 14.923 15.51

Orkut 26.15 26.31 26.45 26.77

Wikipedia 135.66 135.97 136.31 137.32

Twitter 321.19 321.71 322.94 331.58

Hyperlink 458.18 458.83 459.42 460.95

Friendster 569.92 583.73 584.85 586.79

4.4.2.2 Topological Queries

We evaluate the performance of Graphite for neighborhood queries on real-world and
generated graphs using the r-mat data generator. For each experiment we generate 10,000

queries with random start vertices and return the fully materialized set of adjacent ver-
tices. To illustrate the behavior of Graphite for various graph topologies and output car-
dinalities, we present the experimental results of the run time distribution for real-world
graphs in Table 4.2. In general, we observe that the elapsed time increases linearly with
the total number of edges in the graph, leading to a time complexity of O(|E|). Graphite

uses column scans to identify incoming/outgoing edges for a given vertex, followed by a
positional lookup to fetch adjacent vertices. Although a column scan is parallelized by par-
titioning the column into equally-sized logical chunks and by scanning each chunk with
a different worker thread, the overall elapsed time increases drastically for large graphs.
Here, we restrict ourselves to column scans without the utilization of additional secondary
index structures. We will introduce and discuss secondary graph index structures in Chap-
ter 6. Graphite handles large output cardinalities caused by supernodes and small output
cardinalities gracefully through adaptive output data structures that are selected depend-
ing on the estimated output cardinality. For large outputs, Graphite uses a bitset data
structure, while for small output cardinalities a dense array structure is used.

Figure 4.13 depicts the results on data sets generated using the r-mat data generator for
various scale factors with ( ) or without ( ) edge clustering enabled. Figure 4.13 (a)
shows the scalability of Graphite on neighborhood queries for increasing graph sizes. The
number of edges grows linearly with the scale factor by a factor of 2. Overall, Graphite can
handle even very large graphs gracefully—scale factor 28 has about 4 billion edges—and
returns adjacent vertices in less than a second.

In Figure 4.13 (b) we evaluate the effect of different output cardinalities and plot the
elapsed times of the fetch operation to retrieve adjacent vertices. Compared to the overall
elapsed time of the column scan, the fetch operation only consumes a small fraction of
the total elapsed time. If an additional secondary index structure is used, however, the
elapsed time of the fetch operation becomes considerable again. With edge clustering en-
abled, Graphite can fetch adjacent vertices from a continuous chunk of memory, thereby
utilizing the cpu cache more efficiently since less data is transferred to the cpu. Storing
adjacent vertices also spatially adjacent to each other avoids random memory accesses and
results in a 4× speedup over a randomly ordered edge list. For larger output cardinalities,
the difference becomes even more noticeable.
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Figure 4.13: Absolute run time for neighborhood queries $v--> and runtime distribution of fetch
operations with ( ) and without ( ) edge clustering enabled. We generated data
sets using the r-mat data generator with scale factors sf ∈ {12, 14, . . . , 28} and matrix
coefficient configuration 〈a = 0.57,b = 0.19, c = 0.19,d = 0.05〉.
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Figure 4.14: Total runtime and runtime distribution for varying predicate selectivities for predicate
evaluation queries.

4.4.2.3 Predicate Evaluation

We evaluate the query performance of Graphite on predicate filter operations for point
and range queries. A predicate filter receives a conjunctive predicate, evaluates the predi-
cate for each vertex or edge in the graph, and returns a set of matching vertices or edges.
We conduct our evaluation on the vertex set of the ldbc data set and present the results in
Figure 4.14. To evaluate the performance for point queries and queries with a high selec-
tivity (sel < 1%), we generated 1,000 queries with random predicates and executed them
on ldbc scale factors 1 to 100—the results are shown in Figure 4.14 (a). Graphite scales
linearly with increasing data set sizes ranging from 3.4ms on scale factor 1 to 84.6ms on
scale factor 100. For a decreasing selectivity (larger result sets), Graphite scales gracefully
from 3.4ms for a point query to 3.4ms up to 16.8ms for a predicate selectivity of 60%.
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Figure 4.15: Insertion performance of Graphite on ldbc data sets for scale factors 1 to 100.

4.4.3 Write Operations

In this section we evaluate the performance of Graphite for data manipulation operations,
i.e., for adding and removing vertices/edges, updating attributes of vertices/edges, and
deleting vertices/edges. We use generated data sets from the ldbc data generator. For the
ldbc data sets, we generate scale factors 1 to 100 including update streams. An update
stream is a separate portion of the entire data set consisting of a number of records to
be inserted. Specifically, ldbc generates update streams to support the insertion of new
vertices, such as the addition of persons, posts, and comments, and the insertion of edges,
such as new friendship relationships between persons.

Insertions

We populate the database with the static graph that has been generated by the ldbc data
generator. Next, we issue a set of insert operations against Graphite and measure the
time of the data manipulation operation, including data parsing, consistency checking, and
data insertion. Each insertion operation is executed sequentially and without leveraging
batch insertions or prepared insert statements. Graphite handles insertion operations by
redirecting them to the delta storage. In the delta storage, new values are appended at the
end of the column and the unsorted dictionaries are updated accordingly by appending
the value at the end of the dictionary array and by inserting the value into an additional
tree-based secondary index structure.

Figure 4.15 depicts the average elapsed time for vertex and edge insertions for ldbc scale
factors 1 to 100. In general, insertion operations in Graphite are mainly agnostic to the
database size, since new values are only appended at the end of the column. The data pars-
ing overhead is for vertices considerably larger than for edges since vertex insertions tend
to have more attributes associated than edge insertions. Further, the consistency check-
ing for vertices consults the secondary index structure on the primary key to guarantee
uniqueness. For edge insertions, the overall elapsed time is dominated by the consistency
checking, which performs dictionary lookups for both, source and target vertex to disallow
dangling edges in the graph.

Updates

An update operation in Graphite is effectively a deletion operation followed by an in-
sertion operation. Since a deletion operation has a time complexity of O(n), where n is
the number of rows in the column group, the update operation is dominated by the task
to identify the row(s) to invalidate. Graphite also supports in-place updates that modify
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Figure 4.16: Performance evaluation of deletion operations—separated into vertex and edge
deletions—in Graphite on ldbc data sets for scale factors 1 to 100 (single record dele-
tion) and for different numbers of deleted records on scale factor 1.

the read-optimized column group directly, if the new attribute value is already present
in the data dictionary. Otherwise, the record has to be invalidated and inserted into the
write-optimized column group.

Although unsetting an attribute value (setting to NULL) can be always done in-place,
the update operation is still dominated by the time to find the corresponding entities to
update.

Deletions

Figure 4.16 depicts the experimental evaluation of deletion operations in Graphite—
specifically, the removal of vertices and edges based on some predicate condition. We
evaluate Graphite in terms of increasing data volumes and working sets, i.e., the number
of records to be deleted. We handle deletions in Graphite through two visibility vectors,
one for the read-oriented data store and one for the write-oriented data store. If a ver-
tex/an edge is about to be deleted, we identify the corresponding row(s) in the table and
mark the matching positions in the visibility vector as invalid. Any subsequent read oper-
ation on the graph will consult, before reading any data, the visibility vectors that indicate
which vertices/edges are valid and can be read by the query.

Figure 4.16 (a) shows the average elapsed time for single record deletions on vertices ( )
and edges ( ), respectively. We randomly selected vertices and edges by their primary key—
for the vertices the vertex identifier, for the edge an artificial primary key—and generated
a set of 100 deletion operations.

To delete a vertex/an edge in Graphite, we first identify the matching rows through a
column scan on the corresponding column group and secondly, we invalidate the entries in
the visibility vectors. If there are no additional secondary index structures on the attributes
defined, the overall elapsed time of a deletion operation is dominated by the identification
of the rows to be deleted. From the results we conclude that the total elapsed time increases
linearly with growing data volumes and that vertex deletions are about 6 times faster than
edge deletions. This can be explained by the sparsity of the graph (|V |� |E|, cf. Table A.1).

Figure 4.16 (b) shows the scalability of Graphite on the ldbc data set for scale factor
1 and for different working set sizes, i.e., the number of deleted entities per deletion op-
eration. Therefore, we generated deletion operations with predicates resulting in different
working sets, ranging from selective predicates—a predicate on the primary key—to un-
selective predicates—a predicate that removes all vertices that have a specific type. The
elapsed time increases linearly with the size of the working set, for both vertex and edge
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Table 4.3: Memory consumption (in MB) of various graph topologies from Table A.1.

Uncompressed Compressed

Data Set
Raw Size

(csv format)
Dictionaries Data Vectors

Data Vectors
(bit-compressed)

Data Vectors
(elias-delta)

Cali 79 15 42 24 1.6

Skitter 143 10 85 54 3.1

Patents 252 20 126 85 4.7

Pokec 405 11 234 153 9

LiveJournal 955 33 522 318 20

Orkut 1687 22 894 614 34

Wikipedia 9,714 141 4,586 3,439 177

Twitter 24,240 289 11,203 8,752 435

Hyperlink 34,453 549 15,588 10,230 605

deletions. This is caused on one side by the increased amount of work performed dur-
ing the scan operation—more write operations and larger output cardinality—and by the
increased number of operations on the visibility vector.

To summarize, Graphite scales deletion operations gracefully to growing data volumes
and working sets. The actual record invalidation contributes only a small fraction of the
total elapsed time (in our experiments less than 5%). The identification of records to be
deleted could be accelerated by additional secondary index structures.

4.4.4 Memory Consumption

In this section we evaluate the overall memory consumption of the graph storage in Graph-
ite for a variety of real-world and generated graph data sets. We apply several lightweight
compression techniques, such as bit compression, dictionary compression, and elias-delta
compression to the data and report our results in Tables 4.3 and 4.4, respectively. For the
real-world data sets, we populate the graph data into a column group representing the
edge list in two columns, one for the source vertex and one for the target vertex. All input
vertex ids are represented by 32bit numerical values which are dictionary-encoded upon
data loading to create a dense value domain.

In Table 4.3 we present the memory consumption of several real-world graph data sets
stored in Graphite and compare their uncompressed, dictionary-encoded memory foot-
print with two optional compression techniques, namely bit-compression and elias-delta

compression. Compared to the raw data set stored in a two-columnar csv file on disk,
Graphite stores the graph topology in a column group with two columns, one for source
vertices and one for target vertices. Thereby, Graphite reduces the memory consumption
by about 50% compared to the data size on disk.

If we apply bit-level compression and compute the number of required bits to represent
each distinct value in the value domain, Graphite allows reducing the memory footprint
of the data vectors by 35% on average.

We also experimented with elias-delta compression achieving superior compression
ratios reducing the memory footprint by almost 90% on average. A data vector encoded
using elias-delta, however, has the disadvantage that decompressing the data vector
during query execution is rather expensive.

Table 4.4 depicts the memory consumption for data sets from the ldbc project for scale
factors 1 to 100. The data sets are composed of two column groups, one for vertices with
18 attributes and one for edges with 7 attributes. For all data sets, we report the memory
consumption of two csv files on disk, the uncompressed column groups, and the com-
pressed data vectors using bit-compression and elias-delta compression. In contrast to
the real-world graphs without additional attributes, storing a large variety of attributes
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Table 4.4: Memory consumption (in GB) in Graphite for ldbc data sets with scale factors 1 to 100.
The graph properties are listed in Table A.1.

Uncompressed Compressed

Data Set
Raw Size

(csv format)
Dictionaries Data Vectors

Data Vectors
(bit-compressed)

Data Vectors
(elias-delta)

ldbc-sf1 1.3 0.6 0.7 0.4 0.2

ldbc-sf3 3.9 2.1 1.9 1.1 0.5

ldbc-sf10 13.2 6.9 6.6 5.5 2.9

ldbc-sf30 40.8 20.8 19.8 14.3 7.8

ldbc-sf100 130.0 69.5 62.5 45.1 21.4
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Figure 4.17: Effect of different fingerprint implementations on the rle cost for a data set generated
by the WideTable data generator with 10,000 rows, 100 columns, 20% sparsity, and 10

generated input groups.

on vertices and edges results in a larger memory consumption that is similar to the mem-
ory consumption on disk. This is caused by the requirement of ldbc to represent most of
the attributes as expensive character sequences. A more sophisticated handling of differ-
ent data types and data compression on the data dictionaries can mitigate this overhead.
When we apply bit-compression on the data vectors, we can lower the memory footprint
on average to 20% of the uncompressed data vectors. If we apply even more aggressive
elias-delta compression, we can reduce the memory consumption of the data vectors to
about 50% of the uncompressed size.

In the following we evaluate Tetris on a variety of data sets and present our findings for
different data set characteristics, row fingerprint implementations, and the effect of the pro-
posed optimizations. If not stated otherwise, we enable all optimizations to Tetris in the
experiments, i.e., intra cluster reordering, inter clustering reordering, and the combination
of both.

To quantify the rle cost benefit, we use a simplistic compression model (cf. Equation 4.1)
that abstracts from the actual memory consumption. We accumulate the cost of storing
each cell in a table, where a cell has either cost zero or cost one. The cell cost is 0, if the
value stored in the cell is equal to the value stored in the previous cell in the same column,
1 otherwise. The intuition behind this simplistic metric is that repeating values do not
impose a storage overhead since they would be compressed using run-length encoding.
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Figure 4.18: Effect of the number of input groups and the group size distribution on the rle cost
benefit metric.

rle cost =
C∑
c=1

R∑
r=1

σr,c

σr,c =

{
1 :

0 :

vr,c 6= vr−1,c ∨ r = 1

vr,c = vr−1,c

R :

C :

vr,c :

Number of rows

Number of columns

Value of row r at column c

(4.1)

For the first experiment, we evaluate Tetris for three different row fingerprint implementa-
tions, namely uncompressed bitsets, compressed bitsets, and bloom filters (cf. Figure 4.17).
We use the WideTable data generator and generate a data set with 10,000 rows, 100

columns, 20% sparsity, and 10 generated input groups. For the bloom filter implementa-
tion, we evaluate two configurations: 32bit and 64bit. For all experiments, we ran Tetris

using different fingerprint implementations and measure the rle cost benefit percentage,
i.e., the memory savings compared to a simple rle implementation.

Figure 4.17 (a) shows the results for the evaluation of Tetris for different fingerprint
implementations. The fingerprint implementations show comparable rle cost benefits be-
tween 22% and 25%. Since both bitset implementations provide a lossless representation
of the fingerprint, they both result in the same rle cost benefit. The bloom filter (32bit)
shows the lowest benefit as its highly compressed representation discards important fin-
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Figure 4.19: Results for data set with 10,000 rows, 100 columns, and a sparsity of 10%. We evaluate
four different reordering phases of Tetris to quantify the effectiveness of each single
optimization. Specifically, we evaluate simple cluster-based reordering ( ), intra cluster
reordering ( ), inter cluster reordering ( ), and inter+intra cluster reordering ( ).

gerprint information. For wide tables with potentially thousands of columns, the bloom
filter approach performs even worse.

Figure 4.17 (b) depicts the effect of the fingerprint implementation on the construction
time of the Tetris algorithm. Since the overall performance is mainly dominated by the
evaluation of the pair-wise distance function, compact bit representations of the exposed
attributes of a row tend to perform significantly better. Based on this observation, the
bloom filter (32bit) shows the lowest construction time with about 5.2 s compared to the
compressed bitset with about 44.7 s.

In the next experiment we present our findings for different data configurations and report
the achieved rle cost benefit. We used the WideTable data generator to generate random
data sets with 10,000 rows. To evaluate the effect of different data set characteristics, we
varied the number of columns between 10 and 10,000, the sparsity between 0% and 90%,
and the number of generated input groups between 10 and 100. Further, we generated two
different input group size distributions following a uniform and a normal distribution,
respectively. For the generated normal distribution, the standard deviation of the group
size is 2, 20, and 200 for the number of generated groups 10, 100, and 1,000, respectively.
Figure 4.18 depicts the rle cost benefit of Tetris for normally and uniformly distributed
input group sizes for 10 and 100 input groups. Tetris shows a stable compression ratio
improvement over a naive rle implementation and is not sensitive to changing data set
characteristics, such as the number of columns, the sparsity within a group, and the group
size distribution. For data sets with a high sparsity, i.e., fuzzy cluster boundaries, the
benefit of applying Tetris on the table decreased slightly and a naive lexicographical
reordering tends to work better on very sparse columns.

In Figure 4.19 we depict the results of Tetris for a data set with 100 columns, a sparsity
of 10%, and varying group size distributions. The WideTable data generator generates by
default unique values for numeric and varchar columns—we experiment in addition to
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that with duplicates in columns triggering run-length encoding not only on NULLvalues
but also on other sequences of repeating values.

The Simple and the Intra compression steps show similar results for the rle cost benefit,
since the Intra technique reorders values within a cluster. Since we generate unique values
for the first two experiments in Figures 4.19 (a)–(b), there is no compression gain when
using Intra as it does not produce longer runs of repeating values. Most beneficial in
our experiments is Inter, which reorders clusters to form longer runs of repeating NULL

values across cluster boundaries. For a larger number of input groups, Inter achieves a
larger rle cost benefit as longer runs of NULL values can be formed between clusters.

Figures 4.19 (d)–(e) illustrate the time to apply the reordering of the rows. The reordering
time increases linear with an increasing number of input groups. Further, we can see that
no considerable extra time is spent on the additional optimization steps. This is because
we tightly integrated the optimization steps into the reordering phase, effectively allowing
to reorder the entire table in a single pass.

In Figure 4.19 (c) we present the results for data sets that contain duplicate values, which
is quite common in realistic scenarios. Duplicate values are beneficial for the run-length
encoding algorithm as the general routine only compresses large runs of repeating values
well, independent whether the value is NULL or any other value. For columns that contain
duplicate values other than NULL, Intra cluster reordering increases the runs of repeating
values, effectively increasing the rle cost benefit to up to 60%.

4.5 summary

Based on a basic set of read and write operations, we designed, implemented, and evalu-
ated a graph storage in Graphite solely relying on mature column store technology. Fur-
ther, we discussed several data reorganization techniques to improve the spatial memory
locality for accessing the neighbors of a vertex, to efficiently retrieve all exposed attributes
of a vertex/an edges, and how we can apply light-weight compression techniques on our
columnar graph storage to eliminate NULL values. We introduce Tetris, a data reorganiza-
tion technique that reorders rows in a wide and sparsely populated table such that run-
length encoding applied afterwards significantly outperforms a naive column-by-column
reordering approach (cf. Figure 4.20).

Based on an extensive experimental evaluation we conclude that for attribute-centric
graph queries that also require fast access to the attributes of vertices and edges, a colum-
nar graph representation is superior to a native graph representation where attributes are
only considered as a “payload” of a vertex/an edge. Instead, we propose to store the at-
tributes in wide, sparsely populated column groups and represent the graph topology as
a simple edge list stored in two columns. To further improve the query performance of
neighborhood queries, (relational) secondary index structures as well as specialized graph
index structures can be added. We discuss the use of additional index structures to accel-
erate neighborhood queries in Chapter 6.
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(a) Random row order. (b) Lexicographical row order. (c) Tetris row order.

Figure 4.20: Visualization of a wide and sparsely populated table; white corresponds to NULL, black to
a value different from NULL (the first column on the left side is the primary key column).
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Graph traversals are a fundamental building block in many graph algorithms, such as
graph pattern matching, detecting (strongly) connected components, and shortest path
computation. We introduce an abstract graph traversal operator and define the traversal
semantics formally. Based on the abstract notion of a graph traversal operator, we propose
two traversal strategies on a columnar graph storage, a level-synchronous and fragmented-
incremental graph traversal. As a result of the system architecture of Graphite, we pro-
pose several techniques to extend the graph traversal to distributed graphs that are spread
across a read-optimized and a write-optimized graph storage. In the experimental evalua-
tion, we demonstrate the performance and efficiency of our traversal implementations and
showcase that they are competitive to those available in native graph processing systems.

5.1 related work

In this section we review related work on single-node and distributed graph traversals.
While we only gave a broad overview of graph traversals in Section 2.4, in the following
we provide details on the specific graph traversal implementations and techniques applied
to achieve superior performance.

5.1.1 Single-Node Graph Traversals

Early efficient parallel bft (breadth-first traversal) algorithms date back to the theoretical
investigations by Gazit and Miller (1988), who reduce the bft problem to a matrix multi-
plication problem and derive a time complexity for single-source bft in the exclusive-read,
exclusive-write model of O(log2n) using M(n) processors and n being the dimensionality of
the adjacency matrix.

Bader and Madduri (2006) implement a parallel bft on a multi-threaded, thread-centric
Cray MTA-2 system. The Cray MTA-2 employs no memory hierarchy but instead hides
memory latency through hardware multi-threading. The authors leverage the hardware-
assisted fine-granular parallelism and the zero-overhead synchronization primitives of-
fered by the Cray MTA-2 and implement a level-synchronous bft algorithm. Paralleliza-
tion is applied on two levels, on the queue level and on the adjacency level. Concurrent
access to the queue and the output data structures are protected using lock-free synchro-
nization primitives provided by the Cray MTA-2. To avoid thread underutilization at the
queue level, the authors propose to identify high-degree vertices upfront and to process
them separately to improve load balancing.

Xia and Prasanna (2009) investigate the impact of the graph topology on the scalability
to the number of available threads. They propose a parallel bft implementation, which
estimates the scalability during each traversal iteration and also provide an accompanying
cost model to predict the expected elapsed time. Based on the observation that bft imple-
mentations on graph topologies with a small working set per iteration scale poorly, they
propose to adaptively increase or decrease the level of parallelization (active number of
threads) per iteration, depending on the estimated working set size.

Agarwal et al. (2010) investigate scalable bft algorithms on multicore processors and
specifically targeted Intel

® Nehalem ep and ex consisting of 2 sockets (4 cores/socket)
and 4 sockets (8 cores/socket), respectively. Based on a naive bft implementation, they
propose several optimizations that deal with the management of intermediate vertex sets
and that enable scaling across multiple sockets. The naive bft implementation uses two
queues, one for storing the vertices to be explored on the current level and one for storing

63
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the vertices to be explored on the next level. At the end of each traversal iteration, the con-
tents of both queues are swapped. To enable a parallel bft running on a single socket, the
authors propose to add atomic instructions instead of locks to protect the queue operations
against race conditions and to use a bitmap to check whether a vertex has been already vis-
ited. In contrast to the parent map, which can be used to check whether the vertex already
has a parent assigned, a bitmap is more memory-efficient and is more likely to entirely
fit into the last level data cache of the socket. To avoid cache line invalidation and locking
due to random access atomic writes, the authors introduce a communication mechanism
between groups of cores from different sockets. They leverage a FastForward data structure
implementing single producer/consumer lock-free queue. If the vertex resides on the local
socket, it is inserted into a local queue, otherwise the remote queue of the corresponding
socket is used. Instead of updating the queues on a fine-granular vertex-level, a batching
mechanism groups writes into batches and updates the queues batch-wise.

Pearce et al. (2010) propose an asynchronous approach to graph traversals and imple-
ment this mechanism for bft, single-source shortest path, and connected components, for
in-memory and semi-external memory computation. By relying on an asynchronous imple-
mentation, the authors mitigate costly synchronizations that are required on concurrently
accessed data structures in multi-threaded environments. Surprisingly, they implement bft

as a specialized sssp implementation with edge weights equal to one. The idea is based on
the vertex visitor pattern, which is commonly used to describe a traversal-based graph algo-
rithm in an abstract way. The central component of the approach is a visitor queue, which
queues all vertex visitor requests. During the execution, the requests can be concurrently
removed from the visitor queue and processed in parallel. Although each thread maintains
a private visitor queue, it remains unclear how to synchronize between the thread-private
queues.

Leiserson and Schardl (2010) present a parallel bft algorithm, which is work-efficient1

and achieves linear scalability with the number of processors by replacing the standard
fifo queue by a bag data structure.

Hong et al. (2011) build on the ideas of Agarwal et al. (2010) and propose a parallel bft

algorithm that makes efficient use of the available memory bandwidth. Instead of imple-
menting the current-level set and the next-level set as lock-protected queues, they encode
both sets into a single array structure with sufficient capacity to store level information
for all vertices in the graph. The advantage of storing the level information in a single
array-based data structure is that no locks are required to protect the elements in the array
from concurrent write access. Since the array stores level information in increasing node
identifier order, the memory access to the underlying graph structure, if also ordered by
node identifier, can be processed sequentially and thus minimizes the number of random
memory accesses. The main disadvantage is that the entire array has to be read at every
traversal iteration. Additionally, for large graphs it is unlikely that the entire array fits
into the last level data cache and access to it will result in data cache misses. For graphs
with a large diameter, the authors propose a hybrid approach, which combines the queue-
based traversal for traversal iterations with a small frontier set and the read-based traversal
for large frontier sets. This hybrid approach has been also generalized to process the first
traversal iterations on the cpu and switch for the traversal iterations with a large frontier
set size to the gpu.

Chhugani et al. (2012) propose a parallel bft implementation, which aims at balanc-
ing load and locality-aware computation. The authors tackle several issues, which cause
a negative performance impact, including low cache hit ratio, remote memory accesses,
and load balancing. A graph is represented as a two-dimensional adjacency array, where
the adjacent vertices of a given vertex are stored contiguously, and the adjacencies are
distributed evenly across all sockets. To check, whether a vertex has been already visited,
the authors propose a bitset data structure, which is—in contrast to previous approaches—
tailored to reside mainly in the last-level cache. Since for large graph the bitset of visited

1 A parallel algorithm is work efficient, if the total number of operations performed is within a constant factor of
the best serial algorithm.
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vertices does not entirely fit into the last-level cache of a socket, the authors partition the
bitset evenly across all sockets. For the bitset, they maintain an atomic-free and lock-free
update mechanism, as even atomic instructions impose a considerable performance over-
head as they behave as memory fences. Frontiers are partitioned across sockets and kept
thread-local. To reduce the number of tlb misses, the authors rearrange the vertices of the
frontier set according to collected memory access statistics.

Beamer et al. (2012) propose a bft algorithm that combines traditional top-down traver-
sal with bottom-up traversal on low diameter, scale-free graphs, such as social networks.
The top-down searches for unvisited children given a vertex from the frontier set, while
the bottom-up approach searches for parents of unvisited vertices. Once a parent is found,
the bottom-up traversal can continue the traversal with the next vertex. In the top-down
approach, all adjacent vertices have to be examined, while for the bottom-up approach,
the discovery of any parent vertex suffices. Especially when the frontier set is consider-
ably large, a bottom-up traversal can significantly reduce the number of edges to traverse.
The authors propose a hybrid algorithm that switches between top-down and bottom-up
traversal dynamically, depending on the size of the frontier set. The first iterations during
the traversal are performed top-down as the frontier set size is typically small. For the
following iterations, the algorithm switches the processing strategy to bottom-up traver-
sal, also including a transformation of the frontier set from a queue implementation to a
bitset implementation. For the final iterations, where the frontier set size typically shrinks
again, the algorithm switches back to a top-down traversal. The two switching points are
determined dynamically considering graph properties, such as the number of edges from
unexplored vertices, the number of vertices in the frontier set, and the number of edges to
check from the frontier set. Further, they introduce two tuning parameters, which have to
be determined experimentally in advance.

Yasui et al. (2013) build on the ideas of Beamer et al. (2012) and propose a numa-aware
bft implementation. The authors use the general hybrid implementation provided by
Beamer et al. (2012) and extend it by partitioning the vertex set, i.e., all outgoing edges
of a vertex reside in the local memory of a socket. Further, each socket maintains a local
variable to store visited vertices, discovered vertices, and the predecessor map.

Berrendorf and Makulla (2014) classify parallel bft implementations and perform an
experimental evaluation on multi-core shared-memory numa machines. They use several
graph topologies with varying properties, including road networks, Delaunay graphs, and
social networks, and showcase that no bft implementations supersedes the others on all
evaluated data sets. Similar to our observations in the context of Graphite, there is evi-
dence that the graph topology (and in our case the traversal query) has severe implications
on the overall execution time of the graph traversal. The authors classify the examined im-
plementations into container-centric and vertex-centric approaches. While container-centric
implementations use a set of central data structures to keep track of visited and unexplored
vertices, they suffer from numa effects due to possible remote memory access on memory
associated to other sockets. In contrast, a vertex-centric implementation assigns a parallel
thread to each vertex in the graph. After each iteration, a global barrier allows synching
the state between adjacent vertices. On the downside, a vertex-centric approach suffers
from graphs with a large diameter and lacks possibilities for explicit load balancing.

Then et al. (2014) explore how to efficiently run a set of bfts in parallel on a single
machine by sharing computation work between bft runs. This is in contrast to previous
related work that aim at improving the performance and scalability of a single bft run by
leveraging and saturating all available compute units of the machine. The authors argue
that running a large number of bfts from different source vertices in parallel is a common
pattern seen in graph centrality measures, such as betweenness centrality and closeness
centrality. They leverage the properties of social networks, i.e., a power-law vertex degree
distribution and a small graph diameter, to share commonly explored vertices between
multiple bft runs. In their ms-bfs implementation, they use well-known algorithmic tricks,
such as switching between top-down and bottom-up traversal (cf. Beamer et al. (2012)),
leveraging simd instructions to speed up set operations, and software-assisted memory
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prefetching. Although scale-free graph topologies are rather common in many realistic use
cases, sharing work between graph algorithms in general requires a certain amount of
sharable work between single algorithm instances. For example, hypersparse graphs, such
as road networks, are unlikely to benefit from work sharing between bft runs. Further, ms-
bfs requires all bft instances to run in sync, i.e., only work is shared between bft instances
if the vertex is explored on the same bft level. A more flexible work sharing approach, as
can be found in related work on cooperative scans, however, would be desirable.

Buluç and Gilbert (2011) and Kernert et al. (2014) discuss the implementation of bft

based on iterative matrix-vector multiplications, where the transpose of the adjacency ma-
trix is repeatedly multiplied with a vector containing the frontier vertices. Kernert et al.
(2014) stores the underlying matrix in a csr-like data structure in a column-oriented rdbms

and returns as a result of the bft vertices discovered at a certain depth. The bft implemen-
tation does not perform cycle detection and therefore does not guarantee to produce a
valid bft tree.

5.1.2 Distributed Graph Traversals

Yoo et al. (2005) describe a parallel, level-synchronous bft on undirected graphs and use a
2d partitioning to distributed the edges across the computing nodes of a massively parallel
BlueGene/L system. The authors employ a 2d edge partitioning over a 1d partitioning to
reduce communication overhead and to effectively reduce the number of computing nodes
involved in the collective communication phase from O(P) to O(

√
P). The 2d partitioning

splits the edge set such that each vertex and each edge is owned by a single computing
node, and not all edges incident to a vertex are stored in the same partition.

The major challenge of distributed graph traversals is the high communication cost to
distribute the frontier set to all computing nodes. Lv et al. (2012) propose two techniques
to reduce the message sizes in the all-to-all communication phase by leveraging lossless
compression techniques and lightweight vertex sieving. The frontier set is represented as a
compressed bitset using a word-aligned compression scheme. To avoid sending the entire
frontier set to each computing node, the authors propose a sieving of frontier sets such that
vertices are only distributed to the corresponding computing nodes, when they contain a
partial edge list to continue the traversal. Therefore, a cross directory is introduced, which
contains information about which frontier vertex will be processed at which computing
node. The sieving is a preprocessing step of the actual message compression and improves
the compression ratio even more.

Buluç and Madduri (2011) tackle the problem of running graph traversals on distribu-
ted memory systems. They propose two complementary approaches to distributed bft,
namely an implementation based on 1d partitioning of the edge set and another imple-
mentation based on linear algebra operations using a csr representation in combination
with a 2d partitioning on the adjacency matrix. To quantify the memory access costs (local
and remote), they present a simple linear memory-reference performance model. For the
2d partitioning, however, the authors argue that a pure csr representation wastes memory
space and propose to use a doubly-compressed sparse columns (dcsc) instead. In the 1d

implementation, they use a stack data structure, in the 2d implementation frontier vertices
are represented in a sparse array format, by only storing indices of non-zero vertices. The
1d implementation leverages thread-local stacks to avoid synchronization overhead; the
local stacks are eventually merged at the end of each traversal iteration. The 2d imple-
mentation relies on the linear algebra framework of the Combinatorial blas. The authors
achieve a “. . . reasonable load-balanced graph traversal. . . ”, by randomly shuffling the ver-
tices before the actual data partitioning.

While there has been conducted an extensive body of research on graph partitioning
for distributed bft, Shang and Kitsuregawa (2013) were the first to propose an adaptive
partitioning strategy based on the degree distribution of the vertices. The authors argue
that high-degree vertices cause a large communication overhead and propose a hybrid
partitioning approach, where the incident outgoing edges of low-degree vertices are par-
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titioned by the source vertex and for high-outdegree vertices partitioned by their target
vertex. To store the information which vertex belongs to which group, the authors use a
bitset structure encoding the binary information for each vertex in the graph. The bitset is
replicated to each computing node.

Checconi and Petrini (2014) present a parallel distributed-memory bft implementation
on a cluster of 64,000 BlueGene/Q nodes. They achieve an impressive traversal ratio of
15.3 trillion edges per second on an r-mat graph at scale factor 40 (1 trillion vertices and
32 trillion edges) on 4 million threads in total. The graph is stored in a 1d decomposition,
where all edges incident to a vertex are stored on the same node in the cluster. The in-
ternal graph representation is based on a compressed adjacency list and a coarse-grained
index structure. The adjacency list is stored as a contiguous array with a source vertex
immediately followed by its adjacent vertices. Additionally, the adjacency list maintains
shortcut links to jump from one source vertex to the next. The coarse-grained index stores
one entry per 64 source vertices, allowing to check a full word of 64bit in the vertex
bitmap data structure and skip all the corresponding vertices if none of the bits is set.
They apply direction-optimized bft, as introduced by Beamer et al. (2012), and alternate
top-down and bottom-up traversal based on a simple formula considering the number of
unexplored vertices and the number of reachable edges (vertices). The authors leverage col-
lective operations available in BlueGene/Q for coordination. Load balancing is achieved by
further partitioning high-outdegree vertices across nodes in the cluster. To lower the pres-
sure on the network bandwidth and to use computation and network resource efficiently,
they use message batch/compression and overlap computation and communication using
an asynchronous communication layer. Vertex sets are represented as bitmaps and parti-
tioned across nodes; the parent array storing parent information for each visited vertex are
similarly partitioned.

5.2 abstract graph traversal operator

In this section we introduce the notion of a graph traversal operator and describe the op-
erator interface, i.e., the specification of the input and the output parameters. The graph
traversal operator is one representative from a family of graph-specific plan operators, which
can be used in combination with other relational plan operators in a heterogeneous execu-
tion plan in an rdbms.

5.2.1 Traversal Query Specification

The graph traversal operator receives as input a traversal query and returns a set of discov-
ered vertices. In the following we define the traversal query parameters and semantics.

Definition 5 (Traversal Query) LetG := (V ,E) be a graph according to Definition 1. A traversal
query is defined as a tuple ρ := (S,ϕ, c, r,d) composed of a set of start vertices S ⊆ V , an edge
predicate ϕ, a collection boundary c, a recursion boundary r, and a traversal direction d. A graph
traversal τG(ρ) is a unary operation on G and returns a set of discovered vertices R ⊆ V .

The vertex set S consists of all the vertices from where the traversal operators starts the
graph exploration. In most cases the vertex set S consists of a single vertex, but multiple
root vertices are also supported.

The edge predicate ϕ defines a propositional formula consisting of atomic attribute
predicates that can be combined with the logical operators AND (∧), OR (∨), and NOT (¬).
To specify or change the predicate evaluation precedence, atomic attribute predicates can
be arbitrarily nested using additional parentheses. The evaluation of the edge predicate ϕ
returns a set of active edges Eactive ⊆ E satisfying the filter condition and restricts the graph
traversal to a subgraph G ′ := (V ,Eactive).

The recursion boundary r ∈ N+ denotes the maximum number of traversal levels to
process and refers to the maximum traversal depth. The upper bound of the recursion
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boundary is defined by the diameter of the graph, i.e., the longest shortest path between
any pair of vertices in the graph. To support unrestrictive traversals or transitive closure
computations, the recursion boundary can be set to infinite (∞).

The collection boundary c ∈ N denotes the traversal depth from where the operators
starts collecting discovered vertices for the final result set. For c = 0, the operator adds
all vertices from the vertex set S—the root vertices—to the result set. For any traversal
configuration, the condition c 6 r must hold.

The traversal direction d ∈ {→,← } can be either forward or backward. A forward traver-
sal (→) traverses edges from the source vertex to the target vertex, a backward traver-
sal (←) traverses edges in the opposite direction. This is an important distinction from
other traversal implementations, which either assume that the graph is undirected or only
support forward traversals. The traversal operation outputs a set of vertices R that have
been discovered in the range defined by the collection and the recursion boundary.

5.2.2 Formal Description

We define a graph traversal as a totally ordered set P of path steps, where a path step
describes the transition between two consecutive traversal iterations and is evaluated se-
quentially according to the total ordering in P. The maximum number of path steps is
bounded by the minimum of the recursion boundary and the graph diameter.

We define a graph traversal based on the mathematical notion of sets and their basic
operations union and complement. Each path step pi ∈ P with 1 6 i 6 min{r, diam(G)}

receives a set of vertices Di−1 with Di−1 ⊆ V discovered at level i− 1 and returns a set
of adjacent vertices Di with Di ⊆ V . Initially we assign the set of start vertices to the set
of discovered vertices (D0 = S). In the following we define the transformation rules for a
path step pi with i > 0 for forward (→) and backward (←) traversals, respectively.

D→i =

{
v

∣∣∣∣ ∃u ∈ Di−1 : e = 〈u, v〉 ∈ Eactive ∧ ∀
06k6i−1

Dk : v 6∈ Dk
}

(5.1)

D←i =

{
u

∣∣∣∣ ∃v ∈ Di−1 : e = 〈u, v〉 ∈ Eactive ∧ ∀
06k6i−1

Dk : u 6∈ Dk
}

(5.2)

R =

(
r⋃
i=c

Di︸ ︷︷ ︸
target vertices

)
\

(
c−1⋃
i=0

Di︸ ︷︷ ︸
visited vertices

)
(5.3)

In path step pi, we construct the set of vertices Di by traversing from each vertex in
Di−1 over all outgoing/incoming edges in Eactive satisfying the edge predicate. We handle
cycles in the graph by marking each discovered vertex as visited and add a vertex only
to the vertex set Di if it has not been discovered in a previous traversal iteration and is
therefore not member of one of the other vertex sets D0, . . . ,Di−1. After the completion of
the path step, the vertex set Di contains all the reachable vertices within one hop from the
vertices in Di−1 via edges from the set of active edges Eactive.

We define the resulting vertex set R in Equation 5.3. The collection boundary c and the
recursion boundary r divide the discovered vertices into two disjunct vertex sets. The set
of visited vertices contains all vertices that have been discovered before the traversal reached
the collection boundary c. Vertices from the set of visited vertices are not considered for the
final result, but are required to complete the traversal operation. The set of target vertices
refers to the set of vertices that are potentially relevant for the final result set. We build
the set of visited vertices by computing the union of all vertex sets {D0,D1, . . . ,Dc−1}

from path steps p1 to pc−1. To produce the set of target vertices, we union all vertex
sets {Dc, . . . ,Dr} from path steps pc to pr. To retrieve the final result, we compute the
complement between the set of target vertices and the set of visited vertices.
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({A } , “type = a”, 0, 1,→) {A,B,C,D }

({A } , “type = a”, 1, 1,→) {B,C,D }

({A } , “type = a”, 2, 2,→) { F }

({A } , “type = a”, 1,∞,→) {B,C,D, F }

({ E } , “type = b”, 2, 2,←) {D }

({A } , “type = a OR type = b”, 2, 2,→) { E, F }

Figure 5.1: Example traversal queries and their corresponding results.

Figure 5.1 depicts a set of traversal queries and their corresponding results on the given
example graph. For example, traversal query ({A } , “type=a”, 2, 2,→) performs a 2-hop
traversal starting from vertex A and traverses on edges of type a. Here, we only collect
discovered vertices in the last path step p2 that have not been already discovered at path
step p1. Dashed arrows with numbers illustrate the traversed edges and the path step they
were discovered in. First, path step p1 transforms the vertex set D0 = {A } into the vertex
set D1 = {B,C,D }. Next, path step p2 transforms vertex set D1 into vertex set D2 = { F }.
Finally, the output of the traversal query is a vertex set containing vertex F only. In contrast,
traversal query ({A } , “type=a OR type=b”, 2, 2,→) returns vertices E and F only, although
vertex B can be reached in 2 hops as well. Since vertex B has been discovered after the first
hop, it becomes a member of the visited vertices set and is therefore removed from the
final result set.

5.3 graph traversal operator implementations

We now discuss the implementation of the abstract specification of the graph traversal oper-
ator. We subdivide the processing of a traversal operation into three processing phases—a
preparation phase, a traversal phase, and a decoding phase—as depicted in Figure 5.2. Although
the separation of the graph traversal operator into three different processing phases might
seem artificial in the first place, our aim is to provide a unified graph traversal operator
interface while still allowing to extend or replace the traversal kernel with other implemen-
tations.

Preparation Phase

Initially, the preparation phase of the traversal operator receives a traversal query ρ from
some external interface, i.e., a graph query language. We transform the set of start vertices
S into a set of internal numerical value codes that stem from the dictionary encoding
of the source/target vertex column of the edge column group. In addition, we evaluate
the edge predicate ϕ on the edge column group and retrieve a set of active edges Eactive.
Depending on the selectivity of the edge predicate, we choose between a dense, bitset-
based representation for low selectivities or a sparse array-based representation for high
selectivities, respectively. Finally, we pass the set of active edges to the traversal phase for
further processing.

Traversal Phase

We propose two traversal operator implementations, a level-synchronous (cf. Section 5.3.2)
and a fragmented-incremental (cf. Section 5.3.3) traversal strategy. We select the optimal
traversal operator implementation based on collected graph statistics and the properties of
the traversal query. In an offline process, we collect information about the graph diameter,
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Figure 5.2: Graph traversal processing phases.

neighborhood size distribution, and degree distribution. In addition to graph statistics,
we also take the query parameters, such as the root vertex, the edge predicate, and the
traversal depth, into account. We use a traversal controller to estimate the execution cost for
each traversal implementation and select the implementation with the lowest cost.

Initially, we pass a collection boundary c, a recursion boundary r, a traversal direction
d, a set of active edges Eactive, and the encoded vertex set S to the traversal phase. The
result of the traversal phase is a set of discovered vertices in an internal, numerical set
representation of value codes.

Decoding Phase

To translate the value codes of discovered vertices into the external vertex identifiers, we
consult the dictionary of the source/target vertex column for each value code and add
the external vertex identifier to the final output set. If the storage engine does not rely on
dictionary encoding, the decoding phase can be omitted and the result set can be returned
directly without additional translation overhead.

5.3.1 Traversal Strategies

Traversal algorithms appear in many variations favoring different graph topologies and
types of traversal queries. While a dense graph with a high average degree and a skewed
degree distribution benefits from a skew-resilient, level-synchronous traversal algorithm, a
sparse graph with a low average degree takes advantage from a more fine-granular traver-
sal strategy. There is a large body of recent work on the analysis of the degree distribution
of real-world graphs, including detailed studies of so-called scale-free graphs that expose
a skewed degree distribution (Leskovec et al., 2005, 2008; Meusel et al., 2014). Although
there is a broad consensus stating that graphs from a large variety of application domains
follow a power-law degree distribution, this observation only applies when the complete
graph is considered. If we look at a property graph with a rich set of attributes attached
to vertices and edges and a query workflow that permits initial selections of subgraphs
based on some vertex/edge predicates, the general degree measures collected on the en-
tire graph topology do not necessarily reflect the actual topology anymore. The subgraph
G ′ := (V ,Eactive), which is the result of a predicate filter evaluation, can (and likely will)
expose a different degree distribution than the original graph topology. This observation
and the availability of other, not power-law degree distributions, which can be found in
road networks and Delaunay graphs, demands a more distinctive analysis of the imple-
mentation of graph traversal algorithms for a variety of different graph topologies.

We propose two functionally equivalent traversal strategies, namely a level-synchronous
(ls) traversal and a fragmented-incremental (fi) traversal, which target different graph prop-
erties and traversal queries. Table 5.1 summarizes the characteristics of both traversal strate-
gies. The level-synchronous traversal works particularly well on graphs with a small graph
diameter, a power-law degree distribution, and for long-running traversal queries with a
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Graph Topology Traversal Query

Degree
Distribution

Average
Degree

Diameter Depth Predicate

ls-traversal power-law large small small unselective

fi-traversal uniform small large large selective

Table 5.1: Overview of traversal strategies and their targeted graph topologies and query character-
istics.

large traversal depth. In contrast, the fragmented-incremental traversal favors a large graph
diameter, a very sparse graph with a small average vertex degree, and short-running traver-
sal queries with a small traversal depth.

5.3.2 Level-Synchronous Traversal

The ls-traversal operates in a level-synchronous manner and discovers vertices in a strict
breadth-first ordering. By relying on a breadth-first ordering, reachable vertices are always
discovered on the shortest path. The ls-traversal operates on an edge list represented by
the columns Vs and Vt, which store source and target vertices of edges, respectively. For
each traversal iteration, the ls-traversal scans the complete edge list to retrieve neighboring
vertices and returns a set of vertices adjacent to the vertices of the input set. Hence, each
edge is scanned possibly multiple times although each edge is only traversed at most once.

Scan edge
list

Fetch adjacent
vertices

Collect
results

Figure 5.3: General processing steps of the ls-traversal.

We use the set-based formalization of the graph traversal from Section 5.2.2 and implement
the ls-traversal based on set operations. The motivations for a set-based implementation
are two-fold: (1) set operations can be easily mapped to vectorized operations through
simd instructions and (2) the traversal formalization does not require to track the traversal
path, i.e., the parent relation, but instead only returns a set of vertices discovered at a
specific traversal depth and can therefore be implemented with set operations. Aberger
et al. (2015) build on a similar idea and formulate graph pattern matching queries as
boolean algebra expressions. Boolean algebra expressions can be efficiently implemented as
set operations by exploiting simd processing routines.
In Figure 5.3 we sketch the execution phases of the ls-traversal. We use two important
building blocks from the columnar storage engine: full column scans and positional value
fetching. Each traversal iteration is composed of a full column scan, followed by a positional
value fetch operation to retrieve adjacent vertices for a given set of vertices. The final result
collection phase performs cycle handling and merges intermediate results.

Parallelization

We employ data parallelization in the ls-traversal on the vertex level and on the adjacency
level by splitting the source vertex (Vs) and target vertex (Vt) columns into n equal-sized
logical edge partitions, respectively. Figure 5.4 depicts a high-level overview of our par-
allelization scheme with s1, . . . , sn denoting partitions of column Vs and t1, . . . , tn corre-
sponding to partitions of column Vt. We chose a uniform partitioning over a partitioning
by source vertex, since a workload imbalance caused by a skewed degree distribution can
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Figure 5.4: ls-traversal algorithm.

have a tremendous negative impact on the execution time of a level-synchronous traversal
implementation. We use a split-join parallelization strategy, where we assign each partition
to a worker thread. Each worker thread receives the vertices to expand from as input and
produces a thread-local list of discovered adjacent vertices.

In the scan phase each worker thread searches for vertices from the input working set in
the local partition si with 1 6 i 6 n and stores hits as record identifiers in a thread-local
position array pi. Since the scan routine operates sequentially within a partition, we can
guarantee that the position array is sorted.

Once the scan routines terminates, the same worker thread proceeds with the fetch
routine using the local position array pi to retrieve the adjacent vertices from the local
partition ti. We use arrays to collect thread-local results and bitset data structures to store
the final set of discovered vertices.

In the final stage the merge routine collects and combines discovered adjacent vertices
from all worker threads and merges them into the vertex set R. A part of this merge routine
performs cycle detection, duplicate elimination, and the removal of vertices, which have
been already discovered in an earlier traversal iteration. The traversal algorithm either ter-
minates if the recursion boundary is reached or no more vertices have been discovered and
forwards its output to the decoding phase, or continues with the next traversal iteration.

Implementation Details

We sketch the implementation of the ls-traversal in Algorithm 4. Initially we pass the
traversal query ρ = (Sm,Eactive, c, r,d) to the traversal kernel, which is derived from the
initial traversal query with the following two modifications: (1) the vertex set Sm contains
the value-encoded root vertices and (2) the set of active edges Eactive represents the mate-
rialized result of the evaluation of the edge predicate ϕ. The output of an ls-traversal
execution is a set of discovered vertices R.

set-oriented subroutines . The ls-traversal implementation relies on two subrou-
tines, namely scan and fetch, which are general data access routines available in most
columnar rdbms. The scan procedure receives as input a set of vertices represented by
their corresponding value-encoded vertex identifiers (F for Frontiers, i.e., the vertices to
expand from) and a set of active edges Eactive. The set of vertices is treated as an in-list
with an equality predicate and the scan returns a set of matching positions P, which are
represented as an array. Further, matching records, which represent edges in the graph
interpretation, are removed from the set of active edges Eactive to mark the edge as already
traversed. The fetch subroutine receives a list of positions and extracts the values at the
given positions and appends them to the result set F. The input set is sorted to improve the
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Algorithm 4: ls-traversal

1 Procedure scan(F,Eactive,P)
2 forall v ∈ Vs do
3 if v ∈ F∧ v.rid ∈ Eactive then
4 P.append(v.rid);
5 Eactive[v.rid] = false;

6 Procedure fetch(P, F)
7 forall p ∈ P do
8 F.append(Vt[p]);

Input : Traversal configuration κ = (S,Eactive, c, r,d).
Output : Set of discovered vertices R.

9 begin
10 if d is backward then
11 swap(Vs,Vt) ; // Adjust column handles

12 if c = 0 then
13 R← S ; // Add start vertices to result

14 p← 1;
15 F← S;
16 Vvis ← ∅ ; // Visited vertices before collection boundary

17 Vtar ← ∅ ; // Target vertices after collection boudary

18 Vdis ← ∅ ; // Discovered vertices

19 while p 6 r do
20 if F = ∅ then
21 return ; // No more vertices to discover

22 P ← ∅;
23 Vs.scan(F,Eactive,P) ; // Parallel scan for F

24 Vdis ← Vdis ∪ F ; // Mark expanded vertices as discovered

25 F← ∅ ; // Reset vertex working set

26 Vt.fetch(P, F) ; // Fetch adjacent vertices from Vt

27 F← F \ Vdis ; // Remove already discovered vertices

28 if p > c then
29 Vtar ← Vtar ∪ F ; // Add vertices from F to Vtar

30 else
31 Vvis ← Vvis ∪ F ; // Add vertices from F to Vvis

32 p← p+ 1;

33 R← R∪ (Vtar \ Vvis) ; // Compute final result

34 return R;
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memory locality while extracting values from the column. The fetch routine benefits from
edge clustering, which we introduced in Section 4.3.2.2, through a higher memory locality
while accessing values from the column.

algorithm description. We use two set implementations to store intermediate and
final vertex sets, such as F, Vtar, Vvis, and Vdis, that are based on sorted arrays and bitsets,
respectively. Both implementations can be seamlessly processed in combination and adjust
their internal representation according to the type of the set operation and the cardinalities
of both participating sets.

ls-traversal uses internally several data structures to keep track of collected vertices,
such as the vertex sets before (Vvis) and after (Vtar) reaching the collection boundary, the
vertex set F to store the frontier vertices of the current traversal iteration, and the set of
already discovered vertices Vdis.

The ls-traversal can either traverse the graph along the edge direction or opposite to the
edge direction. Since we read the edges directly from the columns Vs and Vt respectively,
we can easily exchange the handles to both columns without having to change the under-
lying traversal algorithm. If the collection boundary c is zero, we add all vertices in S to
the final result R (Line 13). For the first traversal iteration, we use the vertices from the
vertex set S as frontiers and assign them to the vertex set F.

The core of the ls-traversal algorithm issues a single traversal iteration and is executed
at most r times (Lines 19–32). At the beginning of each iteration we check whether the
vertex set contains frontier vertices, i.e., vertices from which we can continue the traversal.
If the vertex set F is empty, no more vertices can be discovered and the execution of the
ls-traversal terminates. In each traversal iteration the ls-traversal scans the source vertex
column Vs in parallel and emits matching edges into a position list P. After the scan routine
finished, ls-traversal marks all vertices from the frontier set as discovered and stores them
in Vdis. Next, the ls-traversal algorithm materializes adjacent vertices into the vertex set
F. The vertex set F contains potential vertices, which have to be cleaned from already
discovered vertices from a previous traversal iteration (Line 27). ls-traversal collects two
result sets of vertices, one for the traversal range {1, . . . , c− 1} referring to the visited vertices
(Vvis) and one for the target vertices (Vvis) in the range {c, . . . , r}. If the traversal reached the
recursion boundary or terminated the traversal earlier, the final result set R is computed
as the subtraction of the two vertex sets Vtar and Vvis.

Cost Estimation

The execution time of the ls-traversal is dominated by the total number of edges in the
graph and the number of processed traversal iterations. The ls-traversal has a worst case
time complexity of O(r · |E|), where r denotes the recursion boundary and |E| refers to the
total number of edges in the graph. For each traversal iteration, the ls-traversal scans the
complete edge list for adjacent vertices from a given vertex set. In Equation 5.4 we provide
a cost function to describe the execution time behavior of the ls-traversal. The cost of an
ls-traversal can be derived from the number of edges to read and the number of traversal
iterations to perform.

Cls = min{r, δ̃} · |E| · Ce (5.4)

We define the cost Cls as the composite product of the minimum of the recursion boundary
r and the estimated diameter δ̃ of the graph, the number of edges |E|, and a constant factor
Ce to access a single edge.

Discussion

The ls-traversal operates level-synchronously and scans the complete edge list during
each traversal iteration to retrieve the adjacent vertices for a given set of vertices. If the
performed number of traversal iterations or the diameter of the graph is small and all
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available hardware resources can be utilized, a scan-based graph traversal can provide a
reasonable execution performance. In this case we can diminish the computational over-
head imposed by the ls-traversal for reading edges multiple times through parallelized
scan operations on the edge list. If, however, a single traversal query cannot leverage all
available parallelization capabilities of the dbms—caused by a high query workload with
possibly hundreds of traversal queries running in parallel—, the ls-traversal suffers from
the work inefficiency of the algorithm.

Although the ls-traversal is predestinated for applying cooperative query processing tech-
niques to improve the throughput of traversal queries, our focus in the scope of this
thesis is on improving single query performance. A recent work by Then et al. (2014)
demonstrated the application of cooperative query processing to graph traversals. This
technique is, however, limited to power-law distributed graphs with a small diameter and
the synchronized execution of a batch of traversal queries. Since Graphite is designed
as a general-purpose graph system with support for arbitrary graph topologies and no
restrictions on query task scheduling, these techniques cannot be directly applied. Instead
we propose a lightweight secondary index structure and a level-asynchronous traversal al-
gorithm to limit the number of accessed edges during the traversal.

5.3.3 Fragmented-Incremental Traversal

In this section we propose an alternative traversal strategy, which reduces the number of
accessed edges compared to the ls-traversal significantly. We build on the general observa-
tion that the size of the frontier set in each traversal iteration is not uniformly distributed
across all traversal iterations, but instead grows until the traversal reaches a certain traver-
sal depth—the traversal iteration where most of the vertices are discovered—and then
shrinks again afterwards (Beamer et al., 2012). While for scale-free graphs with a skewed
degree distribution and a small graph diameter the increase of the size of the frontier set is
steeper, for very sparse graphs, such as road networks, the increase of the size of the fron-
tier set is smoother. For a large frontier set, the ls-traversal is beneficial; for a small frontier
set, a more fine-granular, incremental graph traversal is advantageous. In the following we
sketch the general idea of the fragmented-incremental traversal strategy.

5.3.3.1 General Idea

The fi-traversal divides the edge list represented in columns Vs and Vt into non-over-
lapping, disjoint column fragments and executes the traversal fragment-wise instead of column-
wise. A column fragment contains a subset of the edges of the graph and can be seen as
a logical partition of the edge list. The fi-traversal accesses only those column fragments
that are relevant for the traversal and skips all other column fragments. Based on the
frontier set, the fi-traversal determines the next column fragments to read. In contrast to
the ls-traversal, which operates level-synchronously, the fi-traversal runs level-asynchronous-
ly and reads in each traversal iteration only a small portion of the graph instead of the
complete edge list. More specifically, the ls-traversal collects frontiers from a single traver-
sal iteration during the scan of the complete edge list; the fi-traversal collects frontiers
from multiple traversal iterations during a single read of a column fragment. To determine
the set of candidate fragments, the fi-traversal leverages a secondary data structure, the
transition graph, which stores transitions between column fragments.

5.3.3.2 Transition Graph

A transition graph T := (VF,EF), where VF := {vF1
, vF2

, . . . , vFn } represents the set of col-
umn fragments and the edge set EF ⊆ VF × VF represents transitions between column
fragments, is a single-relational, directed graph. The transition graph is derived from the
graph topology of the data graph GD := (VD,ED) and the edge ordering in the edge col-
umn group. Each column fragment Fi with 1 6 i 6 n consists of an edge set EFi ⊆ ED
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(c) Transition graph (clustered)

F1 F2

F3 F4

{1, 7, 8} {13, 14}

{12, 15} {17, 18, 19}

(d) Transition graph (unclustered)

F1 F2

F3 F4

{1, 7, 8} {13, 14}

{8, 15, 19} {12, 15, 17, 18}

(a) Edge table
(clustered)

Vs Vt

F1

7 8

1 7

8 1

8 13

8 14

F2

13 12

14 19

14 15

14 13

F3

12 15

15 19

15 17

15 18

F4

19 18

18 17

17 16

(b) Edge table
(unclustered)

Vs Vt

F1

1 7

8 1

7 8

8 13

F2

13 12

14 19

14 15

14 13

F3

8 14

15 19

19 18

15 18

F4

12 15

15 17

18 17

17 16

Figure 5.5: Example edge tables and corresponding transition graphs with column fragment size 4.

such that ED := EF1
∪ EF2

∪ . . .∪ EFn . We add a transition between two column fragments,
if the following implication holds:

〈vF1
, vF2
〉 ∈ EF =⇒ ∃v ∈ VD : 〈u, v〉 ∈ EF1

∧ 〈v,w〉 ∈ EF2
(5.5)

Figure 5.5 depicts two example edge tables with and without edge clustering enabled and
their corresponding transition graphs. A transition between two column fragments indi-
cates the existence of (at least) one path of length two with one edge e1 := 〈u, v〉 ∈ EF1

and
one edge e2 := 〈v,w〉 ∈ EF2

. For example, in Figure 5.5 (c) there is a transition between F2

and F3 since there is a path 13 ; 12 ; 15 with 〈13, 12〉 ∈ EF2
and 〈12, 15〉 ∈ EF3

.
Additionally, we store a column fragment synopsis attached to each column fragment in

the transition graph. A column fragment synopsis SFi :=
{
u
∣∣ 〈u, v〉 ∈ EFi

}
is a concise

representation of the distinct source vertices in the edge set EFi . For example, the col-
umn fragment synopsis of the column fragment F2 in the transition graph depicted in
Figure 5.5 (c) is the set {13, 14}.

graph density. When we compare the topologies of the transition graphs in Fig-
ure 5.5 (c) and Figure 5.5 (d), we can see that the edge ordering in the edge column group
directly affects the shape of the topology and the density of the transition graph. The
graph density d is defined as the ratio between edges and vertices and can be computed
as d := |E|

|V |2
. In the context of the fi-traversal, our goal is to exclude as many unrelated col-

umn fragments as possible during the traversal. We achieve this by minimizing the density
of the transition graph, i.e., by minimizing the total number of edges. While the graph den-
sity for the clustered edge column group (cf. Figure 5.5 (c)) is 0.5, the graph density for the
unclustered edge column group (cf. Figure 5.5 (d)) is 0.69. Consequently, by applying the
edge clustering on the edge column group, we can achieve a significantly lower density of
the transition graph. A second important observation is that for a clustered edge column
group the column fragment synopses are smaller. In a clustered setup, each distinct source
vertex is only member of exactly one column fragment and all outgoing edges are stored
in the same column fragment. A column fragment has at most one fragment transition
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to any other fragment, including to itself. Based on these observations, we focus for the
remainder of this chapter on the fi-traversal on clustered edge column groups.

fragment size . The fragment size ξ is a configuration parameter of the fi-traversal
algorithm and denotes the minimal size of a column fragment in the transition graph. We
choose a lenient fragmentation approach to allow fitting the outgoing edges of high-degree
vertices into a single column fragment. In the construction phase, we adapt and increase
the fragment size appropriately to store all the outgoing edges of a vertex in a single
column fragment. In general, however, a column fragment contains the outgoing edges of
multiple vertices. There is a tradeoff between the memory consumption of the transition
graph and the size of the individual column fragments. A larger fragment size leads to a
transition graph with fewer vertices but a higher density. In contrast, a smaller fragment
size leads to a larger transition graph with a higher memory consumption but exposing
a lower graph density. We analyze in the evaluation the effect of different fragment sizes
on the memory consumption of the transition graph and the query performance of the
fi-traversal.

5.3.3.3 Algorithm Description

The fi-traversal operates in a one-fragment-at-a-time manner and traverses the graph in
a series of fragment-level traversals. A fragment-level traversal applies the scan-and-fetch
technique introduced in the ls-traversal on a column fragment instead of the complete
column. In contrast to the ls-traversal, which maintains a single frontier set, the fi-traversal
maintains a list of frontier sets, one for each traversal level, and expands all of them while
processing a fragment. In contrast to a level-synchronous traversal strategy, the fi-traversal
does not necessarily discover all the vertices on level i before continuing with the traversal
on level i+ 1.

After the adjacent vertices for each frontier set have been computed, the fi-traversal
queries the transition graph with the latest discovered vertices and generates new candi-
date column fragments from where to continue the traversal. The intuition behind this
traversal strategy is to only access those column fragments, which contribute to the final
result of the traversal operation. Thereby, the transition graph serves as a navigational index
by providing connectivity information between column fragments.

Since the fi-traversal operates on lists of frontier sets, processing a single fragment usu-
ally generates multiple new candidate fragments. In addition, each discovery of a vertex
can trigger the generation of an individual candidate column fragment. We only choose
and process one column fragment at a time and enqueue all the other generated candidate
column fragments in a query-specific priority queue, the fragment queue. We set the initial
priority of a candidate column fragment to 1, but increase the priority for every subsequent
candidate generation of the same column fragment. We store already processed column
fragments in a fragment list and append the last processed column fragment.
Once the traversal finished processing the column fragment, theoretically all adjacent col-
umn fragments in the transition graph can become new candidate column fragments. For
each discovered frontier vertex we probe all column fragments, which are adjacent to the
last processed column fragment—the tail of the fragment list—and probe their column
fragment synopses. If an adjacent column fragment matches, i.e., there is a transition be-
tween the tail and the column fragment and the column fragment synopsis contains one
of the frontier vertices, we add it to the fragment queue. If the column fragment is already
enqueued, we increase its priority. If there are no frontier vertices, we remove the column
fragment with the highest priority from the fragment queue and continue the traversal.
The traversal terminates, when there are no more column fragments to process, i.e., the
fragment queue is empty.

example . Figure 5.6 depicts an exemplary edge table and the corresponding transition
graph. Let us consider a traversal query ρ := ({ 8 } , “*”, 2, 2,→) that starts at vertex 8 and
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(b) Transition graph.

F1 F2

F3 F4

{1, 7, 8} {13, 14}

{12, 15} {17, 18, 19}

(a) Edge table.

Vs Vt

F1

7 8

1 7

8 1

8 13

8 14

F2

13 12

14 19

14 15

14 13

F3

12 15

15 19

15 17

15 18

F4

19 18

18 17

17 16

Step Fragment List Frontiers Depths Fragment Queue
1 [F1] {1, 13, 14} 1→ {1, 13, 14} {(1, F1), (1, F2)}

2 [F1, F1] {7}
1→ {1, 13, 14},

2→ {7}
{(1, F2), (1, F1)}

3 [F1, F1, F1] ∅ 1→ {1, 13, 14},
2→ {7}

{(1, F2)}

4 [F1, F1, F1, F2] {12, 13, 15, 19}
1→ {1, 13, 14},

2→ {7, 12, 13, 15, 19}
∅

(c) Exemplary step-by-step processing.

Figure 5.6: Stepwise processing in fi-traversal for traversal configuration ({ 8 } , “*”, 2, 2,→).

performs a 2-hop traversal. In Figure 5.6 (c) we show a step-by-step processing with the
states of the most important auxiliary data structures. Each row in the table represents
the state of the fi-traversal after processing a column fragment and after updating the
fragment queue. Since the outgoing edges of vertex 8 all reside in fragment F1, we start
the traversal in this fragment. We perform the fragment-level traversal and generate the
set of frontiers, i.e., the vertex set { 1, 13, 14 }, and store the discovered vertices and their
corresponding traversal depths in Depths. Column fragment F1 has two adjacent fragments,
F1 and F2, which are probed with the frontiers { 1, 13, 14 }. Since vertices 13 and 14 are both
in the fragment synopsis of F2 and vertex 1 is in the fragment synopsis of F1, we add both
candidate fragments to the fragment queue. The second step removes column fragment
F1 from the fragment queue, processes F1, and generates a frontier set { 7 }. Since vertex 7

has not been discovered before, we add it to the Depth list and generate a new candidate
column fragment F1. In step 3 we scan column fragment F1 again for adjacent vertices
of 7. Although vertex 8 is adjacent to vertex 7, we omit it from the result, since vertex
8 is the root vertex and therefore has been already discovered. In step 4 we remove the
column fragment F2 from the fragment queue and generate a frontier set { 12, 13, 15, 19 }.
Since the traversal reached the maximum traversal depth and there are no more fragments
to process from the fragment queue, we can terminate the traversal and produce the final
result set { 7, 12, 15, 19 }. Since vertex 13 has been already discovered in the first traversal
iteration, we remove it from the final result.
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Algorithm 5: fi-traversal

1 Procedure nWayScan(begin, end, F[ ],Eactive, sFactor,P[ ])
2 forall v ∈ Vs[begin : end] do
3 forall i ∈ { 0, 1, . . . , sFactor − 1 } do
4 if v ∈ F[i]∧ v.rid ∈ Eactive then
5 P[i].append(v.rid);
6 Eactive[v.rid] = false;

7 Procedure nWayFetch(P[ ], mFactor, F[ ])
8 forall i ∈ { 0, 1, . . . , mFactor − 1 } do
9 forall p ∈ P[i] do

10 F[i+ 1].append(Vt[p]);

Input : Traversal configuration κ = (Sm,Eactive, c, r,d).
Output : Set of discovered vertices R.

11 begin
12 if d is backward then
13 swap(Vs,Vt) ; // Adjust Column Handles

14 Dw[0]← Sm;
15 Frontiers← Sm;
16 sFactor← 1;
17 mFactor← 1;
18 while getNextFragment(Frontiers, F) do
19 Vs.nWayScan(F.begin, F.end,Dw,Eactive, sFactor,P);
20 Vt.nWayFetch(P, mFactor,Dw, Frontiers);
21 if sFactor 6 r then ++sFactor;
22 if mFactor < r then ++mFactor;

23 R← generateResult(c, r,Dw);

5.3.3.4 Implementation Details

After introducing and describing the general idea of the fi-traversal, we sketch the algo-
rithm in Algorithm 5. We pass a traversal configuration ρ with a vertex set Sm, an edge set
Eactive, a collection boundary c, a recursion boundary r, and a direction d to the fi-traversal
algorithm. The fi-traversal outputs a set R of vertices that have been discovered between
the collection boundary c and the recursion boundary r.

algorithm description. Since the execution of an fi-traversal is based on sequential
reads of fragments, we parallelize the execution of the scan if necessary and materialize
operations within a single column fragment. Further, we use compact bloom filters with
bits set for all distinct values present in the fragment as fragment synopsis.

An fi-traversal runs in a series of steps, where we process one fragment per step. At the
beginning of each step, the algorithm getNextFragment receives a set of frontier vertices
and returns the next fragment F to read. A fragment contains the start and end position in
the column and limits the scan to that range. Initially, we pass the set of start vertices as
frontiers to getNextFragment. The body of the main loop performs a scan operation and a
fetch operation. The scan takes the first sFactor working sets from the traversal iterations
and returns matching edges in the corresponding position lists from the vector of position
lists P. For example, an n-way scan with sFactor=2 probes the column with two vertex sets
from two different traversal iterations and returns matching edges into two position lists.
Subsequently, newly discovered adjacent vertices are materialized in a similar multi-way
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Algorithm 6: Procedure getNextFragment(Frontiers,F)

Input : Set of frontier vertices Frontiers.
Output : Candidate fragment F.

1 begin
2 Flast ← m_chain.getLast();
3 foreach outgoing edge e = (Flast, Fcand) from F do
4 foreach v ∈ F do
5 if Fcand.matches(v)∧¬I.hasKey(Fcand, v) then
6 I.insert(Fcand, v);
7 if PQ.hasKey(Fcand) then
8 PQ.increasePrio(Fcand)

9 else PQ.insert(F);

10 if ¬PQ.empty() then
11 F← PQ.extractMin();
12 m_chain.add(F);
13 return true;

14 else return false;

manner as in the scan operation. Depending on the mFactor, we read the collected position
lists and add adjacent vertices to the working sets from Dw. In addition, newly discovered
vertices are added to the set of frontier vertices Frontiers. Once the recursion boundary
is reached, the traversal reads and processes all remaining fragments from the fragment
queue. If getNextFragment does not return any more fragments, the traversal terminates
and generates the final result according to the given collection and recursion boundaries.

candidate fragment selection. Algorithm 6 describes how to find the next frag-
ment given a set of frontier vertices. It starts with the last processed fragment and probes
adjacent fragments for matching vertices. For each adjacent fragment, we consult its frag-
ment synopsis and compare the frontiers against it. If a frontier matches, we update the
fragment queue accordingly. If the fragment is already in the queue, we increase its prior-
ity, otherwise we insert it. Further, we invalidate vertices in the synopses that triggered the
candidate fragment selection. We keep invalidated vertices and their corresponding frag-
ments in an invalidation list I (Line 6). Finally, we return the fragment with the highest
priority from the fragment queue and append it to the execution chain. Since the fragment
synopses are implemented as compact bloom filters, false positive fragments can occur.
However, a false positive does not harm the traversal correctness. There is a tradeoff be-
tween space consumption and execution time for the fragment synopses. We evaluate the
effect of the size of a bloom filter in the experimental evaluation. Since the value distribu-
tion in fragments might vary, each bloom filter can have a different size depending on the
number of distinct values present in the fragment.

Cost Estimation

The cost estimation of the fi-traversal is slightly more complex than for the ls-traversal
since the calculation of the costs depends on a larger set of input parameters. The costs of
an fi-traversal can be directly related to the number and the size of the accessed fragments.
Hence, we can use the chain of read fragments Fp to derive the cost of the fi-traversal. The
overall cost is the accumulated cost of the reads for all accessed fragments in Fp. Conse-
quently, the traversal cost is not directly dependent on the number of traversal iterations
anymore. We define the cost CFI of an fi-traversal in Equation 5.6 as follows.
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Cfi =

min{r,δ̃}∑
i=0

(1 + p)(d̄out)
i · ξ · Ce (5.6)

The cost depends on the average false positive rate p of the fragment synopses, the av-
erage vertex outdegree d̄out, and the fragment size ξ. The fi-traversal is bounded by the
minimum of the recursion boundary r and the estimated effective graph diameter δ̃. The
most important factors effecting the memory consumption of the transition graph index
are the size and number of fragments. We can minimize the memory consumption of the
transition graph index by grouping edges by source vertex (cf. Section 4.3.2.2). Then, each
vertex with incoming and outgoing edges contributes exactly once to a single fragment
transition. We discuss these configuration parameters and their performance implications
for the fi-traversal in the evaluation in Section 5.5.

5.3.4 Customization by User Code

Up to this point, we used the traversal operator in a traditional way as a plan operator
inside an rdbms and it like a black box that receives a well-defined input and produces
a single output. This perfectly matches the requirements of a declarative language, where
a query is translated into an execution plan with a set of operators. Nevertheless, graph-
related applications often demand a more flexible and extensible implementation provid-
ing an interface to plug in custom code. For example, an application aggregating vertex
attributes at each traversal iteration requires a strict ordering of the discovered vertices
during the execution of the traversal operator. At certain checkpoints, the extended traver-
sal implementation relies on the completeness and correctness of the intermediate traversal
result.

Figure 5.7 illustrates two different intermediate result snapshots for two traversal op-
erator implementations. We represent the intermediate results as traversal trees, including
the discovered vertices and the paths on which they were visited. Both traversal trees
depict the intermediate results for the traversal query ({A } , ’type=a ∨ type=b’, 3, 3,→) at
checkpoint t2. The left traversal tree shows an intermediate result of a level-synchronous
implementation, the right traversal tree sketches an intermediate result of a fragmented-
incremental implementation. The fi-traversal shows a different output of the intermediate
results compared to the ls-traversal and does not follow a strict breadth-first ordering.
The final output for both traversal implementations will be the same, but the intermediate
results can be different. Based on this observation, we provide the following definitions to
describe these characteristics.

Definition 6 (Intermediate Completeness) A graph traversal implementation is intermediate
complete, if it can provide a complete intermediate result for a running traversal query at well-
defined checkpoints. An intermediate result is complete, if all vertices with a distance of exactly d
have been discovered at each checkpoint td.

Definition 7 (Intermediate Correctness) A graph traversal implementation is intermediate cor-
rect, if it can provide a correct intermediate result for a running traversal query at well-defined
checkpoints. An intermediate result is correct, if it is intermediate complete at distance d and no
other vertices have been discovered at each checkpoint td.

Following these definitions, we conclude that a level-synchronous traversal implementa-
tion is both intermediate complete and intermediate correct and could be used to execute user
code at certain checkpoints. In contrast, a fragmented-incremental traversal implementa-
tion is not guaranteed to be intermediate complete and therefore also not guaranteed to be
intermediate correct. Consequently, a fragmented-incremental traversal implementation can
be used only in combination with custom code, if the code does not rely on intermediate
completeness nor on intermediate correctness. We discuss further challenges for the integra-
tion of user code into traversal operators in Chapter 7.
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(a) Example graph.
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(c) fi-traversal.

Figure 5.7: Traversal trees for ls-traversal and fi-traversal for traversal configuration
({A } , ’type=a ∨ type=b’, 3, 3,→).

5.4 distributed traversals in shared-memory

So far we were only concerned with graph traversals on graphs that reside in a single
storage container and are not partitioned either on the same machine or across multi-
ple machines. We distinguish between shared-memory graph traversals, where the graph
resides on a single machine but is split into graph partitions, and shared-nothing graph
traversals, where the graph is partitioned across multiple hosts. Since our aim to provide a
single-node graph processing solution, we focus our attention in this section on distributed,
shared-memory graph traversals. The reason for separating the graph into partitions on
a single machine can be many-fold: (1) For example, the graph can be partitioned across
numa nodes to improve load balancing of parallel graph algorithms across several threads.
(2) Since our graph storage is based on column groups, the graph storage can be horizon-
tally partitioned based on a round robin or a hash-/range-based partitioning strategy to
improve query performance or to circumvent table size restrictions. (3) Vertices and edges
are not directly inserted into the (possibly compressed) graph representation, but instead
temporarily stored in a write-optimized buffer storage. Query processing on a graph stor-
age, which separates the graph into a static read-optimized storage and a dynamic write-
optimized storage, automatically leads to distributed graph queries on multiple graph
partitions.

Partitioning
Strategy

Size
Distribution

Number of
Partitions

Read/Write Separation update-driven
read: large

write: small
up to 2

Column Group Partitioning round-robin/hash uniform arbitrary

Table 5.2: Overview of graph partitioning and separation strategies.

Table 5.2 summarizes the employed graph partitioning and separation techniques in
Graphite. For the graph separation into a read-optimized and a write-optimized graph
partition, the partitioning scheme is driven by the query workload, i.e., the order of graph
manipulation operations. In contrast to a graph partitioning, which aims at minimizing
a certain cost function—such as minimizing cross-partition edges—, the graph separation
leads to an non-optimal graph partitioning. We refer to this as update-driven as the dbms

cannot influence the partitioning criteria. Since the write-optimized graph partition is only
a buffering data structure, the inserted vertices and edges are periodically merged into
the read-optimized graph partition. Therefore, we assume that the read-optimized graph
storage contains a large fraction of the entire graph, i.e., more than 90% of all vertices
and edges, and the write-optimized graph storage contains less than 10% of the entire
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graph. The column group partitioning instead generates a uniform partition size distribu-
tion and a well-defined partition criterion, such as partitioning by vertex identifier and
edges by source/target vertex. We note here that the two partitioning schemes are nested,
i.e., a graph can be partitioned into multiple vertex and edge column groups and each ver-
tex/edge column group is separated into a read-optimized and a (possibly empty) write-
optimized graph storage. Therefore, we consider distributed graph traversals rather as the
normal case than as the exception.

5.4.1 Impact of Dictionary Encoding

Graphite employs dictionary encoding on each column individually and maps each dis-
tinct value in the column to a 32bit value code. Dictionary encoding is particularly benefi-
cial on variable-length values, such as elements of type VARCHAR, and for repeating values,
i.e., when the value domain is small compared to the number of entries in the column
group. Although vertex identifiers are mostly represented by 64bit unsigned integers,
graph data models, such as rdf or the extended property graph data model of sap hana

represent vertex identifiers as string-based uris.
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Figure 5.8: Example graph with vertices and edges from read-optimized store (solid) and write-
optimized store (dashed).

Figure 5.8 depicts an example graph, where solid lines represent vertices and edges resid-
ing in the read-optimized graph store and dashed lines correspond to vertices and edges
residing in the write-optimized graph store. The dictionary data structures (Dict) represent
the mappings of distinct values to value codes for the vertex identifier, the source vertex,
and the target vertex, respectively. The data vectors (DV) contain the actual data solely
using the value code to reference the actual values. The dictionaries of the read-optimized
graph store are sorted, the dictionaries of the write-optimized graph storage are not sorted
to allow fast insertions. Since a dictionary only captures the value domain of the corre-
sponding column, the same vertex identifier can be mapped to a different value code in
each column. For example, vertex C is represented as value code 3 in the read-optimized
graph store source vertex dictionary, as value code 1 in the read-optimized graph store
target vertex dictionary, as value code 1 in the write-optimized graph store source vertex
dictionary, and as value code 3 in the read-optimized graph store target vertex dictionary.
If we consider a single vertex/edge column group, each vertex identifier can have 4 dif-
ferent value codes; if we consider multiple vertex/edge column groups as a result of a
partitioning, the problem becomes more severe.

To tackle the value coding problem, there are essentially three solutions: (1) Use a global
dictionary for all columns sharing the same value domain, (2) operate on values instead
of value codes, which results in a higher memory footprint of runtime data structures and
increased processing time, and (3) use mapping tables to transform the value codes from
one column into the corresponding value codes of the other column.
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Figure 5.9: Value code translation schemes.

Although a global dictionary would significantly simplify query processing on encoded
columns, it also has major drawbacks, such as more complicated data loading and delta
merge routines. Operating directly on values instead of value codes also simplifies query
processing but has the disadvantage that it suffers from poor query performance for string-
based columns and by giving up the properties of a complete range of possible values.
Since value codes are generated strictly sequential and without gaps in between them, com-
pact data structures, such as bitsets can be used to represent sets of value codes. Therefore,
we focus in the remainder of this section on the development of light-weight, maintainable
mapping structures, which cannot only provide a mapping between columns in the read-
and write-optimized graph storage, but also across multiple vertex/edge column groups.

5.4.2 Data Structures

We employ so-called translation tables, i.e., array data structures, which map each value
code from a column C1 to the corresponding value code in column C2, such that the cor-
responding external values are equal. Figure 5.9 (a) depicts the classical mapping scheme
between the four columns that encode the graph topology—two columns Vrs and Vrt in the
read-optimized graph storage and two columns Vws and Vwt in the write-optimized graph
storage. The resulting mapping graph is fully connected, i.e., each column maintains a local
mapping table to every other column. For k columns, the total number of local mappings is
k · (k− 1). This approach has three major drawbacks, namely a high memory consumption,
a high maintenance overhead in the presence of updates, and a poor scalability for a large
number of multiple column group partitions.

Instead of relying on a local-to-local mapping, we propose a global-to-local mapping,
which leverages the fact that we can easily build a virtual, global dictionary G across
all vertices present in the graph. Since the vertex identifier column is a primary key on
the vertex column group and uniquely identifies a vertex in the graph, we can generate
globally unique value codes for all vertices. This is based on the fact that a vertex can
either reside in the read-optimized graph storage or in the write-optimized graph storage,
but never in both at the same time. Figure 5.9 (b) depicts the translation mapping scheme
for the global-to-local mapping, where the virtual, global dictionary G is at the center and
consists of k global-to-local mappings. Additionally, each column maintains a local-to-global
mapping. This effectively reduces the number of translation tables for k columns from
k · (k− 1) down to 2 · k.

In Figure 5.10 we depict an example of the graph shown in Figure 5.8 (a) and the corre-
sponding translation tables (global-to-local and local-to-global). The global virtual dictio-
nary contains all vertices in the graph and uses the value codes of the vertices from the
read-optimized graph store and adds an offset to the value codes from the write-optimized
graph store. The global-to-local mapping transforms a global value code into the corre-
sponding local value code of the column. This mapping is sparsely populated since each
column only exposes a subset of the entire vertex set. The global-to-local mapping can be
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Figure 5.10: Value code mapping for vertex id, source, and target vertex columns.

represented as a set of hash maps with the global value code as key and the local value
code as value. Alternatively, each mapping vector could be compressed using a sparse en-
coding which eliminates all empty entries from the mapping. We keep one local-to-global
mapping per column, where we store the mapping as an array of the size of the number
of distinct values in the column. Instead of relying on a direct translation infrastructure,
we add an indirection, which allows scaling to a large number of column partitions.

5.4.2.1 Translation Table Maintenance

After describing the translation tables in general, we now sketch the maintenance of trans-
lation tables in the presence of edge insertions. Since newly inserted vertices and edges
are stored in the write-optimized graph store, we need to consider maintaining the local-
to-global mappings and the global-to-local mappings accordingly. We can distinguish the
following two cases:

1. Both source and target vertex already reside in the write-optimized graph store.

2. Source or target vertex do not reside in the write-optimized graph store.

If both source and target vertex already reside in the dictionaries of the write-optimized
graph store, the translation tables do not need to be updated. In contrast, if any of the
two vertices incident to an edge is not present in the dictionaries, it is appended to the
dictionary and receives a new local value code. New entries in the local-to-global mapping
can be added at the end of the array structure or inserted into the hash map for the global-
to-local mappings. If a new vertex is inserted, a new global value code is generated by
appending the vertex at the end of the virtual global dictionary. By that, all updates to the
translation tables can be performed in constant time. The number of updates is limited to
at most four, where two updates are append-only operations to the corresponding local-
to-global mappings and two updates are insertions into the global-to-local mappings.

5.4.3 Graph Update Patterns

To be able to efficiently process graph traversal across read- and write-optimized graph
store, it is crucial to know how the graph is spread across the two graph partitions. Espe-
cially since the partitioning criterion is not driven by the dbms, but instead by the incom-
ing graph manipulation requests. We distinguish two major graph growth patterns, graph
topology densification and graph topology extension. Figure 5.11 depicts both update patterns
where solid black lines denote vertices and edges residing in the static partition of the
graph, i.e., the read-optimized graph store; red dashed lines correspond to vertices and
edges that are stored in the dynamic partition of the graph, i.e., the write-optimized graph
store.

The topology densification is characterized by a growing graph density, i.e., the number
of edges grows much faster than the number of vertices. Additionally, the graph becomes
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Figure 5.11: Graph update patterns.

more connected, the average number of adjacent vertices grows, and the overall graph
diameter shrinks.

Contrary to the topology densification is the topology extension, which describes the
growth of the graph into certain directions by forming new clusters and expanding the
topology at the borders of the graph. Topology extension can be characterized by a large
number of vertex and edge insertions, where edges are primarily added between recently
added vertices and not by connecting old vertices.

Although collecting statistical information about the graph growth is useful to efficiently
process graph traversals on multiple graph partitions, the growth type and rate might
change over time.

5.4.4 Query Processing

In the following we describe two graph traversal strategies on distributed graphs that are
partitioned across a read-optimized and a write-optimized graph store.

5.4.4.1 Distributed Level-Synchronous Traversal

The distributed level-synchronous traversal works similar to the non-distributed algorithm
described in Section 5.3.2. During each traversal iteration, we perform a single-hop traver-
sal individually on the read-optimized and the write-optimized graph store. After each
traversal iteration, a global synchronization barrier ensures that all local traversals have
been completed before the next traversal iteration starts. Figure 5.12 depicts an exemplary
traversal for the traversal configuration ({A } , “*”, 2, 2,→), where dotted edges represent
expanded edges in the current traversal iteration. The first iteration expands the edge
〈A,C〉 in the read-optimized graph store and the edge 〈A,B〉 in the write-optimized graph
store in parallel. At the synchronization barrier, both local results are translated into a
global vertex set using the translation mappings described in Section 5.4.2, and perform
the same checks to handle cycles and for building the frontier vertex set for the next traver-
sal iteration.

Although the distributed level-synchronous traversal has several advantages, such as
algorithmic simplicity and good parallelization opportunities, the skewed partition size
distribution of the read-optimized and the write-optimized graph store poses an additional
overhead and results in an underutilization of available resources. If the edges present in
the write-optimized graph store are relevant for the traversal, we have to access both read-
optimized and write-optimized graph store. The distributed level-synchronous traversal
works particularly well when the graph update pattern describes a topology densification,
i.e., new edges are added between already existing vertices. If the write-optimized graph
store is very small (< 5% of all edges), we can materialize the value code mapping by



5.4 distributed traversals in shared-memory 87

A C

B

D E

F

G

(a) Example graph.
R

ea
d-

O
pt

im
iz

ed
St

or
e

W
ri

te
-O

pt
im

iz
ed

St
or

e

Sync Sync

A

A

B

C A

B

C E

A

B

C

D

G

A

B

C

D

G

E

(b) Traversal iterations.

Figure 5.12: Exemplary partitioned level-synchronous traversal for configuration ({A } , “*”, 2, 2,→).
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Figure 5.13: On-the-fly value code reencoding.

encoding the data vectors of the write-optimized graph store on-the-fly as a preprocessing
step.

Internal Reencode

We refer to this strategy as internal value reencoding, which transforms the value codes of
the write-optimized graph store into the value codes of the read-optimized graph store.
By doing so we perform a simulated delta merge, where we reencode the data vectors but
do not persist the changes. Figure 5.13 depicts an example for a value code reencoding.
If the corresponding value code exists, the local value code of the corresponding column,
otherwise we compute an offset encoding, where the new value code vn in a column C is
computed as vn = vw+ |C|, where vw corresponds to the value code in the write-optimized
graph store.

5.4.4.2 Successive Graph Traversal

When the write-optimized graph store only represents a small fraction of the entire data
graph and the graph topology grows by extending the graph at the boundaries, we can use
an optimistic approach assuming that we can serve the traversal from the read-optimized
graph store only. The algorithm performs the traversal first on the read-optimized graph
store only and keeps intermediate frontier vertex sets for validation purposes. When the
traversal finishes, the kept intermediate vertex sets are used to validate that all reachable
vertices have been visited in the correct order. Figure 5.14 depicts an example traversal,
where the traversal on the read-optimized graph store can be processed independently
from the processing of the traversal on the write-optimized graph store. Since the visitation
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order might vary, we have to validate the result and eliminate all vertices from the final
result, which have not been discovered on the shortest path (for example vertex C has been
first discovered at depth 1 in the read-optimized graph store, but again at depth 2 in the
write-optimized graph store). If the validation phase reveals that relevant edges exist in the
write-optimized graph store, then we have to probe the read-optimized graph store again
afterwards. We refer to this as traversal ping ponging, where paths across the two partitions
lead to an increased synchronization overhead.

To summarize, we described two alternatives for processing distributed graphs, where
the graph topology is spread across two graph stores, a read-optimized one and a write-
optimized one. A distributed level-synchronous graph traversal performs well on graphs,
where the graph topology becomes denser over time, i.e., edges are mainly inserted be-
tween already existing vertices. In contrast, the successive traversal first operates on one
graph store, the read-optimized store, and then performs a validation of the partial result
against the write-optimized graph store. This approach performs well, when the update
pattern extends the graph topology, i.e., adds new edges by adding new vertices. We can
categorize the level-synchronous traversal as pessimistic approach, where we assume that
all graph partitions contribute to the traversal, and the successive traversal as optimistic,
where we assume that the complete traversal can be processed from a single graph parti-
tion in most cases.

5.5 experimental evaluation

We evaluate the ls-traversal and the fi-traversal on a diverse set of real-world and gener-
ated graphs and for different types of graph traversal queries. In the following, we describe
the environmental setup and the evaluated data sets. We evaluated different aspects of
both traversal implementations, including the memory consumption, the execution time,
and a system-level comparison with a native disk-based gdbms and two main-memory,
columnar rdbms.

5.5.1 Setup and Data Sets

We implemented the ls-traversal and the fi-traversal algorithm in Graphite as traversal
kernels in our traversal framework that we introduced in Section 5.3. Initially, we load
the data sets into their corresponding vertex and edge column groups in Graphite, and
populate the transition graph index for the fi-traversal .

We conducted all experiments on an Intel
® Xeon

® E5-2660 machine with 2 sockets, 10

cores per socket, 2 threads per core, each core running at 2.6GHz. The machine runs on
sles 12 sp1 and is equipped with 128GB of ddr4 ram and 25MB last level cache. We
compiled Graphite using gcc 4.9.3 with compiler options -O3 and -march=native. For
the ls-traversal we use all available threads of the machine, for the fi-traversal we use 1

thread to scan a single fragment.
To evaluate our approach on a wide range of different graph topologies, we selected

six real-world graph data sets from the domains: social networks (Orkut, Twitter, Live-
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Journal), citation networks (Patents), autonomous system networks (Skitter), and road
networks (Cali). Additionally, we evaluated ls-traversal for generated data sets using the
r-mat data generator. Table A.1 summarizes the most relevant topology properties of the
evaluated data sets.

All evaluated queries are of the form {{ s } , ’*’, k, k,→}, where s is a randomly selected
start vertex, ’*’ refers to a nonselective edge filter, and k denotes the traversal depth. With-
out losing generality, we focus in the evaluation on traversal queries where the collection
boundary is equal to the recursion boundary. Such traversal queries only return vertices
first discovered in traversal iteration k. For the runtime analysis, we randomly selected
start vertices for the traversal and report the median execution time over 50 runs. We
decided to report the median since the execution highly varies for different start vertices.

We compare the ls-traversal and fi-traversal implementations against two join-based
approaches (with and without secondary index support) in sap hana and the commu-
nity edition of the native gdbms Neo4j 3.0.3 (Robinson et al., 2015). Before we ran the
experiments, we prepared and configured the evaluated systems as follows:

Neo4j

We use the Neo4j 3.0.3 Community Edition and Cypher, Neo4j’s declarative query lan-
guage, to run the experiments. Initially, we load the graphs into the system, where each
graph consists of a vertex set with attribute id and an edge set with attributes start node, end
node, and label. We followed the instructions provided by Neo4j and configured the page
cache and the heap size of the jvm such that the entire graph fits into the main memory of
the machine. We warmed up the caches by running randomly 100 traversal queries against
the database instance, prior running the experiments.

Listing 5.1: General structure of the evaluated Cypher queries.

// 2-hop traversal

MATCH (a)-->(b)-->(c)

WHERE id(a) = (?)

AND a <> b AND a <> c AND b <> c

RETURN COUNT(DISTINCT(c));

Listing 5.1 shows an example query in Cypher, which implements our traversal semantics.
Since Cypher follows a homomorphic pattern-matching query paradigm with edge unique-
ness, we have to avoid the repeated matching of already discovered vertices. We do this by
adding additional constraints to the query, i.e., by pairwise adding inequality constraints
on all defined vertex variables. Additionally, we found out that the result materialization
of discovered vertices does not scale well to growing result set sizes. To overcome this
limitation, we only return the number of discovered vertices instead of materializing the
complete result set.

sap hana

We loaded the graph topology consisting of two columns, one for source vertices and one
for target vertices, into an in-memory, columnar table. For the table, we used the following
schema:

CREATE COLUMN TABLE EDGES(SOURCE INTEGER NOT NULL, TARGET INTEGER NOT NULL);

After the initial loading phase, we performed a delta merge on the edge table and loaded
the entire table into memory. For the index-assisted experiments, we generated an addi-
tional secondary index on the SOURCE column. For the generation of the sql statements
that perform the graph traversal, we have to take two important considerations into ac-
count: (1) cycles in the graph should be handled gracefully and no cyclic paths should
be evaluated during the traversal, and (2) vertices are only returned if they have not been
discovered already in an earlier traversal iteration.
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Listing 5.2: sql implementation of a {{ 1 } , ’*’, 3, 3,→} traversal starting from vertex 1.

SELECT DISTINCT(E3.TARGET) FROM EDGES E1, EDGES E2, EDGES E3

WHERE E1.SOURCE = 1

AND E1.TARGET = E2.SOURCE

AND E2.TARGET = E3.SOURCE

AND E1.SOURCE <> E2.SOURCE

AND E1.SOURCE <> E3.SOURCE

AND E1.SOURCE <> E3.TARGET

AND E2.SOURCE <> E3.SOURCE

AND E2.SOURCE <> E3.TARGET

MINUS

SELECT DISTINCT(E2.TARGET) FROM EDGES E1, EDGES E2

WHERE E1.SOURCE = 1

AND E1.TARGET = E2.SOURCE

AND E1.SOURCE <> E2.SOURCE

AND E1.SOURCE <> E2.TARGET

Listing 5.2 depicts an implementation of a 3-hop traversal in sql for a traversal configura-
tion {{ 1 } , ’*’, 3, 3,→}. The structure of the sql statement follows a similar structure as our
set-based formal notation of the traversal, which separates the discovered set of vertices
into two different sets, the visited vertices and the target vertices. We implement this notation
using two queries to compute the two vertex sets and removing vertices, which have been
already discovered at an earlier traversal iteration from the final result set. To avoid the
evaluation of cyclic paths, we add pair-wise inequality constraints on all joined edge tables
along the traversed paths. This example serves as our canonical implementation for gen-
eral traversal implementations for traversal configurations of the shape {{ s } , ’*’, k, k,→} for
some root vertex s and some traversal depth k. We note that although this query pattern
looks quite repetitive and inefficient, most modern query optimizers can detect that most
of the intermediate results can be shared between the two subqueries.

5.5.2 Memory Consumption

In this experiment we study the impact of different parameter configurations for the fi-
traversal on the memory consumption of the transition graph index. We created transition
graph indexes for six different data sets on a clustered edge column group and varied the
fragment size ξ and the desired false positive rate p of each fragment synopsis. The results
are depicted in Figure 5.15. To evaluate the impact of the fragment size ξ, we construct
the transition graph index for different fragment sizes from 2

6 to 2
16 and a fixed average

false positive rate of 1%. Further, we analyze the effect of the average false positive rate
for a representative fragment size ξ = 512 and construct fragment synopses based on an
average false positive rate selected from {1%, 5%, 10%, 20%}.

For fragment size ξ = 1024, the transition graph index consumes on average only about
10% of the size of the input graph for all evaluated data sets. For a fragment size ξ = 1024,
the transition graph index of the Twitter data set has the highest memory consumption
with about 2.09GB (about 8.4% of the raw size of the graph). Similarly, the Cali data set
has the lowest memory consumption (about 8.8% of the raw size of the graph). If the edge
clustering on the edge column group is disabled, i.e., edges are placed in random order,
the memory consumption of the transition graph index grows up to a factor of 10 of the
original graph, effectively making it impractical for realistic scenarios.

impact of fragment size . For all evaluated data sets, the memory footprint of the
transition graph index decreases for increasing fragment sizes. A larger fragment size
leads to a smaller number of vertices in the corresponding transition graph and to fewer
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Figure 5.15: Memory consumption of the transition graph index for different false positive rates and
fragment sizes.

possible transitions between them. Although larger fragments in general result in a denser
transition graph, the total number of fragment transitions is much lower. For very sparse
graphs, such as Cali or Skitter, the transition graph index consumes for a fragment size
ξ = 2

16 only up to 37% of the memory compared to a fragment size ξ = 2
6.

impact of false positive rate . We store fragment synopses in space-efficient bloom
filter structures, where each fragment synopsis occupies as much memory as needed to
fulfill the predefined false positive rate. A smaller false positive rate causes the fi-traversal
to access more fragments, but reduces the memory footprint of the transition graph index.
We show the memory overhead of the transition graph index for different false positive
rates in Figure 5.15. For the Patents data set, a false positive rate of 20% leads to a mem-
ory footprint decrease of 13% compared to a false positive rate of 1%. In contrast, the Cali

data set reaches a decrease in the memory footprint of almost 50% for a false positive rate
of 20% compared to a false positive rate of 1%.

5.5.3 Runtime Analysis

In Figure 5.16 we present the performance results of the ls-traversal for all data sets and
different traversal queries. We report median execution times of the three traversal phases
preparation, traversal, and decoding as well as average output sizes. In general, we can see
that the traversal phase dominates the overall execution time of the traversal operator and
consumes up to 95% of the total runtime. The preparation phase only accounts for about
5% of the overall execution time and is independent from the number of traversal itera-
tions as it only evaluates the edge predicate and processes the start vertices. The execution
time of the decoding phase depends on the output set size as it translates for each ver-
tex the internal value code back into the corresponding external vertex identifier. For the
Skitter data set, the effect of the output size on the execution time of the decoding phase
becomes noticeable, where the output size steadily grows until it reaches its maximum
output size after 6 iterations. The ls-traversal scales linearly with an increasing number
of traversal iterations since the full column scan takes nearly the same time for each itera-
tion to complete. For traversal iterations with a large frontier set, the scan operation takes
slightly longer since more search hits have to be written to the intermediate scan buffer
data structures.

In Figure 5.17 we present a comparison of the ls-traversal and the fi-traversal on all eval-
uated data sets. We evaluate the fi-traversal with a false positive rate of 1% and for frag-
ment sizes ranging from 2

7 to 2
10. We also evaluated larger fragment sizes, which resulted

in higher execution times and are therefore omitted in the results. For all data sets, ls-
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Figure 5.16: Execution time and output size of ls-traversal for different queries and data sets.

traversal exhibits a linear execution time behavior for an increasing number of traversal
iterations until the queries reach the effective diameter. After a traversal query reached the
effective diameter, the plot flattens for longer traversal queries as most vertices have been
already discovered. In comparison, the data plots of the fi-traversal grow much faster for
an increasing number of traversal iterations. For short traversals with a small number of
traversal iterations, the fi-traversal outperforms the ls-traversal by up to two orders of
magnitude. This can be explained with the fine-granular graph access pattern of the fi-
traversal. For the first 1 to 3 traversal iterations, only a small fraction of the entire graph is
traversed and a more fine-granular access on a fragment level outperforms a full-column
scan. For a large frontier set, potentially many fragments have to be accessed which causes
a large number of cache misses since new fragments have to be fetched from memory. If a
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Figure 5.17: Comparison of ls-traversal and fi-traversal for different queries and data sets.

large fraction of the graph is accessed in a traversal iteration, a full-column scan is faster
and more cache-friendly compared to a large number of small fragment scans.

The break-even point when the fi-traversal outperforms the ls-traversal depends on the
graph topology and the given traversal query. From the experimental results, we observe
that for short traversal queries, the fi-traversal outperforms the ls-traversal by up to two
orders of magnitude. For four out of six data sets, the fi-traversal outperforms the ls-
traversal for traversal queries with r 6 5. Another observation that we made is that the
fragment size has a severe impact on the overall execution performance of the fi-traversal.
For the Cali data set, the fragment size does not only effect the total execution time, but
can also increase the range of traversal queries, where the fi-traversal outperforms the
ls-traversal. For example, a traversal query with traversal depth 14 on the Cali data set
consumes for a fragment size ξ = 2

7 only about 26% of the execution time than for a
fragment size ξ = 2

10. In general, the fi-traversal outperforms the ls-traversal for short
traversals with traversal depth up to 3 or on very sparse graphs for even deeper traversals.
This is caused by the frontier set sizes, which have to be handled during the traversal.
For small frontier set sizes, using the transition graph index provides efficient access to
a small number of fragments. If the frontier set is large, the ls-traversal outperforms the
fi-traversal due to better cache locality during the scan operation.

Figure 5.18 depicts the slowdown factor of the fi-traversal for different fragment sizes
ranging from 2

6 to 2
16. Further, we analyze the effect of the false positive rate on the query

execution time. To compute the slowdown factor, we use the data point for the smallest
fragment size and the smallest false positive rate as baseline and relate all other results
to this baseline. Without losing generality, we conduct all experiments on a representative
query with the following configuration: {{ s } , ’*’, 3, 3,→}.

For all evaluated data sets we observe that smaller fragments whose size is close to
the expected average vertex outdegree exhibit lower execution times than larger ones. Al-
though we could theoretically use a fragment size that is very small or even close to 1, the
memory overhead would be prohibitively expensive. Thus, we use as lower boundary for
the fragment size the average vertex outdegree. A smaller false positive rate increases the
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Figure 5.18: Execution time of fi-traversal for {{ s } , ’*’, 3, 3,→}.
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Figure 5.19: Speedup in multiples of baseline for different edge predicate selectivities with query
{{ s } , ’*’, 3, 3,→}. The baseline is a traversal query without edge predicate, i.e., a traversal
on the entire graph.

memory consumption of the transition graph index, but also speeds up the execution of
the fi-traversal by up to 4×. If the false positive rate is too large, many fragments have to
be accessed although they do not contribute to the traversal query result.

5.5.3.1 Impact of Edge Predicates

In the next experiment, we study the effect of edge predicates with different selectivities
on the query performance of the ls-traversal and the fi-traversal and present our results in
Figure 5.19. An edge predicate evaluation produces a subgraph from the complete graph
and effectively reduces the traversal to a subset of the edges. We generated random edge
weights following a zipfian distribution with s = 2 and assigned them to the edges.

For a selectivity of 25%, i.e., an edge predicate that selects only 25% of all edges results
in a 2.5× to 3× speedup for the ls-traversal . We observed that an edge predicate with a
high selectivity dramatically reduces the size of intermediate results, which subsequently
leads to smaller execution times. Since the ls-traversal is a scan-based traversal algorithm,
it still has to scan the entire column for each traversal iteration, which results in a lower
speedup than for the fi-traversal. In contrast, the fi-traversal reaches a speedup of up to
6× for a selectivity of 25%. If the selectivity is high, more fragments can be pruned during
the traversal and cause a larger speedup compared to the ls-traversal.

5.5.3.2 System-Level Benchmarks

We compared our two traversal implementations, ls-traversal ( ) and fi-traversal ( ),
against a join-based approach implemented in sap hana with ( ) and without ( ) sec-
ondary index support, and the native gdbms Neo4j ( ). Figure 5.20 depicts the results.
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Figure 5.20: Comparison of ls-traversal ( ), fi-traversal ( ), Neo4j ( ), and a self-join-based
approach in sap hana with ( ) and without ( ) secondary index support.

For graphs that expose a power-law distribution, we see similar execution times for short
traversals of 1 to 2 hops for sap hana and Neo4j. With increasing traversal depth, the sizes
of intermediate results grow and are directly reflected in a steep rising execution time for
the evaluated systems. Surprisingly, even sap hana does not handle large intermediate
results of repeated self-joins well. The fi-traversal shows a comparable performance for
short traversals with up to traversal depth 3 and significantly outperforms the join-based
approach by up to an order of magnitude and Neo4j by up to a factor of 4. While the
fi-traversal fails to scale well for longer traversals with large intermediate results, the ls-
traversal shows a good scalability for longer traversals and outperforms the other systems
by up to an order of magnitude. This can be explained by the careful handling of interme-
diate results in compact bitset data structures.

5.6 summary

In this chapter we proposed a graph traversal operator that is based on a bft, but extends it
with support for edge predicates and a more fine-granular steering of the traversal depth
and the result set construction. Based on a formal description of the abstract traversal
operator, we proposed two traversal implementations—ls-traversal and fi-traversal —to
support a wide range of different graph topologies and graph traversal queries efficiently.
We implemented the ls-traversal as a level-synchronous traversal based on repeated full-
column scans over the edge column group. The fi-traversal avoids to scan the entire edge
column group for each traversal iteration by consulting during each traversal iteration a
light-weight secondary index structure—the transition graph index. The transition graph
index provides detailed information about column fragments and potential transitions
between them during the traversal. Thereby, it employs a fragment-at-a-time processing
model and processes the traversal asynchronously. The fi-traversal outperforms the ls-
traversal for graphs with a low density and short traversal queries by up to two orders of
magnitude. In contrast, the ls-traversal performs significantly better than the fi-traversal,
if the graph is dense or the query traverses a large fraction of the whole graph.





6S E C O N D A RY I N D E X S T R U C T U R E S F O R G R A P H S

We refer to secondary graph indices as a general class of index structures that consist of a
condensed graph representation derived from the primary graph storage. In Graphite, the
primary graph storage is organized in column groups—so we consider adjacency lists as
secondary index structures. For other native graph managements systems (gms), however,
an adjacency list might be the primary storage of the graph topology.

Graph index structures have been an active area of research for several decades, re-
sulting in a plethora of different graph indexing approaches tailored to specific graph
query classes, graph topologies, and hardware constraints. Fundamental graph indexing
types include reachability indexing, shortest path indexing, and subgraph pattern indexing. Com-
monly, the proposed approaches balance the tradeoffs for the three major quality measures,
namely construction time, memory consumption, and query performance. Although graph in-
dices provide superior query performance compared to their bft or dft-based counter-
parts, they typically suffer from high initial construction time and a prohibitively large
memory footprint that can exceed the original graph size by up to multiple orders of
magnitude.

Although most of these graph queries could be also expressed using a bft or dft-based
algorithm, the linear time complexity of O(|V | + |E|) of a bft/dft algorithm—if stored
in an adjacency list—becomes impracticable on large graphs. Although the exploitation of
parallelism can reduce the performance gap between bft/dft-based solutions and efficient
graph index structures with constant lookup time, it cannot fully hide the linear time
complexity overhead. For applications, such as route planning, it can be even desirable to
guarantee a constant query time complexity, i.e., O(k) for a small constant k.

Only a few graph indices can handle evolving graphs, which are becoming increasingly
the predominant graph workload pattern. An evolving graph changes its topology over
time, with frequent edge insertions and deletions. Due to the nature of the mentioned
graph indices—they provide a condensed view of the underlying graph topology, often
compacting entire subgraphs—their update performance is up to two orders of magnitude
slower than the respective query performance. Even worse, the overhead for maintaining
the graph index is data-dependent, resulting in unpredictable update costs for edge inser-
tions/deletions.

For the tight integration into a dbms, graph index structures tend to appear in too di-
verse flavors and require specialized handling in the database engine, and are therefore
usually not considered for productive implementations. Moreover, the unpredictable up-
date performance and the large memory footprint make specialized graph index structures
unattractive for a general-purpose dbms.

In this chapter we discuss related state-of-the-art graph index approaches and propose
two updatable, lightweight graph index structures with a low memory footprint that can
be seamlessly integrated into a dbms while offering superior performance for neighbor-
hood queries compared to purely scan-based approaches.

6.1 related work

6.1.1 Primary Graph Index Structures

There are two prevalent data structures to store a graph topology in memory: (a) as adja-
cency list and (b) as adjacency matrix (Cormen et al., 2001).

An adjacency list stores a linked list of adjacent vertices for each vertex (cf. Figure 6.1 (a)).
An adjacency matrix stores the topology as a binary matrix representing each edge in the
graph by an individual bit stored at coordinate 〈u, v〉 for vertices u, v ∈ V (cf. Figure 6.1 (b)).
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Figure 6.1: Fundamental graph data structures.

The adjacency list has a space complexity of O(|V |+ |E|) compared to the adjacency matrix
with a space complexity of O(|V |2). For sparse graphs with |V | << |E|, an adjacency list is
more space-efficient since only existing edges are stored—for denser graphs with |V | < |E|,
an adjacency matrix can be more memory-efficient since the existence of an edge can be
represented in a single bit. Technically, an adjacency list can be implemented either by a
pointer array to represent vertices and a set of linked lists to represent adjacent vertices or
by an array of arrays. While a list-based (sorted) adjacency data structure exhibits higher
in-place update rates, an array-based adjacency list allows a better cpu cache utilization for
retrieving the adjacency of a vertex through a strictly sequential and contiguous memory
access pattern.

A variation of the adjacency list has been developed in the context of sparse matrix
multiplications and is widely used in graph processing systems (Gustavson, 1978). Caused
by the duality between matrices and graphs—a graph topology can be represented by a
matrix and vice versa—the authors developed an immutable compressed sparse row (csr)
data structure to compactly store sparse matrices (cf. Figure 6.1 (c)). The csr data structure
represents the graph topology as an edge array containing the target vertices of all edges
in sequential order. To retrieve the adjacency of a single vertex, the offset array is used to
compute the boundary values of the adjacency. In comparison to the adjacency list and
the adjacency matrix, a csr is more compact since the entire topology is represented in
a single large, continuous chunk of memory. On the downside, adding and removing
vertices/edges is expensive and results in a partial reconstruction of the csr to maintain
the ordering. For a detailed experimental analysis on several graph representations, we
refer the reader to Blandford et al. (2004).

Brisaboa et al. (2009) propose a compact storage layout for simple, directed graphs based
on k2-ary tree structures as depicted in Figure 6.2. Specifically, they exploit the sparse-
ness of the adjacency matrix and represent it through a compact tree structure of height
dlogk ne. The tree consists of nodes having assigned a single bit indicating whether there is
at least one edge in the sub matrix. A node assigned zero means that is has no child nodes
and all elements in the sub matrix are zero. The authors use the parameter k to modify
the height of the tree at the cost of larger internal nodes with more child nodes. Internally,
a k2-tree is represented by two bit sets, one for the internal nodes (except leaves) and one
for the leaves only. Bits are assigned according to a level-wise traversal of the tree, i.e., first
all bits of level one, then all bits of level two, and so on. For the internal nodes, auxiliary
data structures are added to the bit sets to support rank and select operations in constant
time. Although the data structure provides a concise representation of the graph topology,
multi-relational graphs, i.e., multiple edges between a pair of vertices, are not supported.
Additionally, the k2-ary tree representation is not designed for dynamic graphs with fre-
quent edge insertions/deletions as each of these operations might trigger a rewriting of
multiple internal nodes in the tree.

Álvarez et al. (2010) extend the idea to represent the adjacency matrix as a k2-ary tree
to also support multi-relational graphs with attributes associated to vertices and edges
(cf. Figure 6.3). Specifically, they propose to represent a graph as three k2-trees—one for
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Fig. 1. k2-tree examples.

submatrices will be a child of the root node and its value will be 1 iff in the cells
of the submatrix there is at least one 1. A 0 child means that the submatrix has
all 0s and hence the tree decomposition ends there.

The children of a node are ordered in the tree starting with the submatrices
in the first (top) row, from left to right, then the submatrices in the second row
from left to right, and so on. Once the level 1, with the children of the root, has
been built, the method proceeds recursively for each child with value 1, until
we reach submatrices full of 0s, or we reach the cells of the original adjacency
matrix. In the last level of the tree, the bits of the nodes correspond to the
matrix cell values. Figure 1(a) illustrates a 22-tree for a 4× 4 matrix.

A larger k induces a shorter tree, with fewer levels, but more children per
internal node. If n is not a power of k, we conceptually extend our matrix to the
right and bottom with 0s, making it of width n′ = kdlogk ne. This does not cause
a significant overhead as our technique is efficient to handle large areas of 0s.

Figure 1(b) shows an example of the adjacency matrix of a Web graph (we
use the first 11 × 11 submatrix of graph CNR [6]), how it is expanded to an
n′ × n′ matrix (n′ power of k = 2) and its corresponding tree. Notice that its
last level represents cells in the original adjacency matrix, but most cells in the
original adjacency matrix are not represented in this level because, where a large
area with 0s is found, it is represented by a single 0 in a smaller level of the tree.

2.1 Navigating with a k2-tree

To obtain the pages pointed by a specific page p, that is, to find direct neighbors
of page p, we need to find the 1s in row p of the matrix. We start at the root
and travel down the tree, choosing exactly k children of each node.

Example. We find the pages pointed by the first page in the example of Fig-
ure 1(a), that is, find the 1s of the first matrix row. We start at the root of
the 22-tree and compute which children of the root overlap the first row of the
matrix. These are the first two children, to which we move:

– The first child is a 1, thus it has children. To figure out which of its children
are useful we repeat the same procedure. We compute in the corresponding
submatrix (the one at the top left corner) which of its children represent
cells overlapping the first row of the original matrix. These are the first and
the second children. They are leaf nodes and their values are 1 and 1.

Figure 6.2: k2-trees example for k = 2 (Brisaboa et al., 2009).

Figure 6.3: Example graph representation using k2 trees (we omit the k2 tree representing the graph
topology here for brevity) (Álvarez et al., 2010).

vertex attributes, one for edge attributes, and one for vertex relationships. The node table
is sorted by vertex type and contains one record for each type. Each record contains the
number of vertices of that type and pointers to the data structures of attributes with a high
cardinality (many distinct values). To allow fast lookups on the attribute values, a separate
sorted array is used, which maps a value to object identifiers. Vertex identifiers are drawn
from a statically assigned range of possible identifiers to allow the fast determination
of the vertex type. The storage layout of the edge table is conceptually equivalent to the
node table. Vertex and edge attributes with a low cardinality (few distinct values) are
represented by two k2-tree structures depicting a bit set if the vertex/edge exposes the
specific value. Multiple relationships between a pair of vertices is represented by a k2-tree
and three auxiliary data structures. A bit set of the size of the number of ones in the
relationship matrix stores a one, if there are multiple edges between a pair of vertices,
zero otherwise. Additional edges are represented by their edge identifiers in an offset
map. The complete data structure supports trivial operations through a programming
interface, including the retrieval of vertex/edge types, vertex/edge filtering based on the
type, vertex/edge filtering based on attribute values, and simple neighborhood queries. As
in the initial proposal to use k2-trees to compactly represent a graph topology in memory,
such a succinct representation does not support edge insertions/deletions and attribute
value updates.
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Figure 6.4: Example graph representation in Neo4j (adapted from Robinson et al. (2015)).

Neo4j stores a graph in a series of files on disk, partitioned into vertices, edges, labels,
and properties (cf. Figure 6.4). The node store contains a set of fixed-length records—each
15 byte in size—and consists of a visibility flag (1 byte), a pointer to the first edge con-
nected to the vertex (4 byte), a pointer to the first property (4 byte), a pointer to the vertex
label store (5 byte), and a final byte for flags. In the flags field, Neo4j currently supports
tagging a vertex as a densely connected vertex. The edge store maintains the edges connecting
vertices. Each fixed-length edge record occupies 34 byte and constrains pointers to the start
and end vertex. Further, it contains a pointer to the edge type, pointers to the next and
previous edges for start and end vertex, respectively, and a pointer to the first property
associated with the edge. Neo4j stores the properties of a single vertex or edge as a single-
linked list. Each property consists of three entries, a pointer to the property data type, a
pointer to the property index (to resolve the property name), and the property value. If the
property value is fixed-length, i.e., an integer or a float value, Neo4j inlines the property
value into the property store. Otherwise, if the property value is a variable-length string
or array, Neo4j stores a pointer to a separate dynamic store record. Since Neo4j stores for
each edge the predecessor and successor edges of both start and end vertex, these point-
ers form a double-linked list, which is used to perform graph traversals using pointer
chasing in both traversal directions. To accelerate query processing, Neo4j utilizes an in-
memory cache which acts similar to a buffer pool in traditional, disk-based rdbms and
holds discrete regions of the files in main memory. Given sufficient heap space, Neo4j can
run entirely in memory—the internal data structures are the same as for the disk-based
storage representation.

LLama is based on a mutable csr data structure and supports batch updates (Macko
et al., 2015). A graph is stored in a series of snapshots, where the adjacency list of sin-
gle vertex might span multiple snapshots. The graph topology is stored in multiple edge
tables—one per snapshot—and consists of a consecutive representation of adjacency list
fragments (cf. Figure 6.5). LLama keeps a global vertex table that is shared across all snap-
shots and maps vertex identifiers to per-vertex structures. The vertex table is implemented
as a mutable array with snapshotting support and uses a software-based copy-on-write
mechanism. The vertex table array is partitioned into equally sized data pages and one
indirection array per snapshot. The indirection array maps vertex identifiers to the corre-
sponding data pages.

In LLama a new snapshot can be created by copying the indirection array. A data page
can be modified by copying the data page first, then updating the corresponding indirec-
tion array to point to the new page, and to finally modify the page. A vertex record con-
sists of the following elements: a snapshot identifier, an edge table offset, and an adjacency
fragment list length. The snapshot identifier contains a reference to the first adjacency list
fragment that belongs to the vertex. The edge table offset corresponds to the entry in-
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Figure 6.5: Example graph representation in LLama (Macko et al., 2015).

dex into the edge tables that stores the adjacency list fragments consecutively. To add a
new vertex to a snapshot, LLama increases the size of the vertex table; to delete a vertex,
LLama replaces the entry in the vertex table by a nil record. An edge table is represented
by a memory-mapped array data structure of consecutive adjacency list fragments—an
edge is stored by the target vertex identifier of the edge. If the adjacency list of a vertex
contains multiple fragments, each fragment ends with a 16-byte continuation record point-
ing to the next fragment. LLama supports two kinds of edge deletions: (1) rewriting the
entire adjacency list (without the deleted edge) of the source vertex into a new snapshot or
(2) invalidating the edge in a deletion vector that encodes in which snapshot the edge was
deleted.

LLama allows multiple attributes to be stored with vertices and edges through arrays
that can be accessed via a positional index. Each property is stored in its own mutable array
structure—variable-sized attributes have to be stored in a separate in-memory key/value
store. By default, LLama buffers incoming updates in a high-throughput key/value store
where each modified vertex is represented as an object containing the list of newly inserted
and deleted edges. This write-optimized delta map, however, is excluded from the query
execution for performance reasons. If the query requires access to the latest version of the
data, a new snapshot has to be created from the delta map first.

Grace (Prabhakaran et al., 2012) partitions a graph into subgraphs based on different
partitioning schemes, including hash-based partitioning and heuristic partitioning. This
can be further improved by placing proximity vertices close to each other in memory by
using spectral partitioning. Grace maintains two dynamic arrays (vertex/edge log) per
partition, one for vertices and one for edges (cf. Figure 6.6). In conjunction with the Edge
Pointer Array, the edge log is effectively a csr data structure with a clustering on the source
vertices. Attributes are stored in separate array structures, where an attribute value can be
retrieved via a positional lookup. Grace supports transactional modifications to the graph
through snapshot isolation and collects graph updates—vertex and edge insertions/dele-
tions and edge weight modifications—in temporary in-memory buffers. Deleted vertices
and edges are invalidated in a validity map.

EmptyHeaded represents vertices as integers that stem from dictionary encoding and
the edge relation by a collection of neighborhood sets. All neighborhood sets together
form a csr data structure, where the vertex array consists of pointers that point to their
corresponding (possibly different) neighborhood set representations. EmptyHeaded distin-
guishes between unsigned integer representations (uint) and bit set representations (bit
set) of neighborhood sets at three different levels: (1) the graph level, (2) the set level, and
(3) the block level. The bit set representation merges the sparse representation of the uint

with the dense representation of a bit set by combining both into a single data structure.
The data structure consists of a set of blocks, where each block contains a bit set that
is sized to the hardware characteristics, i.e., the size of a single cache line. A bit set is
organized as a set of pairs, where each pair consists of an offset and a bit set. The offset
corresponds to the index of the smallest bit set in the bit set. The size of the bit set—the
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Figure 6.6: In-memory graph representation in Grace (Prabhakaran et al., 2012).

block size (the default is 128)—is a power of two and tailored to fit onto a single cache line.
Although the logical store layout foresees a set of pairs, EmptyHeaded physically stores
first all offsets, followed by all bit sets. The authors define the density of a neighborhood
set as the cardinality of the set divided by the value range of the set. Real-world graphs
tend to have a large skew in their neighborhood density distribution. EmptyHeaded al-
lows storing a single neighborhood set either in a dense representation (bit set) or in a
sparse representation (uint), the actual representation is selected by the optimizer based
on collected statistics about the density and the cardinality of the neighborhood set.

GraphChi (Kyrola et al., 2012) distributes the vertex identifier space into disjoint in-
tervals that are subsequently mapped to so-called shards. A shard stores all edges whose
target vertex is in the corresponding vertex identifier interval and sorts the edges within a
shard by their source vertex. GraphChi supports accompanying attributes attached to ver-
tices and edges and stores them in separate arrays. GraphChi uses several auxiliary data
structures to keep graph statistics—such as degree information for each vertex, which is
used for memory allocation.

GraphChi-DB extends the GraphChi system and adds support for edge insertions,
updates, and deletions (Kyrola and Guestrin, 2014). Like GraphChi, GraphChi-DB par-
titions the set of vertices into shards, where each shard has an associated edge partition
storing all the edges such that the target vertex of each edge is stored in the same shard.
The set of edge partitions can be interpreted as a partitioned adjacency list, where each
adjacency list partition is stored in a csr data structure. An edge partition consists of three
parts, an edge array storing the edges, a pointer array providing efficient access to the out-
going edges of a vertex, and an reverse pointer array/in-start-array storing references to the
first incoming edge of each vertex (cf. Figure 6.7). Vertex and edge attributes are stored in
a columnar storage, providing positional access to the attributes of a single vertex or edge.

Vertices in both pointer arrays are sorted in ascending order, thereby directly applying
the idea of a csr data structure. The edge array stores 64bit values, where 36bit are used
for the destination vertex, 4bit for the edge type, and 24bit are used to point to the next
entry with the same destination vertex. Since a binary search can perform badly when
the pointer array does not entirely fit into main memory, the authors propose to either
add a secondary sparse index on top of the pointer array or to leverage delta-compression
techniques to lower the memory footprint.

GraphChi-DB uses a staging architecture for graph updates by redirecting edge inser-
tions into an in-memory buffer (optionally persisted in a disk-based log), which is periodi-
cally merged into the existing edge partitions. To scale this approach to bulk insertions on
large graphs, the authors propose to use log-structured merge trees. To update an attribute
of an edge, GraphChi-DB implements in-place updates, and to delete an edge, the record
in the edge array is invalidated. Finally, GraphChi-DB only provides rudimentary sup-
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Figure 6.7: File structure of an edge partition in GraphChi-DB (Kyrola and Guestrin, 2014).

port for transactions and implements fire-and-forget transaction semantics, which prevent
transactions from running in isolation from each other.

Formally, Sparksee (Martínez-Bazan et al., 2012) specifies a multi-relational, attributed
graph G as a tuple G := (V ,E,L, T ,H,A), where V refers to the set of vertices, E refers to
the set of edges, and L refers to the set of labels, i.e., L = {(o, l)|o ∈ (V ∪E), l ∈ string}. Each
vertex and edge can have exactly one assigned label. The set T refers to the set of tail pairs,
i.e., T = {(e1, t1), . . . , (em, tm)} with ti ∈ V and ei ∈ E. Similarly, the set H refers to the set
of head pairs, i.e., H = {(e1,h1), . . . , (em,hm)} with hi ∈ V and ei ∈ E. Finally, the set A
refers to the set of attributes with Ai = {(o1, c1), . . . , (or, cr)}, where oi is either a vertex or
an edge and ci is a literal value.

Figure 6.8: Example graph representation in Sparksee (Martínez-Bazan et al., 2012).

Sparksee stores a graph based on value sets, which groups all pairs of the original set with
the same value as a pair between value and the set of objects—vertices or edges—with this
value. Internally, a value set is represented by two maps—implemented as B+-Trees—and
a collection of compressed bit sets to represent the corresponding vertex/edge sets. The
first map stores assignments of object identifiers to a corresponding value. The second
map assigns to each value a set of object identifiers, where the set is represented as a
compressed bit set. Sparksee applies word-aligned compression scheme on each bit set to
compact long sequences of zeroes.

An example for a graph representation in Sparksee is depicted in Figure 6.8. The graph
storage layout is divided into three main parts: (1) a mapping between object identifiers
(vertices/edges) and their corresponding labels, (2) a mapping between edge identifiers
and their corresponding head/tail vertices, and (3) a mapping of object identifiers and
their corresponding values.

The generic graph storage layout of Sparksee requires storing each attribute value only
once, effectively eliminating the need of dictionary-encoding. On the downside, evaluating
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complex predicate across multiple attributes requires costly join operations of intermediate
results. For large graphs, the memory overhead of many sparse bit sets for large value
domains is unavoidable and leads to a high memory footprint. For dynamic graphs with
frequent edge insertions/deletions and attribute value updates, it remains unclear how
Sparksee maintains the compressed bit sets without the need of a full recompression of
the entire bit set.

6.1.2 Secondary Graph Index Structures

Corneil and Krueger (2005) apply an ordering to the vertices based on the initial idea by
Rose et al. (1976). They try to determine an ordering based on the detection level of the
vertices and create a path-based index structure, which may consume too much memory
to be applicable. A similar idea is to use an index on reachability as proposed by Trißl
and Leser (2007). Their index structure is based on pre- and post-ordering values, which
are determined during an initial traversal process that calculates the transitive closure.
Besides the fact that their index is not capable of storing distances, the only guaranteed
update time is a complete recreation of the index.

All those data structures may be invalidated by insertion or deletion, which may require
a complete index recreation. As a direct consequence, their approach cannot guarantee an
acceptable upper boundary for inserts. Also, further performance improvements, which
were proposed by Wang et al. (2012) and use edit distances between similar substructures,
cannot solve the problem of a too high boundary for manipulation time.

As established by Sakr and Al-Naymat (2010a) and as explained above, the existing
graph indices are not applicable to evolving graphs. Therefore, most graph databases mea-
sure their performance only on static data without guaranteed update performance, as
discussed by Ciglan et al. (2012) and Dominguez-Sal et al. (2011). This contradicts our
goal to be capable of handling evolving graphs and provide strict upper boundaries for
manipulation time.

A more suitable approach is discussed by Faust et al. (2013). They propose a Paged Index
to reduce the amount of data to be processed during column scans in main-memory col-
umn stores. We follow the same principle of splitting the entire column into smaller parts
for the block-based topology index. But while their index structure consists of a consecutive
bit set that stores the relevant pages for certain entries and relies on clustered data, we
apply the idea to fit unclustered data and typical graph traversal requests.

Reachability Index Structures

Reachability queries are one of the most fundamental graph query classes and ask for a
query with vertices u and v, whether there exists a path u ; v in the graph. Although
reachability queries can be answered in linear time of O(|V |+ |E|) using a dft, this brute-
force approach is usually too slow for large graphs with tens of millions of vertices and
hundreds of millions of edges. The other extreme approach is to fully compute and store
the transitive closure using a variation of the Floyd-Warshall algorithm, which has a cu-
bic time complexity of O(|V |3) and quadratic space complexity of O(|V |2). As reachability
queries are not in the focus of our work, we only briefly discuss here the most impor-
tant approaches—a recent and detailed overview of reachability index structures has been
collected by Jin et al. (2012).

Reachability index structures try to achieve a balance between three important quality
criteria, namely construction time, memory consumption, and query performance. To cope with
the quadratic space complexity of the full transitive closure, several approaches compress
the transitive closure by either applying interval labelings (cf. the seminal work of Agrawal
et al. (1989)), word-aligned bit set compression (van Schaik and de Moor, 2011), or tree-
covering approaches (Jin et al., 2008). A popular example for tree cover-based transitive
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closure compression is Path-Tree (Jin et al., 2008), which extracts disjoint paths from the
data graph and creates a condensed tree structure from it.

A second fundamental approach is based on a 2-hop cover (Cohen et al., 2002), where
the main idea is to maintain a subset of ancestors and descendants for each vertex in the
graph. Then, a reachability query can be answered by intersection both subsets. Jin et al.
(2009) describe with 3-hop a similar approach, which is based on the idea of highway routes
in the graph using a chain decomposition.

The third category uses labeling information to accelerate online search, i.e., dft, by
pruning the search space during the graph exploration. In contrast to full transitive clo-
sure compression and hop labeling approaches, a refined online search does not require
an expensive index construction phase and has a considerably lower memory footprint,
effectively making it scalable to large graphs with millions of edges. The best-performing
representative of this category is Grail by Yildirim et al. (2010).

Scarab (Jin et al., 2012) is a reachability querying framework that aims at overcoming the
scalability issues for construction time and index size of other reachability index structures.
The authors propose a reachability backbone graph, i.e., a condensed graph representation of
the original graph, which carries the general reachability information. For a reachability
query Q = (u, v) for vertices u, v the query starts in the backbone graph by accessing
the outgoing and incoming backbone vertices of u and v, respectively. Then, a forward
(backward) bft traversal is started at vertex u (v) to access the underlying reachability
backbone. The output of the forward (backward) traversal is the set of ε-hop reachable
backbone vertices Bεout (Bεin). In the second step, the reachability join test determines, whether
there is a path between any vertex in Bεout and Bεin.

All previously discussed index structures handle static, immutable graphs, but do not
consider edge insertions and deletions. Caused by the nature of these index structures,
updates to the index can result in expensive maintenance operations. Depending on the
location of the inserted/deleted edge in the graph, the update can affect the complete
index structure. Yildirim et al. (2013) propose Dagger, an extension of Grail that can
handle edge insertions and deletions. Although they support edge insertions/deletions,
the performance of update operations is still several orders of magnitude higher than
respective query operations—a conclusion, which has been also drawn by Zhu et al. (2014).

Despite some initial work on reachability index structures for dynamic graphs, there has
been only little interest yet in the research community to integrate them into a gdbms. We
conclude from this discussion of related reachability index structures that they cannot be
easily integrated into a dynamic database environment with potentially limited hardware
resources, contradicting the high demands of these index structures on initial construction
time and memory consumption.

Graph Pattern Matching Index Structures

A second important class of graph queries deals with graph pattern matching, commonly
also referred to as subgraph isomorphism problem. A pattern matching query returns for a
given query graph all matching subgraphs from a database of graphs. Since the subgraph
isomorphism problem is np-complete (Garey and Johnson, 1979), the research community
proposed approximate pattern matching and indexing techniques. We categorize index
structures for graph pattern matching into three main categories: path-based, tree-based, and
graph-based approaches.

One of the seminal works on graph indexing for exact graph pattern matching was
proposed by Giugno and Shasha (2002). They developed GraphGrep, an application-
independent, path-based index structure to accelerate subgraph queries on a database
of graphs. The general idea of GraphGrep is to build up an index of paths up to a max-
imum length and to encode in which graphs they occur. The actual graph query filters
the database using GraphGrep to generate potentially matching graphs and to process
them in a final validation phase. GraphGrep has the advantage that the memory con-
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sumption of the index is bounded by the maximum length of the paths. On the downside,
by breaking up a graph into a set of paths, important structural information can be lost.

To overcome the limitations of GraphGrep, Yan et al. (2004) propose gIndex, an index
structure, which uses frequent subgraphs instead of paths as basic indexing feature. In
contrast to GraphGrep, gIndex does not split the query and graphs into paths, where im-
portant structural information can be lost, but instead identifies frequent subgraphs. The
authors facilitate frequent graph mining algorithms to identify these discriminative sub-
graphs in the database. By relying on information-preserving features in the index, fewer
false positives candidate matches are generated and the index is more stable to database
updates. Although gIndex outperforms GraphGrep in terms of index size and process-
ing speed, it exhibits a time-consuming graph mining process to identify the frequent
subgraphs and construct the index.

In a similar spirit to gIndex is C-Tree, a graph-based indexing technique that is assem-
bled as a tree, where nodes represent so-called graph closures and capture discriminative in-
formation about descendant tree nodes (He and Singh, 2006). C-Tree accelerates subgraph
and graph similarity queries and supports dynamic insertions/deletions to the underlying
database.

Zhao et al. (2007) and Zhang et al. (2007) investigate, whether tree-based features can be
used for indexing a large graph database without the need to identify discriminative sub-
graphs using expensive graph mining algorithms. They observe that in practice, frequent
subgraphs are often tree-structured in nature. The authors propose to select frequent tree
features using tree mining techniques, which are known to be computationally less expen-
sive than graph mining algorithms, and to also store a small number of discriminative
graph features on-demand.

In contrast to previous pattern matching index structures, which dealt with a large num-
ber of relatively small graphs, Zhang et al. (2009) propose indexing techniques to accelerate
subgraph queries on a single, but large data graph. They introduce Gaddi, which relies
on a neighboring discriminating substructure distance. In contrast to previous approaches,
they do not index subgraphs, but instead index the distance between neighboring pairs of
vertices and thereby achieving a considerably higher pruning rate while scaling better to
larger graphs. In an extensive experimental evaluation, Han et al. (2010) compare several
indexing techniques for graph pattern matching against each other.

6.2 general requirements

Graph index structures exist in various configurations and are typically tailored to a spe-
cific class of graph queries, such as reachability queries, shortest path queries, or subgraph
isomorphism queries. Graph queries that rely on specialized graph index structures can
outperform their naive counterpart implementations by several orders of magnitude. A
general-purpose graph processing system, however, would have to support a large variety
of graph index structures to accelerate different types of graph queries. This does not only
pose severe performance drawbacks for write-intensive workloads with frequent updates
to the graph (and consequently frequent index updates), but also causes an increased de-
velopment and maintenance overhead for the code base.

Specifically, neighborhood queries, i.e., graph queries that access vertices adjacent to a
given vertex or a set of vertices, are inefficient in the columnar graph storage of Graph-
ite as the time complexity is linked to the total number of edges in the graph. Therefore,
we focus on the integration of graph index structures to accelerate neighborhood queries,
which in turn are a basic building block for more complex graph queries. In the follow-
ing we describe the main design goals, which such a general graph index structure for
efficiently supporting neighborhood queries has to fulfill.

maintainability. Graph processing systems that support evolving graphs with fre-
quent updates to the graph topology demand efficient maintenance routines to keep
the index structures in a consistent state. Additionally, the maintenance routine
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should have a guaranteed maximum execution time to refresh the index structure.
The insertion/deletion of an edge should only have a limited effect on the overall
index structure and trigger the recreation of only a small portion of the complete
index.

applicability. The index structure has to be integrated into a dbms and provide a
session-specific, transactional view of the data. Further, the result of an initial predi-
cate evaluation, for example the filtering on a specific vertex or edge type, should be
usable on the index structure to filter out non-matching vertices/edges. Similarly, the
output of an index lookup should be usable as an input for a predicate evaluation.

scalability. The index structure should be scalable in terms of construction time and
memory consumption. Especially graph index structures with a super-linear con-
struction time and space complexity are not applicable to large graphs with billions
of vertices and edges. The memory footprint of the graph index should not exceed
the size of the original edge-list-based representation.

Based on the design goals we devise two graph index structures, namely a block-based and
an adjacency-based graph index structure. Both index structures can be used interchange-
ably, but expose different advantages and disadvantages in terms of construction time,
index maintenance, lookup time, and memory footprint.

6.3 block-based topology index

The block-based topology index extends the idea of an immutable csr data structure with
the ability to efficiently perform edge insertions at runtime. In general, a basic csr data
structure could be updated as well, but it would require a considerable and typically not
practicable processing overhead to keep the target vertex array sorted. To insert a new
edge into a csr data structure, the corresponding insert location in the target vertex array
has to be calculated using the offset array. In a subsequent step, the insert operation has to
move all subsequent vertices in the target vertex array by one position, potentially leading
to a large number of copy operations. Finally, the offset array has to be rewritten starting
from the insert location.

Instead of devising an immutable, sorted primary index, such as a csr data structure,
we propose a lightweight, mutable, secondary index, which operates solely on the edge
column group representation. Using an integrated secondary index instead of a stand-
alone primary graph index has several advantages: (1) Predicates can be evaluated on the
column groups and combined directly with index lookups, (2) the memory overhead is
in the range of O(|V |) instead of O(|V | + |E|), and (3) complex transaction and visibility
handling can be reused from the relational backend.

To construct a block-based topology index, we divide the clustered source vertex col-
umn into non-overlapping, contiguous blocks of potentially varying size. Conceptually,
we represent a block as a tuple 〈id, start, end〉, where id corresponds to a unique identifier,
start corresponds to the start position and end to the end position of the block in the edge
column group, respectively. In a subsequent step, we store for each distinct source vertex
a set of blocks. The initial assignment of source vertices to blocks is a 1-1 mapping, which
might degenerate into a 1-n mapping for evolving graphs. This is in contrast to a simple
csr data structure, which always provides a 1-1 mapping of vertices to blocks.

We use the notion of a minimal block size (bmin) to refer to the smallest allowed block size.
A block cannot be smaller than the minimal block size and can be increased dynamically
to assure that all outgoing edges of a vertex fit into a single block.

Figure 6.9 (a) depicts an edge column group clustered by source vertex and a logical
partitioning into two blocks with a minimal block size bmin = 2. Figure 6.9 (b) shows
the corresponding index representation consisting of two core data structures, one for
mapping values to blocks and one for encoding the ranges of the blocks. If the source
vertex column is clustered, each value points to exactly one block. Since all blocks are



108 secondary index structures for graphs

B1

B2

Source

2

2

2

1

3

Target

2

1

3

2

1

1

2

3

4

5

(a) Edge column group representation.

B2

B1

B2

1

2

3

Value Blocks

Block ranges

B1

B2

3

5
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Figure 6.9: Block-based topology index with minimal block size = 2.

contiguous and non-overlapping, we only store the end position of the block. The block
ranges of a block can be reconstructed from the end position of the previous block and the
end position of the current block. For example, block B2 spans the column range [4, 5].

6.3.1 Construction and Maintenance

index construction. Before we construct the block-based topology index, we cluster
the edge column group by source vertex. Clustering by source vertex has the advantage
that all adjacent vertices for a vertex can be pulled from a contiguous chunk of memory,
resulting in the initial 1-1 mapping of the block-based topology index.

We construct the index in two steps: the first step scans the source vertex column and
computes the block ranges, i.e., the begin and end positions of each block according to
the blocking criteria using a prefix sum scan. We define two blocking criteria: (1) a block
contains at least bmin elements, where bmin refers to the configurable, minimal block size
and (2) all adjacent vertices of a vertex are stored in the same block.

We provide an adaptive mechanism that allows handling low outdegree and high out-
degree vertices—as they appear in scale-free graphs—equally well. If the outdegree of a
vertex is larger than the minimal block size bmin, we extend the block accordingly to store
all outgoing edges of a vertex in a single block. If the outdegree of a vertex is smaller than
the minimal block size, we fill the block with other vertices until the minimal block size is
reached.

The second step iterates over all computed block ranges in parallel and identifies the
set of distinct source vertices in each block. We use thread-local hash sets to determine
the set of distinct source vertices. For each source vertex, we concurrently add an entry
to the block-based topology index, which maps the vertex identifiers to block identifiers.
Since all the outgoing edges of a vertex appear in a single block, we can directly add the
mapping entry to the topology index without the need of further synchronization.

index updates . In many realistic scenarios the graph evolves over time and there-
fore efficient mechanisms to deal with topology manipulations, i.e., insertions, updates,
and deletions of edges, are required. Thus, a graph index structure for evolving graphs
should also support efficient topology manipulation operations. We designed the block-
based topology index to support both static and evolving graphs with frequent changes to
the graph topology.

For the rest of the discussion, we focus on the support of edge insertions and deletions
as they occur more frequently than in-place edge updates (Leskovec et al., 2005). An in-
place edge update, however, could be easily modeled as an edge deletion followed by an
edge insertion.
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Figure 6.10: Updating the block-based topology index with minimal block size = 2 (modifications
colored in green).

Edge deletions: We handle edge deletions by marking invalid edges in a lightweight in-
validation data structure, which is part of the visibility and access control component of
Graphite. The invalidation data structure uses a single bit per edge to track whether the
edge has been marked for deletion. By delaying the physical edge deletion to a later point
in time, we avoid the overhead of reorganizing the index structure immediately after the
deletion operation, i.e., to remove the element from the target vertex array and to update
the offset array. To lower the memory footprint, the index structure can be rebuilt on a
regular basis and deleted edges can be removed permanently.

Edge insertions: To insert an edge, we add it to the end of the edge column group. Ap-
pending a new entry at the end of a column is a common update strategy in column stores
to preserve the compression and the sort order of the static fraction while still offering ac-
ceptable performance for insertions (Abadi et al., 2006). By appending an edge to the edge
column group, however, we likely break the source vertex clustering criterion. Although
the block-based topology index does not rely on a strict edge clustering, it shows the best
performance for an optimal clustering, as we can map each vertex in the column to exactly
one block. If the column is not optimally clustered, each vertex (and its outgoing edges)
can appear in multiple blocks and therefore points to a set of blocks.

Figure 6.10 illustrates the insertion of two edges 〈4, 1〉 and 〈2, 4〉 at the end of the edge
column group and the corresponding updates to the index. The first insertion triggers the
creation of a new block B3, which is increased until the minimal block size is reached. While
blocks residing in the static fraction of the edge column group can vary in size, all blocks
in the dynamic part have a fixed, but configurable size. After inserting the edges into the
edge group, we update the mapping of vertices to blocks. We distinguish two possible
cases: (1) The edge is the first outgoing edge of the vertex or (2) the vertex already has
outgoing edges. In the first case, we append the new mapping entry at the end of the
mapping array. In the second case, we add a new block to the set of blocks. In a final step,
we update the last element in the block ranges array and set it to the new end position of
the block.

The second case increases for a single vertex the number of blocks to read. If the source
vertex column is perfectly clustered or the outgoing edges for each vertex can be fetched
from a single block, we refer to the index structure as being in a good health state. An index
lookup achieves the best possible query performance as for each vertex only a single block
needs to be scanned. Frequent edge insertions, however, pollute the index and degrade



110 secondary index structures for graphs

Algorithm 7: Index lookup
Input : Set of values F
Output : Set of blocks C with range information

1 Procedure lookupBlocks(F,C)
2 forall v ∈ F do
3 B← bi[v];
4 forall k ∈ B do
5 C← C∪ 〈k, brv[k− 1] + 1, brv[k]〉;

the index health. At some point, the index health degradation is so severe that even a
full-column scan outperforms an index lookup.

We use a measure—the health factor—to quantify the overall quality of the index struc-
ture with respect to query performance. For each vertex v we define a local health factor
hv = 1

|Bv|
. The health factor hv reaches its maximum (hv = 1.0), when all adjacent vertices

of a vertex can be pulled from a single block. For sets of blocks, the health factor decreases
inversely proportional to the number of blocks to read. The health factor of the complete
index structure is defined as follows:

h =
1

|V |

|V |∑
i=1

hi (6.1)

If the health factor h of the index is below a threshold τ, we consider the index as not
beneficial anymore to considerably speed up neighborhood queries. When the index be-
comes impractical, we merge the dynamic fraction of the edge column group into the static
fraction and rebuild the index.

6.3.2 Index Lookups

The block-based topology index accelerates neighborhood queries, which return the adja-
cent vertices for a given set of vertices. In Section 5.3.2 we described a naive implementa-
tion of neighborhood queries based on full-column scans. The time complexity of a full-
column scan is O(n), where n refers to the number of elements in the column. Although a
full-column scan can be implemented efficiently using a parallelized scan routine, queries
with a high selectivity, such as neighborhood queries, can exploit index scans and thereby
significantly outperform a full-column scan.

We support two types of index lookups: single value lookups and batch lookups. A
single value lookup receives a value and returns all blocks, which contain at least one
occurrence of the value. A batch lookup receives a set of values and performs a grouped
execution of single value lookups. An index lookup returns a set of block descriptors, each
consisting of a tuple 〈b, e〉, where b refers to the begin position of the block and e to the
end position of the block, respectively. We use the set of block descriptors to limit the
column scan to range scans, thus allowing to potentially skip large column parts during
the scan.

Algorithm 7 depicts the index lookup routine, which operates in two steps: (1) for each
value from the input set, we determine the corresponding block identifiers and (2) for each
block identifier, we compute the block boundaries from the block range vector. Since both
steps rely on positional data accesses to dynamic arrays, their performance is limited by
data cache misses. To increase the data cache hit ratio, we perform an in-place sort of the
input data to guarantee a sequential access pattern to the block index and also sort the
block identifiers to achieve a sequential access pattern on the block range vector.

If the result set contains consecutive blocks, i.e., there are two blocks b1 and b2 with
block descriptors 〈s1, t1〉 and 〈s2, t2〉 and t1 + 1 = s2, we adaptively merge them to form
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Algorithm 8: Level-synchronous index-based graph traversal
Input : F = Set of frontier vertices

Eactive = Set of valid edges
Output : P = Set of matching records

1 Procedure scan(F,Eactive,P)
2 B← ∅;
3 lookupBlocks(F,B) ; // See Algorithm 7

4 forall b ∈ B do
5 Ploc ← ∅;
6 scanRange(b, F,Eactive,Ploc) ; // Limit scan to block boundaries

7 P ← P ∪ Ploc;

blocks of maximal possible size. This decreases the total number of blocks to process and
increases spatial and temporal locality when performing the range scans.

6.3.3 Memory Consumption

The memory consumption of the block-based topology index depends on the number of
distinct source vertices Vs = | { u | (u, v) ∈ E } | in the graph and the total number of blocks
B. We represent the mapping of values to blocks as an array of size Vs, whereby each
entry might contain multiple block identifiers of 4 bytes each. In a perfectly clustered
column, the value-block mapping occupies 4 ·Vs bytes. Additionally, we maintain for each
block the block range. Since block ranges are consecutive and non-overlapping, we only
store the end position of each block range, resulting in a total memory consumption of
4 ·B. The total memory consumption of the block-based topology index can be written as
4 · (B+Vs).

6.3.4 Graph Traversal Implementations

In the following we describe how the block-based topology index can be used to accelerate
graph traversals. We discuss two traversal implementations, a purely index-based graph
traversal and a hybrid scan/index-based graph traversal.

index-based graph traversal . We use the algorithm skeleton of the level-synchro-
nous, scan-based graph traversal introduced in Section 5.3.2 and replace full column scans
by index scans using the block-based topology index. In Algorithm 8 we sketch the re-
vised level-synchronous graph traversal routine. Since the scan-based and the index-based
traversal expose the same programming interface, we can easily exchange their respective
implementations.

The index-based routine receives as input a set of frontier vertices F and a set of active
edges Eactive, and returns a set of positions P in the edge column group. In the first step, we
retrieve for all frontier vertices their corresponding blocks using the function lookupBlocks,
which is shown in Algorithm 7. After computing the blocks to scan, we perform for each
block a range scan in the block boundaries 〈b, e〉 and collect the matching edges in a
position list P. Depending on the number of blocks to process, we distribute the single
scan operations across multiple worker threads and merge their partial position lists in a
subsequent merge operation.

hybrid scan/index-based graph traversal . The scan-based graph traversal has
a linear time complexity to the number of edges in the column group, rendering it a work-
inefficient solution for small frontier sets. In contrast, the index-based graph traversal pro-
vides superior query performance for small frontier sets, but is inefficient for relatively
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large frontier sets. Instead of treating both approaches as separate strategies, we propose a
hybrid scan/index-based graph traversal that automatically switches between a scan-based and
an index-based execution based on the frontier set size. To determine the right traversal
strategy for each traversal iteration we use a threshold τ compute the fraction of the fron-
tiers to the overall number of source vertices in the graph. If the computed fraction exceeds
the threshold τ, we use the scan-based traversal routine, otherwise the index-based traver-
sal routine. In the experimental evaluation we demonstrate the performance implications
for different values of the threshold τ.

6.4 adjacency-based topology index

The adjacency-based topology index is a secondary index structure, which allows answer-
ing neighborhood queries directly and without the need to consult the primary copy of the
data. This is in contrast to the block-based topology index, where neighborhood queries
cannot be answered by index lookups only. In addition to the general requirements de-
tailed in Section 6.2, we pose the following supplementary requirements on the index
structure:

bi-directional graph traversal . The index structure should support both forward
and backward traversals without sacrificing the query performance of neither traver-
sal direction.

references to attribute column groups . The index structure should allow the
conjunctive evaluation of relational predicates and neighborhood queries, i.e., the
output of a relational predicate evaluation should be usable as an additional pre-
evaluated filter condition in a neighborhood query and a neighborhood query should
be able to probe relational predicates during execution.

index mutability. The index should be mutable and support arbitrary vertex/edge in-
sertions and deletions. Further, in contrast to the block-based topology index, the
index lookup performance should be only dependent on the actual size of the ad-
jacency for each single vertex and not degrade significantly for update-heavy work-
loads.

high-performance neighborhood queries . The index lookup should be fast and
while accessing the graph topology impose as few indirections as possible. Ideally,
the query performance is close to a memory copy operation.

delta merge stability. The index structure should be stable between two delta merge,
i.e., the periodic incorporation of the dynamic graph storage into the static graph
storage, operations and omit having to recreate the complete adjacency structure
after a delta merge has been executed.

To address the additional requirements mentioned above, we introduce the adjacency-
based topology index, a high-performance, mutable adjacency list with direct references
to the corresponding vertex and edge column groups. The index structure can be directly
constructed from the underlying vertex and edge column groups and store both traversal
directions, i.e., one adjacency list organized by outgoing edges and one by incoming edges.
The adjacency-based topology index holds internal mapping structures to allow accessing
attribute values of vertices and edges from the adjacency list and to access the graph
topology based on a predicate evaluation on the vertex/edge column groups. Supported
operations on the graph topology are the retrieval of neighbors of a given vertex (via
incoming or outgoing edges) and the bulk retrieval of adjacent vertices for a given set
of vertices. Further, the index structure can be also used to access the connecting edges
via their corresponding identifier. In the following we describe an efficient initial loading
mechanism to construct the adjacency-based topology index and also describe the internal
mapping data structures.
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Figure 6.11: Parallelized construction of the adjacency list from an edge list.

6.4.1 Index Construction

The core adjacency list consists of a nested-array structure, where the outer array stores
pointers to the corresponding inner arrays. The outer array keeps one entry per vertex in
the graph. The inner array stores an unordered set of vertex ids—the adjacent vertices. We
leverage the dictionary encoding capabilities of Graphite to store only densely-packed
value codes in the adjacency list. Thus, we can use positional indexing in the outer array
to retrieve the adjacent vertices for a given vertex.

We build the core adjacency list from a projection of the edge column group to the edge
id, the source vertex, and the target vertex column. The algorithm is based on three passes:
a statistics gathering pass, a sorting pass, and an insertion pass. We use a multi-pass algorithm
because a parallelized single-pass algorithm increases the construction time considerably
due to increased synchronization overhead between worker threads. In a single-pass al-
gorithm, each insertion into the data structure has to acquire a lock to avoid data races
on the inner array of the corresponding vertex. Even worse, for adjacencies of super nodes,
memory reallocations during the adjacency list construction lead to unnecessary copy op-
erations. If multiple threads write to the same cache line by inserting new vertices into the
same inner array, cpu false sharing effects limit the multi-core scalability of the algorithm
and slow down the construction routine even further.

Figure 6.11 illustrates the steps of the parallelized adjacency list construction routine.
The statistics gathering pass collects information about the average vertex outdegree davg

out
and the largest used vertex id, which could be also gathered from the vertex id dictionary.
Based on the largest vertex id, we allocate memory for the outer array and for each of
the inner arrays to hold at least davg

out vertices. The sorting pass reorders the edge list first
by source vertex, then by target vertex. In a subsequent step, we determine the partition
boundaries, i.e., the start and end positions in the edge list that should be handled by a
single thread. By applying a sorting on the source vertex and a block assignment, we can
ensure that each inner array is only operated by a single thread. This effectively eliminates
the need to lock the inner array and avoids cpu false sharing. In the final insertion phase,
we perform the parallelized edge insertions, where each thread handles a subset of edges
and inserts new vertices by appending them to the corresponding inner array.

6.4.2 Mapping Tables

To combine graph with relational processing, such as filtering and aggregation on the
vertex and edge column groups, we add mappings between the adjacency list and the cor-
responding vertex and edge column groups. Graphite keeps bidirectional, light-weight,
and updateable mapping tables between the adjacency list and the corresponding column
groups. We maintain both combinations, i.e., to continue the execution on the intermediate
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result from a relational operation on the adjacency list or to access vertex/edge attributes
from within the adjacency list. In the following we describe the initial construction of the
mapping tables to and from the edge column group. The vertex mapping tables can be triv-
ially constructed since the insertion of new vertices does not require to propagate them to
the adjacency list.

mapping to edge column group. We use the mapping to the edge column group to
support attribute access operations on intermediate results of graph operations with-
out having to scan the complete edge column group. For example, a set of adjacent
vertices might be further processed by looking up and aggregating some vertex at-
tribute value. Effectively, we maintain logical pointers to the corresponding physical
positions in the edge column group, as depicted in Figure 6.12. Technically, we map
adjacent vertices (or implicitly the edge over which the vertex has been reached)
to their corresponding row ids in the edge column group and maintain a second
nested-array data structure, where we store the corresponding row ids.

mapping from edge column group. The mapping from the edge column group to
the corresponding entries in the adjacency list requires two positional indices to
locate a single entry in the adjacency list. One index is required to access the outer
array and one to access the inner array, respectively.

We use two array-based data structures to derive the pair of indices to locate an edge
in the adjacency list: a prefix array and a mapping array. The prefix array provides global
entry points into the adjacency list and stores a prefix sum of all neighborhood sizes,
one for each entry in the outer array. The mapping array stores local entry points
into the adjacency list through mapping values that provide local information of the
vertices within a single neighborhood and how they can be accessed. In combination
with the prefix array, a mapping value allows computing the position of the target
vertex for the corresponding edge in the inner array.

We construct the prefix array by computing a parallel prefix scan over the core adja-
cency list. Subsequently, we iterate over the mapping to the edge table–the mirrored
adjacency list with row identifiers—and compute for each entry the mapping value
using the computed sums from the prefix scan.

Figure 6.13 depicts an exemplary mapping between the adjacency list and the correspond-
ing edge column group. For example, to access the adjacency list entry for the edge with
id 2, we first retrieve the corresponding mapping array entry at position 2 (in this case the
mapping value is 2). Next, we use the prefix array and perform a search to retrieve the
largest element, which is lower or equal to the mapping value (in this case o2). The index
for the outer array (the source vertex) is the position o2 in the prefix array. The index for
the inner array—the index within the adjacency—can be computed as the subtraction of
the entry in the prefix array from the mapping value. For the edge with id 2, we retrieve
the tuple 〈2, 0〉.

Algorithm 9 sketches the routine to compute the adjacency list indices for a given edge.
In Line 2, we derive the mapping value m for edge e via positional index. We use the
mapping value m to determine the outer array index by performing a binary search on the
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Figure 6.13: Mapping of rows in the edge column group to entries in the adjacency list.

sorted prefix array. Next, we store the position of the largest value, which compares lower-
or-equal to m in p (Line 3). Finally, we subtract the prefix sum value found at position p in
the prefix array from the mapping value m.

Algorithm 9: Adjacency list index computation
Input : e = Edge
Output : io = Index for accessing the outer array
Output : ii = Index for accessing the inner array

1 Procedure computeIndices(e, io, ii)
2 m← mapping[e] ; // Compute mapping value

3 p← upper_bound[m] − 1 ; // Compute position for lower-equal (binary search)

4 io ← p;
5 ii ← m− prefix[p];

6.4.3 Index Maintenance

We use a light-weight update routine that propagates insertions performed to the edge
column group to the adjacency list. Upon insertion of a new edge into the edge column
group, we use an internal message bus in Graphite to notify the registered adjacency
list index about the newly inserted edge. Updating the core adjacency list is as simple as
appending the target vertex of the edge to the corresponding adjacency of the source vertex.
Similarly, we update the structure, which maps entries in the adjacency list to entries in
the edge column group.

Since updating the mapping table, which translates edges in the edge column group
into their corresponding positions in the adjacency list would be to expensive to maintain
in-place, we use a delta buffer to keep the mapping table up-to-date. The delta buffer is
a dynamic array with offset-encoded positional access to newly inserted edges. As value,
the delta buffer stores a tuple of indices, where the first index encodes the position in the
outer array and the second index to the inner array, respectively.

6.5 experimental evaluation

In this section we conduct an experimental evaluation of the block-based topology index and
the adjacency-based topology index. We compare both index structures and their respective
traversal implementations as well as the scan-based traversal against each other. We imple-
mented both index structures in Graphite on top of a dictionary-encoded edge column
group, which effectively enables the traversal algorithm to operate directly on value codes.
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6.5.1 Experimental Setup

We conducted all experiments on an Intel
® Xeon

® E5-2660v3 machine with 2 sockets, 10

cores per socket, each core running at 2.6GHz, and 2 threads per core. The machine runs
on sles 12 sp1 and is equipped with 128GB of ddr4 ram and 25MB last level cache.

We use the following data sets—we refer the reader to Appendix A for detailed graph
topology characteristics—in our experiments: social graphs (Amazon, LiveJournal, Orkut,
Pokec, Twitter), road graphs (Cali), web graphs (Wikipedia), citation graphs (Patents),
computer network graphs (Skitter), and generated graphs using the r-mat data generator
(RMAT-SF20, RMAT-SF22, RMAT-SF24, RMAT-SF26).

Initially, we load the data sets into the corresponding vertex and edge column groups.
For each performance experiment, we randomly select 100 start vertices and perform
traversals with up to depth 10 and report the median elapsed time. In the following
we present our experimental results—for each evaluated index structure we report the
construction time and memory footprint as well as their query performance for traversal
queries on static and dynamic graphs.

6.5.2 Index Construction Time and Memory Consumption

We investigate the impact of the graph topology on the construction time and the mem-
ory footprint of the block-based topology index and the adjacency-based topology index,
respectively. Our experimental results are summarized in Table 6.1. For the block-based
topology index, we omit the results for varying block sizes, since the block size has only
marginal impact on the overall memory consumption. This can be explained by the fact
that the index structure consists of two main parts, a block index, which maps value codes
to blocks and a block range vector, which stores the block boundaries. Since the number
of vertices in the graph is usually larger than the number of blocks, we can assume that
the overall index memory footprint is dominated by the number of vertices in the graph.
For all subsequent experiments, we use a fixed block size of 512. For the adjacency-based
topology index, we report the construction time and the memory footprint for the creation
of the core adjacency list and the mapping tables to the corresponding edge column group.

The block-based topology index is a memory-efficient secondary index structure and on
average consumes less than 5% of the csv-based edge list graph representation on disk.
This can be explained by the fact that the block-based topology index has an worst-case
space complexity of O(V + |B|), where |B| refers to the total number of blocks, and for all
evaluated graphs |V | << |E| holds. Since the block-based topology index does not replicate
the complete graph topology, the memory consumption is considerably lower than similar
primary, adjacency-based index structures.

We observe a similar performance trend for the construction of the block-based topol-
ogy index. We construct the index structure in two passes, one for determining the block
ranges and one for inserting the block assignments into the index We parallelize each
step by partitioning the edge column group into equally sized chunks and assigning each
chunk of edges to a worker thread. For the majority of the evaluated data sets, it took
considerably less than a second to construct the block-based topology index. Exceptions
are the large data sets Wikipedia, RMAT-SF26, and Twitter, which take up to 37 s for the
index construction.

In contrast to the block-based topology index, the adjacency-based topology index repli-
cates the complete graph topology into a dedicated data structures, thereby exhibiting a
considerably higher memory footprint. The space complexity of the core adjacency list is
O(E) as it stores one entry for every edge in the graph. The space complexity of the map-
ping table to the edge column group is O(E), as it points for each edge in the graph to
the corresponding position in the edge column group. The mapping table from the edge
column group to the adjacency list has a space complexity of O(V + E), with a space com-
plexity of O(V) for the prefix array and a space complexity of O(E) for the mapping array.
Compared to the size of the corresponding edge list on disk, the adjacency-based topology
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Table 6.1: Memory consumption and construction time for the block-based topology index (minimal
block size = 512) and the adjacency-based topology index.

Block-Based Topology Index Adjacency-Based Topology Index

Data Set
Memory

Footprint [MB]
Construction

Time [s]
Memory

Footprint [MB]
Construction

Time [s]

Amazon 1.5 0.15 80.61 0.24

RMAT-SF20 2.3 0.35 389.16 0.67

Skitter 3.7 0.36 266.89 1.08

Pokec 5.7 0.5 713.35 1.37

Patents 8.1 0.64 406.89 2.14

RMAT-SF22 8.2 0.81 1,555 2.47

Orkut 11.1 0.99 2,706 3.36

LiveJournal 16.9 1.24 1,604 3.90

RMAT-SF24 30.6 2.07 6,214 9.03

Wikipedia 101.4 25.38 13,954 21.87

RMAT-SF26 113.7 23.51 24,840 63.02

Twitter 158.2 37.11 33,926 58.87

index consumes up to 1.2× the memory and up to 3.5× the memory of the in-memory
edge list representation. Compared to the construction time of the block-based topology
index, the adjacency-based topology index is up to a factor of three slower, which is mainly
caused by the creation of the mapping tables to the edge column group and the creation
of own dictionary structures.

6.5.3 Traversal Performance

In the next experiment we compare four different traversal implementations against each
other. For all experiments across different traversal implementations, we use the same
query configuration—same start vertex and traversal depth—and only vary the traversal
strategy to obtain comparable results. Specifically, we evaluated the following traversal
implementations:

• a scan-based traversal

• an index-based traversal (using the block-based topology index)

• a hybrid scan-/index-based traversal (using the block-based topology index)

6.5.3.1 Static Graphs

In the first experiment, we evaluate the block-based index and the corresponding index-
based traversal for different block sizes {29, 2

12, 2
15} and a scan-based traversal. We present

the results in Figure 6.14. For all evaluated data sets, the index-based traversal outper-
forms the scan-based traversal by up to two orders of magnitude for short traversals with
a traversal depth of up to four. The break-even point, where the scan-based traversal starts
to outperform the index-based traversal, depends on the underlying graph topology. For
example, for social graphs, such as Pokec, LiveJournal, and the data sets generated by
r-mat, this break-even point is reached at a traversal depth of around 3 to 4. One exception
is Orkut, which is also a social network graph, but has not such an extremely power-law
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Figure 6.14: Performance evaluation of the scan-based traversal implementation ( ) and the index-
based traversal implementation ( , , ) with varying block sizes drawn from
{29, 2

12, 2
15}.

degree distribution leading to a better performance for the index-based traversal. In con-
trast, for extremely sparse graphs, such as Skitter, Patents, and Cali, the scan-based
traversal never outperforms the index-based counterpart. While analyzing the size of in-
termediate frontier sets, we observed very large frontier sets for social graphs, leading
to a performance degradation for the index-based traversal caused by a large number of
index lookups and consequently a large number of range scans. This is analogous to the
classical decision problem in an rdbms to perform—depending on the query selectivity—
a full-column scan or an index scan on the column. If the number of index lookups to
perform is large, a brute-force full-column scan is preferable while for a small number of
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Figure 6.15: Performance evaluation of hybrid scan-based/index-based graph traversal.

index lookups, an index scan is advantageous. For social graphs, the size of the frontier
set grows fast with increasing traversal depth, reaching a peak size after 3 to 5 traversal
hops. For large frontier sets, the overhead of the index-based traversal is significant and
the scan-based traversal outperforms the index-based counterpart by up to two orders of
magnitude for these queries.

Figure 6.15 summarizes the results of our next experiment, where we evaluate and com-
pare the hybrid traversal operator against the purely scan-based and index-based traver-
sal implementations. For the hybrid traversal, which switches automatically between an
index-based and a scan-based traversal depending on the size of the frontier set, we use
two exemplary threshold values—2.5% and 25%—to switch between the two modes. The
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Figure 6.16: Slowdown (in multiples of execution time on the respective static graph) factor and
health factor ( ) of block-based topology index on dynamic graphs with varying dy-
namic part fractions drawn from {0%, 1%, 10%, 25%, 50%, 75%}. We evaluate two different
traversal queries: 2-hop traversals ( ) and 5-hop traversals ( ).

threshold defines the fraction of the frontier set compared to the total number of vertices
in the graph. For the index-based traversal implementation, we used a block size of 512.

For all evaluated data sets, the hybrid traversal provides comparable query performance
for short traversals to the index-based traversal, but switches to a scan-based traversal for
larger frontier sets. Thereby, the hybrid traversal avoids the execution time explosion of
the index-based traversal and stays below the execution time of the scan-based traversal
for deep traversals due to the performance gain in the first iterations. For extremely sparse
graphs, such as Skitter, Patents, and Cali, the hybrid traversal does not switch to the
scan-based traversal at all. This is because the size of the frontier set never reaches our
defined threshold for switching between the two modes. Interestingly, the configuration of
the threshold is not very sensitive to different input values. We experimentally increased
the threshold even further to up to 75% and found that the optimal switching criterion, i.e.,
when the scan-based traversal starts outperforming the index-based traversal is at around
40%.

6.5.3.2 Dynamic Graphs

In the following experiment we evaluate the impact of edge insertions on the block-based
topology index and present our results in Figure 6.16.

For each experiment, we divide the data set into a static part, which we import at pro-
gram start, and a dynamic part, which we insert batchwise as part of the workload. In
detail, we conduct the experiments as follows: (1) we load the static part of the graph and
generate the read-optimized storage format, (2) we insert the dynamic part of the graph
and generate the write-optimized storage format, (3) we generate the block-based topology
index, and (4) we run the traversal queries.

We generate workloads with varying sizes of the dynamic part (in percentage p of the
original graph) drawn from {0%, 1%, 10%, 25%, 50%, 75%} to simulate different graph work-
loads, ranging from read-only to write-heavy graph scenarios. In a preprocessing step, we
randomly remove edges with probability p from the original data set and generate in-
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sert statements for them. By loading always the entire original data set, we avoid query
processing artifacts that stem from varying result set sizes due to cut paths in the graph.

We evaluate the index-based traversal on dynamic graphs for three representative data
sets: Amazon, Cali, Pokec, and LiveJournal. For each data set, we report the slowdown
factor, i.e., the quotient of the current traversal execution time and the corresponding base
line on a static graph. On the second y-axis, we report the corresponding health factor of the
block-based topology index. For all data sets, we can see that the health factor decreases
with an increasing dynamic graph fraction, i.e., neighborhoods are more cluttered over
multiple blocks, resulting in a higher execution time because multiple blocks have to be
accessed to retrieve the adjacent vertices for a given vertex. Longer traversals are more
affected by a larger dynamic graph fraction as they tend to discover more vertices and
perform more index lookups to retrieve adjacent vertices, consequently resulting in a larger
slowdown factor compared to an equivalent traversal on a static graph. Depending on the
graph topology, the size of the dynamic fraction of the graph can a different impact on
the overall execution time. For example, for a 5-hop traversal and a 10% dynamic graph
fraction, a query exhibits a slowdown of 1.2× for Cali, while it is about factor 2 slower
for Amazon. If the application has tight query performance constraints, only a moderate
slowdown—if at all—can be tolerated. In such a case, the index should be rebuilt once the
health factor of the index goes below 0.95, otherwise the slowdown factor might not be
tolerable any more.

6.6 summary

In this chapter we presented two graph index structures—a block-based topology index
and an adjacency-based topology index—to accelerate neighborhood queries. In contrast to
a scan-based approach with a complexity of O(|E|), a neighborhood query on the proposed
index structures has an overall runtime complexity of O(c) for a small constant c.

We proposed two secondary index structures with a low memory footprint and fast
construction methods that can be even used on large graphs with billions of edges. The
block-based topology index is an auxiliary data structures that indexes the edge column
group and allows to limit the range to scan to a block level. If the edge column group is
perfectly clustered, all adjacent vertices for a given vertex can be retrieved from a single
block. The index supports an efficient update routine that allows to maintain the index in
constant time at the expense of giving up the cluster criterion on the index. Our experi-
ments show that for read-mostly graph workloads the performance penalty compared to
a read-only workload and a perfect clustering is less than 10% on average.

The adjacency-based topology index is at its core a native adjacency list with additional
mapping structures to seamlessly allow hybrid query processing on the column groups
and the adjacency list. This comes with a considerably higher memory footprint com-
pared to the block-based index of about 100×, but also achieves significantly higher query
performance speed as no scan operations are necessary to fetch a set of neighbors for a
given vertex.

Finally, we proposed a hybrid traversal implementation that combines scan-based and
index-based execution with the operator. At each traversal iteration, the operator decides
based on the size of the frontier set, whether to process the next iteration scan-based or
index-based. In the experiments we show that a hybrid solution can preserve the perfor-
mance of the index-based traversal for the first traversal iterations and switches to the
scan-based traversal once the frontier set becomes too large.
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The abundance and diversity of massive-scale graph-structured data and the ever-growing
interest of large enterprise companies to analyze them are the key drivers of the recent ad-
vances in graph data management research. From a systems perspective, there is a plethora
of graph processing systems to choose from—all tailored to different use cases and pro-
gramming models. On the other side of the spectrum there is a tremendous amount
of efficient graph algorithms designed for domain-specific scenarios. Especially graph
traversals—one of the most fundamental building blocks for graph processing—have been
studied extensively, with contributions for various system architectures, ranging from com-
modity notebook machines to many-core, distributed server clusters.

Real-world graph applications are typically domain-specific and model complex busi-
ness processes in property graphs. To implement a domain-specific graph algorithm in the
context of such a graph application, simple graph traversals are not expressive enough
nor do they allow customization to the user’s needs. For example, a summarized bill-of-
materials (bom) explosion does not only traverse the part hierarchy, but also accumulates
part quantities to build the final result containing all subparts and their corresponding
quantities. Standard traversal algorithms are not only limited in their extensibility and
expressiveness, but they also provide a fixed traversal semantics, i.e., a repeated visit of
specific vertices or a data-dependent traversal restriction to certain paths is not possible.

To cope with these issues, graph database vendors provide—in addition to their declar-
ative graph query languages—procedural interfaces to write user-defined graph algo-
rithms (Neo; Spa; Ori; Inf). Such imperative interfaces offer a powerful abstraction to write
user-defined, domain-specific graph algorithms, but they also have major drawbacks. A
procedural programming interface is cumbersome to use and requires the user to spec-
ify the graph algorithm against a low-level graph api in a general-purpose programming
language, such as c++ or Java. Additionally, if the user code runs in the same operating
system process as the database server, software bugs or misuse of available resources can
pose the danger of harming the overall database system stability significantly. If the user
code runs in a separate process, the algorithm might suffer from network communication
delays between client and server process due to excessive data transfers. To the worse,
writing graph algorithms in a general-purpose language prevents exploiting data- and
domain-dependent optimizations at runtime and certain query optimization and rewriting
techniques, such as selection push-down and leveraging intra-query parallelism cannot be
applied.

In this chapter, we introduce traversal hooks, a powerful concept to extend and manipu-
late graph traversals with domain-specific code provided by the user. Traversal hooks fol-
low an event-based programming model and provide an interface for a variety of traversal
events, such as the discovery of a new edge or the visit of an already discovered vertex.
Although they act similar to database triggers and execute a piece of code provided by
the user at certain traversal events, traversal hooks only react to query operations. We pro-
vide two built-in traversal strategies—breadth-first (bft) and depth-first (dft)—which can
be extended by traversal hooks and a high-level, domain-specific language called TraveL.
We use the llvm framework to glue together the traversal code with the traversal hooks
at runtime and generate efficient user-defined traversal operators on the fly. We leverage
static program analysis to rewrite and embed the traversal hooks into traversal operators
and compile them for later use. Our contributions can be summarized as follows:

• We describe the programming model and the concepts behind traversal hooks and
introduce a novel domain-specific language TraveL for traversal-based graph algo-
rithms.
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Figure 7.1: Summarized bom explosion for part P1.

Listing 7.1: Summarized bom explosion.

-- Preamble

CREATE TEMPORARY VERTEX ATTRIBUTE<INT> sum = 0;

-- hook definition

HOOK EDGE "H" (CONTEXT $e) {

$h = HEAD($e);

$t = TAIL($e);

UPDATE $t { SET sum = $t@sum + ($e@quantity * $h@sum); }

}

-- Traversal definition

TRAVEL "BOM" (VERTEX $root) GRAPH "G" {

UPDATE $root { SET sum = 1; }

TRAVERSE BFS $root-->(*) HOOK "H";

}

• We show the generation of efficient executable code from TraveL scripts and describe
in detail how we perform code optimizations using static program analysis.

• We evaluate our implementation of traversal hooks and TraveL based on series of
real-world applications, show how traversal hooks can be expressed in TraveL, and
perform an experimental evaluation for a large variety of realistic graphs and appli-
cations.

Introductory Example

Query support for bill-of-materials (bom) applications is a common requirement in busi-
ness environments. A bom hierarchy is represented as an acyclic, single-rooted graph and
describes the relationships between product parts as depicted in Figure 7.1. The graph
contains an edge attribute quantity, which describes how many instances of the subpart
are required to manufacture the part. To illustrate the use of traversal hooks, we revisit
a fundamental operation on bom hierarchies—summarized bom explosion. It provides an
answer to the question “What is the total quantity of each part required to build part P1?”.

Listing 7.14 depicts a summarized bom explosion expressed in TraveL. A TraveL script
consists of an optional preamble, followed by a set of traversal hook definitions, and a
main clause. We use a temporary vertex attribute qnty to collect intermediate results and
initialize all values to zero, except for the root vertex P1. For this example, we define a
traversal hook to react on newly discovered edges. For each traversal hook invocation,
we extract the head and the tail vertex from the context edge $e and store them in two
temporary variables. We update the temporary vertex attribute qnty with the sum of the
qnty of the tail vertex $t and the multiplication of the edge weight quantity and the vertex
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attribute qnty of the head vertex $h. The final result of the summarized bom explosion start-
ing from root vertex P1 is shown in the table in Figure 7.1. For a more detailed description
of TraveL, we refer the reader to Section 7.3.

The remainder of this chapter is structured as follows. We discuss related work in Sec-
tion 7.1, where we compare several high-level graph programming models and interfaces
to TraveL. In Section 7.2 we introduce the TraveL programming model and describe its
language features in Section 7.3. We outline the main components of TraveL and the code
generation process in Section 7.4 and present several optimizations thereof in Section 7.5.
Section 7.6 describes a set of realistic use cases where we show the generality and applica-
bility of our programming model and TraveL. In Section 7.7 we conduct an experimental
evaluation, including low-level micro-benchmarks and complex TraveL scripts, before we
summarize our findings in Section 7.8.

7.1 related work

We divide the review of related work into three categories, namely programming models,
high-level graph abstractions, and code generation techniques.

7.1.1 Programming Models

A related concept to traversal hooks is the visitor concept implemented in the Boost Graph
Library (bgl) (Siek et al., 2002). The bgl provides a set of built-in graph algorithms, such as
breadth-first and depth-first traversals, and allows the user to pass additional logic to the
graph algorithms through functors. Each graph algorithm can be optionally extended by
multiple visitor objects, which are invoked at specific event points. We follow a similar pro-
gramming model, but restrict the visitor types to the most general ones, i.e., the discovery
of an edge or a vertex. The bgl is a compile-time library and uses c++ templates exten-
sively. Thus, the bgl achieves a similar query performance compared to TraveL, but lacks
a mechanism to generate and instantiate graph algorithms dynamically at runtime. Addi-
tionally, all optimizations performed are merely low-level compiler optimizations, but do
not exploit any high-level knowledge about the restrictive semantics of the visitor concept.

The Gather-Apply-Scatter (gas) model is a vertex-centric computation model initially
coined by Low et al. (2010). The gas model is conceptually divided into three phases: gather,
apply, and scatter. The gather phase collects information from adjacent vertices/edges and
passes the result to the apply phase, where a user-defined function is applied on all vertices
in parallel. Finally, the scatter phase propagates computed values to adjacent vertices.

A large variety of graph processing systems—such as GraphLab and Pregel—imple-
ment the gas model with specific modifications. For example, Pregel (Malewicz et al.,
2010), a distributed graph processing framework based on the bulk-synchronous paral-
lel model (bsp), uses data pushing through message passing in the scatter phase, whereas
GraphLab relies on a data pulling in the gather phase. Both strategies are primarily rele-
vant for distributed graph processing, where the overall execution time is limited by the
network delay and the available network bandwidth.

A program written for Pregel runs in a sequence of iterations—so-called supersteps—
where the framework invokes for each vertex a user-defined function. This in spirit similar
to traversal hooks in TraveL with the exception that in Pregel there is no invocation
ordering within a superstep. In contrast, TraveL guarantees that the invocation ordering
is steered by the traversal semantics. In Pregel, the user-defined function is executed for
all vertices in the graph, except if the corresponding vertex already voted to halt. In TraveL,
the traversal hook is only executed for discovered vertices in the traversal operation. State
between supersteps is passed by messages in Pregel, TraveL keeps computation state
between hook invocations in temporary attributes. Pregel treats only vertices as first-class
citizen of the programming model, user-defined functions cannot be applied on edges.
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Algorithm 10: Ligra breadth-first traversal implementation.

1 Procedure COND(i)
2 return (Parents[i] == −1);

3 Procedure UPDATE(s, d)
4 return (CAS(Parents[d], −1, s));

Input : Graph G, root vertex v0.
Output : Parent vector Parents.

5 Algorithm BFS(G, v0)

6 forall v ∈ V do
7 Parents[v]← −1;

8 Parents[v0]← v0;
9 Frontier← {v0} ;

10 while Frontier 6= ∅ do
11 Frontier← EDGEMAP(G, Frontier, UPDATE, COND);

TraveL treats both, vertices and edges, as first-class citizen of the programming model
and allows traversal hooks on vertices and edges, respectively.

Gremlin (Rodriguez, 2015), a traversal-based graph query language allows the user to
specify an arbitrary number of so-called traversal steps, which transform an input into an
output. Examples for traversal steps include steps with side effects (addEdge, addVertex)
and aggregating steps (count, max). Although the language by itself is extremely pow-
erful and can be extended by a jvm-based host programming language and can be opti-
mized using simple rewriting techniques, Gremlin and its implementation is not targeting
performance-critical graph algorithm problems.

7.1.2 High-Level Graph Abstractions

Ligra Shun and Blelloch (2013) employs a parallel, level-synchronous bft; we depict a
simple implementation of a bft in Ligra in Listing 10 (adapted from Shun and Blelloch
(2013)). It uses the EdgeMap function and user-defined functions to check if a vertex has
been already discovered (Line 1) and to update the parent array (Line 3). In contrast to
TraveL, Ligra does not offer high-level graph algorithms as built-in functions and requires
the user to specify even simple traversal-based algorithms using low-level programming
constructs, such as the VertexMap and EdgeMap functions.

GreenMarl (Hong et al., 2012) is an imperative, domain-specific graph query language
particularly designed for writing customized graph algorithms. It is part of the pgx graph
analysis framework and compiles a high-level graph algorithm description into a backend-
specific implementation using a source-to-source compiler. Currently available backends
include graph processing units with a cuda implementation, Pregel with a vertex-centric
implementation in Java, and single-node, multi-socket server machines with a parallelized
c++ implementation. In contrast to TraveL, GreenMarl allows the user to explicitly de-
fine parallel regions in the algorithm, which are rewritten and parallelized by the com-
piler infrastructure. From a language perspective, TraveL adopts many of the language
constructs available in GreenMarl and extends them with other graph-specific language
constructs. Table 7.1 provides a detailed comparison of the most important language con-
structs of TraveL and GreenMarl. TraveL is designed to be more expressive for traversal-
based algorithms and provides more fine-grained control over the traversal algorithm. For
example, TraveL allows specifying the desired traversal depth natively in the language
while in GreenMarl this can only be achieved by using additional variables to track the
traversal depth manually. Additionally, GreenMarl does not allow performing custom
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Table 7.1: Comparison of available language features in GreenMarl and TraveL.

TraveL GreenMarl

General Features

Unbounded Traversals 3 3

Graph Modifications (3) 7

Parallel Constructs 3 3

Invoking other functions 3 7

Type System

Graph-Specific Types Vertices, Edges,
Paths

Vertices, Edges, Graphs

Collection Types Multi-Sets Sets, Ordered Sets,
Sequences

Graph Traversals

K-Hop Traversals 3 7

Traversal Extensions 3 (3)

Path Operations 3 7

Local Traversal Restrictions 3 3

Global Traversal Restrictions 3 7

actions, when edges are traversed. A TraveL script can be composed of multiple, isolated
graph algorithms and can stored/reused as registered built-in function later on in other
TraveL scripts. In a similar fashion, we allow the invocation of other built-in graph algo-
rithms, such as graph reachability and shortest path computations.

The main differences between GreenMarl and TraveL, however, are driven by the
environments in which they are used. GreenMarl and the accompanying compiler only
provide a source-to-source compiler, the actual compilation into an executable unit is left to
the application user. In contrast, TraveL compiles the textual algorithm representation into
an llvm module and subsequently uses the llvm jit compiler to generate an executable
program on the fly and execute it. The main assumption of having two separate compila-
tion units, one for the tuned, built-in graph algorithms and one for the actual GreenMarl

script does not hold for the GreenMarl compiler. Instead, one compilation unit can be
constructed as the built-in graph operators can be directly linked into the GreenMarl

program executable. In contrast, TraveL has to deal with two different compilation phases
and automatically patch the built-in graph algorithms with custom logic at runtime.

EmptyHeaded (Aberger et al., 2015) is a relational engine tailored to graph processing
and provides a high-level, Datalog-like query language. The authors use the boolean al-
gebra and recent advances from join theory, i.e., worst-case optimal joins (multiway joins)
to construct a logical query plan using generalized hypertree decompositions (ghd). Empty-
Headed stores all relations in tries and formulates the main operations on a trie or set
representation, respectively. The query language of EmptyHeaded supports conjunctive
queries with aggregations and a simplified form of recursion. The recursion operation
follows a similar semantics to Kleene-star or transitive closure. The recursion either termi-
nates, when the relation does not change anymore or a user-defined convergence criterion
is fulfilled. The code generation phase produces c++ code from the ghd representation.
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7.1.3 Code Generation

Code generation for compiling sql queries to efficient machine code has been an active
area of research (Neumann, 2011; Nagel et al., 2014). HyPer (Neumann, 2011), a main-
memory rdbms for mixed oltp/olap workloads uses the llvm compiler framework (Lat-
tner, 2002) to generate efficient machine code from sql queries at runtime. Similar to
TraveL, HyPer applies a mixed code generation consisting of complex logic written in
c++, such as data structures, spilling to disk, and allocation of new memory, and the or-
chestration of the precompiled parts in llvm-ir. HyPer exploits the possibility to easily
call external c++ functions from the generated llvm-ir code. We follow a similar model
by exposing an internal, low-level graph api directly in the generated llvm-ir code.

Cloudera Impala (Kornacker et al., 2015), a sql engine for the Hadoop eco system,
leverages the llvm compiler framework to generate and compile code by eliminating un-
necessary branching, data loads, and virtual function calls. This is similar to TraveL, where
we perform vertex/edge attribute location and type resolution at compile time and inline
calls to the traversal hooks. Like Impala, we use a hybrid approach that combines manual
code generation emitting llvm-ir with cross-compilation of built-in operators, such as the
graph traversal, using Clang.

Tupleware (Crotty et al., 2015) is an analytics framework for compiling workflows of
user-defined functions (udf) into executable code for distributed execution. The code genera-
tion is based on the llvm framework and aims at combining high-level query optimization
with low-level compiler optimizations that are specific to the underlying hardware config-
uration. In contrast to TraveL, a workflow is a composite of an abstract workflow descrip-
tion consisting of high-level operations, such as map, reduce, and loop, and udfs written
in an llvm-compatible programming language like Julia or Python. During compilation
time, Tupleware generates llvm-ir code from the udf and links it to the program gener-
ated from the workflow graph. The udf analyzer inspects the code for vectorizability and
derives computation characteristics, i.e., whether the function is likely to be memory- or
cpu-bound. Although the general compilation process is similar to TraveL, our approach
is focused on graph analysis tasks and provides sophisticated graph-specific optimizations
that are not present in Tupleware. Further, we expose a single interface to the end user
by making udfs—in TraveL called traversal hooks—a first class citizen of the language. We
believe that our concept of traversal operators and specific extension points could be also
integrated into a more general-purpose analytic systems such as Tupleware.

7.2 model of computation

A graph traversal discovers new vertices and traverses over edges in a deterministic and
well-defined manner. We use an event-oriented programming model and the notion of
traversal events to allow end users to extend the ordinary graph traversal semantics with
custom logic. By ordinary traversal semantics, we refer to the traversal order of bft and
dft, i.e., to discover vertices level-by-level (bft) or to discover vertices recursively (dft).

Such traversal events include the discovery of new vertices and the traversal over edges.
Although it would be possible to define other, more specialized traversal events, i.e., the
repeated visit of a vertex/an edge, we argue that a restricted number of event types is
sufficient to compose more complex traversal events.

Each traversal event triggers the execution of a user-defined action—called traversal
hook— that is defined for this event type. A traversal hook can produce and access volatile
and persistent state, which is shared between invocations. Additionally, a traversal hook
can change the semantics of the underlying graph traversal and steer the traversal during
runtime.

Figure 7.2 depicts the interaction between a traversal operator and the traversal exten-
sion with its components traversal hook and traversal state. The traversal operator calls the
traversal hook for each triggered traversal event; the traversal hook can steer the traversal
operation by either restricting/terminating or extending the traversal. The traversal hook
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Figure 7.2: Interaction between the traversal operator and a traversal hook with state.

stores intermediate results in the traversal state, which is shared across all traversal hook
invocations. Data stored in the traversal state is immediately visible in the logically subse-
quent traversal hook invocation. Multiple traversal hooks can be associated with a graph
traversal operator, where each traversal hook is assigned to a traversal event type. For ex-
ample, the user can specify two traversal hooks reacting to the discovery of new vertices,
where each traversal hook by itself might perform a different action. Traversal hooks can
either share the traversal state or have exclusive state that is only visible within the specific
traversal hook. In each call, the traversal hook can read its traversal state and access the
graph through a common graph programming interface.

7.2.1 Traversal Events

A traversal event T(τ, k) in a graph traversal τ describes the discovery of an item k—a
vertex or an edge in the graph. The complete set of traversal events for a specific traversal
operation is partially ordered with respect to the discovery order of vertices and edges.
The concrete ordering of traversal events depends on the traversal strategy and the specific
traversal implementation.

We support two traversal strategies, namely breadth-first (bft) and depth-first (dft). In
a traversal strategy, it is implementation-specific, in which order neighbors in a bft and
paths in a dft are evaluated. We evaluate traversal events in increasing order according
to their assigned traversal number t(v). For all e ∈ E with e = (u, v) u, v ∈ V ,u 6= v the
following implication holds:

t(u) 6 t(v) =⇒ T(u) 6 T(e) 6 T(v) (7.1)

Figure 7.3 depicts an example graph and a set of valid partial orderings for bft and dft

traversals starting at vertex v1, respectively. The partial ordering is a sorting of the assigned
traversal number t(vi) for a vertex vi in increasing order. For a bft, we first traverse over
edges e1 and e2, then discover vertex v2 followed by vertex v3 and so on. Whether we first
traverse over edge e1 and then e2 is implementation-specific.

7.2.2 Traversal Context

A traversal hook receives a traversal context with information about the vertex or the
edge triggering the event. Initially, the traversal hook only has access to the vertex/edge
identifier—we refer to this as minimal context. The traversal context can be implicitly ex-
tended if the traversal hook accesses also attribute values or the neighborhood of the
minimal context in the body of the traversal hook. The traversal context can be seen as the
minimal unit of retrieval from the graph for each traversal hook invocation. By analyzing
the traversal hook context in the compilation phase, we can determine data dependencies
between traversal hook invocations and prefetch the required data for the traversal context
before the actual traversal hook logic is executed.
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Figure 7.3: Partial ordering of traversal events from vertex v1 for breadth-first and depth-first traver-
sal.

7.2.3 Traversal State

We use three different ways to carry traversal state between traversal hook invocations:
temporary attributes, persistent attributes, and user-defined data structures.

Temporary Attributes

A temporary attribute is a typed data container for storing either a vertex or an edge at-
tribute and is only accessible during the query session. For example, a user might add a
temporary vertex attribute weight to accumulate vertex-specific, intermediate results dur-
ing the traversal. A temporary attribute can be referenced like a regular, persistent attribute
and read/written multiple times. A graph can hold multiple temporary attributes during
a single query session to capture multiple states between traversal hook invocations.

Persistent Attributes

A persistent attribute is a typed data container for storing either a vertex or an edge
attribute and is made atomically visible after the query transaction commits. From a se-
mantic point of view it is similar to a temporary attribute with the major difference being
that the content is persisted at the end of the transaction in an atomic operation. When
two queries run concurrently, each query instance has its own, private data container.

User-Defined Data Structures

We support different containers, which can be chosen from a set of predefined data struc-
tures, including unordered maps and lists. Both types can hold literals, vertices, edges,
and simple paths.

7.2.4 Traversal Control Flow Manipulation

The traversal semantics describes in which order the vertices in a graph should be discov-
ered. For example, a textbook breadth-first traversal implementation visits all neighbors
of a specific vertex before exploring the adjacent vertices of the neighbors. Further, each
vertex is discovered on the shortest path (with respect to the number of traversed edges)
and is visited at most once.

For a realistic use case, this traversal semantics, however, can be to rigid. The user usually
requires a more fine-grained control over the traversal logic to adjust it to the specific
algorithm. We provide a mechanism to allow the user to steer the traversal operator and to
explicitly modify the traversal semantics for a specific query. The control flow modification
is specified in the traversal hook and uses signals to notify the invoking traversal operator
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about the changed traversal semantics. We support two different variations of control flow
modifications: traversal restriction and traversal extension.

Traversal Restriction

The traversal operator discovers vertices and expands the traversal on all edges that fulfill
the conditions specified in the traversal configuration, including the traversal depth and
vertex/edge filters. The evaluation of filters, however, can only be applied on a vertex/edge
level. We propose a dynamic filter, which allows evaluating the filter condition in a data-
driven manner, while being able to take a broader hook context and traversal state into
account. For example, a graph algorithm that uses a budget to traverse the graph can only
continue the traversal as long as the budget is not yet exhausted. We categorize traversal
restrictions into local and global restrictions. A local traversal restriction operates on a hook
invocation level and restricts the edge expansion for the specific hook context. In contrast, a
global traversal restriction terminates all—potentially in parallel—running and scheduled
traversal hooks.

Traversal Extension

By default, a graph traversal discovers each vertex at most once and never visits an already
discovered vertex again. Further, each edge is traversed at most once to discover its target
vertex. This traversal semantics allows terminating the traversal once all reachable vertices
have been discovered or no undiscovered vertices are reachable anymore. Sometimes, how-
ever, a more lenient traversal semantics is desirable. Traversal hooks allow manipulating
the traversal operator such that vertices can be visited multiple times and edges can be
used for traversals more than once. However useful, a dedicated termination criterion has
to be defined since otherwise the execution might not terminate. For example, a query
might want to modify the traversal semantics to visit each vertex at most k times, where k
might be some statically or dynamically computed value.

7.3 travel

TraveL is a domain-specific query language for writing complex graph algorithms. In con-
trast to a low-level programming interface, TraveL provides high-level, graph-specific lan-
guage constructs to formulate graph algorithms in a user-friendly and intuitive way while
retaining an equivalent execution performance to manually optimized implementations
written in c++. TraveL exhibits a graph abstraction and natively supports fundamental
graph data types, such as vertices, edges, and paths, and operations thereon. It facilitates
an imperative programming model with control flow elements and data querying and
manipulation operations. The core programming concept of TraveL are traversal hooks,
which allow extending optimized, built-in graph traversal operators by user-defined pro-
gram logic. In addition to imperative language constructs, such as loops and conditional
statements, TraveL provides declarative language blocks for specifying filter conditions,
traversal operations, and updates on vertex/edge attributes.

The TraveL execution engine relies on code generation and translates a TraveL script
into a low-level intermediate representation and an accompanying program module using
the llvm compiler framework. TraveL accesses the data through a low-level programming
interface, which is linked during the compilation phase to the generated TraveL program
binary. Except for a low-level programming interface—which most gdbms already offer—
TraveL does not pose any prerequisites to the underlying graph processing system. In the
course of this chapter, we describe the prototypical implementation of TraveL in Graph-
ite, but argue that TraveL could be implemented on top of any other graph processing
system exposing a certain set of functionality through a low-level programming interface.
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Figure 7.4: Type system and transformation operations in TraveL.

7.3.1 Data Types

TraveL is statically typed and supports a variety of primitive data types, including integer,
bigint, double, and string. The TraveL type system is compatible with the accompanying
backend implementation—in our case the type system of Graphite. More complex at-
tribute types, such as geometry or text types, could be integrated in TraveL as well.

TraveL supports three graph-specific types, namely vertices, edges, and (simple) paths.
We uniquely identify each vertex and edge by a 64bit identifier and label a vertex as
vertex:<ID> and an edge as edge:<ID>, respectively. A path is an ordered sequence of in-
terleaved vertices and edges, e.g., 〈 vertex:1,edge:1,vertex:2,edge:2,vertex:3 〉 forms
a path of length two from vertex:1 to vertex:3. Although the path could be reconstructed
from the ordered sequence of edges only, we explicitly also store the vertices. A path is
valid, if for any consecutive pair of edges 〈〈vk−2, vk−1〉, 〈vk−1, vk〉〉 both edges share a
common vertex vk−1. TraveL supports a multiset type, which stores a homogeneous, un-
ordered set with duplicates of elements. Additionally, we provide built-in support for
duplicate removal and sorting on the multisets. The type of an element in the multiset can be
vertex, edge, or path, respectively. Figure 7.4 depicts the TraveL type system and important
transformation operations between different types.

We perform type checking of all TraveL expressions during the code generation phase
and ensure that all subexpressions forming more complex expressions exhibit the same
type. To that end, TraveL does not support automatic type promotion and value casting.

7.3.2 Language Constructs

In the following we introduce the main language features of TraveL. An algorithm ex-
pressed in TraveL is split into three parts: a preamble section, a traversal hook section,
and a traversal section. Listing 7.2 depicts an exemplary TraveL script skeleton.

The optional preamble section consists of a set of statements to declare global variables
and temporary/persistent vertex/edge attributes. The TraveL execution engine evaluates
the preamble in a preprocessing step before the actual program runs so that declared data
containers and attributes can be referenced in the TraveL script.
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Listing 7.2: Structure of a TraveL script.

-- (optional) preamble section

CREATE ...

-- (optional) traversal hook section

HOOK EDGE "H1" (CONTEXT $e) {

-- travel statements

}

-- (mandatory) travel section

TRAVEL "T" (VERTEX $source, INT $numHops, ...) GRAPH "G" {

-- travel statements

}

The optional traversal hook section consists of a set of traversal hooks, where each hook
is composed of a set of statements. We assign to each traversal hook a unique identifier, a
hook type, and a hook context. The identifier can be used to reference the hook from other
TraveL statements. We use the hook type to distinguish between vertex-centric (hook type
vertex) and edge-centric (hook type edge) computations. Finally, the hook context provides
a variable binding to the hook call context and can be used to reference the local vertex or
edge in the body of the traversal hook.

The main clause acts as the entry point and orchestration part of a TraveL script. It
consists of a set of statements to implement the graph algorithm and might reference
declarations and hooks. A TraveL script can be identified using a globally unique name,
which can be used to distinguish and reference different TraveL scripts. A TraveL script
can receive an arbitrary number of read-only input parameters, where each parameter is a
tuple consisting of a type and a variable identifier. Being able to specify input parameters
allows a TraveL script to be invoked from other TraveL scripts as long as the return
type and the input type match. Additionally, a TraveL script references the graph using a
unique graph workspace identifier on which the script should run.

Declaration Statements

The preamble of a TraveL script consists of a set of statements to declare additional ver-
tex/edge attributes and global variables. Each declared attribute or variable is globally
visible and can be referenced using an identifier in any expression in the TraveL script.
For attributes, additionally the identifier is unique across already existing attributes in the
graph.

A vertex/edge attribute can be declared to be temporary or persistent. A temporary
attribute is volatile and exists only during the execution of the TraveL script. Each script
instance has its own private copy of the attribute and is agnostic to transient graph data
modifications of other parallel running TraveL scripts. In contrast, a persistent attribute is
non-volatile and is committed in an atomic operation at the end of the script. An attribute
can be either initialized implicitly with the default value or explicitly with a value specified
by the user.

CREATE TEMPORARY VERTEX ATTRIBUTE<INT> A1 = 0;

CREATE PERSISTENT EDGE ATTRIBUTE<DOUBLE> WEIGHT;

A global variable can be of any supported primitive type in TraveL and either initialized
with a default value or with a value specified by the user.

BOOL b;

INT i;

BIGINT b = 1L;

STRING s = "myString";
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DOUBLE d;

In addition to vertex/edge attributes and variables of primitive types, TraveL supports
built-in data structures to collect intermediate results. Currently, we support unordered
multi-sets, lists, and unordered maps.

MULTISET<INT> C;

LIST<EDGE> L;

MAP<VERTEX,INT> M2;

Each container type can store primitive values of type string, integer, bigint, or double and
complex types, such as vertex, edge, and path.

Variables

TraveL supports three different types of variables: local, global, and built-in variables. Each
variable can be referenced by a variable identifier that is composed of a $ followed by a
sequence of alphanumeric characters. A local variable is used to split large, complex state-
ments into smaller ones to improve the readability of the TraveL script. A global variable
instead allows the user to maintain state during the computation. The assignment of the
result of an expression determines the data type of the local variable. For a global variable,
the data type has to be specified explicitly. After the initial assignment/declaration, the
type of a global or local variable cannot be modified anymore.

We use two built-in variables—$VERTICES and $EDGES—to reference the set of vertices and
edges in the graph, respectively. The built-in variable $VERTICES is of type vertex multiset
and $EDGES is of type edge multiset.

Graph Access Expressions

We expose fundamental graph access operations directly via expressions and summarize
them, their corresponding syntax in TraveL, and their return type in Table 7.2. The at-
tribute access expression requires a variable binding or an expression, which evaluates to
type vertex or edge, and an attribute name. Depending on the type of the variable binding,
the attribute name will be either looked up in the vertex column group or in the edge
column group. The resolution of whether the attribute is persistent or temporary and the
actual data type of the specified attribute is performed in the backend. If the vertex or the
edge does not exist in the graph, we raise an error and terminate the execution. TraveL
currently does not support NULL value handling.

TraveL supports the specification of graph traversals and follows the semantics intro-
duced in Section 5.2.1. A graph traversal starts from a single vertex or a set of vertices
and performs a set of traversal iterations. A traversal expression can have an optional edge
filter, which restricts the traversal to a subset of edges of the complete graph. The traversal
direction can be either forward or backward and the traversal performs a limited number of
traversal iterations or a recursive exploration of the graph until no more vertices can be dis-
covered. Traversal expressions can be used in any place where a vertex multiset as return
type is applicable, such as in loops, assignments, aggregations, and as core component of
traversal statements.

$node-[@weight > 2]->

$node-[@weight > 2]->(2)

$node-[@weight > 2]->(*)

In addition to traversals and attribute access, TraveL supports several built-in access func-
tions that transform between values of different types, in particular between vertices, edges,
and paths. For example, for an edge or a path $i the expression HEAD($i) returns the head
vertex and TAIL($i) returns the tail vertex, respectively. TraveL can also return the set of
edges between two vertices. We use a multiset semantics here as two vertices can have
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Description Variable Type Return Type TraveL Expression

Multiset of vertices - Vertex Multiset $VERTICES

Multiset of edges - Edge Multiset $EDGES

Attribute Access Vertex/Edge Attribute data type $i@weight

Traversal Vertex Vertex Multiset $node-[*]->

Head vertex access Edge/Path Vertex HEAD($i)

Tail vertex access Edge/Path Vertex TAIL($i)

Edge constructor Vertex Edge multiset EDGES($u,$v)

Edge constructor Path Edge Multiset EDGES($p)

Vertex constructor Path Vertex Multiset VERTICES($p)

Table 7.2: Graph access operations and their corresponding expressions in TraveL.

multiple edges in between. If there is no edge between the two vertices, TraveL returns an
empty edge multiset. Similarly, for a path $p, the user can project on vertices and edges.

Relational Expressions

A relational expression is a boolean expression and evaluates to true or false. We support
relational operators on vertex/edge attribute values, literals, and vertices, edges, or paths.
The types of both operands in a relational expression must be equal.

$i <> $k

($i >= 1) AND ($i < 10)

TraveL supports all commonly known relational operators, including comparisons for
equality (==), inequality (<>), greater/lower comparisons (<, >, <=, >=), and conjunctive
(AND) and disjunctive (OR) combinations thereof.

Arithmetic Expressions

TraveL supports basic mathematical operations on numerical values, including addition
(+), subtraction (-), multiplication (*), and division (/).

$k + 2

2 * ($k - 1)

2 * $v@weight

The operator precedence of arithmetic expressions can be modified by explicitly surround-
ing them with parentheses. The operands for an arithmetic expression can be literals, local
variable bindings, and vertex/edge attribute values. TraveL currently does not support
automatic type promotion and requires both operands to be of the same type.

Set Expressions

We support three types of collections in TraveL, namely multisets of vertices, edges, and
paths. A multiset is an iterable, unordered bag of elements.

-- yields { vertex:1, vertex:2, vertex:3 }

{ vertex:1, vertex:2 } UNION { vertex:3 }

-- yields { vertex:2 }

{ vertex:1, vertex:2 } INTERSECT { vertex:2 }
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-- yields { vertex:1 }

{ vertex:1, vertex:2 } MINUS { vertex:2 }

-- union of two traversal expressions

$n1-[@weight > 1]-> UNION $n2-[@weight > 1]->

-- yields {} (empty multiset)

EDGES($u,$v) INTERSECT EDGES($v,$u)

Two multisets of the same type can be coalesced, intersected, and subtracted from each
other. A multiset expression can be only evaluated if both operands expose the same type,
i.e., vertex, edge, and path multisets cannot be freely mixed. A multiset can be either
created explicitly by listing the items wrapped in curly braces or implicitly as a result of
another expression, e.g., a traversal expression or an edge construction expression.

Path Expressions

TraveL supports simple (acyclic) paths as a complex data type. A path can be constructed
explicitly using the path constructor expression, which receives as input an ordered se-
quence of edges, or implicitly as a result of a graph algorithm returning a path or a set of
paths. A path can be constructed if two edges in the input are “joinable”, i.e., share one
common vertex. A path can be also computed incrementally by appending new edges at
the end of the path.

-- path construction

$path = PATH(edge:1,edge:2,...,edge:100);

-- extend path by another edge

$path = $path + PATH($e);

A path itself is not iterable, i.e., it cannot be directly used to iterate over it in a loop
statement. TraveL, however, provides access methods to return the set of vertices and
edges of a path, respectively. Further, TraveL can return the source and the target vertex
of the path, respectively.

Assignment Statements

An assignment statement binds the result of an expression to a local variable. We provide
assignment statements as a simple but effective language construct to split larger TraveL
statements into smaller ones.

-- type is vertex

$v = vertex:23;

-- type is integer

$e = 1;

-- type is edge multiset

$edges = { edge:1, edge:2 };

-- type is vertex multiset

$neighbors = $v-[@weight > 0.5]->;

-- type is derived from the attribute type (e.g. string)

$val = $v@name;

All variables have to be initialized before they can be referenced and accessed in a TraveL
expression. TraveL is statically typed and the data type of the object that is bound to the
variable cannot change during the lifetime of a single query run.
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Conditional Statements

TraveL allows the conditional evaluation of statements depending on the result of a
boolean expression. As of now, TraveL only supports relational expressions as boolean ex-
pression to be evaluated in the context of conditional statements. Conditional statements
can be arbitrarily nested and provide the same scoping rules for variable bindings like
other high-level languages.

IF ($val@weight < 2) {

-- travel statements

} ELSE {

-- travel statements

}

Loop Statements

Besides set-oriented processing, TraveL also provides a built-in mechanism to iterate over
a collection of elements. The object to iterate over has to be iterable, a requirement which
is fulfilled by multisets in TraveL.

FOR $i : $n-[@weight > 1.0]-> {

-- travel statements

}

FOR $i : $VERTICES {

-- travel statements

}

The iteration variable can be referenced in the body of the loop clause and its type is derived
from the type of an item in the set. In the body of the iteration statement, the set itself
cannot be modified. The set to iterate on can be either a set that is bound to a local variable
or the result of an expression returning a set.

Data Manipulation Statements

TraveL allows the modification of vertex and edge attribute values through update state-
ments. Currently, the topology of the graph cannot be modified, i.e., the addition and
deletion of vertices and edges is not allowed.

UPDATE $s {

SET weight = 2*@weight,

SET note = "Doubled";

}

An update statement uses a local variable binding to determine the vertex/edge or ver-
tex/edge set to update. In the body of an update statement, there can be an arbitrary
number of statements, each of them assigning a new value to the attribute of the context
element. The right-hand side of the assignment can be composed of an expression that
returns values of primitive types.

Traversal Statements

A traversal statement allows adding traversal hooks to traversal expressions and extend
them with custom logic. Traversal statements play an important role in TraveL as they
directly expose the hook-based programming model to the user.

TRAVERSE BFS $k-[@weight > 1.0]->(*) HOOK "H1";

TRAVERSE DFS $k-[@weight > 0.5]->(2) HOOK "H1";

TRAVERSE PATH $p HOOK "P";
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We can assign a list of traversal hooks to a traversal statement, where each traversal hook
is referenced by its hook identifier. A traversal statement receives either a path variable
or a traversal expression describing the root vertex, vertex and edge predicates, and the
traversal depth. For a path variable, the traversal operator traverses over a path and invokes
the specified traversal hooks. For a traversal expression, the traversal strategy can be either
breadth-first or depth-first. TraveL allows referencing multiple traversal hooks within the
same traversal statement, even not restricting a traversal to a specific hook type.

Traversal Manipulation Statements

Since the traversal strategies breadth-first and depth-first can be too restrictive for some
applications, TraveL provides two language constructs, namely RESTRICT and EXTEND, to
modify the traversal behavior during runtime. The expression of a traversal manipulation
statement is a relational expression.

RESTRICT $c > 2;

RESTRICT ALL $c > 2;

EXTEND $c <= 23;

In a default setting, a traversal is never restricted (RESTRICT false) and never revisits ver-
tices/edges (EXTEND false) as long as new vertices can be discovered or the maximum
traversal depth is not reached.

The traversal can be restricted to remove certain frontier vertices from the evaluation,
which cannot be achieved by using static vertex and edge filters. For example, a global
budget could be used to model travel costs in a graph; for each traversed edge, the travel
budget is reduced by the cost assigned to the edge. When the budget is exhausted, the
traversal should terminate. TraveL allows terminating either the complete traversal—using
the RESTRICT ALL statement—or only dismisses the hook context vertex/edge using the
RESTRICT statement. The extension of a traversal is useful to repeatedly visit vertices during
the traversal. This is not possible in the default traversal strategies as they visit each vertex
and edges at most once.

7.3.3 Invoking Built-In Algorithms

Although TraveL provides the expressiveness to implement arbitrary graph algorithms,
it is reasonable to implement performance-critical graph algorithms directly in c++ us-
ing custom data structures and tailored parallelization strategies. We support the em-
bedding and invocation of high-performance, built-in graph algorithms directly within
a TraveL script. Such a hybrid execution combines the expressiveness and composabil-
ity of a general-purpose language interface with the query performance of hand-crafted,
specialized graph algorithms in a seamless manner. From an implementation perspective,
built-in graph algorithms can be considered as larger building blocks of an extended graph
api.

Listing 7.3: TraveL example using sssp as built-in graph algorithm.

1 HOOK EDGE "S" (CONTEXT $e) {

2 RETURN $e@weight;

3 }

4

5 TRAVEL "CALL_BUILTIN" (VERTEX $u) GRAPH "G" {

6 -- all shortest paths from $u to all reachable vertices

7 $paths = SHORTEST_PATH($u) HOOK "S";

8 $sum = 0;

9 FOR $pth : $paths {

10 $sum = $sum + LENGTH($pth); -- get path length and add to $sum

11 }

12 -- compute average path length

13 $avgPathLength = $sum / COUNT($paths);

14 }
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Listing 7.3 illustrates a TraveL script example that invokes a built-in single-source shortest
path (sssp) algorithm and post processes the result of the algorithm. In the example, we
invoke the sssp algorithm for a root vertex $u and compute afterwards the average path
length to all reachable vertices. By exposing the built-in graph algorithm directly to TraveL
we can customize graph algorithms—for sssp we allow the user to specify a cost function
to derive edge weights dynamically. To specify the edge hook for the sssp algorithm, we
use an edge hook, which dynamically computes the edge weight for each inspected edge
and returns the value to the algorithm.

7.4 travel compiler

In this section we describe our code generation routine for compiling a TraveL script into
executable code and the integration of TraveL into Graphite. Figure 7.5 depicts the fun-
damental components of the TraveL engine and the interaction with the graph processing
system backend.

Optimization Code Generation

TraveL Script

TraveL Execution Engine

Traversal Operators Graph API

Compile-time

Run-time

Figure 7.5: General architecture of the TraveL engine.

7.4.1 General Architecture

TraveL operates as a language frontend and an accompanying compiler backend and
execution engine as part of a graph processing system, such as Graphite, and consists
of a compile-time and a run-time component. We follow the classical query optimization
process as implemented in most rdbmss, where the initial optimization pass operates on
a logical representation of the query and the second pass translates the logical plan into a
physical execution plan. Similarly, we translate a TraveL script into an abstract syntax tree
and subsequently employ a two-tiered optimization process.

On the logical level, we analyze the predominant graph access patterns and perform
high-level optimizations, which rewrite parts of the TraveL script and eliminate unreach-
able code fragments. In the code generation step, we use the llvm api to generate llvm-ir
code from the optimized, high-level TraveL script representation. llvm-ir is a strongly
typed, portable, low-level assembler representation from the llvm compiler framework. In
the second optimization phase, we use the llvm compiler framework to perform low-level,
graph-agnostic optimizations using optimization passes available in llvm. We describe
the code generation in Section 7.4.2 and details on the applied high-level optimization
techniques in Section 7.5. The TraveL execution engine uses the llvm jit compiler and
translates the TraveL llvm-ir representation into executable code. To bind the executable
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Figure 7.6: Code generation steps in TraveL.

program to the graph processing backend, we lookup and link the symbols, i.e., the func-
tion calls to the graph api and to the traversal operators.

7.4.2 Code Generation

We utilize the llvm compiler framework to generate llvm-ir code from a TraveL script
and use llvm-ir code to orchestrate the execution logic, and to delegate more complex
functions, such as operators and resource management tasks, to the graph backend. Thus,
we rely on a hybrid approach that seamlessly blends tuned c++ graph operator implemen-
tations with orchestration logic implemented in llvm-ir. Generating llvm-ir code pro-
vides several advantages over a textual c++ code generation approach: (1) llvm provides
a c++ interface to generate llvm-ir code programmatically while retaining the ability to
develop higher-level constructs, such as loops and conditional statements, in an intuitive
manner. (2) llvm can resolve code symbols, such as function declarations, from c++ code
and make them available in the generated llvm-ir code. Thus, we can expose the internal
graph api written in c++ directly to the generated llvm-ir code and thereby simplify the
code generation significantly. (3) A code fragment generated in llvm-ir can be cached for
later reuse, loaded again into memory, and manipulated during runtime.

Figure 7.6 depicts the code generation steps from the input TraveL script to the com-
piled executable. Initially, we read and parse a TraveL script from a file or the command
line and transform it into an abstract syntax tree. In a subsequent step, we perform a se-
ries of semantic verification passes, such as variable reference checking and type checking.
In TraveL, all local variables have to be declared and initialized before they can be refer-
enced. In the variable reference checking pass, we iterate over all referenced local variables
and check whether they have been declared upfront. In the type checking pass, we deter-
mine the data type of each expression in the TraveL script. If the type checker identifies
type-incompatible subexpressions, we throw raise an error and the abort the compilation
process.

In the high-level optimization pass, we rewrite inefficient TraveL constructs using more
processing-friendly TraveL language building blocks. We use static program analysis to
determine data dependencies between traversal hook invocations and identify traversal
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hook code fragments that could be executed independently from each other. The indepen-
dence of traversal hook calls allows reordering and grouping single hook calls into bigger
batches of hook invocations that can be further parallelized. Further, we analyze filter pred-
icates that could be extracted from the traversal hook body and performed as a separate
preprocessing step outside of the actual hook code. We provide a detailed description of
all applied high-level optimizations in Section 7.5.

In the code generation phase, we traverse the abstract syntax tree and generate an llvm-
ir module from it. On top of this module, we run a set of llvm optimization passes, such as
function inlining, and finally pass the llvm-ir module to the just-in-time execution engine
of the llvm framework for compilation and execution.

LLVM-IR Generation

We use the c++ api of the llvm framework to programmatically generate llvm-ir code
from TraveL. In contrast to a simplistic, string-based code generation routine that ap-
pends new code fragments to a stream of characters, an api offers type safety and enforces
the compiler implementer to adhere to the semantics of the language even during the
code generation. In addition to the generation of llvm-ir code, the framework also offers
manipulation functions to inspect, traverse, and modify already generated llvm modules.

Our code generation routine is based on a visitor pattern and traverses the optimized
TraveL ast to emit llvm-ir code. For each traversed object in the ast, we invoke a
CodeGen() routine and generate the llvm-ir code for that specific statement or expression.
Listing 7.4 sketches the code routine for generating attribute access function calls to the in-
ternal graph api. We generate a function call to the internal c++ api and already calculate
the corresponding physical address of the column location and pass it as a parameter to
the function. In the graph api we provide specialized functions that allow retrieving sin-
gle attribute values without having to cast value types and having to resolve the attribute
by name in every function invocation. By that, each attribute access function is mainly a
wrapper around the low-level access to the internal data structure holding the attribute.
The graph api itself and the traversal operators are both written in c++ as they perform
complex operations on internal data structures, which are tedious to implement natively
in llvm-ir.

Listing 7.4: Code generation routine for producing attribute access-related code.

1 llvm::Value* AttributeAccessExpression::codegen(CodeGenContext& context) {
2 llvm::Function* f = nullptr;
3 std::vector<llvm::Value*> args;
4 if (context.getType(m_variable) == travel::datatype::VERTEX) {
5

6 // resolve attribute and compute physical address
7 llvm::Value* pos = llvmhelper::createInt(getGraph().getAttributePos(m_attr));
8

9 // retrieve llvm variable
10 llvm::Value* vertex = nullptr;
11 auto it = context.locals.find(m_variable);
12 if (it != context.locals.end()) {
13 vertex = context.builder->CreateLoad(it->second);
14 } else {
15 throw TravelCodeGenException(...);
16 }
17

18 // add function parameters
19 args.push_back(vertex);
20 args.push_back(pos);
21

22 // determine graph api function call
23 switch (getGraph().getAttributeType(m_attr)) {
24 case INT: f = context.module->getFunction("getVertexIntAttrVal"); break;
25 ....
26 default: break;
27 }
28 } else if (context.getType(m_variable) == travel::datatype::EDGE) {
29 ...
30 } else {
31 throw TravelCodeGenException(...);
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32 }
33

34 if (f) {
35 // return llvm function call
36 return context.builder->CreateCall(f, args, "");
37 } else {
38 throw TravelCodeGenException(...);
39 }
40 }

Listing 7.5 depicts an llvm-ir representation of a simple vertex traversal hook accessing a
vertex attribute of type double and summing up the values in a global variable @sum. Line 3

contains the generated code fragment that would be produced by the routine presented in
Listing 7.4.

Listing 7.5: LLVM-IR representation of a simple vertex traversal hook.

1 ; Function Attrs: uwtable
2 define i32 @_Z13hook_vertex_Hm(i64 %v) #1 {
3 %1 = tail call double @_Z29getVertexDoubleAttributeValuemi(i64 %v, i32 2)
4 %2 = load double* @sum, align 8, !tbaa !1
5 %3 = fadd double %1, %2
6 store double %3, double* @sum, align 8, !tbaa !1
7 ret i32 0
8 }

Graph Data Access

TraveL offers built-in functionality to fetch vertices/edges and vertex/edge attribute val-
ues from the underlying graph storage (cf. Table 7.2). To access graph data, we translate
each TraveL graph access operation into function calls that are exposed through the inter-
nal, c-style graph api. This api is part of the graph storage backend and exposes a basic
set of functionality to retrieve data from the underlying graph.

We identify two potential performance issues that arise in a general-purpose graph stor-
age with support for multiple data types and a varying set of vertex/edge attributes:
(1) support for multiple data types is typically implemented either using dynamic poly-
morphism and virtual function calls or through function overloading, and (2) to access the
actual attribute data container, the high-level attribute name has to be translated into a
physical memory address for each access.

Since TraveL is statically typed, we can generate query-specific, type-dependent code in
the code generation phase. This avoids unnecessary value conversions and attribute type
resolution during runtime due to system-internal programming abstractions. In the code
generation step, we determine the data type of all accessed attributes and automatically
select the correct, type-dependent access function from the api. This shifts the otherwise
expensive metadata lookup operation into the compilation phase of the query.

The second important consideration is to resolve, which attribute containers to access,
already in the code generation phase. In particular for tight loops with loop variable de-
pendent attribute access, having to resolve the attribute container location during each
iteration again is not practical. Therefore, we determine the correct data location by resolv-
ing the attribute name and by replacing it with an internal, positional identifier. Listing 7.7
depicts a simplified code example for the generic and the code generation attribute access.

Instead of returning a generic value wrapper object as in Listing 7.7 (a), we use the code
generation approach (cf. Listing 7.7 (b)) to select the correct function call and directly place
them into the llvm-ir code. Thereby, we avoid unnecessary data copying and the virtual
function calls introduced by the column and attribute value abstractions.

Extending Traversal Operators

TraveL offers through traversal hooks a powerful concept to extend and customize built-
in traversal operators. So far, we have only discussed how to generate new code and their
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class GenericVal { ... };
class IntVal : GenericVal { ... };
class DoubleVal : GenericVal { ... };

class ColumnBase {
public:
virtual GenericVal getAttributeVal(

const uint64_t id) = 0;
};

GenericVal getAttributeValue(const uint64_t id,
const char* attr) {

ColumnBase* c = resolveAttribute(attr);
return c->getAttributeVal(id);

}

(a) Generic attribute interface.

class IntColumn {
public:
int getAttributeVal(const uint64_t id);

};

IntColumn* getIntColumn(const uint32_t pos) {
return int_cols[pos];

}

int getAttributeIntValue(const uint64_t id,
const uint32_t pos) {

return getIntColumn(pos)->getAttributeVal(id);
}

(b) Attribute interface for code generation.

Figure 7.7: Attribute access programming interfaces.

interaction with the low-level graph api. A graph traversal operator could be naturally
extended by passing a function object to the traversal and calling the contained function
for each event from within the operator (cf. Figure 7.8 (a)). For this approach to work,
a dummy function call—potentially from an abstract base class—has to be placed in the
body of the traversal. Similar to the attribute access discussion, calling the traversal hook
through a virtual function call is fairly expense, in particular for large graphs and a large
number of traversal hook invocations. In such a scenario, there are at least two compilation
units, one for the graph storage interface and the built-in traversal operators and one for
the code-generated traversal hook. The compilation unit of the graph storage is compiled
when the complete system is compiled; the traversal hook can only be compiled at runtime.
This fact limits the possibilities of the compiler to inline or otherwise optimize the interplay
between the traversal operator and the traversal hook.

Instead of keeping two separate compilation units, we create for a TraveL script a cus-
tomized traversal operator during runtime in a single compilation unit (cf. Figure 7.8 (b)).
This has the advantage that the jit compiler can perform a holistic code optimization by
tightly integrating the traversal hook code into the traversal operator. If the traversal hook
is small in size and simple in structure, the compiler can even inline the traversal hook and
without having to pay the costs for an additional function call. We perform the following
steps to produce such a customized traversal operator at runtime:

1. In an offline step, we statically generate an llvm module of the traversal operator
using the Clang compiler. This could be either stored in the caching infrastructure
of the TraveL compiler, in a textual *.ll, or a binary *.bc file on disk. The traversal
operator contains two dummy function calls, one for vertices and one for edges.

2. We generate the traversal hook as a function in a separate llvm module as described
in Section 7.4.2.

3. We merge the two llvm modules and replace the calls to the dummy traversal hooks
with the generated traversal hooks.

4. We execute several optimization passes available in llvm, in particular the -inline

optimization pass to embed the traversal hook code directly into the traversal opera-
tor.

7.5 travel query rewriting

In this section we exploit the benefits of the high-level abstractions offered by TraveL and
propose several rewriting techniques, which leverage the program semantics introduced
by the programming model (cf. Section 7.2). One of our main goals is to optimize the
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(a) Traversal hook in separate compila-
tion unit.

Traversal
Operator

Traversal
Hook

Graph
api

Calls

(b) Traversal hook compiled into traver-
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Figure 7.8: Extending traversal operators in TraveL.

HOOK EDGE "H" (CONTEXT $e) {

IF ($e@type == "knows") {

-- perform some action

}

}

TRAVEL "T" GRAPH "G" {

$r = vertex:1;

TRAVERSE BFS $r-[*]->(*) HOOK "H";

}

(a) Suboptimal predicate evaluation.

HOOK EDGE "H" (CONTEXT $e) {

-- perform some action

}

TRAVEL "T" GRAPH "G" {

$r = vertex:1;

TRAVERSE BFS $r-[@type=="knows"]->(*) HOOK "H";

}

(b) Rewritten TraveL script.

Figure 7.9: TraveL rewriting of predicate evaluation.

execution of the traversal hooks, i.e., the code path that is executed for every discovered
vertex or every traversed edge. There are two main directions to enhance the performance
of traversal hook invocations: (1) reducing the number of instructions performed for each
traversal hook invocation and (2) batching multiple, independent traversal hook invoca-
tions. A simple step that we perform at the beginning of the rewriting pass is to check for
unreachable code fragments, such as unreferenced variables and not used traversal hooks,
and eliminate them.

7.5.1 Filter Rewriting

TraveL distinguishes between static and dynamic filter conditions, i.e., a predicate that
can be evaluated statically at the beginning of the query or a dynamic predicate, which
depends on data gathered during the execution. An example for a static filter is to restrict
the traversal to edges that fulfill a certain predicate, e.g., the edge type. In contrast, an
example for a dynamic predicate could be to terminate the traversal once a certain criterion
is not anymore satisfied, such as a travel budget exceeds the given limit.

The TraveL compiler automatically detects predicates in traversal hooks that do not de-
pend on runtime computations and moves them out of the traversal hook function into
the traversal operator. Listing 7.9 (a) depicts a TraveL script with a traversal hook and a
static predicate in the traversal hook body. The condition is evaluated for each traversed
edge and results in a branch for each traversal hook invocation. In contrast, if the predi-
cate is not evaluated inside the traversal hook, the traversal hook itself is only invoked for
matching vertices or edges. If the predicate is evaluated for every single vertex or edge, no
further optimizations can be applied, i.e., by choosing between different predicate evalua-
tion strategies.

The rewriting logic of the TraveL compiler moves the predicate evaluation out of the
traversal hook and rewrites the traversal configuration to use an additional edge filter
restricting the traversal to edges of type knows. Thus, we already restrict the traversal before
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CREATE TEMPORARY VERTEX ATTRIBUTE<INT> sum;

TRAVEL "T" GRAPH "G" {

$r = vertex:1;

FOR $i : $r-[*]-> {

UPDATE $r { SET sum = sum + $i@weight; };

}

}

(a) TraveL script without traversal hook.

CREATE TEMPORARY VERTEX ATTRIBUTE<INT> sum;

HOOK VERTEX "H" (CONTEXT $v) {

UPDATE $r { SET sum = sum + $v@weight; };

}

TRAVEL "T" GRAPH "G" {

$r = vertex:1;

TRAVERSE BFS $r-[*]-> HOOK "H";

}

(b) Rewritten TraveL script.

Figure 7.10: Rewriting of TraveL script logic as traversal hooks.

invoking the traversal hook and leave the decision to optimize the predicate evaluation
further to the traversal operator (cf. Listing 7.9 (b)).

7.5.2 Merging Traversal Hooks

The user can specify multiple traversal hooks associated to a single traversal operator. By
default, we consider each traversal hook independently for optimization. In some cases,
i.e., when the traversal hook accesses similar attributes or exposes a similar neighborhood
access pattern, we merge traversal hooks into a single traversal hook. The ordering in
which traversal hooks are evaluated is specified by the user in the traversal statement. The
first referenced traversal hook is invoked first, then the second and so on.

7.5.3 Rewriting of TraveL Scripts with Traversal Hooks

Although traversal hooks are a key component of TraveL and the majority of our proposed
optimizations target the execution of traversal hooks, the user is not forced to write TraveL
scripts using solely traversal hooks to express graph algorithms. Listing 7.10 (a) illustrates
a TraveL script, which circumvents the hook-based programming model of TraveL.

In the program analysis phase, we search for code patterns in a TraveL script that
mimic the intended functionality of traversal hooks. A typical pattern is the invocation of a
traversal expression, which returns a set of discovered vertices, and subsequent processing
on the resulting vertex multiset by iterating over it. Once we detected such a code pattern,
we rewrite the TraveL script such we use a traversal statement and a traversal hook instead
and use the code block of the for loop inside the traversal hook (cf. Listing 7.10 (b)). This,
however, only works when there are now data dependencies between the original for loop
body and other statements in the TraveL script.
The TraveL script shown in Listing 7.10 (a) performs a one-hop traversal, followed by
a subsequent iteration over the vertices of the traversal result and computes a derived
attribute value. We can rewrite the TraveL query by introducing a traversal hook and
performing the update operation in the body of the traversal hook. By transforming an
arbitrary TraveL script into a more canonical, hook-based version of the script, we can
reuse already existing code generation techniques and avoid having to fully materialize
the result of the traversal expression. Although traversal hooks are particularly well-suited
for multi-hop traversals, they can also replace in their simplest form a one-hop traversal—a
neighborhood query—and a subsequent postprocessing phase on the collected vertices.

7.5.4 Traversal Hook Pipelining

Traversal hooks are evaluated sequentially in the order of appearance of their respec-
tive traversal events, potentially causing a considerable slowdown in the total execution
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Figure 7.11: Variations of pipelined execution of traversal hooks from vertex B (grey boxes refer to
vertex hooks, white boxes to edge hooks, respectively).

time since each traversal hook call is invoked individually. Although the strict sequential
bft/dft ordering is a fundamental concept of the TraveL programming model, such a
strong and rigid traversal semantics can be lessened for certain data access patterns within
the traversal hooks. In the following we discuss the implications of data dependencies
present within and between traversal hooks, which might force the traversal operator to
retain the sequential traversal hook evaluation pattern. In the optimal case of no data
dependencies between two separate traversal hook invocations, they can be executed inde-
pendently from each other. Such data dependencies are analogous to dependencies found
in modern cpu pipelines causing data hazards. We refer to the independent execution of
traversal hook invocations as traversal hook pipelining, as it is similar to the pipelined ex-
ecution of instructions in modern processors. Similarly, data dependencies can result in
data hazards, i.e. blocking the pipeline caused by an unresolved data dependency. Ignor-
ing data dependencies can result in a changed execution order and unexpected results
compared to a sequential execution.

Figure 7.11 depicts an example graph and three possible traversal hook invocation or-
ders. For a bft starting at vertex B, Figure 7.11 (b) depicts the strictly sequential execution
of the traversal hook. A sequential processing of the traversal hooks maintains the seman-
tics of a strict traversal ordering, but does not provide any possibility to invoke traversal
hooks independently from each other. Figure 7.11 (c) depicts level-parallel hook pipelining,
where vertices and edges that are discovered on the same level are processed indepen-
dently from each other. Finally, Figure 7.11 (d) depicts the optimal case, where all traversal
hooks can be invoked independently from each other.

Data dependencies can occur between consecutive traversal hook invocations on shared
traversal state objects, such as temporary attributes and global variables. Our aim is to
schedule traversal hook invocations such that traversal hooks without data dependencies
can be invoked independently from each other without modifying the sequential semantics
of the TraveL script. We distinguish four major operations that access shared traversal
state:

• Local Reads: A local read operation only accesses the traversal state of the object—
the vertex or the edge—for which the traversal hook is invoked. This includes access
to temporary attributes and map entries for the corresponding object, but not to
access traversal state of any other vertex or edge.
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Table 7.3: Data dependencies between invocations of traversal hooks in TraveL.

Traversal Hook Line
Local
Read

Local
Write

Non-Local
Read

Non-Local
Write

1 HOOK VERTEX "V" (CONTEXT $v) {

2 $sum = $sum + 1;

3 UPDATE $v { SET s = $sum; }

4 }

2 - - 3 3

3 - 3 3 -

1 HOOK VERTEX "V" (CONTEXT $v) {

2 FOR $i : $v-[*]-> {

3 UPDATE $v { SET s = s + $i@s; }}

4 }

3 - 3 3 -

1 HOOK VERTEX "V" (CONTEXT $v) {

2 UPDATE $v { SET s = LEVEL(); }

3 }

2 - 3 3 -

1 HOOK VERTEX "V" (CONTEXT $v) {

2 UPDATE $v { SET s = 0; }

3 }

2 3 3 - -

• Local Writes: A local write operation only allows the modification of the traversal
state of the object—the vertex or the edge—for which the traversal hook is invoked.

• Non-Local Reads: A non-local read operation accesses the traversal state of any other
vertex or edge in the graph that is not the context object of the respective traversal
hook invocation.

• Non-Local Writes: A non-local write operation modifies the traversal state of any
other vertex or edge in the graph that is not the context object of the respective
traversal hook invocation.

In Table 7.3 we illustrate the different types of data dependencies that can occur between
traversal hook invocations. We use a simple TraveL script blueprint, as depicted in List-
ing 7.6, with a bft traversal starting at vertex $root and an accompanying dummy traversal
hook H to describe the different types of data dependencies.

Listing 7.6: TraveL query pattern with dummy traversal hook.

INT sum = 0;

CREATE TEMPORARY VERTEX ATTRIBUTE<INT> s = 0;

-- dummy traversal hook "H"

HOOK VERTEX "V" (CONTEXT $v) { }

TRAVEL "T" (VERTEX $root) GRAPH "G" {

TRAVERSE BFS $root-[*]->(*) HOOK "V";

}

The first example reads the state of the global variable $sum, increments it by 1, and writes
the new result back. Since $sum is a global variable, we identify the read/write access
pattern as a non-local read followed by a non-local write operation. Similarly, in Line 3 we
read the state of the global variable $sum and assign its value to the attribute s of the context
vertex $v. In the second example, we read the value of attribute s for all neighbors of $v—
we access not only the local context vertex and its state, but also the state of the adjacent
vertices. The third example writes the LEVEL() information into the local traversal state, but
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accesses global state, i.e., information about the current traversal level. The fourth example
exposes no data dependencies as the read and the write operation are local to the invoked
traversal hook.

7.6 applications

In this section we showcase the expressiveness of TraveL on a set of realistic graph algo-
rithms that can be naturally implemented using the hook-based programming model.

7.6.1 K-Hop Reachability

A k-hop reachability query is a reachability query with an additional constraint and receives
a numerical parameter numHops in addition to the two vertices u and v to test for reach-
ability. The algorithm returns true if there is a simple path from vertex u to vertex v of
length numHops, false otherwise.

Listing 7.7: K-hop reachability implementation in TraveL.

1 BOOL reachable = false;

2

3 HOOK VERTEX "H" (CONTEXT $v) {

4 IF (LEVEL() > $numHops) {

5 RESTRICT ALL true;

6 }

7 IF ($v == $t) {

8 IF (LEVEL() == $numHops) {

9 $reachable = true;

10 }

11 RESTRICT ALL true;

12 }

13 }

14

15 TRAVEL "IS_K_HOP_REACHABLE" (VERTEX $s, VERTEX $t, INT $numHops) GRAPH "G" {

16 TRAVERSE BFS $s-[*]->(*) HOOK "H";

17 RETURN $reachable;

18 }

Listing 7.15 sketches the implementation in TraveL, which receives three input parameters,
namely the two vertices $s and $t and the maximum path length $numHops. Initially, we
perform a bft starting from vertex $s, extended by a vertex hook "H" (Line 16). The intuition
is to traverse the graph starting from the source vertex and to check for each discovered
vertex, whether it is the specified target vertex and whether the maximum path length
condition is satisfied (Lines 7-8). If both conditions are fulfilled, it sets the global variable
$reachable to true. We terminate the traversal (Line 11) if either both conditions are satisfied
or the traversed level exceeds the maximum path length (Lines 4-6). Finally, we return the
global variable $reachable.

7.6.2 Collaborative Filtering

Recommendation engines play an important role in e-commerce systems and online dat-
ing websites. Based on the preferences of each user, a recommendation engine makes
suggestions to the user based on similar preferences by other users. Figure 7.12 depicts an
example graph from an artificial online dating website, which represents users as vertices
and relationships between users as Likes. We want to make recommendations for a single
user based on his own likes and similar likes of other users. For each query, we return a
ranked list of potential matches and exclude those that have been already liked by the user.
For example, for user M, which already liked other users C1, C2, and C3, the algorithm
recommends users C5, C4, and C6 (in decreasing order of relevance).
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Figure 7.12: Collaborative filtering recommendation using similar user preferences.

Listing 7.8 depicts an implementation of a simple collaborative filtering algorithm in
TraveL. The algorithm receives as input a user ($user) and returns a ranked set of user
recommendations. We use a temporary vertex attribute popularity to compute a relevance
score for each candidate match. In Line 11 we determine the set of already liked users and
store the result in a local variable $liked. From the set of already liked users, we perform
a backward traversal on incoming edges of type likes and perform vertex-based hook in-
vocations for a traversal hook "REC" (Line 12). For each user with a similar preference, we
invoke the traversal hook, iterate over the user’s likes and update the relevance score for
each candidate user (Lines 4-7). In Line 13 we compute the set of candidates by remov-
ing the set of already liked users from the set of potential candidates. In the final return
statement (Line 14), we sort the candidate matches by the computed relevance score in
decreasing order and return the top 10 matches.

Listing 7.8: Implementation of collaborative filtering in TraveL.

1 CREATE TEMPORARY VERTEX ATTRIBUTE<INT> popularity = 0;

2

3 HOOK VERTEX "REC" (CONTEXT $user) {

4 $candidates = $user-[@type="likes"]->;

5 FOR $i : $candidates {

6 UPDATE $i { SET popularity = popularity + 1; };

7 }

8 }

9

10 TRAVEL "RECOMMENDATION" (VERTEX $user) GRAPH "G" {

11 $liked = $user-[@type="likes"]->;

12 TRAVERSE BFS $liked<-[@type="likes"]- HOOK "REC";

13 $recommendations = $VERTICES MINUS $liked;

14 RETURN $recommendations ORDER DESC BY popularity TOP 10;

15 }

7.6.3 Weighted Shortest Path

The single-source shortest path (sssp) algorithm computes for an input vertex the shortest
paths to all other reachable vertices in a weighted graph. We generalize the well-known
sssp algorithm by Dijkstra (Dijkstra, 1959) to arbitrary cost functions that result in non-
negative edge weights. The central data structure of Dijkstra’s algorithm is a min-priority
queue with efficient support for a decrease_priority() operation. In practice this is usu-
ally accomplished by using Fibonacci heaps (Cormen et al., 2001).

Although TraveL does not offer a built-in Fibonacci heap, we can mimic the same behav-
ior through temporary attributes. To implement a Fibonacci heap in TraveL, we require
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three operations: add_with_priority(), extract_min(), and decrease_priority(). In the
algorithm preparation phase, we initialize the Fibonacci heap with all vertices and an in-
finite priority value. The same behavior can be implemented in TraveL by setting the
default initialization value of the temporary attribute to INT_MAX. In the main loop of Di-
jkstra’s algorithm, we iterate over all vertices in the Fibonacci heap and extract in each
iteration the vertex with the lowest priority value. We achieve the same semantics by using
the TRAVERSE statement of TraveL and treating the Fibonacci heap as a multiset of values
to iterate on. For every iteration, we return and remove the vertex with the lowest priority
(attribute value) and pass it as context object to the assigned traversal hook. In fact, this
generalizes the traversal hook concept to iterations over arbitrary collections, where the
iterator defined on the collection defines the order in which objects of the collection are
discovered.

Listing 7.9: Dijkstra algorithm implementation in TraveL.

1 CREATE TEMPORARY VERTEX ATTRIBUTE<INT> distances = INT_MAX;

2 CREATE TEMPORARY VERTEX ATTRIBUTE<INT> queue = INT_MAX;

3

4 HOOK VERTEX "V" (CONTEXT $v) {

5 $e = EDGE($u, $v);

6 $alt = $u@distances + $e@weight;

7 IF ($alt < $v@distances) {

8 UPDATE $v { SET distances = $alt;

9 SET queue = $alt; -- can only apply decrease_prio

10 }

11 }

12 }

13

14 -- get min

15 HOOK VERTEX "Q" (CONTEXT $u) {

16 -- extract min

17 UPDATE $u { SET queue = UNDEFINED; }

18 TRAVERSE BFS $u-[*]-> HOOK "V";

19 }

20

21 TRAVEL "DIJKSTRA" (VERTEX $source) GRAPH "G" {

22 UPDATE $source { SET distances = 0;

23 SET queue = 0; };

24 TRAVERSE MIN_QUEUE queue HOOK "Q";

25 RETURN $distances;

26 }

Listing 7.9 illustrates the implementation of Dijkstra’s algorithm in TraveL. The script
receives a root vertex from which to compute the shortest path to all other reachable ver-
tices and returns a distance map of all reachable vertices and their corresponding minimal
distance to the root vertex. We initialize two temporary vertex attributes, one to store com-
puted minimal distances (distances) and one to mimic the Fibonacci heap (queue). For the
root vertex, we initialize both attributes to zero. In Line 24 we issue the TRAVERSE state-
ment stating that the collection we are iterating over is a MIN_QUEUE. This gives the TraveL
compiler the necessary information to use a queue data structure for the execution. When
the traversal hook Q is invoked, its hook context vertex contains the vertex with the mini-
mal priority from the queue. To remove the element permanently from the queue, we set
the corresponding attribute value in the queue to UNDEFINED. In Line 18 we perform a bft

traversal starting from the extracted vertex. For each discovered neighbor, we invoke the
traversal hook V, which computes the new distances (Line 6) and updates the distance map
and decreases the priority of the context vertex in the queue (Lines 8-10). The algorithm
terminates when all vertices from the queue have been processed, i.e., the attribute value
for each vertex is set to UNDEFINED.



7.6 applications 151

0

0

0

2

7

15

10
8

5

5

8

2

2

3

ST

A

0
0

B

0
5

C

0
12

E

7
7

I

27
27

D

17
17

G

17
19

F

25
25

H

22
24

FI

ESS:
LSS:

32
32

J

29
29

Figure 7.13: Activity graph with edge weights as activity durations, ST as initial activity, and FI as
final activity. The critical path is colored in red.

7.6.4 Critical Path Analysis

The scheduling of activities in complex projects can be formulated as a graph problem and
is usually referred to as Critical Path Analysis. The task is to find all critical paths in the
graph, i.e., the paths that define the total project duration. A project schedule with activities
and their relationships (dependencies) can be modeled as an Activity Graph, where each
activity is modeled as a vertex and each dependency between two activities A and B is
modeled as an edge. Each edge has an assigned attribute weight describing the duration
it takes to complete activity A, before activity B can be started.

Figure 7.13 depicts an example with activities A, . . . , FI and an initial activity ST . The
start activity is an artificial activity, which is used to form a single root activity (in the case
of multiple initial activities). To compute the critical path, we first determine the earliest
start schedule (ess) for each activity using forward calculations of the earliest finish schedule
of its predecessors. We compute the earliest finish schedule as the sum of the earliest start
schedule and the duration. If there is more than one predecessor, the new earliest start
schedule is the maximum of the earliest finish schedules of its predecessors. For example,
the earliest start schedule for activity E is 7. The second step computes the latest start
schedule (lss) of each activity using backward calculations starting from the final activity
FI. We compute the latest start schedule as the minimum of all its predecessor activities.

Listing 7.10: Critical path implementation in TraveL.

1 CREATE TEMPORARY VERTEX ATTRIBUTE<INT> earliest = 0;

2 CREATE TEMPORARY VERTEX ATTRIBUTE<INT> latest = 0;

3 LIST<VERTEX> output;

4

5 HOOK VERTEX "FORWARD" (CONTEXT $v) {

6 $predecessors = $v<-[*]-;

7 $max = 0;

8 FOR $i : $predecessors {

9 $e = EDGE($i,$v);

10 IF (($e@duration + $i@earliest) > $max) {

11 $max = $e@duration + $i@earliest;

12 }

13 }

14 UPDATE $v { SET earliest = $max; }

15 }

16

17 HOOK VERTEX "BACKWARD" (CONTEXT $v) {

18 $successors = $v-[*]->;

19 $min = INT_MAX;

20 FOR $i : $successors {
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21 $e = EDGE($i,$v);

22 IF (($i@latest - $e@duration) < $min) {

23 $min = $i@latest - $e@duration;

24 }

25 }

26 UPDATE $v { SET latest = $min; }

27 }

28

29 HOOK VERTEX "CRIT_PATH" (CONTEXT $v) {

30 IF ($v@earliest == $v@latest) {

31 APPEND($output,$v);

32 }

33 }

34

35 TRAVEL "CRIT" (VERTEX $root, VERTEX $tail) GRAPH "G" {

36 TRAVERSE BFS $root-[*]->(*) HOOK "FORWARD";

37 TRAVERSE BFS $tail-[*]->(*) HOOK "BACKWARD";

38 TRAVERSE BFS $root-[*]->(*) HOOK "CRIT_PATH";

39 RETURN $output;

40 }

The latest start schedule of an activity is defined as the latest finish schedule decreased
by the duration. For example, the latest start schedule of activity G is 19. The final step
traverses the graph and collects all activities that have equal earliest/latest start schedules.
Each activity that has identical earliest/latest start schedules is defined to be on a critical
path. For example, the graph in Figure 7.13 has a critical path S ; A ; E ; D ; F ;

I; J; FI (colored in red).
Listing 7.10 shows an implementation of the critical-path algorithm in TraveL. For the

sake of simplicity, we assume that there can be only a single critical path. We collect the
vertices forming the critical path in a list structure myRes and use two temporary vertex
attributes earliest and latest to collect the ess and lss, respectively. We use three different
traversal hooks to implement the three steps of the critical path analysis algorithm. The
first step computes the earliest start schedules for each activity and stores the results in
the temporary vertex attribute earliest (Lines 5–15). The second step computes the latest
start schedules for each activity and stores the result in the temporary vertex attribute
latest (Lines 17–27). The final step extracts all activities, where its earliest start schedule
and latest start schedule are the same, into the final output structure myRes (Lines 29–33).
The "CRIT" TraveL clause contains the setup code and triggers the execution of the three
traversals, one for each step and with a different traversal hook registered (Lines 35–40).

7.7 experimental evaluation

We implemented TraveL in Graphite as depicted in our architecture overview in Fig-
ure 7.5. To construct an executable from a TraveL script, we use Flex and Bison to imple-
ment the parser and the llvm c++ api to generate code from the resulting ast. To compile
and link the bft operator at runtime, we use a pre-generated binary llvm-ir representation
of the operator that we load at system startup. We conducted all experiments on an Intel

®

Xeon
® E5-2660 machine with 2 sockets, 10 cores per socket, 2 threads per core, each core

running at 2.6GHz. The machine runs on sles 12 sp1 and is equipped with 128GB of ddr4

ram and 25MB last level cache. For the experiments, we compiled Graphite using clang

3.8 with option -O3.
We study the effectiveness of the proposed TraveL optimizations and rewriting tech-

niques using several micro benchmarks. These micro benchmarks are TraveL programs,
but are minimal in scope such that we can evaluate the effect of each applied technique
individually. Additionally, we select two realistic graph scenarios that we implemented
in TraveL and compare the end-to-end performance of the generated executable using
the TraveL compiler against a hand-written implementation on the generic graph api.
All reported numbers are median execution times over ten runs using a single-threaded
execution.
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7.7.1 Micro Benchmarks

In this section we evaluate the effectiveness of the proposed TraveL optimizations and
rewriting techniques on the LiveJournal data set. Specifically, we evaluate two optimiza-
tions that avoid the overhead introduced by a generic programming interface, i.e., the
overhead of virtual function calls and the overhead of attribute access calls and subsequent
physical storage location resolutions. Moreover, we evaluate the impact of the proposed
rewriting techniques, specifically the extraction of filter-related coding from a traversal
hook and the rewriting of single traversal hook invocations to batched invocations.

Overhead of Virtual Function Calls

The first experiment investigates the impact of virtual function calls on the overall execu-
tion performance of TraveL. We use a simple TraveL program as depicted in Listing 7.11

that performs a bft starting at some vertex v and accumulates the attribute value of all dis-
covered vertices. If we would straightforwardly generate code against the generic graph
api, the resulting program would incur two virtual function calls per traversal hook invo-
cation, one for calling the hook function and one for accessing the corresponding entry in
the column group to fetch the value.

Listing 7.11: Test program to evaluate the overhead of virtual function calls.

1 INT sum = 0;

2

3 HOOK VERTEX "SUM" (CONTEXT $v) {

4 $sum += $v@attribute;

5 }

6

7 TRAVEL "MICRO_TEST1" (VERTEX $v) GRAPH "G" {

8 TRAVERSE BFS $v-[*]->(*) HOOK "SUM";

9 }

We compare the following three configurations of the TraveL compiler: (1) code generation
using virtual function call elimination for the traversal hook call and the attribute access,
(2) code generation against the generic graph api resulting in two virtual function calls
per hook invocation, and (3) code generation that removes the virtual function call to the
traversal hook, but retains the virtual function call to access the attribute.

We omit the physical attribute storage resolution and assume that the corresponding
physical address of the attribute in memory is already known. In the generic implementation—
besides the overhead of the virtual function call—, we also investigate the impact of small
memory allocations that could be performed to create temporary objects during the opera-
tion. In Figure 7.14 (a) we report the number of processed vertices per µs for all evaluated
implementations. Since there are no data dependencies between consecutive traversal hook
invocations, we apply the traversal hook in a batch operation on the set of discovered ver-
tices after the actual traversal. The dashed blue line depicts the highest possible processing
rate, i.e., an iteration over all discovered vertices without performing any work. To avoid
undesired compiler optimizations, we added the asm("nop") instruction to the loop body.

The generic code generation routine, which does not remove virtual function calls and
performs a heap allocation for a small object during each invocation, reaches a process-
ing rate of about 27 vertices/µs, which is about 16× slower than the fully inlined code
emitted by the TraveL compiler. We note that although virtual function calls alone cause
a performance penalty of factor 2, the majority of the overhead reported here is caused
by additional memory allocations performed during the traversal hook invocations. If we
remove the additional memory allocations, we reach a processing rate of 196 vertices/µs,
which is already 7× faster than the generic implementation. For the fully inlined code, we
remove both virtual function calls, any memory allocations, and access the attribute array
directly using a positional access. We reach a processing rate of 440 vertices/µs, which is
close to the highest possible processing rate. Since the number of traversal hook invoca-
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(d) Traversal hook pipelining.

Figure 7.14: Evaluated micro benchmarks to quantify the effectiveness of the rewriting techniques
implemented in the TraveL compiler.

tions is quite high for long traversals—most queries that we ran against the LiveJournal

data set discovered about 95% of all vertices on average, i.e., more than 4 M vertices—the
critical code path is sensitive to unnecessary overhead that is incurred by function call
indirections, virtual function calls, and memory allocations.

Attribute Access

In this experiment we evaluate the overhead for accessing attribute values for a given
vertex or edge introduced by a generic programming interface. Specifically, we evaluate
the overhead of virtual function calls—as already discussed in the previous experiment—
and the repeated resolution of attribute names to their respective physical storage location.
We compare the code emitted by the TraveL compiler, which already resolves attribute
names to their storage locations and removes unnecessary virtual function calls from the
critical code path, against a naive implementation on the generic graph api. As minimal
example, we use a TraveL program (cf. Listing 7.12), which iterates over all vertices in the
graph and accumulates the attribute values of a numerical vertex attribute.
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Listing 7.12: Test program to evaluate the overhead of attribute location resolutions.

1 INT sum = 0;

2

3 TRAVEL "ATTRIBUTE_ACCESS" GRAPH "G" {

4 FOR $i : $VERTICES {

5 $sum += $v@attribute;

6 }

7 }

In the generic graph api, the function interface to retrieve an attribute for a given ver-
tex/edge receives two input parameters, i.e., the vertex/edge and the name of the at-
tribute. In the graph storage backend, each invocation of the function requires to resolve
the attribute name to the actual physical memory address, i.e., the location of the data
vector in the corresponding column group. In Graphite this resolution is implemented
as an unordered map, which translates attribute names into pointers to the correspond-
ing column in the column group. Performing the attribute resolution for each invocation
incurs a considerable performance overhead as we shown in Figure 7.14 (b). We measure
the processing rate of attribute access operations per µs and compare two configurations,
namely using virtual function calls and attribute resolution for each invocation against a
fully inlined program emitted by the TraveL compiler. The plot trend is similar as in first
experiment, but adds an additional overhead of the attribute resolution while only per-
forming a single virtual function call per invocation. The configuration without additional
memory allocation is slightly faster than the one with memory allocation, but is still about
30× slower than the inlined direct access to the attribute location.

Conditional Predicates as Traversal Edge Filters

In this experiment we evaluate the rewriting technique of transforming a conditional pred-
icate based on some attribute attached to a vertex/edge context object into a traversal state-
ment restricted by a filter expression. Listing 7.13 depicts an example, which performs a
traversal and evaluates for each traversed vertex a condition on the respective vertex at-
tribute and conditionally accumulates an aggregate on the attribute. Since the predicate is
evaluated on each discovered vertex in the graph, we can rewrite the program such that
only vertices that fulfill the predicate condition are traversed. This reduces the size of in-
termediate results during the traversal and subsequently reduces the number of traversal
hook invocations depending on the selectivity of the predicate.

Listing 7.13: Test program to evaluate the rewriting of conditional predicate evaluation as traversal
edge filter.

1 INT sum = 0;

2

3 HOOK VERTEX "H" (CONTEXT $v) {

4 IF ($v@weight > 10) {

5 sum = sum + $e@weight;

6 }

7 }

8

9 TRAVEL "T" GRAPH "G" {

10 $r = vertex:1;

11 TRAVERSE BFS $r-[*]->(*) HOOK "H";

12 }

We compare three different code generation configurations and present the results in Fig-
ure 7.14 (c). We use two code generation versions that evaluate the predicate upon each
invocation of the traversal hook. The first one performs a naive evaluation of the predicate
by performing the already discussed virtual function call to the attribute access function
and the attribute name resolution ( ). The second alternative eliminates the overhead of
the virtual function calls and attribute name resolution ( ). In the third configuration,
we rewrite the traversal hook and remove the predicate evaluation from the traversal hook
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and instead parameterize the traversal such that the predicate is evaluated in the traversal
operator ( ).

The execution time of the TraveL programs, which perform the predicate evaluation as
part of the traversal hook, is independent of the selectivity of the predicate and takes the
same time to complete for different predicate selectivities. In general, the inlined approach
is about a factor 2 faster than the program using virtual function calls and attribute access
resolution. If we compare the plot of the configuration using the filter-based approach, we
can see that for a high selectivity, the TraveL program significantly outperforms the other
two versions by up to 25×. In contrast to the hook-based predicate evaluation, which tra-
verses the complete graph and afterwards invokes the traversal hook for each discovered
vertex, the filter-based approach eliminates vertices that do not fulfill the predicate con-
dition early during the traversal. This effectively reduces the size of intermediate results
during the traversal and also limits the number of traversal hook invocations to vertices
that satisfy the predicate condition.

Traversal Hook Batching

In this experiment we evaluate the effect of executing traversal hooks in batches. We use
the same TraveL program as in our first micro benchmark experiment (cf. Listing 7.11) and
compare three methods for executing traversal hooks. Since there are no data dependencies
between consecutive traversal hook invocations, we evaluate the following three processing
modes: (1) sequential execution, each traversal hook is invoked independently, (2) level-
synchronous, batched execution, the traversal hooks for all vertices discovered at the same
level are invoked in a batch, and (3) fully batched execution, i.e., the traversal hooks of all
discovered vertices are evaluated in a single batch.

Figure 7.14 (d) depicts the results of our evaluation for the single, sequential execu-
tion, the level-synchronous, batched execution, and the fully batched execution of traver-
sal hooks. We measure the complete execution time, i.e., the elapsed time of the traversal
operator and of the traversal hook invocations. As a reference, we also include measure-
ments against the generic graph api with additional virtual function calls and attribute
name resolutions. From the results, we conclude that fully batching the traversal hook in-
vocations is beneficial as it presumably increases locality in the instruction cache and also
increases in our example spatial and temporal locality for the access to the attribute values.
In contrast, the sequential execution is performed tightly interleaved with the traversal op-
erator and invokes the traversal hook when a new vertex has been discovered. Further, for
a parallelized execution of traversal hook invocations, a larger batch size is also beneficial
as it minimizes the scheduling overhead to spawn new tasks in the engine. The conclusion
from this experiments is that whenever possible, traversal hook batching should be ap-
plied. Which batching strategy can be applied depends on the detected data dependencies
in the traversal hooks, as discussed in Section 7.5.4.

7.7.2 System-Level Benchmarks

In this experiment we evaluate the end-to-end performance of TraveL for two realistic
graph scenarios and compare it against an equivalent hand-written implementation in c++
on the generic graph api. We use summarized bom explosion (cf. Listing 7.14) and k-hop
reachability (cf. Listing 7.15) as representative graph algorithms. We chose summarized
bom explosion because it exhibits rich data dependencies between traversal hook invoca-
tions and requires excessive access to temporary and persistent attributes. To complement
this, we selected k-hop reachability as a simple but powerful routine with many applica-
tions. In contrast to the summarized bom explosion, k-hop reachability does not exhibit
data dependencies between traversal hooks but steers the traversal during runtime by ter-
minating the execution once either the target vertex has been found or the hop condition
cannot be met anymore.
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Listing 7.14: Summarized bom explosion implementation in TraveL.

CREATE TEMPORARY VERTEX ATTRIBUTE<INT> sum = 0;

HOOK EDGE "H" (CONTEXT $e) {

$h = HEAD($e);

$t = TAIL($e);

UPDATE $t { SET sum = $t@sum + ($e@quantity * $h@sum); }

}

TRAVEL "BOM" (VERTEX $root) GRAPH "G" {

UPDATE $root { SET sum = 1; }

TRAVERSE BFS $root-->(*) HOOK "H";

}

Listing 7.15: K-hop reachability implementation in TraveL.

BOOL reachable = false;

HOOK VERTEX "H" (CONTEXT $v) {

IF (LEVEL() > $numHops) {

RESTRICT ALL true;

}

IF ($v == $t) {

IF (LEVEL() == $numHops) {

$reachable = true;

}

RESTRICT ALL true;

}

}

TRAVEL "IS_K_HOP_REACHABLE" (VERTEX $s, VERTEX $t, INT $numHops) GRAPH "G" {

TRAVERSE BFS $s-[*]->(*) HOOK "H";

RETURN $reachable;

}

We evaluated both algorithms on the LiveJournal graph and generated for the summa-
rized bom explosion an additional edge attribute to reflect the quantities that are associ-
ated to edges in the part graph. We present our results for both algorithms in Figure 7.15.
For the bom explosion algorithm, TraveL outperforms the hand-written code against the
generic graph api by 2×. The speedup can be explained by the large number of attribute
accesses during the bom explosion. To update the temporary quantity value of a vertex,
the algorithm has to access the old value, the respective edge quantity, and the already
aggregated quantity of the source vertex. This results in six virtual function calls and three
attribute resolutions per traversal hook invocation. Although we already reported earlier
that the overhead of the attribute access can be even higher, we note that the traversal
operator itself already takes about 730ms. The remaining time is spent for evaluating the
traversal hook code. For the K-hop reachability algorithm, the TraveL compiler cannot
gain much performance compared to the hand-written code. This is caused by the fact
that the algorithm does not access any attributes and performs only simple comparisons
in the traversal hook code. For our implementation, we only see a marginal speedup of
about 40ms, which is caused by the elimination of the virtual function calls to the traversal
hook.

To summarize the experimental evaluation, we conclude that the TraveL compiler shows
great potential to eliminate expensive interface-caused constructs in the algorithms by
generating efficient code for the critical path of the computation, i.e., the traversal hooks,
by eliminating virtual function calls and repeated physical attribute location resolutions.
For simple algorithms that do not rely on constructs that can cause a severe performance
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Figure 7.15: Comparison of optimized code emitted by the TraveL compiler and hand-written c++
code on a generic graph api for summarized bom explosion and k-hops reachability.

degradation, however, the TraveL compiler emits code with a comparable performance to
hand-written code on a generic graph api.

7.8 summary

In this chapter, we introduced TraveL—an imperative, domain-specific query language
for graph analysis—and traversal hooks, a simple yet powerful programming model to ex-
tend graph traversals with custom logic. TraveL aims at bridging the gap between highly
tuned graph algorithms and the implementation of custom graph algorithms against a
generic low-level programming interface. Besides vertices and edges, TraveL supports
simple paths as built-in data type and seamlessly embeds other built-in graph algorithms,
such as shortest-path, and can handle graph-shaped result types. While being a com-
piled, domain-specific language, TraveL provides rich opportunities for query optimiza-
tion, such as avoiding expensive virtual function calls, eliminating unnecessary attribute
location lookups, and identifying and batching independent traversal hook invocations.
TraveL can be tightly integrated into an rdbms as a stored procedure language while still
being competitive in terms of execution performance to hand-crafted graph algorithms.
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8.1 contributions

Increasingly, companies face the challenge of storing, manipulating, and querying ter-
abytes of graph data for enterprise-critical applications. Existing solutions performing
graph operations on business-critical data use a combination of sql and application logic
or employ a graph management system (gms). Since the majority of these systems exclu-
sively run on relational dbmss, employing a specialized system for storing and processing
graph data is typically not sensible. As of today, rdbms do not provide the necessary
query performance for traversal-based graph algorithms nor does a rdbms offer an intu-
itive graph data model or programming abstraction.

To tackle these challenges, we developed Graphite, a hybrid graph-relational data man-
agement system, and discussed the major components during the course of this thesis.
Graphite is a performance-oriented graph data management system at the core of an
rdbms allowing to seamlessly combine graph data with relational data in the same system.
Our experimental evaluation shows that Graphite can outperform native gms by multiple
orders of magnitude while providing all the features of an rdbms, such as transactional
support, backup and recovery, security and user management. For customers, this offers
an interesting alternative to specialized gms that lack many of these features and require
expensive data replication and maintenance processes. In the following we summarize our
main contributions and depict an overview of the most important elements in Figure 8.1.

TraveL
• Traversal Hooks • Code Generation using llvm

Traversal Operators

• ls -traversal • fi -traversal • Hybrid

Graph Indexing

• Block-based • Adjacency-based

Graph Storage• Sparse Columnar
Graph Representation

• Tetris Row
Reordering

Figure 8.1: Main contributions of the thesis organized by architecture component in Graphite.

columnar graph storage : We proposed a relational storage representation for graph
data based on column groups to leverage the already existing and mature data manage-
ment and query processing infrastructure of rdbmss. Graphite represents a graph
in two wide column groups, one for vertices and one for edges. On the physical
storage layer, we separate each column group into a read-optimized partition and
a write-optimized partition following a similar approach as many main-memory
columnar rdbms, such as sap hana and Vertica. Since the representation of ver-
tices and edges in wide column groups might lead to sparsely populated columns,
effectively resulting in a higher memory consumption, we developed a light-weight
compression technique called Tetris. Tetris identifies entities that expose a similar
set of attributes automatically, reorders them within a column group, and finally
applies rle to compress NULLvalues in each column. In contrast to other column-by-
column compression techniques, Tetris considers the complete row, including all
exposed attributes, as a single entity, and achieves a better compression ratio by up
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to 60%. On top of the column group representation, we implemented a light-weight,
set-oriented api, which directly leverages the columnar data organization.

graph traversal operators : For the query processing layer of Graphite, we focus
on traversal-based graph queries. To support efficient query evaluation on large
graphs, we proposed a logical graph traversal operator that can be configured to
run k-hop traversals on (sub) graphs and an accompanying set of graph traversal
implementations, namely the ls-traversal and the fi-traversal. The ls-traversal relies
on repetitive parallelized full-column scans on the edge column group and provides
good performance for graphs with a low diameter and a power-law degree distribu-
tion resulting in large intermediate results during the traversal. For extremely sparse
graphs and graphs with a large diameter, such as road networks, we developed
fi-traversal , an index-assisted graph traversal implementation. In the experimen-
tal evaluation, we showed that both traversal implementation exhibit strengths and
weaknesses in terms of their scalability to different graph topologies and sizes, as
well as to different traversal query configurations. The results lead to the conclusion
that there is no universally best graph traversal implementation and the dbms query
optimizer has to select from a set of available implementations the optimal one for
the given traversal query and graph. Finally, we showed that our graph traversal
implementations outperform sql-based traversal implementations as well as gdbms-
based implementations by up to two orders of magnitude.

lightweight graph indexes : To accelerate neighborhood queries—a building block
for graph traversals—on the edge column group and to make their run time complex-
ity independent from the number of edges in the graph, we developed two secondary
graph index structures. The Block-based topology index is a light-weight, updateable
index structure on top of the edge column group and effectively reduces the neigh-
borhood lookup complexity to a constant-time lookup and a scan of a single block
in the edge column group. To update the index, we use an auxiliary measure, the
index health to quantify the usefulness of the index structure. For the optimal per-
formance with the lowest overhead, we developed the Adjacency-based topology index,
which is effectively a mutable adjacency list with additional mapping structures to al-
low combined relational/graph query processing. In the experimental evaluation, we
show that an index-based traversal can outperform a scan-based counterpart by mul-
tiple orders of magnitude for small frontier set sizes, while the scan-based approach
outperforms the index-based approach for large intermediate results. Therefore, we
developed a hybrid graph traversal operator, which switches between scan-based
execution and index-based execution depending on the frontier set size.

query language for graph analysis : Finally, we developed a traversal-based pro-
gramming model and an accompanying domain-specific graph query language called
TraveL. We build TraveL on the general programming model of traversal hooks,
which are well-defined extension points of traversal operators allowing the user to
specify custom logic that should be executed during the lifetime of a traversal query
invocation. We used the llvm compiler framework and code generation to create a
specialized graph traversal operator on-the-fly during runtime as the combination
of highly tuned, built-in traversal operators and user-specified code that act on a
vertex- or edge level. In contrast to a message passing-based programming model,
we believe that a traversal-based programming model provides a higher level of ab-
straction while offering a more intuitive programming interface. In addition to native
support for graph traversals and traversal hooks, TraveL provides many more func-
tionalities to query the graph and post-process the results of invocations of other
built-in graph algorithms. By this, TraveL allows staying in the graph data model
without having to transform intermediate results back to the relational world for
further processing.
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8.2 future work

We believe that this thesis can serve as the foundation for future research projects that
aim at combining relational and graph processing in the same dbms. In particular, areas
of research that are already well-studied in the rdbms community, but have been largely
neglected by the graph community, are potential research fields to advance the state-of-the-
art. Examples for such research fields include, transaction processing, query optimization,
advanced graph statistics, and expressive declarative/imperative language interfaces for
the formulation of graph algorithms. In the following we describe some interesting re-
search directions that could build on the contributions made in this thesis and extend
them at several layers in the system architecture of Graphite.

snapshot isolation for graph indices : Graphite does not yet provide session
management, i.e., there is only a single connection to the system and the user can see
and access all data and index structures. In a more realistic environment, a transac-
tional view has to be provided not only on the base data, but also on the secondary
index structures. For the adjacency-based topology index, a transactional view could
be guaranteed by consulting the edge column group and their corresponding visibil-
ity data structures to get a consistent and isolated view of the data. In particular for
performance-critical graph algorithms, a more sophisticated snapshotting approach
on the adjacency list could be beneficial. An interesting research direction would be
the evaluation of different approaches to enable lightweight snapshot isolation on
the adjacency list level while not slowing down graph algorithms running on top of
the secondary graph index.

compression of graph indices : One important aspect we did not consider in the
discussion of secondary graph index structures is data compression. Recent work
on compressed graph topology index structures, e.g., k2-ary trees by Brisaboa et al.
(2009), demonstrated that the adjacency matrix representation of a graph can be
highly compressed, effectively achieving a compression of the graph topology of 2

to 3 bit per edge. An interesting research question would be to identify the trade-
offs for using a compressed adjacency list in terms of memory consumption and
query performance in the context of a dbms. In particular the performance trade-
offs between graph-aware compression techniques, which take into account domain
knowledge about the graph, and graph-agnostic compression techniques, such as
delta encoding on the local neighborhood set, are an interesting starting point for
further exploration.

advanced graph statistics : We only considered basic graph statistics, such as ver-
tex-local and graph-global degree information and the effective graph diameter, for
the definition of the graph traversal operator cost models. Recent work, such as the
estimation of the neighborhood function, i.e., an approximation of the number of
reachable vertices within a k-hop distance from a given start vertex, can improve the
estimation of the traversal costs and the number of discovered vertices significantly.
Most approaches in line of research, however, compute the auxiliary data structures
used for the neighborhood size estimation as part of an expensive pre-computation
task, effectively making it not applicable in a dbms context. An interesting topic for
further investigation is the development of novel, lightweight graph statistics syn-
opses that are easy to maintain, expose a low memory footprint, and provide a good
estimation of the neighborhood size. Further, it would interesting to evaluate how
additional predicate constraints—in our traversal queries through edge and vertex
filters—can be applied to estimate the neighborhood not on the entire graph, but
instead on a pre-filtered subgraph.

graph operators : In the course of this thesis we focused on graph traversals as a core
building block of many graph algorithms. Although graph traversals are universal
graph operators with many applications, there are other graph operators, such as
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path finding and value propagation algorithms, for which similar techniques as for
graph traversals could be applied. Encouraged by the results for graph traversals, we
envision that more graph operators will be proposed in the future, all with several
physical implementations that are tailored to specific graph topology characteristics.
A second important observation of this thesis is the integration of graph operators
into a more complex execution plan, making most assumptions of stand-alone graph
algorithm implementations invalid. Further, in a dbms context there are typically
several queries (algorithms) running in parallel and competing for scarce hardware
resources. As already proposed by Then et al. (2014), work sharing between graph
algorithm building blocks is an interesting research direction, which puts an em-
phasis not on maximum single-query performance but rather than on overall query
throughput performance.

efficient dsl compilers : With the introduction of TraveL, we proposed one of the
first high-level dsls for graph analysis that aim at providing an expressive algorithm
interface on one side but also offer high-level constructs, such as graph traversals
and traversal hooks, that a query optimizer can analyze and eventually rewrite to
generate an optimal executable program out of it. We believe that the potential of
combining recent advances in compiler construction research with query processing
from the database community brings an unforeseen gain in terms of expressiveness
and performance while bringing non-relational query processing closer to the data.
One particular area of research lies in the automatic detection of available parallelism
in the high-level description of a graph algorithm and the generation of highly effi-
cient, scalable code that is close or even better than hand-written, manually tuned
low-level implementations of the same graph algorithm.
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a.1 data set properties

We use representative real-world graphs from different application domains, including so-
cial networks (Orkut, LiveJournal, Twitter, Pokec), road networks (Cali), citation net-
works (Patents), and web networks (Wikipedia). To evaluate Graphite for larger graphs,
we generated graphs using the r-mat data generator (Chakrabarti et al., 2004) for scale fac-
tors 12 to 24. We used the matrix coefficient configuration 〈a = 0.57,b = 0.19, c = 0.19,d =

0.05〉, which is commonly used to generate power-law degree distributions.
Additionally, we use data from the ldbc social network benchmark, which provides a

graph data generator for producing realistic graph topololgies, a rich set of vertex/edge
attributes, and realistic attribute and structural correlations. It represents a social network
application with user activities during a period of time and models persons, tags, forums,
messages, likes, organizations, and places as vertices and about 20 different relations be-
tween them as edges (Erling et al., 2015). Table A.1 summarizes the evaluated real-world
and generated graph data sets and their basic characteristics.

Table A.1: Evaluated data sets and their topology properties.

ID |V | |E| d̄out max(dout) δ̃ Size (GB)

Cali 1.9 M 2.7 M 2.8 12 495.0 0.1

LiveJournal 4.8 M 68.5 M 28.3 635 K 6.5 1.6

Orkut 3.1 M 117.2 M 76.3 32 K 5.0 3.1

Patents 3.7 M 16.5 M 8.7 793 9.4 0.4

Skitter 1.7 M 11.1 M 13.1 35 K 5.9 0.3

Twitter 40.1 M 1.4 B 36.4 2.9 M 5.4 32.7

Amazon 0.4 M 3.3 M 16.8 2.7 K 7.7 0.1

Pokec 1.6 M 30.6 M 37.5 21 K 5.1 0.7

Wikipedia 25.9 M 601 M 62.1 900 K 4.7 14

r-mat-12 3.3 K 63.2 K 24.2 1.8 K 7 0.001

r-mat-14 13.3 K 0.3 M 22.7 4.4 K 8 0.003

r-mat-16 48.7 K 1.1 M 24.6 9.9 K 9 0.01

r-mat-18 0.2 M 4.2 M 26.9 22.5 K 9 0.05

r-mat-20 0.7 M 16.8 M 29.1 51.5 K 9 0.2

r-mat-22 2.5 M 67.1 M 31.4 114 K 10 0.9

r-mat-24 9.3 M 268.4 M 34.6 273 K 10 3.8

ldbc-sf1 3.1 M 17.1 M – – – 1.3

ldbc-sf3 8.9 M 50.7 M – – – 3.8

ldbc-sf10 29.1 M 171.5 M – – – 12.9

ldbc-sf30 85.7 M 520.6 M – – – 39.8

ldbc-sf100 274.1 M 1.7 B – – – 131.4
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BA D D I T I O N A L T R AV E L E X A M P L E S

b.1 betweenness centrality

CREATE TEMPORARY VERTEX ATTRIBUTE<DOUBLE> sigma = 0;

CREATE TEMPORARY VERTEX ATTRIBUTE<DOUBLE> delta = 0;

CREATE TEMPORARY VERTEX ATTRIBUTE<DOUBLE> centrality = 0;

HOOK VERTEX "FORW" (CONTEXT $v) {

$sum = 0.0;

FOR $i : $v<-[*]- {

$sum = $sum + $i@sigma;

}

UPDATE $v { SET sigma = $sum; }

}

HOOK VERTEX "BACK" (CONTEXT $v) {

$sum = 0.0;

FOR $i : $v-[*]-> {

$sum = $sum + ($v@sigma / $i@sigma * (1 + $i@delta));

}

UPDATE $v { SET delta = $sum;

SET centrality = centrality + $v@delta; }

}

TRAVEL "BETWEENNESS" GRAPH "G" {

FOR $v : $VERTICES {

UPDATE $v { SET sigma = 1.0; }

UPDATE $VERTICES { SET sigma = 0.0; }

UPDATE $VERTICES { SET delta = 0.0; }

TRAVERSE BFS $v-[*]->(*) HOOK "FORW";

TRAVERSE BFS $v<-[*]-(*) HOOK "BACK";

}

}

b.2 degree centrality

CREATE TEMPORARY VERTEX ATTRIBUTE<INT> outdeg_centrality = 0;

CREATE TEMPORARY VERTEX ATTRIBUTE<INT> indeg_centrality = 0;

CREATE TEMPORARY VERTEX ATTRIBUTE<INT> combdeg_centrality = 0;

TRAVEL "DEGREE_CENTRALITY" GRAPH "G" {

FOR $n : $VERTICES {

UPDATE $n { SET outdeg_centrality = COUNT($n-[*]->);

SET indeg_centrality = COUNT($n<-[*]-);

SET combdeg_centrality = COUNT($n-[*]->) + COUNT($n<-[*]-);};

}

}
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166 additional travel examples

b.3 random walks with restart

CREATE TEMPORARY VERTEX ATTRIBUTE<INT> visitationCnt = 0;

INT cnt = 0;

HOOK VERTEX "H" (CONTEXT $v) {

IF ($cnt == $maxVisits) {

RESTRICT ALL true;

}

UPDATE $v { SET visitationCnt = visitationCnt + 1; }

$cnt = $cnt + 1;

IF ($probe < RANDOM()) {

TRAVERSE BFS $v-[*]-> HOOK "H";

}

}

TRAVEL "RANDOM_WALK" (VERTEX $source, INT $maxVisits, DOUBLE $probe) GRAPH "G" {

TRAVERSE BFS $source-[*]-> HOOK "H";

}
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