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Abstract
Energy saving and fuel consumption reduction techniques are among the principal 

interests for both academic institutions and industries, in particular, system optimization 

and hybridization. This paper presents a new hydraulic hybrid system layout for mobile 

machinery implemented on a middle size excavator. The hybridization procedure took 

advantage of a dynamic programming (DP) algorithm, which was also utilized for the 

hybrid components dimensioning and control strategy definition. A dedicated 

experimental activity on test bench was performed on the main components of the 

energy recovery system (ERS). The JCMAS working cycle was considered as the 

reference test for a fuel consumption comparison between the standard and the hybrid 

excavator. A fuel saving up to 8% on the JCMAS cycle, and up to 11% during the 

digging cycle, has been allowed by the proposed hybrid system. 
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1. Introduction 
In the field of mobile hydraulic machinery, system hybridization has become one of the 

most adopted solutions for energy saving, so as to reduce fuel consumption and 

pollutant emissions. 

Considering hydraulic excavators, the most studied and proposed hybrid solutions, by 

both academic and industrial researchers, involve energy recovery from either the 
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boom or the turret or both of them, with electrical or hydraulic energy storage devices 

/1/, /2/, /3/, /4/, /5/. 

Electric hybrid solutions on one hand enables, for example, the substitution of the turret 

hydraulic motor with an electric one, leading to hydraulic power reduction, but on the 

other hand requires more energy conversions than hydraulic hybrid systems, and since 

the implement hydraulic movements are fast and frequent, hydraulic energy recovery 

system seems better than electrical ones /6/. Electric hybrid solutions typically find a 

large usage on high size excavators because the additional costs are affordable. 

In this paper a hybrid layout, which exploits a hydraulic ERS involving the boom, is 

presented and optimized for a middle size (9 t) excavator. The proposed hybrid layout 

has been defined starting from a previous analysis, where different hydraulic hybrid 

layouts were compared by means of mathematical models /7/. 

Once defined the hybrid layout configuration, a new parameters optimization was 

performed considering industrial and machinery related constraints, defining both the 

ERS components size and control strategy. 

Both test bench and on the field experimental activities were performed for verifying the 

ERS functionality and evaluating the hybrid excavator fuel consumption on the selected 

working cycle /8/. 

2. Hybrid Excavator Layout 
The results of a previous analysis aimed at comparing different hydraulic hybrid layouts 

/7/ point out that the energy recovery from the boom is more effective than the energy 

recovery from the turret for a middle size excavator (9 t). On the basis of these results, 

the hybrid layout was designed to recover only the potential energy of the front 

equipment since the predicted energy saving potential from the kinetic energy of the 

turret was considered insufficient for justifying the additional costs. 

The ERS is composed of four components: a Hybrid Control Valve (HCV); a hydraulic 

accumulator; a pilot pump/motor and an Electronic Control Unit (ECU). The ISO 

scheme reported in Figure 1 shows the novel hybrid layout of the excavator under 

study.

The valve X allows directing the flow from the piston side of the boom cylinder to the 

hydraulic accumulator (recovery mode) or to the boom flow control valve (standard 

mode). Since in some operating conditions the accumulator pressure could be not 

enough to balance the front equipment weight, the proportional valve Y has been 
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introduced in order to throttle the flow thus maintaining the control on the boom 

descent. The recovered energy is then used to feed a hydraulic motor so as to reduce 

the engine load and consequently reduce its fuel consumption. In the proposed hybrid 

system the same hydraulic machine, an external gear pump/motor, is used for both 

pressurizing the pilot hydraulic circuit and reusing the recovered energy. This choice 

was made with the purpose of limiting the system cost and the space that it requires on 

the excavator. The reuse phase is enabled according to the control strategy by means 

of valve 3. The valve 4 serves to empty the accumulator when the hybrid mode is off 

while the relief valve 5 preserves the accumulator from overpressures. When the hybrid 

mode is selected, the ECU controls valves X, Y, 3 and 4 on the basis of the 

accumulator pressure (pACC) and the pilot pressure of the boom flow control valve (pV2-

BOOM).

Figure 1: ISO Scheme of the Proposed Hydraulic Hybrid Layout

Figure 2 shows the ERS during the different operating modes: recovery mode (A), 

recovery and reuse mode (B) and reuse mode (C). The activated valves and hydraulic 

lines are highlighted in red. 
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(A) (B) (C) 

Figure 2: Operating Modes of the ERS

3. Hybrid Layout Optimization 
The effectiveness, i.e. the fuel consumption reduction, of a hybrid layout strongly 

depends on both the control strategy and the components dimensions. For this reason, 

a parameters optimization on the proposed hybrid layout was carried out using the 

methodology presented in /7/, which is based on a DP algorithm. This allows 

comparing different parameters combinations considering their optimal control strategy, 

i.e. the control strategy which leads to the minimum fuel consumption. 

The optimization was focused on the accumulator volume ( ), the initial accumulator 

pressure ( ), i.e. the gas pressure when the accumulator is completely discharged, 

and the equivalent diameter of the valve Y flow area at fully open position ( ). The 

pump/motor displacement was not considered in the optimization since its value was 

defined according to installation constraints. The optimal solution was searched 

exploring all the combinations rising from the following variation ranges: 

, in line with the available accumulator sizes;  from 10 bar to 50 bar 

with an increasing step of 5 bar;  from 1 mm to 8 mm with an increasing step of 0.5 

mm. The relief valve 5 breaking pressure ( ) was set to 4 times  as specified by 

the accumulator manufacturer. 

The optimization was carried out on the JCMAS digging cycle. The control variables 

managed by the DP algorithm were the valve X position ( ), which enables the 

recovery phase, and the valve 3 position ( ), which enables the reuse phase. Both 

these valves are controlled with an ON/OFF strategy. The valve Y was instead 

controlled proportionally to the boom flow control valve. Furthermore, the algorithm was 
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defined in order to not consider infeasible solutions, i.e. avoid cavitation in the rod side 

of the boom cylinder during the recovery phase. 

The graphs reported in Figure 3 show the obtainable fuel saving percentage for the 

considered parameters combinations with the optimal control strategy calculated by the 

DP algorithm. 

Figure 3: DP Algorithm Results in Terms of Fuel Saving [%]

The maximum fuel saving was obtained with a 10 L accumulator, but, since the 

difference is very small, a 6 L accumulator was preferred for its major compactness. 

Consequently, values corresponding to the maximum area shown in Figure 3 were 

adopted for  and .

The optimal control strategy defined by the DP algorithm is not causal, i.e. not directly 

implementable on an ECU. Therefore a suboptimal rule-based control strategy was 

defined starting from this optimal control strategy. The accumulator pressure ( ) and 

the boom flow control valve pilot pressure ( ) were selected as the input 

variables of the control strategy since they showed a strong relationship with the 

control variables  and .

The logic scheme of the control strategy implemented on the ECU is reported in 

Figure 4. During the recovery phase (valve X enabled), a further rule is introduced in 

order to minimize the throttle losses in valve Y when the accumulator pressure is 
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sufficient ( ) for balancing the front equipment weight. Moreover, suitable 

hystereses were introduced in order to avoid frequent valves commutations. 

Figure 4: Logic Scheme of the Adopted Rule-Based Control Strategy

4. Energy Recovery System Mathematical Model 
The mathematical model of the proposed ERS was developed in the AMESim®

environment and interfaced with the excavator one /9/ in order to obtain the 

mathematical model of the hybrid version. The hydraulic model was realized following a 

filling/emptying and lumped parameters approach, hence alternating capacitive 

elements which evaluate pressures (volumes, accumulator) and elements which 

calculate flow rates (orifices, motor). The diagram in Figure 5 shows the input, the 

output and the causality of the mathematical model. 

The pressure time derivative inside volumes is evaluated through the continuity 

equation (1) while in the accumulator it is calculated considering an adiabatic gas 

transformation (2). 

(1)

(2)
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Figure 5: Causality of the ERS Mathematical Model 

The flow rates through the valves are calculated by means of the orifice equation under 
quasi steady hypothesis (3) while the flow rate through the motor is evaluated using 
equation (4). 

(3)

(4)

The torque exerted by the hydraulic motor is calculated using equation (5). 

(5)

The valves positions ( ) are calculated by the model according to the rule-based 

strategy reported in the previous paragraph. For the non-proportionally controlled 

valves, i.e. valves X, 3 and 4, the spool dynamic response is approximated with a first 

order lag, whereas for the valve Y the spool dynamics is modeled as a second order 

system by means of the Newton’s second law (6). 

(6)

The pilot pressure  is calculated starting from the control current  through the static 

characteristic of the pilot valve, whose dynamics is modeled by means of a first order 

lag.

ECU HCV MOTOR

ACC
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5. Experimental Activity and Results 
The experimental activity carried out on the hybrid version of the excavator was 

principally focused on the ERS and on the machinery fuel consumption evaluation. A 

previous experimental activity regarding the standard version of the same excavator 

has been already presented in /9/. Thus a quantitative comparison between the 

standard and the hybrid version of the excavator has been reported in this paper. 

5.1. Energy Recovery System 
The experimental activity on the ERS had the objectives of both verifying its correct 

functioning before the installation on the excavator and acquiring data in order to 

calibrate and validate its mathematical model. Figure 6 reports the test bench ISO 

scheme (A) and a photograph of the installation (B).

(A) (B) 

Figure 6: ERS Test Bench Experimental Layout

The ERS was instrumented with both pressure and flow rate transducers. Static and 

dynamic operating conditions were investigated. The static ones for the valve 

characterization, defining the valve sections  characteristics, while the dynamic 

ones for the valve functioning and performance verification during the energy 

recovery/reuse operating modes. 

The transducers features for the ERS test bench configuration are reported in Table 1.

Variable Name Transducer Main Features 
pV1, pV2, pR TRAFAG® Pressure Transducer 0 – 60 bar ±0.3% FS 

pP, pACC, pXY TRAFAG® Pressure Transducer 0 – 400 bar ±0.1% FS 
QIN VSE® Flow Meter 120 l/min ±0.2% FS 

QOUT VSE® Flow Meter 60 l/min ±0.2% FS 

Table 1: Transducers Type and Features
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Realistic operating conditions of the ERS were recreated during the test rig 

experimental activity. A constant inlet flow rate ( ) was imposed to port P for 

recreating the outlet flow rate from the boom cylinder piston side during the boom 

lowering phase. The outlet flow rate from port R was limited through the usage of a 

two-way flow regulation valve, to replicate the pump/motor, and the accumulator was 

connected to port A. Finally, controlling the X, Y, 3 and 4 valves, as defined in the 

control strategy, the ERS functioning was recreated and verified. 

Figure 7 reports the comparison between the experimental (Exp) and the numerical 

(Sim) HCV inlet pressure (pP) and accumulator pressure (pACC) obtained through the 

presented mathematical model on the recovery/reuse operating mode. The comparison 

results point out that the developed model is able to replicate both the ERS functioning 

and its influence on the hydraulic system. 

Figure 7: Comparison between Experimental (Exp) and Numerical (Sim) Results on 
the Recovery/Reuse Phase 

5.2. Hybrid Excavator 
As previously carried out on the standard excavator, the hybrid excavator fuel 

consumption was evaluated according to the JCMAS standard /8/, which defines four 

different working modes: trench digging, grading, travelling and standby. Figure 8
reports a photograph of the hybrid excavator prototype. 

The comparison between the standard and the hybrid excavator fuel consumptions in 

the most significant working cycles of the JCMAS standard is reported in Table 2. The 

reported results were defined according to the testing and the elaboration procedures 

described in /8/. 
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Figure 8: Hydraulic Hybrid Excavator Prototype on the Testing Field

Working Cycle 
Standard Excavator 

Fuel Consumption 

Hybrid Excavator Fuel 

Consumption
Fuel Saving 

Trench Digging 166.3 [g] 158.9 [g] -4.5% 
Leveling 103.4 [g] 101.1 [g] -2.2% 
JCMAS 8.6 [l/h] 8.3 [l/h] -3.5% 

Table 2: Comparison between Standard and Hybrid Excavator Fuel Consumptions 

The fuel saving percentage of the hybrid excavator has been further improved, Table 
3, tuning the outlet flow areas of the directional control valves of the users (boom, arm, 

bucket) on the proposed ERS in order to reduce the energy dissipations in the local 

pressure compensators during multiple users actuations. In the considered operating 

cycles, during the recovery phases the boom and the arm are actuated simultaneously. 

In these phases the introduction of the proposed ERS allows the boom rod pressure to 

be reduced compared to the standard version, making the arm rod pressure the system 

LS pressure. Therefore by means of the optimization of the arm outlet flow area the LS 

pressure could be reduced, so as the fuel consumption. Similarly, the tuning of the 

boom and the bucket outlet flow areas leads to a LS pressure reduction during other 

phases of the considered cycles. 

Working Cycle 
Standard Excavator 

Fuel Consumption 

Hybrid Excavator Fuel 

Consumption
Fuel Saving 

Trench Digging 166.3 [g] 147.4 [g] -11.4% 
Leveling 103.4 [g] 98.6 [g] -4.6% 
JCMAS 8.6 [l/h] 7.9 [l/h] -8.1% 

Table 3: Comparison between Standard and Hybrid Excavator Fuel Consumptions 
after the Flow Control Valve Tuning 
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6. Conclusions 
A novel hydraulic energy recovery system (ERS) for the boom potential energy 

recuperation is presented in this paper. The proposed system has been optimally 

designed on a middle size excavator (9 t) under study, and its control strategy has 

been defined with the aid of a DP algorithm. 

A prototype of the presented ERS has been realized. A dedicated experimental activity 

on test rig was performed for characterizing and verifying the ERS functionality as well 

as validating its mathematical model. Furthermore, fuel consumption tests were carried 

out during on the field experimental activity in order to quantify the impact of the energy 

recovery system introduction on the excavator efficiency. 

The reported results validate the mathematical model of the ERS, which will be 

inserted in the already presented excavator mathematical model in order to further 

study and optimize the proposed energy recovery system, and quantify the fuel saving 

due to the introduction of the novel hybrid architecture. 

The experimental activity pointed out that the proposed ERS allows fuel consumption 

reduction up to 11% on trench digging working cycle defined in the JCMAS standard. 
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8. Nomenclature 
Symbols

Flow area m2

Bulk modulus Pa 

Damping coefficient Ns/m 

Discharge coefficient - 

Equivalent diameter m 

Current A 

Spring stiffness N/m 

Mass flow rate kg/s 

Pressure Pa 

Motor Torque Nm 

Control signal - 

Volume m3
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Pump/motor displacement m3/rev

Spool position m 

Adiabatic index - 

Hydro-mechanical efficiency - 

Volumetric efficiency - 

Fluid density kg/m3

Area m2

Pump/motor angular velocity rad/s 

Subscripts

Initial condition

Valve 3 HCV 

Valve 4 HCV 

Accumulator 

Cylinder

Inlet

i-th chamber 

Switch setting 

Motor 

Maximum 

Outlet

HCV port P 

Pilot

HCV port R 

Pilot chamber 1 

Pilot chamber 2 

Valve X HCV 

XY chamber HCV 

Valve Y HCV 
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