
Generic Metadata Handling in Scientific Data Life Cycles

Dissertation

zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von

Diplom-Informatiker Richard Grunzke
geboren am 14. Januar 1983 in Hagenow

Gutachter:
Prof. Dr. rer. nat. Wolgang E. Nagel, Technische Universität Dresden

Prof. Dr. rer. nat. Achim Streit, Karlsruher Institut für Technologie

Tag der Einreichung:
16. Dezember 2015

Tag der Verteidigung:
12. April 2016





Acknowledgments

I hereby want to express my deep gratitude to all persons that supported me in creating this thesis.

First and foremost I would like to thank my doctoral supervisor Prof. Dr. Wolfgang E. Nagel for his

continued support, trust, and advise. I’m thankful to my advisor Dr. René Jäkel for being available when

needed to constructively discuss various aspects of the thesis and for generally being very critical which

helped to ensure a quality thesis. Then, I want to thank my department head Dr. Ralph Müller-Pfefferkorn

for letting my carve out time to pursue my own research and projects. I want to thank my colleagues

at ZIH for the very nice work environment. Distinct thanks go to Olaf Krzikalla for highly motivating

mobile discussions about doctoral research and Daniel Molka for discussing motivational aspects. I’m

also thankful to the subsequent organizers of the ZIH doctoral Seminar, Dr. Andreas Knüpfer, Prof. Dr.

Florina Ciorba, and Dr. Matthias Lieber, for enabling this stimulating and thought provoking event series

that helped me stay on track and get a broader context.

I want to thank the people in the very productive and nice MoSGrid collaboration. Special mentions

go to Dr. Jens Krüger, Prof. Dr. Sandra Gesing, and Prof. Dr. Sonja Herres-Pawlis for being highly

motivating and inspiring. Besides MoSGrid, the second cornerstone of my doctoral research was the

LSDMA project. Here, I want to especially thank Prof. Dr. Achim Streit for his support and for enabling

the freedom to pursue my research. Thanks also go to Parinaz Ameri for organizing the LSDMA doctoral

seminar 2014.

I’m highly appreciative of the funding agencies for granting the projects that supported me in pursu-

ing my doctoral research; the BMBF for MoSGrid, the EU for ER-flow, the Helmholtz association for

LSDMA and the DFG for MASi. I’m thankful to anonymous reviewer 2 of our IEEE eSciene 2015 pa-

per [GKG+15] for taking the time to be extraordinarily thorough in reviewing the manuscript and raising

interesting thoughts, aspects, and interconnections that led to significant improvements of the manuscript

and subsequently of aspects of Chapter 2 of this thesis.

I want to thank Dr. René Jäkel, Dr. Jens Krüger, Prof. Dr. Sandra Gesing, Dr. Ralph Müller-Pfefferkorn,

and Dr. Andreas Knüpfer for proofreading and suggesting many improvements. Special thanks in this

department go to my advisor Dr. René Jäkel for being extremely thorough and leaving no sentence un-

turned in the small scale while at the same time being highly mindful of the big picture. His proofreading

and suggestions led to substantial improvements of the dissertation.

I’m thanking my parents Roswita and Wolfram for their trust in my decisions and the generous support

of my academic studies which gave me considerable freedom of choice and lay the groundwork for my

doctoral research and dissertation.

Finally, I’m especially thanking my partner Linda for her appreciation, acceptance, and trust.





1

Contents

1 Introduction 5
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions and Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Managing Complexity in Scientific Data Life Cycles 11
2.1 The Scientific Data Deluge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Data Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Handling Scientific Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Metadata Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Applying Computing in Data Life Cycles . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Computing Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 Workflow Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.3 Single Sign-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Data Life Cycle Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 API-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.2 Commandline-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.3 Workbench-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.4 Web-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.5 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 A Molecular Simulation Data Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.1 Data Sources and Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.2 Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6.3 Computing and Workflow Management . . . . . . . . . . . . . . . . . . . . . . 41

2.6.4 Authorization and Authentication Infrastructure . . . . . . . . . . . . . . . . . . 43

2.6.5 Utilization and Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



2

2.6.6 Application Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7 Further Data Life Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.7.1 Worldwide Large Hadron Collider Computing Grid . . . . . . . . . . . . . . . . 53

2.7.2 Human Brain Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.7.3 Pierre Auger Observatory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.7.4 IceCube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.7.5 Virtual Earthquake and Seismology Research Community in Europe e-Science

Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.7.6 Climate-G Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.7.7 PolarGrid Portal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.7.8 Distributed Research Infrastructure for Hydro-Meteorology Community . . . . . 57

3 A Novel and Generic Metadata Handling Concept 59

3.1 Limits in the Current Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.1 Important Challenges out of Focus . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.2 The Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Improving the Situation - Focus and Scope . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.1 The Overall Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.2 Alternative Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Characteristics of Generic Metadata Handling . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.1 Abstraction from Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.2 Generic Handling of Metadata and Data Formats . . . . . . . . . . . . . . . . . 66

3.3.3 Seamless Data Life Cycle Integration . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 A Design Guide to Metadata in Data Life Cycles . . . . . . . . . . . . . . . . . . . . . 68

3.4.1 Overall Data Life Cycle Design . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.2 Metadata Management Integration . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.3 Technology Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Implementation within a Complex Data Life Cycle 77

4.1 The Molecular Simulation Markup Language as Information Hub . . . . . . . . . . . . 77

4.1.1 Molecular Simulation Markup Language . . . . . . . . . . . . . . . . . . . . . 77

4.1.2 Integration with Data Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Metadata Extraction, Annotation, and Indexing . . . . . . . . . . . . . . . . . . . . . . 82

4.2.1 Extraction and Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Metadata Service Integration and Result Utilization . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Search Interface and Metadata Service Access . . . . . . . . . . . . . . . . . . 84

4.3.2 Search Result Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Overall Integration and Example Usage Scenario . . . . . . . . . . . . . . . . . . . . . 85

4.4.1 MoSGrid Data Life Cycle Integration . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.2 Example Usage Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



3

5 Evaluation 89
5.1 Adaptability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.1 Concept Adaptability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.2 Adaptation Outlook for a High-Throughput Big Data Microscopy Use Case . . . 90

5.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Various Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.2 Metadata Extraction and Annotation . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.3 Metadata Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Resilience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 Efficiency of Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Conclusion and Outlook 101
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A Publication List 105

Bibliography 111



4



5

1 Introduction

This chapter introduces the dissertation by describing its context, the identified challenges, how the

chosen challenge was met, the achieved impact, relevant publications, and how the thesis is structured.

1.1 Context

In science data is the essential focal point in todays computational and quantitative approaches to scien-

tific knowledge gain. Computational simulations enable far reaching explorations of modeled realities

while quantitative methods gather data to improve the understanding of observed phenomena. These

methods are increasingly viable only via high-end storage and large-scale High Performance Comput-

ing resources with individual requirements dramatically rising. Data throughputs involve gigabytes per

second continuously, volumes are of petabyte magnitude, continuous files per second rates are in the

double-digit range, and a vast universe of complex data representations exists. The great potential of

such data is evident by the current trend of Big Data in science that aims at large-scale information ex-

traction to foster scientific discoveries. This is fundamentally enabled by intelligently handling data and

by combining a large variety of information technology methods to so-called data life cycles. In prin-

ciple, these consist of data sources, systems to manage data as well as compute resources, methods for

access rights management, utilization interfaces and data sinks. Scientists are naturally focused on their

particular research. Thus, metadata is an essential step forward in the efficiency of use as it enables man-

aging data based on its content instead of location. Via specific data life cycles scientists are freed from

the necessity to extensively deal with IT infrastructures while still utilizing them to drive their research

by handling their extensive data and computing demands. In this complex technological environment, a

plethora of significant challenges presents itself that hinders the advancement of the state-of-the-art in

data-driven knowledge gain.

1.2 Challenges

Vital challenges in managing data life cycles are manifold. Federated authentication and authorization

infrastructures need to be integrated while being mindful of the overall resilience of increasingly com-

plex data life cycles. The increasing numbers of files and data amounts need to be managed by Big Data

systems. These in turn need to be efficiently integrated with High Performance Computing resources for

analysis which signifies the need for advanced interoperability. Besides automated pre- and postprocess-

ing, the user-friendly creation, and execution of workflows to encapsulate complex analysis procedures

need to be supported. Integrated scientific environments need to be provided that hide the underlying

complexity while enabling that use. Essential is also the building of trust that an infrastructure delivers
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what it promises. Closely connected is moving from a fixed-term build up phase to a sustainable opera-

tion phase. As these goals are partly opposing to each other, a effective balance between them needs to be

developed for each data life cycle. The dissertation focuses on the major challenge of the organization of

large numbers of files in the million range using information about data, so-called metadata. Currently,

solutions are often either use case specific or lacking completely, thus, preventing easy access and re-use.

Without metadata, users have to remember where an individual file is located. With a large number of

files this is inefficient if not impossible. This especially holds true for Big Data use cases with a large

number of files with complex content and stored in distributed locations. Currently, significant efforts

need to be made to implement even narrowly applicable and pragmatic metadata handling solutions for

every new scientific experiment.

1.3 Contributions and Impact

The contributions described in this thesis to meet the major challenge and the resulting impact are de-

scribed in the following. In all cited references the author was active as main author or co-author.

First, to facilitate a thorough understanding of the context and challenges within the highly complex

situation of managing distributed data life cycles, a comprehensive and overarching analysis and classi-

fication of all major data life cycle elements was created [GKG+15]. This novel and extensive analysis

encompasses the complete data life cycle from creation over data handling and processing to archiving

(see Sections 2.1 to 2.5). MoSGrid, the basis for the concept example implementation, is an advanced

data life cycle for enabling complex and compute-intensive molecular simulations by integrating data

resources with HPC and workflow management in a secure and efficiently usable way (see Section 2.6)

[KGG+14, GBB+12, GKG+14]. Further data life cycles are described to give a broad context (see Sec-

tion 2.7). Non-existent or highly use case specific metadata management approaches were identified,

besides others, as major challenges in data life cycles across scientific communities (see Section 3.1).

The necessity of generic overarching metadata approaches is elucidated via an evaluation of important

metadata approaches [GHS+14] and the need for higher abstraction levels towards exascale [JMPK+15].

Second, improving upon this situation, a generic and comprehensive metadata concept was designed (see

Section 3.2.1). The concept is widely applicable yet enables scalability and efficiency of use [GGJN14,

GBG+14]. With respect to other approaches (see Section 3.2.2), it improves upon the state-of-the-art.

On the one hand, the concept provides the following characteristics of generic and well-balanced meta-

data handling (see Section 3.3). Abstraction from various kinds of technologies is important in order to

enable efficient integration and adaptability to new high performance Big Data life cycles. Metadata and

data formats need to be generically handled from the source data format over storing to being searchable

in the end. This enables users to efficiently and transparently organize their data. Steps such as metadata

extraction, annotation, and indexing must be fully automated for management of large numbers of files.

Metadata management needs to be seamlessly integrated with underlying infrastructures including sys-

tems from data, computing, security, and utilization categories. Together with the possibility to directly

execute computing tasks based on metadata search results this facilitates a high usability. On the other

hand, the concept provides a design guide to metadata in data life cycles (see Section 3.4). As scientific
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data life cycles are highly complex, overall design aspects are described in detail to facilitate an appre-

ciation and understanding of this complexity [GDP+15]. Then, metadata design aspects are thoroughly

discussed. For example, re-creating of metadata capabilities are avoided by facilitating the integration

of standard components. This enables quick adaptations to different types of use cases and overall in-

tegration paths into new scientific data life cycles. Technology recommendations include an analysis of

proven technologies that directly enable metadata management and beyond in data life cycles. The con-

cept advances the state-of-the-art in data life cycle management. When implemented, it enables scientists

to focus on their core research while utilizing Big Data and High Performance Computing resources.

Third, based on the generic concept an example implementation for the MoSGrid data life cycle was

created within the MoSGrid collaboration (see Section 4). On the one hand, MoSGrid concept imple-

mentation adopts the concept characteristics by utilizing abstraction layers. It transparently integrates

with the complex underlying High Performance Computing and data infrastructures and with the sin-

gle sign-on concept and implementation [GGK+12]. Based on the MoSGrid data description format,

the extraction, annotation and indexing is fully automatic [GBG+14]. The seamless integration of the

metadata capabilities are the basis for the implemented and integrated search interface. It facilitates the

finding of data and enables the seamless use of results for further workflows. On the other hand, the

metadata aspects of the concept’s design guide (see Section 3.4.2) played a central role in the MoSGrid

implementation as well as the technology recommendations (see Section 3.4.3) that were closely fol-

lowed. The implementation results in a major advancement of the MoSGrid data life cycle by extending

its capabilities in handling large amounts of complex data.

Fourth, the generic metadata management approach and its example implementation for the MoSGrid

data life cycle were evaluated [GKJ+ed, GBG+14] on the basis of criteria that permeate the concept

(see Section 5). The generic metadata approach is enabling important synergy effects in supporting new

data life cycles (see Section 5.1). One is the ability to quickly integrate metadata capabilities. Another

is the increased efficiency based on enabling an easy and seamless integration with High Performance

Computing and Big Data infrastructures (see Section 5.5). A performance evaluation of the extraction,

annotation, and indexing key components shows favorable characteristics (see Section 5.2). Furthermore,

sustainability (see Section 5.3) and resiliency aspects (see Section 5.4) are evaluated.

This thesis is a step towards widely enabling metadata management accross scientific disciplines. The

uptake of the concept and its implementation in the MASi research infrastructure (see Section 6.2) as

well as its utilization within the MoSGrid data life cycle ensures a broad and lasting impact.

1.4 Publications

The results of the dissertation and intermediary connected research were published in various journals,

book chapters, and proceedings of conferences and workshops. The following publications are closely

connected to the doctoral research and are referenced in Section 1.3. The complete list of the author’s

publications is attached as appendix A.

[GBB+12] Richard Grunzke, Georg Birkenheuer, Dirk Blunk, Sebastian Breuers, Andre Brinkmann,

Sandra Gesing, Sonja Herres-Pawlis, Oliver Kohlbacher, Jens Krüger, Martin Kruse, Ralph
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Müller-Pfefferkorn, Patrick Schäfer, Bernd Schuller, Thomas Steinke, and Andreas Zink. A

Data Driven Science Gateway for Computational Workflows. In UNICORE Summit 2012

Proceedings, volume 15 of IAS Series, pages 35–49, 2012.

[GBG+14] Richard Grunzke, Sebastian Breuers, Sandra Gesing, Sonja Herres-Pawlis, Martin Kruse,

Dirk Blunk, Luis de la Garza, Lars Packschies, Patrick Schäfer, Charlotta Schärfe, To-

bias Schlemmer, Thomas Steinke, Bernd Schuller, Ralph Müller-Pfefferkorn, René Jäkel,

Wolfgang E. Nagel, Malcolm Atkinson, and Jens Krüger. Standards-based Metadata Man-

agement for Molecular Simulations. Concurrency and Computation: Practice and Experi-

ence,26(10):1744–1759, 2014.

[GDP+15] Sandra Gesing, Rion Dooley, Marlon Pierce, Jens Krüger, Richard Grunzke, Sonja Herres-

Pawlis and Alexander Hoffmann. Science Gateways - Leveraging Modeling and Simulations

in HPC Infrastructures via Increased Usability. High Performance Computing Simulation

(HPCS), 2015 International Conference on, 2015, 19-26.

[GGJN14] Richard Grunzke, Sandra Gesing, René Jäkel, and Wolfgang E. Nagel. Towards Generic

Metadata Management in Distributed Science Gateway Infrastructures. In IEEE/ACM CC-

Grid 2014 (14th International Symposium on Cluster, Cloud and Grid Computing), pages

566–570, Chicago, IL, US, May 2014.

[GGK+12] Sandra Gesing*, Richard Grunzke*, Jens Krüger, Georg Birkenheuer, Martin Wewior,

Patrick Schäfer, Bernd Schuller, Johannes Schuster, Sonja Herres-Pawlis, Sebastian Breuers,
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Dirk Blunk, Thomas Steinke, Andre Brinkmann, Gregor Fels, Ralph Müller-Pfefferkorn,

René Jäkel, and Oliver Kohlbacher. A Single Sign-On Infrastructure for Science Gateways

on a Use Case for Structural Bioinformatics. Journal of Grid Computing, 10(4):769–790,

2012.

[GHS+14] Richard Grunzke, Jürgen Hesser, Jürgen Starek, Nick Kepper, Sandra Gesing, Marcus

Hardt, Volker Hartmann, Stephan. Kindermann, Jan Potthoff, Michael Hausmann, Ralph

Müller-Pfefferkorn, and René Jäkel. Device-driven Metadata Management Solutions for

Scientific Big Data Use Cases. In 22nd Euromicro International Conference on Parallel,

Distributed, and Network-Based Processing (PDP 2014), February 2014.

[GKG+14] Sandra Gesing, Jens Krüger, Richard Grunzke, Luis de la Garza, Sonja Herres-Pawlis, and

Alexander Hoffmann. Molecular Simulation Grid (MosGrid): A Science Gateway Tailored

to the Molecular Simulation Community. In Science Gateways for Distributed Computing

Infrastructures, pages 151–165. Springer International Publishing, 2014.

[GKG+15] Richard Grunzke, Jens Krüger, Sandra Gesing, Sonja Herres-Pawlis, Alexander Hoffmann,

Alvaro Aguilera, and Wolfgang E. Nagel. Managing Complexity in Distributed Data Life

Cycles Enhancing Scientific Discovery. In e-Science (e-Science), 2015 IEEE 11th Interna-

tional Conference on, pages 371–380, August 2015.

[GKJ+ed] Richard Grunzke, Jens Krüger, René Jäkel, Wolfgang E. Nagel, Sonja Herres-Pawlis, and

Alexander Hoffmann. Metadata Management in the MoSGrid Science Gateway for Quan-
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tum Chemistry. Journal of Grid Computing, accepted.

[JMPK+15] René Jäkel, Ralph Müller-Pfefferkorn, Michael Kluge, Richard Grunzke, and Wolfgang

E. Nagel. Architectural Implications for Exascale based on Big Data Workflow Require-

ments. In Big Data and High Performance Computing, volume 26 of Advances in Parallel

Computing, pages 101 – 113. IOS Press, 2015.

[KGG+14] Jens Krüger*, Richard Grunzke*, Sandra Gesing*, Sebastian Breuers, André Brinkmann,

Luis de la Garza, Oliver Kohlbacher, Martin Kruse, Wolfgang E. Nagel, Lars Packschies,

Ralph Müller-Pfefferkorn, Patrick Schäfer, Charlotta Schärfe, Thomas Steinke, Tobias Schle-

mmer, Klaus Dieter Warzecha, Andreas Zink, and Sonja Herres-Pawlis. The MoSGrid Sci-

ence Gateway - A Complete Solution for Molecular Simulations. Journal of Chemical The-

ory and Computation, 10(6):2232–2245, 2014.

* These authors contributed equally to the respective work.

1.5 Thesis Structure

Chapter 2 of the thesis introduces the highly complex field of scientific data exploitation. Data life cycle

management components are filed in categories such as data sources and sinks, storage and computing,

data and computing management, metadata and workflow management, and security and utilization.

Relevant systems and approaches in this context are discussed. The chapter continues with a detailed

description of the MoSGrid data life cycle in which the example implementation was performed. It is

rounded out with an overview description of various further data life cycles.

Chapter 3 starts with presenting overall challenges in the complex data life cycle situation and follows

with the central metadata challenge of too specific or completely lacking solutions. The contribution of

a generic and overarching metadata concept is described in detail. First, it describes key characteristics

of abstraction, generic format handling, and seamlessness that are essential for advantageous metadata

management implementations. Second, it includes a design guide for developing an understanding of

the general data life cycle complexity and how to integrate metadata management. Finally, technology

recommendations are given.

Chapter 4 describes the example implementation of the generic concept following the characteristics,

design guide and technology recommendations. It extends the complex MoSGrid data life cycle with

generic metadata management in a fully automatic and seamlessly integrated way.

Chapter 5 evaluates the generic concept theoretically and in practice along the MoSGrid example im-

plementation. The criteria are adaptability, performance, sustainability, resilience, and efficiency of use.

The concept and implementation are shown to have favorable properties.

Chapter 6 gives a detailed conclusion and looks ahead to future work and research directions.
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2 Managing Complexity in Scientific Data Life Cycles

In this day and age, data is seen as a fundamental resource to gain knowledge and insights. This manifests

itself in the trend of and concepts behind "Big Data" with data challenges in various dimensions. With

exascale computing at the horizon the computing capabilities are rapidly increasing with core numbers

in the order of millions. To support this, work is ongoing in the field of exascale hardware [KBB+08]

and software [DBM+11, JMPK+15] to lay the ground for the efficient and resilient operations of such

systems. The rate of data creation is continuously and rapidly growing while the raw data processing

capabilities are even growing faster. This situation leads to an increasing focus on data as its transfer and

management becomes the bottleneck.

Scientific data life cycles are highly complex due to high and increasing capability requirements from sci-

entists. In order to manage them various technologies exist which are categorized and described in detail

in this chapter. In Figure 2.1 the categories are depicted with data sources and sinks at the left and right

sides respectively. A conceptional view is taken with commonly used systems being discussed as exam-

ples. The field of scientific data with a multitude of functions and components adds to the complexity of

data life cycles. Ways to access and utilize data life cycles are presented as well as security mechanisms.

The focus is on approaches to make complex data life cycles manageable and usable. The whole data life

cycle with the essential management, analysis and utilization of data is considered [JGG+14]. A major

characteristic of many data life cycles is the quickly increasing complexity with international collabora-

tions and highly distributed resources [BF07]. The intelligent handling of data, its analysis and access

by users and systems is increasingly the essential requirement to enable cutting-edge science. Thus, the

overall goal is to enable scientists to generate new scientific knowledge based on data. This data ex-

ploration can be seen as the 4th paradigm of science [HTT09] following the empirical, theoretical, and

computational approaches. A paper presenting the systematic and extensive data life cycle background

within this chapter was recently published [GKG+15].

The MoSGrid data life cycle is described in detail as it provides the context in which the example im-

plementation of the dissertation concept was performed. Further data life cycles are compiled to give a

glimpse into the existing variety and complexity. This chapter facilitates a thorough understanding of the

management of scientific data life cycles to give context to the contributions in Section 3.

2.1 The Scientific Data Deluge

The importance of data is thoroughly described in [BHS09] where data-intensive science is seen as

the fourth paradigm of science with data as its center. In an important strategy paper by the German

research council, data is described as the fundamental basis for science and beyond [Wis12]. In this

chapter data sources and sinks are described (see Figure 2.2 for an overall classification within data
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Figure 2.1: Principal data life cycle management component categories are depicted with data source,
storage and computing pillars, data sink, and layers for security and utilization. Each category
consists of a multitude of technologies to manage the inherent complexity.

life cycles). Instruments and simulations may act as sources and various data management systems as

sinks. Archiving data is a huge challenge [BHS09] as it needs to be usable, efficient, cost-effective,

and sustainable at the same time. The computer power in increasing faster compared to the increase of

storage capacity and transfer rates. This trend tends to result in computing being performed near the data

instead of moving data to computing resources.

2.1.1 Data Sources

There is a multitude of data sources with increasingly complex instruments and computing resources

[HTT09]. The data rates, amounts, and complexity are continuously growing and data life cycles need

the capabilities to manage this situation. This aligns itself with the trend of Big Data [BHS09, Eur10].

Instruments

One kind of data sources are instruments, defined here as hardware focused on a specialized set of

functions. Particle accelerators [LBS62, AAA+08] are significant examples in this category with the

Large Hadron Collider (LHC) [Bir11] as famous instance creating about 1 PB/s of raw event data per

detector. Depending on the detector and use case, the data is significantly filtered to only retain data

that is of further interest. For the LHCb experiment it is reduced to about 50 MB/s while for the AL-

ICE experiment it can only be reduced to 1250 MB/s for certain experiments. Another example are

instruments such as high-throughput microscopes in biology [CSB+10]. These can produce millions

of files with reaching over 1 GB/s per instrument such as the Selective Plane Illumination Microscopy

(SPIM) [HSDB+04, HS09, WMH13]. In its basic state one kind, for example, produces data with a
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Figure 2.2: The data source and data sink categories include a classification of data creation and storing
methods as principal input and outputs of a data life cycle.

rate of 0.85 GB/s and roughly 10 files/s. In continuous mode, which is the clear goal, 2 petabyte and

26 million files per month for each microscope in every institute that utilizes them will be created. Ex-

act data and file rates depend on specific microscope configurations. Big Data in biology [Mar13] is a

vast field with a multitude of use cases. Another category of instruments are sensors. In the VAVID

project [VAV15, AGM+15], sensors are distributed and small and they measure a limited amount of

monitoring data but for a huge array of wind power stations. With the station number of the order of

thousands, the monitoring data amounts to almost one petabyte per year.

Computing Resources

Another kind of data sources are computing resources such as supercomputers and clusters. Under

the consumption of time and conversion of energy these resources convert input data into output data

of higher value. Supercomputers can produce highly dimensional and complex data at petabyte-scale

e.g., highly dimensional plasma physics simulations [BBC+13]. Alternatively, data on a small scale but

with a high-throughput are created with data analysis or extraction tasks. A high-throughput computing

example is the analysis of the previously mentioned microscopy data with tasks such as registration,

segmentation, and information extraction [CSB+10]. The author led collaborations to facilitate the

efficient use of High Performance Computing (HPC) resources for such high-throughput image analy-

sis use cases [GS10, GMPMM11]. Another high-throughput computing example are complex docking

workflows within the MoSGrid data life cycle (see Figure 2.23).
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2.1.2 Data Sinks

The term data sink is defined here as a storage location where temporary and result data of a data life

cycle is ultimately kept for future use. The kind of storage location is chosen according to the re-use

probability and safety requirements of the data. As systems configurations and policies vary the follow-

ing list is intended to give a general impression of the situation within High Performance Computing

environments. A scratch file system is often deployed system-wide. It is rather large, has a high band-

width, has usually no backup, and is intended for temporary result data. A home file system is usually

limited in size and bandwidth but is backuped, thus, it is intended to be used for short-term storing of final

result data. An archive is designated for keeping final result data for the mid- and long-term. It is usually

large, fully backuped, has a high bandwidth but high latency since often tape technology is used. An

emerging trend is that further services are built on top of archives, which are called research data reposi-

tories [Wit08]. The data is usually annotated with metadata and can be referenced via a unique identifier.

A common schema is the Digital Object Identifier (DOI) [Pas05] with the DataCite initiative [Bra09]

working towards the goal of establishing research datasets as "as independent, citeable, unique scientific

objects"[Bra09]. Important further aspects are access rights and licenses as not all data is aimed to be

made open data immediately.

Policy and technological challenges in this area are manifold [Ber08]. For example, when data is archived

it needs to be clear who is owning and who is allowed to access the data. It needs to be determined

who is responsible for the data even when the original owner leaves the institute. This might be the

institute head, but it might be questionable if he is willing to automatically assume responsibility as

incorrect of fraudulent data might also be included. When the responsibilities are clear, such a transfer of

responsibility should be as automatic as possible enabled by the technologies in use. Also, users might

retain access rights even in case they leave the institute. This case is a challenge as an institute-internal

account is not applicable anymore. Optimally, an institute-independent and worldwide ID system such

as ORCID [HFP+12, KPWW10] is used to identify person independent of institutes.

One essential aspect is that with more affordable and, thus, increasingly available and larger storage de-

vices, more data tends to be created and kept. This trend is part of technological developments that enable

more extensive studies using scientific data as part of the Big Data trend. The UNESCO recognizes this

implications in its Charter on the Preservation of Digital Heritage [UNE03]. Digital data in all forms is

an increasing part of the worlds heritage. Thus, it is essential to sustainability save and make data avail-

able to following generations. It follows that universal interfaces to long-term archives are important to

enable the easy storing and accessing of this data. Metadata and unique identifiers are fundamental in

enabling that data can be searched for and worked with in a meaningful way, even in the ages to come.

As storage for currently handled data acquisitions rates is limited, data has to be selected for long-term

storage based on its relevance. Data is also seen as the natural resource of the information age and there-

for needs stable, efficient, cost-effective, usable and sustainable digital infrastructures [Ber08]. In this

context data preservation is essential to ensure the availability of data in the future, whether short- or

long-term. The key challenge of sustainability is the continuous maintenance of system operation long

after the time it was built up. With data archives it is of special importance as it is their base requirement

to keep data for the long-term.
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Figure 2.3: The data pillar in data life cycle management is depicted with categories of increasing levels
of abstraction; storage, data, and metadata management.

2.2 Handling Scientific Data

Data in scientific life cycles (see Figure 2.3) need to be safely managed and stored [CFK+00] in order

to be accessed by user and by diverse systems with high performance requirements [ABB+02]. Data

sets can have large numbers of files and/or large file sizes, depending on the data source and how it is

stored and processed. Nowadays, data sharing is becoming increasingly important [TAD+11, FZ11] with

interdisciplinary collaboration on the rise as a way to create synergy effects and solve complex societal

challenges [FZ11]. This positive impact is only possible when diverse scientific fields cooperate and

when sharing is explicitly independent of the initial purpose for which the data was originally created.

Sharing is fostered by the notion that publicly funded research endeavors should release its data back

as open access data to the public that originally funded it. In case embargo periods are required by

public research or in commercial research settings an integration with authentication and authorization

infrastructures is essential. Section 2.4 will elucidate that security is a highly complex task.

The German Science Counsel published a strategy paper on the further development of research infor-

mation infrastructures in Germany up to 2020 [Wis12]. It stresses the importance of information infras-

tructures, including digital forms, as the fundamental basis for science and beyond. Digital research data

has to be made accessible, archived and, thus, kept for the long term.

According to the overall concept for the information infrastructure in Germany [dI11], sustainable data

management with open access is a fundamental requirement to save, exploit, provide, and utilize data

in the long-term. Research data is of cultural importance and must be permanently kept and provided

to enable future re-use. Thus, operational resources have to be maintained to fulfill this goal. These

resources include storage, computing capacities, documentation, safekeeping, archiving, and curation.

Data management policies have to enforce the creation of data management plans and include respon-
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sibilities and privacy considerations. Clear responsibilities have to exist to enable system maintenance,

data curation, sharing, access control, data extension, and deletion. Responsible for the safe-keeping

should be libraries and data centers. Best practice guides, standards, and process models are important

to re-use once build-up expertise. Development resources include the automatic acquisition of data and

metadata, persistent identifiers, access control, linking, and standards.

Raw data storage devices are storing data in file form and can have various levels of bandwidths, laten-

cies, safety, and sizes (see Section 2.2.1). The data management category contains systems that enable

the sophisticated organization of data based on distributed raw storage devices with additional func-

tionality such as a unified name space, various access mechanisms, replication management, and policy

enforcement. Details are provided in Section 2.2.2.

As data sets increasingly consist of numbers of files in the million range, information about data itself

needs to be present and available, called metadata. It is used to find and access data without the need

for users to remember what exactly is in which file and where the data is located. Automatic extraction,

annotation, and indexing of metadata is essential to deal with the inherent complexity. As this topic is

the core of the dissertation at hand, its background is dealt with in detail in Section 2.2.3, the overar-

ching and generic metadata concept is presented in Chapter 3, an example implementation presented

in Chapter 4 and evaluated in Chapter 5. Furthermore, authentication and authorization infrastructures

including single sign-on (see Section 2.4) need to be naturally integrated with systems of the data pillar

(see Figure 2.3).

2.2.1 Storage

This section introduces concepts and technologies regarding storage [TE03] at a suitable level of detail

for this thesis. Here, storage is considered as a concept that is available on a server offering space to

keep data. Depending on the use case and its requirements, different kinds of basic storage technologies

are utilized, namely ramdisks, solid state disks, hard disk drives, and tapes. These technologies form the

storage hierarchy whose component characteristics range from small, high-bandwidth, low latency, and

expensive to huge, high-bandwidth, high latency, and cheap with mixes in between.

Storage can be connected to a server in various ways. It is available on such a server via a file system

that is an abstraction layer on top of block storage devices [TE03]. One kind is the concept of Direct At-

tached Storage (DAS) where local block storages devices are attached via standards such as SCSI (Small

Computer System Interface) to a single server. It initiates and manges the file system as an interface

for applications to store files. A Storage Area Network (SAN) is a concept that includes dedicated local

storage networks. These are optimized for latency and flexible in terms of configuration. The provided

storage is also block oriented and common examples are FibreChannel and iSCSI. Network Attached

Storage (NAS) is a client-server concept. Servers expose their storage capacity to other systems on a

file basis and clients consume storage by integrating it into their local filesystem tree. Examples are

NFS [SEN10] and CIFS [Her04] with parallel and distributed files systems with additional functionality

and focus being described in Section 2.2.2.
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2.2.2 Data Management

Data management systems are concerned with the organization of data mostly based on files and directory

structures. Such systems need to be able to safely store and manage large quantities of data with a size

range of petabytes as well as high number of files in the double-digit million range.

Parallel file systems

Parallel file systems usually provide functionality to combine various storage devices to a unified overall

system with a common name space including an overall directory structure. An essential requirement

is that systems in this category are able to scale with the amount of data. This scalability enables them

to serve High Performance Computing environments and a large number of distributed accesses at the

same time. In the following several widely used examples of parallel file systems are introduced.

The General Parallel File System (GPFS) [SH02] is a parallel file system featuring a POSIX (Portable

Operating System Interface for Unix) interface and parallel access to both files and its metadata as well

as administrative functions. GPFS’ shared-disk architecture enables well scalable installations. It is

mounted on the nodes of a cluster that are connected via a switching fabric to the shared disks. These

disks store the segmented data which can subsequently be accessed by all nodes equally. This schema

enables load balancing for a high-throughput and fault tolerance. To ensure file systems consistency

during parallel read and write accesses, GPFS implements distributed locking. GPFS is installed on

some of the largest supercomputers in the world [SH02].

Lustre [Sch03, B+04] is an object-based parallel file system. It is client-server based and features one

or more metadata servers (MDSes) and targets (MDTs), object storage servers (OSSes), and targets

(OSTs) and clients. Clients can access the unified name space of a Lustre installation via its POSIX

interface. MDSes, integrated with MDTs, provide name space information including file and directory

names, access rights, and keep the information where files on OSSes are stored. These servers mount

a number of OSTs via its local file system. Data objects are potentially stored accross many OSTs and

are referenced via a unique identifier. A high overall bandwidth is achieved by the direct transfer of data

from OSTs to clients while consistency is guaranteed via a similar strategy as with GPFS. Lustre is also

widely used on large-scale supercomputers [Sch03, B+04].

Parallel NFS (pNFS) [GWGC04] is an optional extension of the NFS v4.1 standard. It improves NFS’

capabilities with a scalable approach of separating data and metadata. As with other parallel file systems,

the metadata server provides information about the unified name space layout, access rights, and location

of the actual data on OSS’. The distributed architecture provides scalability by enabling clients to directly

access data while the metadata server enables consistency.

Distributed Data Management Systems

Besides a unified name space and scalability, distributed data management systems include advanced

features such as various access mechanisms, advanced authorization and authentication support, and
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policy enforcement via replication and rule features. In the following some important example will be

introduced.

The integrated Rule-Oriented Data System (iRODS) [RMH+10, CCQ+11] is an open source distributed

data management system. Its three distinct services are the iRODS Metadata Catalog (iCAT), the iCAT-

Enabled Server (IES), and resource servers. iCAT is a relational database such as PostgreSQL. It handles

the logical name space including the mapping to physical locations, metadata about files, user man-

agement, and iRODS deployment information. The IES is the main server of an iRODS installation, a

so-called zone, that features the iCAT. Resource servers are used to integrate storage space while they

can also increase the performance, safety, and resilience of a zone. The Rule Engine is an advanced

feature that evaluates predefined rules at certain trigger events. A basic example is an automatic format

conversion when a file is uploaded to an iRODS installation. Entire data workflows can be designed in

order to automatically enforce potentially complex data policies. The iCAT enables to associate metadata

triplets (key, value, unit) to files and collections to enable the association of meta information.

dCache [Fuh04, FG06] is a storage middleware that was initially developed in the context of the LHC

computing system. Today, it handles a significant part of the worldwide LHC data [WLC15]. dCache

provides a unified name space with the physical disk space being located on potentially many so-called

pool servers. Tape archives can be transparently integrated and data transfers between all storage ele-

ments are done automatically. This way dCache transparently supports load balancing, replication, and

is inherently resilient against hardware failures. A large set of protocols is supported for accessing data

within dCache, e.g., NFS and WebDAV. It is nowadays used around the world [dCa15].

As a distributed file system, XtreemFS [HCK+08, SBR12] was engineered with scalability in mind by

separating raw data and the index that organizes the data. Object Storage Devices (OSDs) are installed

on server and make attached storage capacity available for raw data storage. Metadata and Replica

Catalogues (MRCs) manage the file name space and the mapping on which OSD specific data is located.

The Directory Service (DIR) is a registry to enable service loop-ups by clients. As for clients, the FUSE

client, for instance, provides POSIX compatibility [SKH+08]. Accesses via clients are translated to

remote procedure calls that access functions on XtreemFS backend services.

Within the computing middleware UNICORE [SEL+05, SBBR+10, BSP+ed], the Storage Management

Service (SMS) abstracts from underlying storage systems such as POSIX or HDFS. The distributed

Storage Management Service (dSMS) [RBB11] goes one step further and provides a single point of

access to possibly many SMS instances. Thus, dSMS enables a common view and way of access to

many independent storage elements with UNICORE.

Further examples include the Google File System [GGL03], Hadoop Distributed File System (HDFS)

[SKRC10], Amazon Simple Storage Service (S3) [Sers3], and Windows Azure Storage [CWO+11].

2.2.3 Metadata Management

Metadata management entails the handling of data based on metadata, meaning information about the

data, to enable easy access for future use. An easy discovery is essential for the usefulness of data. As

metadata is usually closely linked with the data itself, a file reference is commonly attached. To create
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metadata several steps are required. As first step, relevant information from data needs to be extracted.

Second, metadata annotated or attached to the data itself. Third, in order to use metadata for search, it

needs to be indexed. An high degree of automation in these steps is essential to enable usability and error

resilience. The steps are described in the following paragraphs, depending on the kind of system that is

used.

Through these steps, metadata facilitates the sustainability of data in the sense that it can be found

again, even when the original creator becomes unavailable or forgets about the data. This findability

is especially important when the data set is just one in a large institutional collection of data sets with

possibly tens of millions of individual files. Furthermore, there is the major challenge of metadata

standards with a huge variety existing as is detailed in the next paragraph. A general goal is having

metadata management as integrated as possible [Sen04] with the specific overall data life cycle. This

avoids the need to manually cross system boundaries and, thus, facilitates a seamless usability.

Metadata Standards

Metadata standards is a highly complex field with a large number existing [Lan11, Bal09] as can be seen

in Figure 2.4 and 2.5. These standards differ in complexity, adaptability, domain specific concreteness,

community, function, purpose, and strictness [Lan11]. Often, standards are either highly use case focused

and easy-to-apply or very generic and complex to apply in use cases they were not designed for. A com-

promise is to use a common set of core metadata such as Dublin Core [WKLW98, MSF+10, EUD15b]

together with metadata that is specific to the current use case. Various standards are presented in a

detailed study [Lan11].

Metadata Extraction

Metadata extraction toolkits exist to extract specific information from a file with a specific format to be

stored according to the metadata system in use.

Apache Tika [MZ11] is an open source Java metadata detecting and extraction toolkit as a top-level

project under the umbrella of the Apache Software Foundation. Tika supports over a thousand different

file types. The main component of Tika is its parser interface. It abstracts from supported formats and

libraries and is easy-to-use yet powerful. Another major component of Tika is its content detection

interface that provides through the common "detect" method. It takes a stream and metadata object with

available information as input and returns a guess about the type in form of a MediaType object. Various

kinds of detection such as mime magic, resource name based, known content type, default mime types,

container aware, and the default one are available.

JHOVE (JSTOR/Harvard Object Validation Environment) [LPU15] is an open source Java framework

that enables format validation, identification, and file characterization. Validation means that a file is

given and checked if its specified format follows the format specifications. Conversely, identification

takes a file as input and determines its format. Characterization returns properties of the file content.

JHOVE features a GUI and commandline client and an API for integration with other applications.
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Supported formats include AIFF, ASCII, Bytestream, GIF, HTML, JPEG, JPEG 2000, PDF, TIFF, UTF-

8, WAV, and XML. It is used by digital library applications and repositories. A completely rewritten

successor called JHOVE2 [AMC09] is available. It addresses a number of feature requests based on

user feedback. The requests involve improved performance, refactoring of the architecture and an API.

JHOVE2 extends the functionality with respect to metadata extraction and includes modules for struc-

tured processes related to preservation workflows. It was funded by the US Library of Congress, the

California Digital Library, Portico, and Stanford University.

Further general examples are ExifTool [Har15], NLNZ Metadata Extraction Tool [oNZ15], and C3Grid

metadata tools [SBD13]. Specialized extraction tools are for example Taglib [Tag15] for audio formats

and the Bio-Formats Importer plugin of Fiji [SACF+12]. This plugin enables to convert various propri-

etary formats in the microscopy domain to the OME [GAB+05] data model which includes metadata.

Centralized Metadata Catalogues

Centralized metadata catalogs are systems that store metadata and a search index together in a single

system with references to files located somewhere else. This approach implicitly offers a consistent

and uniform view on data with seamless search capabilities. One disadvantage are potential bottlenecks

when all metadata capabilities are concentrated in one system. The approach limits the resiliency as

it represents a single point of failure. As metadata is stored separately from data, another downside is

that archiving is challenging. Data without metadata tends to be useless. Thus, metadata in centralized

systems needs to be archived as well. When the referenced data is archived, it might be possible to

continuously maintain a metadata system. But this is unfeasible as it requires a lot of effort in the long

term. Furthermore, with several metadata systems this approach would significantly increase the required

backup effort even more.

A solution to the maintainability challenge would be to choose one metadata system in the expectation

that it is widely enough used for a high chance of it being maintained by the developers in the long-run.

Examples of such systems are DSpace [SBB+03] and Fedora Commons [Fed16]. These systems called

repositories and integrate a advanced functionality and are used for long-term archiving of data with

metadata as the central functionality for data organization. Fedora Commons provides common core

services to be integrated with existing environments while DSpace offers a system with a complete set

of features to be deployed as a whole. Fedora and DSpace joined their organizations in 2009 and formed

the none-profit DuraSpace [Dur13] organization to manage and facilitate the development of both and

realize synergy effects.

iRODS [RMH+10, CCQ+11] fits mainly in the data management category as described in Section 2.2.2.

It provides some metadata capabilities with attribute-value-unit triplets being stored in the central iRODS

database and search capabilities. The AMGA Metadata Service [KSP08] is a specialized development

within the WLCG [Shi07, BF07] context. ICAT [MSF+10] with its central database featuring the

Core Scientific Metadata Model [MSF+10] aims at providing an interface to access photon and neutron

physics facility specific life cycles. ISOcat [KSWWW08] provides a data category registry for linguistic

resources with a web interface and various APIs being available.



2.2. HANDLING SCIENTIFIC DATA 23

Figure 2.6: An overall view [JVK+14] of the KIT data manager architecture is depicted with metadata
management being a core service.

The KIT Data Manager (KDM) [JVK+14, PSJ+ed] is a research data repository with metadata man-

agement at its core to deal with digital data objects and their life cycle. Use cases include managing

synchrotron tomography images that can potentially range into petabyte scale and handling a large va-

riety of images in the digital humanities domain. The KIT Data Manager consists of a set of basic and

high-level services that seamlessly integrate with each other (see Figure 2.6 for an architecture overview).

Access is offered via REST and Java APIs for developing solutions and a Web Portal for serving the user

communities. Basic services are for example for data migration, bit preservation, and storage visualiza-

tion. Data management, staging, and policy enforcement are examples for high-level services. A search

interface can be utilized to find annotated digital data objects. Execution computing tasks is supported

via the LSDF Execution Framework for Data Intensive Applications (LAMBDA) [GBH+11, JHS+12].

An aim of the MASi project (see Section 6.2) is to extend KDM with a generic and widely applicable

High Performance Computing integration via UNICORE. Another aim is to add support for federated

identities.

EUDAT [LWE+13, Mal14] is a large European data management project. It aims at creating a generic in-

frastructure to access and preserve research data (see Figure 2.7 for an EUDAT overview). The metadata

related services B2SHARE and B2FIND are of particular interest here. B2SHARE aims to be a service

to store and share small research data sets via a web portal that is also the sole mean to upload data.

Metadata fields have to be filled in manually. Basic fields are the same across all domains while specific

fields are offered for individual domains or projects. B2FIND is a service for finding research data sets

via its metadata. It also allows to comment on metadata and resources. Via the OAI-PMH [VdSNLW04]

protocol metadata is regularly gathered from integrated metadata providers to be made available for

search. The respective communities decide which metadata is to be published. A new service for seman-

tic annotation called B2NOTE is planned. It aims to enable automatic metadata annotation of ingested

data [EUD15a].

The Agave science gateway API [DVS+12] supports metadata capabilities. Metadata can be automat-
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Figure 2.7: A general overview [Mal14] of the EUDAT architecture is shown, including the B2SHARE
and B2FIND services that involve generic but limited metadata capabilities.

ically extracted by employed external extraction tools via its rule-based processing feature. The meta-

data itself is managed via an integrated unstructured column-oriented NoSQL database. Agave supports

metadata schemas as XML or JSON descriptions [NPRI09]. The schemas may form a series of tuples

or highly structured descriptions. The system can be adapted to specific use cases by defining and inter-

linked schemas via a registry. The science gateway API supports global search capabilities.

DIRAC as a computing middleware (see Section 2.3.2) offers the Dirac File Catalogue (DFC) [TP12] as

a way to organize files and their metadata. DIRAC is based on experiences of the LHCb collaboration.

Metadata can be associated to files and directories as key-value pairs. Metadata is inherited to subdi-

rectories. Search and access operations are possible via a Python API, commandline client, and web

portal.

Other examples are LOCKSS [MRG+05], MyCoRe [MyC13], Eprints [Epr13], UrMEL [UrM13], OPUS

[OPU13, SK09], Kopal [Kop13], and the Rosetta Project [Pro13].

Systems with Metadata in Close Proximity to Data

The opposite approach to the centralized one in the previous Section 2.2.3 is that of storing the meta-

data in close proximity to the data itself. Metadata is kept in either separate files, with the example of

JSON [Cro06], or kept in the same files besides the original data with the examples of HDF5 [FCY99,

CYCA06, FHK+11] or (p)NetCDF [RD90, LLC+03].

The Hierarchical Data Format (HDF) in its fifth version is a structured container format. It aims at
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providing access to scientific data in an architecture independent, structured, and high-performant way

at a large scale with support for a large variety of data types. Within HDF5, data is stored in objects

and objects are organized in a hierarchical structure. Objects can be arbitrary datasets with types such

as images, arrays, and others. Objects can have properties associated to it such as size, content or lists

of datasets. The hierarchy is organized top-down starting with a root element. Objects can also include

links to other objects or HDF5 files. An HDF5 library is available to access specific parts of files and

enable various other operations. Examples use cases are in the geosciences and next-generation DNA

sequencing. HDF5 has a structure that is well-defined within the file itself. This information can be

extracted and utilized as metadata.

The Network Common Data Format (NetCDF) is a self-describing data format for multidimensional

array-oriented scientific data. Data is stored in coordinate systems with multiple dimensions. These

coordinate systems are accessed via variables and annotated with properties. The number of dimensions

is the same across variables while the properties can be different. When the file structure is honored, data

can be appended and read later via the serial NetCDF interface. This interface can randomly access any

part of a data set stored in a NetCDF file. Common use cases are within the climate and oceanography

research domains. The extension parallel NetCDF (pNetCDF) enables random parallel access to data sets

in NetCDF files to avoid bottlenecks in parallel applications while providing backward compatibility.

A main advantage of this close proximity approach is that potential inconsistencies can be more easily

avoided. Such inconsistencies are dangling references when metadata exists but the data is already

deleted and dark data where the data exists but the metadata with the references is already gone. This

approach is inherently more distributed and is, thus, more failure-resistant and scalable. From the point

of view of the annotated data, it is independent from remote systems. The approach is also potentially

more universal since metadata can by stored in arbitrary formats. Archiving data together with the

metadata is straight forward as the same archiving operations and procedures can be applied for both

and are independent of external services. The disadvantage is that a search index still needs to be build

and provided by a central component. Also, only with a central search index a uniform data view can be

provided and the number of stored files might increase dramatically when data and metadata are kept in

separate files.

Systems with a Combined Proximity Approach

Both previous approaches in Section 2.2.3 and 2.2.3 are mixed in this combined proximity approach.

Metadata is stored in close proximity to the data either in a separate file or in the original file as described

in the previous Section 2.2.3. At the same time, capabilities are integrated for the creation of an index

to enable the search for data via metadata. The advantages of both approaches are combined. The

disadvantages being that the consistency between the distributed metadata and the central index needs to

be managed to provide a suitable level of currentness of the index. Also, this approach is more complex.

An example system is the metadata service of the UNICORE computing middleware [NS10] that enables

to organize data via metadata. Its metadata service (see Figure 2.8]) is integrated with the UNICORE

Storage Management service (SMS) and access available via the UNICORE commandline client, work-

bench, portal, and Java API. Metadata can be extracted from arbitrary data formats by the Apache Tika
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Figure 2.8: The architecture of the UNICORE metadata service is shown [NS10].

framework (see Section 2.2.3) and it is stored besides the data in JSON files. The data itself is stored

in local or remote directories or in data management systems that are available via the UNICORE Stor-

age Management Service. The Apache Lucene framework is utilized to automatically build an index

and provide powerful search features within the UNICORE ecosystem. This approach was chosen for

its high adaptability, it being open source and part of UNICORE to be part of the dissertation research

presented here.

2.3 Applying Computing in Data Life Cycles

A central aspect in a life cycle of digital data is to apply computing to it (see Figure 2.9 for an overall

classification). Data is transformed to data of higher value or information is extracted for knowledge gain

with e.g., simulations that aim at transforming a model and input parameters to insightful results or image

analysis that applies an algorithm with parameters to images to extract information. Other examples are

the processing of data in order to prepare it for visualization or to extract information for human-readable

statistics. The complexity of computing resources is introduced in Section 2.3.1. To manage this com-

plexity, middlewares abstract from computing resources [HTT09, TTH11]. Computing middlewares are

utilized to abstract from raw computing devices and hide their complexity (see Section 2.3.2). Workflow

middlewares further abstract to automate both tedious manual and highly complex tasks in order to en-

able high usability and error resistance (see Section 2.3.3). These systems need to be tightly integrated

with authentication and authorization infrastructures to enable seamless usage of all components of data

life cycles. As coming exascale systems are predicted to be even more complex [JMPK+15, KBB+08],

it is even more important to hide their complexity in order to enable end users to make efficient use of

them. Displaying specifics of underlying systems should be strictly optional.
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Figure 2.9: Data life cycle management component categories for executing computing tasks (computing
pillar) with three layers of abstraction are shown; computing, computing management, and
workflow management.

2.3.1 Computing

Computing devices in this context are defined as High Performance Computing and cluster resources for

arbitrary computing task execution. These resources are highly complex in themselves with components

such as CPUs, RAM, storage, operating systems, racks, nodes, and interconnects. This complexity is

partly managed via batchsystems which local users utilize to distribute their tasks to the underlying

compute resources of which they only have to know overall information and not infrastructure specifics

anymore. Batch systems in themselves are a highly diverse and a complex class of systems. Widely used

examples are SLURM [YJG03], LSF [Zho92], Oracle Grid Engine [Gen01], CCS [KR98], PBS [Hen95],

and TORQUE [Sta06]. A new and advanced example is Apache Mesos [HKZ+11].

2.3.2 Computing Management

Batchsystems are designed for being used locally with remote access usually only available by extra

means such as SSH. To mitigate these restrictions and further facilitate usability, computing middlewares

are utilized to form an abstraction layer on top of batchsystems. These middlewares hide specifics of dif-

ferent batchsystems, provide access to virtualized local and distributed computing resources and provides

staging mechanisms for local and remote data. Besides hiding various High Performance Computing and

cluster specific details, integration capabilities with authentication and authorization infrastructures are

provided for flexible user access. Access possibilities are manifold and described in Section 2.5. A

unique method of abstraction exists in the UNICORE computing middleware. Its Incarnation Database

(IDB) is a way to abstract from applications to hide cluster specific details such as installation paths and

required modules. From a UNICORE-external point of view only the application name and its version
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has to be known. By just stating this information in a job description, UNICORE is enabled to automat-

ically decide where to execute a received task. In the following, computing middlewares are categorized

with respect to how computing tasks are initiated.

Task-driven

Technologies that enable the initiation of individual tasks directly by users or components are termed

task-driven here. Examples are included in UNICORE [SEL+05, SBBR+10, BSP+ed], Globus Toolkit

[FK97, Fos05], gLite [LEP+06], ARC [EGK+07], and DIRAC [CGP+10]. Also Cloud and Big Data

technologies are relevant here such as the Amazon Elastic Compute Cloud (EC2) [Serc2], the Windows

Azure Platform [Jen10], OpenStack [WGL+12], OpenNebula [WGL+12], Apache Hadoop [Whi12],

Apache Spark [ZCF+10], and Apache Hive [TSJ+10].

Workflow-driven

In this category computing tasks are organized in workflows. When initiated, workflows are enacted by

workflow engines. These in turn submit the individual workflow tasks to computing resources. This

topic, including examples, in presented in Section 2.3.3 in detail.

Data-driven

Data-driven systems are characterized by the capability that actions are triggered in reaction to data man-

agement events based on pre-defined rules. For example, the action might be the format conversion from

jpeg to png and the trigger might be the appearance of a file in a specific location. Further functionality,

depending of the system, might include the execution of local script, remote tasks, and even complex

workflows. The iRODS [RMH+10, CCQ+11] data management middleware supports this approach.

Rules and actions, also called microservices, can be defined in a flexible way with various trigger points

being available. The downside is that the execution of actions is limited to the storage server itself. The

same applies to the rule-based processing capabilities of the Agave science gateway API [DVS+12].

Both do not natively support outsourcing of computing tasks to external computing resources such as

High Performance Computing resources and clusters. In contrast, UNICORE with its data oriented pro-

cessing approach [SGG13], co-designed by the author, as a computing middleware natively supports

most computing resources. Actions are inherently scalable as they can be executed on High Performance

Computing resources as highly parallel tasks. In contrast to iRODS, a minor downside is that the trigger

events defined in rules are limited to files appearing in an observed directory. This data-driven approach

significantly advances the respective solutions by enabling new data processing paradigms.

2.3.3 Workflow Management

Workflows are a way to formalize expert knowledge and make it available to solve complex scientific

challenges and support reproducible science. They can be visualized as graphs of tasks. These are usu-
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ally represented as nodes and directed edges symbolize control and data flows from one task to another.

Tasks may be executed sequentially or in parallel with respect to each other. Individual tasks themselves

may also be single core jobs or highly parallel applications using potentially a large number of cores.

The individual tasks of such workflows are enacted via workflow engines on computing resources. Work-

flow management systems are a further abstraction layer on top of computing management middlewares

providing a higher-level functionality. Highly complex and tedious manual tasks can be automated and

executed as a whole.

Workflow management capabilities are provided via the UNICORE Workflow Engine [SDM+08], the

workflow engine of Grid and Cloud User Support Environment (gUSE) [FK11], Pegasus [DVJ+14],

KNIME [BCD+08, BMW+13], Galaxy [GNT+10], Swift [WAW+13, MRK+13], Taverna [WHF+13],

and Kepler [LAB+06].

UNICORE provides advanced workflow management features in its workbench and web-based portal.

The workflow management is natively integrated with UNICORE-enabled infrastructures. The funda-

mental two services are the workflow engine and the service orchestrator. The workflow engine accepts

complete workflows as input, processes them and forwards individual workflow tasks to the service or-

chestrator. Which in turn submits these tasks to appropriate target systems, monitors their execution

and sends log messages back to the workflow engine. The workflow editor provides constructs such as

if-then-statements to steer the control flow and loops for repetition of individual workflow parts. The

workflow engine also enables parameter and file sweeps inside workflows.

gUSE incorporates an abstract and concrete workflow concept. The abstract concept includes a yet to

be configured workflow and is represented as a directed graph that is created and edited via the gUSE

graphical workflow editor. Nodes can be added to a workflow and input and output ports attached. These

ports can be connected to each other in order to represent the data flows. In order to add information

about jobs and data, a further step is required. The concrete workflow needs to be created by configuring

the nodes with information about target computing system, job, and input data. Previously these were

completely separate steps, now the were unified by a collaboration initiated by the author for much higher

usability and efficiency [MAG+15].

As gUSE does, Pegasus enables integrated access to various computing and data infrastructures. It

offers a prototype web-based user interface based on Triana [TSWH07]. KNIME is a workbench-based

workflow environment. It is widely used in pharmaceutical and biological research settings. Its approach

is convenient and intuitive. Pre-defined nodes serve very specific functions that can be selected and

connected with each other. Nodes can be newly developed in the same user interface as the workflows

are formed. Parts of workflows can be easily tested including data and dependencies. A downside is

that the KNIME workbench is hardly HPC-enabled. An High Performance Computing integration is

possible in a narrow way with the KNIME server. It is limited to the Oracle Grid Engine as batchsystem,

user logins have to be the same across all involved systems and a common distributed data management

system has to be present. A further approach to integrate KNIME with HPC is based on the conversion

of KNIME to gUSE workflows [dlGKS+13]. To create a generic and transparent High Performance

Computing integration, a collaboration led by the author, develops a highly intuitive way to execute

KNIME workflows on HPC resources. Users just export a workflow into a specific directory that is
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monitored by UNICORE via its data oriented processing feature (see Section 2.3.2). UNICORE then

transparently spawns multiple workflow instances and distributes them to various cluster nodes to be

executed in parallel.

Via its web-based interface, Galaxy [GNT+10] offers a toolbox for users to create and execute work-

flows. It is widely used in the biomedical context. Galaxy’s downside of limited data management ca-

pabilities can be mitigated via Swift as a parallelized enactment engine. Taverna, also widely applied in

the biomedical community, is a workbench with the possibility to share workflows via the social network

and workflow repository myExperiment [GBA+10]. Kepler offers feature-rich workflow management

capabilities via its workbench. The web-based graphical interface can be used in order to upload, modify,

and execute workflows. These can be nested, executed on a diverse set of computing resources and data

gathered from distinct sources.

The Dispel workflow language [ALG+12] has streaming data processing as its target. The core of Dispel

are processing elements (PEs). These logical units define computation that is applied to data streams and

can be organized in packages. PEs can be in abstract or concrete form and also individually combined

into packages. A Dispel workflow is a logical representation of data streams passing through PEs. These

modify streams to varying degrees. Such workflows are parsed and enacted by processing services called

Dispel gateways with OGSA-DAI [AAB+05] being an example. Dispel allows to design workflows in

a data focused approach in contrast to the computing focused approaches mentioned earlier. Currently,

Dispel is focused on local computing resources and not High Performance Computing resources. Though

research is done to integrate Dispel with High Performance Computing resources [CKL+13].

Other examples include the Grid Workflow Execution Service (GWES) [Hoh06, DGST09], the Business

Information Systems in Grid (BIS-Grid) [HSG09], the Meta Scheduling Service (MSS) [EWW+07], and

the Workflow Scheduling Service (WSS) [GP09].

2.4 Security

In this chapter, security aspects in data life cycles are introduced along the topics of authentication,

authorization, and single sign-on (see Figure 2.10). These three aspects are supported by the novel

identity management service Unity (UNIfied identiTY management) [Uni15]. Unity is utilized by the

national grid infrastructures of Germany (NGI-DE) and Poland (PLGrid), the Europan data infrastructure

EUDAT, and the European Human Brain Project, beside others.

2.4.1 Authentication

A basic requirement in data life cycles is to ensure a person requesting access is really the person he

indicates to be, a principle called authentication. A current approach is to utilize personal X.509 cer-

tificates [SHF02]. These are strongly linked to a person and, thus, should not leave the computer of the

owner. Around the world, users can apply for X.509 certificates at recognized institutions called certi-

fication authorities, such as DFN [DFN15b] and GridKa [Gri15] in Germany. Usually, the possibility

to get a certificate is limited to members of research institutions of the respective country. An online
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Figure 2.10: Security components enable the security and seamless integration of the data life cycle parts.

form needs to be filled, printed, signed, and brought in person to an official registration authority. The

registration authority checks and certifies the users’ ID or passport as prove of identity. Subsequently,

the application is approved and enables the user to get a certificate.

Here, a current research and development direction is to create overarching identity management sys-

tems [LOP04]. These utilize trusted identity sources with varying degrees of trustworthiness. On one

end of the spectrum, there are, for example, universities where students have to identify themselves via

their passport or ID card. This closely connects the real identity and the digital one. On the other end of

the spectrum are systems that might only require a valid e-mail address to register. DFN-AAI [DFN15a]

is a German academic federation of Shibboleth based identity providers with a high trustworthiness. The

European eduGAIN [Pro15] service aims to federate individual national federations such as DFN-AAI.

The Unity service is able to act as an identity proxy between arbitrary identity providers with technolo-

gies such as LDAP [HSG03], Active Directory [LND00], Shibboleth [MCC+04], OpenID [RR06], and

OAuth [Har12]. Services are enabled to consume information from Unity via interfaces such as SAML

POST, SAML SOAP, and OpenID with further ones being planned. Commercial identity providers with

less trustworthiness are Facebook [Fac15] and LinkedIn [Lin15]. They offer to use user accounts to

authenticate within other services.

2.4.2 Authorization

After the identity of a user is established, it needs to be specified what a user is allowed to do, also called

authorization.

Virtual organizations (VOs) are a flexible way for providers to manage usage of their resources with

respect to remote users. A VO is a collection of resource providers and users with the common goal

of advancing a specific scientific field. A VO solves the challenge of resource providers having to
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deal with potentially thousands of users and users with potentially dozens of providers. Both users

and providers simply join a VO which goal they support in order to consume or provide resources re-

spectively via a VO as intermediary entity. A common solution is the Virtual Organization Membership

Service (VOMS) [ACC+04]. It allows for users to register by using certificates to become member. Re-

source providers also become members and they can subsequently download information about all users

to enables these to use the resources. This way both users and providers only have to interact with the

VOMS server. For example, Unity can provide authorization information via its group capabilities. In

turn, UNICORE installations on High Performance Computing resources are configured to utilize the

Unity service as a source of authorization information.

2.4.3 Single Sign-on

Single sign-on (SSO) is the essential concept that a user only needs to authenticate once in order to access

complex infrastructures with potentially various underlying systems. Without single sign-on, for every

access to further systems in a complex distributed infrastructure the user would have to re-authenticate

which is hardly feasible. Single sign-on is enabled by the so-called trust delegation, where services

access other services impersonating the original user in a controlled and secure way. Thus, the interme-

diate system has the same access rights on the target system than the user itself would have if he would

directly access the target system. This trust delegation is enabled by short-lived authentication token.

With this concept the users avoid manual and tedious re-authentications while accessing underlying sys-

tems. Important examples are SAML (Security Assertion Markup Language) [RHP+08] trust delegation

assertions and GSI (Grid Security Infrastructure) proxy certificates [FKTT98].

The basic idea of a SAML assertion is to specify who (subject) is allowed to do something in the name

of the user and on which resource (target). Both, the distinguished names (DNs) of the subject and target

have to be specified together with a validity period. The information is encoded in the assertion and

cryptographically secured via public key cryptography [FS03]. The advantage of such a SAML assertion

is that it can be tightly controlled. An entity that received trust from a user, is only able to perform the

exactly specified activity. This limits potential security issues in case an assertion is lost. For example, a

SAML assertion can not be used to create a further assertion. The Unity service directly supports issuing

SAML assertion based on already existing user accounts.

Another commonly used technology are GSI proxy certificates. These may be created by using a X.509

public key certificate in order to delegate trust to another entity. This delegation can be done dynamically

without access to a third party service. Such a proxy certificate can be utilized the same way as a end

user certificate would be used. Proxy certificates can be utilized to create further proxy certificates which

limits their security properties. Numerous computing and data middlewares support proxy certificates.

2.5 Data Life Cycle Utilization

Overarching the underlying layers is the utilization of and within data life cycles (Figure 2.11). As this

layer also represents the utilization of users with data life cycles and their components, they are the
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Figure 2.11: On top of the underlying layers the utilization is the essential point of entry to enable user
and systems to interact with data life cycles.

most important ones from the users’ perspective. They determine how productive and satisfied users are

going to be while utilizing the data life cycles for their research challenges. Data life cycles are and will

continuously become more complex [KBB+08, dI11]. This trend results from the fact that they are built

upon underlying components that will in turn be increasingly complex. In order to maintain and increase

the usability of data life cycles, this complexity needs to be abstracted from and, thus, hidden from the

users [GKG+15, HTT09, TTH11]. The overall goal is to provide environments that are highly integrated

to enable scientists to easily perform common tasks such as ingesting, access, downloading, processing,

and archiving data. To enable a hassle-free traversal through the layers, the whole infrastructure optimally

has to provide single sign-on capabilities (see Section 2.4.3). The goal is to have existing institute logins

enabled to be re-used instead of user certificates that are highly complicated for users. Then, users only

need to authenticate once and are then enabled to use the underlying services without re-authentication.

Flexibility versus usability is a goal of conflicts that the components in this chapter inherently possess.

Either user environments are generic to a high degree which supports re-usability or they are highly

usable but very use case specific. Optimal is the middle way of a generic framework providing a lot of

common functionality that can be adapted to further use cases with limited effort. Also important is a

high degree of seamlessness to avoid hurdles of users having to manually overcome system boundaries.

Tolle et al [TTH11] describe their vision of NUI (Natural User Interfaces) as the way to advance science

in general by making computing infrastructures and computers in general completely transparent by

integrating them into the user’s working environment to be not a hurdle but purely an enabling force.

They illustrate the vision by well chosen examples in a future working environment, the multitude uses

of oceanic data and the distributed effort in finding a cure for Alzheimer’s disease.

In the report Riding the Wave [Eur10] to the European Commission the High Level Expert Group on

Scientific Data describes in detail the essential criteria for dealing with Big Data and how to enable its
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use in science. One is the necessity for seamless access to, use of, and trust in data in a way that the

infrastructure becomes invisible and the data itself the asset. Big Data is changing the way science in

general is done with entirely new possibilities. This seamlessness is to be enabled by fostering virtual

research environments. These are to enable the integrated finding, accessing, and processing of individ-

ually relevant data with a transparent degree of trust in the methods and infrastructure. Another criteria

is that the arising concepts need to be generic in nature to be adaptable to new technologies. The goal

is to make transitions of underlying technology invisible to users. Furthermore, a key aspect is interop-

erability between systems. Thereby, easy availability of data and services reduces barriers of use and

significantly fosters scientific innovation.

The strategy paper Gesamtkonzept für die Informationsinfrastruktur in Deutschland [dI11] deals with the

overall direction of information infrastructures with a special focus on the user point of view. Generic

solutions, standards, and best practices are especially important as well as easy-to-use access. For these

characteristics to be facilitated, interfaces should be open to maintain interoperability and enable a high

sustainability. Intelligent search and visualization mechanisms have to be provided in concert with easy-

to-use interfaces between data formats used in research data repositories. Virtual research environments

(VRE) are seen as a central field of activity. The core statements are; VREs should be as simple and easy-

to-use as possible while at the same time providing sophisticated access to various information types in

distributed systems. The environments should also be close to research and developed by IT experts in

close cooperation with domain specialists. In order to facilitate a high usability, existing systems should

be re-used as much as possible. VREs should be universally applicable and are envisioned to be widely

used by 2020 in all research disciplines while maintaining research field diversity. The sustainability

should be ensured by organizational and technical means. Whole data life cycles, from data creation

over analysis and processing to finally publication, teaching, and archiving should be supported by mod-

ular systems, flexible configurations, standardized interfaces, and possibilities for seamless information

exchanges. It is of highest importance to enable frictionless access to every part of the life cycle.

VREs are an important component for any compute center to provide services for the full data life cycle.

These services contain manual SSH access as basic and VREs as advanced mean of access. The integra-

tion of VREs with currently used environments utilized by advanced users are of the utmost importance

as well as graphical access for all offered services for non-IT-affine communities. Collaborative service

such as Wikis, mailing list, data exchange systems, forums, event organization tools and source code

management systems should be directly offered in an integrated way. Thereby, user groups with varied

ranges of expertise can be supported and attended upon. The tight integration with federated identity

infrastructures is the center piece in order to enable a high usability as then already existing and trusted

login credentials can be transparently used. Generic metadata and workflow management services as

high level functionality should be offered for the highest possible efficiency while working with data and

related computing tasks. The importance of VREs is emphasized by the fact that in the large US XSEDE

research infrastructure more users are utilizing science gateway than command line clients [LZWD+15].

In this section, utilization components are put into five categories with an increasing focus on users and a

decreasing one on system integration. As data life cycles are usually comprised of many components, the

first section about APIs (2.5.1) and partly the second one about commandline clients (2.5.2) will cover

major aspects of building up such complex data life cycles. APIs are fully and commandline clients
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partly meant to be used for integration with other systems. The commandline clients in Section 2.5.2

may also be used by IT-affine users. In sections 2.5.3 (workbenches), 2.5.4 (science gateways) and 2.5.5

(visualization methods) the components are of lower flexibility but higher usability and, thus, meant for

all users, including users with a low level of IT-affinity.

2.5.1 API-based

In this context, Application programming interfaces (APIs) and libraries are mainly utilized to either

build up the data life cycle itself or to access it by external systems. These can, for example, be existing

systems that users utilizes for their research. Naturally, APIs are made use of by developers and at most

by advanced users that may wish to extend their individual research environment [GDP+15]. Example

frameworks are Apache Airavata [MGH+11, PMG+14] and Agave API [DVS+12]. Both can be utilized

to develop complete science gateways from scratch in various programming languages with minimal

developer effort due to the fact that common functionalities are provided.

Apache Airavata is a free, open source, and an open community project offering workflow management

capabilities for a variety of computing resources. It provides pluggable components such as a service

registry, a job orchestrator, a workflow interpreter, a component for connections to remote resources, for

a credential store [KMBP14] and a messaging system (see Figure 2.10 for the architecture). Airavata

is developed with extensibility in mind in order to enable a high flexibility to facilitate the integration

of novel approaches. It can be deployed either as a single instance or in an environment where various

components are running on distributed resources in order to provide scalability and resiliency. Airavata

is designed to support workflows, to be freely integrated into potentially existing environments and to

expose all features via its API.

Agave is an open source solution providing RESTful web services to build science gateways. It provides

the following features and support for technologies:

• advanced authentication and authorization infrastructures,

• application discovery and monitoring,

• data and computing management systems,

• metadata and workflow management,

• policy-based data handling and analytics,

• reporting and publication.

Agave is developed in projects such as the US iPlant Cyberinfrastructure [GVM+11] and the Canadian

iReceptor [iRe16]. In mid 2015 Agave is utilized by a number of science gateways around the world

serving multiple disciplines. To enable service deployment Docker images are provided.

Another example is the VineToolkit as a modular and extensible Java library to build distributed applica-

tions. Vine supports a number of middlewares and is used in several projects besides the polish national

PL-Grid infrastructure. Furthermore, the existing Java and new REST API [SBR14] of the important
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and widely used UNICORE computing middleware offer flexible means to integrate UNICORE into a

variety of systems.

2.5.2 Commandline-based

Commandline tools are a highly flexible way to access features of whole data cycles or parts of it.

Such clients are utilized by both developers to build data life cycle or connect them with other systems.

Alternatively, commandline tools are used by advanced users that are familiar and content with such an

interface (see Figure 2.13 for an example of its complexity). Examples in this category are offered by

the Advanced Resource Connector [EGK+07], gLite [LEP+06], UNICORE [Sch15], and the Globus

Toolkit [FK97, Fos05].

Figure 2.13: Example output of the grompp application within the Gromacs molecular dynamics appli-
cation suite is shown to illustrate the complexity of commandline based tools.

2.5.3 Workbench-based

This category includes graphical workbenches where users install an application on their workstation.

Workbenches usually bring more advanced usability in contrast to tools introduced in the previous Sec-

tion 2.5.2. One downside is that workbenches have to be installed and maintained on the client side by

either users or administrators. This leads to an increased management effort. Additionally, the devel-

opment effort is increased as compared to web-based systems as developers have to maintain compat-

ibility between different versions of the workbenches and underlying services. Examples include the

UNICORE Rich Client [DSH+10], KNIME [BCD+08], the Taverna Workbench [BCD+08], and the

Kepler Workbench [LAB+06]. Workbenches include a full set of workflow management functionality

where workflows can be graphically created, modified, and submitted to connected computing resources.



38 2. MANAGING COMPLEXITY IN SCIENTIFIC DATA LIFE CYCLES

Except for KNIME, which is designed to operate locally with only a limited HPC integration (see Sec-

tion 2.3.3), they can also access remote data resources for input and result data. All are able to execute a

large variety of workflows, scripts, and executables. The UNICORE Rich Client is focused on executing

tasks on UNICORE-enabled remote High Performance Computing resources.

2.5.4 Web-based

Web-based science gateways [WDGK+08, WD07, LZWD+15] or virtual research environments [VP09]

serve as a single point of entry to underlying data and computing infrastructures and, thus, make such

infrastructures more easily available [GDP+15]. Users can directly access and utilize scientific life cycles

from anywhere in the world with just a web browser. As science gateways are server-based, from the

point of view of the user they are always up-to-date. Thus, users are relieved of having to install and

maintain software by themselves.

The content management systems Drupal [Gra06], Joomla [Nor11], TYPO3 [FHA05], and the higher-

level framework Django [HKM09] are widely used to enable science gateways. As these systems do

not offer built-in support for access to distributed data and computing, such integration has to be devel-

oped from scratch or external libraries. This downside also afflicts portal frameworks such as Liferay [?]

and Pluto [Fou15], but these offer the advantage of being JSR168/JSR286 [AH03, H+05] standard-

compliant. Thus, portlets as user-facing components can be easily re-used in every portal framework

also supporting JSR168/JSR286. Liferay is the most widely used portal framework supporting the

standards JSR168/JSR286 in the distributed computing community, evident in portal like gUSE/WS-

PGRADE [KFK+12, gUS15], EnginFrame [BLRR+10], VineToolkit [RDG+08]. Liferay offers ad-

vanced layout features, roles, support for various authentication and authorization mechanisms, layout

support, and various general plugins.

On top of these technologies science gateway frameworks support advanced features such as workflow

management and distributed computing access. gUSE/WS-PGRADE and Galaxy are examples that offer

the ability to utilize remotely installed applications or web services. The ability to upload arbitrary scripts

or applications is excluded from Galaxy as it is designed as a toolbox configured and maintained by an

administrator. As gUSE-based science gateways are based on Liferay they are easily extensible by use

case specific interfaces. As Galaxy is not based on such a portal framework, it does not directly support

use-case specific extensions, but it is possible in general as Galaxy is open source.

There is a number of commonly used technologies such as WS-PGRADE, Hubzero, OGCE, and the Vine

Toolkit. WS-PGRADE provides its own workflow engines besides being able to execute workflows from

systems such as Kepler, Taverna, Galaxy, Triana, KNIME, and UNICORE. It is used in several science

gateways such as MoSGrid (see Section 2.6). HUBzero [MK10] offers a middleware to graphically

access remote clusters and tools. It is used in various science gateways in the US [MCD+15]. The Open

Gateway Computing Environment (OGCE) [ACF+07] is a standards-based 3-layer architecture to create

science gateways. It is based on Globus toolkit OGSA-DAI technologies, supports workflows, and is

used in multiple projects.

Further examples of web based utilization methods are the UNICORE Portal [PHD+13], the Distributed
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Application Runtime Environment (DARE) [MKEKJ12], Genius [ABF+03, BAD+11], EnginFrame,

and GridSpace2 Virtual Laboratory [CNK+12]. Also worth mentioning is the Globus Online Data Man-

agement service [ABC+11] that enables usable and web-based data transfer scheduling between dis-

tributed storage devices by use of installed daemons and various supported data management systems.

2.5.5 Visualization

Visualization is an integral part of utilizing scientific data life cycles as it facilitates to visually grasp

the meaning of data. Visualization ranges from creating 2D plots over graphical data representations to

immersive 3D environments such as CAVE [OK07]. As the overall topic of this dissertation is a differ-

ent one, the focus here is on visualization components that can be integrated with web-based utilization

approaches such as science gateways. Dygraphs [Van06], for example, is a JavaScript plugin for dis-

playing 2D plots based on text files. The ChemDoodle Web components [Tod14] offer 3D interactive

molecule visualization capabilities. JMOL [Han10] is a molecular visualization toolbox that can be used

via its Java API to enable molecular visualization in desktop applications. The JMOL visualization ap-

plet can directly display molecules within a science gateway based on chemical structure files such as

SHELX, PDB, CIF, and mmCIF. The Web Graphics Library (WebGL) [Web15] is a JavaScript API able

to render 2D and 3D graphics in compatible browsers. An example use is that within the Visible Patient

Project [CSK+11]. Background on scientific visualization in general can be found in [NHM97]. These

components enable advanced visualization within science gateways.

2.6 A Molecular Simulation Data Life Cycle

MoSGrid [KGG+14, GBB+12, GKG+14a], short for "Molecular Simulation Grid", is a data life cycle

designed and developed for the computational chemistry community. The author took a significant part in

its creation. MoSGrid supports complex HPC- and workflow-enabled simulations in three major chem-

ical application domains. These simulations are highly sophisticated. An overview of its architecture

(see Figure 2.14) is given about the data sources and sinks (see Section 2.6.1), how the data is handled

(see Section 2.6.2) and how computing resources are integrated and utilized (see Section 2.6.3) to solve

molecular questions in the three supported application domains Quantum Chemistry, Molecular Dynam-

ics, and Docking (see Section 2.6.6). MoSGrid supports a complete single sign-on infrastructure through

all layers (see Section 2.6.4). It enables an efficient usability of the functionality (see Section 2.6.5) of

the complex infrastructure.

MoSGrid was extended by the author by creating a specific metadata management implementation (see

Chapter 4) of the generic metadata management concept of this dissertation (see Chapter 3). Previously,

users had to exactly remember where specific files are in a complex set of data and manually browse

through a complicated directory structure in order to access them. Now, users are enabled to easily

search for and utilize these files. This functionality is seamlessly integrated in the MoSGrid data life

cycle.
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Figure 2.14: The underlying MoSGrid architecture [GGK+12] with the user interface based on Liferay
and WS-PGRADE is shown. gUSE and UNICORE are integrated for workflow and com-
puting management and XtreemFS for data management.

2.6.1 Data Sources and Sinks

The sources of data in MoSGrid are of a high variety. Their kind depends on the specific research

question, professional preference, and application domain (see Section 2.6.6).

In the Quantum Chemistry domain there is the widely used Cambridge Structural Database [All02]

and the Protein Data Bank [BWF+00]. Then there is the possibility for scientists to digitally draw the

structures themselves. Also, input data might come from scientific measurement instruments such as

resonance raman spectroscopy [HCB+13]. It can be used to experimentally gather measurements and

compare these to results of theoretically simulated chemical processes. Then, the UV/Vis spectroscopy

is a common method to characterize molecules and to observe chemical reaction processes. The com-

parison of this data with theoretical predictions, which necessitates efficient metadata management, is

highly important [HCB+13, HHP14] in order to obtain multifaceted information about the respective

electron structure. In the Docking domain a common research question done in MoSGrid is the bench-

marking of new algorithms and methods in order to evaluate their performance and correctness. For

this evaluation, thoroughly tested benchmarking data sets are used as a common benchmarking basis.

A challenging example is the dataset "for the tyrosine-protein kinase ABL1 (PDB code 2HZI), contain-

ing 295 known active ligands and 10.885 inactive ones [MCIS12]."[KGHP+14] Another example is the

DEKOIS [BIVB13] dataset. In Molecular Dynamics there is Casp [MBJ00] to evaluate protein folding

methods. For production input data an important part is played by commercial vendor databases that are

highly vetted.



2.6. A MOLECULAR SIMULATION DATA LIFE CYCLE 41

Currently, the final destination of result data within MoSGrid is the data management system XtreemFS

(see Section 2.6.2). It draws on backuped and professionally maintained storage capacity at Center

for Information Services and High Performance Computing, Technische Universität Dresden. It is also

easily possible for users to download results to their local workstation.

2.6.2 Data Management

The MoSGrid application domains (see Section 2.6.6) are highly complex. They have common require-

ments from an information technology point of view and specifically with respect to data handling.

XtreemFS (see Section 2.2.2) is utilized as the basis for the MoSGrid data management. A central instal-

lation at Technische Universität Dresden, complete with Object Storage Devices (OSDs), Object Storage

Devices (OSDs), and Directory Service (DIR), is utilized for the MoSGrid data life cycle. XtreemFS is

seamlessly integrated with existing technologies utilized by MoSGrid in the following ways. On each

cluster that is connected to MoSGrid via UNICORE the XtreemFS FUSE client is installed. The client

exposes the content of XtreemFS via the POSIX file system interface. Thus, the UNICORE Target

System Interface (TSI) is enabled to access files within the MoSGrid XtreemFS installation.

In UNICORE job definitions are specified in the JSDL (Job Submission Description Language) stan-

dard [ADF+] and data staging is defined for input and result files. In the former case, input files are

downloaded from a possibly remote location to the temporary UNICORE working directory, called US-

PACE, of the job. In the latter case, result data is uploaded from the USPACE to another location for

safe-keeping. Two challenges existed with respect to the integration of distributed data management

systems such as XtreemFS. First, inefficiency could occur when always UNICORE mechanisms have to

be used. Second, when defining a workflow, distributed data sources had to be explicitly declared which

limits the efficiency and portability of such a workflow.

A concept was designed to significantly mitigate these challenges that was consequently implemented

and applied in MoSGrid [GBB+12]. The concept allows to use location independent file references. It

is described in detail in Section 4.3.2. Another integration point with XtreemFS is via its Java API and

utilized within the Liferay/WS-PGRADE domain specific portlets via the Portlet-API, described in Sec-

tion 2.6.5 below. Furthermore, the Java API was utilized to create a file browsing portlet to graphically

access files within XtreemFS.

2.6.3 Computing and Workflow Management

The computing pillar of the MoSGrid data life cycle is deeply rooted in the demands of the users.

The central basis in all three supported chemical domains (see Section 2.6.6) are workflows (see Sec-

tion 2.3.3). A large number of these workflows was and is continuously developed in order to provide

use cases with fitting workflows. As creating workflows is a challenging task, the concept in MoSGrid

is that either MoSGrid experts in concert with domain scientists or advanced scientists themselves create

the workflows. During workflow enactment individual workflow tasks are submitted via UNICORE to

clusters with potentially various batchsystems. The HPC systems that are currently connected are situ-
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Figure 2.15: A docking workflow based on FlexX including pre- and postpressing is shown.

Figure 2.16: A complex workflow that automates a complete molecular docking procedure is shown.

ated in Dresden, Tübingen, Paderborn, and Cologne. The range of workflows in MoSGrid starts with

basic ones that simulate phenomena via the execution of a single standard tool such as NWChem. Such

a basic workflow provides compatibility were users already have existing NWChem input and configu-

ration files. A slightly more advanced workflow (see image 2.15) includes the FlexX [RKLK96] docking

application with pre- and postprocessing. It is worth noting that even these basis pre- and postprocessing

steps are highly valuable to users. These workflows already automate previously manual and tedious

steps. Without workflows user would have been required to manually do these steps themselves.

A highly complex workflow (see Figure 2.16) automates a complete docking protocol. It is a costly task

to design and create such workflows. In return, these provide methods that are impossible for novice

and advanced users to do manually. Even for expert users performing such advance scientific protocols

manually would be both challenging and error-prone. It is important to note that from the perspective of

the user details of a workflow are hidden. It is basically the same whether a workflow contains one node

with a requirement of one core or a workflow with many nodes and a requirement of thousands of cores.

Either way, in the MoSGrid science gateway just a few clicks are needed for the execution on distributed

and large-scale High Performance Computing resources.

Highly complex workflows were developed within MoSGrid [HPBB+12, HPHGP13, HPBB+13]. As

gUSE allows workflows to be nested, this concept was heavily utilized within MoSGrid [HHPG+13,

HPHG+14, HPHB+15, HPHR+15]. The author actively participated in these activities.
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Figure 2.17: An overall view of the MoSGrid security and single sign-on architecture is de-
picted [GGK+12].

Figure 2.18: The Java applet for creating and uploading a SAML assertion in the user’s browser is shown.

2.6.4 Authorization and Authentication Infrastructure

The MoSGrid data life cycle features an elaborate security and single sign-on concept that is pub-

lished [GGK+12, GGB+11] with the author being a lead author. The following section summarizes the

overall concept and how individual components are working together to ensure a high level of security

while at the same time being convenient to use. The concept is illustrated in Figure 2.17.

With the intention to register at the MoSGrid portal a user accesses the MoSGrid certificate tutorial

that concisely details every step in order to gain full access. First, he needs to register at the science

gateway and write a mail to MoSGrid in order to become an activated user. A role with the same same is

associated with the new user. In parallel he is required to apply at his home institution for a certificate (see

Section 2.4 for details). When both steps are approved, he can login at the science gateway. Via a special

signed Java applet, extended under the supervision of the author, the user is enabled to created a SAML

trust delegation assertion (see Section 2.4 for a SAML introduction and reference). The applet solution

(see Figure 2.18) has the important feature that the personal certificate does not leave the computer of

the user and, thus, is not stored or processed on a remote server. The applet was also improved in order

to only display needed input fields and to automatically upload the generated assertion.

Both, the "activated user" role and the SAML assertion enables the new user to use the full functionality
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of MoSGrid, namely to access the domain portlets and run molecular simulations. The role concept

includes various roles in order to enable the separation of users and functionality, if needed. There is

for example a section for advanced users and one reserved to MoSGrid developers and administrators.

Under the supervision of the author, a further feature was implemented [SGG+12]. It allows for the au-

tomatic login into the science gateway with a single click while avoiding to enter his username-password

combination. It automatically utilizes the certificate being embedded in his browser.

The created SAML assertion is stored in the directory of the user on the science gateway server. The

assertion is used via the MyData portlet or the domain specific portlets to access the data management

system XtreemFS. Access to the gUSE workflow services is automatically enabled when the user is

logged in. When a workflow is executed by the user, gUSE utilizes the assertion to submit the individual

jobs to the underlying UNICORE middleware. UNICORE interfaces with cluster resources via its target

system interface (TSI). Individual users have their identity in UNICORE based on the DN from their

certificate. A mapping exists for all users that maps their DN to specific user logins for each cluster.

Whenever UNICORE acts in the name of the user via his SAML assertion to submit a job to a batchsys-

tem of a specific cluster, such commands are executed as his specific local user. This way UNICORE

transparently thighs in with the individual cluster security measures.

Distributed computing environments are highly complex and pose a challenge to ensure high availabil-

ity. Furthermore, from a user’s point of view it is optimal to keep things he has to deal with as easy

and as few as possible. To work towards these goals, a separate VO service managing the MoSGrid VO

was obsoleted. Instead, existing infrastructure that is already present in the MoSGrid science gateway

is utilized and slightly extended. The information is used that the user is member of the MoSGrid VO,

which is implicitly already present in the science gateway. Thus, modules were designed and imple-

mented [GKG+14b] by the author. The modules manage this information, enrich it with necessary ID

and securely make it available to relevant clusters in order to allow user access via UNICORE and their

respective certificate. A cluster needs a mapping from the user’s unique DN to the local login on the

cluster in order for UNICORE to execute jobs in his name. This mapping is created in two phases. First,

a generic mapping is created on the science gateway. It contains the DN of the MoSGrid VO members

and a unique identifier, the VO name itself, and the access rights. The information that a user is acti-

vated in the science gateway is extracted from the science gateway database and for these users their DN,

extracted from their SAML assertions, are stored in a flat file database together with the unique VO iden-

tifier, access rights, and the database entry status. Through this status it is prevented that user identifies

are used twice. Based on this flat file database a generic mapping file is created and offered as download

to the clusters. This is secured via encrypted HTTPS download and a cluster specific password using the

Tomcat [Tom15] WebApp method. The second phase involves a module running on the cluster that is

periodically executed to download the generic mapping. In order to make it specific for the local cluster,

the module extends the list in order to include cluster specific information such as the cluster name and a

login prefix. Then, it is ingested into the UNICORE user database for the mappings to be activated. By

that, new users are activated and enabled to execute workflows via the science gateway on underlying

High Performance Computing resources. The concept is similar to authentication federation where the

user can use already existing login/password information, from for example the user’s home institute,

to login into other services. This concept lowers the hurdle to use MoSGrid as one manual registration
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Figure 2.19: This screenshot shows configuration options a workflow developer might see during work-
flow creation [GGK+12]. The options to choose a pre-installed tool on the cluster and to
upload an executable are highlighted.

steps by users was made obsolete and it improves the reliability and maintainability of the infrastructure

as one less service needs to be maintained. Both increase the sustainability.

The author is leading the effort to design an integration with the DFN-AAI identity federation using the

Unity service (see Section 2.4) to enable the use of pre-existing institute logins within MoSGrid. This

will significantly further lower the hurdle of entry and use.

2.6.5 Utilization and Visualization

The MoSGrid science gateway [KGG+14, GBB+12, GKG+14a] is an advanced integration point and

web-based graphical user interface to the MoSGrid data life cycle. It is run and maintained at the

Eberhard-Karls-Universität Tübingen. The overall goal is to enable scientists to utilize powerful High

Performance Computing and distributed data infrastructure to help solve their research challenges while

at the same time being as easy-to-use, seamless, and supportive as possible. Liferay as a portal frame

enables the overall structure of the web-based portal, its user and role management, and support for

JSR168/JSR286 [AH03, H+05] portlets. These software components are pluggable and can be imple-

mented to provide any kind of service. By default, Liferay provides the widely-used portlet framework

Vaadin [Grö11]. It enables developers to create visually pleasing and responsive portlets with a large

collection of standard components, including client-server communication, being available.

WS-PGRADE is the graphical user interface of gUSE and provides interfaces to the workflow graph edi-
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tor, the workflow configuration editor 2.19 and the workflow repository. The gUSE workflow engine and

UNICORE connector are used to enact workflows and send their individual tasks to UNICORE resources

by transparently using the SAML assertions mentioned in Section 2.6.4. WS-PGRADE is lacking in us-

ability with respect to workflow execution and it is unable to provide customized and advanced user

interface that are tailored to the specific needs of a target community. Therefor, the so-called Portlet-

API was developed in order to encapsulate complex features and provide them in a common way. This

enables developers to quickly create user-friendly domain specific portlets while providing advanced

features such as workflow management, data management, and Molecular Simulation Markup Language

(see Section 4.1) handling.

The supported chemical domains are highly diverse in their research aims and therefor require their

individual portlet for the execution of molecular simulations (see Section 2.6.6 for a detailed description).

From an information technology point of view though, they are quite similar. Therefor, the Portlet-

API was designed to provide a common portlet structure that is the same across the different domains.

Additionally, it is possible [GBG+14] to customize portlet to suite specific requirements. The three main

parts of the Portlet-API from a user’s point of view are described in the following.

The "Import" view enables a user to load a workflow into his local workflow repository from the

global MoSGrid repository. It stores all available workflow including default settings. MSML (see

Section 4.1) [GBG+14] templates define the mapping from workflows to specific domains. A set of

workflows belongs to a domain and each has a MSML template associated to it store a reference to the

respective workflow in the global gUSE workflow repository. When a domain portlet is accessed the

Portlet-API loads all available templates and creates a list of workflow from which a user can chose a

workflow. Each imported workflow has a specific name. A default one is created that can be manually

modified by users. Usually a template is also imbued with a workflow description and a figure which are

automatically displayed. This information enables the user to quickly decide whether the selected work-

flow is correct for the task he intends. When a workflow was chosen the user has to click the "Import"

button in order to create a concrete workflow representation. Once loaded, the concrete workflow can be

selected in the next view.

In the "Submission" view, the user parametrizes the loaded workflow to enable its execution. He can se-

lect input data, for example molecule files, from either his local workstation or from the remote XtreemFS

and choose parameters that configure the workflow at hand. As a novel approach, the "Submission" view

is created on-the-fly by the Portlet-API based on the MSML template of the workflow that was chosen.

This on-the-fly approach is highly flexible and advantageous to both users and administrators of the sci-

ence gateway. Users are not overloaded with input fields that are not necessary. Administrators have

to deal with less support requests as with less input fields less errors are made by users. The on-the-fly

mechanism depends on the MSML dictionaries (see Section 4.1). Information in the MSML templates

are stored in a list and used to determine what input is required for each workflow task while the dictio-

naries store information about the parameters of the applications themselves. Each template list entry,

representing an input of a workflow task, can contain a default value and a link to a dictionary that corre-

sponds to the application utilized in the specific workflow task. The information in the linked dictionary

is then used to define data types, value upper and lower bounds, and may provide a help text about the

meaning of the parameter. Furthermore, such configuration input fields may be defined as optional or
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Figure 2.20: "Visualization of molecular structure using ChemDoodle is shown, as well as the dynamic
generation of plots using Dygraphs. In this way simulation results from all application
domains can be analyzed directly within the portal, without immediate need for download
or external postprocessing." [KGG+14]

mandatory and the input may be chosen from a list of default values. Parameters may also be set in an

on/off manner via a checkboxes. Also, on-the-fly integrated preprocessing of input files such as in PDB

format is supported. Workflows may be linked to more than one MSML template in order to allow for

workflows that differentiate between novice and expert users. This differentiation is done by hiding or

presenting advanced parameters for fine-tuning. Once the input mask is filled in and the user click the

"Submit" button, all entered parameters are checked via a validation routine. When the validation pro-

cess is successful, adapters convert the input into the corresponding format needed for actually executing

the workflow tasks. This format can be a string representing commandline parameters or complex input

files. The MSML template file will be filled with the user’s input and subsequently with results during

workflow execution on a cluster. The workflow is submitted via the gUSE workflow engine that in turn

submits the individual tasks via UNICORE to the underlying High Performance Computing resources.

The running workflow is now available for inspection in the "Monitoring" view.

Besides monitoring the status of a submitted workflow, this view enables to explore running and finished

workflow tasks. Intermediate and final results can be browsed and visualized in various ways. One

is a basic text mode. Then, ChemDoodle Web components [Tod14] were integrated as a 3D molecule

viewer with features such as changing direction of the molecule and highlighting properties (see Fig-

ure 2.20). Finally, Dygraphs [Van06] enables to interactively display 2D plots. The latter two are based

on JavaScript and, thus, avoid the requirement of a Java browser plugin. In case intermediate results are

deemed faulty, the workflow can be aborted and re-started with improved parameters. As this visual-

ization approach is highly flexible, the integration of further plugins such as JMOL [Han10] or Vaadin

Charts [Vaa15] is planned for the future by the MoSGrid collaboration.
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Figure 2.21: In the import view within the Quantum Chemistry portlet a variety of available workflows
to choose from are shown [KGG+14].

2.6.6 Application Domains

In this section, common use cases in the three MoSGrid application domains are described in detail in

order to enable an understanding how chemists utilize MoSGrid, what calculations they perform and

how these are facilitated by the MoSGrid data life cycle. The individual sections are reproduced from

the main MoSGrid overview publication [KGG+14] where the author is a lead author.

Quantum Chemistry Simulations

Quantum chemistry simulations (QC) "deal with the electronic structure of molecules. The job defini-

tion is always quite similar representing an ideal playground for the use of workflows. In a rather simple

workflow, a given geometry can be calculated with a given set of methods, functional, and basis sets.

The key geometric parameters are parsed and collected in tables afterward. Another use case would be

the study of a complex potential hypersurface by varying one or several geometric parameter. Then, a

set of similar jobs has to be submitted into the grid with the same methodical setup and varying coordi-

nates. A suited workflow (e.g., a parameter sweep) combines the predefined coordinates with the chosen

method and facilitates the whole process of submitting and collecting data. Both types of workflows are

independent of the quantum chemical code. Further postprocessing can cover the addition of a solvent

model, calculation of charges and frequencies, formatting of checkpoint files, and definition of new job

files for subsequent time-dependent DFT calculations.
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With respect to requests from the community, the geometry optimization workflows were primarily im-

plemented for Gaussian [FTS+09], the well-renowned quantum chemical suite. Gaussian compute jobs

are typically driven by a single input file, which includes a machine-specific section with the so-called

“link0” commands, stating the number of cores and the amount of memory required, a job-specific sec-

tion called route card, which describes the type of quantum chemical calculation to be performed, and

finally the representation of the molecule in question, i.e., charge, spin multiplicity, and atomic coordi-

nates. These input files are uncomfortable for scientists to work with and are inflexible in the represented

structure, e.g., blank lines at certain positions are required. With the workflows for geometry optimiza-

tions, made available through the quantum chemistry portlet, users are relieved from manually construct-

ing such an input file. Instead, the required file is generated with the help of an adapter from the user

input to textboxes and listboxes with reasonable default values, taking advantage of MSML. In order to

reduce the complexity of the input masks, geometry optimizations using Hartree-Fock (HF) methods or

Density functional theory (DFT) are realized through two separate workflows (see Figure 2.21). While

the HF workflow allows to explicitly set the type of HF theory, for example ROHF or UHF for open shell

species, the DFT workflow requires the DFT functional to be set. Machine-specific parameters common

to both workflows, such as the number of cores, the wall time, and the required memory, are accessible

through input fields. For the convenience of the users, these are preset to reasonable default values. A

single listbox is populated from an MSML dictionary entry containing frequently used combinations

with the Pople basis set 6-31G as the default. Unless a charged or open-shell species is to be examined,

the default values for charge and spin multiplicity can be left unchanged as well. User interaction is

required for the input of the molecular structure. With respect to the needs of less experienced users,

the corresponding textbox supports an easily understandable four column data format, consisting of an

element symbol and the Cartesian coordinates of the respective atom. When the workflow is submitted,

an adapter generates the necessary input file. Once successfully calculated, the geometry optimization

can be followed by several postprocessing steps. From the machine-dependent binary checkpoint file of

the calculation, a new Gaussian-type input file with the optimized geometry is created. A subsequent task

extracts fundamental job data, such as the type of calculation (route card), the number of orbitals, etc.,

to an ASCII file; another one extracts vibrational frequency data. Since the binary checkpoint file cannot

be used on any other cluster, it is converted to its machine-independent and human-readable, formatted

counterpart. From this formatted checkpoint file, a PDB file is generated. As a result, the user is enabled

to visualize the optimized molecular geometry in the monitoring tab of the portlet through ChemDoodle.

While these workflows primarily address users needing guidance, experienced users may prefer the ex-

pert workflow, which allows to directly submit an input file previously created by the user. A manifold

of molecular properties, however, is not reflected in the molecular geometry itself. Therefore, different

workflows have been devised to generate volumetric representations of their spatial distribution in the

form of cube files, a file format also common to other quantum chemical packages. Currently Gaussian

and NWChem [VBG+10] workflows are available through the MoSGrid science gateway." [KGG+14]
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Molecular Dynamics Simulations

Molecular Dynamics (MD) simulations "enable the users to study properties of larger molecules such

as proteins and nucleic acids. They deal with the impact of force fields between atoms and molecules

on their physical movements. The huge number of interacting atoms as well as the required small time

discretization makes it a computationally challenging task, which cannot be solved analytically for any

reasonable sized molecular ensemble. Besides geometric aspects (as for example the opening and closure

of a protein binding pocket 43 ), also kinetic and thermodynamic quantities can be derived, e.g., rate con-

stants for protein folding [SKL07, SPHvdS05, VDSPS07]. Corresponding workflows can be considered

as rooted graphs starting from the molecular structure provided by the user. The user input undergoes

some filtering and conversion to MSML to ensure clean and error free input for the simulations. The

resulting structure needs to be processed with various tools in order to create a valid simulation system

including. Here the modular character of Gromacs tools [BvdSvD95, HKVDSL08] is advantageous as

an individual task can be assigned to a node within a workflow handling the execution of a specific tool.

Although multiple different simulations are possible, all of them have at least one node pointing to the

main MD executable. This program calculates the actual movement of each atom in the system and its

contribution to the energy. Within the Gromacs suite this application is mdrun, which expects a binary

combination of topology and simulation parameters as input and provides as output a trajectory, i.e. po-

sitions with respect to time, an energy file, and logs comprising simulation output. Further simulation

steps can be built on this output along with various analysis tools can use it to generate scientifically

relevant plots and charts. This information is directly visualized within the MD portlet. To give an exam-

ple, the user may directly check output conformations using ChemDoodle or inspect root-mean-square

deviation plots using Dygraphs. All relevant simulation results are annotated with metadata and stored

in the MoSGrid repository.

Within MoSGrid, currently MD simulations with Gromacs are supported. Popular programs like Des-

mond [BCX+06], NAMD [PBW+05], and AMBER [SFCW13] shall follow soon to support the user

community with their research. Independent of the simulation code used, all MD programs have some

general steps in common, which can be easily represented by workflows. It is noteworthy that MD

workflows are mostly rather complex, and a suited workflow represents a significant help to the user who

tries to overcome technical hurdles. The molecular simulation system has to be put into a periodic box,

solvated with water and counterions, followed by an energy minimization. The single steps for a typical

equilibration are described in detail in the following paragraph.

The first task is to identify all atoms and bonds in order to generate a correct description of the atomistic

interactions, a so-called topology (topol.top). This is accomplished by using the Gromacs tool pdb2gmx.

All protein hydrogen atoms are removed before being replaced according to the definitions of the force

field (e.g., Gromos [OVMVG04], OPLS-AA [JTR88], Charmm [MBB+98], or Amber [PC03]) used for

the later simulations. A reasonable protonation state is estimated based on the default capabilities of

pdb2gmx. The resulting structure with force field consistent atom names is put into a simulation box us-

ing editconf. The size of the box is chosen large enough to avoid periodicity artifacts. This is achieved by

setting the distance between the solute and the box 20 percent larger than the largest cutoff. Afterward the

box is filled with water using genbox. Here, different water models are possible (e.g., the Simple Point
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Figure 2.22: "Part of the configuration of a Molecular Dynamics workflow is shown. In order to ensure
meaningful simulations the users are obliged to select appropriate groups of the uploaded
PDB file. Furthermore, details such as the force field, corresponding water model, and
number of steps for the energy minimization have to be specified. For inexperienced users
carefully chosen default values are present."[KGG+14]

Charge model (SPC) [BPvGH81] or the series of different Transferable Intermolecular Potential func-

tions (TIP) [JCM+83]) (see Figure 2.22). The calculation of the explicit solvent water is computationally

intensive, as it increases the number of interacting particles, but is usually desired to enable nativelike

conditions. Implicit solvent models may be used through the submission of self-prepared job descrip-

tions. The topology file is updated accordingly in the next step. The precompiler grompp is executed

in conjunction with a simulation description yielding the binary file topol.tpr including all coordinates,

bonds, forces, and further information to carry out an energy minimization. This calculation is carried

out by calling an MPI-parallel version of mdrun. The output of the minimization is directly taken as a

starting point for a brief position restrained equilibration run. The precompiler grompp is executed once

again but using a different simulation description. After the restrained MD equilibration simulation the

last frame of the simulation is written to a PDB file, serving as a starting point for production runs, dock-

ing studies, and/or further scientific analysis. Usually it is futile to relax the simulation system further by

carrying out a nonrestrained equilibration. For variants of this simulation protocol multiple workflows

are provided, reducing the tiresome system preparation to a few mouse clicks. By adding further options

to the input masks that guide the user through the simulation setup process the (advanced) user will gain

more control to adapt the workflow to his/her specific problem. By creating standardized workflows, in

which only a small subset of parameters are modifiable by the user, different simulations of one work-

flow become comparable. Additionally, since all information to set up the simulation is stored inside

the workflow and is inherent part of the sustainable stored file and directory structure, the simulation

experiment is readily reproducible.
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With a large variety of possible MD simulations, it is not possible to provide prebuilt workflows for

all use cases. Therefore, users may also upload and simulate self-prepared job descriptions (Gromacs-

topol.tpr), taking advantage of powerful grid resources." [KGG+14]

Docking Simulations

"Docking deals with the calculation of the pose of a ligand within a receptor’s binding site and the esti-

mate of the binding energy of the resulting complex. For the purpose of docking, we used the open source

docking tools of CADDSuite (Computer Aided Drug Design Suite) as framework to pre- and postprocess

the molecular structures. We here take advantage of several grid-enabled tools that divide docking into

simple tasks. 57,58 The central docking and scoring steps can be carried out with CADDSuite [Koh12],

Autodock [GMO96] or FlexX [RKLK96].

The docking portlet provides several workflows with varying detail of user input required, ranging from

the unprepared protein plus a flat file screening library to fully prepared receptor and ligand files. The

complete workflow consists of four major steps: 1) target preparation, i.e., separation of the receptor

structure from its ligand in the PDB file, protein protonation, elimination of irrelevant water molecules,

and pocket detection; 2) ligand preparation, i.e., generation of 3D coordinates for the screening library

at a specified pH; 3) docking, i.e., grid calculation and docking; and 4) rescoring of the best scoring

compounds. This workflow only requires two input files: a PDB file containing a protein with a reference

ligand and a SDF file containing the molecules to be docked into the protein. In addition to that, variants

of the workflow are offered via the portlet that leave out parts of the preparation steps in case the user has

already prepared their files using other software and only wants to perform the docking simulation on

the grid. Although the user interface is kept quite clean and simple, it allows the setup for a wide range

of parameters for the initial docking step and for the refinement procedures if desired (see Figure 2.23).

The compute time, necessary to prepare a high-level ligand database, can easily exceed the actual time

needed for docking itself. Once a ligand library was properly prepared, e.g., assigning the correct proto-

nation state and generating meaningful conformers, it may be reused anytime. As it is stored within the

MoSGrid repository it easily can be selected for further simulations. It is also possible to share such a

library with co-workers via the integrated user rights management.

When it comes to performing docking using libraries with several thousands of ligands, the biggest

challenge is the dynamic utilization of grid resources. The workflow management service gUSE provides

a simple way to parallelize jobs via generator and collector ports. Combining the use of these ports with

tools in the CADDSuite, the workflow takes the ligand input SDF file and splits it into multiple smaller

files. Each generated file contains a small portion of the given ligand library. Next, docking is performed

on each of these single files. The workflow service will generate as many parallel jobs as files are

provided. In the end, the results of each parallel docking job are merged into a file for further processing.

This parallelization will provide results much faster than a pure sequential approach and consequently

saves a lot of the scientist’s valuable time. It is also possible to rescore docking results. Following a

similar approach as for the docking step, intermediate docking results can be re-evaluated employing a

different scoring function.
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Figure 2.23: "A typical docking workflow is shown, based on CADDSuite and its tools. The workflow
handles the complete preparation and docking simulation for an input set of a target structure
complex and a screening library. Workflows for other docking applications, such as FlexX
and Autodock, follow the same principle and structure, although the distinct placement
algorithm is used." [KGG+14]

A major advantage for the end-users utilizing MoSGrid’s docking portlet is found in the ready-to-use

state of the portlet, thus preventing them from creating their own scripts to run a docking simulation.

By automatizing the process of protein and ligand preparation relying on MSML, the reproducibility

is guaranteed and the risks of avoidable errors minimized. More complex crystal structures of larger

protein multimers may require a deeper insight into the structure of the PDB file itself. However, MoS-

Grid’s docking portlet makes an educated guess within the docking workflow. Furthermore, the problems

occurring when converting one molecular file format into another, e.g. PDB to PDBQT, can be nearly

completely eliminated due to the usage of MSML as uniform storage format, ensuring consistency of all

data." [KGG+14]

2.7 Further Data Life Cycles

This section introduces several further data life cycles in a compressed form to give a general impression

about the variety of data life cycles integrating data and compute capabilities.

2.7.1 Worldwide Large Hadron Collider Computing Grid

The Large Hadron Collider (LHC) [Bir11] is a 7.5 billion Euro particle accelerator at CERN, Switzerland.

It took 20 years of preparations and construction before its operation started in 2010. The aim of the LHC
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is to revolutionize the understanding of the nature of the universe. In this line, a significant discovery was

the Higgs particle in 2013 that gives some particles its mass. The particle was postulated in 1964 and the

Nobel Prize in Physics was awarded in 2013 for its discovery. Each of the LHC detectors (ATLAS, CMS,

ALICE, and LHCb) record the products of collisions with a rate of 1 petabyte per second. Dedicated

electronics and a large cluster decide in real-time what data is of further interest. This reduction reduces

the data rates ranging from 50 MB/s to 1250 MB/s, depending of the detector. The reduced data is

subsequently stored in the archives at CERN Computer Center. The Worldwide LHC Computing Grid

(WLCG) manages and processes the data utilizing resources around the world and it consists of 5 tiers.

Tier 0 at CERN is the central data facility. It does a part of the processing and archives all data with a

replica distributed to the 11 tier 1 centers. These also provide clusters for (re)processing of the data and

provide a large number of tier 2 centers with data for analysis. At the tier 3 institutional sites, data is

cached and analyzed by the end users, whose workstations constitute the 4th tier. The data distribution

across all sites is done by GridFTP. The computing services handle job submission and monitoring to the

clusters while the workflow management matches the jobs to fitting resources. File catalogs and database

are running at tier 0 and tier 1 sites to manage the location and metadata of files. Further services

exist for virtual organization and information management and application software is to be regularly

updated across all sites. The interoperability is ensured via grid projects under the hood of major grid

infrastructures such as EGI (European Grid Infrastructure) [EGI15] in Europe and OSG (OpenScience

Grid) [AAB+11] in the United States. The WLCG infrastructure has been evaluated in 2014 for the

second phase of LHC operations. The integrated metadata capabilities are highly use case specific.

2.7.2 Human Brain Project

The Human Brain Project (HBP) [HBP15a] is a FET Flagship project of the European Commission with

the aim to significantly further the understanding of the human brain and to ultimately emulate it. The

10 year project started in 2013 with about 80 partners from 25 countries with the aim of 200 partners by

2018. The budget is about 1 billion Euro including 50% direct funding from the European Commission.

The HBP HPC Platform [HBP15b, Sch14] aims to provide services that integrate supercomputing, Big

Data, and Cloud capabilities at exascale level. The core of the HPC Platform is the UNICORE middle-

ware (see Section 2.3.2) for the federation of major High Performance Computing capabilities located

in Jülich (Germany), Barcelona (Spain), Bologna (Italy), and Lugano (Switzerland) with the large-scale

Cloud storage located at Karlsruhe (Germany). A newly developed Unified Portal will provide the web-

based graphical interface for all users. The portal will interact with UNICORE via its new REST API.

A central LDAP server will manage all users including their access rights. The user information will be

exposed for authentication via an OpenID Connect (OIDC) server. The Unity federated identity man-

agement system (see Section 2.4) will integrate OIDC with the UNICORE security capabilities. The

UNICORE user database will be synced with the LDAP server for authorization purposes. An archi-

tecture overview can be seen in Figure 2.24. Metadata capabilities are planned to be integrated in the

future.
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Figure 2.24: An overview of the architecture of the HPC Platform overview of the Human Brain Project
is shown. Computing and data sites from all over Europe are integrated via the UNICORE
middleware with authentication being handled by both an OIDC and Unity service [Sch14].

2.7.3 Pierre Auger Observatory

The Pierre Auger Observatory [Bah12] aims at detecting rare ultra-high energy cosmic rays and to de-

termine their source and composition. The computational aim is to compare the recorded data with

theoretical models using Monte Carlo simulations. These require significant computing capabilities.

Tasks are submitted to EGI computing resources by means of the gLite middleware by execution scripts

and by defining input files needed for the simulation or a list of files of measured data to be analyzed.

Result files are stored on storage elements integrated by gLite. Management scripts keep track of the job

status and re-submit in case of an error and write status information to a database. This information is

utilized within a PHP webpage to make relevant information available as needed. Metadata capabilities

do not seem to be existing.

2.7.4 IceCube

IceCube [AAA+09, AAA+15] is a cosmic neutrino detector below the ice at the geographic south pole.

Its aim is to facilitate the study of high-energy neutrinos and dark matter. The combination of process-

ing the acquired data and running corresponding simulations is requiring significant processing power.

IceProd [AAA+15] is a computing management system that is lightweight, coordinates data movement

and distributes processing tasks to grid resources. A central database is the coordination point and a

set of daemons are responsible for job management and submission to underlying resources via plug-
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ins. These are available for batchsystems such as HTCondor, PBS, and SGE and middlewares such as

Globus, gLite, EDG, CREAM, and ARC. About 1 TB of data is produced daily that is reduced on a 400

core cluster at the south pole by an order of magnitude before transmission to the central storage facility.

The data is further processed at 43 research institutes around the world. The central database is storing

basic provenance information such as software version and job parameters.

2.7.5 Virtual Earthquake and Seismology Research Community in Europe
e-Science Environment

VERCE (Virtual Earthquake and Seismology Research Community in Europe e-Science Environment)

[CKL+13] is a research project that conducts seismological research in order to simulate earthquakes and

predict their consequences. The VERCE platform centers around the Dispel data streaming workflow

language (see Section 2.3.3). VERCE nodes enact Dispel workflows which may access a library of work-

flow components and scientific catalogs. A special Dispel gateway was implemented that de-serializes

data and submits computing tasks with such data as input to either Globus or UNICORE resources. The

resulting data is re-serialized to be stored in the VERCE data archive from which it may be accessed

by users. While integrating metadata capabilities was outside the scope of the VERCE project, it is

evaluating to utilize iRODS together with the MonetDB database [NK12].

2.7.6 Climate-G Testbed

The Climate-G Testbed [FAF+11] is a science gateway and underlying infrastructure to enable climate

change research. It features the data management technology OPeNDAP [GPW+06] that provides data

access, subsetting and aggregation. THREDDS [DCD+06] is employed as a middleware for connect-

ing data providers and users. Both are specific the earth science focused technologies. The gateway

supports proxy certificates for authentication which are created via a JNLP Java Webstart application.

GRelC [FNA11] allows to manage databases for gLite and Globus middlewares and supports proxy cer-

tificates and virtual organizations. GRelC is utilized in the Climate-G Testbed to provide use case specific

metadata management.

2.7.7 PolarGrid Portal

The PolarGrid Portal [GSP09] follows a different approach than over infrastructures. It integrates func-

tionality of third-party commercial collaborative services such as Facebook, Google, Gadgets, and Twit-

ter. This approach is described as allowing for less development effort and leading to results in a shorter

time. The heavy reliance on external services makes the sustainability questionable and has privacy

implications. Metadata capabilities do not seem to exist.
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2.7.8 Distributed Research Infrastructure for Hydro-Meteorology Community

DRIHM (Distributed Research Infrastructure for Hydro-Meteorology community) [DCG+14] is a hydro-

meteorology research community. It utilizes computational methods to improve the prediction of severe

and increasingly common hydro-meteorological events such as storms and floods. This constitutes an

interdisciplinary challenge involving meteorology, hydrology, and earth sciences. Its data life cycle

consists of three main stages; workflow design, definition, and execution, task execution on resources

and the interpretation of results. The design, definition and execution is based on a science gateway build

with the gUSE/WS-PGRADE framework (see Section 2.5.4). Depending on the data and workflow,

the individual workflow tasks are executing on HPC, HTC or Cloud resources. The DRIHM binary

repository hold relevant applications while the static data and temporary result data repositories hold

input and result data respectively. Based on this data, the results are interpreted by remote visualization

or downloading for local visualization, statistic or 3D visualization methods. No metadata capabilities

are integrated.
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3 A Novel and Generic Metadata Handling Concept

This chapter thoroughly describes the novel and generic metadata handling concept as a way for in-

cluding metadata capabilities into scientific data life cycles. First, limits in the current situation of life

cycle management are presented, followed by a description of the main challenge the thesis is tackling.

Second, besides an introduction to alternative approaches, the solution concept is described. On the one

hand, the concept consists of an elaboration of essential characteristics required to enable advanced meta-

data management in a favorable way. On the other hand, it consists of a design guide for implementing

metadata management in complex data life cycles including technology recommendations. By embrac-

ing the characteristics and developing the answers to the design guide questions, a computer scientist can

expect to acquire a deep and broad understanding of the complex situation of data life cycles in general

and of metadata specifically. This understanding will significantly facilitate the creation of an effective

metadata management architecture in a specific data life cycle.

3.1 Limits in the Current Situation

3.1.1 Important Challenges out of Focus

In the vast complexity of data life cycle management, a multitude of challenges exists that are described

in the following. This section leads up to the challenge that this dissertation tackles.

Scientists tend to be in their field for the reason, they want to focus on it. Many will naturally only

learn about information technology tools that are necessary to further their research and then often only

the bare minimum. From another point of view, overly complex technologies are significantly hindering

scientists in advancing their fields. At the same time, bleeding edge science increasingly requires the

most powerful computing and data systems [Hub12, BHS09]. These systems tend to be increasingly

complex. A major challenge is to provide virtual environments that are intuitive and seamless to enable

scientists to be more efficient in producing scientific insights (see Section 2.11 for context). At the

same time, such environments need to be integrated with powerful High Performance Computing and

Big Data infrastructures. This integration is required to enable the speedy production of simulation and

analysis results that are now of a previously impossible to handle magnitude. To enable this increase,

highly complex simulation and analysis procedures have to be encapsulated as scientific workflows (see

Section 2.3.3). These can be run with just a few steps instead of the need to manually execute each job by

itself and manually convert input and output formats between jobs. Workflows are an essential concept to

simulate phenomena and analyze data. They enable novice users to execute complex scientific procedures

and they significantly foster reproducibility of scientific results. Scientists that wish to independently

reconstruct results are much more easily able to do so via workflows. To offer the maximum usability,
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all data life cycle components have to be integrated via a workflow engine. At the same time, as many

details have to be hidden as possible from users. This abstraction enables workflows that are easy to

create and execute in order to provide the most benefit for the user with the least hindrance.

As data amounts are ever rising (see Section 2.1.1), it will increasingly be difficult for more and more

use cases to store and process all raw data. Preprocessing methods to quickly decide what data needs to

be kept and compression methods to further reduce the size will become significantly more important.

These methods have to be as transparent as possible in order to avoid errors and additional effort by users.

Necessary user interactions needs to be minimized by automation as far as possible. Postprocessing will

also have to be increasingly applied to transform data to a state that is more immediately useful to users.

To efficiently enable postprocessing, all data life cycle components have to be efficiently integrated with

each other, to avoid bandwidth and server capacity waste.

With the increasing data life cycle complexity [JMPK+15] comes the increasing tendency towards errors

as more and more systems depend on each other. To counteract this tendency, resilience, and error

handling need to be major design factors on all levels. Systems should be able to continue to function

to a certain degree even with failing components or at least fail gracefully. Erroneous states should be

automatically recognized as early as possible. Resulting error messages should be propagated where and

on what specific knowledge levels they are needed. For example, an administrator is often able to digest

the highest detail of infrastructure information while per default end users should not be exposed to such

detailed information.

A challenge that affects all components is to enable effective and efficient security measures (see Sec-

tion 2.4). These involve the integration of federated identity management systems to enable efficient

authentication, authorization, and single sign-on mechanisms. Existing institute accounts should be used

wherever possible to ensure a high convenience and low barrier of entry. Furthermore, involved systems

need to support a chosen standard which is a significant challenge as a high variety of systems exist.

Sustainability is a challenge on all levels. Funding schemes often only enable computer scientists to build

up infrastructures, but seldom do they include funds for operation and maintenance of the developed

infrastructures. Long-term funds would increase the reliance of users in such systems.

Another challenge is that of building and maintaining trust;

• How can a user know that the infrastructure does exactly what it promises?

• How does he know a workflow does exactly what the descriptions says?

• Are the produced results of high scientific quality?

• Is the infrastructure well designed?

• Are his results secure from competing researchers and save with respect to infrastructure failures?

A challenge overlaying all others is finding a good balance between opposing goals such as performance,

feature-richness, usability, security, resilience, and sustainability (see Section 3.4.1 for overall design

aspects). While information technology systems tend to advance in general, use case specific balances

continuously need to be found.
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Figure 3.1: The left side shows a science gateway centric abstract view of data life cycles without means
to semantically organize data.

3.1.2 The Challenge

The major challenge this dissertation focuses on is handling data in increasing amounts and complexity.

Knowledge about the data; where it is, what it contains, what it means, is often only in the minds of

the scientists, in lab books on paper, or at most, hard coded into thousand directory and millions of file

names. These situations make important knowledge very volatile and accessible only to a very limited

number of people. When these people become unavailable, data that only they know in detail becomes

basically useless as nobody else might have a sense of the data anymore. Without knowledge about data

content it is increasingly difficult to access data in a meaningful way.

Metadata management systems within data life cycles can be used to organize such highly complex data

with possibly tens of millions of files. They enable easy access via capabilities for searching based

on data content. However, such systems are often highly use case specific or completely missing (see

Figure 3.1 for an illustration). Meaning that either deployed solutions are hardly applicable for other use

cases and, thus, are hard to maintain in the long term. Or, metadata for the benefit of the user is missing

completely in a data life cycle. An essential aspect of this challenge is the efficient and frictionless

integration of metadata systems with all layers of a data life cycle. This seamlessness enables users to

focus on advancing their science, instead of having to learn a lot of information technology specifics.

Legacy techniques are not suitable anymore as these require significant efforts to integrate metadata

capabilities in limited ways for every new data life cycle.
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3.2 Improving the Situation - Focus and Scope

3.2.1 The Overall Approach

The significant open challenge of missing or narrow use case specific metadata management was met

by designing a novel and generic metadata handling concept for integrating metadata capabilities in

scientific data life cycles [GBG+14, GGJN14] (see Figure 3.2). Previously, to the best of my knowledge,

no overarching and generic concept existed. The concept consists of characteristics of generic metadata

handling and a design guide to well-balanced metadata handling within highly complex scientific data

life cycles.

The first part of the concept describes required characteristics for generic metadata handling (see Sec-

tion 3.3). A main property is the abstraction from technologies on various levels such as data, metadata,

computing, workflow, security, and utilization technologies. This enables metadata systems to be generi-

cally integrated and accessed in a uniform way as unnecessary specifics of underlying systems are hidden.

Automation is also facilitated by encapsulating various functionalities as it makes them easy to trigger

automatically. Another characteristic is the generic handling of metadata and data formats and more

specifically the data-to-search chain of components. This chain includes the extraction, annotation, and

indexing of metadata and results in meta information about data being searchable by users. The chain

needs to be automated as much as possible. Then there is the requirement of seamless data life cycle in-

tegration of metadata capabilities. A part is the integration with systems for data, computing, workflows,

security, and utilization. This tight integration enables the metadata management to be highly usable as

scientists can utilize the data life cycle as one whole system instead of distinct individual parts. At the

same time of potentially vast capabilities of HPC and Big Data resources can be directly used.

Second, a design guide to metadata in data life cycles (see Section 3.4) was created in order to signifi-

cantly ease the integration of metadata management in scientific data life cycles. First, overall data life

cycle design aspects are discussed in detail. This enables a thorough appreciation and understanding

of the complexity of scientific data life cycles and subsequently their design. Then, the focus is on the

metadata handling integration. A plethora of points is raised and discussed that ranges from the scale of

data over fixed cornerstones to enabling search and utilizing of results. Technology recommendations are

described that cover all aspects of data life cycles such as data, metadata, computing, workflow, security,

and utilization components. The technologies are generic, have favorable characteristics, and are proven

in existing data life cycles.

The complete implementation of the concept for the MoSGrid data life cycle is described in detail in

Chapter 4. An adaption outlook for a microscopy data life cycle is described in Section 5.1.2.

3.2.2 Alternative Approaches

Alternative technology approaches exist that are also independent of specific use cases. These are de-

scribed here and put in contrast to the dissertation concept.

The KIT Data Manager (KDM) is a research data repository (see Section 2.2.3 for details). It aims at
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Figure 3.2: The right side shows an abstract data life cycle with metadata capabilities that are both seam-
lessly integrated and generic. The capabilities are accessible in a usable and efficient way to
transparently organize and utilize data based on its content.

petabyte scale data management by utilizing elaborate metadata management. KDM features a data-

centric view and advanced archiving services such as bit preservation, data migration and storage vi-

sualization as well es automatic policy enforcement. KDM is able to abstract from data management

systems such as dCache and iRODS via the Abstract Data Access Layer API (ADALAPI) [SHJ+11]. As

utilization mechanisms, REST, and Java APIs are offered as well as a web interface. Furthermore, ser-

vices are offered for data and metadata management, staging, and sharing, authorization and discovery of

data based on its metadata. Integration with specific data life cycles can be performed by the creation of

individualized commandline clients. KDM supports cluster-based executions of computing tasks via the

LSDF Execution Framework for Data Intensive Applications (LAMBDA) [JHS+12]. KDM is missing a

generic and widely applicable HPC and workflow integration. Thus, computing is a priority of secondary

importance. To mitigate this, KDM is currently extended within the MASi research infrastructure project

see Section 6.2). In contrast, the approach presented in this thesis facilitates the native integration with

High Performance Computing, Big Data frameworks, and workflow management systems (see sections

3.3.3 and 3.4.3). Thus, the dissertation approach can support data life cycles that are heavily compute

intensive and diverse in their computing requirements.

The EUDAT services B2SHARE and B2FIND offer metadata capabilities that are generic but limited in

scope (see Section 2.2.3 for details). The aim is on small research data that is ingested via a web portal

with manual metadata annotation. As such manual steps are tedious and error prone, the applicability

is severely limited. Basic metadata is the same accross communities while a profile can be chosen to

manually enter use case specific metadata. Metadata profiles for new use cases can be added. The

planned B2NOTE service aims to add more elaborate metadata capabilities such as automatic extraction.

Further metadata can be included in B2FIND with the OAI-PMH interface. EUDAT is a centralized

system. As such, user data and metadata can be outside of the direct control of the user’s local data center.

These characteristics can have negative safety, privacy, and sustainability implications. In contrast to the

dissertation approach, EUDAT aims at providing basic metadata services that are only loosely integrated
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with further infrastructures and, thus, difficult to seamlessly integrate with the working environment of

users. In the dissertation approach the metadata is stored in the same directory of the data, independent

of the physical data location. Thus, if the data is backuped or replicated, the metadata is automatically

treated so also. EUDAT is fixed on the iRODS data management system while the dissertation approach

is agnostic with respect to data management systems, besides other categories. Metadata in EUDAT is

accessed via a centralized web portal. Seamlessly integrated computing capabilities are missing, while

manual data staging to remote High Performance Computing resources is possible.

iRODS is mainly a data management system (see Section 2.2.2). Its metadata capabilities are limited

to the iRODS relational database storing attribute-value-unit triples. These may be used for basic and

advanced search queries which can be executed via different methods. Existing functionality for metadata

extraction and annotation are missing. These have to be implemented using the iRODS rules engine. By

virtue of the central iRODS data database, its metadata approach is completely centralized. Thus, data

and metadata are stored in different locations with the related downsides described in Section 2.2.3.

Agave as a science gateway API (see Section 2.5.1) supports metadata capabilities in the form of an un-

structured NoSQL database. Metadata schemas are supported as well as automated metadata extraction

and a global search. In contrast to the dissertation approach, the metadata is stored in a central database.

The main use case of the DIRAC computing middleware (see Sections 2.3.2 and 2.2.3) is within physics

environments while it is not limited to it. Via the Dirac File Catalogue, metadata can be associated as

key-value pairs to files and directories. Certain keys can be declared for indexing and, thus, used for

search operations. Complex structures can be build as directories, subdirectories and files subsequently

inherent metadata of their precursor. The access and search functionality is offered via Python API,

commandline interface and web interface. In contrast to the dissertation approach, DIRAC is centralized

and has no extraction. Annotation capabilities seem to be available and the data is completely separated

from its metadata in a central database.

3.3 Characteristics of Generic Metadata Handling

Metadata handling in complex data life cycles is required to have certain characteristics in order to be

generally applicable. One characteristic is that of abstraction from underlying layers to hide unnecessary

specifics. Another key aspect is the application of extraction, annotation, and indexing of metadata. The

final aspect is the necessity of being able to seamlessly integrate metadata management with surrounding

technologies.

3.3.1 Abstraction from Technologies

Abstraction, hiding specifics of lower layers, of various technologies is vital for this concept to be both

generic and manage complexity at the same time. Abstraction is fundamental in all of computer science

and ranges to levels with as less abstraction as the physical principles.

In the specific field of High Performance Computing systems, Big Data, and their application within
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Figure 3.3: Abstraction from metadata systems and various other levels of abstraction from data and
computing management up to the security and utilization layers are shown.

scientific data life cycles, example abstractions are the following. Frameworks and libraries enable the

re-use of code created to encapsulate and automate lower level functionality and to hide its complexity.

Models abstract from reality itself by generalizing and focusing on certain aspects in order to enable to

simulate reality based on these models. Such model-based simulations enable the thorough investigation

of phenomena with specific levels of detail, optimized for the size of the computing resource at hand. The

implementation of such highly compute-intensive algorithms is fundamentally facilitated by automated

parallelization and error detection methods. Developers are aided in graphical ways by performance

analysis and optimization tools. The essential point is to enable the transparent use of complex underlying

methods without the need to know all their specific details. Abstraction from specific systems directly

facilitates a general applicability.

The fundamental concept of abstraction is applied to metadata and data management systems and ac-

cess standards to provide uniform ways to access such underlying systems. In principle the dissertation

concept supports many concrete technologies. Meaning that it is applicable for any data life cycles em-

ploying these data management system. As the further abstraction from data and metadata formats is

central within the concept, it is dealt with in detail in Section 3.3.2. Another aspect is that besides this

related interwoven systems for computing, security, and utilization (see Figure 3.3) should be abstracted

from as well. A suitable metadata management needs to fit with such layers of abstraction. Abstraction

from computing resources such as supercomputers and their batchsystems (see Section 2.3.1) is an im-

portant part of the concept. Computing management systems can be further abstracted from via workflow

management in which various workflow engines exist. By cluster and computing management abstrac-

tion, the concept is naturally HPC-enabled and also enables the re-use of metadata search results as input

in compute tasks. Various general modes of access exist. For example commandline clients, web clients,

workbenches, and APIs (see Section 2.11). With flexible utilization mechanism, usable data life cycles

can be more easily created and, thus, enable scientists to fully focus on their core research instead of IT

technologies. Example security mechanisms are certificates and federated identity management systems

such as LDAP, Active Directory, Shibboleth, and OpenID among others. To enable single sign-on via

trust delegation, SAML assertions and proxy certificates are included (see Section 2.10).



66 3. A NOVEL AND GENERIC METADATA HANDLING CONCEPT

Figure 3.4: The figure depicts various abstraction layers reaching from data and metadata formats at the
base to search availability in ascending layers.

The various levels of abstraction mentioned in this section directly and natively enable automation as

the underlying complex methods and functions can be more directly be triggered via a simple interface.

Furthermore, the need for implementing these methods by oneself in a data life cycle tends to be avoided

by adapting or integrating existing technologies.

3.3.2 Generic Handling of Metadata and Data Formats

This section describes the generic handling of metadata and data formats by utilizing the combined

proximity metadata approach (see Section 2.2.3) to enable the exposure to search queries. For this, the

required tasks are extraction of information from formats, annotation of original data with metadata and

the indexing of metadata for searchability (see Figure 3.4). This flexible approach facilitates a high

degree of automation to enable the management of large numbers of files. The approach also facilitates

the avoidance of re-creating metadata capabilities by the integration of standard components to enable

quick adaptations to different types of use cases.

The concept includes generic metadata extraction frameworks (see Section 2.2.3) for support of a wide

range of file types. In principle, any such framework can be integrated. Meta information can be extracted

from supported formats in order to be further utilized to fuel search capabilities. Besides such generic

frameworks, specific extraction applications exist within scientific communities. This may be necessary

when the target format is too specific or complex to be included in an extraction framework or the

required mode of extraction is not supported. To enable a high degree of flexibility, it is important that

support for such custom methods is possible in metadata management.

Commonly, metadata extraction is performed on a central server. This can be a problem in the case the

extraction step is very compute intensive or many are performed. The central server might be overloaded.

Thus, it can be advisable for performance as well as resilience reasons to apply customized distributed

metadata extraction methods. In such a case, the extraction tasks shall run close to the data alongside
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the distributed computing tasks within workflows running on computing resources instead of the central

server. The relation of extraction to compute task depends on the situation and workflow at hand. A

sensible strategy is to attach an extraction task to every compute task within a workflow whose result is

of interest to search for and, thus, metadata needs to be extracted from it. Several intermediate workflow

task results may be of interest or only those of a final workflow job. This decentralized extraction ap-

proach tends to make good use of compute resources, if the extraction should prove compute-intensive.

In case of the MoSGrid implementation, within individual workflow tasks only a minor compute over-

head is imposed as is shown in Section 5.2.2.

Additionally, this execution schema increases the resilience as the metadata extraction and annotation

are independent of a central metadata service. Thus, if this service fails, a job or workflow can still

finish on the High Performance Computing system and extract and annotate the metadata. This ensures

the usefulness of the data, with metadata in a consistent state and annotated to it. When the metadata

service is available again, the metadata can subsequently be indexed to become available for search. The

annotation happens when the created metadata is stored in the metadata file besides the actual data.

In the dissertation approach, a unified index to enable search queries over all metadata information is

build utilizing the metadata in this intermediate format. This way, only this specific format needs to be

supported by the indexing engine. The necessary many-to-one metadata conversions from specific source

data formats to the intermediary metadata format are performed by dedicated and specialized tools. This

division of labor enables both kinds of tools to be highly optimized for their respective goal. The mode

of access and search architecture depends on the utilized search software. Using such an intermediate

format as introduced above, the metadata is stored in a schema free way which facilitates indexing and

fosters adoption in further use cases. By avoiding a schema the flexibility and independence of data and

metadata formats is facilitated.

The metadata extraction, annotation, and indexing shall be automated as much as possible. Depending

on the data life cycle technologies, the triggering of these steps can be integrated in the workflow engine

at the end of a workflow, via a commandline client, an API or whenever it is sure that relevant data is

written. This full automation is essential for an efficient usability.

3.3.3 Seamless Data Life Cycle Integration

Seamless interoperability is a fundamental requirement of generic metadata handling as data life cycles

are only well functioning when users recognize them as one whole system and not as many individual

parts.

Metadata Management needs to be seamlessly integrated with data, compute and workflow manage-

ment. This enables the direct use of metadata search results in further analysis tasks. With workflow

management integration, the results can be utilized as input for any task in highly complex encapsulated

analytical procedures. In data life cycles that integrate such concepts, HPC and Big Data technologies

can in principal also be applied in jobs and workflows while utilizing search results. The more a user

is able to subsequently do with the found data, the more useful metadata and the whole data life cy-

cle is. Optimally, the underlying metadata management technologies should be interchangeable by a
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programming interface that hides their specifics and offers general metadata capabilities such as extrac-

tion, annotation, and indexing. This way the overall metadata management is more adaptable to given

surrounding technologies.

The integration of metadata management with authentication and authorization as well as single sign-on

capabilities is essential to avoid additional required user actions which would severely limit the seamless-

ness within complex data life cycles. When every data life cycle part is well integrated the whole data life

cycle becomes more as the sum of its parts. For example, the construction of higher level functionality

such as user interfaces in science gateway environments is facilitated. This can be done in a way that

all underlying functionality is provided in a consistent way without the cumbersome crossing of system

boundaries and, thus, provides a prerequisite for optimal efficiency of use. This facilitates efficient and

transparent access for users to organize their data. It raises the acceptance among users and subsequently

allows more users to benefit from metadata management. User interfaces within science gateways should

be implemented using standards such as JSR168/JSR286 [AH03, H+05] to foster cross science gateway

interchangeability. The possibility to use commandline clients and APIs increases the flexibility inside a

data life cycle and to the outside in regard to utilization and access capabilities.

3.4 A Design Guide to Metadata in Data Life Cycles

A deep integration of metadata methods with a data life cycle is essential for a high efficiency and

frictionlessness. Metadata management integration is highly complex as it is associated with most tech-

nologies in a data life cycle. Thus, to adequately discuss integrating the previously described metadata

aspects (see Section 3.3) in a data life cycle, first, design aspects of creating a complete data life cycle

are discussed (see Section 3.4.1). Then, aspects to integrate metadata management capabilities are pre-

sented (see Section 3.4.2). The chapter is concluded by discussing technological recommendations (see

Section 3.4.3).

3.4.1 Overall Data Life Cycle Design

Designing scientific data life cycles is a highly complex task. It combines being in close collaboration

with the target user community to understand their specific requirements while understanding a wide

range of technologies and especially their interoperability characteristics [GDP+15]. Overall design

aspects are discussed in this section while metadata and subsequently data aspects are discussed in the

next section. The scientific principle of utilizing existing knowledge and technologies and to apply and

extend these should be applied. This enables life cycles to be created much more quickly. At the same

time they are more advanced than it usually would be possible if they would be developed entirely from

scratch.

A thorough requirement analysis has to be carried out by the target community in cooperation with IT

experts. The goal is to list the features that the community requires and get an understanding of the

specific situation. This is usually a highly challenging task as users have a deep knowledge and un-

derstanding mainly in their specific research domain and usually not within the information technology
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domain. This tends to lead to highly specific views and languages in different research domains. These

differing languages constitute a fundamental challenge in interdisciplinary science and collaborations.

This challenge includes that domain researchers naturally have a different focus than computer scien-

tists. It leads to the unawareness of domain scientists of specific software, computational tools, security

demands, the management of data and computing, and concepts such as metadata and workflows.

To bridge this gap, first, a common language and understanding has to be developed in order to effectively

communicate and cooperatively design the new data life cycle. Second, the focus should be for both

IT experts and future scientific users to avoid the expectation that the other group has the time and

inclination to deeply understand the other field. Instead, both should abstain from delving too deeply

into explanations of their specific methods and focus of the parts that are immediately relevant for both

sides in order to efficiently design the new data life cycle.

The planing should at least address the following aspects related to the scientific domain in order to

develop an understanding for many important aspects [GDP+15]:

• What is the overall goal of the data life cycle?

• What are the characteristics of its future users and domain likely to be?

• What distributed resources have to be integrated?

• What are the computing requirements (see Section 2.3.1)?

• What are the user interface requirements (see Section 2.5)?

• What are the relevant user roles and the level of experience with using computing and data re-

sources?

• What are currently utilized systems, applications, and technologies and how do they need to be

integrated?

• Are these technologies commandline-based or web services?

• What new components have to be developed?

• Which features are required, nice-to-have or optional?

• What are the requirements with respect to security, safety, and privacy?

• What specific workflows have to be developed?

• How much effort will this require and how are the domain experts involved in the creation process?

• What are the visualization requirements?

• What collaboration tools need to be integrated?

• How is the user community spatially distributed?

• Is it local, national or international?
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Besides domain-related aspects, technical, and developmental ones need to be considered as well [GDP+15]:

• What is the level of experience of involved developers with frameworks and programming lan-

guages to be chosen from?

• Where, how, and under what conditions will the service be hosted?

• How will the new data life cycle be integrated with various local, national or international resources

for authentication, authorization, data, and computing?

• Do the capacities of these security resources sufficiently scale?

• How well supported and sustainable are the involved technologies?

• How well are the technologies going to scale at expected usage levels?

• How will the effort be distributed between extending current technologies and developing new

ones?

• What are potential synergy effects with related data life cycles and how can these be utilized?

The more of these aspects are discussed and analyzed the more soundly the architecture tends to be and

the less it has to be re-iterated during development and at later stages. The described aspects significantly

influence the choice of technologies.

Based on the analysis of the situation and the requirements, it is the task of the IT experts to design

the data life cycle as a whole. As existing technologies should be re-used as much as possible, the

evaluation of existing technologies should be done in parallel. This way, design requirements influence

the technology choices and vice versa. An important aspect of choosing a technology is its sustainability

so that there is a good chance it is actively maintained and further extended. Free and open source

software is an important aspect so developed extensions can be fed back. When an open source project

is used widely enough, there is a reasonable chance that the software is important enough to be further

maintained. The risk is principally avoided that in case of a commercial product, that if the company

goes bankrupt or looses interest in it, the software completely disappears.

With increasingly advanced existing technologies and concepts, life cycles can be designed and devel-

oped much more efficiently nowadays. This leads to even more advanced and feature-rich data life

cycles. During build-up, the graphical, and architectural design is often re-iterated between developers

and future users due to changes in the underlying technology and further feature requests from users.

Experience shows that the reasons for this re-iteration process can be minimized with careful planing

and close collaboration especially during the requirement analysis, design, and continuous evaluation

phase along. It is important to regard a data life cycle from multiple view points. This helps to cover

various topics, reach sensible design decisions, and facilitate a smooth development process. As each

new data life cycle is different, there is no one technology that is applicable to all situations [GDP+15].

An array of technologies exists that needs to be chosen from and combined with each other.
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3.4.2 Metadata Management Integration

The integration of metadata management is tightly coupled with the overall data life cycle design. Thus,

it has to be considered in close interaction with the overall data life cycle design aspects from the previous

section. Besides the following aspects, especially the technical and developmental ones from the previous

section are highly relevant as well.

• What are the data sources (see Section 2.2)?

• What is the scale of the data in terms of size and file count?

• What data formats are going to be involved?

• Are these openly standardized?

• Are metadata extraction tools available for these?

• What does a user need to search for and what metadata is needed for that?

• Is the defined metadata useful to users?

• Is the metadata sufficient to enable the utilization of the data within that use case?

• Is the targeted metadata system efficiently usable?

• At what point should steps such as extraction, annotation, and indexing be automatically triggered?

• Are there existing sources of metadata such as standard metadata out of scientific devices?

• By whom is data envisioned to be re-used and under which conditions (see Section 2.2)?

• Will electronic lab book functionality be required?

• With what security aspects will the metadata management have to fit in?

• Is a new data life cycle integrated with metadata management or an existing one extended?

• Are there fixed underlying conditions such as specific technologies that metadata management has

to deal with?

• What are the data sinks (see Section 2.2)?

The inclusiveness of the definition of metadata highly depends on the use case at hand. For example, a

computing task is finished and the result created. The result might already be considered metadata. It was

created based on the data and, thus, it is information that describes the data. Here, practicality comes into

focus. When the result is a limited number of values, it might be feasible to extract and annotate these

as metadata. But already when there is a large number of these values or result files, it might become

impractical to extract, annotate, and index all values. This especially holds true when the result data is

in the terabyte or even petabyte range. Existing metadata standard should be used if possible and not a

new one invented as there are already a high number of standard available (see Figure 2.4 and 2.5 for an

illustration). Widely used standards also constitute an integration-enabling characteristic, as supporting

tools may already exist that can be re-used.
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It needs to be determined if there are potential scalability challenges of the extraction methods in terms

of computational effort. If so, the distributed approach of extracting metadata along side computing jobs

is advisable. The combined proximity metadata approach directly enables this by storing the metadata

alongside the data. In this case resilience characteristics are also improved as the metadata extraction and

annotation is independent of a central service instance. In extraction, annotation, and indexing metadata,

the actual data should be moved as little as possible to avoid bottlenecks.

Metadata extraction is usually the parsing of data or metadata files and the storing of relevant information

in a designated format in other files or a database. The extraction is mostly specific to the file formats

at hand as these tend to be all different. Indexing exposes the decentralized metadata, stored in files

besides the actual data, to be available for search. The search base can be extensive when, for example,

the full content of a text file is extracted and indexed. Or, the search base can be small when just the

most important information is extracted as metadata. A balance has to be found for each specific use

case between a large search base that might yield more search results but which also negatively affects

the size and, thus, performance of the index and vice versa.

Metadata capabilities need to be integrated with the authentication, authorization and trust delegation

mechanisms of the data life cycles at hand. This enables user-friendly search interfaces to discover files

based on their content. This is essential as well as the ability to directly further utilize search results.

The metadata integration has to be as transparent and usable as possible in order to avoid an increase of

complexity from the view point of the user and, thus, facilitate acceptance. Crossing system boundaries,

for example when different systems and user interfaces for data and metadata systems are used, have to

be acutely avoided.

3.4.3 Technology Recommendations

Various technologies may be required to fulfill the requirements for a new data life cycle. The life cycle

architect has to choose technologies based on the situations and requirements of the specific situation

which was explored for data life cycles in general in Section 3.4.1 and specifically for metadata in

Section 3.4.2. Besides the focus on metadata technologies, general ones are recommended here as well

as no technology can be seen in isolation. Figure 3.5 elucidates specific technologies that are supported

or abstracted from by the following recommended technologies. They are categorized by the central data

life cycle categories from Chapter 2. That chapter also lists further technologies, besides the following,

that could be worthwhile to consider. The technologies that are described here were chosen as they are

highly generic and show favorable characteristics. They are utilized in the MoSGrid implementation

(see Section 4) and in various other data life cycles. They are evaluated alongside the implementation in

Chapter 5 and are considered for a further implementation in Section 5.1.2.

Data Management

UNICORE is a prime example for a generic and mature, yet continuously evolving technology that is

widely utilized in, besides others, large infrastructures such as PRACE [PRA15], XSEDE [XSE15], and

the EU flagship Human Brain Project [HBP15a]. It is a central technology in the MoSGrid data life
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Figure 3.5: Abstraction from metadata systems and various other levels of abstraction from data and
computing management up to the security and utilization layers are shown. Specific example
technologies that the concept supports via the UNICORE middleware are noted.

cycle (see Section 2.6) which it the basis for the concept implementation (see Chapter 4). In terms of

data management (see Section 2.2.2), UNICORE supports, abstracts from and provides access to the

following data management systems and access standards.

• Local POSIX storage in form of a directory,

• UNICORE storages on remote UNICORE deployments,

• iRODS data management systems,

• Hadoop distributed filesystems,

• the Amazon S3 storage interface, and

• the CDMI interface.

Those can subsequently be integrated in a data life cycle. Via these capabilities an important requirement

is fulfilled as it makes UNICORE generally applicable in regard to data resources.

Metadata Management

In the following, specific technologies are mentioned to perform the common steps that enable the search

for metadata that was extracted from source formats (see Figure 3.6).
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Figure 3.6: The figure depicts various abstraction layers reaching from data and metadata formats at the
base to search availability in ascending layers. Example formats and technologies are noted.

Especially the UNICORE metadata service [NS10] is recommended to be employed as a core technol-

ogy. It follows the combined metadata proximity approach (see Section 2.2.3) and supports metadata

abstraction while at the same time enabling an advanced level of performance and resilience. The meta-

data service abstracts from metadata systems and access standards. A high number of source formats

can be handled by Apache Tika, employed by the UNICORE metadata service. It is a highly generic

framework for metadata extraction and abstracts from over a thousand supported file types ranging from

markup languages over proprietary formats to media and scientific formats. Scientific format examples

are listed in the following [Tik15]:

• Directory Interchange Format (DIF)

• Geospatial Data Abstraction Library (GDAL)

• Hierarchical Data Format (HDF)

• Network Common Data Format (NetCDF)

• Matrix Laboratory (MATLAB)

Tika offers its vast extraction capabilities via a straight forward yet powerful parser interface. Its single

parse method enables streamed input parsing for efficiency, including extra information in the extracted

content, returning extracted metadata, and fine-tuning the parser process. JHOVE, as another metadata

extraction framework (see Section 2.2.3), supported by large libraries, might be worth considering for

inclusion. Examples for further, use case specific extraction applications, are listed in the following:

• BioJava [HDP+08],

• Chemistry Development Kit (CDK) [SHK+03] and
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• MoSGrid specific components as described in Section 4.2

Extraction via Apache Tika within the UNICORE metadata service is executed on the server where the

service is running. It may be worthwhile for performance and resilience reasons to execute extraction

methods in a distributed way on HPC nodes instead of a central server. This aspect is conceptually

discussed in detail in Section 3.3.

Annotation with the UNICORE metadata service is done via a JSON files that is situated besides the

source file itself. It is named the same as the file it references but with the distinction that its name

additionally starts with a "." and ends with ".metadata". JSON (JavaScript Object Notation) [Cro06] is

an open and human-readable data exchange format. In contrast to XML it is a low-overhead format due

to its simplicity. Information is expressed as attribute-value pairs. Values can be optionally nested in

order to represent complex information structures.

For indexing, the UNICORE metadata service provides a programming interface that can be imple-

mented for underlying technologies. Currently, UNICORE’s default implementation employs Apache

Lucene [MHG10] as indexing and search technology that provides a high performance [MHG10]. To-

gether with the metadata in JSON format, Lucene enables a schema-free way of handling metadata.

Though not a recommendation, but a plan that shows UNICORE’s extensibility; another implementation

of the interface for the KIT Data manager repository system (see Section 2.2.3 and 3.2.2) is currently

under design within the MASi research infrastructure (see Section 6.2).

Furthermore, advanced search capabilities are provided via the UNICORE metadata service. These

capabilities include search for basic metadata such as filename and creation data, full text search, and the

possibility to use boolean queries, wild characters and range and fuzzy queries. Search queries can be

issued via a commandline client, workbench, web client, Java, and REST API.

This whole chain from source format to searchability can be automated by being triggered depending on

the use case, for example, via a bash script that initiates the respective UNICORE commandline client

command. Or, it can be the UNICORE submitter of gUSE using the UNICORE Java API to be triggered

once a workflow is finished. Also, the data oriented processing feature of UNICORE (see Section 2.3.2)

can be utilized. Here, a rule can be defined that automatically triggers the metadata extraction, annotation,

and possibly indexing when a file appears in an observed directory.

Computing and Workflow Management

High Performance Computing resources can be accessed by transparently making use of underlying

batchsystems while the utilization of Cloud and Big Data frameworks is also possible. Computing re-

source abstraction is enabled via the UNICORE middleware that directly interface with batch systems

via a component running on the cluster’s login node. Examples of supported batchsystems on cluster and

supercomputers are the following:

• SLURM,

• LSF,

• Oracle Grid Engine,
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• CCS,

• PBS, and

• TORQUE

Besides the batchsystem category, support for Big Data frameworks such as Hadoop [Whi12] via YARN

[VMD+13] are currently being released in UNICORE and will subsequently be available within imple-

mentations of the dissertation concept when UNICORE is utilized. Computing and data resources can be

combined via workflows for the benefit of the user. Recommended workflow engines (see Section 2.3.3)

are those of the gUSE/WS-PGRADE science gateway framework and of UNICORE. The gUSE/WS-

PGRADE engine integrates well as it is an integral part of the science gateway framework mentioned

below. The UNICORE internal workflow engine has the advantage of being natively integrated with the

UNICORE middleware.

Security and Utilization

With UNICORE as recommended technology, as deployed in the MoSGrid data life cycle (see Section 4)

and the Human Brain Project HPC platform, examples of the available security mechanisms are the

following. Authentication can be handled via trusted certificates or by the Unity identity management

system via trusted federated identities. Authorization within UNICORE is covered via its XUUDB user

database. Its information may come from a VOMS server, Unity or may be manually inserted. Or, an

external authorization source such as LDAP as in the case of the Human Brain Project, or a science

gateway as within the MoSGrid data life cycle, may be used. Single sign-on capabilities are available via

SAML trust delegation assertions and proxy certificates.

The main recommendation for a utilization technology is the gUSE/WS-PGRADE science gateway

framework. It can be utilized as part of building feature-rich data life cycles as in the case of the MoSGrid

concept implementation. Custom portlets can be created to provide specialized user interfaces to make

available the underlying gUSE/WS-PGRADE and UNICORE services in a user-friendly way. Further

clients can be the UNICORE commandline, rich, and portal clients as well as the Java and REST APIs.
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4 Implementation within a Complex Data Life Cycle

An implementation of the generic metadata approach was carried out within the complex and distributed

MoSGrid data life cycle showing the feasibility and applicability of such an implementation. The im-

plementation incorporates the overall concept characteristics (see Section 3.3) by following the design

guide (see Section 3.4.2) and making use of the technology recommendations (see Section 3.4.3). First,

the central MoSGrid data format, the Molecular Simulation Markup Language (MSML) is described in

detail in Section 4.1. The description includes the conversions to and from MSML. Then, the specific

metadata extraction, annotation, and indexing within MoSGrid is described in Section 4.2. The integra-

tion of the metadata service is described in Section 4.3 and how the immediate and seamless utilization

of search results is enabled. The fully automated metadata integration, that importantly includes the

security and single sign-on infrastructure, and an example usage scenario are presented in Section 4.4.

MSML, its parser and adapter were co-designed and tested by the author. The specific metadata extrac-

tion, annotation, indexing, access, and search were designed, implemented, and integrated by the author.

The result utilization scheme was designed, integrated, and tested by the author. This implementation

adds metadata capabilities to the MoSGrid data life cycle and is essential as now data can by found by

its content and seamlessly used as input in workflows.

4.1 The Molecular Simulation Markup Language as Information
Hub

4.1.1 Molecular Simulation Markup Language

The MoSGrid data life cycle supports a variety of applications and workflows to simulate chemical phe-

nomena. Most of these workflows produce different output formats while also requiring input in specific

formats. This situation includes many formats and makes creating large workflows (see Figure 2.16)

highly complex. Numerous data conversions between individual applications of chemical simulation

suite would have to be made in a potentially pairwise way. To avoid the need for such an inefficient con-

version situation, a common hierarchical XML-based data format called MSML (Molecular Simulation

Markup Language) [GBG+14, KGG+14] was designed and introduced to the MoSGrid data life cycle.

With MSML, a full description, independent from the specific chemical simulation applications and their

results, became possible. MSML serves as the central information hub and data format for workflows

within MoSGrid. Furthermore, instead of many-to-many format transformations between every individ-

ual application formats, now, parsers and adapters just from and to MSML are utilized as described in

the next section. These enable one-to-many format conversions and, thus, saves significant development

efforts. Their integration is depicted in Figure 4.1.
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MSML is a dialect of the XML-based description language CML (Chemical Markup Language) [MRR99]

to meet the needs of the computational chemistry community. MSML is fully compatible with CML.

MSML is composed of three main components, namely schema, conventions, and dictionaries. The pos-

sible combinations of XML elements and attributes are described in the schema. XML elements may

contain components. The relationship of elements and components is defined in the conventions with

the categories mandatory, optional, and forbidden. For example, a condition is defined in the compchem

convention; If the attribute dictRef in the module element is set to jobList, then at least one module

element with dictRef set to job must be present. As a jobList in a module element describes a workflow,

this conditions means that every workflow has to have at least one job. The semantics of elements in

MSML are described using dictionaries. For example, different simulation applications require an input

parameter denoting the number of iterations for a specific task. However, one tool uses values such as

"few" or "many" while another uses numerical values. These mappings are described in application spe-

cific dictionaries. Such a dictionary has to be set up for each application containing entries for identifier,

iterations, and the definition of possible values.

An MSML template scaffold, representing a workflow, is shown in Figure 4.2. The element "cml" is

the root element and contains one "joblist" which details the individual jobs and may contain a parser-

Configuration element. Each of these tasks has three sections. The "environment" section details the job

requirements with respect to nodes, cores, memory, and walltime. The "initialization" section describes

chemical structures such as small or large molecules in the form of an parameterlist with parameters

of the types matrix, array or scalar. The section may also contain the adapterConfiguration and the

parserConfiguration, each in the form of a parameterlist. Each job has a "finalization" section with a

propertylist of the results of a job.

4.1.2 Integration with Data Life Cycle

MSML is utilized as an intermediate format by MoSGrid tools such as the Portlet-API, Templatedesigner,

and the Generic Parser. MSML importantly also acts as the source format for metadata extraction (see

Section 4.2). Figure 4.1 depicts the relationship between these individual components.

MSML templates are created by MoSGrid developers for each new workflows. The templates define the

characteristics of a molecular simulation such as the number of iterations, basis set or the required main

memory. Some values may be mandatory and some optional for a workflow execution. Default values

are also possible. These are extensively utilized in order to further simplify the initiation of workflows.

Due to the complexity and modular structure of MSML templates, common XML editors are unreliable

as they can not take dictionaries and conventions into account. Therefore, to support the creation of

new MSML template the so-called Templatedesigner was implemented within MoSGrid. It helps in

creating templates by checking for semantic and syntactic inconsistencies and reduces the risks of errors

significantly.

Concrete workflows, loaded from the central MoSGrid workflow repository, are described in MSML

templates that reference dictionaries. Using these templates, the Portlet-API (see Section 2.6.5) creates

worklow parameter input masks on the fly. This, for example, includes allowed parameter ranges for nu-

merical values or specific keywords for entries denoting task iterations. For every application supported
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Figure 4.1: MSML as the information hub of the MoSGrid data life cycle is at the center and components
in the periphery of this graphic. These components enable the integration of MSML within
the MoSGrid data life cycle.

Figure 4.2: The structure of a simplified example MSML template document is shown. [KGG+14].
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Figure 4.3: This figure displays a specific NWChem MSML scaffold [?]. Default configuration values
are shown that define the computational requirements of a task within a workflow.

in the MoSGrid data life cycle a dictionary was created (see Figure 4.1).

MSML documents may include "finalization" sections for finished jobs. Such a section represents the

results of the job. As such it is directly relevant for the extraction of metadata described below. The

section is generated after the job is finished by the Generic Parser utilizing the parserConfiguration in a

MSML document. This configuration defines rules on how to extract the relevant information from the

application output format. Based on such MSML files, a so-called adapter is able to generate input files

that are specific to chemical applications and the respective parameters. In the adapter configuration,

information about methods for transforming parameters to application specific input are specified. This

configuration is contained within the parameter list of the initialization section. For new application

formats, parser configurations need to be created for format conversions from and to MSML.

MSML supports the three major chemical domains, namely Quantum Chemistry, Molecular Dynamics,

and Docking (see Section 2.6.6). A detailed MSML template example for the Quantum Chemistry

NWChem application is shown in Figure 4.3. It includes default values for the required nodes, cores,

walltime, and memory requirements. The Generic Parser configuration is also included as well as the

workflow requirement of an NWChem input file. During the runtime of the workflow the generic parser

appends the module tag "compchem:finalization" and files in information from the NWChem output file.

A main function of MSML is being the central MoSGrid information hub. All aspects of a specific

computational chemistry simulation are covered by MSML. Therefor, it strongly fosters reproducibility.

For example, for a molecular dynamics simulation, MSML stores the following information;

• what molecules were simulated,
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Figure 4.4: As part of the concept implementation within the complex MoSGrid data life cycle, the com-
plete component chain for extracting, annotating, and indexing metadata based on the MSML
format, the MoSGrid information hub, is depicted.

• the utilized solvents and force fields,

• the settings for electrostatics and van der Waals,

• temperature and pressure,

• the utilized applications for preparation and simulation,

• the employed compute resources such as core number and memory,

• what output structures were generated, and

• the characteristics of the simulated potential energy.

Filled MSML templates are stored in the distributed data management system at the end of a workflow.

A user can search for information to find relevant data. How this process is enabled is described in the

following sections.
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4.2 Metadata Extraction, Annotation, and Indexing

4.2.1 Extraction and Annotation

Chemical structures such as molecules are represented in corresponding file formats. A parser was

developed that converts such formats to MSML. The widely used PDB and SDF files are currently

supported. The BioJava [HDP+08] framework is utilized for PDB support and the SDF support is based

on the Chemistry Development Kit (CDK) [SHK+03]. Chemical structures are the basis of chemical

workflows. At the beginning of a workflow, a user provides such structures with PDB or SDF files. The

parser is automatically executed on these files in order to extract the structure information and store it in

the MSML template (see Figure 4.4).

Output file formats of molecular simulation applications have a high degree of variety. During the run-

time of a workflow the so-called generic parser is utilized to extract relevant information from such

formats. The extracted information is continuously included in the workflow’s MSML template. Regular

expressions are employed as a highly flexible mean to specify separators between elements, replacement

operations and extractions of specific strings. The regular expressions are stored in the above mentioned

parser configuration files to be specifically referenced in the corresponding MSML section of a work-

flow job. When the generic parser is automatically executed, it loads the parser configuration file and

extracts the information. This information is added as a finalization section to the job’s section within

the workflow’s MSML template. The parsing is executed on High Performance Computing resources as

it may be compute intensive, especially with a large number of parallel extraction tasks. A performance

evaluation is described in Section 5.2.2.

At the end of the successful workflow, relevant information from the workflow’s MSML document

is extracted as metadata (see Figure 4.4). In order for this process to be as generic as possible, the

relevancy of information was not judged as it is highly dependent of the use case in question. All

information is extracted that can be meaningfully used for search queries. This specifically excludes

chemical structure information as these can hardly be meaningfully searched for. The Java SAX parser

(javax.xml.parsers.SAXParser) was chosen for the extraction process due to performance reasons within

the MoSGrid data life cycle. SAX stands for "Simple API for XML". In contrast to a DOM (Document

Object Model) parser, a SAX parser is faster and less memory-intensive as it avoids fully loading the

XML document into memory. It subsequently avoids the need to manage a document representation

in memory. Instead, a SAX parser traverses through a XML document and utilizes callback methods

in order to return notifications about the structure of the document. The following methods are to be

overwritten in order to implement a concrete SAX parser.

• startDocument(),

• endDocument(),

• startElement(),

• endElement(), and

• characters()
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Figure 4.5: A specific example of extracted metadata in JSON format is shown.

startDocument() and endDocument() are called at the beginning and end of a document respectively. At

the beginning and end of each XML element the startElement() and endElement() methods are called.

The characters() method is called when text content is registered between the start and end tags of an

element. For the specific MSML metadata extraction, these methods were implemented to reflect the

above mentioned relevant information. At the end of the workflow, the concrete MSML SAX parser

is executed and consequently, step by step, extracts all relevant metadata from the MSML file. The

parser adds this metadata as key-value pairs to a hash map structure of two string values. At the end

of the extraction process, a new file is created with the naming scheme that adds a leading "." and an

ending ".metadata" to the name of the workflow’s MSML file. For example, "gromacs_min_steep.cml"

becomes ".gromacs_min_steep.cml.metadata". The created hash map containing the extracted metadata

is converted to a concrete "JSONObject". This object is then converted to JSON text and finally written

into the new file (see Figure 4.5 for an example). This file is stored next to the actual data. By virtue of

the naming scheme the MSML document is annotated by the JSON metadata file (see Figure 4.4).

4.2.2 Indexing

Indexing the annotated metadata in the form of JSON files exposes it for search requests by users. At the

end of each workflow, the gUSE UNICORE adapter executes the startMetadataExctraction method of the

MetadataClient object within the UNICORE Java API. This method instructs the UNICORE metadata

service to index new JSON files. This indexing is narrowed down to the user’s home directory for per-

formance reasons and widened to all connected UNICORE metadata services in order to expose the new

metadata for search everywhere. The startMetadataExctraction method actually triggers the metadata ex-

traction via the default extraction framework Apache Tika as well, but since the corresponding metadata

files were already created during the workflow’s runtime, Apache Tika is not triggered for those. By the

indexing, the metadata becomes automatically available in the index of the underlying Apache Lucene

and, thus, becomes discoverable. The performance of the indexing was evaluated and is described in

Section 5.2.3.
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Figure 4.6: The metadata search interface within the MoSGrid data browser is shown.

4.3 Metadata Service Integration and Result Utilization

4.3.1 Search Interface and Metadata Service Access

A search interface was implemented and integrated. It enables an easily usable method to search for data

via metadata stored in Apache Lucene via the UNICORE metadata service. The MoSGrid data browser

was extended by search field and button (see Figure 4.6). The click on the button passes the entered

search term, the available SAML assertion and the user’s ID to the UNICORE interface libraries. A

metadata search command is transparently issued to the connected UNICORE metadata service which in

turn passes the search term to the underlying Apache Lucence. The corresponding result set is returned

and used to narrow down the view in the data browser in order to only display files that correspond

to the search query. The UNICORE interface libraries were extended in order to enabled an efficient

integration. A public "get" method was defined to enable direct access to the search result set. This

method avoids the need of additionally parsing output strings. As a search example, a user might look

for a specific chemical "basis set" that was utilized in a molecular simulation. He just enters a term such

as "6-31G" and links to fitting simulations, including input and output files, are returned.

4.3.2 Search Result Utilization

An important feature of the implementation of the concept is the possibility to seamlessly use search

results as input in further workflows. The search interface (see previous Section 4.3.1) is integrated

directly into the submission view of each domain portlet via the Portlet-API (see Figure 4.7. A user

can directly utilize the search capability to narrow down the data view to choose an input file. This file

is then uploaded to the portal for preprocessing while the file reference is used as input in the current

workflow. This integration was made possible by the design and implementation of a feature for using

location independent file references. This ”xtreemfs://” schema describes the relative location of a file

within XtreemFS. This specification includes the location from where to download input data and upload

result data. The mechanism enables the separation between specifying the XtreemFS instance to be
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Figure 4.7: The data browser that includes the search interface can be chosen in order to find input data
based on its content.

used and the relative path within XtreemFS. In the uas.config configuration file of each UNICORE/X

server component, either a local mount point (i.e. /mnt/mosgrid/"), on the server where the TSI runs, is

specified via the "coreServices.xtreemfs.mountpoint" parameter. This enables the use of the simple and

efficient local copy command ("cp") to copy files to or from the UNICORE job working directory. Or,

"coreServices.xtreemfs.url" is specified in order to indicate that a remote UNICORE storage should be

used. This method is applicable when a local XtreemFS client is unavailable. Now, relative file references

such as the metadata search returns can be utilized as input in workflows. Additionally, the ”xtreemfs://”

schema mechanism automatically enables advanced efficiency and portability of workflows.

4.4 Overall Integration and Example Usage Scenario

4.4.1 MoSGrid Data Life Cycle Integration

The overall integration into the MoSGrid data life cycles is as follows. Templates of the chemical format

MSML define and reference workflows and utilize dictionaries for application parameter characteri-

zation. MSML is stored in the data management system of MoSGrid, XtreemFS. A specific MSML

document is created when the workflow is initiated and it is enriched with information throughout the

runtime of the workflow. The actual metadata is stored besides the data in JSON files in the data man-

agement system. The UNICORE metadata service indexes these files via Apache Lucene at the end of

each workflow to provide discoverability based on search terms. This implementation of the dissertation

approach constitutes a combined metadata proximity approach. Location independent access to data in

XtreemFS, from within UNICORE, is provided by the "xtreemfs://" schema. It enables the seamless

re-use of search results. The generic concept and its implementation are completely integrated with the

underlying single sign-on implementation.
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4.4.2 Example Usage Scenario

A complete usage scenario is depicted in Figure 4.8 and described in the following. First, the user chooses

the portlet of the domain (see Section 2.6.6) he is interested in. The user is immediately in the "Import"

view while the corresponding workflows were automatically loaded in the background by the Portlet-

API (see Section 2.6.5). Then, the user has to choose a workflow (Figure 4.8 upper left). The list can

be narrowed down by choosing a tool suite while a modifiable default name is given. After clicking on

the "Import" button, the "Submission" view becomes visible while in the background a concrete MSML

template is created. In order to configure a workflow for submission, the user has to upload one or more

files as input. Besides the possibility to upload a local file, the "XtreemFS & Metadata Search" option

can be chosen (Figure 4.8 upper right). After clicking on "Search for PDB" an overlay window appears

(Figure 4.8 middle left) showing the content of the data management system XtreemFS that is available to

the user. The user can search for data by its content via the search field on the top (Figure 4.8 middle left).

After a search term was entered and the button clicked, only those files remain in the view that correspond

to the search terms (Figure 4.8 middle right). In the background the Apache Lucene index was queried

via the UNICORE metadata service and the result file references were incorporated with the data view.

When a file was chosen (Figure 4.8 lower left) and confirmed, it is loaded for preprocessing. This is

visualized by displaying the file name in gray (Figure 4.8 lower left). After the remaining parameters

values are entered (Figure 4.8 lower middle), the submit button has to be clicked for submission of the

now configured workflow (Figure 4.8 lower right). In the background the individual workflow tasks are

submitted to fitting resources. During the runtime of the workflow, information is continuously added to

the MSML template reflecting the progress of the workflow. Once the workflow is finished, the metadata

is automatically extracted, annotation, and indexed. Now, when a new workflow is to be initiated, the

previously created data can be immediately found and seamlessly utilized as input.
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Figure 4.8: A sequence of actions is shown ranging from choosing a workflow, seamlessly searching for
input files via metadata, adjusting parameters, and finally submitting the workflows.
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5 Evaluation

This chapter evaluates both theoretically and practically the generic concept and its implementation

within the MoSGrid data life cycle. A major point is that both concept and implementation were inte-

grated in a wider context of technologies such as UNICORE, Apache Lucene, Apache Tika, Liferay, and

gUSE/WS-PGRADE. This way, besides metadata management, also surrounding data life cycle capa-

bilities are available. The concept and implementation is put in contrast with alternative approaches in

Section 3.2.2. The favorable adaptability characteristics are described in Section 5.1 along with a con-

crete further adaptation outlook. In Section 5.2, besides general consideration, the performance of the

implementation is evaluated and shown to scale well. Sustainability and resilience aspects of the concept

and its implementation are described in Section 5.3 and 5.4 respectively. Finally, the efficiency of usage

is shown in Section 5.5.

5.1 Adaptability

5.1.1 Concept Adaptability

The generic concept significantly fosters the adaptability of metadata management in scientific data

life cycles. The concept is widely agnostic with respect to data management systems. A requirement

is that such a system either offers a POSIX interface or one that the UNICORE middleware directly

supports such as the ones for iRODS, Hadoop distributed filesystem and Amazon S3, while support for

the CDMI [CDM13] interface is currently being released. As UNICORE is under the free and open

source BSD license, support for further data management protocols can be implemented via its Storage

Management Service (SMS) interface. Another requirement is that such a system stores data in the form

of files to allow for the combined proximity approach.

Currently, the UNICORE-native metadata system based on Apache Tika and Lucene is supported. The

integration with further systems can be implemented using UNICORE’s metadata interface. It was de-

signed with adaptability as clear design goal. The existing metadata service is completely generic with

respect to data and metadata formats. All relevant metadata is extracted and stored in as JSON format as

key-value pairs next to the actual files. This way, the necessity of schema management is avoided. Per

default the Apache Tika framework, which supports over a thousand formats, is utilized for extraction.

The extracted metadata is stored in form of JSON files which are subsequently indexed to be available for

search. Further formats can be supported by extending Tika, by integrating another extraction framework

or by implementing custom extraction methods for scalability reasons. By using a custom method, the

extraction processes can run in a distributed manner within workflows on High Performance Computing

resources. This was done for the MSML metadata format of the MoSGrid data life cycle which by virtue
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of the generic concept. This way, native support in MoSGrid for the three major chemical domains exists.

These are the highly diverse domains of molecular dynamics, quantum chemistry and docking.

Regarding supercomputers and batchsystems, the concept is highly generic by virtue of the recommended

UNICORE middleware. UNICORE is deployed on many supercomputers in the world with all major

batchsystems being supported. Any kind of application, from small preprocessing tools to large scale

simulations, and various CPU, GPU, and interconnect architectures are naturally supported. Workflows

are supported by the UNICORE workflow system as well, as is any workflow management systems that

utilizes UNICORE as backend technology. For example, the workflow engine within the gUSE science

gateway framework can utilize UNICORE as backend technology to interface with supercomputers.

The concept generically integrates well with security measures throughout a data life cycle. Metadata

in JSON format is secured via underlying access rights management methods of the utilized data man-

agement system, which methods are natively recognized. By default, the access to the central index

is restricted to the user owning it. For authentication and authorization infrastructures including trust

delegation to enable single sign-on, SAML assertions are supported. For example, MoSGrid aims to im-

plement support for federated identity management via the Unity service and the distributed DFN-AAI

infrastructure. Even with such a major upgrade, changes to the metadata management can be largely

avoided. The mode of integration with other systems such as science gateways is highly adaptable as

well. Access via a commandline client, Java, and Rest API is supported. The implemented search inter-

face resides within a JSR168/JSR286 [AH03, H+05] portlet. These standards make the concept generic

with respect to the deployed portal technology, assuming the underlying services are available in such a

case as well.

Summarized, the metadata concept is generic in multiple dimensions and, thus, highly adaptable while

providing an advanced level of security.

5.1.2 Adaptation Outlook for a High-Throughput Big Data Microscopy Use Case

At the MPI-CBG (Max Planck Institute of Molecular Cell Biology and Genetics) Selective Plane Illumi-

nation Microscopy (SPIM) [HSDB+04, HS09, WMH13] is being developed and utilized. In a common

configuration, SPIM devices can produce 0.85 GB/s and about 10 files/s. Continuous operations are the

goal which will produce about 2 petapyte and 26 million files monthly. Various microscopes already

exist with more being planned.

Based on the generic concept, the technology recommendation UNICORE, the experience gained by the

implementation within the MoSGrid data life cycle and together with CBG information technologists, an

architecture is being designed to preprocess, manage, analyze and safely store SPIM data. The micro-

scopes are controlled via workstations running Windows operation systems. Currently, the immediate

data is stored on local SSD raids with the full speed. When the SSD raid is full, the microscope stops,

and the data is manually staged to the larger HDD raid. Furthermore, its is transfered to remote cluster

storages for analysis. This is planned to be automatized.

The data needs to be reduced, compressed, and preprocessed close to the microscope in an automatic way.

This is because the data is too large to be stored indefinitely. The data-driven computing concept (see
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Section 2.3.2), which is supported by UNICORE and iRODS, is a perfect fit for this scenario. UNICORE

is currently being evaluated for this capability. It can be naturally integrated with vast High Performance

Computing resources and it is built to deal with large amounts of data as for example within the Human

Brain Project. Loss-less compression is a more obvious choice in contrast to lossy reduction as scientists

are extremely hesitant to throw away data. An example of preprocessing is the alignment of the same

object accross various images. As data management system, dCache and iRODS are two choices that

are widely used, mature, with advanced features and access methods. Both offer a high performance in

storing petabytes of data.

Metadata management is an immediate and central challenge to organize SPIM data based on its content.

It is especially challenging as SPIM data is continuously growing with increasing data rates and number

of microscopes. Currently, the data is stored on various large and professionally administrated storages

but they are only loosely coupled. This makes it increasingly more challenging to organize the data

properly and for scientists to find it again. Data generated by microscopes is often already annotated

with metadata, either in OME (Open Microscopy Environment) [GAB+05] format, in a proprietary one

or metadata is completely missing. Specific extraction tools for biology formats such as BioJava or

the Fiji Plugin Bio-Format exist. These tools are able to convert various formats to the standard OME

data format that includes metadata. The UNICORE metadata service can support this scenario by being

completely flexible with respect to data and metadata formats. The service is able to handle large amounts

of data and provides transparent metadata indexing and exposure for search via Apache Lucene.

With respect to computing management, data accessed via metadata can be processed transparently via

UNICORE in its capacity as a computing middleware. Jobs that require an arbitrary number of cores

can be issued. This also holds true for workflows that are a graph of jobs. Workflows are utilized to

encapsulate complex analysis protocols to make them easy to modify and run on large HPC resources

with just a few clicks. Such workflows enable advanced users and data maintainers to perform previously

inefficient pre- and postprocessing of large amounts of data. At the same time end users are supported

via such encapsulated analysis protocols and via easy access to High Performance Computing resources.

Utilizing workflows is less error prone than manually doing the steps via SSH and the batch systems.

The advanced automation features via workflows can be integrated into the working environments of the

users. Examples are KNIME, Galaxy or custom analysis tools such as Motion Tracking. A commandline

client, the data oriented processing, the Java or Rest API can be used for the integration. Additionally,

a graphical client as well as a web portal exists. The concept depicted in this dissertation is a natural

fit for implementation within this SPIM use case. It is currently explored within the MASi research

infrastructure project (see Section 6.2).

5.2 Performance

5.2.1 Various Aspects

Various aspects play into the overall performance of a data life cycle. The MoSGrid implementation of

the generic metadata concept seamlessly blends into the overall MoSGrid life cycle. For example, the
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central search index using Apache Lucene provides a high search performance [MHG10] over metadata

from potentially highly distributed data. Bottlenecks during a high number of search queries can be

avoided by the possibility of utilizing several instances of the search indexes by employing a number of

metadata service.

One downside of working within the UNICORE environment is a noticeable latency while interacting

with a UNICORE service. This latency is caused by the fact that UNICORE was implemented following

the Web Services Resource Framework (WSRF) specifications [Ban06]. WSRF provides the advantages

of being strongly typed, including the possibility of message validation, advanced SOAP (Simple Object

Access protocol) message mechanisms and well established web service security with SAML for trust

delegation [Sch14]. Besides the downside of being highly complex, it is also CPU intensive to a high de-

gree due to XML processing [Sch14]. This causes a latency overhead which is aimed to be significantly

reduced within the Human Brain Project 2.7.2. There, UNICORE is currently extended to provide a

Representational State Transfer (REST) [BB08] API. The advantages are that REST is only weakly cou-

pled, inherent HTTP benefits are used, multiple authentication options exist, various representations of

messages and resources are supported and clients can be implemented in basically all languages [Sch14].

A downside is that currently no standard solutions for trust delegation exists [Sch14]. Due to the much

lower computational overhead the request latency is reduced [SBR14].

Another performance aspect is the avoidance of potential bottlenecks in extracting metadata from ap-

plication output files and MSML. This is done by performing the extraction steps in a distributed way

within workflows. Section 5.2.2 shows that the overhead is quite small within a workflow. When a high

number of workflows is executed, performing the extraction steps on a central metadata service server

would potentially lead to bottleneck situations. This scenario is completely avoided by the distributed

nature of the metadata extraction. The metadata indexing, on the other hand, imposes a very small over-

head, as shown in Section 5.2.3. Performing the indexing on a central server, even with parallel indexing

processes, is safe for the foreseeable future.

5.2.2 Metadata Extraction and Annotation

The Molecular Simulation Markup Language (MSML) is described in Section 4.1. In this section a per-

formance evaluation is presented that covers the extraction from application specific output to MSML

and from MSML to metadata in JSON format including the annotation. Extracting and annotating meta-

data are crucial steps that are abstractly discussed in Section 3 and their implementation and integration

described in Section 4. In this section the goal is to investigate the performance properties of these central

steps for enriching the MSML template with metadata during workflow runtime and possibly uncovering

bottlenecks. A manuscript presenting these measurements was accepted for publication [?].

During the execution of each individual workflow task on a High Performance Computing resource, the

workflow’s MSML document is continuously extended with relevant metadata. It is extracted from a

specifically formated output file of a molecular simulation tools which was executed within a particular

workflow. The extraction is done by the generic parser component (see Section 4.1). It converts the

application specific output to XML which is subsequently inserted into the "finalization" section of the

corresponding application section in the MSML document. This MSML document represents the whole
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Figure 5.1: A performance evaluation of the extraction and annotation step from the central MoSGrid
information hub MSML to the JSON metadata format is presented. Depicted is the parsing
time in seconds on the left side and the corresponding parsing speed in processed entries
per second on the right side. 10 datasets with 1000 to 10000 entries in steps of 1000 are
shown. Each measurement was repeated 10 times and the respective average and error bars
are shown. At this large benchmarking scale, that will probably not be reached in production
use cases in the foreseeable future, the imposed overhead by the metadata extraction and
annotation is insignificant in contrast to typical workflow runtimes of hours or even days.

workflow. In current use cases the number of extracted metadata entries tends to be in the low double-

digit number range. The following parameters are utilized by the generic parser for these extraction and

annotation steps;

• The workflow’s MSML document,

• the identifier of the current job for which the MSML "finalization" section will be created,

• the reference in the MSML document to the parser configuration which is included in the generic

parser itself,

• the regular expression that extracts relevant information from the output and which is stored in the

parser configuration, and

• the dictionary corresponding to the current application that is listed in the parser configuration.

The following paragraph will focus on extracting information from NWChem specific output. The de-

scribed steps are independent of specific applications and can be applied for further use cases as well.

Exactly one NWChem output file (nwchem.out) is processed during each measurement. To extract sam-

ple information from the output file, a rule in the form of a regular expression, was developed. The

information is then inserted into the corresponding MSML template of the workflow. During these mea-

surements, the regular expression rule was utilized for a varying number of executions of the generic

parser. One measurement set contains executions ranging from 1k to 10k in 1k steps in between (see

Figure 5.1). Another measurement ranges in 10k steps from 10k to 100k executions (see Figure 5.2). To

enable the measurements, nineteen parser configurations were build. Each contains duplicated regular

expression rules. Their number matches the times of executions (1k to 100k). Each extracted metadata is

immediately inserted into the MSML document within the finalization segment of the corresponding job

in an individual property tag. A separate MSML document was created as input for each measurement
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Figure 5.2: A performance evaluation of the extraction and annotation step from the central MoSGrid
information hub MSML to the JSON metadata format is presented. Depicted is the parsing
time in seconds on the left side and the corresponding parsing speed in processed entries per
second on the right side. 10 datasets with 10000 to 100000 entries in steps of 10000 are
shown. Each measurement was repeated 10 times and the respective average and error bars
are shown. Even at this extreme benchmarking scale, that will not be reached in production
use cases in the foreseeable future, the imposed overhead by the metadata extraction and
annotation is insignificant in contrast to typical workflow runtimes of hours or even days.

with an individual number of parser executions. The document contains a reference to the respective

parser configuration. Additionally, individual property tags, storing the extracted values, were defined in

nineteen new dictionaries. For example, 10k property value tags were created in the corresponding dictio-

nary for the 10k run. During each of the nineteen measurements (1k to 10k and 10k to 100k) the walltime

was recorded. Each measurement was repeated ten times and the calculated average utilized to create the

plots in the Figures 5.1 and 5.2. An example of how to execute a parser with an individual configuration

is: "java -jar genparser.jar -h -f msml-document.xml -o extended-msml-document.xml -j Job-ID". The

HPC node that the measurements was executed on has 16 cores (2x Intel E5-2670@2,60GHz) and 64

GB of main memory.

To sum up, in measurements between 1k and 100k repetitions, metadata is extracted from a NWChem

specific output file via regular expression rules. Subsequently, the metadata is inserted into the corre-

sponding MSML document. This step also includes the extraction from the metadata in MSML to JSON

format in order to annotate it to the data. The utilized numbers of regular expression rules are fitting in

order to evaluate the performance of extracting metadata from output files. The upper bound number of

100k was chosen to represent a level of complexity that is unattained in current use cases. Even when a

large list of atoms in an application output file is processed and inserted in a MSML document, the upper

bound value of 100k is by far high enough. All realistic use cases can be considered to be covered for

the foreseeable future.

The measurement results are shown as plots in the Figures 5.1 and 5.2. In the Figure 5.1 the measure-

ments from 1k to 10k in steps of 1k are shown. The left plot displays the overall time a measurement

took which ranges from 9 seconds to 73 seconds, representing a linear rise. In the right plot of Figure 5.1,

the rate with which entries are processed is plotted in entries per second. The number ranges from 105

entries per second to 137 entries per second. In both measurements the standard deviation is very small.

The plots in Figure 5.2 show the measurements between 10k and 100k in 10k steps. In the left plot, the
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Figure 5.3: Here, the performance of the central step that indexes the metadata in JSON format in order
to expose it to serach queries by users is evaluated. Depicted is the indexing time in seconds
on the left side and the corresponding indexing speed in processed entries per second on the
right side. 10 datasets with 1k to 10k entries in steps of 1k are shown. Each measurement
was repeated 10 times and the respective average and error bars are shown. The overhead of
about 1 second for 10k indexed entries, a large number that will probably not be reached in
production use cases in the foreseeable future, is completely insignificant.

overall time linearly rises from 73 seconds to 765 seconds. In the right plot, the measurements show

a processing rate ranging from 126 entries per second to 142 entries per second. At 40k the rate is

slightly decreasing due to the increasing size of dictionaries and parsing rules that need to be evaluated

and executed. By starting the Java virtual machine for executing the generic parser, a base overhead was

introduced. The maximum additional time that a workflow execution takes is 760 seconds by executing

100k rules. This increase of the workflow runtime is by orders of magnitude smaller than the typical

workflow executions times of hours or even days. Thus, even in such a benchmarking scenario with a

huge number of metadata entries, the added overhead is insignificant compared to the value added by

metadata management.

5.2.3 Metadata Indexing

The indexing of metadata, that was extracted from a MSML document, is another crucial steps in the

extraction-annotation-indexing component chain. It is performed via the UNICORE metadata service

that integrates Apache Lucene as the indexing engine. This step exposes the extracted and annotated

metadata in JSON format to search requests by users. In a concrete data life cycle such as MoSGrid,

this indexing step is automatically triggered at the end of each workflow. The following evaluation of

the performance aims at finding potential scalability limits to ensure the implementation is applicable for

future use cases. Current metadata entry number or in the low double-digit range. This investigation is

included in the recently accepted manuscript mentioned above [?].

For one set of measurements, 19 JSON metadata files in JSON format were created that contain 1k to

10k entires in 1k steps (Figure 5.3) and another measurement set ranges from 10k to 100k entries in

10k steps (Figure 5.4). To ensure constant measurement conditions, both the Lucene metadata index and

directory containing the JSON file is purged before each measurement. Then, the JSON metadata file is

transfered to a directory managed by UNICORE. Then, to start the indexing process, the "start-extract"
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Figure 5.4: Here, the performance of the central step that indexes the metadata in JSON format in order
to expose it to serach queries by users is evaluated. Depicted is the indexing time in seconds
on the left side and the corresponding indexing speed in processed entries per second on the
right side. 10 datasets with 10k to 100k entries in steps of 10k are shown. Each measurement
was repeated 10 times and the respective average and error bars are shown. Even for the 100k
entries, an extreme number that will not be reached in production use cases in the foreseeable
future, the overall overhead is only about 6 seconds and, thus, insignificant in contrast to
common workflow runtimes in the range of hours to days.

command is triggered on this directory. Specifying just this directory ensures that exactly one JSON file

is indexed while the walltime is measured. After the indexing is completed, the UNICORE metadata

service writes the indexing time to its log file (uas.log). Ten repetitions were performed for each mea-

surement and the average for used the create the Figures 5.3 and 5.4. A virtual machine with four cores

(AMD 6272@2,1GHz) and 8 GB of main memory was utilized for the measurements. Summarized, 1k

to 100k is the number of metadata entries in a JSON file which was created and indexed. Corresponding

to the extraction and annotation steps, 100k is by far a high enough limit that even with complete lists of

atoms all use cases in the foreseeable future are covered.

The measurement results for 1k to 10k entries are shown in Figure 5.3. The averaged indexing times

over ten repetitions basically rises linearly from 731 milliseconds to 1300 milliseconds (left plot). The

indexing rate in the right plots shows how many JSON entries per millisecond are indexed. The rate

ranges from 1.3 to 7.7 entries per millisecond. A significant base overhead can be seen in the left plot.

Due to this, the rate is rising as the overhead plays a smaller role with growing numbers of entries.

Figure 5.4 shows the measurement results for 10k to 100k with the indexing time on the left linearly

rising from 1300 milliseconds to 5765 milliseconds. The indexing rate ranges from 7.7 entries per

millisecond to 17.4 entires per milliseconds and starts to flatten at about 30k entries because the imposed

base overhead becomes increasingly less significant with a growing number of indexed entires. In these

measurements the standard deviation is noticeable because the results are in the single-digit second order

for the time measurements and in the single-digit to lower double-digit entries/milliseconds order for the

speed measurements. At these low scales concurrently running processes from other applications or from

the operation system play a significant role. Even with a large metadata file of 100k entries the indexing

step only an overhead of about 6 seconds on a workflow. In the face of workflow runtimes in the order of

hours to days, the imposed overhead is completely negligible, even for such a scalability measurement

scenario. Thus, it is well worth the added capabilities of metadata management.
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5.3 Sustainability

Sustainability of utilized metadata and related technologies and infrastructures is of the utmost impor-

tance. It directly lowers the maintenance effort as such systems tend to be more mature and better

supported through developers and an active user community.

An important point is that software is published under a free and open source license. In this case,

risks are significantly lowered. For example, the bankruptcy of a supporting company would only have

limited negative effects. In contrast, proprietary software would have a high chance of being completely

gone forever. This is also often the case when a competitor buys the company to get rid of a competing

product. The recommended technologies UNICORE and all its underlying libraries, Apache Lucene and

Tika, Liferay, and gUSE/WS-PGRADE are free and open source software.

The use of standards is an essential enabler for sustainability. Technologies become more interoperable

by employing standards. Metadata components become easier interchangeable which further increases

the long-term viability. Example standards that the concept employs are JSON, JSR168/JSR286, the

XML-based MSML, WSRF, SAML, and more. Also, the more widely used a technology is, the more

sustainable it is as more people care and depend on the technology. For example, UNICORE is used on

some of the worlds largest supercomputers via the European PRACE and the US-wide XSEDE research

infrastructures. It is also the core of the one billion Euro Human Brain Project. Apache Lucene and

Tika are top level Apache projects, indicating both a decent maturity and prevalence. Furthermore,

gUSE/WS-PGRADE is utilized as the basis for many science gateways in Europe [gUS15]. When these

solutions become standard technologies, that are routinely deployed at data centers, the sustainability is

significantly fostered.

Due to the central focus on research, developments of some involved technologies can be ensured for a

longer term via an institute’s core funding. This increases the long-term viability as in the cases of UNI-

CORE and gUSE/WS-PGRADE. Additionally, the more wide spread and mature a system is, the more

related third party funding through research projects it tends to attract. It includes the implementation

within new use case and of extensions. An example here is the integration and extension of UNICORE

within the EU Human Brain Project.

An important factor are active research collaborations. Synergy effects can be realized by saving de-

velopment efforts and by exchanging ideas and, thus, getting to know novel ideas earlier. Outreach and

dissemination through the utilization of web technologies, by giving presentations and publishing the

results are contributing factors to the sustainability as well. It fosters by how many people and how

well the research is known. This is actively done for the metadata concept within the MASi project (see

Section 6.2) and for the MoSGrid implementation in the chemistry community and beyond. In the MASi

research infrastructure project, the generic concept and its implementation are incorporated.

Successful community building is also essential for the sustainability. Users have to be well informed at

a level that fits their expertise and expectations. This may be done via newsletters and community events.

On such events tutorial sessions shall be given in order to create a greater familiarity with the technology.

Community building is also important in a wider context through networking with developers and new

potential users. Furthermore, a vital aspect is the user-friendliness. The higher it is, the more users will
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use the system and the more sustainable it tends to be as a consequence.

5.4 Resilience

Resilience is highly important in ever more complex scientific data life cycles. Various distributed sys-

tems are involved and depend on each other. Thus, inevitable errors immediately have a negative impact.

Though beside the focus of this dissertation, resilience has been kept in mind during the design of the

concept and its MoSGrid implementation.

The generic concept and its implementation are resilient to an advanced degree due to several character-

istics. The specific metadata components within the MoSGrid data life cycle are depicted in Figure 5.5.

The rows show components that are relevant before (top row), during (middle row), and after (bottom

row) the runtime of a workflow. The left column represents components running on distributed resources

within a workflow with the files being stored in distributed data management systems. The middle col-

umn shows components running via central services but several of these services can be used. The right

column depicts components that are running on a central component once for every data life cycle.

A main characteristic is the aspect of combined metadata proximity (see Section 2.2.3). The metadata is

kept near the data (see left cell in Figure 5.5) and a central component (see components in the middle and

lower middle cells in Figure 5.5) is only used for building an index for searchability over the metadata

(see lower right cell in Figure 5.5). This characteristic provides the advantage that the metadata can be

handled in the same way as the data. For example, the metadata can be archived in the same way as the

data. Archiving would be a big problem with a purely central metadata components. A downside of the

combined proximity approach is that the file count is significantly increased when the metadata is stored

in one extra file for each original file. Per default, this is the case within the UNICORE metadata service.

A significant mitigation would be to extend the metadata service to only keep one metadata file for each

directory. This file could include the metadata of all files in the directory.

When the loosely coupled central search index (middle and lower middle cells in Figure 5.5) fails and

is possibly lost, the metadata is still save besides the actual files. The index can simply be rebuilt. A

completely centralized systems would loose the metadata. The data would basically become useless until

the database backup is restored, if a backup exists and if it is sufficiently sophisticated to have survived

the cause of the original failure. The dissertation approach avoids this negative possibility.

The extraction and indexing components are loosely coupled as well. Meaning, if the metadata service

temporarily fails, the metadata can still be extracted and annotated on the workflow level on the High

Performance Computing resources (middle left cell in Figure 5.5). The metadata can later effortlessly

be indexed when the service is operational again. Running the extraction and annotation on a central

component would be more fragile with respect to error situations. This is avoided in the dissertation

approach.

Additionally, more than one metadata service can be employed for indexing and exposure of the index

for searchability. If one index fails, others can be transparently used. This redundancy comes at the

cost of a higher complexity and overhead. But the indexing overhead is completely insignificant, as was
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Figure 5.5: Different resilience classes are depicted. From top to bottom, the rows represent before,
during and after a workflow is running. From left to right, the columns represent components
that run decentralized, central but possibly many and completely centralized. The figure
shows that during workflow runtime (middle left) within the MoSGrid data life cycle only at
the end the central indexing component (middle) is used, but which may be duplicated for
greater resilience. The created index (lower middle) can exist multiple times and is accessed
via the central search interface of MoSGrid (lower right). Favorable resilience characteristics
exist due to the principle of distributed when possible and central where necessary.

shown in Section 5.2.3. The added complexity is invisible and, thus, goes unnoticed by the user. At

the end of the workflow, all connected metadata services are triggered to search for new metadata to be

indexed (middle cell in Figure 5.5) in the specific directory of the user.

5.5 Efficiency of Use

In this chapter the question is investigated how the generic metadata concept and its implementation

facilitate usage efficiency. It is an important point as usability directly leads to a high acceptance among

the target audience of applying scientists.

The central design criterion of the concept and subsequently its implementation was a seamless integra-

tion with complex infrastructures. This was fully achieved. Users notice the added metadata capabilities

while the required added complexity, on the other hand, is completely hidden beneath the surface of the

user interfaces. This seamlessness greatly fosters usability as even for complete novice users an increase

of the hurdle of use is avoided while greatly advancing data management capabilities.
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Figure 5.6: The goals are to fully abstract from and seamlessly integrate with the underlying highly
complex MoSGrid data life cycle. These goals were achieved in an automated and seamless
way. Access to potentially millions of files spread of numerous file server is enabled based
on their content. Thus, a high degree of usability is provided.

Instead of manually having to remember what content each file has and were it is located, the organi-

zation is enabled based on a file content. Otherwise, millions of files spread over numerous file server

would be impossible to manage. The search interface allows to specify information about the content.

The files matching these criteria are returned as results and can seamlessly be utilized as input for fur-

ther workflows. As the metadata was defined in close cooperation with the end users, it is ensured the

metadata search results are immediately useful for the scientists.

An essential part enabling the high usability is full automation. Every underlying metadata feature is

automated. This includes metadata extraction, annotation, and indexing. Other systems, such as EUDAT,

still require the manual annotation of metadata. For users, manual steps are highly annoying and tedious

and constitute a reason to avoid the system. In the metadata concept and implementation at hand, full

automation is incorporated.

Via the abstraction from specific technologies the usability is further increased. When an underlying

metadata system is exchanged by another, this goes unnoticed from the point of users and how they

interact with the system. Through the overall ease-of-use of the metadata capabilities (see Figure 5.6),

scientists are enabled to focus on their science while making transparent use of complex High Perfor-

mance Computing and Big Data infrastructures that fundamentally enable their research.
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6 Conclusion and Outlook

This chapter concludes the thesis and looks ahead.

6.1 Conclusion

The thesis presents an overarching and generic metadata handling concept for scientific data. Utilizing

metadata, the approach facilitates the move towards the next generation of data management within sci-

entific data life cycles. Metadata management in general enables the organization of large amounts of

data with file number in the millions. Instead of only being accessible via names in directory structures,

files can be accessed by their content. Despite the inherent complexity of data contents, the data can

be seamlessly accessed via simple search queries and directly further utilized. The high complexity and

large magnitude of scientific data life cycles is motivated. This subsequently necessitates sophisticated

and integrated technologies for their management [GKG+15]. Based on such technologies, scientists

are enabled to advance their respective state-of-the-art with the combined support of High Performance

Computing and Big Data resources. A multitude of open challenges in this broad data life cycle con-

text was identified. Within the challenges, a major one is that of completely missing or only narrowly

applicable metadata management approaches.

The metadata concept [GGJN14, GBG+14] first specifies multiple advantageous characteristics. The

abstraction of various technologies is heavily utilized to handle the high data life cycle complexity. Data

and metadata formats are integrated in a generic way to enable advanced search capabilities for the

efficient usage by scientists. The concept is inherently scalable within HPC-enabled and Big Data life

cycles. Full automation is provided for extraction, annotation, and indexing of metadata. Second, the

concept provides a design guide that facilitates an understanding of overall data life cycle design aspects

[GDP+15] as well as aspects specific to metadata management. The guide includes recommendations of

proven technologies. The overall concept is generic in the sense that it enables metadata management

to be more quickly and efficiently integrated in concrete data life cycles. The direct usage of metadata

search results is enabled while underlying Big Data and High Performance Computing resources are

seamlessly integrated. Users gain from new capabilities while the added necessary complexity is hidden.

The concept was implemented within the MoSGrid data life cycle [KGG+14, GBB+12, GKG+14].

MoSGrid enables highly complex molecular simulations within the three major computational chemistry

domains. The MoSGrid implementation is HPC and workflow enabled, offers advanced data manage-

ment capabilities with a sophisticated single sign-on architecture throughout all layers [GGK+12]. The

implementation based on the generic approach was seamlessly integrated with this complex data life cy-

cle. The metadata extraction, annotation, and indexing are performed in a fully automatic way [GBG+14].
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A search interface enables finding data based on its content. Furthermore, search results can immediately

be re-used as input within further workflows.

A thorough evaluation of the concept and its implementation was performed [GKJ+ed, GBG+14] with

respect to adaptability, performance, sustainability, resilience, and efficiency of use. The existence of

favorable properties was shown.

On a theoretical level, data life cycle management is advanced by facilitating higher level abstraction

with metadata management. A practical impact is achieved by the implementation within the MoSGrid

data life cycle and the uptake of the concept within the MASi research infrastructure.

6.2 Outlook

The dissertation contributes to the state-of-the-art in facilitating the handling of large amounts of complex

data via metadata. Further advancements include the following.

Based on the contributions and the doctoral research collaborations, the author initiated and coordinated

the proposal of the MASi (Metadata Management for Applied Sciences) research infrastructure project

submitted to the German Research Foundation (DFG). MASi is now funded and led by the author. It

is creating a distributed, generic, and sustainable service for the integrated management of large scale

scientific data based on metadata. The service will be loosely coupled between data centers where the

components are sustainably run locally for the respective communities. MASi aims at long-term sus-

tainability via its involvement in the Research Data Alliance (RDA), the Large Scale Data Management

and Analysis (LSDMA) project, and the Competence Center for Scalable Data Services and Solutions

(ScaDS Dresden/Leipzig). MASi aims at supporting various advanced concepts as detailed in the fol-

lowing.

Multiple data and metadata sources are being integrated with MASi, so users can stage in data from

external data sources and use it in a seamless way. Support for workflow provenance shall be offered

as it is increasingly important to foster scientific reproducibility. The same holds true for persistent

identifiers (PIDs) so data can be uniquely referenced worldwide. Different underlying metadata man-

agement systems will be transparently supported by MASi. This will be enabled by the CDMI (Cloud

Data Management Interface) and OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting)

access standards as well as with support for the iRODS and ICAT systems. For example, the widely used

dCache distributed management systems plans to natively support metadata management and data access

via CDMI.

MASi establishes metadata as the central source of information within a data life cycle. This needs to

be established as a general design principle in data life cycles in general. With increasing data amounts,

the computing power required for extraction is increasing as well. Metadata extraction methods have to

be integrated in a scalable way as close to the data as possible. The dissertation approach includes this

and it is exemplary implemented for the MoSGrid extraction methods. General extraction frameworks

such as Apache Tika need to support scalable execution as well. In addition, pre-existing metadata,

from whatever source available, needs to be seamlessly utilized. Future research also necessitates the
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integration of authentication, authorization, and single sign-on methods via nation-level federations such

as DFN-AAI or on the European level via EduGain. This is essential to further lower barriers of entry by

enabling the re-use of already existing login credentials.

As a central part of advanced data life cycles, metadata management should be resilient and fault tolerant

to a high degree. Usually many distributed components depend on each other. Single points of failure

have to be avoided by, for example, utilizing a combined metadata proximity approach as in the disser-

tation approach. On the one hand, it is decentralized as much as possible with loose coupling. On the

other hand, the approach is centralized as much as necessary. Such an emphasis on resiliency enables

a data life cycle to tolerate certain kinds of errors. When errors occur, users should get error messages

in an understandable form while administrators should get all the details. In MASi, fault tolerance will

additionally be supported by replicating metadata accross participating data centers.

A further research and development direction is to encapsulate even more functionality within scientific

workflows. An example is to define a metadata search term as a workflow parameter. Then, during

workflow enactment, the search query is executed and all files referenced via search results are utilized

as input. A vital factor to enable such an approach is the interoperability and integration of High Perfor-

mance Computing and Big Data systems with metadata management.

The Max Planck Institute of Molecular Cell Biology and Genetics in Dresden develops, builds, and

utilizes high-throughput microscopes with common data rates of 0.85 GB/s and 10 files/s. These vast

amounts of data alone are a significant challenge. An adaption estimation of the dissertation metadata ap-

proach and surrounding technologies for this use case is presented in Section 5.1.2. The author currently

cooperates with the institute towards its implementation.

Exascale is on the horizon in both the computing and data domain. A multitude of challenges arises on

various abstraction levels. These challenges necessitate advanced approaches in data life cycle manage-

ment with metadata management as a vital component [JMPK+15]. The dissertation approach is a step

in paving the way for the efficient management of increasingly large quantities of data towards exascale.
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