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                                                                  Summary 

Despite intense research efforts, the repair of large bone defects is still not satisfactory 

and remains a major challenge in Orthopaedic Surgery. In this context bone tissue engineering 

has emerged as a promising strategy. However, one of the fundamental principles underlying 

tissue engineering approaches is that newly formed tissue must maintain sufficient 

vascularization to support its growth. Thus an active blood vessel network is an essential 

pre-requisite for scaffold constructs to integrate within existing host tissue. Currently, great 

efforts are made to address this problem employing transplantation of vascular cells and 

loading of appropriate biological factors.  

Endothelial progenitor cells (EPCs) are a heterogeneous subpopulation of bone marrow 

mononuclear progenitor cells with potential for differentiation to the endothelial lineage and 

thus vasculogenic capacity. However, clinical studies reported that with the increase of age, 

increased susceptibility to apoptosis and accelerated senescence may contribute to the 

numerical and functional impairments observed in EPCs, which may lead to a reduced 

angiogenic capacity and an increased risk of vascular disease. Hence attention has 

increasingly been paid to enhance mobilization and differentiation of EPCs for therapeutic 

purposes.  

 A large body of evidence indicates that in Traditional Chinese Medicine (TCM) a 

plethora of herbs and herbal extracts are effective in the treatment of vascular diseases such as 

chronic wounds, diabetic retinopathy and rheumatoid arthritis. Thus, it seems rational to 

explore these medicinal plants as potential sources of novel angiomodulatory factors. 

In this thesis we demonstrated that treatment with TCM herbal extracts promote cell 

growth, cell migration, cell-matrix and capillary-like tube formation of BM-EPCs. Among 

these TCM extracts, Salidroside (SAL) and Icariin (ICAR) incubation increased VEGF and 

nitric oxide secretion, which in turn mediated the enhancement of angiogenic differentiation 

of BM-EPCs. A mechanic evaluation provided evidence that SAL stimulates the 

phosphorylation of Akt, mammalian target of rapamycin (mTOR) and ribosomal protein S6 



 

 

kinase (p70S6K), as well as phosphorylated ERK1/2, which is associated with the cell 

migration and tube formation. Furthermore, a pilot in vivo study showed that SAL has the 

potential to enhance bone formation in a murine femoral critical-size bone defects model.  

Another new finding of the present study is that hydrogen peroxide (H2O2)-induced 

cytotoxicity is counteracted by TCM extracts. We found that SAL, Salvianolic acid B (SalB) 

and ICAR significantly abrogated H2O2-induced cell apoptosis, reduced the intracellular level 

of reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate-oxidase 

(NADPH) expression, and restored the mitochondrial membrane potential of BM-EPCs. Our 

data suggest that this protective effect of SalB is mediated by the activation of mTOR, 

p70S6K, 4EBP1, and by the suppression of MKK3/6-p38 MAPK-ATF2 and ERK1/2 

signaling pathways after H2O2 stress. In addition, the investigation also demonstrates that 

ICAR owns the ability to inhibit apoptotic and autophagic programmed cell death via 

restoring the loss of mTOR and attenuation of ATF2 activity upon oxidative stress. 

Based on the outcomes of the present work, we propose SAL, SalB and ICAR as novel 

proanigiogenic and cytoprotective therapeutic agents with potential applications in the fields 

of systemic and site-specific tissue regeneration including ischaemic disease and extended 

musculoskeletal tissue defects. 

 

 

 

 

 

 

 

 



 

 

                                                           Zusammenfassung 

Trotz intensiver Forschung stellt die Behandlung von großen Knochendefekten die 

regenerative Medizin vor eine große Herausforderung. Zahlreiche Knochenersatzmaterialien 

sowie Methoden zur Regeneration von Knochengewebe durch Tissue Engineering haben sich 

in der Praxis als wirksame Strategie herausgebildet. Um größere Knochendefekte langfristig 

erfolgreich durch regenerierbare Implantate ersetzen zu können, muss neu gebildetes Gewebe 

jedoch ausreichend durch ein Gefäß-/ Kapillarnetz vaskularisiert werden, um eine 

ausreichende Versorgung des Gewebes zu gewährleisten. Daher wird die Entwicklung 

vaskularisierter Knochenimplantate als ein aussichtsreicher Ansatz für den Ersatz großer 

Knochendefekte angesehen. Die Transplantation von Gefäßzellen in Kombination mit 

Faktoren die die Knochenregeneration stimulieren, stellt ein vielversprechendes Konzept dar. 

Endotheliale Vorläuferzellen (EPCs) sind eine heterogene Subpopulation von 

mononukleären Vorläuferzellen aus dem Knochenmark mit dem Potenzial zur 

Differenzierung in die endotheliale Linie. Klinische Studien zeigten, dass mit der Zunahme 

des Alters, eine erhöhte Anfälligkeit für programmierten Zelltod (Apoptose) und eine 

beschleunigte Alterung im Zusammenhang mit in EPCs beobachteten numerischen und 

funktionalen Störungen steht. Dies führt zu einer verminderten angiogenen Kapazität und 

kann zu einem erhöhten Risiko von Gefäßkrankheit beitragen. Daher hat sich die verstärkte 

Aufmerksamkeit bezahlt gemacht, die Mobilisierung und Differenzierung von EPCs für 

therapeutische Zwecke zu verbessern. 

Eine große Anzahl von Studien hat gezeigt, dass sich in der traditionellen chinesischen 

Medizin (TCM) eine Vielzahl von Kräutern und Kräuterextrakten bei der Behandlung von 

vaskulären Erkrankungen, wie chronischen Wunden, diabetischer Retinopathie und 

rheumatoider Arthritis bewährt haben. Diese Heilpflanzen als potentielle Quellen für 

neuartige angiomodulatorische Faktoren zu erforschen, stellt ein innovatives Konzept dar. 

In dieser Arbeit wurde gezeigt, dass die Behandlung mit TCM das Zellwachstum, die 

Zellmigration, eine Zell-Matrix-und Kapillar-ähnlichen Gefäßverzweigungen von EPCs 



 

 

fördert. Eine Inkubation mit Salidrosid (SAL) und Icariin (ICAR) erhöhte die Vascular 

Endothelial Growth Factor (VEGF)- und Stickoxid-Sekretion, das wiederum eine Verstärkung 

der angiogenen Differenzierung von EPCs vermittelte. Mechanische Untersuchungen belegten, 

dass SAL die Phosphorylierung der Proteinkinase B (Akt), dem Zielgen von Rapamycin 

(mTOR) und der ribosomalen Protein S6 Kinase (p70S6K) sowie der mitogen-aktivierten 

Proteinkinasen ERK1/ 2 stimulierte. Darüber hinaus zeigten erste in-vivo-Experimente, dass 

SAL deutlich die Knochenbildung in kritischen Knochendefekten von immundefizienten 

Mäusen steigerte. 

Eine weitere neue Erkenntnis der vorliegenden Studie ist, dass Wasserstoffperoxid (H2O2) 

-induzierter Zytotoxizität durch TCM entgegengewirkt werden kann. SAL, Salvianolsäure B 

(SalB) und ICAR minimierten signifikant die H2O2 -induzierte Apoptose, reduzierten die 

Bildung intrazellulärer reaktiver Sauerstoffspezies (ROS) und die Expression von 

Nicotinamidadenindinucleotidphosphat-Oxidase (NADPH) in EPCs. Die Ergebnisse belegen, 

dass die protektive Wirkung von SalB durch die Aktivierung von mTOR, p70S6K, 4EBP1 

und durch die Unterdrückung der MKK3/6-p38 MAPK - ATF2 und ERK1/2 Signalwege nach 

H2O2 Stress vermittelt wird. Die Untersuchungen zeigten des Weiteren, dass ICAR die 

Fähigkeit besitzt apoptotisch und autophagisch induzierten programmierten Zelltod zu 

inhibieren, indem es den Verlust von mTOR ausgleicht und eine ATF2 Aktivität, induziert 

durch oxidativem Stress, minimiert. 

Basierend auf den Ergebnissen der vorliegenden Studie etablierten sich SAL, SalB und 

ICAR als neuartige proanigiogene und zellschützende therapeutische Mittel. Möglichen 

Anwendungen könnten sich in den Bereichen der systemischen und ortsspezifischen 

Geweberegeneration einschließlich ischämischer Erkrankungen und Muskel-Skelett 

ausgedehnten Gewebedefekten finden. 
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1. INTRODUCTION 

 

                1.1 Current concepts and future directions for repair of bone defect  

Bone regeneration is a complex, well-orchestrated biological process that comprised of 

a series of events of bone induction and conduction, involving a number of cell types, 

intracellular and extracellular molecular-signaling pathways, with a definable temporal and 

spatial sequence, in an effort to optimize skeletal repair and restore skeletal function (Cho et 

al., 2002; Einhorn, 1998). Multiple factors regulate this cascade of events by affecting 

different sites in the osteoblast and chondroblast lineage through various processes such as 

migration, proliferation, chemotaxis, differentiation, inhibition, and extracellular protein 

synthesis (Colnot et al., 2005).  

Bone possesses the intrinsic regeneration capacity as part of the repair process in 

response to injury, during skeletal development or continuous remodeling throughout adult 

life (Dimitriou et al., 2011). However, there are complex clinical conditions requires bone 

regeneration in large quantity, such as for skeletal reconstruction of large bone defects 

created by trauma, infection, tumor resection and congenital malformation, or cases in 

which the regenerative process is compromised, including avascular necrosis, atrophic 

non-unions and osteoporosis (Dimitriou et al., 2011; Jimi et al., 2012).  

At present, the gold standard for the reconstruction of large bone defects is the use of 

autogenous bone grafts. While autogenous bone graft is the most effective clinical method, 

surgical stress to the part of the bone being extracted and the quantity of extractable bone 

limit this method. One alternative to autograft is allograft, whose surfaces support bone 

formation and allow structural restoration of the skeleton. However, allograft bone lacks 

viable osteoprogenitor cells and has low levels of growth factors.  

With the ongoing research in all related fields, treatment strategies should aim to 

address all prerequisites for optimal bone healing, including osteoconductive matrices, 
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osteoinductive factors, osteogenic cells and mechanical stability, following the ‘diamond 

concept’ suggested for fracture healing (Giannoudis et al., 2007).  

 

                                    1.2 The role of angiogenesis in bone healing 

Angiogenesis is the formation of new blood vessels occurring in an adult through 

migration and proliferation of endothelial cells (ECs), and tubular structures formation, 

which plays a role in many physiological processes (i.e. remodeling of ischemic muscle, 

wound healing, fracture repair) as well as in pathological process such as rheumathoid 

arthritis and metastases (Albrecht-Schgoer et al., 2012; Harris et al., 2013; Mobasheri, 2013). 

Intravital microscopy and angiographic analysis in bone chamber models indicate that 

angiogenesis temporally precedes osteogenesis, as predicted by Trueta’s early work (Trueta 

and Buhr, 1963). In bone, vasculature is essential for cartilage resorption and angiogenesis 

temporally precedes osteogenesis: the origin of bone is the artery carrying calcium and 

phosphate ions. Osteogenesis takes place near newly formed vessels that mediate delivery of 

osteoprogenitor cells, secrete mitogens for osteoblasts, and transport nutrients and oxygen. 

Inadequate or inappropriate bone vascularity is associated with decreased bone formation 

and bone mass. Risk factors for impaired bone healing include: poor blood supply, poor 

apposition of fractured bone ends, interposition of soft tissues or necrotic bone between 

bone fragments, inadequate immobilization, infection, drug use (e.g. corticosteroid therapy 

or nicotine), advanced age, and systemic disorders, such as diabetes or poor nutrition 

(Einhorn, 1995). Negative effects on the vascular system might be the mechanism whereby 

many other risk factors delay or impair bone healing (Glowacki, 1998). 

In the mature established vasculature, the endothelium plays a pivotal role in the 

maintenance of homeostasis of the surrounding tissue providing the communicative network 

to neighbouring tissues to respond to requirements as needed. Furthermore, the vasculature 

provides the necessary factors such as growth factors, hormones, cytokines, chemokines and 

metabolites needed by the surrounding tissue and acts, when needed, as a barrier to limit the 
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movement of molecules and cells. A fully functional vascular network within 

bone-engineered constructs is crucial and remains a major challenge in bone tissue 

engineering (Grellier et al., 2009). After a bone construct is implanted in vivo, induction of 

initial vascularization is important: in particular, the survival of osteogenic cells in the 

interior of the scaffold is often threatened by the limited extent of initial vascularization 

(Kneser et al., 1999; Kneser et al., 2006). The implanted construct requires ongoing 

vascularization to ensure survival and integration, since it takes weeks for the host’s blood 

circulation to establish sufficient supply to the implant (Jain, 2003; Kaigler et al., 2006; 

McCarthy, 2006). Several strategies have been proposed to address this problem. For 

example, the addition of vascular cells such as ECs might offer several advantages over 

seeding of osteogenic cells alone (Unger et al., 2007).  

However, as the bone development and remodeling depend on complex interactions 

between bone-forming osteoblasts and other cells present within the bone microenvironment, 

particularly ECs that may be pivotal members of a complex interactive network acted on 

bone, the mode of communication between the bone cells and vascular cells, at the 

molecular level, has yet to be fully elucidated. 
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Figure 1. A schematic diagram of endochondral bone formation. (A) Mesenchymal cells condense and 

(B) differentiate into chondrocytes forming an avascular cartilage model of the future bone. (C) At the 

centre of condensation the chondrocytes cease proliferating and become hypertrophic. (D) Perichondral 

cells adjacent to the hypertrophic chondrocytes differentiate into osteoblasts forming a bone collar. The 

hypertrophic cartilage regulates the formation of mineralised matrix; the release of angiogenic factors to 

attract blood vessels and undergoes apoptosis. (E) The coordination of osteoblasts and vascular invasion 

form the primary spongiosa. The chondrocytes continue to proliferate with concomitant vascularization 

resulting in a coordinated process that lengthens the bone. Osteoblasts of the bone collar will eventually 

form cortical bone; while osteoblasts precursors located in the primary spongiosa will eventually form 

trabecular bone. (F) At the ends of the bone, secondary ossification centres develop through cycles of 

chondrocyte hypertrophy, vascular invasion and osteoblast activity. Columns of proliferating 

chondrocytes form in the growth plate beneath the secondary ossification centre. Finally, expansion of 

stromal cells and hematopoietic marrow starts to take place in the marrow space (Adapted from 

Kronenberg, 2003 and Horton, 1990). 
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                             1.3 Bone regeneration induced by angiogenic factors 

With improved understanding of fracture healing and bone regeneration at the 

molecular level, a number of key molecules that regulate this complex physiological process 

have been identified, and are already in clinical use or under investigation to enhance bone 

repair. 

1.3.1 Vascular endothelial growth factor 

Previous studies have shown that endogenous VEGF is important for endochondral 

bone formation (Gerber et al., 1999; Haigh et al., 2000; Zelzer et al., 2002). VEGF is 

expressed before blood vessels are detected in developing mouse bones, and this expression 

is tightly associated with cells involved in bone formation (osteoblasts) (Zelzer et al., 2002). 

Inhibition of VEGF leads to expansion of the hypertrophic zone, loss of metaphyseal blood 

vessels and impaired trabecular bone formation in developing mice (Gerber et al., 1999; 

Haigh et al., 2000) and monkeys (Ryan, 1999). Thus, during development, VEGF is 

essential for blood vessel invasion of hyaline cartilage, growth late morphogenesis, and 

cartilage remodeling.  

It has been shown that both osteoblasts and hypertrophic chondrocytes express high 

levels of VEGF, thereby promoting the invasion of blood vessels and transforming the 

avascular cartilaginous matrix into a vascularized osseous tissue (Keramaris et al., 2008). 

VEGF promotes both vasculogenesis, i.e. aggregation and proliferation of mesenchymal 

stem cells (MSCs) into a vascular plexus, and angiogenesis, i.e. growth of new vessels from 

already existing ones (Kanczler and Oreffo, 2008; Street et al., 2002). Hence, VEGF plays a 

crucial role in the neoangiogenesis and revascularization at the fracture site. 

Given the importance of VEGF in normal bone repair, treatment with exogenous 

VEGF might be expected to promote angiogenesis and bone formation after injury- a 

hypothesis that is supported by several studies. Local administration of exogenous VEGF, in 
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the absence of a scaffold or progenitor cells, enhances bone formation in mouse femur 

fractures and rabbit radial critical-sized defects (Street et al., 2002).  

 

1.3.2 The transforming growth factor superfamily 

This superfamily includes most factors known to induce cartilage and bone formation 

during development, including TGF-βs, BMPs, growth and differentiation factors (GDFs) 

and activins. By virtue of shared receptors and structural homology, many of the members 

of this large family have overlapping activities, including stimulation of mesenchymal stem 

cell differentiation into chondrocytes or osteoblasts. However, their distinct expression 

pattern during bone repair, the developmental phenotypes observed when the genes are 

mutated or deleted and their activities when added exogenously in animal models or humans 

suggest subtly distinct roles in the process of bone repair. 

Transforming growth factor-β 

TGF-β, the prototypical member of this superfamily, is one of the most abundant 

cytokines present in bone matrix and exerts a dual role on osteoblastic bone formation. 

TGF-β stimulates early osteoblast differentiation by promoting recruitment and proliferation 

of osteoblast precursors and the expression of matrix proteins; on the other hand, it inhibits 

late osteoblast differentiation and mineralization (Alliston et al., 2001; Janssens et al., 2005; 

Maeda et al., 2004; Tang et al., 2009). TGF-β is a potent chemotactic stimulator of 

mesenchymal stem cells (MSCs) and it enhances proliferation of MSCs, preosteoblasts, 

chondrocytes and osteoblasts (Lieberman et al., 2002). It also induces the production of 

extracellular proteins such as collagen, proteoglycans, osteopontin, osteonectin, and alkaline 

phosphatase (Sandberg et al., 1993). Its main role is thought to be during mchondrogenesis 

and endochondral bone formation (Barnes et al., 1999). TGF-β may also initiate signaling 

for BMP synthesis by the osteoprogenitor cells, while it may inhibit osteoclastic activation 

and promote osteoclasts apoptosis (Mundy, 1996). 
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Bone morphogenetic proteins 

Several BMPs have been found to induce ectopic bone, due, at least partly, to 

stimulation of mesenchymal and osteoprogenitor cell proliferation and differentiation 

(Barnes et al., 1999; Reddi, 2001). Early pre-clinical studies indicated that BMP-2 

stimulates bone formation in critical size defects, fractures and spinal fusions (Egermann et 

al., 2006). In a rabbit ulna model, BMP-2 in a collagen sponge accelerates repair (Bouxsein 

et al., 2001) and overcomes the inhibitory effects of chronic glucocorticoid therapy on bone 

repair (Luppen et al., 2002). In rabbit tibial fractures, BMP-2 accelerates repair only in 

non-stable fractures, not in stable fractures (Bax et al., 1999). Injection of BMP-2 locally 

over the surface of calvariae of mice induces periosteal bone formation without a prior 

cartilage phase (Chen et al., 1997).  

 

1.3.3 Fibroblast growth factor 

Fibroblast Growth Factors (FGFs) belong to a family of polypeptides that regulate 

several important cellular processes. FGFs bind to high affinity FGF receptors (FGFR), 

leading to FGFR dimerization, phosphorylation  of  intrinsic  tyrosine residues  and  

activation  of  several  signal transduction  pathways (Beenken and Mohammadi, 2009).  

In the skeleton, FGF/FGFR signaling is an important regulator of prenatal and postnatal 

skeletal development. Cellular and genetic studies in mice and humans have revealed that 

FGFs control chondrogenesis and osteoblastogenesis by modulating the recruitment and 

activity of chondroblasts and cells of the osteoblast lineage (Dailey et al., 2005; Marie, 2003; 

Ornitz, 2005). During bone healing, FGFs are synthesized by monocytes, macrophages, 

mesenchymal cells, osteoblasts and chondrocyte. FGFs are identified during the early stages 

of fracture healing and they play a critical role in angiogenesis and MSC mitogenesis. 

α-FGF mainly effects chondrocyte proliferation and is probably important for chondrocyte 

maturation, whilst ß-FGF is expressed by osteoblasts and is generally more potent than 
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α-FGF (Lieberman et al., 2002). In a canine tibial osteotomy model, a single injection of 

FGF-2 was associated with an early increase in callus size (Nakamura et al., 1998). 

 

                           1.4 Angiogenic potential of endothelial progenitor cells 

In the early embryo, mesodermal stem cells in the bone marrow (BM) differentiate to 

form haemangioblasts, the common precursor of haematopoietic stem cells and 

endothelial-lineage angioblasts (Adams and Alitalo, 2007; Sirker et al., 2009). During 

vasculogenesis these immature but lineage-committed angioblasts, termed endothelial 

progenitor cells (EPCs), migrate and congregate into clusters, called blood islands, forming 

the primary vascular plexus from which a complex microcirculation arises (Paleolog, 2005; 

Risau, 1997). In contrast, adult vascular growth occurs primarily through angiogenesis 

whereby new capillaries develop endogenously from fully-differentiated endothelial cells 

(ECs) within existing vessels. Circulating EPCs share phenotypic characteristics with 

embryonic EPC (Hristov and Weber, 2004) and incorporate into sites of neovascularisation, 

suggesting a role for EPCs in angiogenic renewal (Iwami et al., 2004; Zhang et al., 2006a). 

In vitro, EPCs differentiated into endothelial lineage cells, and in animal models of ischemia, 

heterologous, homologous, and autologous EPCs were shown to incorporate into sites of 

active neovascularization. This finding was followed by diverse identifications of EPCs by 

several groups (Gunsilius et al., 2001; Lin et al., 2000; Peichev et al., 2000) using equivalent 

or different methodologies. Recently, similar studies with EPCs isolated from human cord 

blood have demonstrated their analogous differentiation into ECs in vitro and in vivo 

(Murohara et al., 2000; Nieda et al., 1997). These findings, together with other recent 

studies, are consistent with the notion of postnatal “vasculogenesis”, which is de novo 

vessel formation by in situ incorporation, differentiation, migration, and/or proliferation of 

BM-derived EPCs.  



14 

 

EPCs express endothelial-specific markers, including VEGF, vascular endothelial 

growth factor receptor 2 (VEGFR2), PECAM-1 (CD31), CD133, VE-cadherin, E-selectin 

and von Willebrand factor (vWF), which have various roles in cell-cell adhesion, vascular 

permeability and the modulation of other cellular responses during angiogenesis (Asahara et 

al., 1997; Michaud et al., 2006). Indeed, EPCs are implicated in angiogenesis stimulated by 

conditions such as coronary artery disease and myocardial infarction, confirmed by clinical 

observations of EPC mobilisation in such patients and incorporation into foci of 

pathological neovascularisation (Ding et al., 2007; Kawamoto and Asahara, 2007).  

Several studies have demonstrated that bone marrow-derived EPCs (BM-EPCs) 

functionally contribute to vasculogenesis during wound healing (Gill et al., 2001), limb 

ischemia (Iwaguro et al., 2002; Kalka et al., 2000), postmyocardial infarction (Edelberg et 

al., 2002; Shintani et al., 2001), endothelialization of vascular grafts (Bhattacharya et al., 

2000; Gill et al., 2001; Shi et al., 1998), or physiological cyclic organogenesis of 

endometrium (Asahara et al., 1999) under the influence of appropriate cytokines, growth 

factors and/or hormones through the autocrine, paracrine, and/or endocrine systems. 

Chemical stimuli may, at least in part, drive the response of EPCs during angiogenesis. 

These stimuli can be released from surrounding tissues, i.e. from within the 

microenvironment, or from the endothelial cells themselves. Indeed, it has been shown in 

hypoxic wounds of diabetic patients that EPCs in the BM respond by following chemokine 

gradients, resulting in their homing to sites of hypoxia where they can participate in 

neovascularisation (Gallagher et al., 2007). Consequently, the microenvironment in which 

progenitor cells are cultured is critical to their ability to maintain their progenitor status, i.e. 

to self-renew and give rise to differentiated cell types as and when recruited to do so.  

Nevertheless, current approaches to angiogenic therapies are problematic. Endogenous 

approaches most likely rely on the recruitment of circulating EPCs, and the delivery of a 

single pro-angiogenic substance is insufficient to elicit the complete and prolonged response 

necessary for effective angiogenesis (Milkiewicz et al., 2006; Williams et al., 2006). 
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Exogenous therapies involve administration of allogeneic donor EPCs, which with poor 

HLA matching leads to increased immune rejection resulting in reduced transplantation 

efficiency (Garmy-Susini and Varner, 2005; Shantsila et al., 2007). Furthermore, clinical 

studies reported that with the increase of age, increased susceptibility to apoptosis and 

accelerated senescence may contribute to the numerical and functional impairments 

observed in EPCs (Hoetzer et al., 2007; Kushner et al., 2009), which ultimately lead to the 

increased risk of vascular diseases and the prolonged and often complicated recovery from 

acute vascular events (Dimmeler and Zeiher, 2004; Scheubel et al., 2003). What’s more, the 

reduced levels of EPCs and functional impairment of endothelium are often indicated in 

patients with diabetes and cardiovascular disease (De Vriese et al., 2000; Vasa et al., 2001). 

Therefore, attention has increasingly been paid to enhance mobilization and differentiation 

of EPCs. 
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Figure 2. Kinetics of endothelial progenitor cells for neovascularization. Endothelial progenitor 

cells (EPCs) circulate in adult human peripheral blood and are mobilized from bone marrow by 

cytokines, growth factors, and ischemic conditions. Vascular injury is repaired by both angiogenesis 

and vasculogenesis mechanisms. Circulating EPCs contribute to repair of injured blood vessels 

mainly via a vasculogenesis mechanism. (Adapted from Murasawa, 2005). 

 

                                       1.5 Interaction of endothelium and bone 

In the context of the intricate relationship between angiogenesis and osteogenesis, 

communication between MSC and EC is one of the most important cellular interactions that 

orchestrates bone formation (Brandi and Collin-Osdoby, 2006; Carano and Filvaroff, 2003). 

Several mechanisms are involved: interaction between membrane molecules of two adjacent 

cells (adherens and tight junctions); gap junction communications which form direct 

cytoplasmic connections; and secretion of diffusible factors from cells, or from the 

extracellular matrix (Grellier et al., 2009). It has been demonstrated that ECs co-cultured 

with MSCs are able to establish microcapillary-like structures in a three dimensional 

spheroids (Rouwkema et al., 2006). Previous studies indicated that ECs could effect certain 

levels of osteogenesis, releasing bone morphogenetic proteins (Kaigler et al., 2005) and 

controlling the transcription factor Osterix for bone cell differentiation (Klinkner et al., 

2006).  

The intercellular signaling pathways of ECs have also been implicated in the functions 

of the osteoclastic lineage. For the recruitment of osteoclasts to areas of bone resorption, 

osteoclast precursors need to adhere and migrate through the endothelium in a tightly 

regulated mechanism similar to that of the systematic process of transendothelial migration 

of leukocytes and monocytes (Imhof and Dunon, 1997). It has been hypothesized that the 

endothelium may direct osteoclast precursor to specific areas of bone to help tightly control 

the resorptive process (Parfitt, 2000). Therefore, alterations in the micro-vascular supply 

network will ultimately affect the tightly regulated resorption sequence resulting in 
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decreases in bone formation, regeneration and repair as well as altered osteointegration of 

orthopaedic and dental implants (Burkhardt et al., 1987; Glowacki, 1998). 

 Bone ECs display their own distinctive characteristics, with a capacity to respond to 

bone regulators such as cytokines, estrogen and PTH (Streeten and Brandi, 1990; Streeten et 

al., 1989). In addition, bone endothelial cells secrete high levels of hormone B-type 

Natriuretic peptide (Bordenave et al., 2002) and express stromal cell-derived factor-1 

(SDF-1) (Imai et al., 1999).  

VEGF lead to an upregulation of BMP-2 in microvascular endothelial cells (Bouletreau 

et al., 2002) demonstrating the intricate signaling pathways affecting the interactive 

relationship of endothelial cells and cells of the osteoblastic lineage. The in vivo 

overexpression of HIF-1α showed striking and progressive increases in bone volume, and 

the amount of bone in the axial skeleton was directly proportional to the amount of skeletal 

vasculature (Wang et al., 2007). This study has established that the upregulation of HIF-1α 

and VEGF in osteoblasts specifically promoted bone formation secondarily to angiogenesis, 

clarifying the importance of osteoblast-derived VEGF in the coupling of angiogenesis to 

osteogenesis. Moreover, hypoxia lead to an upregulation of BMP-2 in microvascular 

endothelial cells (Bouletreau et al., 2002) demonstrating the intricate signaling pathways 

affecting the interactive relationship of endothelial cells and cells of the osteoblastic lineage.  

 

                                    1.6 Endothelial death due to oxidative stress 

The endothelium is located between the blood stream and the vessel wall which is the 

largest organ in the body. The endothelium regulates vascular homoeostasis through local 

elaboration of mediators that modulate vascular tonus and growth, as well as platelet 

adhesion, inflammation, fibrinolysis (Vane et al., 1990). The endothelium regulates vascular 

homoeostasis through local elaboration of mediators that modulate vascular tonus and 

growth, as well as platelet adhesion, inflammation, fibrinolysis (Vane et al., 1990). Vascular 
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endothelial cells normally perform several key homeostatic functions such as keeping blood 

fluid, regulating blood flow thereby modulating tissue macromolecule and fluid exchange. 

Endothelial dysfunction was first characterized in humans in 1986 by Ludmer et al, who 

demonstrated that atherosclerotic coronary arteries contracted in response to intracoronary 

infusion of acetylcholine, while normal coronaries showed dilatation (Ludmer et al., 1986). 

Endothelial dysfunction is frequently present in common chronic degenerative disorders, 

such as diabetes, hypertension and coronary artery disease (Brunner et al., 2005). The initial 

state of endothelial dysfunction is also considered as an early stage of atherosclerosis, 

finally leading to clinical manifestations like coronary artery disease. Multiple risk factors 

can cause endothelial injury or death including oxidative (Yamada et al., 2010), 

endoplasmic reticulum (Kim et al., 2007; Matsushita et al., 2011), and genotoxic stress 

(Basuroy et al., 2013), as well as activated pathways of injury mediated by the innate and 

adaptive immune systems.  

Interestingly, vascular endothelium is specifically sensitive to oxidative stress, and this 

is one of the mechanisms that causes endothelial dysfunction in frequent cardiovascular 

diseases and disorders, including atherosclerosis and acute coronary syndromes (Anderson 

et al., 1995; Libby, 2001). Notably, both the endothelium and the outer adventitial layer 

themselves initiate potent oxidative stress reactions in case of injury (Sorescu et al., 

2002).The mechanisms by which oxidative stress mediates alterations in vascular cell 

function are complex. Oxidative stress increases vascular endothelial permeability and 

promotes inflammatory response - a condition that is coupled with alterations in endothelial 

signal transduction and redox-regulated transcription factors (Beswick et al., 2001; Lee et al., 

2004; Orr et al., 2007). In addition, there is growing pathophysiological evidence that 

overproduction and accumulation of reactive oxygen species (ROS) leads to cell injury 

mediated by specific cellular macromolecules (lipids, proteins, and nucleic acids) that 

activate proatherogenic mechanisms (Fleury et al., 2002; Venkatesh et al., 2009). Oxidative 

stress-induced apoptosis is suggested to be dependent on mitochondrial dysfunction 

including mitochondrial derived-ROS. Thus, antioxidant therapy can be effective in 
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preventing oxidative stress-induced cell injury. However, the limited success of currently 

available antioxidant therapeutic agents (e.g. metalloporphyrins and catalytic antioxidants) 

expedites the development of innovative drugs.  

 

 

Figure 3. Molecular sources of vascular oxidative stress and pharmacologic intervention strategies. 

Vascular enzymes such as NADPH oxidase 2 (1), xanthine oxidase (2), and uncoupled endothelial nitric 

oxide synthase (3) can promote the production of reactive oxygen species (ROS) considerably. 

Eventually, these processes contribute to the development of endothelial dysfunction and vascular 

damage. Established and novel cardiovascular drugs, as well as dietary flavonoids, can attenuate cellular 

ROS concentrations via direct or indirect mechanisms. ACE: angiotensin-converting enzyme; Ang: 

angiotensin; AT1: Ang II type 1; CaM: calmodulin; ET-1: endothelin 1; FAD: flavindenine dinucleotide; 
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FMN: flavinmononucleotide; L-Arg: L-arginine; L-Cit: L-citrulline; PDGF: platelet -derived growth 

factor; TGF-β: transforming growth factor-β. (Adapted from Weseler, 2010) 

 

                                            1.7 ROS, antioxidant and signaling 

Reactive oxygen species (ROS), a heterogeneous population of biologically active 

intermediates, are generated as by-products of the aerobic metabolism and exhibit a dual 

role in biology. When produced in controlled conditions and in small amount, ROS may 

function as signaling intermediates, contributing to critical cellular functions such as 

proliferation, differentiation, and cell growth. However, ROS overproduction and, 

particularly, the formation of specific reactive species, inflicts cell death and tissue damage 

by targeting vital cellular components such as DNA, lipids, and proteins, thus arising as key 

players in disease pathogenesis.  

The most potent pathway for generating ROS is catalyzed by the phagocyte oxidase 

(Phox) complex, which is expressed by neutrophils and macrophages. In addition to Phox, 

ECs also express homologous nonphagocyte NADPD-dependent oxidase (Nox) complexes. 

Rather than contribute to EC barrier function and vascular remodeling (Rhee et al., 2000), 

endogenous Nox enzymes have also been considered to cause EC dysfunction in the 

pathogenesis of hypertension, atherosclerosis, cardiac hypertrophy, and heart failure 

(Keaney, 2005). Increasing evidence supports the idea that ROS generated from 

mitochondria significantly contribute to EC dysfunction and the progression of 

atherosclerosis (Nishikawa et al., 2000).  

The maintenance of intracellular redox homeostasis is dependent on a complex web of 

antioxidant molecules. These antioxidants include low molecular weight molecules such as 

glutathione, present in millimolar concentrations within cells, as well as an array of protein 

antioxidants that each has specific subcellular localizations and chemical reactivities. One 

important and emerging theme is that antioxidant proteins are not merely passive disposers 
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of intracellular oxidants but rather active participants in redox signaling. One of the earliest 

descriptions of this trend emerged from the interaction between thioredoxin (Trx) and the 

apoptosis signal-regulating kinase (ASK-1) (Saitoh et al., 1998). It had been previously 

known that agents such as TNF that activate ASK1 also stimulate ROS production. The link 

between ROS production and the subsequent activation of ASK1-dependent signaling 

appears to involve a redox-dependent interaction between ASK1 and Trx (Yamamoto et al., 

2003). 

Vascular cell dysfunction can be caused by dysbalance between mitogen activated 

protein kinase (MAPK) signaling and the redox state of vascular ECs. Different members of 

the MAPK family, such as extracellular signal-regulated kinases (ERKs), c-Jun N-terminal 

kinases (JNKs), and p38 mitogen-activated protein kinases (p38 MAPK) play important 

roles in the coordination of ROS-induced cellular stress responses (Matsuzawa and Ichijo, 

2008). Both duration and magnitude of toxicant exposure is suggested to be proportional to 

the state of MAPK activation thereby being determinative for the cell’s fate (Dickinson et 

al., 2002). As ROS are generated mainly as byproducts of mitochondrial respiration, 

mitochondria are thought to be the primary target of oxidative damage. Increasing evidence 

indicates that mitochondrial damage and dysfunction contribute to the pathological 

processes underlying the vascular disease (Ballinger et al., 2002; Knight-Lozano et al., 2002; 

Mercer et al., 2010). Mitochondrial dysfunction may lead to the activation of a series of 

caspases, and the subsequent events of apoptosis, e.g. the cleavage of poly (ADP-ribose) 

polymerase (PARP), a downstream substrate of activated caspases, protects DNA from 

oxidative damage. Dysregulation of any of these phenotypes in human ECs alters cell 

function thereby predisposing to vascular pathology. 

ROS are also known to affect proteins, such as NF-κB, Akt, ERK, CREB, and the 

EGF-receptor, in a manner which is thought to have a positive role in cell survival or 

proliferation (Bowie and O'Neill, 2000; Fantz et al., 2001; Huang et al., 2001; Salsman et al., 

2001; Suzaki et al., 2002). If damage to DNA or other cellular constituents is too great to 

repair, organisms have evolved mechanisms to promote apoptosis.  
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                                                 1.8 ROS regulate autophagy 

Autophagy is a self-digesting mechanism responsible for removal of long-lived 

proteins, damaged organelles, and malformed proteins during biosynthesis by lysosome 

(Baehrecke, 2005; Kondo et al., 2005). A body of evidence demonstrates that autophagic 

process is meant for regulating diverse cellular functions including growth, differentiation, 

response to nutrient deficit and oxidative stress, cell death, and macromolecule and 

organelle turnover (Klionsky et al., 2005; Massey et al., 2004).  

Autophagy begins with an isolation membrane, also known as a phagophore that is 

likely derived from lipid bilayer contributed by the endoplasmic reticulum (ER) and/or the 

trans-Golgi and endosomes (Axe et al., 2008; Simonsen and Tooze, 2009), although the 

exact origin of the phagophore in mammalian cells is controversial. This phagophore 

expands to engulf intracellular cargo, such as protein aggregates, organelles and ribosomes, 

thereby sequestering the cargo in a double-membraned autophagosome (Mizushima, 2007). 

The loaded autophagosome matures through fusion with the lysosome, promoting the 

degradation of autophagosomal contents by lysosomal acid proteases. Lysosomal permeases 

and transporters export amino acids and other by-products of degradation back out to the 

cytoplasm, where they can be re-used for building macromolecules and for metabolism 

(Mizushima, 2007). 

Conserved from yeast to humans, autophagy occurs at low basal levels to maintain 

cellular homeostasis through cytoplasmic and organelle turnover. For example, an animal 

model of Atg5-deficient mice, although nearly normal at birth, they cannot survive the early 

neonatal starvation period: they have reduced circulating amino acids and decreased cardiac 

ATP (Hamacher-Brady et al., 2006). Under most circumstances, autophagy mechanism 

constitutes a stress adaptation pathway that protects cell survival. An apparent paradox is 

that autophagy is also considered a form of nonapoptotic programmed cell death called 

“programmed cell death type two” (PCD II) or “autophagic” cell death, which is 

characterized by morphologic and molecular features that are distinct from apoptosis (PCD I) 
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(Maiuri et al., 2007). This type of cell death has been defined by morphological criteria, but 

it is now clear that the mere presence of autophagosomes in dying cells is not sufficient to 

distinguish “cell death with autophagy” from “cell death by autophagy”.  

Certain cellular stresses can induce autophagy formation, such as oxidative stress. ROS 

are essential for autophagosome formation under starvation conditions through targeting 

cysteine protease HsAtg 4, an autophagy-related gene, leading to cell survival. However, 

little is known about the role of ROS in autophagy-induced cell death.  

High levels of ROS induce cell death, which often involves apoptosis through caspase 

activation (Pelicano et al., 2004). The NF-kB transcription factor could repress 

ROS-mediated autophagy. One study showed that tumor necrosis factor a-induced 

autophagy through ROS production in the absence of NF-kB activation but with NF-kB 

activation autophagy is repressed (Djavaheri-Mergny et al., 2007). Autophagy was involved 

in this pathway by the finding that siRNA knockdown of two proteins known to regulate 

autophagy, beclin1 and Atg7, reduced cell death (Ichimura et al., 2000; Liang et al., 1999). 

In another study, autophagy was implicated in the death of lipopolysaccharide 

(LPS)-activated macrophages. Treatment of these cells with the caspase inhibitor Z-VAD 

blocked classic apoptosis but nevertheless induced cell death in a caspase-independent 

pathway, suggested to involve autophagy (Xu et al., 2006). In addition, Bcl-2 directly 

associates with Beclin-1-suppressing autophagy (Luo and Rubinsztein, 2010). Bcl-2 also 

contributes to the regulation of the type III PI3-K and autophagy through attenuating ROS 

production. Hence, Beclin-1 regulates autophagy through integration of signals from many 

pathways in response to ROS (Lipinski et al., 2010). Therefore, ROS can regulate 

autophagy, depending on the severity of oxidative stress, suggesting regulation of 

intracellular redox status that controls autophagy (Yang et al., 2008). 

A role for autophagy in response to ROS is highlighted by the accumulation of oxidized 

proteins in aged cells under normal growth conditions, where autophagic pathways are 

compromised in age-related disorders, such as Alzheimer’s disease and diabetes mellitus 
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with a decrease in autophagy (Donati et al., 2001). Although autophagy is largely 

considered nonselective, preferential autophagy of damaged or excess organelles, such as 

peroxisomes (Farre and Subramani, 2004), endoplasmic reticulum (ER) (Bernales et al., 

2006; Kruse et al., 2006) and mitochondria (Lemasters, 2005), can occur and there is 

accumulating evidence for selective autophagic processes in response to ROS.      

 

Figure 4. Regulation of autophagy by ROS in normal cells. Intracellular ROS are generated by Nox 

(cytoplasmic) or by the mitochondrial. ROS can increase expression of Beclin-1 by an unknown 

mechanism, leading to autophagy. H2O2 can directly inactivate the cysteine protease Atg4, blocking the 

delipidation of Atg8 to induce autophagy. Selective autophagic degradation of catalase serves as a 

positive-feedback loop, causing accumulation of ROS, which further enhances autophagy. Other 

regulators of autophagy include the Akt/mTOR pathway, oncogenes Bcl-2/Bcl-xL, and tumor 

suppressors PTEN/p53. (Adapted from Azad, 2009) 

 

                                 1.9 Crosstalk between autophagy and apoptosis 

Both autophagy and apoptosis are important for the development and prevention of 

human diseases. They have been shown to act in synergy and also to counter each other. In a 
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clinical setting, one cannot predict the outcome of inhibition or activation of one death 

program without considering the effect on the other. Under certain conditions, autophagy 

and apoptosis are two independent processes, whereas in other situations, the activation of 

autophagy inhibits apoptosis (Platini et al., 2010) or autophagy occurs upstream of apoptosis 

(Eisenberg-Lerner et al., 2009). Several Atg proteins have been implicated in apoptosis. For 

instance, death-associated protein kinase (DAPK) has been proposed to convert autophagy 

from a cell survival mechanism to one of the initiation of cell death (Bialik and Kimchi, 

2010).  Caspase 3 cleaves the human Atg4 family member Atg4D to generate a truncated 

product, △ N63 Atg4D that, when overexpressed, induces autophagy-independent 

apoptosis (Betin and Lane, 2009). Furthermore, regulators of apoptosis, such as Bcl-2 

family members (Bcl-2 and Bcl-xL) (Betin and Lane, 2009), CASP8 and FADD-like 

apoptosis regulator (CFLAR) can regulate autophagy, and proteins involved in autophagy, 

such as Atg5, beclin 1 and Atg4D, can also have a role in apoptosis (Fimia and Piacentini, 

2010). Caspases also cleave Beclin 1 at Asp149 during apoptosis resulting in the inhibition 

of autophagy (Djavaheri-Mergny et al., 2010; Luo and Rubinsztein, 2010; Wirawan et al., 

2010). It remains to be investigated whether other Atg proteins are also cleaved during 

apoptosis. 

In mammalian cells, Bcl-2 family members in the outer mitohondrial membrane 

modulate autophagy. Bcl-2 downregulation increases autophagy in a caspase-independent 

manner in human leukemic HL60 cells (Saeki et al., 2000), and Bcl-2 overexpression 

inhibits both autophgy and caspase-independent death in growth factor-deprived neural 

progenitor cells and in serum- and potassium-deprived cultured cerebellar granule cells 

(Canu et al., 2005). Recent evidence suggests that Bcl-2 inhibits autophagy through a direct 

interaction with Beclin 1 and that the interaction between them may function as a rheostat 

that maintains autophagy at levels that are compatible with cell survival rather than cell 

death (Pattingre et al., 2005). In contrast, Bcl-2 or Bcl-xL overexpression potentiates 

autophagy and autophagy gene-dependent death in MEFs treated with the proapoptotic 

stimulus etoposide (Shimizu et al., 2004). The basis for the opposite effects of Bcl-2 family 
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members on autophagy in different settings is unclear. Furthermore, it is not yet clear that 

Bcl-2 proteins function at the mitochondrion to regulate autophagy, since autophagy is 

inhibited by Bcl-2 targeted to endoplasmic reticulum but not by Bcl-2 targeted to 

mitochondria (Pattingre et al., 2005). 

 

Figure 5. Overview of the molecular mechanisms underlying the autophagy-apoptosis crosstalk. There 

are three mechanistic paradigms of apoptosis that regulated by autophagy: (1) specific autophagy proteins; 

(2) autophagosomes as platforms for caspase activation; (3) autophagic degradation. Stimulatory 

interactions are depicted in blue, whereas inhibitory interactions are depicted in red. PPI, protein–protein 

interaction; MOMP, mitochondrial outer-membrane permeabilization. (Adapted from Rubinstein, 2012) 
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                      1.10 Therapeutic potential of Tranditional Chinese Medicine 

A large body of evidence indicates that in traditional Chinese medicine (TCM) a 

plethora of herbs and herbal extracts are effective in the treatment of vascular diseases such 

as chronic wounds, diabetic retinopathy and rheumatoid arthritis (Shu et al., 2010; Zhai et 

al., 2013). Thus, it seems rational to explore these medicinal plants as potential sources of 

novel angiomodulatory factors. Rhodiola is a widely used TCM herb that has been shown to 

improve cognitive function, reduce mental fatigue, promote free radical mitigation, and 

enhance learning and memory (Darbinyan et al., 2000; De Bock et al., 2004; Shevtsov et al., 

2003; Spasov et al., 2000). Rhodiola extracts exert anti-arrhythmic activity, show 

anti-inflammatory and neuroprotective effects, and prevent ischemia-reperfusion-induced 

ventricular tachycardia (Maslov et al., 2009; Qu et al., 2012; Sun et al., 2012). Salidroside 

(SAL), the major phenylpropanoid glycoside and pharmacological active constituent 

derived from Rhodiola, possesses potent anti-apoptotic effects in various cell types, e.g. 

neurons and cardiomyocytes as well as in preclinical disease models, e.g. acute myocardial 

infarction in rats (Qu et al., 2012; Zhong et al., 2010). Furthermore, SAL attenuated early 

ischemic brain injury, improved acute behavioral dysfunctions caused by focal cerebral 

ischemia, and protected against cerebrovascular injuries (Shi et al., 2012).          

Salvianolic acid B (SalB), a pure water-soluble compound extracted from Danshen, is 

known for its broad pharmacological potential, including neuro- and cardioprotective 

properties by inhibiting the lipid peroxidation and superoxide anion production (Chen et al., 

2000; Tang et al., 2002). SalB may furthermore suppress platelet aggregation, inhibit tumor 

necrosis factor-α-induced matrix metalloproteinase-2 upregulation, improve coronary 

microcirculation and cerebral blood flow, as well as inhibit myocardial ischemia (He et al., 

2008; Li et al., 2004; Pan et al., 2011; Zhang and Wang, 2006). Sal B also regulates vascular 

homeostasis by exerting a number of vasoprotective effects, including the stimulation of 

vasodilation, suppression of smooth muscle cell proliferation, and inhibition of 

inflammatory responses (Chen et al., 2011; Pan et al., 2012; Shou et al., 2012). However, 
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the molecular mechanisms responsible for the putative antioxidant action mediated by SalB 

are poorly understood.  

Icariin (ICAR) is a major flavonoid isolated from the traditional oriental herbal 

medicine Epimedium koreanum Nakai, has been proven to exert a broad range of biological 

efficacy on osteoporosis, cardiovascular diseases, and immunological function regulation 

(He et al., 1995; Xin et al., 2003; Yin et al., 2005). It has been reported that ICAR possessed 

a vasodilatory effect on the coronary vessels of animals, which is involved in the inhibiting 

of Ca
2+

channels, and has cardioprotective effects during ischemia and reoxygenation (Zhang 

et al., 2000). ICAR also has the ability to prevent endothelial cells from damage induced by 

H2O2 through increasing the NO content and decreasing of caspase expression (Wang and 

Huang, 2005). Therefore, the discovery of molecules that regulate autophagy may be of 

great significance in the development of drugs for the treatment. 

Puerarin (PUER) is the main isoflavone glucoside extracted from Puerariae Radix, 

which comes from the kudzu root (Pueraria lobota (Wild.) Howe). Puerarin is widely 

prescribed for patients with cardio-cerebrovascular diseases in China and it has been 

reported to have therapeutic effects on hypertension (Zhang et al., 2011b), cerebral ischemia 

(Gao et al., 2009), myocardial ischemia (Zhang et al., 2006b), diabetes mellitus (Hsu et al., 

2003), arrhythmia (Zhang et al., 2011a), and arteriosclerosis (Yan et al., 2006). Puerarin 

also improves endothelial function by inhibiting cellular factors, such as adhesive molecules 

(Hu et al., 2010) and C-reactive protein (Yang et al., 2010), and stimulating endothelial 

nitric oxide synthase phosphorylation and nitric oxide production via activation of an 

estrogen receptor-mediated phosphatidylinositol 3-kinase/Akt- and calmodulin-dependent 

kinase II/AMP-activated protein kinase- dependent pathway. The molecular mechanism 

underlying these pharmacological benefits are also believed to involve the decreases in the 

plasma levels of free fatty acids, matrix metalloproteinases-9, interleukin-6, and tumor 

necrosis factor-α, and the inhibition in inflammation and stabilization in the atherosclerotic 

plaque (Xiao et al., 2011; Yang et al., 2010; Yao et al., 2012).  
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Figure 6. Chemical structure of Salidroside (SAL), Salvianolic acid B (SalB), Icariin (ICAR), Puerarin 

(PUER). 
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2. MATERIALS AND METHODS 

 

2.1 Materials                                                                                                                              

2.1.1 Cell derivation 

Informed consent for bone marrow collection was obtained from healthy volunteers (8 

donors, age range 20-51 years, mean age 28.6 years) and all procedures were performed in 

accordance with the guidance and approval of the local institutional review board (approval 

no. EK263122004).   

 

2.1.2 Antibodies 

Table 1. List of antibodies. 

ANTIGEN COMPANY CAT.NR. APPLICATION DILUTION 

Phospho-Akt  Cell signaing  #4060 WB 1 to 1000 

Akt Cell signaing  #4691 WB 1 to 1000 

Phospho-mTOR  Cell signaing  #5536 WB 1 to 1000 

mTOR Cell signaing #2983 WB 1 to 1000 

Phospho-p70S6K 

(Thr389) 
Cell signaing #9234 WB 1 to 1000 

Phospho-p70S6K 

(Ser371) 
Cell signaing #9208 WB 1 to 1000 

p70S6K Cell Signalling #2181 WB 1 to 1000 

PCNA Cell Signalling #13110 WB 1 to 1000 

Phospho-4EBP1  Cell signaing #2855 WB 1 to 1000 
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4EBP1 Cell signaing #9644 WB 1 to 1000 

Phospho-ERK1/2  Cell signaing #4370 WB 1 to 2000 

Phospho-JNK  Cell signaing #4668 WB 1 to 1000 

Phospho-p38 MAPK  Cell Signaling #4511 WB 1 to 1000 

ERK1/2 Cell signaling #4695 WB 1 to 1000 

JNK Cell Signaling #9258 WB 1 to 1000 

p38 MAPK Cell Signaling #9212 WB 1 to 1000 

Bcl-xL Cell Signaling #2764 WB 1 to 1000 

Bax Cell Signaling #2774 WB 1 to 1000 

CD34 eBioscience 25-0349-42 Flow cytometry 1 to 1000 

CD133 Miltenyi Biotec 130-098-826 Flow cytometry 1 to 1000 

KDR Miltenyi Biotec 130-098-905 Flow cytometry 1 to 1000 

E-seclectin  BD Biosciences 551145 Flow cytometry 1 to 500 

vWF Abcam Ab9378 Flow cytometry 1 to 250 

VE-cadherin BD Biosciences 560411 Flow cytometry 1 to 500 

Cleaved-caspase 3 Cell Signaling #9664 WB 1 to 1000 

Cleaved-PARP Cell Signaling #5625 WB 1 to 1000 

Phospho-MKK3/6 Cell Signaling #9236 WB 1 to 1000 

MKK3 Cell Signaling #5674 WB 1 to 1000 

Phospho-ATF2 Cell Signaling #5112 WB 1 to 1000 

ATF2 Cell Signaling #9226 WB 1 to 1000 

Cytochrome c  Cell Signaling #4280 WB 1 to 500 

LC3B Sigma Aldrich  #9664 WB 1 to 1000 
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p62/SQSTM1  NOVUS NBP1-48320 WB 1 to 4000 

Beclin1 Cell Signaling #3761 WB 1 to 1000 

ß-actin Cell Signaling #4970 WB 1 to 2000 

GAPDH Sigma Aldrich  T9026  WB 1 to 5000 

HRP-conjugated 

secondary antibody 
Cell Signaling #7074 WB 1 to 2000 

DyLight® 594 

conjugated 

secondary antibody 

Abcam Ab96921 IF 1 to 800 

 

2.1.3 Buffers and culture medium 

For Biochemistry: 

 

1×RIPA (Radioimmunoprecipitation) Lysis Buffer  

0.1% PMSF in DMSO 

0.15 % protease inhibitor cocktail in DMSO 

0.1% sodium orthovanadate in water 

in 1× lysis buffer  

 

5× Protein loading buffer 

50% 500 mM Tris·HCl（pH6.8） 

4% ß-Mercaptoethanol 

5 mg/ml Bromophenol Blue 

100 mg/ml Sodium dodecyl sulphate 

50% Glycerol 
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10× TBE (Tris/Borate/EDTA) buffer 

0.5 M Tris 

0.5 M Boric Acid 

20 mM EDTA 

pH 8.0 

in ddH2O 

 

10× TBS-T (Tris buffered saline-Tween) 

1.5 M NaCl 

0.5 M Tris-HCl 

1% Tween 

pH 7.6 

in ddH2O 

 

1×Electrophoresis buffer 

25 mM Tris-HCl 

250 mM Glycine  

3.5 mM Sodium dodecyl sulphate 

in ddH2O 

 

1×Transfer buffer 

25 mM Tris-HCl 

192 mM Glycine 

20% Methanol 

in ddH2O 
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Stripping buffer 

700 μM ß-Mercaptoethanol 

2% Sodium dodecyl sulphate 

62.5 mM Tris·HCl（PH 6.7） 

in ddH2O 

 

Blocking buffer 

5% non-fat powder milk 

in TBS-T 

 

Antibody incubation buffer 

1% non-fat powder milk  

in TBS-T 

 

10×Ponceau S buffer 

2% Ponceau S 

30% Trichloroacetic acid 

30% Sulfosalicylic acid 

in ddH2O 

 

10% Resolving gel (10mL) 

30% Acrylamide 3.3 mL 

1.5 M Tris-HCl (PH 8.8) 2.5 mL 

10% Sodium dodecyl sulphate 0.1 mL 

10% Ammonium persulfate 0.1 mL 

TEMED 4 μL 
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ddH2O 4 mL 

 

4% Stacking gel (4 mL) 

30% Acrylamide 536 μL 

0.5 M Tris-HCl (PH 6.8) 1 mL   

10% Sodium dodecyl sulphate 40 μL 

10% Ammonium persulfate 40μL 

TEMED 4 μL 

ddH2O 2.4 mL 

 

For cell culture: 

Culture media 

Endothelial Cell Growth Medium 

Fetal Calf Serum 0.02 mL/mL 

Epidermial Growth Factor (recombinant human) 5 ng/mL 

Basic Fibroblast Growth Factor (recombinant human) 10 ng/mL 

Insulin-like Growth Factor (Long R3 IGF) 20 ng/mL 

Vascular Endothelial Growth Factor 165 (recombinant human) 0.5 ng/mL 

Ascorbic Acid 1 μg/mL 

Heparin 22.5 μg/mL 

Hydrocortisone 0.2 μg/mL 

100 U/ml of penicillin/streptomycin 

 

10× PBS (Phosphate buffered saline) 

1.37 M NaCl 

27 mM KCl 
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80 mM Na2HPO4 

17.6 mM KH2PO4  

pH 7.4 

in ddH2O 

 

Cryoprotectant solution 

10% DMSO  

90% fetal bovine serium 

 

For immunofluorescence: 

Permeabilization-blocking buffer 

5% Normal Goat Serum  

0.2% Triton-X-100 

in PBS 

 

Antibody incubation buffer 

3% Normal Goat Serum  

0.1% Triton-X-100 

in PBS 

 

2.1.4 Chemicals, dyes and kits 

Endothelial Cell Growth Medium 2 was purchased from PromoCell. Salidroside (SAL), 

Salvianolic acid B (SalB), Icariin (ICAR) and Puerarin (PUER) were obtained from Tauto 

Biotec. PicoGreen dsDNA Quantitation Kit was obtained from Life Technologies. Human 

basic fibroblast growth factor (bFGF) and VEGF ELISA kit were purchased from Peprotech. 

Nitric oxide colorimetric assay kit was obtained from Biovision. Hoechst 33258, DAPI and 
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Alexa Fluor 488
®

 phalloidin were obtained from Invitrogen. RNeasy Mini kit was obtained 

from Qiangen. Matrigel™ Basement Membrane Matrix and human fibronectin were 

obtained from BD Biosciences. 2’,7’-Dichlorofluorescin diacetate, diphenyleneiodonium 

chloride (DPI), Rhodamine 123, N
G
-nitro-L-arginine methyl ester (L-NAME), acridine 

orange, specific siRNAs targeting human 4EBP1 (MISSION® siRNA, 

SASI_Hs02_00336903), specific siRNAs targeting human ATF2 (MISSION® siRNA, 

SASI_Hs01_00147372), negative control siRNA, and MISSION® siRNA Transfection 

Reagent were purchased from Sigma Aldrich. Ficoll-Paque PLUS 1.077, hydrophobic 

PVDF membrane, ECL Plus Western Blotting Detection Reagents were obtained from GE 

healthcare life sciences. Specific primer-probe sets for VEGF, KDR, VE-cadherin, vWF, 

PECAM-1, Nox4, STAT-3, eNOS and GAPDH, High Capacity cDNA Reverse 

Transcription Kit and Two Step TaqMan® Fast Universal PCR Master Mix were purchased 

from Applied Biosystems. LY294002, U0126, SP600125 were obtained from Cell Signaling. 

SB2003580 was ordered from Calbiochem. Rapamycin was ordered from Santa Cruz. 

LIVE/DEAD viability/cytotoxicity kit was purchased from Invitrogen. Cytotox 96® 

non-radioactive cytotoxicity assay kit was purchased from Promega. Annexin V-FITC 

apoptosis detection kit was obtained from Miltenyi. Dihydroethidium (DHE) was ordered 

from Cayman Chemical. NADP/NADPH Assay kit was obtained from AAT Bioquest. 

 

2.2 Methods 

2.2.1 Isolation and cultivation of human bone marrow-derived endothelial progeinitor 

cells (BM-EPCs) 

Bone marrow sample was diluted with equal volume of DPBS, then the diluted sample 

was carefully layered onto the Ficoll-Paque PLUS. Centrifuge at 400×g for 20 min with the 

brake off. The mononuclear cells were carefully harvested from the interface between the 

Ficoll-Paque PLUS and sample buffer using a sterile pasteur pipette, and transfered to 

sterile centrifuge tubes. Cells were washed with an equal volume of DPBS twice to remove 
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the Ficoll-Paque PLUS residue. After washing, the isolated mononuclear cells were 

cultivated in flasks coated with human fibronectin (25 μg/mL) and induced by EGM-2 

medium at 37°C with 5% CO2 in humidified air at a density of 3-5×10
6
/cm

2
. After 3 d in 

culture, non-adherent cells were removed by washing with phosphate-buffered saline (PBS), 

new medium was applied and the cultivation was maintained through 7 d. 

 

2.2.2 Characterization of BM-EPCs 

Quantitative fluorescence-activated cell sorting (FACS) was performed on a vantage 

SE flow cytometer to detect the surface marker of CD34, CD133, KDR, VE-cadherin, 

E-selectin, vWF on the cells at 7 and 14 d. The Weibel-Palade body in cells was visualized 

by transmission electron microscopy (TEM). Immunofluorescence staining was performed 

using FITC-UEA-I and Dil-acLDL.  

 

2.2.3 Analysis of cellular proliferation 

BM-EPCs were seeded at a density of 6×10
3
 cells per well in 96-well plates, cultured 

with EGM-2 for 24 h followed by a starvation period of 24 h in EGM-2 without fetal bovine 

serum (FBS). Then medium was replaced by fresh non-FBS EGM-2 containing different 

concentrations of TCM extracts and cells were incubated for an additional period of 1, 2, 

and 4 d. After the samples were washed once with PBS and lysed in PBS containing 0.1% 

Triton X-100 for 50 min, DNA content was determined using the Quant-iT PicoGreen 

dsDNA Assay Kit according to the manufacturer’s instructions. Fluorescence was measured 

using a fluorescence microplate reader (SpectraFluorPlus, Tecan, Männedorf, Switzerland) 

at 480/520 nm wavelength. Triplicates were used for each experimental unit. 
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2.2.4 Cell migration (chemotaxis) assay  

Here we have adopted two methods to investigate the TCM extracts-induced migratory 

activity of human BM-EPCs in a transwell assay (6.5 mm diameter, 8 µm pore size filters). 

First, cells were cultivated for 7 d with EGM-2, trypsinized and counted. A fraction of 

8×10
4
 cells in 200 µL non-FBS EBM-2 were seeded into the upper chamber while 700 µL 

of culture medium containing 1% FBS and different concentrations of TCM extracts were 

placed in the lower chamber. The EPCs were allowed to migrate for 4 h at 37°C in the tissue 

culture incubator. Second, BM-EPCs that were treated with TCM extracts for 48 h were 

trypsinized, washed and resuspended in EBM-2 without FBS. A fraction of 1×10
5
 cells in 

200 µL EBM-2 were added to the top chamber of a transwell and 700 µL EBM-2 with 5% 

FBS were added to the bottom chamber. Cells were allowed to migrate for 2 h. To quantify 

the number of migrated EPCs on the membrane, the upper side of the membrane was 

washed carefully with cold PBS and the remaining cells on this side were removed with a 

cotton swab. Transwell membranes were stained with Alexa Fluor 488
®
 phalloidin in PBS 

and the migrated cells were examined using an inverted fluorescence microscope (Apotome, 

Carl Zeiss, Germany). All experiments were performed in at least triplicate with cells 

counted in 10 random fields of view. 

 

2.2.5 Cell adhesion assay 

Cell-matrix adhesion assay 

Cell-matrix adhesion assay using human BM-EPCs was performed as was previously 

published (Tang et al., 2011). Briefly, 96-well plates were coated with 25 µg/mL human 

fibronectin for 1 h. Human BM-EPCs at 1×10
4 

cells per well in EGM-2 were plated onto 

fibronectin-coated 96-well culture plates and incubated for 30 min at 37°C. After washing 

twice with PBS, adherent cells were fixed with 4% paraformaldehyde, stained with Hoechst 

33258, and visualized under a fluorescence microscope. Additionally, adherent cells were 
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lysed with Triton X-100 and the DNA content was determined using the Quant-iT 

PicoGreen dsDNA Assay Kit. Representative results of five independent experiments were 

shown.  

Cell-cell adhesion assay 

To characterize the possible effect of TCM extracts on cell-cell adhesion, EPCs were 

grown overnight to a confluent monolayer in EGM-2 and labeled with Hoechst 33258. In 

addition, EPCs from the same donor were treated with TCM extracts for 48 h and 

fluorescence-labeled with calcein acetoxymethyl (AM) for 1 h at 37°C followed by washing 

with PBS. These cells were then plated onto the established cell monolayer (acceptor cells). 

Attachment and spreading of the plated cells were monitored and recorded after 20 min by 

fluorescence microscopy. Quantification of intercellular adhesion was performed by 

counting the number of cells per microscopic field of view that remained attached after 

three gentle washing steps with PBS.  

 

2.2.6 Matrigel-based capillary-like tube formation assay 

The effect of TCM extracts on morphogenesis and tube formation capacity of 

BM-EPCs was investigated using the capillary tube formation assay on Matrigel basement 

membrane matrix. Briefly, ECMatrix™ solution was thawed on ice overnight, mixed with 

10× ECMatrix™ diluents and placed in a 96-well tissue culture plate (50 µL per well) at 

37°C for 1 h to allow the matrix solution to solidify. A fraction of 1.2×10
4
 cells per well 

were seeded on a Matrigel-precoated 96-well plate. Tube formation was observed under an 

inverted light microscope. Five independent fields were assessed for each well and the 

average numbers of tubes per 40× magnified field were determined.  
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2.2.7 Enzyme-linked immunosorbent assay (ELISA) 

Cell culture supernatants were harvested 24 h and 48 h after stimulation with TCM 

extracts and frozen for later analysis. The levels of vascular endothelial growth factor 

(VEGF) secreted by BM-EPCs into the medium were measured by a commercially available 

ELISA kit. Briefly, capture antibody was diuted and added to a ELISA plate well and 

incubated overnight at room temperature (RT). After washing the plate for 4 times, 

immediately added 100 μL of standard or sample to each well in triplicate, incubated at RT 

for 2 h. The plate was aspirated and washed for 4 times. Detection antibody was added to 

each well and incubated at RT for 2 h. After washing for 4 times, substrate solution was 

added and incubated at RT for color development. The absorbance at 405 nm was measured 

with a microplate reader. 

 

2.2.8 Measurement of nitric oxide production of BM-EPCs 

Accumulated nitrite (NO2
−
) generated from cell-released nitric oxide (NO) in culture 

supernatants was determined using a spectrophotometric assay based on the Griess reaction. 

In brief, adherent cells were stimulated with TCM extracts for 2, 5, 8 and 10 d and cell 

culture supernatants were collected to demonstrate any time dependent effect. Supernatants 

were converted to nitrite by nitrate reductase followed by the Griess reagent (1% 

sulfanilamide - 0.1 % N-1-naphthyl-ethylenediamine dihydrochloride in 2.5% phosphoric 

acid) to convert nitrite to a deep purple azo compound. For determination of this compound 

the absorbance at 540 nm was measured with a microplate reader and all samples were 

tested in triplicate. 

 

2.2.9 Cellular viability and lactate dehydrogenase release assay 

BM-EPCs were treated with TCM extracts or basal medium for 48 h followed by 

incubation with 1 mM H2O2 for 6 h to induce oxidative stress. Cell numbers were 
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determined by DNA quantification as described above. Cells incubated without TCM 

extracts (in EBM-2 only) served as control group. 

Lactate dehydrogenase (LDH) is a stable cytosolic enzyme present in all cell types. 

The cellular viability can be measured in terms of LDH released from dead cells into the 

supernatant upon rupture of cell membrane. For this purpose, CytoTox 96
®

 

Non-Radioactive cytotoxicity assay kit was employed according to the manufacturer’s 

instructions. Briefly, 100 μL of lysis solution were added into wells containing the untreated 

control cells prior to the assay to induce maximum LDH release. To define the LDH content 

50 µL supernatant with 50 µL of substrate solution were mixed in 96-well plates. After 30 

min incubation at RT under absence of light, the enzymatic reaction was stopped with 50 µL 

stop solution. The absorbance was measured spectrophotometrically at 490 nm using a 

microplate reader. The percentage of cytotoxicity was calculated according to the following 

equation: 

percentage of cytotoxicity= 
                                  

                                 
 ×100%.  

 

2.2.10 Assessment of intracellular ROS and superoxide production  

Intracellular ROS measurement by dichlorofluorescein (DCF) 

The assessment of ROS involves the use of 2’,7’-dichloro-fluorescein diacetate, which 

is a stable non-fluorescent molecule that readily crosses cell membranes and is hydrolyzed 

by intracellular esterases to form non-fluorescent DCFH. DCFH is then rapidly oxidized in 

the presence of ROS into highly fluorescent DCF. Cells were incubated in fresh EBM-2 

containing 20 μM DCFH-DA for 30 min at 37°C. After removal of the 

DCFH-DA-containing medium, ROS formation was stimulated by H2O2 (final 

concentration: 1 mM) for 6 h at 37°C. Prior to and 6 h after H2O2 addition, the fluorescence 

levels of the samples were measured using a fluorescence microplate reader with the 

excitation and emission wavelengths set at 488 and 525 nm, respectively. 
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Superoxide measurement by dihydroethidium (DHE)  

Superoxide generation causes oxidation of DHE into ethidium bromide, which binds to 

DNA in the nucleus and fluoresces red. EPCs were treated with H2O2 in the presence or 

absence of TCM extracts as described above. The medium was then replaced by PBS 

containing DHE (10 μM) followed by incubation for 30 minutes at 37°C. The intensity of 

DHE fluorescence was acquired by fluorescence microplate readings and images were 

collected using a fluorescence microscope and analyzed by Zeiss Imaging System.  

 

2.2.11 Determination of NADPH oxidase activity  

NADP and NADPH were measured using an Amplite Fluorimetric NADP/NADPH 

Assay kit. Cells treated with TCM extracts as well as untreated cells were lysed with 0.5% 

Triton-X100 for 10 min at RT and then mixed with 50 μL NADPH reaction mixture to a 

total volume of 100 μL per well. After incubation for 90 min at RT absorbance was 

monitored at 575 nm using the microplate reader. 

 

2.2.12 Measurement of mitochondrial membrane potential 

Measurement of the mitochondrial membrane potential (ΔΨm) was performed by 

loading cells with 5 µM Rhodamine123, a cationic lipophilic fluorochrome that can be taken 

up by mitochondria in proportion to the ΔΨm. After 20 min incubation in the dark, the cells 

were washed twice with PBS immediately followed by fluorescence reading at 507/529 nm 

(ex/em). 
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2.2.13 Calcein AM/ Ethidium homodimer-1 cellular viability assay 

Cell viability was determined using a calcein-AM/Ethidium homodimer-1 (EthD-1) 

dual-staining assay kit (Invitrogen). This assay relies on the intracellular esterase activity 

within living cells, through which the calcein-AM, a cell permeable fluorogenic esterase 

substrate, hydrolyzes to the green fluorescent product calcein. Dead cells are stained by the 

cell-impermeant indicator EthD-1, which is a high-affinity nucleic acid stain that is weakly 

fluorescent until bound to DNA and emits red fluorescence. The cell cultures were treated 

with or without 1 mM H2O2 for 6 h after TCM extracts stimulation. After treatment, the 

culture medium was removed, and cells were rinsed with warm PBS very gently as not to 

stir cells. Subsequently 2 μM calcein-AM and 4 μM EthD-1 in 100 µL PBS were added to 

each culture well and incubated at 37°C for 30 min, and fluorescence signals of the cells 

were observed under a Zeiss fluorescence microscope. 

 

2.2.14 Apoptosis assay with flow cytometry analysis 

BM-EPCs were seeded in six-well plates and allowed to attach for 24 h. After 48 h of 

treatment with SAL and 6 h of induction by H2O2 as described above, cell apoptosis was 

detected by annexin V-FITC apoptosis detection kit following the manufacturer’s 

instructions. Briefly, the cells were gently trypsinized, washed with PBS, re-suspended in 

binding buffer and incubated with annexin V-FITC and PI at RT in the dark for 10 min, and 

then measured immediately by Flow Cytometer (BD™ LSRII, Heidelberg, Germany). The 

analysis of the data was performed using FlowJo Software (Tree Star, Inc., Ashland, OR, 

USA). 

 

2.2.15 Immunofluorescence 

To confirm the results of the apoptosis assay, immunofluorescence stain for Bax and 

Bcl-xL was used. The cells were fixed with 4% paraformaldehyde for 20 min at RT and 
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washed three times in PBS buffer. Fixed cells were blocked by incubation in PBS with 5% 

normal goat serum and 0.2% triton X-100 at RT for 30 min. Then the cells were incubated 

with primary antibody overnight at 4°C. After cells were washed three times with PBS, they 

were incubated with red-fluorescent Alexa Fluor 594 secondary antibody for 1 h at 37°C. 

Finally, these cells were stained with DAPI at RT for 10 min. The stained cells were washed 

three times with PBS. The results were visualized using fluorescence microscopy (Apotome, 

Carl Zeiss, Oberkochen), with fluorescence filter set at 488 nm (green) and 570 nm (red).  

 

2.2.16 Acridine orange staining 

Acidic intracellular compartments were visualized by acridine orange staining. After 

treatment, cells were washed with PBS and stained with 10 mg/mL acridine orange for 15 

min at 37°C. Microscopic images were collected using the fluorescence microscope. 

Depending on their acidity, autophagic lysosomes appeared as orange/red fluorescent 

cytoplasmic vesicles, while the nuclei were stained green. 

 

2.2.17 Small interference RNA transfection 

Specific siRNAs targeting human ATF2 and 4EBP1 were obtained from Sigma-aldrich. 

The cells were transiently transfected with a negative control siRNA or ATF2 (or 4EBP1) 

siRNA using the MISSION® siRNA Transfection Reagent. Cellular levels of the proteins 

specific for the siRNA transfection were checked by qRT-PCR and Western blot, the cells 

were then prepared for further experiments at 48 h after transfection. 
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2.2.18 RNA isolation, cDNA synthesis and quantitative real-time polymerase chain 

reaction (qRT-PCR) procedure 

Total RNA was isolated by using RNeasy Mini Kit. Total RNA (300 ng) from each 

sample was subjected to reverse transcription using a cDNA reverse transcription kit. For 

the reverse transcription, typical 20 µL reactions contained 2 µL 10×RT Buffer, 0.8 µL 

25×dNTP Mix, 2 µL 10×RT Random Primers, 1 µL MultiScribe Reverse Transcriptase, 1 

µL RNase Inhibitor, 3.2 µL Nuclease-free H2O, and 10 µL RNA sample. Thermal cycling 

conditions were: 25°C for 10 min, 37°C for 120 min and finally 85°C for 5 min. The ABI 

Prism 7500 fast Sequence Detection System was used for the qRT-PCR. Typical 20 µL 

reactions contained 10 µL ABI fast Universal TaqMan Master Mix, 1 µL mixture of 

forward and reverse primers and TaqMan probe, 1 µL cDNA and 8 µL water. Each PCR run 

was performed in triplicate including negative control samples containing master mix, 

primers and probes as described above but no cDNA template. Thermal cycling conditions 

of the ABI 7500 fast were: 95°C for 20 s for pre-denaturation, then 40 cycles of 95°C for 3 s 

and finally 60°C for 30 s each. Data were normalized to GAPDH expression and fold 

change was calculated by the 2
−ΔΔCT

 method. 

 

2.2.19 Western blot analysis 

Whole-cell lysates of cell groups were analyzed by Western blot assays. Cells were 

washed twice with PBS, sonicated in radioimmunoprecipitation (RIPA) buffer and 

homogenized. Debris was removed by centrifugation at 12,000 g at 4°C for 10 min and 

protein concentration was determined using the BCA Protein assay kit according to the 

manufacturer’s instructions. Samples containing 30 µg of protein were separated by 

electrophoresis on sodium dodecyl sulfate (SDS) polyacrylamide gels and transferred to 

polyvinylidene difluoride membranes by electroblotting. The membranes were then blocked 

by incubating with 5% BSA in 20 mM Tris-HCl, 150 mM NaCl, pH 7.5 (TBS) buffer for 1 

h followed by incubation with primary antibodies (see Materials section, 2.1.2 Antibodies for 
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a detailed list and conditions), overnight at 4°C. After washing with TBS-T, membranes 

were incubated with horseradish peroxidase-conjugated secondary antibodies, diluted in 

incubation buffer, for 2 h at RT. After washing with TBS-T, luminescence was developed 

using an automated developer (Sysgen) and non saturated radiograms analyzed with 

Quantity One 4.6.2 software (Bio-Rad Laboratories, Hercules, CA, USA). GAPDH or 

ß-actin were used for internal normalization. 

 

2.2.20 Animal study 

For in vivo study, 2 mg SAL was embedded into 5 µL gel (25 mg/mL Fibrinogen and 

25 IU/mL Thrombin, 1:1) to make the final concentration of 50 mg/kg body weight. The 

operations were performed under surgical aseptic conditions. Each immunodeficient mouse 

was placed in the prone position. The right rear extremity was extended and rotated inward 

at the hip joint. Exact locations of the hip and knee joints were detected by flexion and 

extension of the hip and of the knee. A 12-mm incision was then performed along the lateral 

upper leg, giving exposure to the greater trochanter. An incision was then made along the 

fascia lata, following a line from the greater trochanter to the knee joint. The quadriceps 

femoris muscle was mobilized anteriorly towards the knee and the hip using two spatulas. A 

sharp elevatorwas used to expose the distal femur and the first hole (diameter 0.45 mm) was 

drilled into the distal femur. The first pin was put into one of the lateral holes of the plastic 

body of the external fixation device and was subsequently orthogonally drilled into the 

distal femur, penetrating both the lateral and the medial cortex. The second hole was drilled 

through the remaining lateral hole on the plastic body and into the proximal femur or the 

lateral femoral neck as described above. The second pin was then placed through this hole. 

The inner two pins were then placed after drilling the inner two guide holes. After having 

fixed all four pins, two Gigli wires were placed around the femur and placed into the fixed 

saw guide on the body of the external fixator. A defect was cut using two Gigli wires while 

the body of the fixation device was stabilized with the help of two clamp. The Fibrinogel 
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(10 μL) containg SAL were laid on the mineralized collagen scaffold and embedded 

between the fixed pins. The clamps were then removed and the femur and surrounding 

structures were all guided back into their natural anatomic positions. Finally, the skin was 

closed with interrupted sutures. To investigate bone healing during the 6-week observation 

period, 20-mm data sets of all operated and six untreated contralateral femurs were scanned 

using μCT (SCANCO viva CT 75; SCANCO Medical AG, Bruttisellen, Switzerland). The 

defect volume reported is the difference of the bone volume of the control femurs, BMP-2 

treated femurs, and the SAL treated femurs. 

 

2.2.21 Statistical analysis 

Numerical data are presented as the means ± standard deviation from at least three 

individual experiments with cells from different donors, unless otherwise indicated. All 

statistical analysis were performed using the SPSS 16.0 software package. Comparisons 

between two groups were performed using independent-samples t-test. Experiments with 

more than two groups were compared by ANOVA followed by the Tukey post-hoc test. P 

values of ≤ 0.05 were considered statistically significant 
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3. RESULTS 

3.1 TCM extracts induce angiogenic differentiation in bone marrow 

derived-endothelial progenitor cells 

3.1.1 Cultivation and identification of BM-EPCs 

When mononuclear cells isolated from human bone marrow were cultured in 

endothelial cell growth medium on fibronectin-coated dishes, both adherent and 

non-adherent cells demonstrated round morphology with different sizes as assessed by light 

microscopy during the first 3 d, suggesting the presence of various subpopulations within 

the human mononuclear cell fraction. Approximately 20% of the mononuclear cells 

transferred to culture plates grew as adherent cells during the first week of culture with a 

tendency to form clusters or colonies (Figure 7A). When cultivated for 7 d, the adherent 

cells exhibited strong ability to take up Dil-acLDL and FITC-UEA-I, and the double 

positive rate was (95.1 ±4.0)% (Figure 7B), which were identified as differentiating EPCs. 

The Weibel-Palade body was observed in endochylema by TEM (Figure 7C). During the 

second week of culture, the cells changed toward a spindle-shaped endothelium-like 

morphology. Then, attached cells formed a cobblestone-like structure at d 14 (Figure 7A). 

In the culture process, the expression pattern of surface markers changed toward a more 

mature endothelial cell phenotype during the cultivation period of 2 weeks, which showed a 

significant increase when 14 d cultures were compared to 7 d cultures with regard to the 

expression of KDR (from 66.7% to 79.2%), E-selectin (from 7.8% to 46.4%), vWF (from 

5.4% to 35.4%), and a marked decrease in expression of CD133 (from 18.5% to 3.8%), and 

CD34 (from 45.4% to 36.1%) (Table 1). 
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Figure 7. Characterization of BM-EPCs. (A) The isolated mononuclear cells were cultivated in dishes 

coated with fibronectin and induced by EGM-2 at 37 °C with 5% CO2 in humidified air. The morphology 

of the cells cultivated at 7 d, 11 d, and 14 d was observed under the inverted phase contrast microscope. 

(B) Cells cultivated at 7 d were washed with PBS two times, and stained with FITC-UEA-I and 

Dil-acLDL. (C) The Weibel-Palade body in cells was visualized by transmission electron microscopy 

(TEM).  

Table 2.The expression pattern of cell surface markers of CD133, CD34, KDR, VE-Cadherin, E-selectin 

and vWF was determined by flow cytometry at 7 d and 14 d culture. Data are shown as mean ± SD. 

 

3.1.2 SAL, ICAR and PUER promote the cellular proliferation of BM-EPCs 

To assess the potent pro-angiogenic property of TCM extracts in vitro, we firstly 

examined the effect of TCM on cellular proliferation. Human BM-EPCs were treated with 

varying concentrations of SAL, SalB, ICAR and PUER for 24 h, 48 h and 96 h and cell 

number was assessed by DNA quantification with bFGF as a positive control. As shown in 



51 

 

Figure 8A, the cell number was apparently increased after the incubation with SAL for 48 h 

at the concentration of 20, 40, and 80 µM, with ICAR at 7.5, 15, 30 µM (Figure 8C), and 

with PUER at 40, 80 µM by both 24 and 48 h (Figure 8D). The protein expression of PCNA 

was also enhanced by 48 h incubation with SAL by 20, 40, and 80 µM (Figure 8E). But no 

significant effect was found at 24 h or 96 h treatment with SAL, compared to the control 

group. However, cell numbers were not significantly affected by SalB treatment (Figure 

8B).  
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Figure 8. Effect of SAL, SalB, ICAR and PUER on cellular proliferation of BM-EPCs. (A-D) Cells were 

treated with indicated concentrations of TCM extracts for 24, 48, and 96 h followed by DNA 

quantification to determine cellular proliferation, n=6. (E) PCNA expression was measured by Western 
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blot. The immunoblots shown are representative of at least three independent experiments with 

comparable results. Data are shown as mean ± SD, 
＊

P < 0.05, 
＊＊

P < 0.01 versus control group.  

 

3.1.3 SAL, SalB, ICAR and PUER enhance cell recruitment ability 

EPCs that line the lumina of blood vessels are important players in blood vessel 

formation, and directed EPCs migration is a key component of the angiogenic process. To 

investigate the effects of TCM extracts-driven motility in BM-EPCs, transwell experiments 

were performed. When TCM extracts were added to the lower chamber compartment, cells 

showed a dramatically increased ability to migrate in response to all of them in a dose 

dependent manner. For SAL, the significant promotion effect was first occurred at 40 μM 

(2.59 ± 0.07-fold, P < 0.01) and peaked at 80 μM (3.05 ± 0.10-fold, P < 0.01) (Figure 9B, 

9F). For SalB, the significant promotion effect was first occurred at 20 μM (1.80 ± 0.08-fold, 

P < 0.05), and peaked at 40 μM (1.92 ± 0.14-fold, P < 0.01) (Figure 9C, 9G). For ICAR, all 

of the three concentrations had remarkable effects on the chemotactic ability of BM-EPCs 

(7.5 μM, 2.79 ± 0.10-fold, P < 0.01; 15 μM, 4.15 ± 0.10-fold, P < 0.01; 30 μM, 4.95 ± 

0.07-fold, P < 0.01) (Figure 9D, 9H). For PUER, the enhancing effect were occurred from 

40 μM (1.82 ± 0.28-fold, P < 0.05), to 160 μM (3.05 ± 0.13-fold, P < 0.01) (Figure 9E, 9I). 

Interestingly, for experiments involving pre-treatment of EPCs with TCM extracts 

which were used to measure the ability of TCM extracts to trigger innate cell recruitment 

ability, the results showed that cell migration increased significantly compared to the 

vehicle-treated control at a higher concentration of 80 μM SAL (Figure 9J, P < 0.01), and 

15 μM and 30 μM of ICAR (Figure 9K, P < 0.05 and P < 0.01, respectively).  
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Figure 9. TCM extracts enhance cell migration capacity in a dose-dependent manner. (A-I) Transwell 

chemotaxis assay was performed on BM-EPCs with phosphate buffered saline (control), 50 ng/mL bFGF 

and indicated concentrations of TCM extracts in the lower chamber. To quantify the migrated EPCs on 

the membrane, the upper side of the membrane was washed and wiped with a cotton swab. Transwell 

membranes were stained with Alexa Fluor 488
®
 phalloidin and the migrated cells were examined using 

an inverted fluorescence microscopy. The number of migrated cells was quantified by performing cell 

counts of 10 random fields, n=5. (J, K) BM-EPCs were treated in the absence or presence of indicated 

concentrations of SAL, ICAR and bFGF for 48 h, then seeded into the upper chamber of the transwell 

with culture medium containing 5% FBS in the lower chamber. Data are presented as mean ± SD, n=5, 
＊

P < 0.05, 
＊＊

P < 0.01 versus control group.    

 

3.1.4 Effect of SAL, SalB, ICAR and PUER on cell adhesion to extracellular matrix 

(ECM) and cell-cell adhesion of BM-EPCs 

To test whether TCM extracts affect cell-matrix adhesion we used human fibronectin 

as ECM. As shown in Figure 10B and 10F, SAL treated cells attached more readily to the 

ECM (1.95±0.14-fold and 1.98±0.10-fold increase at 40 and 80 µM) compared to the 

control (P < 0.01). Similarly, ICAR also promoted the cell-matrix adhesion at all of the 

three concentrations (7.5 μM, 1.70 ± 0.12-fold, P < 0.01; 15 μM, 2.40 ± 0.08-fold, P < 0.01; 

30 μM, 2.78 ± 0.15-fold, P < 0.01, Figure 10D, 10H). In addition, PUER-treated cells 

showed an enhancing ability to adhere to the ECM at higher concentrations (1.91±0.09-fold 

and 2.19±0.14-fold increase at 80 and 160 µM, P < 0.01, Figure 10E, 10I). But there was no 

significant difference concerning the number of attached cells after 90 min adherence. 

However, SalB have shown no significant effect on the cell-matrix adhesion (Figure 10C, 

10G). 

To investigate whether TCM extracts could affect cell-cell adhesion of BM-EPCs, we 

examined the adherence of TCM extracts-stimulated cells to normal EPCs. In sharp contrast, 

a significant reduction in the adhesive properties was observed for SAL and ICAR-treated 
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BM-EPCs, which became apparent at 20 µM and peaked at 80 µM for SAL (Figure 10J-M), 

and showed effect at both 15 µM and 30 µM for ICAR (Figure 10L, 10N). Taken 

together, these results suggest that TCM extracts provoked the cell adhesive ability to ECM, 

while it diminished the capacity of cell-cell adhesion.    
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Figure 10. SAL, ICAR and PUER promote cell-matrix adhesion but SAL, ICAR inhibit cell-cell 

adhesion of BM-EPCs. (A-E) BM-EPCs were treated with indicated concentrations of TCM extracts or 

bFGF for 2 d. Cell adhesion to extracellular matrix was performed on fibronectin treated plates for 30 

min followed by staining of adherent cells with Hoechst 33258 dye (nuclei, blue). (F-I) Quantification of 

attached cells was determined by DNA content using Quant-iT PicoGreen dsDNA Assay Kit. Data are 

presented as mean ± SD, n=5. (J-N) For the examination of cell-cell adhesion, BM-EPCs were grown 

overnight to a confluent monolayer in EGM-2 and labeled with Hoechst 33258 dye. Another set of 

BM-EPCs was treated with indicated concentrations of TCM extracts or bFGF for 48 h, 

fluorescence-labeled with calcein-AM for 1 h, and plated onto the established cell monolayer. 

Quantification of cell-cell adhesion was performed by counting the number of cells per microscopic field 

of view that remained attached after 20 min incubation. Data are presented as mean ± SD, n=5, 
＊

P < 

0.05, 
＊＊

P < 0.01 versus control group.   
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3.1.5 Effect of SAL, SalB, ICAR and PUER on capillary tube formation of BM-EPCs 

in vitro 

In vitro angiogenesis assay was used to investigate the ability of EPCs to participate in 

vascularization, which is the most important activity of EPCs. To determine whether TCM 

extracts affect the ability of BM-EPCs to form capillary-like tubes, cells were seeded on 

Matrigel and examined for tube formation microscopically. 18 h after plating onto the gel, 

more crosspoints and well formed connections were observed in the tubules formed by 

SAL-stimulated cells compared with control group (Figure 11A, 11B, 11F). The presence of 

20, 40 and 80 µM SAL significantly increased the number of sprouting tubules by 250.1 ± 

17.5%, 350.1 ± 18.8% and 525.4 ± 10.4% as compared with untreated BM-EPCs (P < 0.01). 

Moreover, 20 µM SalB significantly increased the number of sprouting tubules by 350 ± 13% 

as compared with untreated BM-EPCs. However, this effect was not observed at the 

concentration of 40 μM SalB (Figure 11C, 11G). Additionally, the presence of 7.5, 15 and 

30 µM ICAR significantly increased the number of sprouting tubules by 225.4.4 ± 25.6%, 

404.3 ± 19.9% and 598.1 ± 11.5% as compared with untreated BM-EPCs (Figure 11D, 11H). 

And PUER treatment also exerted enhanced capillary tube formation of the cells by 220.0 ± 

21.8% and 263.4 ± 21.2% at 80 and 160 µM (Figure 11E, 11I). Thus TCM extracts strongly 

enhance the ability of EPCs to form tube-like structures  

 

http://www.iovs.org/content/53/4/2030.long#F5
http://www.iovs.org/content/53/4/2030.long#F5
http://www.iovs.org/content/53/4/2030.long#F5
http://www.iovs.org/content/53/4/2030.long#F5
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Figure 11. Effect of SAL, SalB, ICAR and PUER on capillary tube formation of BM-EPCs. (A-E) After 

TCM extracts treatment cells were grown on MatrigelTM for 18 h under normal growth conditions, 

capillary tube formation was observed by inverted light microscopy. (F-I) Five independent fields were 

assessed for each well and the average numbers of tubes/40× magnified field were determined. Data are 

expressed as mean ± SD, n=5, 
＊

P < 0.05, 
＊＊

P < 0.01 versus control group. 

 

3.1.6 SAL and ICAR increase VEGF secretion and NO production in BM-EPCs 

In the light of the important role of VEGF and NO in the regulation of angiogenesis 

and cell function, we treated EPCs with SAL or ICAR at different concentrations, and 

determined VEGF and NO production in the cell supernatants. Over a period of 24 h and 48 

h incubation, SAL at both 40 μM and 80 μM enhanced the VEGF secretion by 

approximately 11.3% (24 h, 40 μM), 17.5% (24 h, 80 μM), 18.9% (48 h, 40 μM) and 21.0% 

(48 h, 80 μM) compared to respective controls (Figure 12A). ICAR enhanced the VEGF 

secretion in a time and concentration-dependent manner by 20.4% (24 h, 15 μM), 36.7% (24 

h, 30 μM), 23.8% (48 h, 15 μM) and 30.0% (48 h, 30 μM) compared to respective controls 

(Figure 12B). 

Moreover, NO production of BM-EPCs increased significantly when cells were 

stimulated by SAL or ICAR for 2, 5, 8, and 10 d (Figure 12C, 12D). These findings imply 

that the increased VEGF and NO production may play an important role in the enhanced 

tube formation ability of BM-EPCs induced by TCM extracts. Furthermore, we used 

N
G
-nitro-L-arginine methyl ester (L-NAME) which is a selective inhibitor of NOS to 

examine the role of NO underlying the angiogenic effect of SAL. As shown in Figure 12E, 

L-NAME could significantly inhibit SAL-induced NO production after 2 d 

incubation. Furthermore, the promotion effect of SAL on migration and capillary tube 

formation ability on EPCs were suppressed by L-NAME (Figure 12F, 12G). The present 

study further supports the notion that endothelium-derived NO plays a key role in 

angiogenesis. 
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Figure 12. SAL and ICAR enhance the secretion of VEGF and the production of NO in BM-EPCs. Cells 

were cultured until confluency in 96-well plates and subsequently stimulated with indicated 

concentrations of TCM extracts. (A, B) Cell culture supernatants collected after 24 h and 48 h VEGF 

secretion was determined by ELISA, n=5. (C, D) To assess NO production, cell culture supernatants were 

collected 2, 5, 8, and 10 d after SAL or ICAR stimulation and analyzed by Griess assay, n=4. (E) Cell 

culture supernatants were collected 48 h after SAL stimulation with or without 10 μM L-NAME, NO 

levels were measured by Griess assay, n=3. (F, G) BM-EPCs were treated with 10 μM L-NAME and 80 

μM SAL for 48 h. Cell migratory ability was evaluated by performing cell counts of 10 random fields, 
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n=4. Capillary-like tube formation were determined by assessing average numbers of tubes/40× 

magnified field, n=3. All data are presented as mean ± SD, 
＊

P < 0.05, 
＊＊

P < 0.01 versus control group. 

 

3.1.7 SAL, SalB and ICAR induce angiogenic gene expression in BM-EPCs 

To determine the underlying mechanism involved in the proangiogenic effects of TCM 

extracts, the expression of VEGF, KDR, eNOS, vWF, PECAM-1 and VE-cadherin were 

determined by quantitative RT-PCR. As shown in Figure 13A, the expression levels of 

VEGF, KDR, and eNOS significantly increased after 2 d (1.46 ± 0.24-fold, 1.96 ± 0.20-fold, 

2.82 ± 0.37-fold) and 10 d (1.61 ± 0.15-fold, 1.66 ± 0.22-fold, 3.18 ± 0.42-fold) 

pretreatment with 80 μM SAL. While vWF gene expression was enhanced after 2 d (1.79 ± 

0.22-fold) and 10 d (2.20 ± 0.29-fold) cultivation, PECAM-1 expression was increased only 

after 2 d (2.01 ± 0.18-fold) cultivation (Figure 13A). VE-cadherin expression was 

downregulated by 67.8% after 2 d and by 78.0% after 10 d with a similar trend for bFGF 

expression (Figure 13A). As shown in Figure 13B, the expression levels of VEGF, KDR, 

eNOS and PECAM-1 significantly increased after 2 d (2.27 ± 0.11-fold, 2.53 ± 0.06-fold, 

2.27 ± 0.12-fold, 1.83 ± 0.10-fold) (P < 0.01) and 10 d (2.37 ± 0.06-fold, 1.51 ± 0.16-fold, 

2.56 ± 0.15-fold, 1.84 ± 0.15-fold,) (P < 0.01) pretreatment with 20 μM SalB. In contrast, 

VE-cadherin expression was downregulated by 83.9% after 2 d and by 51.8% after 10 d. 

However, vWF gene expression was not affected by SalB administration. In Figure 13C, the 

expression levels of VEGF, KDR, and eNOS significantly increased after 2 d (2.80 ± 

0.17-fold, 2.58 ± 0.16-fold, 3.68 ± 0.33-fold) and 10 d (3.11 ± 0.12-fold, 1.71 ± 0.14-fold, 

3.66 ± 0.29-fold) pretreatment with 30 μM ICAR. PECAM-1 expression was increased only 

after 2 d (2.56 ± 0.06-fold, P < 0.01) cultivation, but reduced after 10 d treatment (0.42 ± 

0.05-fold, P < 0.01). VE-cadherin expression was downregulated by 98.7% after 2 d and by 

99.0% after 10 d with a similar trend for bFGF expression. But vWF gene expression was 

not affected by ICAR treatment (Figure 13C).  

http://www.sciencedirect.com/science/article/pii/S0944711309002116#fig4
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Figure 13. Gene expression analysis of SAL, SalB and ICAR-treated BM-EPCs. BM-EPCs were 

cultivated in endothelial basal medium with or without 80 μM SAL (A), 20 μM (B), 30 μM ICAR (C) for 

2 and 10 d. Gene expression levels of VEGF, KDR, eNOS, VE-cadherin, vWF and PECAM-1 were 



65 

 

assessed via quantitative RT-PCR. Data were normalized to GAPDH expression and fold changes were 

calculated by the 2
−ΔΔCT

 method, n=5, 
＊

P < 0.05, 
＊＊

P < 0.01 versus control group. 

 

3.1.8 SAL and ICAR induce angiogenic differentiation via Akt/mTOR/p70S6K 

signaling pathways 

Evaluating key pathway components involved in cellular function and angiogenesis we 

found that SAL effectively triggered the phosphorylation of mTOR signaling cascade, 

including Akt, mTOR, and p70S6K (Ser371) in BM-EPCs in a concentration-dependent 

manner (Figure 14A). Furthermore, we used the highly specific PI3-K inhibitor LY294002 

to assess the role of the PI3-K/Akt pathway in angiogenesis. Unexpectedly, LY294002 

inhibited not only Akt, but also notably phosphorylated mTOR (Figure 14B). Cell migration 

and tube formation ability were significantly decreased when SAL was co-administered 

with LY294002 (Figure 14D, 14E), suggesting that SAL promotes cell mobility and 

angiogenesis through activating the Akt/mTOR signaling pathway. To further define the 

roles of MAPK in the SAL-induced effects on BM-EPCs, we analyzed the expression of 

phosphorylated ERK1/2, p38 MAPK, and JNK following SAL treatment. As demonstrated 

in Figure 14A, the phosphorylation levels of ERK1/2 were increased after SAL treatment 

for 48 h. However, no significant changes of phosphorylation levels of p38 MAPK and JNK 

were observed after SAL treatment. Additionally, application of ERK 1/2 inhibitor U0126 

also markedly reduced the phosphorylated expression of mTOR (Figure 14C) and blocked 

SAL-induced cell migration as well as angiogenesis (Figure 14D, 14E). This implies that, 

by interaction with mTOR, ERK1/2 is a potential target of SAL in BM-EPCs.  

As shown in Figure 14F, treatment with ICAR (30 μM) alone significantly increased 

the expression of p-mTOR, p-p70S6K, and p-4EBP1 within 48 h. The phosphorylation of 

mTOR, p70S6K and 4EBP1 by ICAR was prevented with application of LY294002 (20 μM) 

(Figure 14G), illustrating again that phosphorylation of mTOR/p70S6K/4EBP1 was 

dependent upon activation of the PI 3-K pathway. Moreover, the promotion effect of ICAR 
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on migration and capillary tube formation ability were suppressed by rapamycin (Figure 

14H, 14I), which imply a possible role of mTOR in the cell motility and angiogenesis ability. 

To further demonstrate the downstream protein that may regulate the effect of ICAR, we 

used specific siRNA to silence the 4EBP1 gene expression in EPCs. qRT-PCR and Western 

blot analysis were performed to ensure the adequate knocking down of 4EBP1 (Figure 14J). 

We observed that the tube formation induced by ICAR was suppressed markedly when 

4EBP1 was silenced (Figure 14K). Interestingly, when 4EBP1 is downregulated, rapamycin 

inhibition of both basal and ICAR-stimulated cell motility was dramatically attenuated 

(Figure 14L).     
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Figure 14. Signal pathway analysis of SAL and ICAR-treated BM-EPCs. (A, F) BM-EPCs were treated 

with or without TCM extracts for 48 h and then harvested. Total cell lysates were prepared and subjected 

to sodium dodecyl sulfate polyacrylamide gel electrophoresis, followed by Western blot analysis. The 

immunoblots shown are representative of at least three independent experiments with comparable results. 

(B, C, G) BM-EPCs were pretreated with 20 µM LY294002 or 10 µM U0126 for 90 min, then cultured 

with SAL or ICAR for 48 h. Protein expression was analyzed by Western blot analysis. (D, E, H, I) 

BM-EPCs were treated under the same conditions described above, cell migratory ability and 

capillary-like tube formation were determined by the methods as above, n=3. (J) BM-EPCs were 

transfected with 4EBP1-specific or non-specific siRNA. 48 h after transfection, mRNA and protein 

expression were measured to determine the efficiency of the silence. (K, L) BM-EPCs were incubated in 

the absence or presence of 4EBP1 siRNA for 48 h, then treated with rapamycin for 90 min, and 

stimulated by ICAR for 48 h, capillary-like tube formation and cell migration ability were determined by 

the methods as above, n=4. All data are presented as mean ± SD. 
＊

P < 0.05, 
＊＊

P < 0.01. 
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3.1.9 SAL augments bone healing in vivo 

Therapeutic benefit of growth factor and SAL in vivo by embedding into the 

mineralized collagen scaffold were tested in femoral critical-size bone defect of 

immunodeficient mice. As shown in Figure 15E-G, after 6 weeks, the therapy with BMP-2 

or SAL both resulted in an significant augment in total bone growth compared to the control 

group as corroborated by micro-CT.  

 

Figure 15. SAL augments bone healing in vivo. (A) Representative picture of the mineralized collagen 

scaffolds. (B-D) The external fixator that was used in the animal study and the murine defect model. (E, 

F, G) Representative μCT images of a murine bone defect after 6 weeks, that was treated with 

mineralized collagen scaffolds functionalized with SAL or BMP-2. In animals treated with 

SAL-functionalized implants, improved bone formation was observed (images kindly provided by Dr. 

Stefan Zwingenberger, Stiehler group). 
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3.2  TCM extracts prevent oxidative stress-mediated dysfunction in bone marrow 

derived-endothelial progenitor cell 

 

3.2.1 SAL, SalB and ICAR inhibit cell death induced by H2O2 

Although TCM extracts significantly enhanced the cell function in vitro, we wanted to 

investigate whether TCM extracts protect cell cultures from H2O2-induced apoptosis. To 

assess the consequences of TCM extracts treatment on the apoptotic effect induced by H2O2, 

BM-EPCs were double-stained with calcein-AM/EthD-1. While in the absence of H2O2 

nearly all cells were alive, the addition of 1 mM H2O2 induced a significant level of 

apoptosis, as showed by contraction and nuclear membrane creasing. In contrast, very few 

cells preincubated with SAL, SalB or ICAR were EthD-1-positive. Cell retained good 

morphology without cytoplasm injury (Figure 16A), indicating a protective effect of SAL 

from H2O2 induced cell death. 

As shown in Figure 16B, 48 h preincubation with 40 and 80 μM SAL 

dose-dependently attenuated the H2O2-induced cell death by 14.7% and 25.0%, respectively. 

Notably, cell death was also remarkably attenuated by 28.4% and 36.8% when pretreated 

with 10 μM and 20 μM SalB, respectively. And the pretreatment with ICAR at 15 and 

30 μM reduced the cell death by 38.3% and 42.4%, respectively. 

Furthermore, LDH levels in the cell culture supernatant significantly increased after 

exposure to 1 mM H2O2 (Figure 16C, 42.0 ± 1.5%, P < 0.01). The considerable adverse 

effect of H2O2 was significantly attenuated by pretreatment of BM-EPCs with 80 μM SAL 

(29.9 ± 1.1%), 10 μM (21.9 ± 1.3%) and 20 μM (19.4 ± 0.6) SalB, as well as 15 μM (28.4 ± 

1.4%) and 30 μM (19.5% ± 2.1%) ICAR, but not in the control group. These results 

demonstrated that TCM extracts can obviously protect BM-EPCs against H2O2-induced cell 

damage (Figure 16C).  
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Figure 16. SAL, SalB and ICAR protect BM-EPCs from H2O2-induced cell damage. (A) Cells were 

pretreated with indicated concentrations of TCM extracts and stressed by 1 mM H2O2. Cell survival was 

monitored by calcein AM/EthD-1 double staining and analyzed qualitatively by fluorescence microscopy. 

Representative micrographs from each treatment group are shown. (B) After the treatment with TCM 

extracts and induction by 1 mM H2O2, BM-EPCs were washed with PBS and cellular viability was 

evaluated by quantification of DNA content, n=6. (C) Cell death was evaluated by LDH assay, n=4. All 

data are expressed as mean ± SD. 
＊

P < 0.05, 
＊＊

P < 0.01 versus H2O2 group. 
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3.2.2 SAL and SalB suppress H2O2-induced production of ROS and NADPH 

expression 

As shown in Figure 17A and 17B, when compared with BM-EPCs incubated in 

EBM-2 alone, the addition of SAL to the cells did not affect the amount of ROS produced 

(104.8% ± 10.0% at 40 μM SAL and 97.5% ± 4.1% at 80 μM SAL, respectively). However, 

after exposure to 1 mM H2O2 for 6 h, fluorescence from the cells stained with DCFDA 

indicated that intracellular ROS had accumulated significantly in BM-EPCs (368.8% ± 8.3% 

control w/ H2O2 vs. control w/o H2O2), but pretreatment with SAL annihilated ROS 

production to nearly normal levels (160.2% ± 14.7% at 40 μM SAL and 147.3% ± 12.8% at 

80 μM SAL, respectively).  

The multimeric enzyme complex NADPH oxidase (Nox) is the major enzyme system 

generating superoxide in the vasculature. H2O2 markedly stimulatated NADPH oxidase 

activity suggesting that NADPH oxidase is an important source of H2O2-induced oxidative 

stress in BM-EPCs. Pretreatment with SAL (40 μM and 80 μM) significantly decreased 

H2O2-induced NADPH production by 23.1% ± 2.3% and 29.4% ± 1.0% respectively (Figure 

17C). Hence SAL has a potent antioxidant activity on H2O2-induced ROS production and 

this may be mediated partly through inhibition of NADPH oxidase activity. To highlight the 

role of NADPH, diphenyliodonium (DPI) as an NADPH oxidase inhibitor was added to the 

cells for 90 min before H2O2 stimulation. DPI (10 μM) treatment significantly attenuated 

H2O2-induced generation of ROS and damage on cellular viability, and showed an enhanced 

effect when combined with 80 μM SAL (Figure 17D, 17E). 

As shown in Figure 17F, 48 pretreatment with SalB (10 μM and 20 μM) also 

annihilated ROS production to nearly physiological levels (146.8% ± 5.9% and 109.1% ± 

9.0% for 10 and 20 μM SalB, respectively) and decreased H2O2-induced NADPH 

production by 13.7% ± 1.2% and 37.0% ± 1.4%, respectively (Figure 17H). Additionally, 

compared to cells treated with H2O2, also NO generation was restored by SalB to a 

physiological level (Figure 17I). In an effort to confirm the protective effect of SalB 
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qRT-PCR revealed that mRNA expression levels of both both Nox4 and eNOS were 

considerably decreased by SalB (P < 0.01) (Figure 17J, 17K). Interestingly, treatment of 

BM-EPCs with 10 μM eNOS inhibitor L-NAME significantly prevented cell damage as 

demonstrated by decreased ROS generation (64.6% of H2O2 group, P < 0.01) and DHE level 

(74.0% of H2O2 group, P < 0.05) (Figure 17L, 17M), and enhanced the inhibitory effect of 

SalB. This finding indicates that the protective effect of SalB was at least partially 

dependent on the cells’ ability to downregulate eNOS.  

In order to evaluate the role of NADPH in this context, the NADPH oxidase inhibitor 

diphenyleneiodonium (DPI) was added prior to H2O2 stimulation. As shown in Figure 17N, 

17O, DPI (10 μM) treatment significantly attenuated H2O2-induced Nox4 and eNOS 

expression, and undermined the suppressive effect exerted by SalB.  
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Figure 17. SAL and SalB suppress H2O2-induced production of ROS and NADPH expression. (A, F) 

Cells were pretreated with 40 and 80 µM SAL, or 10 and 20 µM SalB for 48 h, labeled with 30 µM 

DCFH-DA and subsequently stressed with H2O2 for 6 h prior to fluorescence microscopy. (B, G) 

Production of ROS was quantified by the amount of DCF formed in the BM-EPCs. The fluorescence 

intensity was measured using a microplate reader, n=6. (C, H) Cells were treated with 40 and 80 µM SAL, 

or 10 and 20 µM SalB for 48 h, followed by H2O2 treatment for 6 h. NADPH oxidase activity was 

measured colorimetrically using NADP/NADPH assay kit, n=5. (D, E) Cells were treated with 40 and 80 

µM SAL for 48 h, and then stimulated with H2O2 for 6 h with pretreatment of 10 µM DPI. ROS was 



74 

 

quantified by DCF formation as described above (n=4), and cellular viability was evaluated by 

quantification of DNA content (n=3). (I) Cells were treated with 10 and 20 µM SalB for 48 h, and then 

stimulated with H2O2 for 6 h. Cell culture supernatants were collected and analyzed by Griess assay, n=4. 

(J, K) qRT-PCR was performed to measure Nox4 and eNOS mRNA expression levels in BM-EPCs in 

response to H2O2 stimulation with or without pretreatment by SalB over 48 h, n=4. (L, M) BM-EPCs 

were pretreated with SalB for 48 h, then incubated with 10 μM L-NAME for 90 min followed by 1 mM 

H2O2 for 6 h, ROS production and DHE level were assessed by fluorescence quantification, n=3. 

BM-EPCs were treated with 1 mM H2O2 in the absence or presence of 10 μM NOS inhibitor L-NAME, 

ROS production and mRNA level of Nox4 were assessed by DCF quantification (n=3) and by qRT-PCR, 

n=4. (N, O) BM-EPCs were pretreated with SalB for 48 h, then incubated with 10 μM DPI for 60 min 

followed by 1 mM H2O2 for 6 h, Nox4 and eNOS mRNA expression was quantified by qRT-PCR, n=4. 

All data are expressed as mean ± SD, 
＊

P < 0.05, 
＊＊

P < 0.01 versus H2O2 group.   

 

3.2.3 SAL, SalB and ICAR protect mitochondrial function and inhibit 

mitochondrion-induced apoptosis 

Furthermore, the mitochondrial function of the BM-EPCs was monitored using the 

fluorescent dye Rhodamine 123. After incubation with H2O2 for 6 h, the mean fluorescence 

intensity of Rhodamine 123 decreased to 65.5% compared to control cells, respectively 

(Figure 18A, 18B), representing a loss of MMP and a special oxidation of mitochondria. 

SAL (40 and 80 μM), SalB (10 and 20 μM), ICAR (15 and 30 μM) all alleviated 

mitochondrial injury remarkably, which restored the potential to nearly normal levels 

(Figure 18B). Moreover, the cells exposed to H2O2 exhibited enhanced DHE fluorescence 

when compared with control cells (Figure 18C). But the increase in DHE fluorescence in 

response to H2O2 was remarkably prevented by co-administration of SAL, SalB or ICAR 

(Figure 18A, 18C), which implied a suppression effect of superoxide radicals production 

imposed by TCM extracts. Furthermore, the method of Annexin V-FITC and PI double 

staining was employed to investigate the effect of SAL on H2O2-induced apoptosis. As 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789849/figure/F4/
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shown in Figure 18D, the apoptosis and necrosis rate were decreased significantly after cells 

were treated with both 40 and 80 μM SAL for 48 h.  

Bcl-xL and Bax expression levels were detected to assess mitochondrial related 

apoptosis. The immunofluorescence data showed significantly increased Bax levels upon 

H2O2 stimulation and markedly attenuated levels of the apoptosis marker after 48 h SalB (10 

and 20 µM) pretreatment (Figure 18E). On the other hand Bcl-xL expression was declined 

in H2O2-stressed BM-EPCs and restored in the presence of 10 and 20 µM SalB (Figure 18F). 

Immunoblot analysis supported this finding demonstrating that SalB reversed both 

H2O2-induced increased Bax/Bcl-xL ratio and oxidative stress activated cleaved PARP, 

cleaved caspase-3 protein expression, as well as cytochrome c release (Figure 18F). These 

findings suggest that SalB counteracts mitochondria-mediated apoptosis by modulating 

Bcl-2 family proteins. 
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Figure 18. SAL, SalB and ICAR inhibit H2O2-induced cell apoptosis. BM-EPCs were pretreated with 

indicated concentrations of TCM extracts for 48 h and stressed by 1 mM H2O2. (A) Then cells were 
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labeled with the fluorescent dye Rhodamine 123, the superoxide indicator DHE and the nucleic acid stain 

Hoechst 33258, n=4. (B) BM-EPCs were loaded with 5 µM Rhodamine 123. After 20 min incubation in 

the dark, cells were washed twice with phosphate buffered saline, and the plates were immediately read 

using a fluorescent plate reader, n=5. (C) Cells were probed with 10 µM DHE for 30 min, fluorescence 

intensity was acquired using a fluorescent plate reader, n=4. (D) Cells were harvested and labeled with a 

combination of annexin V-FITC and PI. H2O2-induced apoptosis was determined by flow cytometry, n=3. 

(E)  Immunofluorescence. Bcl-xL and Bax were stained with primary antibodies followed by staining 

with secondary Cy3-conjugated antibody. Cell nuclei were labeled with DAPI and immunofluorescence 

analysis was performed under the fluorescence microscope. (F) Relative changes in cytochrome c, PARP, 

cleaved caspase-3, Bax and Bcl-xL protein levels were analyzed by Western blot. GAPDH was used as a 

loading control. All data are expressed as mean ± SD, 
＊

P < 0.05, 
＊＊

P < 0.01 versus H2O2 group. 

 

3.2.4 SAL protects BM-EPCs from H2O2-induced injury through JNK, p38 MAPK 

pathways and modulates the levels of Bcl-2 family proteins 

In order to investigate the mechanisms underlying SALs protective effect towards 

oxidative stress, the expression of Nox4, STAT-3 as well as some endothelial genes was 

investigated. The results showed that Nox4 as well as STAT-3 expression was decreased 

considerably (Figure 19A). Compared to cells treated with H2O2, gene expression of VEGF 

of SAL-stimulated cells was increased to nearly the same level found in H2O2-untreated 

cells. BM-EPCs preincubated with SAL and treated with H2O2 also showed an enhanced 

KDR expression. Compared to untreated cells, H2O2-stimulated cells showed a significantly 

higher eNOS expression. However, pretreatment with SAL for 48 h attenuated this increase 

to a normal level (Figure 19A).  

Since Bcl-2 family proteins play important roles in apoptosis by functioning as 

promoters or inhibitors of cell death processes, we next studied the changes in the levels of 

Bax/Bcl-xL in BM-EPCs after exposing to H2O2. Western blot analysis showed that 1 mM 

H2O2 caused a profound up-regulation of pro-apoptotic protein Bax and downregulation of 
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Bcl-xL, which strongly increased the ratio of Bax/Bcl-xL. But SAL preincubation reversed 

this high ratio of Bax/Bcl-xL notably by declining Bax and restoring Bcl-xL expression 

(Figure 19B). To further elucidate the underlying mechanisms of the protective effect of 

SAL, phosphorylation of JNK, p38 MAPK and ERK1/2 were determined. As shown in 

Figure 19B, stimulation of BM-EPCs with H2O2 induced the phosphorylation of all the three 

targets, whereas SAL pretreatment significantly inhibited the upregulation of both 

phosphorylated JNK and p38 MAPK, but not ERK1/2.  

 

Figure 19. Gene expression and signal pathway analysis of SAL-treated BM-EPCs upon oxidative stress. 

(A) BM-EPCs were treated with 80 µM SAL for 2 d, then incubated with 1 mM H2O2 for 6 h and gene 

expression levels of Nox4, STAT3, VEGF, KDR, eNOS were determined, n=3. (B) Cells were incubated 

without or with 80 μM SAL for 48 h before stimulation with 1 mM H2O2. Total protein (30 μg) was 

isolated from the cells, applied to Western blot and probed with specific antibodies. The immunoblots 

shown here are representative of at least three independent experiments with similar results. All data are 

presented as mean ± SD. 
＊

P < 0.05, 
＊＊

P < 0.01 versus H2O2 group. 

 

3.2.5 SalB exerts its cytoprotective potential via mTOR signaling pathway 

Cellular proliferation and survival require the involvement of mTOR and 

phosphoinositide 3-kinase (PI3-K)/Akt pathways (Sato et al., 2010). Since SalB employs 
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mTOR to modulate the phosphorylation of p70S6K and 4EBP1, we assessed whether the 

cytoprotective effects SalB also involves the Akt/mTOR pathway. BM-EPCs were stressed 

by 1 mM H2O2 for 6 h prior to protein extraction and Western blot analysis. As shown in 

Figure 20A, H2O2 induction almost blocked the expression of p-mTOR, as well as 

p-p70S6K and p-4EBP1, while SalB (20 μM) significantly restored the expression of these 

proteins in the presence of H2O2. We hypothesized that mTOR/p70S6K/4EBP1 activation is 

responsible for the observed increased cell survival in response to H2O2 and thus performed 

inhibiting experiments by use of rapamycin. As shown in Figure 20B, rapamycin 

completely reversed SalB-mediated mTOR/p70S6K/4EBP1 phosphorylation in response to 

H2O2. Furthermore, increased expression of p-mTOR, p-p70S6K and p-4EBP1 by SalB 

during H2O2 exposure was blocked during application of the PI3-K inhibitor LY294002 (20 

μM) (Figure 20C). In addition, a considerable decrease in cell survival rate was found when 

rapamycin (73.9% of SalB+H2O2 group, P < 0.01) or LY294002 (77.1% of SalB+H2O2 

group, P < 0.01) were applied combined with SalB (Figure 20D). These results 

demonstrated that SalB exerted its cytoprotective potential via mTOR signaling pathway.  

To further demonstrate the downstream protein that may regulate the effect of SalB, we 

used specific siRNA to silence the 4EBP1 expression in BM-EPCs. RT-PCR and Western 

blot analyses were performed to ensure adequate knocking down of 4EBP1 (Figure 20E). 

Consequently, cleaved caspase-3 and Bax induction by H2O2 were enhanced in 4EBP1 

siRNA-transfected cells, whereas the Bcl-xL expression was declined (Figure 20F, 20G). 

More importantly, cell viability was significantly decreased while ROS production was 

considerably elevated during inhibition of 4EBP1, suggesting that the protection by SalB is 

significantly reduced in case of 4EBP1 knockdown (Figure 20H, 20I). Taken together, these 

observations demonstrate that the cytoprotective, antioxidative properties of SalB rely upon 

mTOR/4EBP1 to offer cellular protection during oxidant stress. Unexpectedly, both 

rapamycin treatment 4EBP1 and 4EBP1 knockdown activated phosphorylated p38 level, but 

did not facilitate the induced effect of H2O2 on p-ERK1/2 (Figure 20J, 20K). We 

hypothesize that oxidative stress induced activation of p38 MAPK suppresses the 
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physiological mTOR/4EBP1 activity of proliferating and differentiating cells and, in turn, 

this loss of mTOR activity sensitizes the BM-EPCs to p38 mediated apoptosis. 
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Figure 20. SalB provides cellular protection against oxidative stress in BM-EPCs through mTOR and its 

signaling pathways. (A) Cells were pretreated with 20 µM SalB for 48 h, and incubated with H2O2 for 6 h, 

Western blot analysis was used for determination of p-mTOR, p-p70S6K and p-4EBP1 levels. (B, C) 

SalB (20 µM) alone or combined with rapamycin (100 nM) or LY294002 (20 μM) were applied to 

BM-EPCs prior to H2O2 treatment, and Western blot analysis was performed. (D) in the presence of 

rapamycin or LY294002 in response to H2O2-stimulation for 6 h, Cellular survival rates were determined 

by quantification of DNA content, n=5. (E) BM-EPCs were transfected with 4EBP1-specific or 

non-specific siRNA. 48 h after transfection, mRNA and protein expression were measured to determine 

the efficiency of the silence. (F, G) BM-EPCs were incubated in the absence or presence of 4EBP1 

siRNA for 48 h, then cells were treated by SalB and H2O2
-
stimulation, and indicated protein expressions 

were measured by Western blot. (H, I) Cellular viability and ROS generation were determined by 

quantification of DNA content (n=5) and by the amount of DCF formed (n=5) in cells in the presence or 

absence of 4EBP1 siRNA, in response to either SalB treatment or H2O2-stimulation. (J, K) p-p38 MAPK 

and p-ERK1/2 protein expression levels were detected in the presence of rapamycin or 4EBP1 siRNA in 

response to H2O2
 
stimulation for 6 h. The densitometric analysis of all Western blot band intensities were 

normalized to the total proteins or GAPDH. All data are expressed as mean ± SD, 
＊

P < 0.05, 
＊＊

P < 0.01. 

ns, not significant.  

 

3.2.6 SalB inhibits activation of H2O2-induced MKK3/6-p38 MAPK-ATF2 pathways in 

BM-EPCs 

MAPK signaling pathway is considered crucial for intracellular signal transduction 

events upon oxidative stress. In our study, H2O2 loading was associated with an increase in 

the phosphorylation of p38 MAPK, which was significantly inhibited by SalB pretreatment 

(Figure 21A). In considering the impact of SalB on signaling events both upstream and 

downstream of p38 MAPK, we assessed oxidative-dependent phosphorylation of the 

upstream kinase MKK3/6 and of the downstream effector ATF2. Notably, the markedly 

increased levels of MKK3/6 and ATF2 mediated by oxidative stress were suppressed by 
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SalB (Figure 21A). In contrast to upstream MKK-mediated p38 MAPK phosphorylation, 

autophosphorylation requires p38 MAPK intrinsic kinase activity. We therefore examined 

whether inhibition of p38 MAPK activity by SB203580 abolishes p38 MAPK 

phosphorylation induced by H2O2. As shown in Figure 21B, the enhancement of p38 MAPK 

phosphorylation by H2O2 treatment was significantly attenuated by the presence of 

SB203580 (10 μM). However, the baseline level of p38 phosphorylation was not changed 

by SB203580 suggesting that constitutive activation of MKK3/6 contributes to the baseline 

level of p38 MAPK activation that is independent of H2O2-triggered p38 MAPK 

phosphorylation. Furthermore, immunoblot analysis showed that the increase in caspase-3 

activation and Bax/Bcl-xL ratio were prevented by treatment with SB203580 (Figure 21B). 

The presence of SB203580 significantly abolished the protective effect imposed by SalB, as 

observed in cell viability and ROS generation assays (Figure 21C, 21D). No influence of 

SB203580 on the expression levels of p-ERK1/2 or total ERK1/2 and p-JNK or total JNK 

was detected (data not shown). To further confirm the results derived from the cytotoxicity 

assay, we examined the protein levels of both cleaved caspase-3 and Bax/Bcl-xL in 

BM-EPCs and found that the inhibition of p38 significantly suppressed the induction of 

cleaved caspase-3 protein levels in BM-EPCs upon H2O2 treatment (Figure 21B). Strikingly, 

inhibition of p38 MAPK by SB203580 completely abolished the prevention by SalB on 

cleaved caspase-3 and Bax/Bcl-xL expression suggesting that inactivation of p38 MAPK 

pathway plays a critical role in SalB mediated protection against H2O2-induced oxidative 

stress in BM-EPCs.  

    To determine the role of ATF2 in the context of SalB-mediated cytoprotective effects, 

mRNA expression was determined by qRT-PCR. As shown in Figure 21E, the increase in 

ATF2 expression was prevented by treatment with SB203580. And the presence of 

SB203580 or U0126 all significantly suppressed ATF2 level induced by H2O2. After ATF2 

was knocked down by siRNA, RT-PCR and Western blot analyses were performed to 

ensure adequate silencing (Figure 21F). ATF2 knockdown modestly decreased 

H2O2-stimulated phosphorylation of p38 MAPK compared with cells transfected with the 
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non-specific siRNA. H2O2-caused cleavage of caspase-3 and increased Bax/Bcl-xL ratio 

expression were largely inhibited when cells were silenced with ATF2 (Figure 21G, 21H). 

In addition, knockdown of ATF2 suppressed ROS production (53.5% of non-silenced H2O2 

group, P < 0.01) and promoted cell survival (1.66-fold of non-silenced H2O2 group, P < 0.01) 

upon H2O2-induced oxidative stress in BM-EPCs (Figure 21I, 21J), illustrating that loss of 

ATF2 is protective during H2O2 exposure. 

In summary, the combined data support a model in which oxidation triggers p38 

activation, potentially via MKK3/6, which in turn induces the proapoptotic ATF2. Our data 

indicate that MKK3/6-p38 MAPK-ATF2 signaling are the principal target pathways of 

SalB. 
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Figure 21. SalB inhibits H2O2-induced MKK3/6-p38 MAPK-ATF2 pathways in BM-EPCs. (A) 

BM-EPCs were treated with or without 20 μM SalB, then stimulated by 1 mM H2O2, MKK3/6, p38 

MAPK, ATF2 were detected with phospho-specific antibodies by Western blot. (B) Forty-eight hours 

after SalB treatment BM-EPCs were further incubated with selective p38 MAPK inhibitor SB203580 

(10 μM) and 1 mM H2O2, and protein expression was assessed by Western blot analysis. (C, D, E) 

Cellular viability, ROS generation and mRNA level of ATF2 were determined by quantification of DNA 
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content (n = 5), by the amount of cellular DCF synthesis (n=3), and by qRT-PCR (n=3) in the presence of 

SalB or SB203580 in response to H2O2
-
stimulation for 6 h. (F) BM-EPCs were transfected with 

ATF2-specific or non-specific siRNA. 48 h after transfection, mRNA and protein expression were 

measured to determine the efficiency of the silence. (G, H) BM-EPCs were incubated in the absence or 

presence of ATF2 siRNA for 48 h, then cells were treated by SalB and H2O2-stimulation, and protein 

expression was measured by Western blot. (I, J) Cellular viability and ROS generation were determined 

by quantification of DNA content and by the amount of cellular DCF formation in the presence or 

absence of ATF2 siRNA, in response to either SalB treatment or H2O2-stimulation, n=4. The 

densitometric analysis of all Western blot band intensities were normalized to the total proteins or 

GAPDH. All data are shown as mean ± SD. 
＊

P < 0.05, 
＊＊

P < 0.01. ns, not significant. 

 

3.2,7 Inhibition of ERK1/2 by SalB prevents H2O2- mediated injury in BM-EPCs 

ROS is known to be related with p38 MAPK (Jiang et al., 2011). In order to confirm 

that SalB inhibits H2O2-induced p38 MAPK phosphorylation via decreased ROS generation, 

DPI was added prior to H2O2 stimulation. As shown in Figure 22A, 22B, DPI treatment 

significantly attenuated H2O2-induced generation of ROS and cell death in BM-EPCs. 

Notably this effect was enhanced by 20 μM SalB. DPI partially inhibited phosphorylation of 

p38 MAPK during H2O2 stress and enhanced the inhibitory effect of SalB on p-p38 MAPK 

and p-ATF2 (Figure 22C, 22D). Furthermore, DPI strongly suppressed the H2O2-stimulated 

cleaved caspase-3 and Bax/Bcl-xL ratio, and enhanced the aforementioned suppressive 

effect of SalB on these proteins (Figure 22C, 22D). In summary, these findings suggest a 

positive feedback loop involving NADPH oxidase, H2O2, and p38 MAPK amplifying the 

signaling pathways related to oxidative stress-induced cell injury in BM-EPCs that can be 

modulated by SalB. 

The ERK1/2 pathway is associated with protection against apoptosis. In our study, 

pretreatment with 20 μM SalB for 48 h prior to H2O2 exposure inhibited the H2O2-induced 

ERK1/2 activation, while total ERK1/2 expression was not altered in any treatment group 
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(Figure 22E). The NADPH oxidase inhibitor DPI treatment also showed an inhibition on 

H2O2-induced ERK1/2 phosphorylation (Figure 22F). To evaluate the putative role of 

ERK1/2 pathways on H2O2-induced apoptosis in the presence of SalB, cells were 

preincubated for 60 min with the selective MEK1 and MEK2 inhibitor U0126 (10 μM) prior 

to H2O2 (1 mM) addition. U0126 markedly reduced the phosphorylation of ERK1/2 and the 

abundance of Bax/Bcl-xL ratio, and enhanced the anti-apoptotic effect of SalB on 

H2O2-induced cell dysfunction in BM-EPCs (Figure 22F). In addition, phosphor-ATF2 

stimulated by H2O2 was downregulated by U0126 (Figure 22F). Furthermore, inhibition of 

ERK1/2 by U0126 markedly prevented ROS production (60.7% of H2O2 group) and 

counteracted cell damage (1.45-fold of H2O2 group) imposed by H2O2, which showed an 

additive effect when combined with 20 μM SalB (Figure 22G, 22H). These data highlight 

the blockade of ERK1/2 by SalB plays a critical role in counteracting H2O2-induced 

oxidative stress and EPCs dysfunction.  
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Figure 22. Inhibition of ERK1/2 by SalB prevents H2O2- mediated injury in BM-EPCs. (A, B) 

Forty-eight hours after SalB treatment, BM-EPCs were further incubated with 1 mM H2O2 alone or in 

combination with 10 μM of DPI, cellular viability and ROS generation were determined by quantification 

of DNA content and by the amount of cellular DCF formation, n=6. (C, D) Indicated protein expressions 

were detected by Western blot in the presence or absence of DPI, in response to SalB treatment (or not) 

and H2O2-stimulation. (E) Cells were pretreated with 20 µM SalB for 48 h, and incubated with H2O2 for 6 

h, protein expression of p-ERK1/2 and total ERK1/2 were determined by Western blot. (F) Forty-eight 

hours after SalB treatment, BM-EPCs were further incubated with 1 mM H2O2 alone or in combination 

with 10 μM of DPI or 10 μM of U0126, and Western blot was performed to detect protein expression. (G, 
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H) ROS generation and cellular viability were determined by the amount of cellular DCF formation and 

quantification of DNA content in the presence of either SalB or U0126 in response to H2O2-stimulation 

for 6 h, n=4. Data are expressed as mean ± SD, 
＊

P < 0.05, 
＊＊

P < 0.01. 

 

3.2.8 ICAR restores loss of mTOR phosphorylation induced by H2O2, which is 

associated with autophagy inhibition  

Since ICAR employs mTOR to modulate cell angiogenic differentiation as described 

above, we assessed whether ICAR also relies upon the PI 3-K/Akt/mTOR pathway to 

protect cells. As showed in Figure 23A, H2O2 (1 mM) markedly decreased p-mTOR, 

p-p70S6K, as well as p-4EBP1 expression in BM-EPCs. Conversely, ICAR pretreatment 

restored p-mTOR protein expression and its two targets, p70S6K and 4EBP1 back to nearly 

baseline levels. We considered the possibility that the higher mTOR/p70S6K/4EBP1 

activation in cells could be responsible for the increased survival in response to H2O2. Thus, 

we inhibited this pathway with rapamycin to evaluate it. As shown in Figure 23B -6D, 

treatment with rapamycin partly abolished mTOR/p70S6K/4EBP1 phosphorylation by 

ICAR in response to H2O2, and a considerable decrease in cell survival rate was found when 

rapamycin (73.9% of ICAR+H2O2 group, P < 0.01) was applied combined with ICAR. 

Moreover, ROS generation elevated significantly when mTOR was inhibited. 

Compelling evidence demonstrates that the PI3-K/Akt/mTOR pathway is the major 

regulatory signal of autophagy. Inactivation of mTOR is considered as a key step in 

autophagy activation. We therefore investigated whether H2O2-mediated autophagy is 

occurring via an mTOR mediated pathway in our system. As shown in Figure 23E, 

H2O2-induced autophagic flux was observed at 3 h, and then was sustained at high levels 

during 12 h treatment indicated by increased processing of LC3B-I to LC3B-II. 

Sequestome-1 protein (p62/SQSTM1), which was implicated to directly degrade by 

autophagy, was reduced after 3 h in BM-EPCs in response to H2O2-indueced autophagy. 

However, ICAR pretreatment notably decreased LC3B-II/LC3B-I ratio, while restored 
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expression of p62/SQSTM1. Moreover, Beclin-1 protein expression, an upstream promoter 

of autophagic induced cell death pathways, was also attenuated by ICAR remarkably 

(Figure 23F). he suppression effect on cell autophagy was also evidenced by the decreased 

number of acridine orange-positive cells.  

The canonical mTOR inhibitor rapamycin increased autophagic response of the cells 

under the induction by H2O2, which undermined the suppression effect of ICAR on it 

(Figure 23H). In order to examine whether the suppression of autophagy is related to 

oxidative stress-induced cell death, we pretreated BM-EPCs with autophagic inhibitor 

3-methyladenine (3-MA). As shown in Figure 23I, 3-MA inhibited acridine orange-positive 

vacuole accumulation by H2O2, and H2O2-induced accumulation of LC3BII and decrease of 

p62. What’s more, the ratio expression of Bax/Bcl-xL was significantly declined in the 

presence of 3-MA, and a reduced level of cell death was correlated with the observed 

decreased amount of ROS accumulation, further strengthening the association between 

autophagy, ROS, and cell death (Figure 23J-L). 
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Figure 23. ICAR restores loss of mTOR phosphorylation induced by H2O2, which is associated with 

autophagy inhibition. (A) BM-EPCs were treated with or without 30 μM ICAR, then stimulated by 1 mM 

H2O2, mTOR, p70S6K and 4EBP1 were detected with phospho-specific antibodies by Western blot. (B) 

Indicated protein expressions were detected by Western blot in the presence or absence of rapamycin, in 

response to ICAR treatment (or not) and H2O2-stimulation. (C, D) ROS generation and cellular survival 

rates were determined by quantification of DCF formation and DNA content in the presence of 

rapamycin or LY294002 in response to H2O2-stimulation for 6 h, n=5. (E) Cells were treated without or 
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with H2O2 for 3, 6, and 12 h, protein expression were detected by Western blot. (F) Cells were treated 

without or with H2O2 for 6 h, acidic intracellular compartments were visualized by acridine orange 

staining. (G, H) BM-EPCs were treated with or without 30 μM ICAR in the presence of rapamycin in 

response to H2O2-stimulation, protein expression was detected by Western blot. (I, J) BM-EPCs were 

pretreated with 3-MA (5 mM), and stressed by H2O2 for 6 h, acidic intracellular compartments were 

visualized by acridine orange staining using fluorescence microscope and indicated protein expression 

was detected by Western blot. (K, L) BM-EPCs were pretreated with 3-MA (5 mM), and stressed by 

H2O2 for 6 h, ROS generation and cellular survival rates were determined by quantification of DCF 

formation and DNA content, n=4. Data are expressed as mean ± SD, 
＊＊

P < 0.01. 

  

3.2.9 Blockade of p38 MAPK/ATF2 attenuates H2O2 induced cell apoptosis and 

autophagy mediated by ICAR 

It has been reported that an increase in p38 MAPK activation sensitizes cells to 

oxidation-induced apoptosis in several cell types. Consistent with previous reports, 

phospho-38 MAPK was rapidly upregulated in response to H2O2 stimulation in our study, 

but ICAR pretreatment significantly decreased the phospho-38 MAPK expression almost 

back to baseline (Figure 24A). ATF2 has been shown to be the downstream effector of p38, 

mediating its proapoptotic function. As shown in Figure 24A, the level of phospho-ATF2 

was also blunted by ICAR pretreatment upon H2O2 induction. The attenuation of ATF2 by 

ICAR was also confirmed at mRNA levels (Figure 24B). To determine a possible role of 

p38 MAPK/ATF2 mediating cell apoptosis and autophagy upon oxidation, BM-EPCs were 

loaded with H2O2 in the absence or presence of the p38 MAPK inhibitor SB203580. As 

shown in Figure 24B and 24C, SB203580 profoundly abrogated H2O2-triggered mRNA 

level and phosphorylated protein expression of ATF2. The ratio expression of Bax/Bcl-xL 

and the cleavage of caspase-3 stimulated by oxidation were significantly prevented by the 

application of SB203580, suggesting that p38 MAPK activation was responsible for 

H2O2-mediated apoptosis in BM-EPCs. Furthermore, we have observed that SB203580 
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prevented the accumulation of LC3-II and restored the expression of p62/SQSTM1 in 

response to H2O2, suggesting that p38 MAPK is necessary for the activation of autophagy 

by oxidation (Figure 24D). No influence of SB203580 on the expression levels of p-ERK1/2 

or total ERK1/2 and p-JNK or total JNK was detected (data not shown). 

To assess the role of NADPH in the anti-injury effect exerted by 

ICAR, diphenyliodonium (DPI), a NADPH oxidase inhibitor, was added to the cells for 90 

min prior to H2O2 stimulation. Treating cells with DPI effectively blocked the H2O2-induced 

activation of p38 MAPK and ATF2, and enhanced the inhibitory effect of ICAR on both of 

them (Figure 24E). DPI strongly suppressed the H2O2-stimulated cleaved caspase-3 and 

Bax/Bcl-xL ratio, and strengthened the suppression effect by ICAR with above proteins. 

More importantly, preincubation of BM-EPCs with DPI dramatically blocked H2O2-induced 

autophagy (Figure 24E). These results confirm the pro-apoptotic role of p38 MAPK and 

identify its novel effect on autophagy during oxidative stress. 

To further investigate whether oxidative stress-induced activation of ATF2 plays a role in 

H2O2-induced autophagy, ATF2 was knocked down by siRNA transfection. Successful 

transfection was confirmed by RT-PCR and Western blot analysis (Figure 24F). As shown 

in the Figure 24G, ATF2 knockdown dramatically decreased numbers of acridine-orange 

positive cells in response to H2O2, and blunted the effect of ICAR. Moreover, H2O2-caused 

cleavage of PARP and caspase-3 were largely inhibited when cells were silenced with ATF2 

(Figure 24H). Cells with low expression of ATF2 showed a reaccumulation of p62 and 

decrease in LC3B-II compared with cells treated with H2O2 alone (Figure 24H). Moreover, 

the knock down of ATF2 abolished the attenuated effect on Bax/Bcl-xL expression and 

autophagy by ICAR in response to H2O2 (Figure 24I). These findings suggest that p38 

MAPK signaling appears to be upstream of autophagic signaling, and the reduction of ATF2 

expression was an important step in H2O2-induced cell apoptosis that also contributed to 

autophagy suppression. In addition, knockdown of ATF2 suppressed ROS production (53.5% 

of non-silenced H2O2 group, P < 0.01) and promoted cell survival (1.66-fold of non-silenced 

H2O2 group, P < 0.01) upon H2O2-induced oxidative stress in BM-EPCs (Figure 24J, 24K). 
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Figure 24. Blockade of p38 MAPK/ATF2 by ICAR attenuates H2O2 induced cell apoptosis and 

autophagy. (A) BM-EPCs were treated with or without 30 μM ICAR, then stimulated by 1 mM H2O2, 

expression of p38 and ATF2 were detected with phospho-specific antibodies by Western blot. (B) mRNA 

level of ATF2 was detected by qRT-PCR in the presence or absence of SB203580, in response to ICAR 

treatment (or not) and H2O2-stimulation, n=5. (C, D) BM-EPCs were pretreated with or without 30 μM 

ICAR in the presence or absence of SB203580, then stimulated by 1 mM H2O2, protein expression was 

detected by Western blot. (E) Indicated protein expressions were detected by Western blot in the presence 

or absence of DPI, in response to ICAR treatment (or not) and H2O2-stimulation. (F) BM-EPCs were 
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transfected with ATF2-specific or non-specific siRNA. 48 h after transfection, mRNA and protein 

expression were measured to determine the efficiency of the silence. (G) BM-EPCs were incubated in the 

absence or presence of ATF2 siRNA for 48 h, then cells were treated by ICAR and H2O2-stimulation, 

acidic intracellular compartments were visualized by acridine orange staining using 

fluorescence microscope. (H, I) BM-EPCs were incubated in the absence or presence of ATF2 siRNA for 

48 h, then cells were treated by ICAR (or not) and H2O2-stimulation, protein expression was measured by 

Western blot. (J, K) BM-EPCs were incubated in the absence or presence of ATF2 siRNA for 48 h, then 

cells were treated by ICAR and H2O2-stimulation, cellular viability and ROS generation were determined 

by quantification of DNA content and by the amount of cellular DCF formation, n=6. Data are expressed 

as mean ± SD, 
＊＊

P < 0.01.  

 

3.2.10 ERK1/2 and p38 MAPK are required for mTOR phosphorylation in 

H2O2-induced autophagy 

In general ERK is believed to activate mTOR; however mTOR inhibition has been 

associated with increased ERK activity in response to non-starvation stress. Since 

H2O2-induced LC3B-II upregulation was found to be accompanied by an increase in 

ERK1/2 phosphorylation, we sought to investigate the role of ERK1/2 pathway in H2O2 

induced autophagy using the MEK1/2 inhibitor U0126. As shown in Figure 25A, H2O2 

loading was associated with an increase in the phosphorylation of ERK1/2, which was 

significantly inhibited by ICAR pretreatment. Moreover, H2O2-induced autophagic 

responses were attenuated when ERK1/2 activity was suppressed by pharmacologic 

inhibitor U0126, suggesting ERK activation is required for autophagy induced by H2O2 in 

BM-EPCs (Figure 25B). What’s more, H2O2 (1mM) reduced phospho-mTOR protein 

expression, while pretreatment with U0126 partially restored phospho-mTOR expression, 

implying that an ERK-mTOR pathway is at least partially involved in H2O2-mediated 

autophagy. Moreover, the ERK inhibition enhanced the suppressive effect of ICAR on 

autophagic response to H2O2 in BM-EPCs (Figure 25C). 
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Figure 25. The role of ERK1/2 and p38 MAPK in mTOR phosphorylation upon H2O2-induced 

autophagy. (A) Forty-eight hours after ICAR treatment, BM-EPCs were further incubated with 1 mM 

H2O2, protein expression of p-ERK1/2 and total ERK1/2 were determined by western blot. (B, C) 

Indicated protein expressions were detected by Western blot in the presence or absence of U0126, in 

response to ICAR treatment (or not) and H2O2-stimulation.  

 

3.2.11 p38 MAPK activation lies eNOS activation to induce apoptotic and autophagic 

cell death 

The mTOR integrates the input from several upstream pathways by sensing the nutrient 

levels, bioenergetic status, and redox state of the cell. We hypothesized that mTOR 

signaling was involved in the p38 MAPK-mediated induction of autophagy. Therefore we 

examined phosphorylation status of p38 MAPK and mTOR after H2O2 and rapamycin 

treatment. Induction of autophagy by rapamycin significantly increased oxidative 

stress-induced apoptosis evidenced by cleavage of caspase 3 and PARP, and increased 

LC3B-II levels with upregulating p38 MAPK phosphorylation, but this effect was all largely 

reversed by the p38 pathway inhibitor SB203580 (Figure 26A). Thus, we concluded that 
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H2O2 induced autophagy via activation of p38 MAPK, which functions through the 

downstream inhibition of the mTOR signaling pathway.  

Since H2O2 exposure induces the upregulation of eNOS, leading to increased free 

radical NO generation. And ICAR administration could counteract these effects 

significantly as shown in Figure 26B, 26C. Further study found that the inhibition of p38 

MAPK activity by SB203580 also attenuated the NO production and eNOS expression 

induced by H2O2. We reasoned that eNOS may also be involved in H2O2 signaling to induce 

cell injury and autophagy. Therefore, we examined the effect of the eNOS 

inhibitor L-NAME on H2O2-induced autophagy in BM-EPCs. Cells were pretreated for 2 h 

with L-NAME and then exposed to H2O2 for 6 h. As shown in Figure 26D-F, pretreatment 

with 10 μM L-NAME significantly reduced H2O2-mediated ROS accumulation and 

autophagy in BM-EPCs. We postulated that p38 MAPK activation lies eNOS activation to 

induce apoptotic and autophagic cell death. 
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Figure 26. p38 MAPK activation lies eNOS activation to induce apoptotic and autophagic cell death. (A) 

Indicated protein expressions were detected by Western blot in the presence or absence of rapamycin or 

SB203580, in response to H2O2-stimulation. (B, C) BM-EPCs were treated with ICAR or SB203580 prior 

to be stimulated by 1 mM H2O2, cell culture supernatants were collected and analyzed by Griess assay, 

n=3; mRNA level of eNOS was detected by qRT-PCR, n=3. (D-F) BM-EPCs were preincubated in the 

absence or presence of L-NAME for 3 h, then cells were treated by H2O2, ROS generation was quantified 

by the amount of cellular DCF formation (n=4), indicated protein expressions were detected by Western 

blot, and acidic intracellular compartments were visualized by acridine orange staining using 

fluorescence microscopy. Data are expressed as mean ± SD, 
＊

P < 0.05, 
＊＊

P < 0.01.  
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4. DISCUSSION 

Research using immortalized cells has a number of limitations with respect to a 

complete understanding of biological systems in vivo. Primary cells, however, are valuable 

tools enabling the study of a variety of cellular and biochemical functions under tightly 

controlled experimental conditions. In vitro vascularization is an upcoming strategy to solve 

the problem of insufficient blood supply upon construct implantation. Although recent 

publications show promising results, these studies were generally performed with 

endothelial cell model systems not enabling translational conclusions (Verseijden et al., 

2010; Verseijden et al., 2012). To effectively facilitate bone defects repair with tissue 

engineering and treatment of ischemia disease, there is an urgent need for developing safe 

and cost effective drugs that can substitute or cooperate with growth factors for 

angiogenesis promotion. The evaluation of naturally occurring dietary compounds may 

indicate novel approaches for the bone repair. In the present study, we demonstrate the 

effects of TCM extracts (at a near medical applied dose) on the proliferation and 

differentiation of human BM-EPCs, and the underlying mechanisms. We found that TCM 

extracts acted on human BM-EPCs by promoting cellular proliferation, as well as enhancing 

key functional activities including migration, cell-matrix adhesion and tube formation. 

Moreover, TCM extracts initiated a significant increase in VEGF secretion and NO 

production, and exerted a considerable cytoprotective effect upon oxidative stress. 

    Although the proportional contribution of angiogenesis and vasculogenesis to 

neovascularization of adult tissue remains to be determined, it has been shown, either by 

mobilization of EPCs or by injection of in vitro-cultured hematopoietic stem cells, that 

EPCs improved neovascularization of the hind limb and cardiac function (Kalka et al., 2000; 

Murohara, 2003). However, defining EPC is an ongoing debate in the scientific community. 

Different culturing methods (e.g. using early-adherent or non-adherent mononuclear cells) 

and detection of various combinations of surface antigens (e.g. CD14, CD45, and eNOS) 

were reported for the characterization of EPC. Although different morphological and 
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survival features exist to distinguish between early- and late-outgrowth EPCs, these cell 

classes showed comparable in vivo vasculogenic capacity (Hur et al., 2004). The early EPCs 

contribute to neovasculogenesis mainly by secreting angiogenic cytokines, whereas late 

EPCs enhance neovasculogenesis by providing a sufficient number of endothelial cells 

based on their high proliferation potency. Yoon and colleagues reported that mixed 

transplantation of these two types of cells results in synergistic neovascularization through 

cytokines and matrix metalloproteinases (Yoon et al., 2005). 

In order to characterize the EPCs in the present study, immunofluorescence staining 

and flow cytometry were performed. We observed double-uptake of Dil-ac-LDL and 

FITC-UEA-I after 10 d cultivation accompanied by high expression of VEGFR-2 (79.2%), 

E-selectin (46.4), vWF (35.4%), and relatively low expression of CD133 (3.8%), along with 

negative expression of CD45 (Figure 7). Moreover, the appearance of well-circumscribed 

colonies was monitored daily. We found that endothelial colony cannot be efficiently 

obtained from all donors (colonies were generated from 5 donors of the 8 donors), 

indicating a function of donor age. However, the in vitro tubular formation capacities 

between colony-forming cells and non-colony-forming cells did not differ significantly, 

suggesting colony forming ability is not essentially associated with tube formation capacity 

of the cells in vitro. All cells used in the present study were cultivated with EGM-2 at 

passages 3 to 5 and can be categorized as late-outgrowth EPCs according to the previous 

reports (Kalka et al., 2000; Reinisch et al., 2009).  

Angiogenesis is a complex process requiring multiple sequential steps including 

interplay between cells, soluble factors, and ECM components. Vascular endothelium 

proliferation is the first step in angiogenesis, including processes like migration, 

differentiation, survival and death. Under the conditions used in the present study, ICAR 

and PUER show significantly enhancing effect on cell proliferation, but SAL significantly, 

yet non-dose-dependently, promoted proliferation of BM-EPCs at 20, 40, and 80 µM 

(Figure 8). A possible explanation for this finding may be a saturation of the cell receptors 

involved in cell proliferation by SAL at concentrations exceeding 20 μM. Furthermore the 
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absence of a time-dependent effect of SAL on EPCs proliferation at the early time point of 

24 h cultivation can be explained as follows. Firstly, the effect of SAL on cell proliferation 

is indirect via activation of the secretion of cytokines and may therefore be associated with a 

time delay. Secondly, the cells are metabolically more active and thus more responsive to 

the drug after 48 h adherence to the tissue culture polystyrene plate. Thirdly, as we used 

serum-free medium for the proliferation assay to reduce any potential bias on cellular 

function exerted by growth factors, cells grew slowly and thus the time window for 

observing potential proliferative effects by SAL may have been extended. The lack of an 

observed proliferative effect on EPC by SAL at 96 h can be at least partly explained by a 

reduced drug efficacy over time due to a comparatively short half-life of SAL as known 

from in vivo studies.  

 Homing and incorporation of EPCs to the sites of revascularization probably are 

determined not only by the number of circulating EPCs, but also by the motility of the cells. 

The present study provides evidence that SAL and ICAR not only increases the chemotactic 

response of BM-EPCs but SAL per se can trigger the cells’ innate chemoattractive potency 

(Figure 9). 

VEGF is one of the most potent angiogenic cytokines and promotes proliferation of 

vascular cells. Interestingly, there are several reports describing that VEGF increases 

vascular permeability and endothelial cell survival in quiescent vessels, and the cellular 

responses to these effectors involve disruption of the VE-cadherin-based adherent junction 

(Gavard and Gutkind, 2006; Mura et al., 2006; Wong et al., 2009). In our study, SAL and 

ICAR stimulated EPCs tubule formation (Figure 11) in vitro accompanied by enhanced 

mRNA expression and protein secretion of VEGF (Figure 12, 13). Additionally, the mRNA 

expression of VEGF receptor KDR, eNOS, vWF, and PECAM1 were upregulated by SAL 

and ICAR, which in turn promoted EPCs mobilization and differentiation. 

Cell-cell adhesion ensures tight contacts between neighbouring cells, which is 

necessary for cell segregation, as well as for the morphological and functional 
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differentiation of different tissues. Evidently there are cell-cell recognition systems that 

make cells of the same type preferentially adherent to one another. Several studies have 

shown that cell-cell adhesions inhibit cell migration which finally lead to the inability to 

assemble new capillary blood vessels (Lamalice et al., 2007). Homotypic cell 

adhesion plays an important role in mediating a range of physiological processes such as 

cell survival, migration and invasion. Thus in the present study we selected two populations 

of EPCs to investigate the possible effect of TCM extracts on homotypic cell adhesion. 

Many angiogenic factors can destabilize the organization of intercellular junctions, causing 

endothelial barrier opening (Gavard and Gutkind, 2006). VE-cadherin is a transmembrane 

or membrane-associated glycoprotein that mediates specific cell-cell adhesion in a 

Ca
2 +

-dependent manner (Egami et al., 2005; Montero-Balaguer et al., 2009). VE-cadherin 

knockdown in HUVEC resulted in increased tubule formation indicating that it is loss of 

VE-cadherin that leads to increased angiogenesis (Mavria et al., 2006). In the present study, 

the low expression of VE-cadherin after SAL and ICAR treatment suggests decreased 

cell-cell adhesion that may contribute to the enhanced angiogenic effect exerted by them 

(Figure 10).  

The role of NO as a major regulator of cell migration and angiogenesis is suggested by 

the observation that it is produced by eNOS following its activation downstream of the 

VEGFR-2/PI3-K/Akt-PKB axis in endothelial cells activated by VEGF (Williams et al., 

2000). Endothelial-derived NO is essential in the maintenance of vascular homeostasis 

(Drummond et al., 2000; Matz et al., 2000; Murohara and Asahara, 2002). Our results reveal 

a continuously increasing production of NO over time exerted by SAL and ICAR treatment. 

However, inhibition of NO synthesis by L-NAME considerably attenuated the promotion 

effect of SAL on cell migration and tubular formation, implying that NO essentially 

participates in the angiogenic events (Figure 12). 

mTOR functions as a multichannel processor in a cellular nutrient-sensing network by 

receiving multiple inputs derived from distinct environmental cues and directing different 

outputs to appropriate downstream effectors. Several studies have shown the roles of 
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VEGF/Akt/mTOR in potentiating pro-angiogenesis (Fan et al., 2012) and p70S6K, a direct 

downstream target of the mTORC1 (mTOR, GβL, and raptor) in modulating cell migration 

(Berven et al., 2004; Qiu et al., 2004). Of note, it seems that the primary pathway by which 

most growth factors and cytokines activate mTOR and its downstream targets is the 

PI3-K/Akt (Fingar and Blenis, 2004; Li et al., 1999). MAPK signaling is critical during the 

endothelial differentiation of vascular progenitor cell (Takahashi et al., 2012). In our study, 

treatment with SAL showed a marked increase in the phosphorylation of mTOR, p70S6K, 

and its upstream kinase Akt (Figure 14). Moreover, the phosphorylation level of ERK1/2 

was increased significantly upon SAL stimulation. In further blocking experiments we 

observed that LY294002 and U0126 significantly inhibited phosphorylated Akt/mTOR and 

ERK1/2, and consequently led to a decrease in cell migration and tube formation capacity in 

BM-EPCs. The application of rapamycin also showed a suppressive effect on the 

phosphorylation of Akt/mTOR/4EBP1, and remarkably inhibited the promoting effect of 

ICAR on cell mobility and tube formation (Figure 14). What’s more, the results from 

4EBP1-knockdown cells imply distinct role of 4EBP1 in the cell motility and tube 

formation (Figure 14), could be due to the various subcellular localizations 4EBP1 resides 

in, responding to different upstream signals which would result in distinct outcomes. In 

summary, these data suggest that SAL and ICAR promotes proliferation and differentiation 

of EPCs and enhances their functions via activation of the Akt/mTOR/p70S6K/4EBP1 and 

ERK1/2 pathways. 

The development of a microvasculature and microcirculation is critical for the 

homeostasis and regeneration of living bone, without which, the tissue would simply 

degenerate and die. In our preliminary animal study using immunodeficient mice, we found 

that SAL could significantly augment the total bone growth after 6 weeks in a femoral 

critical-size bone defect model (Figure 15). Further studies, however, are necessary to assess 

the potential TCM extracts on EPCs differentiation into neovessels and their integration 

with the host vasculature.  
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Evidence of in vivo exposure to oxidative stress is observed in several diseases or with 

risk factors associated with enhanced vascular pathologies, e.g. atherosclerosis, 

hypertension, diabetes, and heart failure (Cai and Harrison, 2000; Davi and Falco, 2005; 

Leopold and Loscalzo, 2005). A growing body of evidence suggests that oxidative stress 

due to excessive production of ROS is associated with endothelial dysfunction (Harrison et 

al., 2003). Interestingly, cellular oxidant damage is detected before clinically significant 

vascular disease, which support the concept that increased endogenous oxidant stress 

promotes the development of vasculopathies. Strategies to decrease intracellular ROS levels 

have shown therapeutic potential for patients suffering from cardiovascular and metabolic 

disorders and related complications (Li et al., 2009; Virdis et al., 2004). Usually the 

imbalance caused by oxidative stress is derived either from an increase in ROS production 

or from a decreased level of ROS scavenging proteins. ROS-induced stimulation of protein 

phosphorylation pathways modulates transcription factor activities and gene expression, 

which results in a variety of responses such as cell necrosis or apoptosis. Here, 

H2O2-induced oxidative stress was found to be dependent on a significant production of 

ROS in EPCs which in turn was associated with an upregulation of Nox4, STAT-3, and 

eNOS. SAL significantly increased cell viability and declined cell death in EPCs subjected 

to H2O2-induced oxidative stress by reducing ROS formation and attenuating the increased 

expression of Nox4, STAT-3, and eNOS (Figure 19). NADPH oxidase is one of the most 

prominent sources of vascular ROS being expressed in a variety of vascular cells. The 

importance of NADPH oxidase in both vascular physiology and pathophysiology has been 

emphasized extensively (Frey et al., 2009; Li and Shah, 2003). Among other catalytic 

NADPH oxidase (Nox) homologues, Nox4 is abundantly expressed in ECs and functions as 

a key endothelial NADPH oxidase membrane component which is involved in the 

regulation of cell growth and cell survival in ECs (Ago et al., 2004). Nox4 is the major 

source of evoked O2
•−

 that triggers apoptosis in cerebral vascular ECs (Basuroy et al., 2009). 

Upregulation of Nox4 may have a direct influence on mitochondrial oxidative stress 

increase along with consequent mitochondrial dysfunction and cell death. In this regard, the 
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present data show that SAL and SalB attenuates the upregulation of NADPH oxidase and 

Nox4 expression (Figure 17, 19). The NADPH oxidase inhibitor DPI at least partially 

mediated the suppression of ROS and restored the cell survival rate by downregulating the 

cleaved caspase-3 and Bax/Bcl-xL protein expression (Figure 17). This suggests that the 

inhibition of ROS production and the subsequent protective effect of SAL and SalB against 

oxidation is likely to be related to the suppression of NADPH oxidase. Furthermore, cell 

apoptosis was suppressed by SAL and SalB after H2O2 provocation, which was evidenced 

by preventing the loss of MMP and maintaining the integrity of the plasma membrane 

(Figure 18).  

Members of the Bcl-2 family of proteins have a central role in controlling the apoptotic 

pathway. Some proteins within this family, including Bcl-2 and Bcl-xL, suppress apoptosis, 

while others such as Bax and Bak promote apoptosis. Hence, alterations in the levels of anti- 

and pro-apoptotic Bcl-2 family proteins are critical for the induction of apoptosis. We found 

that H2O2 stress resulted in an increased expression of Bax protein and a decreased 

expression of Bcl-xL. Pretreatment with SAL or ICAR reversed this effect thereby 

decreasing the Bax/Bcl-xL ratio (Figure 19). Therefore, it is conclusive to postulate that 

downregulation of Bax and upregulation of Bcl-xL may be responsible for the observed 

anti-apoptotic effect of them. Xu and co-workers found that SAL is capable of protecting 

HUVECs against H2O2-induced apoptosis by inhibiting ROS production and by activating 

the PI3-K/Akt/mTOR-dependent pathway (Xu et al., 2013). Dai et al. observed that the 

reduction of oxidative stress enhances ECs survival thereby facilitating ischemia-mediated 

angiogenesis (Dai et al., 2009). Taken together, it is likely that the antioxidative effect of 

SAL contributes to an increased angiogenic ability in BM-EPCs. 

On the one side, NO is beneficial as a messenger or modulator of angiogeneic events, 

however, on the other side it is potentially toxic under conditions of oxidative stress 

(Colasanti and Suzuki, 2000). The toxic effects of NO may be attributed to its free radical 

character, which makes NO react with superoxide (O2
-
) to produce a strong oxidant, 

javascript:void(0)
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peroxynitrite (ONOO
-
), that may mediate much of the NO toxicity. In the present study, we 

showed that H2O2 induced the production of NO and that the expression of eNOS protein 

was restored by SalB to baseline level (Figure 17). Interestingly, NADPH oxidase inhibitor 

fully abrogated the increase in ROS generation as well as eNOS uncoupling triggered by 

H2O2, and abolished the effect of SalB, suggesting that NADPH functions upstream of 

eNOS underlying the action of SalB.  The oxidative-mediated autophagy was alleviated 

when eNOS was inhibited, indicating that elevated levels of ‘uncoupled eNOS’ derived 

from over-oxidation contributes to an increased generation of superoxide anions 

representing a critical step during the initiation of endothelial dysfunction.  

Prior studies have shown that the mTOR pathway plays a key role in the regulation of 

both resting oxygen consumption and oxidative capacity, and mTOR-raptor complex 

formation is tightly correlated with mitochondrial metabolism (Schieke et al., 2006). 

Oxidative stress can block the activity of mTOR signaling pathways to reverse cell 

metabolism and longevity leading to cell death (Andreucci et al., 2009; Chen et al., 2010). 

In contrast, activation of mTOR during oxidative stress can result in cytoprotection (Chen et 

al., 2010). We show that administration of both rapamycin and LY294002 during SalB 

application significantly prevented cellular protection by SalB illustrating that SalB relies 

upon the activation of mTOR to protect BM-EPCs against oxidative stress (Figure 20). 

Moreover, we provide evidence that loss of 4EBP1 significantly elevates cell apoptosis after 

H2O2 exposure, and abolishes the protection by SalB, suggesting that 4EBP1 controls 

caspase activation and modulates the proteins of the Bcl-2 family thereby mediating the 

ability of SalB to resist to oxidative injury. 

 Exogenous H2O2 mimics the effect of endogenous receptor-induced H2O2 and 

activates multiple kinases (Konishi et al., 1997; Sun et al., 2000). MAPK signaling 

pathways are well known to be affected by receptor ligand interactions, as well as by 

different stimuli placed on the cell (Sun et al., 2001). The well-characterized MAPK family 

members p38 MAPK, ERK1/2, and JNK play important roles in the coordination of cellular 

stress responses towards oxidation (Aggeli et al., 2006; Gutierrez-Uzquiza et al., 2012). 
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Each MAPK is activated by phosphorylation by specific upstream MAPK kinases (MKKs) 

as part of a three-tiered cascade of kinases (MAPK kinase kinase (MAPKKK)/MKK/MAPK) 

in response to a wide range of physiological and pathological stimuli. Mitochondrial 

dysfunction could result in cell death by release of mitochondrial proteins into the cytosol 

and subsequent activation of cell death execution molecules. Activation of MAPKs 

signaling pathways in response to a variety of stressors such as oxidative stress, also leads to 

apoptosis via the mitochondria-dependent pathway (Chen et al., 2013; Ghosh et al., 2011). 

To elucidate the mechanism underlying the cytoprotective effect of TCM extracts we 

investigated potentially relevant signaling pathways. Loss of MMP (Δψm), release of 

cytochrome c from mitochondria and subsequent activation of caspase-3 and cleavage of 

PARP are key steps in the mitochondrion-dependent apoptotic cell death pathway. 

Treatment with SalB and ICAR prior to H2O2 stress, however, counteracted 

mitochondrion-mediated apoptosis. It is known that SB203580 exerts its inhibitory effect by 

binding to the ATP binding pocket of p38 MAPK, thus inhibiting its ability to undergo 

autophosphorylation, but not affecting the capacity of p38 MAPK to be phosphorylated by 

upstream MAPKK, MKK3/6 (Figure 21). We found that H2O2-induced p38 phosphorylation 

was SB203580-sensitive, suggesting that the p38 MAPK autophosphorylation triggers cell 

apoptosis by differentially regulating the expression and/or activities of pro-and 

anti-apoptotic Bcl-2 family proteins. Moreover, we found that SalB-mediated attenuation of 

stress-stimulated p38 MAPK signaling includes the inhibition of phosphorylation of 

MKK3/6, its direct upstream activating kinases indicating that SalB regulates signaling 

events upstream of MAPKKs resulting in p38 MAPK activation. Unexpectedly, the 

phosphorylation of p38 MAPK was supported by inhibition of mTOR and by knockdown of 

4EBP1, resulting in subsequent enhanced cell injury (Figure 21). We hypothesize that 

oxidative stress induced activation of p38 MAPK suppresses the physiological 

mTOR/4EBP1 activity of proliferating and differentiating cells and, in turn, this loss of 

mTOR activity sensitizes the BM-EPCs to p38 mediated apoptosis. 
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ATF2 has been implicated in a large set of cellular stress responses, such as those 

exposed to proinflammatory cytokines, ultraviolet irradiation, DNA damage, change in ROS, 

and as a primary downstream target of p38 involved in the control of cell cycle progression 

(Bhoumik et al., 2007; Hayakawa et al., 2004; Lewis et al., 2005). In the present study, we 

have identified a novel role for ATF2 as an essential target of oxidative stress-dependent 

endothelial injury that mediate the stress-counteraction of SalB. ERK1/2 has been shown to 

have proliferative and protective effects on cells exposed to oxidative stress. Low and 

adequate concentrations of H2O2 is mitogenic, being partly due to activation of ERK1/2 

(Burdon, 1995). However recently, ERK1/2 was reported to exert a pro-apoptotic role 

depended on oxidative stress (Lee et al., 2006; Leong et al., 2011). The present findings 

suggest that blockade of H2O2-induced ERK1/2 by U0126 conveys survival signals as 

observed by enhanced cellular resistance towards oxidative stress accompanied by a 

decreased Bax/Bcl-xL ratio. Moreover, the possible downstream effector phosphorylated 

ATF2 was repressed by ERK1/2 inhibition (Figure 22).  

Autophagy occurs at basal level in most cells and contributes to the turnover of 

long-lived proteins and organelles to maintain intracellular homeostasis. In response to 

cellular stress, autophagy is upregulated and can provide an adaptive strategy for cell 

survival, but excessive autophagy causes cellular destruction and is referred to as type-II 

cell death.  Thus a full understanding of the signaling pathways that regulate autophagy 

will allow the development of new therapies to treat diseases in which this process is 

implicated. The microtubule-associated protein LC3 is an autophagosome ortholog of yeast 

Atg8, which is associated with autophagosome membranes after processing, and is modified 

via an ubiquitination-like system. The LC3 is now widely used to monitor autophagy that is 

a tipical early marker for the formation of autophagosomes. There are two cellular forms of 

the LC3 protein. One is LC3-I (18 kDa), a cytoplasmic form of LC3, and another one is 

LC3-II (16 kDa), a cleavage form of LC3, which is associated with the autophagosomal 

membrane.  Thus, the increased expression of LC3-II is associated with autophagy 

induction. In addition, the protein p62 SQSTM1 has been reported to interact with the 
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autophagic effector protein LC3 and is degraded through an autophagy-lysosome pathway. 

Beclin 1, the mammalian orthologue of yeast Atg6, can interacts with several cofactors 

(Atg14L, UVRAG, Bif-1, Rubicon, surviving, etc) to regulate the lipid kinase Vps-34 

protein and promote formation of Beclin 1-Vps34-Vps15 core complexes, thereby inducing 

autophagy (He and Levine, 2010). 

Worthy of note, investigators have demonstrated that oxidative stress could induce 

autophagy in vitro. Bhogal and colleagues reported that oxidative stress increases 

hepatocyte autophagy in a ROS-dependent manner, and mitochondrial ROS and NADPH 

are found to be key regulators of autophagy (Bhogal et al., 2012). Consistent with prior 

reports, our results show that pathophysiological concentrations of H2O2 induces 

autophagosome formation in cultured human BM-EPCs. However, co-treatment of ICAR 

reduced H2O2-induced autophagy as indicated by multiple independent approaches that 

either revealed the formation of autophagic vacuoles or the expression of autophagy specific 

proteins (Figure 23). 

Numerous autophagic pathways converge at the mTOR, which when phosphorylated 

becomes a potent inhibitor of autophagy. Silencing of mTOR using siRNA transfection was 

known to enhance rapamycin-induced autophagy (Ravikumar et al., 2004). Interestingly, we 

found that p-mTOR expression was reduced but LC3-II expression was elevated by 

oxidative stress; however, such effect was notably attenuated by ICAR. To further test the 

involvement of mTOR-dependent pathway in this protective process, we applied rapamycin, 

a specific inhibitor of mTOR, to the cells before administration of H2O2 or ICAR. We found 

that p-mTOR was significantly inhibited by H2O2 in the presence of rapamycin, and 

ICAR-induced suppression of LC3-II expression was partially blocked by pretreated with 

rapamycin. Moreover, ICAR-induced suppression of autophagy was partially blocked by 

pretreated with rapamycin. In our system, the autophagy inhibitor 3-MA suppressed the 

oxidative stress induced-cell death, further strengthening the association between autophagy, 

ROS, and cell death (Figure 23). 
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There are many reports on the effect of p38 MAPK in autophagy. However, depending 

on the stimulus and the cell type, p38MAPK has been described to act either as a positive or 

as a negative regulator of this process. For example, it has been described that LPS 

(lipopolysaccharide) and interferon-γ activate p38 MAPK inducing autophagy (Doyle et al., 

2011; Matsuzawa et al., 2012). In contrast, Webber and co-workers showed that in full 

medium p38 MAPK is phosphorylated and inhibits autophagy by sequestering p38-IP 

(p38-interacting protein) (Webber and Tooze, 2010). In the present study, we have observed 

that p38 MAPK phosphorylation is induced under oxidative conditions and that inhibition of 

p38 MAPK by SB203580 prevents the accumulation of LC3-II, suggesting that p38 MAPK 

is necessary for the activation of autophagy by H2O2 (Figure 24). The substrates of p38 

MAPK, ATF2 was also phosphorylated after the addition of H2O2. When ATF2 was 

knocked down, a reduced level of cell death was correlated with the observed decreased 

amount of ROS accumulation, and the H2O2-induced autophagy. Since p38 MAPK also 

translocates to the nucleus after H2O2 treatment, it is tempting to hypothesize that this 

activates some transcription factors, e.g. ATF2, that will drive the expression of genes 

implicated in autophagy induction. Furthermore, when examined the phosphorylation status 

of p38 MAPK and mTOR after H2O2 and rapamycin treatment, we found that induction of 

autophagy by rapamycin significantly increased oxidative stress-induced apoptosis which 

was all largely reversed by SB203580 (Figure 26). Thus, we concluded that H2O2 induced 

autophagy via activation of p38 MAPK, which functions through the downstream inhibition 

of the mTOR signaling pathway.  

Here, we also present evidence supporting that the ROS-dependent ERK activation by 

oxidation plays an important role in autophagy induction. ERK activation appears to have 

divergent roles in autophagy in different cell types. ERK upregulates starvation-induced 

autophagy by down-regulating Akt/mTOR/S6K (Shinojima et al., 2007). Wang and 

co-workers proposed that a non-canonical MEK/ERK module regulates autophagy by 

modulating Beclin 1 level through an AMPK-MEK/ERK-TSC-mTOR signaling pathway 

(Wang et al., 2009). In our study pathophysiological levels of H2O2 induces an autophagic 
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phenotype that is also mediated by ERK activation in addition to mTOR signaling pathway 

(Figure 25). These findings suggest that the regulation of autophagy by ROS involves 

multiple kinase signaling pathways, and underlining a possible universal mechanism in 

autophagy regulation through mTOR.  

The mechanisms of apoptosis and autophagy are different, and involve fundamentally 

distinct sets of regulatory and executioner molecules. Although autophagy is independent of 

apoptosis, it could act in conjunction with apoptosis to induce neurotoxic cell death 

(Nopparat et al., 2010). In our study, both autophagy and apoptosis are involved in 

protection of ICAR against H2O2-induced injury in BM-EPCs. We hypothesized that 

MAPK/P38 MAPK signaling, which is induced by ROS accumulation, downregulates 

mTOR function and subsequently activates the apoptosis and autophagy pathway. 

Taken together, the present study demonstrated that SAL, ICAR and PUER promote 

cell growth, cell migration, cell-matrix and capillary-like tube formation of BM-EPCs. The 

results provide mechanistic evidence that activation of the mTOR/p70S6K/4EBP1 pathways 

is required for both SAL and ICAR-mediated pro-proliferative and pro-angionenic effects in 

BM-EPCs. In addition, SAL, SalB and ICAR attenuate the cytotoxic and pro-apoptotic 

effect of H2O2 in vitro. Suppression of MKK3/6-p38 MAPK-ATF2 and ERK1/2 signaling 

pathways, and maintenance of mTOR/4EBP1 activity are associated with the reduction of 

oxidative stress-induced intracellular ROS levels and apoptosis mediated by SalB and ICAR. 

The investigation also found that ICAR owns the ability to inhibit apoptotic and autophagic 

programmed cell death via restoring the loss of mTOR and attenuation of ATF2 activity 

upon oxidative stress. Based on the outcomes of the present work, we propose SAL, SalB 

and ICAR as novel proanigiogenic and cytoprotective therapeutic agents with potential 

applications in the fields of systemic and site-specific tissue regeneration including 

ischaemic disease and extended musculoskeletal tissue defects. 
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                                                            Summary of the thesis                                      

 

1. Human endothelial progenitor cells were successfully isolated and induced from bone 

marrow-derived mononuclear cells, which exhibiting prominent proliferative and 

capillary-like tube formation capacities, as well as the ability to differentiate towards 

mature endothelial cells. 

 

2. SAL, SalB, ICAR and PUER show promoting effects on cell angiogenic abilities, 

including cell chemotaxis, cell-matrix adhesion, and capillary-like tube formation in 

vitro. 

 

3. SAL and ICAR suppress cell-cell adhesion of BM-EPCs, elevate the secretion level of 

VEGF and NO, and regulate endothelial marker gene expression.  

 

4. Akt/mTOR/p70S6K/4EBP1 and ERK1/2 signaling pathways are involved in the 

angiogenic effects of SAL and ICAR. 

 

5. SAL, SalB and ICAR substantially abrogate H2O2-induced cell injury on BM-EPCs, 

contributing to their increased angiogenic ability. 

 

6. SAL, SalB and ICAR suppress H2O2-provoked generation of ROS and expression of 

NADPH, and downregulate gene expression levels of Nox4 and eNOS. Furthermore, 

NADPH functions upstream of eNOS underlying the action of SalB.  

 

 

7. Constitutive activation of MKK3/6 contributes to the baseline level of p38 MAPK 

activation that is independent of H2O2-triggered p38 MAPK phosphorylation in 

BM-EPCs. 
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8. SAL, SalB and ICAR protect mitochondrial function and inhibit 

mitochondrion-mediated apoptosis by decreasing cytochrome c release, inhibiting the 

cleavage of PARP, inactivating of caspase 3, and downregulating Bax/Bcl-xL ratio. 

 

9. Maintenance of mTOR kinase and its downstream target 4EBP1 are responsible for the 

protective potential of ICAR on oxidation stressed-BM-EPCs. The loss of mTOR 

/4EBP1activity sensitizes BM-EPCs to p38 MAPK mediated apoptosis. 

 

10.  4EBP1 controls caspase activation and modulates the proteins of Bcl-2 family thereby 

mediating the ability of SalB to block cell-injury activity caused by oxidative stress. 

 

11.  Elevated levels of ‘uncoupled eNOS’ derived from over-oxidation contributes to an    

increased degree of apoptotic and autophagic programmed cell death. 

 

12.  ICAR restores loss of mTOR/4EBP1 activity upon oxidative stress, which is associated 

with cell autophagy inhibition. 

 

13.  mTOR inhibition is associated with increased ERK1/2 activity in response to oxidative 

stress that mediats H2O2-induced autophagy. 

 

14.  p38 MAPK/ATF2 acts as a negative upstream signal pathway regulating 

mTOR-mediated apoptosis and autophagy during ROS accumulation. And p38 MAPK 

activation lies eNOS activity to induce apoptotic and autophagic cell death. 

 

 

 

 



136 

 

                                                          List of publications                                                    

1. Tang Y; Huang B; Sun L; Peng X; Chen X; Zou X. Ginkgolide B promotes 

proliferation and functional activities of bone marrow-derived endothelial progenitor 

cells: involvement of Akt/eNOS and MAPK/p38 signaling pathways. Eur Cell Mater. 

2011 May 28; 21: 459-69. 

 

2. Huang S; Tang Y (co-first author); Cai X; Peng X; Liu X; Zhang L; Xiang Y; Wang D; 

Wang X; Pan T. Celastrol inhibits vasculogenesis by suppressing the VEGF-induced 

functional activity of bone marrow-derived endothelial progenitor cells. Biochem 

Biophys Res Commun. 2012. 423(3): 467-72. 

 

3. Huang S; Guo W; Tang Y; Ren D; Zou X; Peng X. miR-143 and miR-145 inhibit stem 

cell characteristics of PC-3 prostate cancer cells. Oncol Rep. 2012. 28(5): 1831-7. 

 

4. Huang S; Peng L; Tang Y; Zhang L; Guo W; Zou X, Peng X. Hypoxia of PC-3 Prostate 

Cancer Cells Enhances Migration and Vasculogenesis in vitro of Bone Marrow-Derived 

Endothelial Progenitor Cells by Secretion of Cytokines. Oncol Rep. 2013. 29(6): 

2369-2377. 

 

5. Peng X; Guo W; Liu T; Wang X; Tu X; Xiong D; Chen S; Lai Y; Du H; Chen G; Liu G; 

Tang Y; Huang S; Zou X. Identification of miRs-143 and -145 that is associated with 

bone metastasis of prostate cancer and involved in the regulation of EMT. PLOS ONE. 

2011. 6(5): e20341. 

 

http://www.ncbi.nlm.nih.gov/pubmed/21623570
http://www.ncbi.nlm.nih.gov/pubmed/21623570
http://www.ncbi.nlm.nih.gov/pubmed/21623570


137 

 

6. Tang Y, Vater C, Jacobi A, Liebers C, Zou X, Stiehler M. Salidroside exerts angiogenic 

and cytoprotective effects towards human bone marrow derived endothelial progenitor 

cells via Akt/mTOR/p70S6K and MAPK signaling pathways. Br J Pharmacology.  

2014 May;171(9):2440-56. 

 

7. Tang Y, Jacobi A, Vater C, Zou X, Stiehler M. Salvianolic acid B protects human 

endothelial progenitor cells against oxidative stress-mediated dysfunction by modulating 

Akt/mTOR/4EBP1, p38 MAPK/ATF2, and ERK1/2 signaling pathways. Biochemical 

pharmacology. 2014 Apr 26. [Epub ahead of print] 

 

8. Tang Y; He P; Chen X; Zou X; Xu D; Huang S; Zhang L; Peng X; Huang S. Acidic 

Extracellular promotes metastasis of PC-3 cell and partly reduces PC-3 cell 

induced-vasculogenesis of EPC in vitro at a Tumor-Like Low pH. International journal 

of biochemistry & cell biology. Under review. 

 

9. Tang Y, Jacobi A, Vater C, Stiehler M. Icariin prevents hydrogen peroxide-induced 

cellular dysfunction and autophagy in human endothelial progenitor cells: involvement 

of p38 MAPK/ATF2 and mTOR/4EBP1 signaling pathways. (In preparation) 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/24780446
http://www.ncbi.nlm.nih.gov/pubmed/24780446
http://www.ncbi.nlm.nih.gov/pubmed/24780446


138 

 

 

Communication to scientific conferences: 

 

1. Sixth SICOT (International Society of Orthopaedic Surgery and Traumatology)/SIROT 

Annual International Conference. Pattaya, Thailand, 2009. Number and functional 

activity of bone-marrow derived endothelial progenitor cells inversely correlate with 

degree of intervertebral disc degeneration. (Poster presentation) 

  

2. SICOT Triennial World Congress. Prague, Czech Republic, 2011. The role of 

Akt/eNOS and MAPK/p38 signaling pathways in the proliferation and functional 

activities of bone marrow-derived endothelial progenitor cells. (selected for an oral 

presentation) 

 

3. Symposium “Modern Application of Biotechnology”. Dresden, Germany, 2013. 

Functionalization of CBA scaffolds / biomaterials with biomolecules by poly-L-lysine / 

hyaluronate. (selected for an oral presentation) 

 

4. TERMIS (Tissue Engineering and Regenerative Medicine International Society). 

Istanbul, Turkey, 2013. Salidroside induces angiogenic differentiation and protects 

against oxidative stress in bone marrow derived-endothelial progenitor cells via 

Akt/mTOR/p70S6K and ERK1/2 pathways. (selected for an oral presentation) 

 

 

 

 

  



139 

 

                                                       Acknowledgements  

Firstly, I would like to thank Prof. Klaus-Peter Günther and Prof. Michael Gelinsky for 

the revision of my thesis.  

 

Many thanks to Dr. Maik Stiehler for the allocation of the topic, for the support, for the 

many possibilities he offered and for the nice informal atmosphere he created in the 

group. 

 

I would like to express my deep gratitude to Dr. Angela Jacobi, for her supervision of 

my whole PhD study, for her constant support, illuminating instructions and great 

advices during my research work, and her helpful comments on my thesis. 

 

I am really happy I could share my days in the lab with all the members of our group, 

Corina, Falk, Juline, Theresa, Conny, Shosha, it was a pleasure to work together! 

 

I would like to thank my TFO members, for the nice suggestions and interest they 

showed to my projects. 

  

I would like to thank the staff of the imaging facility of BIOTEC for being always ready 

to help. 

 

I have a special thanks for all of you that, starting as colleagues, became my friends. 

You made me feel that coming to the lab was always fun…and leave it even more! 



140 

 

Finally, I am deeply indebted to my husband, my parents, my whole family and my 

friends, for their constant support, loving considerations and great confidence in me all 

through these years.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



141 

 

Declaration 

Declaration according to §8 Para. 7 

I hereby declare that I have produced this paper without the prohibited assistance of third 

parties and without making use of aids other than those specified; notions taken over 

directly or indirectly from other sources have been identified as such. This paper has not 

previously been presented in identical or similar form to any other German or foreign 

examination board. The thesis work was conducted from April 2011 to May 2014, under the 

supervision of Dr. Angela Jacobi and Dr. Maik Stiehler at Medizinisch Theoretisches 

Zentrum in Dresden. I declare that I have not undertaken any previous unsuccessful 

doctorate proceedings.  

  

Deklaration gemäß §8 Abs. 7 

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und 

ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden 

Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. 

Die Arbeit wurde bisher weder im Inland noch im  Ausland in gleicher oder ähnlicher 

Form einer anderen Prüfungsbehörde vorgelegt. Die Dissertation wurde von Dr. Angela 

Jacobi und Dr. Maik Stiehler, Medizinisch Theoretisches Zentrum Dresden betreut und im 

Zeitraum vom April 2011 bis Mai 2014, verfasst. Weiterhin erkläre ich, dass ich keine 

vorangegangenen erfolglosen Promotionsversuche unternommen habe. 

  

 

Ort, Datum 

 

Unterschrift des Doktoranden 



 

 

Technische Universität Dresden 

Medizinische Fakultät Carl Gustav Carus 

Promotionsordnung vom 24. Juli 2011 

 

Erklärungen zur Eröffnung des Promotionsverfahrens 

 

1. Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und 

ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden 

Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. 

 

2. Bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskripts 

habe ich Unterstützungsleistungen von folgenden Personen erhalten: Dr. Angela Jacobi, Dr. 

Maik Stiehler. 

 

3. Weitere Personen waren an der geistigen Herstellung der vorliegenden Arbeit nicht 

beteiligt. Insbesondere habe ich nicht die Hilfe eines kommerziellen Promotionsberaters in 

Anspruch genommen. Dritte haben von mir weder unmittelbar noch mittelbar geldwerte 

Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten 

Dissertation stehen. 

 

4. Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form 

einer anderen Prüfungsbehörde vorgelegt. 

 

5. Die Inhalte dieser Dissertation wurden in folgender Form veröffentlicht: 

Tang Y; Huang B; Sun L; Peng X; Chen X; Zou X. Ginkgolide B promotes proliferation and 

functional activities of bone marrow-derived endothelial progenitor cells: involvement of 

Akt/eNOS and MAPK/p38 signaling pathways. Eur Cell Mater. 2011 May 28; 21: 459-69. 

Tang Y, Vater C, Jacobi A, Liebers C, Zou X, Stiehler M. Salidroside exerts angiogenic and 

cytoprotective effects towards human bone marrow derived endothelial progenitor cells via 

Akt/mTOR/p70S6K and MAPK signaling pathways. Br J Pharmacology. 2014 May; 171(9): 

2440-56. 

Tang Y, Jacobi A, Vater C, Zou X, Stiehler M. Salvianolic acid B protects human endothelial 

progenitor cells against oxidative stress-mediated dysfunction by modulating 

Akt/mTOR/4EBP1, p38 MAPK/ATF2, and ERK1/2 signaling pathways. 2014 Apr 

26.  [Epub ahead of print] 

 

6. Ich bestätige, dass es keine zurückliegenden erfolglosen Promotionsverfahren gab. 

7. Ich bestätige, dass ich die Promotionsordnung der Medizinischen Fakultät der Technischen 

Universität Dresden anerkenne. 

 

http://www.ncbi.nlm.nih.gov/pubmed/24780446
http://www.ncbi.nlm.nih.gov/pubmed/24780446
http://www.ncbi.nlm.nih.gov/pubmed/24780446


 

 

8. Ich habe die Zitierrichtlinien für Dissertationen an der Medizinischen Fakultät der 

Technischen Universität Dresden zur Kenntnis genommen und befolgt. 

 

9. Ich bin mit dem Kodex für gute wissenschaftliche Praxis und den Umgang bei 

wissenschaftlichem Fehlverhalten einverstanden. Die Gremien der Medizinischen Fakultät 

behalten sich vor, stichpunktartige Kontrollen der Dissertation vorzunehmen. 

 

 

 

 

 

 

Ort, Datum 

Unterschrift des Doktoranden 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Hiermit bestätige ich die Einhaltung der folgenden aktuellen gesetzlichen Vorgaben im 

Rahmen meiner Dissertation 

 

 

 

 das zustimmende Votum der Ethikkommission bei Klinischen Studien, 

epidemiologischen Untersuchungen mit Personenbezug oder Sachverhalten, die das 

Medizinproduktegesetz betreffen  

Aktenzeichen der zuständigen Ethikkommission: EK263122004. 

 

 die Einhaltung der Bestimmungen des Tierschutzgesetzes 

Aktenzeichen der Genehmigungsbehörde zum Vorhaben/zur Mitwirkung: 

Protocol no. 24-9168.11-1/2010-29 

 

 die Einhaltung des Gentechnikgesetzes  

Projektnummer  

 

 die Einhaltung von Datenschutzbestimmungen der Medizinischen Fakultät und des 

Universitätsklinikums Carl Gustav Carus. 

 

 

Ort, Datum  

Unterschrift des Doktoranden 

 

 


