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Abstract

Spatial confinement of electrons and their interactions as well as confine-
ment of the spin dimensionality often yield drastic changes of the electronic
and magnetic properties of solids. Novel quantum transport and optical
phenomena, involving electronic spin degrees of freedom in semiconduc-
tor heterostructures, as well as a rich variety of exotic quantum ground states
and magnetic excitations in complex transition metal oxides that arise upon
such confinements, belong therefore to topical problems of contemporary
condensed matter physics.

In this work electron spin systems in reduced dimensions are studied with
Electron Spin Resonance (ESR) spectroscopy, a method which can provide
important information on the energy spectrum of the spin states, spin dy-
namics, and magnetic correlations. The studied systems include quasi one-
dimensional spin chain materials based on transition metals Cu and Ni. An-
other class of materials are semiconductor heterostructures made of Si and
Ge.

Part I deals with the theoretical background of ESR and the description of
the experimental ESR setups used which have been optimized for the pur-
poses of the present work. In particular, the development and implementa-
tion of axial and transverse cylindrical resonant cavities for high-field high-
frequency ESR experiments is discussed. The high quality factors of these
cavities allow for sensitive measurements on µm-sized samples. They are
used for the investigations on the spin-chain materials. The implementa-
tion and characterization of a setup for electrical detected magnetic reso-
nance is presented.

In Part II ESR studies and complementary results of other experimental
techniques on two spin chain materials are presented. The Cu-based mate-
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rial Linarite is investigated in the paramagnetic regime above T > 2.8 K. This
natural crystal constitutes a highly frustrated spin 1/2 Heisenberg chain
with ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-
neighbor interactions. The ESR data reveals that the significant magnetic
anisotropy is due to anisotropy of the g -factor. Quantitative analysis of
the critical broadening of the linewidth suggest appreciable interchain and
interlayer spin correlations well above the ordering temperature. The Ni-
based system is an organic-anorganic hybrid material where the Ni2+ ions
possessing the integer spin S = 1 are magnetically coupled along one spa-
tial direction. Indeed, the ESR study reveals an isotropic spin-1 Heisen-
berg chain in this system which unlike the Cu half integer spin-1/2 chain
is expected to possess a qualitatively different non-magnetic singlet ground
state separated from an excited magnetic state by a so-called Haldane gap.
Surprisingly, in contrast to the expected Haldane behavior a competition be-
tween a magnetically ordered ground state and a potentially gapped state is
revealed.

In Part III investigations on SiGe/Si quantum dot structures are presented.
The ESR investigations reveal narrow lines close to the free electron g -factor
associated with electrons on the quantum dots. Their dephasing and rela-
xation times are determined. Manipulations with sub-bandgap light allow
to change the relative population between the observed states. On the ba-
sis of extensive characterizations, strain, electronic structure and confined
states on the Si-based structures are modeled with the program nextnano3.
A qualitative model, explaining the energy spectrum of the spin states is
proposed.
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CHAPTER 1
Preface

The technological development in the semiconductor industry is approach-
ing the limit, in which the size of the fundamental devices is in the range
of nanometers. Besides the technological challenge associated with the
physics of material growth, at dimensions that small, quantum mechani-
cal properties become relevant. In order to further increase information
density without reducing the size of the system and in order to facilitate low
energy operations, more complex components have to be developed. One
way to achieve this is to facilitate not only the charge, but also the (electron)
spin [1]. The concept of electronics based on spin is called spintronics.

Research on spintronics has developed into a diverse field. Phenomena of
magnetic order [2], injection of spin between different materials and spin
transport [3, 4] are among the topics under intense investigation. Persistent
magnetic and electric states can be manipulated by electric and magnetic
fields [5, 6]. Spintronics is closely related to the field of quantum computa-
tion which makes use of the quantum nature of a spin for logic operations.
It was also proposed that semiconductor systems provide a good material
system to facilitate quantum computational operations [7]. Logic opera-
tions have also been demonstrated in magnetically ordered systems [8]. For
spin transport, spin storage and spin operations the timescales on which
spin states are preserved and the timescales on which spins can be manip-
ulated coherently are crucial. In order to develop spintronic devices it is
necessary to understand the spin-physics in different materials. Processes
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causing energy relaxation between spin states or destroy spin coherence
can originate from spin-orbit coupling or scattering effects on boundaries
and impurities as well as energy exchange with the environment of the (elec-
tron) spin. Furthermore it is important to identify systems with competing
interactions which can lead to externally tunable ground states.

In this work different types of low-dimensional systems were investigated
with Electron Spin Resonance (ESR) spectroscopy. The systems can be clas-
sified as (i) semiconductor heterostructures and (ii) insulating crystals with
magnetic ions.

In the semiconductor systems, the lattice structure consists of the single
host atoms Si or Ge forming a uniform three-dimensional crystal. By com-
bining different materials the electronic band structure is altered. The elec-
tronic properties depend on strain within the structures, the specific band-
structure of the host materials and band offsets between them. This way,
the electrons (and holes) populating the bands can become confined to two-
dimensional quantum wells, one-dimensional channels and quasi zero-di-
mensional quantum dots.

In the insulating crystals, the second material class investigated, the crystal
structure is built from several different elements. The localization of an elec-
tron is not realized by a local confining potential of the band structure. In-
stead electrons are bound to certain ions in the crystal. These magnetic ions
can interact through different mechanisms with each other. If the strength
of the interactions is much stronger along defined crystallographic direc-
tions the dimensionality of the electronic structure relevant for the mag-
netism is effectively reduced. These low-dimensional systems can be two-
dimensional lattices, one-dimensional spin chains or quasi zero-dimensio-
nal quantum magnets. Here the coherence of the electronic states and their
low energy excitations are confined to the spin sector only, not involving
charge degrees of freedom.

Although the magnetic properties for the two classes of materials investi-
gated in this thesis are fairly different, the electron spin resonance (ESR)
technique offers a powerful method to investigate both classes of materials.
ESR directly probes static and dynamic properties of an electron system in
the response to a magnetic field. Depending on the details of the experi-
ments, information about the local spin environment, relevant interactions
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as well as dephasing and relaxation times can be extracted.

This thesis is structured in three parts. The first part provides the theoret-
ical background of the ESR phenomena. The experimental developments
and the implementation of new setups are discussed. In Part II investiga-
tions on the low-dimensional Cu-chain Linarite (PbCuSO4(OH)2) and an
organic-anorganic hybrid system based on Ni (NiCl3C6H5CH2CH2NH3) are
presented. Part III deals with the material system made from Si and Ge. The
experiments on and the modeling of self-assembled Si/SiGe nanostructures
is discussed.
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CHAPTER 2
Principles of ESR

Electron Spin Resonance (ESR) is the phenomenon of reorientation of elec-
tron spins in a magnetic field through the interaction with electromagnetic
radiation. As a spectroscopic technique ESR was developed in the 1940s
and soon became an important tool in solid state physics. As with any
spectroscopy its frequency has to be relevant for the energy or time scale
of the process under investigation. The energy splitting between electron
spin states in a typical laboratory magnetic field translates to wavelengths
in the microwave range.

In this chapter the fundamental physics of the ESR phenomena is discussed.
Starting with the behavior of a free electron in a magnetic field the basic
properties of ESR are illustrated. The role of spin-orbit coupling, the inter-
action of crystal fields and the interaction between electrons are discussed
with regards to the systems investigated in Part II and Part III of this work.
The theoretical background is mainly based on the books by Abragam and
Bleaney [9], Poole [10], Blundell [11] as well as Kittel [12] and Ashcroft and
Mermin [13].

2.1 The Resonance Phenomenon

To illustrate the principle of ESR one can first consider the case of a single
electron in a magnetic field. The interaction of an electron with a magnetic
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Figure 2.1: (a) Zeeman levels are split in energy in a magnetic field according to
their spin state S =±1/2. (b) Classical picture of the spin-flip. A magnetic moment
µ is precessing in the external magnetic field along z-direction. When the micro-
wave magnetic field H1 precesses with the same frequency ωmw perpendicular to
the external magnetic field, the magnetic moment is turned towards the opposite
z-direction.

field is ascribed to the electron spin. Although the spin S is a purely quan-
tum mechanical effect it is associated with an intrinsic magnetic moment.
This magnetic moment µ can be written as

µ=−gµB S (2.1)

g is the so called g -factor and µB the Bohr Magneton (see below). The g -
factor of the free electron is g ≈ 2.00232. The deviation from 2 originates
theoretically from a series expansion about the fine structure constant α

and is explained by the emission and reabsorption of virtual phonons.

When an external magnetic field H is applied to the electron along an ar-
bitrary direction z the spin becomes quantized with respect to the field di-
rection. The energy of the system is then quantized as

E = gµB S ·H = gµB mS Hz (2.2)

Where mS is the eigenvalue of the z-component Sz of the spin operator S.
The energy splitting ∆E between different spin states mS in an applied mag-
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netic field is known as the Zeeman splitting. There are 2S+1 Zeeman levels
for the different values of mS with −S ≤ mS ≤ S. For the simple case of a
free electron with S = 1/2 it follows mS =±1/2. For such a system with only
two eigenstates the states are usually referred to as up- and down-spin. A
transition between the different Zeeman levels can be induced through ab-
sorption of electromagnetic radiation matching the energy difference ∆E

[Fig. 2.1(a)].
∆E = ~ω= hν= gµB |∆mS | Hz (2.3)

Classically the spin can be thought of as a magnetic moment µ precessing
around the applied external magnetic field [see Fig. 2.1(b)]. The microwave
radiation is linearly polarized and its magnetic field vector H1 is perpen-
dicular to the external magnetic field vector H along the z-direction. The
linearly polarized wave can be thought of as the superposition of two cir-
cular polarized waves precessing clockwise and counterclockwise around
H. When the resonance conditionin equation (2.3) is fulfilled H1 precesses
with the same frequency ωmw around H as µ. The magnetic moment µ is
then turned to the opposite z-direction by precessing about H1. This corre-
sponds to the spin-flip from spin-down to spin-up.

In addition to the quantum mechanical property spin an electron is char-
acterized by charge −e and mass me . With those two properties the behav-
ior of the electron can be described classically. An orbital motion of the
electron around a positive charge results in an angular momentum. At the
same time the circling charge represents a current loop which results in a
magnetic moment antiparallel to the angular momentum. The (negative)
magnetic moment is called Bohr Magneton µB :

µB = e~

2me
(2.4)

In the quantum mechanical description electrons bound to the core of the
atom exhibit discrete energy states which correspond to the occupation of
certain orbitals. With each orbital there is an orbital angular momentumµL

associated. The eigenvalues or quantum numbers for the orbital momen-
tum operator are L(L +1) for L2 and ml for Lz . Any electron in the environ-
ment of an atom is characterized by its intrinsic spin angular momentum
and its orbital angular momentum.

For the magnetic dipole absorption in a general spin system the quantum
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Figure 2.3: The
Zeeman splitting in
a magnetic field for
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(a). The absorption
spectrum and its
derivative are shown
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spectrum is centered
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FWHM linewidth
∆H . The derivative
of the absorption
spectrum d A/d H

is characterized by
the peak-to-peak
linewidth ∆Hpp and
its amplitude Ad .
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mechanical selection rules are

∆L = 0, ∆S = 0, ∆mS =±1 (2.5)

2.2 ESR Spectrum

When performing ESR spectroscopy the resonance condition in equation
(2.3) is fulfilled, when the energy difference at a certain magnetic field is
matched by the energy of the microwave radiation of a certain frequency.
Often the actual experiment is performed by applying microwaves at a fixed
frequency (and intensity) and sweeping the magnetic field. When the reso-
nance condition is fulfilled microwave radiation is absorbed. This absorp-
tion spectrum (Fig. 2.3) provides information about the spin system.
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2.2.1 The g -factor

From the resonance field Hr es the g -factor can be determined as

g = h

µB

∂ν

∂Hr es
(2.6)

If there is no zero-field energy gap ∆ (cf. Section 2.5) it is valid:

g = h

µB

ν

Hr es
(2.7)

As a rule of thumb it is useful to remember:

g ≈ 1

14

ν[GHz]

Hr es[T]
(2.8)

In general the g -factor is not necessarily isotropic and has to be treated as
a tensor g̃ . The g̃ -tensor can be regarded as a spectroscopic factor of the
ESR experiment. It provides information about the energy states of the spin
system. For the free electron the isotropic g -factor is close to 2. For elec-
trons in an atom, this value can shift from 2 due to the spin orbit coupling.
If the atom is placed in an electrostatic field of surrounding atoms, the or-
bital energy levels shift. Eventually the g̃ -tensor becomes anisotropic. If
there is some form of interaction between different magnetic atoms, mag-
netic order can occur in the spin system and the resonance field can shift
significantly. Because of those very diverse effects, one initially refers to
the g̃ -tensor as an effective g -factor, or simply g -factor, when describing an
ESR-experiment. For many systems it is sufficient to describe the g -factor
as a tensor in its principal axis system.

g̃ =





gx 0 0
0 g y 0
0 0 gz



 (2.9)

with the effective g -factor

g =
√

g 2
x sin2

Θcos2Φ+ g 2
y sin2

Θsin2
Φ+ g 2

z cos2Θ (2.10)

Θ and Φ being the angles between the magnetic field with respect to the
principal axis of the g̃ -tensor. Equation (2.10) reduces for gx = g y to

g =
√

g 2
x sin2

Θ+ g 2
z cos2Θ (2.11)

By measuring the angular dependence of the effective g -factor it is possible
to identify the g̃ -tensor describing the physical system.
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2.2.2 Relaxation Times

The transition between two spin states at the resonance field is not infinites-
imal sharp as would be described by a δ-function. Instead for any excited
spin state there exists a finite lifetime τ. It follows from the Heisenberg un-
certainty principle [14] that the transition energy has a certain range ∆E ≥
~τ−1. The probability for the state to be found at a certain energy translates
into a finite linewidth for the ESR transition:

∆H ∝ ~

gµB
τ−1 (2.12)

This natural linewidth depends only on the finite lifetime of a spin state and
is the lower limit observed for the linewidth in an ESR experiment.

Since in a regular ESR experiment the measurement is performed on a ma-
croscopic sample the overall response of the system is determined. The con-
tinuous wave (cw) ESR spectrum is that of a large ensemble of spins embed-
ded in a solid. Macroscopically the response of a spin ensemble is that of
the sum of its magnetic moments which is given by the magnetization M ,
which is actually defined as the density of magnetic moments. The classi-
cal description of the relaxation process of the magnetization in a magnetic
field is given by the Bloch equations [15].

∂M(t )

∂t
= geµB

~
(M×H)− (M−χ0H)

(

1

T1
e∥+

1

T2
(e⊥,1 +e⊥,2)

)

(2.13)

where e∥,e⊥,1,e⊥,2 are the unit vectors parallel and perpendicular to the mag-
netic field vector. Two relaxation times, T1 and T2, for the magnetization
parallel and perpendicular to the magnetic field, are defined respectively.

T1 describes the decay of the longitudinal magnetization M∥. The T1-relaxa-
tion time or spin-lattice relaxation time is the time for a spin to reverse its
orientation in a magnetic field. Such a transition is associated with a change
in the energy of the spin. In general an energy transfer to the spin system
can be provided by thermal fluctuations (phonons) and magnetic excita-
tions as well as by kinetic energy from conduction electrons.

T2 describes the decay of the transverse magnetization M⊥. The T2-time
is associated with the coherence of a spin state. The phase relaxation is not
(necessarily) connected with a change in energy. In that sense it is a single-
spin property. The loss of phase coherence can be caused for example by
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scattering events.

The T ∗
2 -time is the spin-dephasing time of a spin ensemble. For a spin en-

semble there can be slight differences between the internal magnetic fields
at the spin sites and there can be interactions between the spins. Because of
this the coherence times are slightly different for the individual spins. The
spin ensemble loses the spin coherence faster than an individual spin.

While the relaxation process always requires an energy transfer with the en-
vironment, the dephasing is not associated with a change in energy. There-
fore usually T1 ≫ T2. However, if electrons are mobile, e.g. in a conduction
band of a semiconductor, sometimes, due to spin-orbit coupling, T1 cannot
exclusively be associated with a change in state occupation and eventually
T1 ∼ T2 [16].

In pulsed ESR experiments, certain microwave pulse sequences are applied
to the sample at a fixed magnetic field. This way T1- and T2-time can be
measured directly. This technique is very similar to NMR-spectroscopy (see
e.g. [17]), but spin systems usually require relatively long coherence times
to be measurable with pulsed ESR. From the ESR signal in a cw ESR ex-
periment, information about T1-relaxation- and T ∗

2 -dephasing-time can be
extracted. ESR results presented in this work were exclusively determined
with cw ESR experiments.

2.2.3 Lineshape Properties

The T ∗
2 -time can be directly related to the linewidth of a cw ESR experiment.

However, different spin-spin interactions, discussed in Section 2.6, have an
effect on the ESR linewidth. Individual spins are subjected to different inter-
nal magnetic fields, due to the magnetic dipoles of the spins in their vicin-
ity. Then the individual ESR resonances occur at slightly different external
magnetic fields. This translates into a statistical distribution of absorptions
(each with the natural linewidth) around Hr es . This effect is called inhomo-

geneous broadening. The linewidth has a Gaussian form.

f (H) =
√

2

π

1

∆H
exp

(

−2
(H −Hr es)2

∆H 2

)

(2.14)

An additional broadening effect is caused by a form of resonance interac-
tion between identical spins. A magnetic dipole precessing in the external
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field emits radiation causing resonance transitions at identical spins. This
interaction shortens the lifetime of an individual spin and the broadening
is not completely inhomogeneous.

Besides magnetic dipole interaction the exchange interaction can cause broa-
dening and narrowing of the line. If the exchange interaction is isotropic

H = Ji j Si ·S j (2.15)

the effect on the linewidth is that of an exchange narrowing. It results from
dipole reorientations due the interaction with neighboring spins. The lo-
cal internal field is effectively reduced and the inhomogeneous broadening
narrowed by the exchange. Similarly if electrons are delocalized the time-
averaged magnetic field at the spin is reduced. This effect is called motional

narrowing. For both effects the line is described by a Lorentzian form.

f (H) = 2

π

∆H

∆H 2 +4(H −Hr es)2
(2.16)

If the exchange between the spins is anisotropic as described by

H = Si · J̃i j ·S j (2.17)

the result is a broadening of the line, similar to the magnetic dipole interac-
tion discussed before.

In Fig. 2.3(b) a Lorentzian absorption line centered at the resonance field
Hr es is shown. The amplitude A = f (Hr es) and the full-width-at-half-maxi-
mum (FWHM) linewidth ∆H are indicated. When a modulation technique
is used for the ESR experiment the derivative of the Lorentzian is character-
ized by the peak-to peak linewidth ∆Hpp = 1p

3
∆H and its amplitude Ad .

The absorption of energy by the resonating spin system is described by the
imaginary part of the dynamic susceptibility χ′′ in response to the micro-
wave magnetic field [9]. The integral over the ESR line is proportional to the
local static spin susceptibility.

I ∝χspi n

ˆ +∞

−∞
f (H)d H (2.18)

If the lineshape can be described by Lorentzian or Gaussian form, its inte-
gral is proportional to linewidth times amplitude

I ∝ A∆H (2.19)
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And for the derivative
I ∝ Ad

∆H 2
pp (2.20)

These relations make it easy for the experimentalist to determine the spin
susceptibility from fits to the ESR-spectrum. Since its amplitude and even-
tually its linewidth depend on experimental conditions, absolute values of
the spin susceptibility have to be determined from simultaneous measure-
ments on standard samples or normalization to complementary measure-
ments.

One experimental condition is the microwave power. Imagine a spin sys-
tem in a magnetic field in thermal equilibrium. The different Zeeman levels
at a given temperature are populated according to Boltzmann statistics. The
probability for a transition from a down state, under the absorption of en-
ergy, and the transition from an up state, under induced emission, are equal.
The ESR amplitude depends on the difference between photons emitted
and absorbed, thus, the population difference between both states. For low
microwave powers the system is in the thermal equilibrium. This can be
imagined as an induced absorption and a relaxation of the same spin on the
timescale of the state’s lifetime. When higher microwave powers are applied,
translating into more microwave quanta, an emission is induced before the
excited spin state relaxes back. The ESR signal saturates and eventually de-
creases. This saturation technique allows the T1-time of a spin ensemble to
be determined with cw ESR [10]. This technique was used to estimate the
saturation time of electrons on SiGe quantum dots as presented in Part III.

2.3 Effective Spin Hamiltonian

In an ESR experiment a spin system is probed in its response to an external
magnetic field. This response is described by the Zeeman energy. The inter-
actions of the spins with the lattice and other spins are usually larger than
the Zeeman energy. For an ESR experiment it is often sufficient to combine
the different interactions in an effective Hamiltonian. That means that the
observed features in an ESR experiment are analyzed according to the fun-
damental interactions, as spin-orbit coupling, crystal-field and hyperfine
splitting. Also the different spin-spin interactions have to be considered. A
general effective Hamiltonian can be defined as

Heff =HZ +HSO +HC F +HSS +HHF (2.21)
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Depending on the system under investigation, different parts of the Hamil-
tonian are considered while others can be neglected. In the next sections,
terms relevant for the systems investigated in this work are discussed.

2.4 Spin-Orbit Coupling

If we consider multiple electrons in the vicinity of the nucleus, there exists
electrostatic repulsion between the electrons and dipole-dipole interaction
between their spins. Additionally there exists an interaction between the
spin (magnetic moment) and the movement of the electron in the electro-
static potential of the nucleus. Classically for a charge moving in an electric
field, the electric field transforms into a magnetic field in the rest frame of
the charge. This magnetic field acts on the spin moment. A general Hamil-
tonian for this interaction is written as

HSO = ~

2m2c2
∇V (r)×p ·S (2.22)

where V (r) is the electrostatic potential and p the momentum operator. With
L = r×p it follows

HSO ∝ L ·S (2.23)

As discussed before, the orbital motion of an electron itself is character-
ized by the angular momentum operator L. The coupling 2.23 between
angular orbital momentum and spin momentum is known as spin-orbit
coupling. For weak spin-orbit coupling (LS-coupling or Russel-Saunders-
coupling [18]) the paramagnetic response of an atom, as given by the Zee-
man term, depends on the total orbital angular momentum and the total
spin angular momentum for which the individual moments of electrons k

in incomplete shells are added up.

L =
∑

k

Lk (2.24)

S =
∑

k

Sk (2.25)

For the LS-coupling the total angular momentum J is given as the sum of
the total orbital momentum and the total spin momentum

J = L+S (2.26)



2.5. d-electrons in a Crystal Field 17

When the effect of spin-orbit coupling is considered relevant in the spin
system the electron g-factor ge has to be replaced by the Landé factor g J

defined as

g J =
3

2
− L(L+1)−S(S +1)

2J (J +1)
(2.27)

The Zeeman energy for the ion is

E =µB (L+ ge S) ·H =µB g J J ·H (2.28)

An effective Hamiltonian is defined to parameterize the spin-orbit coupling
in case of LS-coupling as

HLS =λL ·S (2.29)

where λ gives the coupling strength. λ is positive for less than half filled
shells and negative for more than half filled shells.

Spin-orbit coupling is not only relevant when looking at individual atoms.
In semiconductors (and metallic structures) electrons can move constraint
within certain bands. The general Hamiltonian defined in equation (2.23)
also describes the spin-orbit coupling of electrons in the k-dependent (elec-
trostatic) band potential. In semiconductors, the spin-orbit coupling de-
pends, besides the host material, on the crystal symmetry. The group IV
semiconductors Si and Ge, investigated in Part III, are centrosymmetric crys-
tals and electrons in the populated bands are not subjected to (a significant)
spin-orbit coupling. However by creating heterostructures the inversion
symmetry of the crystal structure is broken. One effect which can cause
spin-orbit coupling is the structural inversion symmetry. The asymmetry
is caused by the combination of different materials or asymmetric electric
fields [16]. The resulting spin splitting is described as the Byshkov-Rashba
effect [19, 20].

2.5 d-electrons in a Crystal Field

Atoms which shells are not completely filled yield a (para)magnetic response.
Because of interactions between magnetic ions magnetic ordering can oc-
cur in systems on the energy scale of the magnetic exchange. When dealing
with the magnetism of transition metal ions Cu2+ and Ni2+, as relevant for
the investigations presented in Part II, the not completely filled electron or-
bitals contributing to the magnetism are of the 3d-shell.
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Figure 2.4: Schematic view of a cut through the xy-plane of an atom in an oc-
tahedral crystal field. The dx y -orbitals of the central atom point between the
px -,py -orbitals of the surrounding atoms. The dx2−y2 -orbitals overlap. The dx y -
configuration is energetically favorable.
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Figure 2.5: In the free ion all energy states are degenerate. In a cubic symmetry
the t2g-orbitals are lowered in energy as compared to the eg-orbitals as schemati-
cally explained in Fig. 2.4. An uniaxial expansion or a biaxial compression causes a
tetragonal symmetry, in which the energy levels are split further.
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} Figure 2.7: 3d 8 spin configura-
tion for a Ni2+-ion in an octahe-
dral crystal field. The t2g-levels
are completely filled, resulting in
a total spin of S = 0. The eg-
levels are only occupied by two
electrons, yielding a total spin of
S = 1.

In many low-dimensional spin systems the transition metal ions form a co-
valent bonding with elements from the 6th or 7th group of the periodic table
(e.g. O or Cl). The orbitals of those elements contributing to the bonding are
p-orbitals. When orbitals overlap there is an electrostatic repulsion which
changes the energy as compared to the free ion. Fig. 2.4 shows schemat-
ically the dx y - and the dx2−y2 -orbital on the central atom surrounded by
four atoms with a px- or a py -orbital in the xy-plane. This corresponds to
the xy-plane of an ion in a octahedral crystal field. While the dx2−y2 -orbital
overlaps with the surrounding orbitals, the dx y -orbital points in between.
The dx y -configuration is energetically favorable because of the smaller elec-
trostatic repulsion.

In a tetrahedral configuration the p-orbital atoms are placed on the diago-
nals and therefore the energy states are reversed.

The energy levels with the corresponding orbitals of the d-shell are shown
schematically for different crystallographic configurations in Fig. 2.5. For
the free ion the symmetry is spherical and the five levels are degenerate in
energy. If the same ion is placed in an octahedral crystal field the eg- and
t2g-levels are split by an energy difference ∆. This was explained above phe-
nomenologically on the basis of the dx y - and dx2−y2 -orbital. An uniaxial
elongation of the octahedra or a biaxial compression distorts the octahedra
to tetragonal symmetry. The energy levels are split further. The distortion
shown corresponds to a single ion anisotropy D > 0. For additional distor-
tions the symmetry is reduced further. Eventually all energy levels are split.

Let us consider the implications for the spins states of the 3d-ions due to
the crystal field environment. As an example let us choose Ni2+ with the
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3d 8-configuration in an octahedral crystal field (Fig. 2.7). For 3d-ions the
crystal field energy is much larger than the spin-orbit coupling [11]. This re-
sults in an occupation of orbitals in the following way: The three t2g -levels
are filled completely with two spins each. The remaining two spins occupy
the eg -levels, which are half-filled with spins aligned parallel. The spin state
expected is characterized by S = 1 and L = 3 yielding a J = 4. However the ex-
perimentally observed value for the magnetic moment does not agree with
this. Responsible for this is the quenching of the orbital moment: The t2g -
levels are completely filled so these orbital do not contribute to the mag-
netism. The operator Lz acting on the eg -wave functions gives the following
results [21, 22]:

Lz |dz2〉 = 0 Lz |dx2−y2〉 = 2i |dx y〉 (2.30)

and therefore all expectation values are zero:

〈dz2 |Lz |dz2〉 = 0 〈dx2−y2 |Lz |dx2−y2〉 = 2i 〈dx2−y2 |dx y〉 = 0 (2.31)

Similarly, this holds for the operators Lx , and Ly and with that for L. That
means that the orbital moment vanishes in the case of 3d 8-ion in an octa-
hedral crystal field also for the eg -levels. The orbital moment is said to be
quenched and J = S. The effective magnetic moment is:

µe f f = g JµB

√

J (J +1) = gµB

√

S(S +1) (2.32)

Nevertheless the spin-orbit coupling cannot be neglected completely: In
second order perturbation theory excited orbital states |n〉 are admixed to
the ground state |0〉 via the orbital momentum operator L as described by
H =−λ2S · Λ̃ ·S with

Λi j =
∑

n 6=0

〈0|Li |n〉〈n|L j |0〉
En −E0

(2.33)

with ∆ = En −E0 the energy difference between the orbital states. Because
of the mixing of orbital states the g -factors deviate from the free electron
value according to the spin-orbit coupling λ and the energy splitting ∆. For
an octahedral crystal field the g -factor (tensor) is isotropic with

g = ge −2λ/∆ (2.34)

If the octahedral symmetry is tetragonally distorted there is an energy dif-
ference between the states admixed by different components of L. The cor-
responding energy splittings ∆0, ∆1 are indicated in Fig. 2.5. The g -factor
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tensor becomes anisotropic reflecting the axial symmetry of the distortion.
For the 3d 8 configuration it reads

g∥ = ge −
8λ

∆0
(2.35)

g⊥ = ge −
8λ

∆1
(2.36)

with g∥ parallel to the distorted axis and g⊥ perpendicular to it. The g -factor
tensor is characteristic for the magnetic ion and its crystal field environ-
ment.

The energy splitting between spin states can be described defining the sin-
gle ion anisotropy parameter Di j = λ2

Λi j which in case of tetragonal sym-
metry is given as D ∝ λ2/∆1 −λ2/∆0. The behavior of the spins states can
then conveniently be described using an effective Hamiltonian. The Hamil-
tonian for a spin in a crystal field environment (and magnetic field) is given
as

H =HC F +HZ = S · D̃ ·S+µB S · g̃ ·H (2.37)

where D̃ is the single ion anisotropy tensor. With the diagonal form of the
tensor, the crystal field splitting is usually given as [9]:

HC F = D

(

(Sz)2 − 1

3
S(S +1)

)

+E(S2
+−S2

−) (2.38)

where

D = Dzz − (Dxx +D y y )/2 E = (Dxx −D y y )/2 (2.39)

and 1
3 S(S +1) a constant which just shift the energy levels. D describes the

axial anisotropy and E the transverse anisotropy of the spin system.

In the case of the symmetrical octahedral crystal field, the single ion ani-
sotropy tensor is isotropic with Dxx = D y y = Dzz . This results in D = 0 and
E = 0. From this one can see that there is no preferential orientation for the
spin. Alone the direction of the magnetic field determines the quantization
axis. For a S = 1 state there are three projections mS =±1,0 of the spin in a
magnetic field with states | ±1〉, |0〉. In the octahedral crystal field environ-
ment the states are degenerate at zero-field and the energy splitting in an
applied magnetic field is given by the Zeeman energy as shown in Fig. 2.8(a).
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Figure 2.8: Effect of single ion anisotropy on the spin states and the Zeeman split-
ting. (a) For the octahedral crystal field configuration the spin states are degenerate
at zero magnetic field. Only one ESR absorption is observed. (b) For a tetragonal
distortion of the octahedra there is a zero-field splitting and two ESR absorptions
are observed for the same frequency at different fields.

For a fixed microwave frequency, Zeeman transitions from | −1〉 → |0〉 and
|0〉→ |1〉 occur at the same magnetic field [Fig. 2.8(a)].

When the octahedron is uniaxially distorted according to Fig. 2.8(b), Dzz >
Dxx = D y y leads to E = 0 and D > 0. The positive D describes a splitting of
the three projections mS =±1,0 already in zero magnetic field. The ground
state is the nonmagnetic singlet state |0〉. Since only the energy of the |±1〉
states changes with magnetic field there is a crossing of |−1〉 with the non
magnetic state |0〉. For higher fields than this critical field, |−1〉 has the low-
est energy and is therefore the ground state of the system. With the same
constant microwave frequency as applied before, two Zeeman transitions
| −1〉 ↔ |0〉 are possible which occur now at different magnetic fields. Due
to the zero-field splitting the transition |0〉→ |1〉 is not possible at the same
energy, but would require a larger microwave frequency. Therefore an ESR
experiment is a highly sensitive tool to probe the local crystal field symme-
try of a magnetic ion.
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2.6 Interactions

2.6.1 Dipolar Coupling

When dealing with spins in a solid there exist different interactions between
them. Thinking of spins as magnetic moments we can construct the mag-
netic dipolar or dipole-dipole interaction between two magnetic dipoles as

E = µ0

4πr 3

(

µ1 ·µ2 −
3

r 2
(µ1 · r)(µ2 · r)

)

(2.40)

The energy depends on the relative orientation of the magnetic moments
µ and their distance d. The energy for moments with µ ≈ 1µB and d ≈ 1 Å
is around T = 1 K [11]. The effect of magnetic dipole interactions on the
linewidth was discussed before in Section 2.2.3 and may be relevant for the
quantum dot systems investigated in Part III of this work.

2.6.2 Exchange Interaction

An interaction which can have a larger energy scale is the exchange inter-
action. Known from the Pauli exclusion principle, the total wave function
consisting of the spatial and the spin wave function parts of two electrons,
has to be antisymmetric under particle exchange. Since the linear combi-
nation of the spatial wave functions are a symmetric and an antisymmetric
state there have to be two spin part wave functions as well: One being an an-
tisymmetric singlet (S = 0) and the other a symmetric triplet (S = 1). There
exists an energy difference between singlet and triplet states and the effec-
tive Hamiltonian for the spin-dependent part can be written as

H = JS1 ·S2 (2.41)

where the exchange constant J is defined as

J = ET −ES

2
(2.42)

If J < 0 the singlet energy is larger than that of the triplet state with S = 1.
The spins are coupled ferromagnetically. For J > 0 the singlet state with
S = 0 is favored and the ground state is antiferromagnetic.
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(a) (b)

Figure 2.9: Schematic of AFM (a) and FM (b) superexchange. For a 180◦-exchange
path AFM is favored due to the overlap of the d-orbitals with one p-orbital. For 90◦

FM is dominant. Two p-orbitals contribute to the exchange.

When considering not only two spins but many spins each coupling to their
neighbors the Heisenberg Hamiltonian [23, 24] follows.

H = 1

2

∑

i j

Ji j Si ·S j (2.43)

For the transition metal oxide system, as investigated in Part II, the exchange
interaction is relevant. Usually the distances between neighboring mag-
netic ions are too large for a direct exchange, but the exchange can be me-
diated through orbitals of the surrounding atoms. This is called superex-
change.

2.6.3 Superexchange

Microscopically the origin of the superexchange is explained by a second
order perturbation theory within the Hubbard model [11, 25]. The exchange
constant Ji j is defined as

Ji j ∝
t 2

eff

U
(2.44)

where teff is the effective hopping integral and U the on-site Coulomb in-
teraction. The Goodenough-Kanamori-Anderson-rules [26, 27, 28, 29] indi-
cate if the superexchange is antiferromagnetic or ferromagnetic.

The superexchange is visualized in a simplified comic-like way in Fig. 2.9.
Two atoms (e.g. Cu) shown with their dx2−y2 -orbital are next to atoms in a
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px- or py -orbital configuration (e.g. O). The two different colors of each or-
bital indicate the up- and down-spin configuration respectively. The Cu ion
holds an effective spin of S=1/2, while all p-orbitals of the oxygen are com-
pletely filled. If there is an overlap between orbitals from different atoms
the electrons can become delocalized if spins are aligned antiferromagneti-
cally within this extended orbital, therefore lowering its kinetic energy. The
unpaired spins of Cu align antiparallel with the oxygen spins. One can see
that the two Cu spins align antiparallel if only a single p-orbital is involved
in the superexchange. This is the case for a 180◦ exchange path shown in
Fig 2.9(a) which is the strongest AFM superexchange coupling. In Fig. 2.9(b)
the configuration is shown for a 90◦ exchange. Here the two different Cu
spins couple to a px and a py -orbital of the same oxygen respectively. The
oxygens p-orbitals are fully occupied. From one p-orbital respectively elec-
trons can hop to the Cu d orbital if they have opposite spin to the electron
on the Cu. Electrons at the oxygen can maximize their spin, which is en-
ergetically favorable, when the Cu spins are parallel. The superexchange is
ferromagnetic.

In general different d-orbitals can contribute to the superexchange. Since
the kinetic exchange term depends on the overlap with a single p-orbital
AFM is favored for relatively small deviations from the FM 90◦-exchange
path already.

2.6.4 Symmetric Anisotropic Exchange

When the g -tensors of interacting magnetic ions are anisotropic the Hamil-
tonian describing the exchange can be written as:

H AE = Si · J̃i j ·S j (2.45)

In that sense it is similar to magnetic dipole interaction [9].

2.6.5 Antisymmetric Anisotropic Exchange

The Dzyaloshinsky-Moriya interaction [30, 31] describes the interaction of
an excited state on one magnetic ion with the ground state of another, due
to spin-orbit coupling. This results in an anisotropic exchange between the
magnetic ions of the form:

HDM = Ji j · (Si ×S j ) (2.46)
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It does not exist if there is an inversion symmetry of the crystal field with
respect to the center between the magnetic ions.

When dealing with low-dimensional systems as discussed in Part II, aniso-
tropic exchange interactions can be relevant and has to be kept in mind.
However in the investigated systems in this work effects due to anisotropic
exchange have not been observed.

2.6.6 Hyperfine Interaction

Besides the electron-electron interactions at an atom there can also be inter-
actions with its nucleus. The nuclei can carry a magnetic moment with the
nuclei spin operator I. The magnetic field produced by the electrons inter-
acts with the nuclear magnetic moment and vice versa. The relevant inter-
actions causing hyperfine splitting are magnetic dipolar interaction and the
much stronger Fermi contact interaction [11]. For the latter a finite electron
probability at the nucleus is required, which is only given for s-(like-)states.

The Hamiltonian describing the hyperfine interaction can be written as

HHF = J · Ã · I (2.47)

where Ã depends on the type of interaction.

Since the energy scale of the hyperfine interaction is much smaller than the
Zeeman interaction, it is visible in an ESR experiment as a (symmetric) split-
ting of a central line. Depending on the nuclear spin several lines can be ob-
served. For the analysis of donor states in Si the hyperfine interaction was,
and still is, very important. Isolated donors in Si show a pronounced hyper-
fine split doublet. With this the donor ground states could be identified as
symmetric singlet states with a finite probability at the donor nucleus (see
Section 12.1). The splitting is characteristic for the type of donor.



CHAPTER 3
Experimental

In this chapter the setups used for the ESR experiments at different frequen-
cies and magnetic fields are described. The implementation of an electrical
detected magnetic resonance (EDMR) setup at 10 GHz is highlighted. Fur-
thermore instrumental development of microwave resonant cavities at dif-
ferent frequencies in the V- and W-band is discussed and their experimental
characterization is presented.

3.1 Setup for Experiments at 10 GHz

The microwave frequency range from 8 - 12 GHz is referred to as "X-band".
This is the most commonly used band for ESR experiments. For the exper-
iments performed at X-band frequencies, a commercial EMX spectrometer
from Bruker Biospin is available. The watercooled magnet allows sweeps
of the external magnetic field of up to 1 T. The spectrometer operates at
a fixed frequency around 9.6 GHz. The samples are positioned at the ma-
ximum of the magnetic field component of the microwave standing wave
(Fig. 3.1) within the resonant cavity. For the ESR experiments performed
for this work, two different rectangular resonant cavities were mounted in
the center of the external magnetic field. The first resonator operates in the
TE102 configuration (cf. Fig. 3.8) and was used mainly for measurements at
room temperature. The second cavity has an optical transmission pathway,
which allows to illuminate samples during an ESR experiment. Because of
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Figure 3.1: Schematic of the ESR setup at X-band frequencies; A sample is placed
in a cryostat inside a rectangular resonator. Changes in the microwave intensity
are detected as a function of external magnetic field H0. Lock-in detection with a
modulating magnetic field Hmod is used. Illumination of samples is possible in the
visible and infra-red frequency range.

the optical path, the coupling of the waveguides to the resonator is realized
from the top, which makes a TE103 mode configuration necessary. How-
ever only a single maximum of the microwave magnetic field is in contact
with the sample equivalent to the TE102 configuration. When unloaded, the
quality factor for both resonators reaches up to 5000. Samples are glued
to quartz substrates or are sealed into ESR quartz tubes. Temperature de-
pendent measurements were realized with a continuous-flow liquid helium
cryostat from Oxford Instruments which enables measurements from room
temperature down to about 3.7 K. Since the cryostat is inserted in the res-
onator the quality factor is already reduced. Typically, quality factors of
the loaded resonator (cryostat and sample) of 3500 could be reached. A
goniometer allows to turn the sample with respect to the external magnetic
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field even at cryogenic temperatures. In order to ensure high precision mea-
surements the spectrometer can be equipped with an additional NMR sen-
sor with accuracy of 10−3 Oe and an external frequency counter. In addition
to the applied external magnetic field, a small AC modulation field is ap-
plied and with that a lock-in detection of the microwave intensity is realized.
This results in a higher signal/noise ratio and higher sensitivity compared
to a detection scheme without modulation. Typically, modulation ampli-
tudes from 8 Oe down to 0.01 Oe and modulation frequencies from 100 kHz
to 10 kHz are used, depending on the spectral features of the investigated
samples.

Illumination of samples can be realized with individual laser diodes at dif-
ferent wavelengths, a halogen white light lamp and a tunable light source
from Newport, the last of which allows continuous tuning of the wavelength
from 800 to 2400 nm.

3.2 Implementation of an Electrical Detected

Magnetic Resonance Setup

The original X-band spectrometer setup probes the change in microwave
radiation as a function of magnetic field. When the ESR resonance condi-
tion is fulfilled, absorption is visible as a change of the microwave power
which is converted to a DC voltage. The sensitivity in a conventional ESR
Experiment is limited to quiet large numbers of spins n&1010/G . There ex-
ists an alternative detection scheme which makes it possible to detect spin
dependent phenomena on less than 100 spins [32]. This technique mea-
sures changes in the electrical resistance of the sample under microwave
irradiation and magnetic field. This technique is referred to as electrical de-
tected magnetic resonance (EDMR). EDMR was implemented in this work
at the existing X-band spectrometer.

For the electrical detection scheme, it is necessary to define the active area
on the sample by electrical contacts. Since the microwave standing waves in
resonators are drastically disturbed by conducting substances, the amount
of metallic parts (wires, contacts) is kept as small as possible. Samples are
glued on quartz substrates and bonded to metal lines sputtered onto the
substrates. These electrical lines consist of about 50 nm of either gold or
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Figure 3.2: Schematic of the EDMR setup at X-band frequencies. A sample, with
electrical contacts, is placed in a cryostat inside a rectangular resonator. A bias is
applied to the sample with a battery voltage source. The current is measured and
converted to a voltage using a preamplifier. The voltage change is measured as a
function of external magnetic field H0 using lock-in detection with a modulating
magnetic field Hmod . Illumination of samples is possible in the visible and infra-
red frequency range.

aluminium on top of a 10 nm chrome adhesion layer. Since the skin depth
at a frequency of 10 GHz is above 500 nm, the microwaves can penetrate
through the metal lines and the standing wave pattern is not disturbed.
With a length of 5 cm, the quartz substrates extend outside of the resonator.
Here copper wires are glued with silver paste to the metal lines and the wires
are guided inside a metallic sample holder to a four-pin connector.

A battery voltage source SIM928 from Stanford Research allows to apply
DC voltages from 1 mV to 20 V to the sample. The current is detected via
a DLPCA-200 current preamplifier from Femto and its output voltage signal
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is fed to the lock-in amplifier of the spectrometer (Fig. 3.2). Alternatively to
the current measurement configuration the voltage between two contacts
can be measured. For this a low-noise voltage preamplifier SR560 from Stan-
ford Research is available.

3.2.1 Basic Characterization

Defects in Si-based systems have been investigated intensively with ESR
[33, 34, 35] and EDMR [35, 36]. The multitude of different ESR active cen-
ters is well documented (for an overview see [37, 38]). Although almost all
centers are distinguishable in terms of g -factor anisotropy and linewidth,
their characteristics can be quiet similar and most signals are found around
a g -factor of g = 2. Without discussing the physics of the defects present, a
standard Si diode (1N4007 from VISHAY) was chosen to quantify the sensi-
tivity of the EDMR setup. The plastic housing was removed in parts from the
diode and the diode was glued to the quartz sample holder. Silver paste was
used to ensure good electrical contact between the sputtered metal lines of
the sample holder and the diode structure. By illuminating with the white
light source and applying a bias in forward or reverse bias direction, the
change in the current as a function of applied magnetic field was measured.
Fig. 3.3 (a) shows the as measured EDMR signal d I /d H around g = 2 with
a maximum microwave power of Pmw = 200 mW and reverse bias U = −5 V.
The signal/noise ratio in this measurement is about 10:1. With micro struc-
tured samples, which are described in [39], better signal/noise ratios were
achieved. By calibrating the internal lock-in of the EMX with an applied
bias, the absolute current change could be determined. The integrated sig-
nal is plotted in Fig. 3.3 (b). The change in the current over the whole signal
is on the order of pA, corresponding to a relative change on the order of
∆I /I0 = 10−5. From the non-resonant background it can be seen that rela-
tive current changes of ∆I /I0 = 10−6 can be detected with this EDMR setup.
This is comparable to measurements reported in literature [40, 41].

3.3 High Frequency Setup

In addition to the X-band spectrometer, a high-field/ high frequency setup
is available at the ESR lab at the IFW Dresden. A millimeter wave vector
network analyzer (MVNA) is combined with cryogenic magnets, for which
static magnetic fields up to 17 T can be reached. The microwaves are guided
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Figure 3.3: EDMR measurement on Si diode 1N4007. (a) current change dI/dH
measured as a function of magnetic field at T = 20 K with U = −5 V, f ≈ 9.56 GHz
and Pmw = 200 mW. Ten scans were averaged. (b) Integration of dI/dH gives the rel-
ative current change∆I /I0. From the noise floor it can be seen that current changes
below pA and relative current changes on the order of 10−6 can be detected.

through specially constructed waveguides to the sample placed in magne-
tocryostats. With this home made spectrometer the energy scale, i.e. fre-
quency and magnetic field, is widened significantly and allows versatile pos-
sibilities to investigate different spin systems of interest.

The components of the high frequency setup and their principles of oper-
ation are described in the following sections. A very good in-depth descrip-
tion of the original setup can be found in [22]. The focus in this section will
be on the implementation of the resonant cavities to the existing setup.
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Figure 3.4: Working principle of the Microwave Vector Network Analyzer for fre-
quencies up to 100 GHz. The two base frequencies are multiplied and phase and
amplitude changes in the beating signal are detected. For details see text.

3.3.1 Millimeter Wave Vector Network Analyzer

The Millimeter Wave Vector Network Analyzer (MVNA) by AB Millimètre
deployed in the experiments allows frequency tuning between 8 GHz and
about 800 GHz. This large frequency range is achieved by using different
non-linear solid state devices to generate and detect microwave radiation
as well as to amplify and filter harmonics of the adjustable fundamental
frequency. The fundamental frequency is tunable between 8 - 18 GHz and
is created by yttrium iron garnet (YIG) oscillators. Two YIGs create slightly
de-tuned base frequencies F1 and F2, which are phase-locked with one an-
other over a Schottky diode mixer and a phase-lock loop (PLL). In the fre-
quency regime up to about 100 GHz the working frequency is achieved with
two Schottky diodes: The harmonic generator (HG) acts as the microwave
source and the harmonic mixer (H M) as the detector in the experiment.
They create multiple harmonics N ·F1/2 of the base frequencies F1 and F2

respectively. Because of the de-tuned base frequency, a beat frequency is
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established which is characteristic for the multiplication factor N and with
that the working frequency. The beat frequency Fb = N ·F1 −N ·F2 is in the
MHz range and is fed back to the spectrometer. With Fb and the mixed fre-
quency Fmi x the YIG frequency F2 is stabilized with respect to F1 over the
PLL. A schematic of this setup is shown in Fig. 3.4.

The decrease in power with higher harmonics makes it necessary to mod-
ify the system by using different components at high frequencies. From
frequencies of about 70 GHz upwards, it is possible to exchange the HG

by a Gunn oscillator. In contrast to the passive YIG-driven Schottky diode
the Gunn diode is powered independently from the YIG and its frequency
is tuned independently as well. However, the stabilized YIG frequency is
still needed for the phase lock loop (cf. [22]). Up to frequencies of about
240 GHz it is possible to use one Gunn diode and one Schottky diode. For
higher frequencies the second Schottky diode is replaced by another Gunn
diode. Using different multiplicators and filters, frequency ranges up to
about 800 GHz are accessible with this configuration.

3.3.2 Waveguides and Cryostats

In the original setup, microwaves are guided from the Schottky or Gunn
diodes by cylindrical tubes to the sample space. These oversized waveg-
uides transmit microwaves in a broad range of frequencies. This is advan-
tageous since one sample probe can be used with the different configura-
tions of the MVNA, allowing for experiments over a broad frequency range.
In general two configurations of sample probes are available. In the trans-
mission probehead microwaves from the source penetrate the sample and
only transmitted microwaves are detected. This probehead consists of two
vertical oversized waveguides which are connected by two 45◦ mirrors. The
sample is placed just on top of one mirror on the side of the source. On top
a tapered metal part is used to focus the microwave radiation on the sample.
The reflection probehead only consists of a single tube where source and de-
tector arm are connected to the waveguide outside the cryostat separated
by a polarizer. Microwaves penetrating the sample are reflected within the
skin depth from the sample or by a metallic mirror placed underneath the
sample.

For frequencies above 250 GHz, additionally a quasi-optical setup can be
used. Here, the microwave radiation is guided by parabolic mirrors and di-
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rected to a corrugated waveguide as sample probe. This highly sensitive
setup is described in detail in [42].

The sample probes can be placed in different magnetocryostats. Most ex-
periments were performed with a magnetocryostat from Oxford Instruments
allowing field sweeps of up to 17 T. A variable temperature insert (VTI) en-
ables measurements in the temperature range from 2.5 K to above 300 K.
The size of the cryostat makes it necessary for the length of the probe stick to
be about 2 m. This means that the microwaves propagate along the metallic
tubes for about 4 m. The attenuation for an electromagnetic wave propagat-
ing along an oversized waveguide is typically about 1 dB/m as determined
in a simple transmission measurement at about 90 GHz.

Additionally, a cryogen-free magnet from Cryogenic Ltd. is available. The
magnetocryostat is equipped with two coils: A main coil with a maximum
magnetic field of 15 T and a sweep coil for narrow sweeps of the magnetic
field in the range of 20 mT. This combination of coils and their very good
magnetic field homogeneity allows to resolve very narrow lines in an ESR
experiment even at high magnetic fields. Because of the smaller height of
the magnet, probe sticks of about 1.2 m length can be used. The total mi-
crowave path is then about 2.5 m. This cryostat can be used with the quasi
optical setup, but also a sample stick using only rectangular waveguides was
constructed.

3.4 Development of the Resonant Cavity Setup

An ESR experiment can be performed simply by inserting a sample in the
microwave path and measuring the interaction of the sample in terms of
absorbed or reflected microwave radiation as a function of the applied exter-
nal magnetic field. However, the sensitivity will be greatly enhanced when
the experiment is performed using a microwave resonant cavity or, in short,
a resonator.

A resonator can be thought of as an oscillating circuit with a characteristic
inductance L, conductance C and resistivity R. Such a system has a charac-
teristic resonance frequency

ω0 = 2π f0 =
1

p
LC

(3.1)
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Figure 3.6: Micro-
wave amplitude as
a function of fre-
quency around the
resonance frequency
f0 of a cylindrical
resonator at W-band
and Lorentzian fit.
The FWHM ∆ f

and the resonance
frequency can be
determined experi-
mentally. Based on
that the Q factor can
be calculated with
equation (3.4)
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If the resonator is excited by an oscillating electromagnetic field or an AC
bias with a frequency ω close to the resonance frequency ω0 energy is ab-
sorbed. When the excitation is turned off, the energy stored in the resonator
decays exponentially over time due to ohmic and radiation losses. A mea-
sure for how well the resonator stores energy is the quality factor Q. The
quality factor is defined as [10]

Q = 2π
Energy stored

energy dissipated per cycle
(3.2)

For an RLC circuit Q is given by

Q = ω0L

R
= 1

ω0C
(3.3)

which leads to [10]

Q = ω0

∆ω
= f0

∆ f
(3.4)

where ∆ f is the full width at half maximum (FWHM) of the Lorentzian ab-
sorption peak of the resonance. This relation is experimentally accessible
and can be used to characterize constructed resonators (cf. Fig. 3.6). At
microwave frequencies standard electronic components cannot be used to
build a resonator. However there are many different types of resonators
which can be used for experiments at wavelengths in the microwave range.
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Their characteristics, as Q-factors and possible frequency range, can differ
significantly and it is necessary to find a suitable design for any desired ap-
plication.

In the lower GHz regime stripline resonators [43] or microstrip resonators
[44] are commonly used. The quality factors are fairly low, but can be com-
pensated by large filling factors when enough sample material is available.
More recently planar microcoil resonators working up to several GHz were
developed [45, 46]. The metallic lines are fabricated with lithography tech-
niques on different substrate materials. This kind of resonators are suit-
able for µm-sized, but highly spin concentrated sample materials. Because
of the relatively low Q-factors pulsed experiments are possible with those
structures.

Mainly at frequencies above 100 GHz Fabry-Perot resonators are used [47].
By adjusting a reflective mesh the resonance frequency can be tuned and
frequency shifts due to temperature dependent measurements can be com-
pensated.

In the intermediate regime (whispering gallery) dielectric resonators [48,
49] as well as metallic resonators are most commonly used. Metallic res-
onant cavities were chosen as the resonator design. The reasons for our
choice of resonators are their fairly easy implementation into the existing
high field setup and their convenient dimensions as suited for the samples
to be investigated.

In metallic resonators electromagnetic standing wave patterns are formed,
dependent on the geometry and dimensions of the resonant cavity. The
main reasons for energy losses in metallic resonators are ohmic losses in
the cavity walls, radiation leakage through coupling holes, losses due to an
eventual dielectric medium in the resonator as well as dielectric losses due
to sample and sample holder. The experimental reciprocal Q-factor is there-
fore given by the sum of the individual losses:

1

Q
= 1

Qwalls
+ 1

Qholes
+ 1

Qdielectric
(3.5)

Cylindrical resonators can reach very high quality factors of up to 10000 [50].
The reason is that, due to their larger volume to surface ratio, cylindrical
resonators can store more energy and therefore exhibit larger quality factors
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than rectangular ones [10]. Because of this the instrumentation of choice
for the desired experiments are cylindrical resonators.

3.4.1 Mode Propagation

Let us consider the propagation and distribution of electromagnetic waves
in order to understand how the microwave components can be combined
and optimized for the experimental setup: An electromagnetic wave prop-
agating along z-direction can be described by its vectors of the electric E(z)
and the magnetic field component B(z) as a plane wave

E(z) = E0 exp i (kz −ωt ) B(z) = B0 exp i (kz −ωt ) (3.6)

where the z-component for E0 and B0 is zero and E(z) and B(z) are perpen-
dicular to each other. k is the wave vector along z and ω is the angular fre-
quency.

When transmitted quasi-optically through air or in oversized waveguides
the plane wave equations satisfy the Maxwell equations in vacuum. In con-
trast to oversized waveguides in which the millimeter waves can propagate
quasi optically, metallic tubes can be chosen as waveguides with dimen-
sions on the order of the wavelength. Then an electromagnetic wave propa-
gates, restricted by the boundary conditions for electric and magnetic fields
at the (perfectly) conducting metallic surface:

E∥ = 0 (3.7)

B⊥ = 0 (3.8)

In coaxial cables the waves are usually transverse electromagnetic (TEM)
waves, for which Bz = Ez = 0 [10]. Coaxial cables are commonly used in the
MHz and lower GHz regime, but special coaxial-like cables can be used for
frequencies up to about 80 GHz. This becomes important when concerned
with measurements at very low temperatures (e.g. in dilution refrigerators)
[51], where the microwave has to be applied locally to a sample structure
and where the thermal heat transferred has to be minimized. For this, pure
metallic waveguides are a poor choice. However the power losses are usu-
ally slightly higher in such cables 1. For the regular ESR measurements

1A typical micro-coax cable UT-085 exhibits losses of about 0.6 dB/m at 1 GHz (e.g.
Micro-Coax - www.micro-coax.com). The losses increase with increasing frequency.
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high microwave powers can be necessary and usually macroscopic samples
are investigated. Therefore our setup built for temperatures down to about
2.5 K comprises of oversized and connected rectangular waveguides as de-
scribed in Section 3.4.4. In rectangular (and cylindrical) waveguides TEM
waves cannot be transmitted [10]. Instead there are transverse electric (TE)
waves with Ez = 0 and Bz 6= 0 and transverse magnetic (TM) waves with
Bz = 0 and Ez 6= 0.

Let us consider a rectangular waveguide with dimensions a and b along
the x and y directions respectively. The electromagnetic wave is propa-
gating along z. Because of the boundary conditions standing waves are
formed with the allowed wave vectors being quantized in the transverse di-
rections x and y . The allowed wave vectors k are given in integers of the
half-wavelength in the appropriate direction:

k = (kx ,ky ,kz) =
(mπ

a
,

nπ

b
,kz

)

(3.9)

The dominant mode in the rectangular waveguide is the fundamental TE10

mode where the subscripts refer to the number of half-wavelengths m = 1
and n = 0.

Electromagnetic waves can be transmitted as single modes only in a limited
frequency range which depends on the dimensions of the waveguide. For
a waveguide, where the dimensions are very large compared to the wave-
length, different modes are very close in frequency and no defined single
standing wave is possible. When the dimensions of the waveguide become
too small the boundary conditions cannot be fulfilled anymore. This places
an upper limit on the frequency (lower limit on the wavelength) for any
given mode. The cutoff-frequency for free propagation is defined as:

fc =
1

2π

√

(mπ

a

)2
+

(nπ

b

)2
(3.10)

The microwave power for the radiation is attenuated due to ohmic losses
in the conducting waveguide walls. When the frequency of the propagating
wave is larger than the cutoff-frequency, those losses are significantly en-
hanced.

Losses of about 3.3dB/m at a frequency of 20 GHz are to be expected. An (ideal) metal-
lic rectangular waveguide experiences losses of only about 1.5 dB/m at 50 GHz and 3 dB/m
at 90 GHz. [52]
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Figure 3.8: Schematic drawing of
the TE102 mode pattern in a rect-
angular resonant cavity. Micro-
wave magnetic field lines (dashed
blue lines) and electric field lines
(red lines) are indicated. The con-
tour plot indicates the field distri-
bution. Samples are placed at the
maximum of the magnetic field
component.
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In order to minimize losses but still be able to keep the experimental ef-
fort to a minimum, only two different waveguides were chosen which allow
for measurements within certain frequency bands. Inner waveguide dimen-
sions for different frequency bands are standardized and waveguides from
different materials are commercially available. Characteristics of the waveg-
uides used are listed in Table 3.1.

Band width height freq. range cutoff-freq.
[mm] [mm] [GHz] [GHz]

V 3.76 1.88 50 - 75 40
W 2.54 1.27 75 - 110 59

Table 3.1: Frequency bands and waveguide characteristics.

3.4.2 Resonant Cavity Modes

We can think of a resonator as a terminated waveguide, e.g. a cut waveguide
where metallic plates are placed on its end. Therefore the electromagnetic
standing waves - in rectangular waveguides confined in the transverse di-
rection only - become confined in the z-direction (the propagation direc-
tion in a waveguide) as well. The modes in resonators are then labeled with
subscripts m,n, p, which again refer to the number of half-wavelength. For
the rectangular resonator of length d the wave vector is then:

k = (kx ,ky ,kz) =
(mπ

a
,

nπ

b
,

pπ

d

)

(3.11)
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The resonance frequency of a resonator depends on the actual mode present
and the dimension of the resonator. It can be calculated as

f0 =
1

2

√

(m/a)2 + (n/b)2 + (p/d)2

µǫ
(3.12)

where µ is the permittivity and ǫ the dielectric constant of the medium in-
side the resonator.

The commercial setup used for ESR experiments at 10 GHz works in the
mode configuration TE102 or TE103. The TE102 mode is visualized in Fig. 3.8.

In order to calculate the electromagnetic waves in a cylindrical resonator,
an appropriate coordinate system has to be chosen. Thus, for a cylindrical
resonator, the mode profiles are calculated using the Laplace equation in
cylindrical coordinates [53, 10]. The solution of this are modes character-
ized as TEmnp and TMmnp modes, where the subscripts m,n, p refer to the
half wavelengths along the angular φ, radial r and longitudinal direction z

of the resonator.

The resonance frequency can be calculated for a certain T E mode with

f0 =

√

(

c(kc a)′mn

π

)2

+
(cp

2

)2
(

2a

d

)2

/(2a) (3.13)

where a is the radius, d the length of the resonator, c the speed of light in
vacuum and (kc a)′mn the nth root of the mth order Bessel function J ′m(kc a)
[10]. From equation 3.13 the resonance frequencies of a certain mode can
be easily calculated for different resonators. The actual cavities designed,
their dimensions, resonance frequencies and quality factors are listed in Ta-
ble 3.2 in Section 3.4.5.

3.4.3 Resonant Cavity Design

As in every waveguide, there are losses of microwave energy due to the dissi-
pation in the waveguide walls. They increase with increasing frequency and
are several db/m for a typical rectangular waveguide [52]. Especially when
measuring at a frequency where only small power is available, the losses
due to the fixed length of the waveguide of about 4 m can become a criti-
cal issue for the experiment. The dimensions of the resonant cavities were
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Figure 3.9: Schematic of the (a) TE011 and (b) TE012 mode pattern in a cylindrical
resonant cavity. Microwave magnetic field lines (dashed blue lines) and electric
field lines (red lines) are indicated. The contour plots indicate the field distribu-
tion.

therefore chosen in a way that the resulting resonance frequencies are close
to the maximum output powers of the high frequency setup.

The chosen design is that of a cylindrical resonant cavity, which exhibits
quality factors around 10000 [50], larger than those of rectangular resonant
cavities. To achieve high microwave intensity at the sample, the fundamen-
tal mode TE011 and, as an additional option, the TE012 is desired. Two dif-
ferent cavity configurations were constructed in this work: The axial reso-
nant cavity [Fig. 3.12(a)], in which the sample is placed at the end plate and
the transverse resonant cavity [Figure 3.12(b)], in which the sample can be
mounted on a sample holder centered in the resonator. Depending on the
sample geometry it is advantageous to use one or the other resonator, since
the sample has to be small compared to the nodes of the microwave radia-
tion. In an ESR experiment the microwave magnetic field has to be perpen-
dicular to the applied external field. Since the applied field axis is fixed by
the superconducting magnet system and the coupling configuration on the
resonator is fixed as well, indeed two different resonant cavities are neces-
sary.

A transmission setup was chosen, in which two rectangular waveguides cou-
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ple each to a separate coupling hole in the cavity. If one wants to excite not
only the TE011 but also the TE012 mode the waveguides have to be placed
centered at 1/4 and 3/4 the length of the resonator for the transverse one
and at ±1/2 the radius for the axial one.

Since for TE modes there are no currents flowing between the end plates
and the cylindrical body [50], the quality factor is not decreased when as-
sembling a cavity from different parts, which allows for easier experimental
handling.

At the axial resonator the coupling is realized through one of the end plates
instead of the cylindrical body. It consists of three parts [Fig. 3.12(a)]. At
the center of the bottom part a sample can be placed. The cylindrical cen-
ter part is placed on top. On top of this the coupling plate with pockets for
the waveguides is positioned. Two screws connect the three parts. For all
resonators the waveguides are first joined with a clamp and then screwed
tightly to the resonators.

The transverse resonator [Fig. 3.12 (b)] consists of a cylindrical center part,
where two coupling holes were drilled at 1/4 and 3/4 of its length. The cylin-
drical transverse resonator is closed off with two circular plates on its ends
which can be screwed to the center part individually. Through a hole at the
center of both coupling plates a small sample holder can be accurately po-
sitioned and a sample can be mounted in the center of the resonator.

The coupling between waveguide and resonator was optimized. For large
coupling holes the leakage of microwave radiation from the cavity is large
and the microwave standing wave decays quickly. If the holes are small
most of the microwaves are reflected back into the waveguide, but not fed
through to the resonator. For coupling hole diameters of around 0.5 mm,
good Q values were found for the cavities. Another factor is the coupling
plate or the wall thickness between resonator and waveguide. This has to be
as thin as possible since the microwave is attenuated when passing through
the coupling plate. On the other hand the mechanical stability is crucial
since the waveguide is pressed against the thin plate. For the constructed
cavities, wall thicknesses around 0.2 mm were found to be a good compro-
mise. In order to have a continuation of the microwave magnetic field di-
rection in waveguide and resonant cavity, the waveguides have to be placed
with their shorter walls facing each other (Fig. 3.10). This denotes a min-
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Figure 3.10: Schematic of coupling between rectangular waveguide and (a) axial
resonant cavity and (b) transverse resonant cavity in the T E011 configuration. The
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microwave magnetic field lines (dashed blue lines) from the waveguide are aligned
to those in the resonator. Electric field lines are indicated as red lines. The contour
plots indicate the electric and magnetic field distribution.

imum size for the coupling plates of the resonant cavity of two times the
longer waveguide side plus four times its wall thickness. This adds up to a
minimum width or diameter of about 12 mm for V-band and about 9.5 mm
for W-band resonators. Another limiting factor is the sample space in the
cryostat with diameter d = 24 mm.

The microwave power as a function of frequency is fairly irregular, due to
the characteristics of the individual devices of the MVNA. In "W-band" the
maximum power can be reached with a Gunn diode at 83 GHz. Around a fre-
quency of 93 GHz an additional preamplifier with an adjustable attenuator
can be employed, which allows for high power measurements and power
dependent measurements at this selected frequency using either Schottky
or Gunn diodes. Resonant cavities were designed in such a way that, within
the dimensional constrains discussed above, their resonance frequencies
are close to frequencies with maximum power within the desired band. The
different resonant cavities designed and constructed are listed in Table 3.2.
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3.4.4 Resonant Cavity Sample Stick

To allow the use of microwave resonant cavities a new sample stick was de-
signed (see Fig. 3.11).

From the MVNA configuration for the desired frequency, a monochromatic
millimeter wave is coupled into an oversized cylindrical waveguide in the
usual way (see Section 3.3.1). The oversized waveguide is connected via a
transition part to a rectangular waveguide. The transitions have a circular
opening on top, which reduces conically towards a rectangular opening at
the bottom with the standardized dimensions for a rectangular waveguide
for the corresponding frequency band. The bottom part was soldered to the
rectangular waveguide in such a way, that the rectangular opening aligns
with the opening of the rectangular waveguide. The top part was inserted
up to the middle of a circular cartridge and fixed by soldering. From the
top the oversized waveguide was inserted into the cartridge and screwed
tightly to the transition. This way, rectangular waveguides for different fre-
quency ranges can be easily replaced and used with the same pair of over-
sized waveguides. The two rectangular waveguides can be fixed in position
with clamps to ensure the waveguides are parallel and do not bend. The
end parts are then pressed on a resonant cavity which is screwed to the
clamp [Fig. 3.11(c), (e)]. For an easier and reproducible positioning of the
waveguides, the resonators have rectangular pockets centered at the coup-
ling holes. The bottom ends of the rectangular waveguides were polished
and thin layers of indium were placed in the pockets. The waveguides press
the soft indium layers in place, ensuring good electrical conductivity be-
tween the different components. That way, leakage of microwave radiation
directly between the two waveguides - without going through the resonator
- is reduced significantly. Two sample probes using rectangular waveguides
for V- and W-band were constructed. All resonant cavities were plated with
200µm gold. The skin depth in gold is below 1µm [54]. Thus microwaves
do not penetrate into the brass. Therefore eventual (para-) magnetic impu-
rities in the brass cannot cause spurious ESR signals, which might overlap
with signals originating from the sample. Additionally, the higher micro-
wave conductivity of gold allows for higher quality factors as compared to
brass. For the transverse resonators, a quartz rod of 0.5 mm diameter is ax-
ially centered between the two end plates and samples are placed in the
middle of it. For the axial resonator samples are positioned at the bottom of
the resonator, removing the need for an additional sample holder.
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(a) (b) (d)

(c)

(e)

Figure 3.11: Probestick with axial resonant cavity. The probestick (a) consists of
two rectangular waveguides connected to a transition part (b), (d) to which a cir-
cular oversized waveguide can be connected. At the bottom (c), (e) the rectangular
waveguide are set in the pockets of the axial (or transverse - not shown) resonator
and are fixed with a clamp.
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(a) (b)

Figure 3.12: Axial (a) and transverse (b) resonant cavity. Two axial cavities (W3a,
W4a) were constructed for W-band. Different resonance frequencies are achieved
by exchanging the cylindrical body with one of different dimensions. In total four
transverse resonators were built. Two resonators at V-band (V1t, V2t) have the
same dimensions, but V2t has 0.2 mm wide cuts at 1/4 and 3/4 of the length of the
cylindrical body. The transverse resonators at W-band (W1t, W2t) have different
inner diameters and with that different resonance frequencies (cf. Table 3.2)

.

To ensure temperature control, a calibrated Cernox temperature sensor was
glued to the resonator. A twisted Manganite wire of about 70Ωwas wrapped
tightly around the clamp close to the resonator. Varnish with high thermal
conductivity was used to ensure a good thermal contact between tempera-
ture sensor and resonator as well as heater and resonator.

3.4.5 Experimental Characterization

The MVNA setup allows frequency scans in a small frequency range of about
10 GHz. This constitutes a convenient way to identify and characterize the
different modes of the resonant cavities by sweeping the frequency through
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cavity diameter length Mode th. freq. exp. freq. Q at
[mm] [mm] [GHz] [GHz] 300 K

V1t 7.4 13.0 T E011 50.78 50.66 10000

V2t 7.4 13.0
T E011 50.78 50.66 6700
T E012 54.57 54.42 6600

W1t 4.5 9.8
T E011 82.75 82.17 9600
T E012 86.89 86.33 5100

W2t 4.0 9.8
T E011 92.75 92.64 9200
T E012 96.47 96.13 9600

W3a 11.0 2.25 T E011 74.50 74.78 4200
W4a 11.0 2.0 T E011 82.05 81.78 2300

Table 3.2: Axial and transverse resonant cavities at V- and W-band: Physical dimen-
sions, mode configuration, theoretical and experimental resonance frequencies as
well as experimentally determined Q-factors of the unloaded resonators. There are
two transverse resonators at V-band (V1t, V2t), which are identical in their dimen-
sions. V2t was modified from V1t by cutting slits at 1/4 and 3/4 of its length to
suppress TM modes. This significantly decreased the Q-factor. At W band there
exist two transverse (W1t, W2t) and two axial (W1a, W2a) resonators.

the resonance. Exemplarily Fig. 3.13 shows the microwave intensity as a
function of frequency for the unloaded resonant cavity "V2t" at 300 K. The
spectrum was obtained by coupling the microwaves with short quasi opti-
cal waveguides to the lower part of the waveguide (Fig. 3.11). Three major
peaks are visible in Fig. 3.13. They correspond to the TE011 and the TE012

modes. The third peak is close to the resonance frequency of the TE311

mode. The peaks can be fitted as Lorentzian lines. From the resonance po-
sition f0 and the full width at half maximum (FWHM) ∆ f , the quality factor
Q can be calculated.

Q = f0

∆ f
(3.14)

All the experimentally determined resonance frequencies f011 = 50.66 GHz,
f012 = 54.42 GHz and f311 = 55.23 GHz are close to the theoretically calcu-
lated values. The quality factors for TE011 and TE012 modes of about 6700
are significantly higher than for the TE311 mode, for which the quality fac-
tors only borders Q = 1000. The coupling of the waveguide to the resonator
is optimized for the TE012 configuration. The microwave magnetic field
component is maximum at the position of the coupling holes. This is re-
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Figure 3.13: Resonance modes of a resonant cavity in the V-band frequency range.
Insets show the three resonances visible. They are identified as TE011, TE012 and
TE311 modes respectively.

flected in the much higher intensity of the TE012 compared to the TE011-
mode. Additionally, a MVNA configuration was used which allowed a single
frequency sweep through all resonances. For this configuration the micro-
wave power is higher at the resonance frequency f012.

Although the generation of the TE311 mode is obviously possible it is dam-
ped significantly which results in the much smaller quality factor of this
mode. Also, the TE311 mode pattern does not pose a convenient configura-
tion for the ESR experiment. The parameter m = 3 for the azimuthal angle
φ results in a non-zero electric field at the center of the resonator where the
sample is mounted. However, the presence of this mode does not limit the
functionality of the resonator. The frequency of the microwave setup can
be stabilized with the feedback loop to an accuracy in the kHz range. The
different modes are separated on the order of GHz. Therefore it is possible
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to generate a single particular mode in the resonator and to perform ESR
experiments with a defined mode pattern. This allows for ESR experiments
at different but relatively close frequencies using a single resonant cavity.
In addition to the possibility to measure closely spaced points in the plot
frequency vs. magnetic field, this can be of importance to make sure an
observed signal is indeed due to a resonance effect and not an "artificial"
signal due to possible temperature drops or the magnetic field dependency
of the temperature sensor at very low temperatures.

In order to prevent the generation of TM-modes, which are degenerate in
frequency to the corresponding TE-modes, slits are cut at 1/4 and 3/4 of
the length of the cylindrical body for resonator V2t. However it was found
that the quality factor was decreased compared to the original design (cf.
Q-factors V1t and V2t in Table 3.2). Besides the transverse V-band resonant
cavities, resonators for W-band were constructed as listed in Table 3.2. The
resonance frequencies for W1t and W2a are close to the frequency with ma-
ximum output power of the MVNA system when using a Gunn diode. W2t
is used with an additional amplifier, with a maximum output power of the
system around 93 GHz.

In general the quality factors for the transverse cavities (V1t, V2t, W1t, W2t)
are comparable but higher than for the axial resonators (W1a, W2a). This
is probably due to the relatively large surface area of the cylindrical body of
the transverse resonators compared to those of the axial resonators and the
larger volume to surface ratio.

When performing a frequency sweep, the detected microwave intensity
at an individual frequency depends on the output power of the MVNA as
well as propagation of the radiation through the sample stick. When mi-
crowave radiation is guided between the Schottky (or Gunn) diodes by rect-
angular waveguides only, the intensity oscillates as a function of frequency.
For certain frequencies, standing waves form in the waveguides depending
on their length. This spectrum is usually very smooth and varies on the
order of about 10 dB. When the microwaves are coupled quasi-optically to
the transitions or oversized waveguides, this regular pattern is disturbed.
Firstly, due to the additional length of the oversized waveguides, the overall
microwave power is reduced accordingly. Secondly, the polarization of the
microwave radiation is not fixed as in the rectangular waveguides and there-
fore changes as a function of frequency. This results in drops of the intensity
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Figure 3.14: Shift of the resonance frequency and quality factor of the TE011 mode
of a W-band resonator with sample holder as a function of temperature. A first
order exponential fit to Q(T ) is drawn as a black line. Data for decreasing (black
circles) and increasing temperature (red squares) are shown.

to nearly zero at frequencies where the polarization of the electromagnetic
wave is perpendicular to the desired polarization direction at the detector.
Additionally, multiple reflections are possible due the small gaps between
oversized waveguides and transitions, as well as transitions to rectangular
waveguides. The spectrum measured around the resonance frequency of a
resonator is then also a function of the non-resonant frequency dependent
background and the resonance peak of the cavity. Usually the non-resonant
features are broader than the sharp resonance. However, if the resonance
is close to a minimum of the background, shape and intensity of the res-
onance can be influenced and the Lorentzian fit to the peak is affected. In
contrast to some commercial ESR setups, the resonant cavity in this setup is
inserted into the cryostat and has to be cooled to the temperature, at which
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Figure 3.16: Photograph of resonator
with f0 ≈ 83 GHz. Cylindrical body, one
end plate and the sample holder used in
experiments are shown.

experiments are to be carried out. This can become an issue in determin-
ing the quality factor correctly, since the resonance frequency changes as
a function of temperature. With changes in temperature, the electric (mi-
crowave) conductivity of the metallic parts changes, as well as the dimen-
sions of the resonator, due to thermal expansion. This results in a change
of resonance frequency and quality factor with temperature (Fig. 3.16). The
resonance frequency is constant in the low temperature regime up to about
50 K, from there it starts to decrease until the frequency shift with tempera-
ture can be approximated linearly from below 150 K to 300 K. The total fre-
quency shift over the whole temperature range from 4 K to 300 K is small
with only ∆ f = 0.4 GHz.

With decreasing temperature, the (microwave) conductivity increases. This
is reflected in the behavior of the quality factor. It increases almost exponen-
tially with decreasing temperature but then levels out and becomes approx-
imately constant at low temperatures. The relative increase of the quality
factor comparing 300 K to 4 K is usually about a factor of two to three.

For the transverse resonators, it is necessary to mount the sample on an
axially centered sample holder in such a way that the magnetic field com-
ponent of the microwave standing wave has its maximum at the sample po-
sition (Fig. 3.9). Sample and sample holder, as with all dielectric materials,
locally disturb the electromagnetic mode pattern and additional leakages
might be introduced at the end plates. This results in a shift of resonance
frequency and a decrease in the quality factor compared to the empty res-
onator. Fig. 3.17 shows the change of the TE011 mode of a resonator at W-



3.4. Development of the Resonant Cavity Setup 53

81.0 81.2 81.4 81.6 81.8 82.0

0

1

2

3

4

5

6

7

8

Q=2650

Q=4800A
m

p
lit

u
d
e
 (

a
rb

. 
u
.)

frequency (GHz)

sample holder

 rod thin

 capillary 

 rod thick

Q=8200

∆f=0.475GHz

Figure 3.17: Frequency shift and change of Q-factor of the TE011 mode of a W-band
resonator due to different sample holders

band due to different quartz sample holders of varying thickness. The thin
quartz rod of diameter 0.5 mm was chosen as the sample holder in all experi-
ments. It was accurately mounted between the center of the two end plates
where the electric field component is at its minimum. For this configura-
tion a small shift in the resonance frequency is observed and the losses in
intensity are acceptably small. The sample holder is still robust enough for
experimental handling.

3.4.6 Performing an ESR Experiment

In order to perform an ESR experiment using a resonant cavity, the micro-
wave frequency has to be fixed at the resonance frequency f0. The MVNA
allows to precisely tune the frequency to the appropriate value within the
accuracy of several kHz. Then the magnetic field is scanned through the
ESR resonance with the fixed frequency f0. Since the sample and eventu-
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Figure 3.18: Spin susceptibility χs(T ) corrected by the quality factor Q(T ) as deter-
mined by ESR and static susceptibility

ally the sample holder might change the resonance frequency slightly, the
new resonance frequency has to be determined before every measurement.
In contrast to the experiment at X-band frequencies, where the continuous-
flow cryostat is located inside the resonator, the resonant cavities at V- and
W-band are inserted into the VTI and cooled down to the sample temper-
ature. As seen in Fig. 3.16 the resonance frequency shifts with the tem-
perature and has to be adjusted accordingly. The quality factor is deter-
mined by a frequency sweep through the resonance at every temperature
and the quality factors are calculated. Since the quality factor is also chang-
ing with temperature and can reach values of close to 20000 at tempera-
tures of 4 K, the measured ESR intensity and, with that, the corresponding
intrinsic spin susceptibility has to be corrected accordingly. As an exam-
ple Fig. 3.18 shows the spin susceptibility of the low-dimensional system
Linarite for H ∥ b measured with a transverse resonator around 93 GHz as
compared to the static susceptibility determined by SQUID measurements.
The data is normalized to the 300 K value of the static susceptibility, since
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the absolute value of the spin susceptibility could not be determined. The
as-measured values are corrected by a first order exponential fit through
the temperature dependence of the quality factor of the empty cavity. This
works as long as the sample is small and does not change the properties of
the resonator. The data shows perfect agreement between static and intrin-
sic spin susceptibility. In contrast to that, a point-to-point correction did re-
sult in a larger scattering around the static susceptibility values. Due to the
irregular background in frequency of the microwave power in combination
with the frequency drift of the resonance, the Q-factor values could not be
accurately determined at some temperatures/ frequencies. Therefore this
error directly reflects on the spin susceptibility when using a point-to-point
correction. Experiments on the spin-chain material Linarite are further dis-
cussed in Chapter 6.
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CHAPTER 4
Motivation

Let us follow up on the Preface, where low-dimensional systems of insu-
lating crystals and semiconductor heterostructures where introduced. In
comparison to the semiconductor systems the couplings between magnetic
ions in the insulating crystals are usually much stronger since the relevant
physics takes place on atomic length scales. The specific nature of the ex-
change or coupling depends on the crystal structure. In low-dimensional
systems often there is a competition between different exchange interac-
tions possible which can lead to frustrated magnetic order. At temperatures
on the order of the exchange interactions, long range magnetic order or
quantum ground states can be established. In frustrated systems helical
ground states which are connected to magnetoelectric behavior can be real-
ized [55]. In magnetically ordered materials the transfer of electrical signals
by spin-waves has been shown recently [4]. As a prerequisite to establish-
ing devices based on such effects, the fundamental interactions giving rise
to this behavior have to be identified. The study of the magnetic properties
of low-dimensional systems with competing interactions provides insight
into the fundamental magnetic interactions on the atomic scale. For this
ESR is an important tool, since it allows the local magnetism of the rele-
vant magnetic ions to be studied. ESR studies on two one-dimensional spin
chains with competing interactions have been performed and are reported
in this part. Among other methods, measurements of static susceptibility
and magnetization were used to characterize the magnetic properties of the
studied materials.





CHAPTER 5
Quasi One-Dimensional Systems

In many naturally occurring or man made solids the magnetic interactions
are restricted to less than their three dimensions. This is the case when the
crystal structure assembles in such a way that the couplings between spins
along certain directions are much stronger than along others. There are
two-dimensional systems in which interaction takes place predominantly
between magnetic ions arranged in a plane [56]. In other systems magnetic
ions are arranged in one-dimensional structures, forming so called spin-
chains. In systems with reduced dimensionality quantum effects become
more relevant and ground states can be established not observed in three-
dimensional systems. Ground state properties and excitation spectra de-
pend critically on the dimensionality of the interaction, the dimensionality
of the spin and the interplay between different interactions. Let us establish
the general properties for the (quasi) one-dimensional spin chain materials,
relevant to the systems investigated in Chapters 6 and 7.

The nearest-neighbor Heisenberg Hamiltonian was already introduced in
Section 2.6 to describe the exchange interaction as

H = 1

2

∑

i j

Ji j Si ·S j (5.1)

This generalized Hamiltonian can be used to describe the superexchange
interaction between magnetic ions, as it is relevant in the spin chains from
transition metal oxides.
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For an isotropic spin system in which the nearest-neighbor (NN) coupling
between all interacting spins is the same it writes

H = 1

2

∑

i j

JSi ·S j (5.2)

The Hamiltonian can be generalized for a potentially anisotropic coupling
to the form

H = 1

2

∑

i j

[JxSx
i Sx

j + Jy S
y

i
S

y

j
+ JzSz

i Sz
j ] (5.3)

Since in this work we are only concerned with (quasi-)one-dimensional sys-
tems we consider only the coupling along one lattice direction, where each
spin Si has only two nearest neighbors. Then the Hamiltonian reduces to

H =
∑

i

[JxSx
i Sx

i+1 + Jy S
y

i
S

y

i+1 + JzSz
i Sz

i+1] (5.4)

The coupling between nearest-neighbor (NN) spins can be either antiferro-
magnetic (AFM), for J > 0, or ferromagnetic (FM), for J < 0.

According to the dimensionality n of the spin (coupling) the system can be
categorized as:

n = 1 Ising model Jx = Jy = 0, Jz 6= 0
n = 2 XY model Jx 6= Jy 6= 0, Jz = 0
n = 3 XXZ model Jx = Jy 6= 0, Jz 6= 0
n = 3 Heisenberg model J = Jx = Jy = Jz 6= 0

The dimensionality n means that the spin can be imagined to be restricted
to point along certain directions. For the Ising model [57], n = 1, a spin at
site i can only be in the up or down configuration, represented by Sz

i
= ±S.

For the isotropic Heisenberg model, n = 3, spins can point in any direction
and are therefore represented by vectors Si ,Si+1.

The spin dimensionality is connected to its local crystal field anisotropy.
This is determined by the single ion anisotropy discussed in Section 2.5.
In the absence of single ion anisotropy no restrictions are placed on the
spin orientation and the spin is Heisenberg-like. The dimensionality of the
spin is critical for an eventual magnetic order to occur and the excitation
spectrum of the system [58]. This single ion anisotropy should however not
be confused with an eventual anisotropy of the spin-spin interactions as
caused by anisotropic exchange.
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5.1 Magnetic Order and Excitations

In a solid the atoms at T = 0 are rigid except for zero-point fluctuations [59].
At finite temperatures excitations in the form of quantized lattice vibrations,
the phonons, are possible. Similarly, a ferromagnet is ordered perfectly at
T = 0 except for quantum fluctuations. The excitations in magnetically or-
dered solids are quantized magnons or spinons.

Mermin, Wagner [60] and independently Berezinkii [61], showed for the iso-
tropic Heisenberg model, no long range magnetic order occurs for temper-
atures T > 0 in one- and two-dimensional systems. The situation can be
rationalized as the following: The rotation of an isotropic Heisenberg spin
does not cost any energy. At finite temperature spin fluctuations created by
thermal fluctuations are present. Such fluctuations destroy the long range
order in the low-dimensional system [11]. However, if there is a spin ani-
sotropy present the energy costs for rotating a spin are larger. For a large
enough anisotropy, as compared to the thermal energy, long range order is
also established in a spin-chain system.

In a general way the Heisenberg spin-chains can be classified according to
their spin value and the dominant NN interaction. One can distinguish be-
tween half-integer spins (S = 1

2 , 3
2 , 5

2 , ...) and integer spin systems. The NN
coupling can be either FM or AFM.

In FM chains the excitations are called magnons. In the ground state of a
ferromagnetic chain all spins are aligned parallel. The first excitation would
be a spin-flip of a single spin. However, this excited state would not be an
eigenstate of the Hamiltonian. The solution is a linear combination of the
N spin sites with one flipped spin. This can be thought of as a flipped spin
being effectively smeared out over the chain with N spins. This represents
a collective excitation of the FM spin chain. The dispersion relation is [11]

E(k) =−2N S2 J +4JS(1−cos(ka)) (5.5)

where k is the wave vector and a the lattice constant.

The energy excitations in a AFM Heisenberg chains are called spinons. A
spinon corresponds to two moving domain walls. The spinon dispersion
relation is [11]

E(k) =π|J sin(ka)| (5.6)
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Figure 5.1: Schematic of competing interactions in different spin chains. (a) S =
1/2 chain with FM NN interaction J1 and additional AFM NNN interaction J2. The
competing interaction cause a frustrated ground state. (b) Spin chain with AFM
NN coupling for S = 1/2 and S = 1. For the valence-bond solid model the S = 1 are
thought of two coupled S = 1/2 spins. Below a critical temperature ∆, the S = 1/2
spins from different atoms form a S = 0 ground state.

where k is the wave vector and a the lattice constant. At k = 0,±π/a the en-
ergy is E = 0. That means that the excitation spectrum for the AFM S = 1/2
chain is gapless. However, a gap can be opened due to the spin-Peierls tran-
sition. This results from spin-phonon coupling which causes a dimeriza-
tion along the spin chain, effectively doubling the unit cell [11]. In contrast
to the AFM S = 1/2 chain, the initial S = 1 chain already exhibits a gap be-
tween its non-magnetic ground state and the excited triplet state. This will
be discussed in Section 5.3.

5.2 Competing Interactions

Other interactions can be present in real systems which go beyond the sim-
ple NN Heisenberg Hamiltonian introduced before. There are other spin
sites which can become relevant for the exchange: If the exchange coup-
lings from different sites to a single spin are comparable, the ground state
is degenerate. For this consider a one-dimensional spin chain with FM
coupling J1 between nearest-neighbor spins Si and Si+1 [Fig. 5.1(a)]. The
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AFM coupling between next-nearest neighbors (NNN) Si and Si+2 can be
described by the coupling constant J2. If J2 ≈ J1 the interactions for Si can-
not be satisfied completely. The ground state is degenerate. The system or
spin is said to be frustrated.

At very high temperatures, thermal fluctuations larger than the coupling en-
ergies destroy any long range magnetic order. When such a system is cooled,
a phase transition to the ordered state at temperature TC can occur. In addi-
tion to classical phase transitions driven by temperature, phase transitions
due to quantum fluctuations are possible. The critical parameter at which
such a phase transition occurs is called a quantum critical point. Quantum
phase transitions can be driven by parameters such as strain or magnetic
field [11]. A quantum critical point is proposed for the frustrated spin chain
with FM NN and AFM NNN interaction. Depending on the ratio between
the coupling constants α = J1/J2 different ground states as ferromagnetic,
spin helical and antiferromagnetic order can be established in the system
[11].

In real systems the boundary between one-, two- or even three-dimensional
systems might not always be clean-cut. For the spin chains one distinguishes
between the intra-chain or in-chain interaction J (interaction between spins
within the same chain) and inter-chain interaction J ′ (being the interaction
of neighboring spins in different chains). Typically, a good one-dimensional
system is realized for |J/J ′| ≈ 103 −104 [58]. If the coupling with spins from
different chains is relevant, three-dimensional magnetic order will be estab-
lished below a finite temperature TC .

There can also be variations between the bond length within the chain caus-
ing variation of the coupling. This can lead to alternating or even random
chains [62].

These kinds of competing interactions (and their combination in real sys-
tems) can lead to very complex behavior in the low-dimensional spin sys-
tems. Not only can the ground state be affected, but the excitation spec-
trum can also show interesting deviations from the pure magnon or spinon
spectrum.

In addition to interactions with different spin sites, sometimes the model
description of the system has to be extended. As mentioned before, the su-
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Figure 5.2: Schematic view of the Haldane energy gap ∆ in dependence of the sin-
gle ion anisotropy D in units of the coupling constant J for NN AFM exchange. For
D > J the gap is an anisotropy gap. Reproduced from [58].

perexchange is derived from perturbation theory. Eventually higher order
terms are relevant and have to be considered to describe physics observed
in experiment. In addition to the bi-linear NN coupling a bi-quadratic NN
exchange has to be included in the Hamiltonian [58]:

H = J
∑

i

[Si Si+1 +β(Si Si+1)2] (5.7)

Depending on the strength of the bi-quadratic exchange the system can be
found in different ground states. This can be very relevant for the S = 1
Haldane spin chain discussed in the following section.

5.3 Haldane Spin Chain

The Haldane chain is a one-dimensional Heisenberg spin chain with inte-
ger spins and antiferromagnetic nearest-neighbor coupling. Haldane pre-
dicted that the ground state of such a system would be a non-magnetic sin-
glet state which would be separated in energy from the excited triplet state
by a gap ∆ [63]. This gap is not an anisotropy gap, but is due to the quan-
tum nature of the S = 1 system. Haldane considered the pure Heisenberg
Hamiltonian for an easy axis configuration [63]. In order to explore the lim-
its of the Haldane phase bi-quadratic exchange and single ion-anisotropy,
among other parameters, can be taken into account. Already those simple
extensions reveal rich physics involved in the quasi-one-dimensional anti-
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ferromagnetic integer Heisenberg spin chains. A general Hamiltonian of the
Haldane system is given in [58]:

H = J
∑

i

[Si Si+1 +β(Si Si+1)2]+
∑

i

[D(Sz
i )2 − gµB Sα

i Hα] (5.8)

Here J is the energy coupling constant between neighboring spins S. β de-
scribes the bi-quadratic exchange. Uniaxial single ion anisotropy is consid-
ered. With z being the chain direction either easy-axis (spin along the chain,
D < 0) or easy-plane (spin perpendicular to the chain, D > 0) is favored. The
interaction with a magnetic field H is described by the typical Zeeman term.

A good visualization of the Haldane system is the so-called valence-bond
solid (VBS) as shown Fig. 5.1(b). The S = 1 spin at the magnetic ion is
thought of two coupled S = 1/2 spins. Two spins on different ions with oppo-
site spins are thought to couple strongly and form a non-magnetic singlet.
The VBS state was calculated as a special realization of the Haldane phase
considering bi-quadratic exchange [64], but physics for VBS and the pure
Heisenberg Hamiltonian are found to be identical [58]. For larger contribu-
tions of bi-quadratic exchange other ground states are realized. Dimerized
and trimerized antiferromagnetic ground states and a ferromagnetic phase
have been identified [58].

Besides the bi-quadratic exchange the single ion anisotropy plays a crucial
role for the realization of a Haldane system. The energy gap ∆ between the
singlet ground state |0〉 and the excited triplet state |1〉 directly depends on
the value of D . The gap is largest for the absence of single ion anisotropy,
but an energy difference exists within a certain range of D as visualized in
Fig. 5.2. For D > J an anisotropy gap opens.

The first material discovered to realize the Haldane system was Ni(C2H8N2)2-
NO2ClO4 (NENP) [65]. Similar to the system studied in this present work
NENP contains the transition element Ni realizing the chain structure in an
organic matrix. NENP exhibits a single ion anisotropy [65], which results
in the splitting of the excited triplet state [66] and with that an anisotropic
Haldane gap. However the ground state is still the singlet state. A S = 1
antiferromagnetic spin chain based on Ni is investigated in Chapter 7.





CHAPTER 6
Linarite

Linarite is a natural mineral of bright blue color. PbCuSO4(OH)2 belongs to
the family of cuprates in which Cu ions are arranged along chains. The Cu
ions are surrounded by oxygen atoms which mediate magnetic exchange
between Cu spins. Although Linarite occurs naturally, its magnetism has
only been studied recently [67, 68, 69]. In this initial study combining zero-
field susceptibility, specific heat data and electronic structure calculations,
it was concluded that Linarite is a quasi one-dimensional spin system. It
is thought to be highly frustrated due to nearest-neighbor (NN) ferromag-
netic and next-nearest-neighbour antiferromagnetic couplings along the
Cu chain direction. The exchange constants were found as J1 ≈ −30 K and
J2 ≈ 15 K [68]. A magnetically ordered state is observed below tempera-
ture TN ≈ 2.8K for which a helical ground state is proposed [68]. Only a
brief study at room temperature probing the local magnetism in Linarite
has been reported so far [70]. Local probe techniques like ESR and NMR,
however, can provide further information about competing interactions in
this material.

Here, a study of the paramagnetic regime of Linarite is presented in order
to address the question of competing interactions in the system. The re-
sults of the ESR measurements are correlated with static susceptibility and
magnetization measurements as well as NMR experiments.
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Figure 6.1: Crystallographic structure of Linarite PbCuSO4(OH)2. Shown are the
view on the ab-plane (a), ac-plane (b) and a close-up (c) of the smallest unit, con-
sisting of two tilted edge-sharing distorted octahedra. The CuO4-planes are indi-
cated. Crystallographic data taken from [71].

6.1 Structure

Linarite crystallizes in a monoclinic structure with the lattice constants a =
9.682 Å, b = 5.646 Å and c = 4.683 Å with β= 102.65◦. The Cu chain is along
the b-direction. Cu ions are surrounded by four oxygens in an almost square
plane [Fig. 6.1(c)]. The CuO4-planes are tilted by an angle of δ ≈ 155◦ with
respect to neighboring planes. Together with the oxygens of the SO4- and
PbO2-group this results in two tetragonal distorted octahedra tilted in a zig-
zag way towards and away from each other. The long axis of the octahedra
(O-Cu-O) is 5.41 Å, while the short axes are 3.84 Å and 3.92 Å, respectively.
As visible in Fig. 6.1 the axes of the local octahedra do not coincide with the
crystallographic axes. An initial study of ESR and optical absorption spec-
troscopy indicated the tetragonal distorted oxygen octahedra around the
Cu ions in Linarite [70].

The single crystals of PbCuSO4(OH)2 used in this study for the magnetiza-
tion, NMR and X-band ESR measurements are natural minerals with their
origin in California, USA (Blue Bell Mine, Baker, San Bernadino). A second
set of naturally grown single crystals of smaller size (Siegerland, Germany)
was used for the ESR measurements in the resonant cavity at a frequency of
about 93 GHz. All crystals show well-defined facets and the principal axes
b and c can be identified easily. Single crystallinity of our samples has been
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checked by X-ray diffraction. For both sets of single crystals no magnetic im-
purity phases as evidenced by a low temperature Curie tail in the magnetic
susceptibility were observed.

6.2 Magnetization and ESR

Magnetization measurements were performed at the High Magnetic Field
Lab at FZ Dresden Rossendorf by M. Uhlarz. Static susceptibility measure-
ments were conducted by A. U. Wolter using a commercial SQUID magne-
tometer in the range 1.8-400 K and an external magnetic field of 0.4 T.

ESR measurements were performed at the X-band spectrometer described
in Section 3.1 and using a resonant cavity at 93 GHz in combination with
a 17 T magnet as described in Chapter 3.3. At a frequency of 93 GHz the
ESR resonance field is found around 3 T. The spectrum consists of a single
line of Lorentzian shape (Fig. 6.3). From a fit to the lines the ESR inten-
sity, resonance field and linewidth are extracted. From those parameters
the integrated ESR intensity, which is determined by the intrinsic spin sus-
ceptibility, is calculated. Since the resonator is inserted into the cryostat its
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ture (300 K) value of the static susceptibility. Black lines indicate a Curie-Weiss-fit
to the static susceptibility with Θcw = 28(2) K for all directions. Measurement static

susceptibility: A. U. B. Wolter

quality factor Q and its resonance frequency νres change with temperature.
Q and νres are determined with frequency sweeps around the resonance fre-
quency at every temperature. The spin susceptibility χs and the resonance
field Hres are corrected accordingly. For details of this procedure see Sec-
tion 3.4.6. The spin susceptibility is then normalized to the static suscepti-
bility at 300 K.

The inverse spin susceptibility 1/χs is plotted in Fig. 6.4 as a function of tem-
perature together with the inverse static susceptibility. From this figure it is
clearly visible that the static susceptibility coincides with the intrinsic spin
susceptibility over the whole temperature range along the crystallographic
directions a, b and c. This indicates that any temperature independent part
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graphic directions at T = 2.8 K. The saturation magnetization M = g S is indicated
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function of the scaled magnetic field gµ0H along the different directions. Measure-
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of the static susceptibility is small and that the static susceptibility is domi-
nated by the intrinsic spin susceptibility. However, small temperature inde-
pendent contributions to the susceptibility can already influence a quanti-
tative analysis. In agreement with the ESR measurements the intrinsic sus-
ceptibility is determined from the NMR shift in a NMR experiment. The
high temperature regime (250 K-400 K) of the inverse intrinsic spin suscep-
tibility can be fitted by a Curie-Weiss law χ−1(T ) ∝ (T −Θcw ). The resulting
Curie-Weiss constant Θcw = 28(2) K is isotropic within the experimental er-
ror [72]. The Curie-Weiss behavior with Θcw = 28(2) K is indicated as black
lines in Fig. 6.4. The positive Curie-Weiss-constant indicates a dominant
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Figure 6.7: Double logarithmic plot of the critical linewidth part ∆Hcrit as a func-
tion of temperature for the three crystallographic directions a, b and c. Fits to the
data for temperatures up to 25 K are shown.

ferromagnetic coupling at high temperatures. However, there are signifi-
cant deviations at low temperatures from the Curie-Weiss behavior. This
denotes the increasing relevance of antiferromagnetic correlations.

The temperature dependence of the ESR resonance field Hres and the ESR
linewidth are plotted in Fig. 6.6.1 In the high temperature regime (roughly
above 100 K) resonance fields are temperature independent. From the ab-
solute values of Hres the effective g -factors can be determined as g = h ·
ν/(µB Hres) along the crystallographic directions. For the high temperature
regime the effective g -factors are found to be ga = 2.34, gb = 2.10, gc = 2.28.

1Note that the resonance fields are as measured and not corrected by the temperature
resonance frequency of the cavity, which can cause a shift of the order of 10 mT from 100 K
to 300 K.
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Based on the g -factors and the Curie-Weiss constants extensive calculations
with local spin density approximation and other methods have been per-
formed as will be published in [72]. The theoretical analysis of the exper-
imental data gives exchange coupling constants J1 ≈ −70 K and J2 ≈ 27 K
which were calculated with a one-dimensional and quasi one-dimensional
approximation within linear spin wave theory [72]. These coupling con-
stants are significantly higher than previously reported [68]. α = J1/J2 ≈
−0.39 indicates a strongly frustrated system close to the quantum critical
point (see Section 5.3).

Having established the g -factors, we can analyze the magnetic anisotropy
in the system. In Fig. 6.5 the magnetization curve M(µ0H) of PbCuSO4(OH)2

as a function of field at 2.8 K for the three crystallographic main directions
a, b, and c is presented. Comparing the magnetization along the different
directions, it is seen that the saturation magnetization of PbCuSO4(OH)2 is
strongly anisotropic, with Msat,a ≈ 1.175µB /Cu atom, Msat,b ≈ 1.05µB /Cu
atom and Msat,c ≈ 1.15µB /Cu atom for the a, b and c directions, respec-
tively. The saturation magnetization Msat = g S is indicated as a dashed line
in Fig. 6.5. In this temperature regime, the anisotropy of the saturation mag-
netization is well-explained by the anisotropy of the g -factor (see above).
Note that there is a difference (from the g -factor) in calculated and directly
measured saturation magnetization for H ∥ a. For the ESR experiment the
magnetic field was aligned H ∥ a, while for the magnetization measurement
the sample was intentionally aligned H ⊥ bc . For a perfect agreement in di-
rections the saturation magnetization would be slightly larger and match
the calculated value.

The inset in Fig. 6.5 shows the spin expectation value < Sz >= M/g (µB /Cu)
of PbCuSO4(OH)2 as function of the scaled field gµ0H at 2.8 K for the three
crystallographic directions a, b, and c as derived from the experimentally
determined magnetization data M(H). The extracted spin expectation value
corresponds to Cu spin S = 1/2. From the rescaled data it is seen that all
curves clearly overlap and the saturation field is also explained by the ani-
sotropy of the g -factor.

The exact assignment of the saturation field is difficult at T = 2.8 K, because
temperature effects are still significant around the ordering temperature.
Below the ordering temperature the saturation magnetic fields have been
determined to be Hsat,a ≈ 7.6 T, Hsat,b ≈ 10.5 T and Hsat,c ≈ 8.5 T. These field
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values are significantly lower than in other cuprates, e.g. LiCuVO4. In the
system LiCuVO4 the saturation fields were found between 40 - 50 T [73],
with the exchange constants being J1 =−12 K and J2 = 41 K [74]. For this sys-
tem the reported saturation fields are experimentally accessible with pulsed
magnetic fields only. Linarite, however, can be investigated in a typical lab-
oratory magnet up to the saturation fields. This offers possibilities to study
effects close to the saturation field, such as a recently proposed multipolar
phase [75] which might exist in Linarite [76].

As shown in Fig. 6.6 the ESR linewidth is strongly anisotropic. At a frequency
of 93 GHz corresponding to a resonance field of about Hres ≈ 3 T the line-
width ∆HH∥b ≈ 0.1 T is much smaller than ∆HH∥a,c ≈ 0.7 T. Furthermore,
∆H is almost constant or only weakly dependent on temperature above
50 K. At the X-band frequency of about 9.6 GHz – corresponding to a res-
onance field of Hres ≈ 0.3 T – the temperature dependence of the ESR sig-
nal shows a similar behavior for the crystallographic axes a,b and c (blue
squares in Fig. 6.6). The linewidth along a and c are, within the uncertainty
of the measurement, identical to the linewidth at higher fields. The decreas-
ing intensity of the ESR signal with increasing temperature makes it diffi-
cult to analyze the lines quantitatively along those directions up to room
temperature, however the linewidth appears to stay constant as well. For
the b direction the linewidth is constant in the high temperature regime
and fairly narrow with ∆H ≈ 0.25 T. However, this is unexpected since it is
broader than for the larger applied field of 3 T. This effect can be explained
by the strongly anisotropic linewidth together with a slight misalignment of
the sample of about 10◦ for this particular measurement.

As temperatures fall below 100 K a broadening of the lines for both fields
is observed. The small resonance field of about 0.3 T limits the reliability
of the measurements for directions a and c since the linewidth exceeds the
resonance field and a fit to the data cannot be accurate anymore. However
the values are close to the linewidth for the ten-times larger field of 3 T. At
temperatures below 25 K the linewidth for H ∥ b becomes almost identical
for both applied fields. Towards lower temperatures the anisotropy in the
linewidth becomes increasingly smaller and the effect of misalignment is
reduced.

The overall broadening as a function of temperature is different for the indi-
vidual crystallographic directions. The linewidth in ESR depends on (dipo-
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lar) spin-spin interactions, anisotropic exchange as well as on development
of internal magnetic fields. The fact that the linewidth is the same for dif-
ferent applied fields indicates that inhomogeneous broadening effects are
rather small. As we approach lower temperatures the spin-spin correla-
tion length increases and short range magnetic correlations develop. The
change of linewidth as a function of temperature can give information about
the dimensionality and type of interactions in the system [77, 78]. The broa-
dening as approaching the ordering temperature can be analyzed in terms
of

∆H =∆H0 +∆Hcrit((T −TN )/TN )−p (6.1)

The linewidth ∆H is divided into a non-critical part ∆H0 and a temperature
dependent critical part ∆Hcrit [56]. The exponent p can give information
about the dimensionality of a correlated spin system and its change by ap-
proaching a long-range ordered ground state. Fits to our data over the low
temperature range with fixed TN = 2.0 K for H0 = 3 T give critical exponents
from p = 0.5−0.8 (Fig. 6.7).2 For one-dimensional Heisenberg antiferromag-
nets the critical exponent was found to be around a value of p = 2.5 [79]. In
layered compounds with FM and AFM coupling comparable values have
been reported. However, close to the ordering temperature a crossover to
critical exponents of p ≈ 0.6 is reported [80, 56]. This is interpreted as the
appearance of three-dimensional antiferromagnetic fluctuations.

The broadening in our system can be described with critical exponents p ≈
0.6 up to T ≈ 30 K, i.e. temperatures which are 15 times higher than the
actual ordering temperature of 2.0 K (at 3 T). This indicates significant mag-
netic fluctuations at elevated temperatures, suggesting that appreciable in-
terchain and interlayer correlations are present well above TN . The three-
dimensional ordering does not occur until much lower temperatures, which
indicates a strongly frustrated system with competing interactions of the or-
der of the energy scale of ∼ 50 K.

When approaching the ordering temperature a shift in the resonance field
Hres is also observed. A shift of the resonance position of an ESR signal as
a function of temperature is associated with the development of internal
magnetic fields in the system. Along the b direction the shift is observed

2Note that the ordering temperature TN depends on the applied magnetic field. Sev-
eral phase transitions have been observed as a function of magnetic field. At H = 3 T the
three-dimensional ordering is observed at T = 2.0 K.
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only at temperatures close to the ordering temperature TN . This shows that
an internal field develops along the chain direction only when the actual
three-dimensional ordering occurs. Along a and c directions a shift in the
resonance field is already observed at much higher temperatures starting
around 50 K and developing smoothly with decreasing temperature. The
developing static internal fields are much larger perpendicular to the one-
dimensional chain direction, where an internal field builds only when the
actual three-dimensional ordering occurs.

6.3 NMR

NMR experiments were conducted by A. U. B. Wolter, M. Schäpers and R.
Vogel at the IFW Dresden. The results for the paramagnetic regime of Linar-
ite will be published in our joint publication [72]. Selected NMR results are
discussed here to further support the ESR findings.

In Figs. 6.8 the linewidth of the 1H-NMR spectra is shown as a function of
temperature for all three crystallographic directions a, b and c. In the in-
sets the 1H NMR spectra are shown exemplarily for an applied magnetic
field of 2 T, and for three different temperatures between 10 K and 150 K.
There are two different hydrogen sites (H1, H2 in Fig. 6.1) which can be well
distinguished as two lines in the NMR data along a and c. In the param-
agnetic phase the spin-echo signal of all NMR spectra have rather isotro-
pic Lorentzian lineshape. Since the linewidth at high temperatures is very
small, i.e., about 10-25 kHz for all spectra and for all three crystallographic
main directions, a very good quality of the single crystal PbCuSO4(OH)2 can
be assumed. Note also that for the 1H-NMR spectra for H ∥ b two Lorentzian
lines have been used to fit the data since the two NMR lines do not perfectly
overlap at low temperatures. This can probably be ascribed to a non-perfect
alignment of the sample ∥ b. A misalignment < 5◦ can easily lead to a small
resolved splitting of the NMR lines below ∼ 50 K for this direction. In Fig. 6.8
the average of the obtained values for the linewidth of both 1H-spectra has
been plotted for H ∥ b.

Similar to the ESR linewidth, the temperature dependence of the full width
at half maximum (FWHM) of the NMR spectra is expected to give access to
the dynamics of the magnetic correlations and thus to the dynamical criti-
cal properties in the paramagnetic regime upon approaching TN . The NMR
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Figure 6.8: The 1H-NMR linewidth of PbCuSO4(OH)2 as a function of temperature
in an external magnetic field of µ0H = 2 T parallel to the three crystallographic
main axes a, b and c. The lines represent guides-to-the-eyes. In the insets the
1H-NMR spectra are shown for three different temperatures 10 K, 20 K and 150 K.
The different intensities at different temperatures are not to scale. Note that the
small resolved splitting of the line for H ∥ b is probably associated with a small mis-
alignment < 5◦ of the crystal with respect to the b axis; for details see text. Data

and figure from [72].

linewidth is related to the nuclear spin-spin relaxation time T2 and thus
probes the transverse component of the two-spin correlation function and
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the temporal spin fluctuations of the magnetic system near the critical tem-
perature. In cuprate compounds anisotropic contributions to the magnetic
exchange interactions are commonly present. Therefore it can be expected
that also in Linarite the NMR linewidth is dominated by spin fluctuations
along the magnetic easy-axis, with spin fluctuations perpendicular to the
easy axis remaining constant and only contributing to the non-critical broa-
dening. Henceforth, taking into account the linewidth probes transverse
spin fluctuations, the broadening of the NMR line should be most promi-
nent for magnetic fields perpendicular to this (easy)-axis, the b-axis in this
system.

For all NMR spectra ∥ a,b,c a pronounced broadening of the line has been
observed below ∼ 50 K for the 1H spectra. This pronounced broadening
points to the short range order already present at temperatures T ≫ TN .
Comparing the response for the three different crystallographic directions,
one can easily see that the broadening is much more pronounced for the
directions perpendicular to the Cu chain. The latter is in perfect agreement
with the results obtained from the temperature dependence of the ESR line-
width and emphasizes the magnetic anisotropy in the system.

6.4 Summary and Conclusion

Linarite is a frustrated one-dimensional spin chain with ferromagnetic NN
and antiferromagnetic NNN interaction. Based on the g -factors and the
Curie-Weiss constants, exchange coupling constants J1 ≈ −70 K and J2 ≈
27 K could be calculated with a one-dimensional and quasi one-dimensional
approximation within linear spin wave theory as will be published in [72].
This is significantly higher than previously reported [68]. The exchange in-
tegrals indicate a strongly frustrated system with α = J1/J2 ≈ −0.39 close
to the quantum critical point. In the paramagnetic regime the g -factor an-
isotropy can well-explain the saturation magnetization and the saturation
magnetic field. A broadening of the ESR and NMR linewidths already occurs
at temperatures much higher than the actual ordering temperature. The
quantitative analysis of the critical part of the ESR linewidth yields critical
exponents p ≈ 0.7 typical for a (one-dimensional) Heisenberg system very
close to the ordering temperature. However the fit can describe the data not
only very close to TN , but up to temperatures of more than T ≈ 10TN . This
indicates the presence of significant interlayer and interchain correlations
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at higher temperatures. The fact that the ordering does not occur down to
TN ≈ 2.8 K points to a comparable energy scale of the frustration in agree-
ment with the calculated exchange integrals.

6.5 Outlook

Magnetization, specific heat and NMR measurements have already been
carried out below the ordering temperature [81]. Depending on the applied
magnetic field multiple phase transitions have been revealed. Recently a fer-
roelectric transition has been reported in conjunction with the Néel-transi-
tion [82]. Further experiments are going to be conducted, or are already in
progress, to identify the rich physics in the ordered state and around the
ordering temperature of Linarite as a function of applied magnetic field.



CHAPTER 7
The Ni-hybrid

NiCl3C6H5CH2CH2NH3

Organic compounds can arrange in polymer-like structures and exhibit uni-
que features. Their functionality ranges from medical applications to or-
ganic opto-electronics [83] and solar cells [84, 85].

In hybrid materials organic structures are combined with inorganic metal
ions. Usually these hybrid systems are grown in solution and arrange into
self-assembled structures. The magnetism, originating from the transition
metal ions, is often characterized as that of a low-dimensional spin system.

7.1 Structure

Samples of NiCl3C6H5CH2CH2NH3 were synthesized by A. Arkenbout at the
Zernike Institute of Advanced Materials at the University of Groningen. The
description of the general synthesis procedure and primary characteriza-
tions are described in [86].

The Ni-hybrid samples were grown in ethanol solution and consist of an
anorganic backbone of Ni atoms in the octahedral environment of six chlo-
rine atoms. The crystallographic structure is shown in Fig. 7.1. An almost
perfectly symmetric octahedron is realized, with the angle between Cl-Ni-
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Figure 7.1: Crystallographic structure of the Ni-hybrid NiCl3C6H5CH2CH2NH3.
Shown are the view on the ac-plane (a), bc-plane (b) and a close-up (c) of two
chains where the face-sharing octahedra are highlighted.

Cl found to be β1 ≈ 86◦ and β2 ≈ 94◦. For Ni-Cl-Ni the angle is about γ≈ 75◦.
Along the c-direction the individual Ni-chains are separated by a large or-
ganic complex consisting of a benzene structure with an amino group con-
nected to it by two carbon atoms. In the b-direction the NiCl-octahedra
are separated directly through hydrogen bonds between chloride and the
amino group.

Ni atoms enclosed in an octahedron of oxygen or chlorine are usually in
the Ni2+ 3d 8 configuration with an effective spin moment of S=1 [9]. The
intra-chain coupling between Ni(II)-ions is mediated by the surrounding
Cl atoms of the face sharing octahedra. The angle of γ ≈ 75◦ indicates an
overlap of the Cl orbitals, thus an AFM super-exchange is expected for the
Ni ions along the chain. From the structural information alone this system
seems to be a promising candidate for a Haldane system based on the mag-
netism of Ni2+.
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Figure 7.2: Static susceptibility as a function of temperature. A broad maximum
around T ≈ 25 K is visible. Inset shows the low temperature susceptibility mea-
sured on single crystals with magnetic field parallel and perpendicular to the chain
direction. Measurements: A. Arkenbout

7.2 Susceptibility and Magnetization

Static susceptibility was measured initially by A. Arkenbout at powder sam-
ples as a function of temperature at an external magnetic field of 0.01 T
(Fig. 7.2). The static susceptibility increases with decreasing temperatures
and shows a broad peak with a maximum around 30 K. The susceptibility
then decreases down to about 10 K. This is the expected behavior for a one-
dimensional spin system. For a magnetically isotropic one-dimensional
system with antiferromagnetic coupling the Weng equation can be used to
fit the temperature dependence of the static susceptibility [87]. Weng cal-
culated the temperature dependence of the susceptibility for isotropic S = 1
ring systems [88].

χS=1 =
Nβ2g 2

kB T
· 2+0.019α+0.777α2

3+4.346α+3.232α2 +5.834α3
(7.1)

with α = J/(kB T ) and N the number of spins. For the fit (Fig. 7.2) to the
static susceptibility data, the g -factor was kept fixed with g = 2.25 and no
temperature independent offset χ0 was assumed. The equation reproduces
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Figure 7.3: Magnetic field dependence of the magnetization (a) and its derivative
d M/d H (b) on powder sample. For T = 15 K a linear increase in the magnetization
with magnetic field is observed. At the lowest temperature a spin-reorientation is
visible.

the static susceptibility. From the fit an exchange constant of J = 25.5 K is
extracted. For a Heisenberg spin chain with integer spin moment S = 1 a
Haldane gap system is predicted. In the absence of single ion anisotropy
the Haldane gap is maximal and can be calculated from the exchange con-
stant as ∆H = 0.411 · J (see Section 5.3) [58]. With J = 25.5 K a Haldane gap
of ∆H = 10.5 K is expected.

In a Haldane system the ground state is a non-magnetic singlet state. There-
fore the susceptibility should go to zero with decreasing temperature. The
static susceptibility indeed decreases down to temperatures around 10 K,
but below that temperature a minimum is visible followed by an increase in
the static susceptibility with decreasing temperatures (Fig. 7.2).
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Susceptibility measurements on powder samples at fields of up to 3 T were
conducted at the IFW. The susceptibility does not depend on the applied
magnetic field down to about 10 K. In the low temperature regime an in-
crease of susceptibility is observed for all applied fields. Measurements on
single crystals show that the static susceptibility is isotropic down to about
10 K. Below that temperature, the static susceptibility shows a minimum
and an anisotropic increase, different for the magnetic field applied along
the chain direction and perpendicular to it (Inset Fig. 7.2). A Curie-like in-
crease in the susceptibility is often associated with paramagnetic impurities
present in the sample. Susceptibility from impurities could dominate over
the vanishing susceptibility of a Haldane system. However, this cannot ex-
plain the anisotropy observed.

The magnetization as a function of applied magnetic field was determined
at temperatures of 1.8, 8, 11 and 15 K up to 7 T (Fig. 7.3). While at a temper-
ature of 15 K the magnetization increases linearly with the applied field, at
1.8 K it shows a non-linear behavior with an inflection point at about 3.5 T.
This is clearly visible in the derivative of the magnetization in Fig. 7.3(b).
For the intermediate temperatures deviations from the linear increase can
already be observed, but the effect is drastically reduced. Such an inflection
is usually associated with a spin-flop transition of a magnetically ordered
antiferromagnetic system, i.e. a reorientation of spins in the increasing ex-
ternal field. This points to an AFM ordering.

An AFM ordering is also consistent with the susceptibility data at low tem-
peratures. For the easy axis of an antiferromagnet the susceptibility should
go to zero, while for the easy plane it should stay constant with decreas-
ing temperature. The susceptibility measured on the single crystals can be
interpreted as a sum of that of an antiferromagnetic state and that of para-
magnetic impurities. The direction perpendicular to the chain is the easy
axis of the system. Note here that the Haldane system PbNiMg2V2O8 orders
antiferromagnetically, upon substitutional doping of Ni with Mg (S=0 impu-
rities). In contrast to the investigations in this work, the Curie tail observed
in the susceptibility of doped PbNiMg2V2O8 is suppressed at the onset of
AFM order [89]. This indicates that in the Ni-hybrid (not all) impurities are
involved in the magnetic ordering.

The total magnetization is quite small with M ≈ 0.1µB /Ni at the maximum
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Figure 7.4: Temperature dependence of the spin susceptibility as determined from
ESR measurements around 9.56 GHz. Inset shows the ESR-spectra at a tempera-
ture of T = 25 K for magnetic fields applied parallel and perpendicular to the chain
direction.

field of 7 T. For the Ni2+ ions contributing to the magnetization a satura-
tion field of Msat = g S = 2.25 (µB /Ni) is expected. This is consistent with
one-dimensional Heisenberg AFM as well as Haldane systems, in which the
saturation magnetization can often not be reached even in fields up to 40 T
[89, 90].

In conclusion, the results of static susceptibility and magnetization indicate
a one-dimensional spin chain which exhibits an antiferromagnetic ground
state with the easy axis perpendicular to the chain direction and a spin-flop
transition at 3.5 T. A certain amount of impurities is present in the sample.

7.3 ESR

To get a more detailed picture about the physics of this one-dimensional
system ESR measurements were conducted. ESR is a very sensitive tool
with which to investigate the magnetic properties in detail and give informa-
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Figure 7.5: ESR spectra with magnetic field perpendicular to the chain (a) and
along the chain (b) for temperatures from 20 K down to 2.5 K. While the central
line decreases additional lines develop with decreasing temperature.

tion about the different energy states in one-dimensional Heisenberg anti-
ferromagnets [66, 94, 95, 92, 96, 97]. ESR measurements were performed on
single crystals of the Ni-hybrid with resonant cavities at frequencies of 9.6,
50, 83 and 93 GHz and with the quais-optical setup at frequencies of 249
and 330 GHz as well as on a powder sample at frequencies up to 360 GHz.
For the measurements at 9.6 GHz, several single crystals were aligned on a
teflon bar to increase the signal/noise ratio. A spectrum at T = 25 K is shown
in Fig. 7.4 (inset) for external magnetic fields applied along the chain direc-
tion and perpendicular to it. The resonance signal exhibits a Lorentzian
line around a resonance field of about 0.3 T corresponding to a g -factor of
g = 2.25. This g -factor is typical for a Ni2+ ion in an octahedral crystal field
[9]. The ESR signals are almost perfectly isotropic over the whole temper-
ature range down to about 8 K. The almost fully isotropic ESR signal indi-
cates the absence of single ion anisotropy (D = 0) in the present system.
This means that an isotropic Heisenberg spin system is realized in the para-
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Figure 7.6: Frequency vs. magnetic field plot. Squares display the paramagnetic
ESR signal for temperatures above 10 K. Circles indicate the ESR resonance field
at a certain frequency from single crystals with magnetic field perpendicular to
the chain at temperatures between 2.5-4 K and triangles parallel to the field. The
behavior for AFM resonances are indicated along the easy axis and the easy plane.
The critical field Hc corresponds to the spin-flop observed in the magnetization
measurement.

magnetic state which is very favorable for the realization of a Haldane sys-
tem. From Lorentzian fits to the data the intrinsic spin susceptibility can
be calculated and its temperature dependence is plotted in Fig. 7.4. The
spin susceptibility shows a maximum around 20 K with a sharp decrease
at the low temperature side. This decrease reflects the broadening and the
strong decrease in the amplitude of the resonance. It is clearly visible that,
in comparison to the static susceptibility, the spin susceptibility exhibits an
enhanced maximum and a steeper decrease when going to lower temper-
atures. From Fig. 7.4 it is visible that towards zero temperature the spin
susceptibility would approach zero susceptibility. However, below 8 K the
signal cannot be observed. The spin susceptibility is not subjected to tem-
perature independent offsets as the static susceptibility. Therefore this clear
tendency towards zero spin susceptibility indicates that the Ni spin system
(giving rise to this spectrum) behaves as a Haldane system down to 8 K (com-
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Figure 7.7: Frequency vs. magnetic field plot of doped (a) CuGeO3 [91] and (b)
PbNiV2O8 [92]. (c) Spatially varying antiferromagnetic order. The magnetic mo-
ments are maximal around the dopants with distance L0. Reproduced from [93].

pare NMR shift in [98]). This is in contrast to the observed magnetic order
in the static susceptibility and magnetization measurements.

However there can be other spin subsystems present which cannot be ob-
served at frequencies around 10 GHz, especially as resonances attributed to
the AFM ordering observed in susceptibility and magnetization are outside
of the field range of the spectrometer. Thus, ESR experiments at higher fre-
quencies and higher magnetic fields were performed.

In all ESR measurements from 10-360 GHz a single isotropic line is observed
for temperatures above T ≈ 10 K. Fig. 7.5 shows the ESR spectra at a fre-
quency of about 93 GHz for selected temperatures between 20 K and 2.5 K
measured on one single crystal. ESR spectra with the magnetic field per-
pendicular to the chain direction are shown in Fig. 7.5(a). At 20 K only a sin-
gle Lorentzian line is visible, in agreement with the experiments at 10 GHz.
With decreasing temperature this line decreases in intensity and shifts to
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lower fields. Two additional lines appear and become stronger with decreas-
ing temperatures at about 1 T and 5 T. This is a new feature not observed at
lower frequencies.

For the magnetic field parallel to the chain [Fig. 7.5(b)], the central line also
decreases, but shifts to higher fields. At almost zero magnetic field another
feature appears. However it is not clear if the minimum of the spectrum is
fully visible. That is why the absolute value of the resonance field extracted
cannot be very accurate. At around 5 T another feature is observed which
appears phase-shifted with respect to the central line. This probably does
not originate from the main crystal and could be a spurious effect due to
some fragment at another position in the resonator.

The observed peaks are plotted in a frequency vs. magnetic field chart in
Fig. 7.6. The paramagnetic lines at temperatures above 10 K show a linear
dependence with the slope g = 2.25. The theoretical equations [99, 100] for
resonances of a collinear antiferromagnet are shown as red lines (along the
easy axis) and a blue line (perpendicular to the easy axis):

H ∥ easy axis, H < Hc :

ν1,2 =∆± gµB

h
H (7.2)

H ∥ easy axis, H > Hc :

ν1 = 0 ν2 =

√

(gµB

h
H

)2
−∆2 (7.3)

H ⊥ easy axis:

ν=
√

( gµB

h
H

)2 +∆2 (7.4)

where Hc = 3.5T is the spin-flop magnetic field value taken from the mag-
netization, g = 2.25 and the gap at zero field ∆ = gµB

h
Hc . As known from

the susceptibility measurements on the single crystal the easy axis is per-
pendicular to the chain. The side peaks at 93 GHz for this direction roughly
agree with the theoretical AFM resonance modes. Correspondingly, so does
the in-chain direction to the easy-plane direction. At 50 GHz the AFM reso-
nance modes coincides with the field of the paramagnetic behavior, so the
observed spectrum cannot be attributed. One can see that the central lines
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observed at 93 GHz cannot be related to the AFM order directly. It seems
that the initial paramagnetic line decreases as the state gets thermally less
populated, but is still observable at 2.5 K. It is still subjected to the internal
magnetic fields caused by the antiferromagnetic order in its vicinity. The
presence of two signals of different origins point to a coexistence between
Haldane and antiferromagnetically ordered state.

A coexistence between singlet quantum ground state and classically ordered
state has been observed in Zn and Si doped CuGeO3 [93]. Undoped CuGeO3

is a Heisenberg antiferromagnetic spin chain with S = 1/2 which undergoes
a spin-Peierls transition around 14 K [101]. The spin-Peierls transition is a
transformation from a linear AF chain to an alternating AF or a dimerized
chain, due to spin-phonon coupling [102, 11]. There exists an excitation
gap between ground and excited states. When CuGeO3 is doped with Si
on the site of Ge, local strain deforms the lattice locally and prevents the
dimerization [103]. A staggered magnetization is then found around the
doping centers and an antiferromagnetic order is established. By doping
with Zn at the Cu site an antiferromagnetic order is established [104], which
is attributed to staggered moments around the chain end spins. Upon dop-
ing with Zn and Ge, spatially varying antiferromagnetic order has been ob-
served [93]. The large spatial inhomogeneity is responsible for a coexistence
of antiferromagnetic order and spin-Peierls state in the same sample. Spa-
tially varying AFM order is visualized schematically in Fig. 7.7(c). Doping
centers are present within the chain with distance L0. A staggered magneti-
zation is caused by the chain end spins and leads to an AFM order around
the dopants. The magnetic moments are maximal around the doping sites
and decay exponentially on the lengthscale of the correlation length.

In ESR experiments on pure CuGeO3 a single resonance line is observed in
the paramagnetic regime [105]. The line narrows as approaching the tran-
sition temperature. Below the transition temperature a single broad line
is observed. Upon Zn doping magnetic order is established. Below the or-
dering temperature antiferromagnetic resonance modes are observed [cf.
Fig. 7.7(a)][91]. The ground state is magnetic but the spin-Peierls excitation
remains [106]. Additionally, very complex ESR spectra were observed which
were attributed to transitions originating from states within the gap [107].
For doping with magnetic Ni impurities, the AFM resonances are visible,
but shifts of the ESR lines are observed which were attributed to a contribu-
tion from the single ion anisotropy of the Ni ions [108]. For Mg doping be-
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low 4% a coexistence of paramagnetic and antiferromagnetic phase could
be measured directly with ESR [109].

The appearance of antiferromagnetic order upon doping was also reported
for the Haldane system PbNi2V2O8 [cf. Fig. 7.7(b)] [89, 92]. The AFM or-
der is attributed to chain edge spin cutting the chains [90]. A coexistence
of Haldane phase and AFM order has been observed with ESR for an inten-
tional low doping with Mg in this compound [92]. Here the paramagnetic
line prevails at low temperatures and additionally AFM resonance modes
appear. Analogous to CuGeO3, this is interpreted as a microscopic phase
separation of antiferromagnetic order and spin-singlet state.

The presence of impurities as evidenced from the low temperature suscep-
tibility and the observation of ESR signals attributed to different states sup-
ports a similar scenario in the system studied here. However, in contrast to
these system the Ni-hybrid has not been doped intentionally. Eventually a
disorder in the spin system originates from structural disorder in the crystal,
resulting in chain lengths of different size and broken bonds giving rise to
local magnetic states [cf. Fig. 7.7(c)].

ESR spectra were observed in Haldane systems, which were attributed to
singlet-triplet transitions between the S = 0 ground state and the S = 1 triplet
state in NENP [110, 95] and PbNi2V2O8 [96]. These transitions are forbid-
den by the dipole selection rules as stated in equation (2.5) in Chapter 2.
However, mixing between pure spin states is possible through exchange in-
teractions or single ion anisotropy. Then the forbidden transitions can be
observed in an ESR experiment. For the Ni-hybrid the absence of single ion
anisotropy was found. Therefore it is likely that the mixing is too small to
make an observation of the forbidden transitions possible. Indeed, no ESR
lines were observed which could be attributed to singlet-triplet transitions.

Coming back to the frequency vs. magnetic field plot in Fig. 7.6: Resonances
measured perpendicular to the chain above 249 GHz decrease in intensity
but do not appear shifted from the paramagnetic line, when going to the low
temperature regime. No additional peaks have been observed which can
be attributed to the AFM resonances around these frequencies. The cen-
tral line behaves as would be expected for a Haldane system. An impurity
induced AFM order can be suppressed by the applied magnetic field [90],
but no corresponding feature was observed in the magnetization measure-
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(a) (b)

Figure 7.8: (a) Muon spin relaxation measurement at 2.2 K on powder sample of
Ni-hybrid. Damped oscillation and additional damping is observed. (b) Muon spin
relaxation of CuGeO3 from [93].

ments on the Ni-hybrid. Since the single crystals used for this measurement
are from a different batch than the other samples, the impurity concentra-
tion might be different in this individual sample.

7.4 Further Investigations

In order to further clarify the low temperature behavior, muon spin rela-
xation measurements [111] were conducted at the Paul-Scherrer-Institute
(PSI), Switzerland by H. Maeter (TU Dresden) and H. Luetkens (PSI). In the
measurement shown in Fig. 7.8(a) no external magnetic field was applied
to the sample. Below temperatures of TN = 8 K spontaneously a damped os-
cillation is observed. Such an oscillation results from the precession of the
muon spins in static magnetic fields. Therefore this is a proof for the long
range magnetic order at temperatures below TN = 8 K. Two different oscil-
lation frequencies are observed indicating at least two muon stopping sites.
However the data cannot be well-described by considering only two static
contributions to the muon spin relaxation. The damped oscillation is over-
laid with another damping. The signal seen in µSR resembles that reported
on Zn and Si doped spin-Peierls system CuGeO3 [Fig. 7.8(b)]which was at-
tributed to spatially varying magnetic order induced by impurities [93].
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In conclusion, the µSR data observes long range magnetic order below 8 K
with some unusual properties. Qualitatively it is in agreement with the ESR
findings of the coexistence of long range antiferromagnetic order and the
observation of a residual Haldane system.

7.5 Summary and Conclusion

The hybrid material NiCl3C6H5CH2CH2NH3 was studied with susceptibil-
ity, magnetization, ESR and µSR measurements. As evidenced by low tem-
perature susceptibility measurements, impurities are present in the inten-
tionally undoped Ni-hybrid. Magnetization shows a spin-flop transition
around 3.5 T, pointing to an AFM order. This is supported by the suscep-
tibility which becomes anisotropic below TN ≈ 10 K.

At low magnetic fields ESR measurements further support the antiferromag-
netic order. Additionally, a paramagnetic line with decreasing intensity is
still present below the ordering temperature, indicating a partly preserved
low-dimensional spin system, eventually evolving to the Haldane ground
state. This central line shifts in the internal field of the AFM. Above fields of
about 7.5 T no signals corresponding to the AFM resonances are observed.
The central line does not shift in field in agreement with the absence of sig-
nificant internal fields. This possibly indicates the suppression of the AFM
order by the magnetic field.

The scenario of coexistence between the two ground states is in agreement
with muon-spin-relaxation measurements. An inter-chain coupling as the
origin of the long-range magnetic ordering cannot be excluded from the
data.

The Ni-hybrid is a promising material for studying competing interactions
in a low-dimensional system. Although the coexistence of different states
can be observed, its origin in the intentionally undoped sample remains
unclear. Also, an eventual suppression of the AFM order by magnetic field
remains an open question. This can be addressed by methods like NMR at
different magnetic fields and nuclei at different sites in the structure. The
excitation spectra for the Haldane gap and AFM excitations appear at differ-
ent wave vectors. This can be investigated with inelastic neutron scattering
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(INS). INS and NMR would therefore be powerful methods to obtain further
insights into the magnetism of the Ni-hybrid.





CHAPTER 8
Summary

In this part, two one-dimensional spin chains with competing interactions
were investigated with ESR and complimentary methods. The first material,
Linarite, is a spin S = 1/2 chain based on Cu. A three-dimensional ordering
takes place at around 2.8 K. In the system a significant magnetic anisotropy
exists with the chain direction being the easy-axis. At temperatures above
the ordering this is explained by the anisotropy of the g -factor alone. The
static susceptibility is dominated by the spin susceptibility as determined
by ESR and NMR shift. The extracted Curie-Weiss constant indicates a FM
coupling, but significant AFM correlations become relevant at low tempera-
tures. This is also seen in the broadening of the ESR linewidth with decreas-
ing temperatures. A quantitative analysis of the ESR linewidth indicates the
presence of interchain and interlayer correlations well above TN . With the
ordering taking place at 2.8 K the system is strongly frustrated on a temper-
ature scale in agreement with the calculated coupling constants of FM NN
J1 ≈−70 K and AFM NNN J2 ≈ 27 K.

The second material investigated is an anorganic-organic hybrid. It repre-
sents a spin S = 1 chain based on Ni. For such a system the ground state
is proposed to be a non-magnetic singlet state with a Haldane gap to the
excited triplet state. The ESR measurements in the paramagnetic regime
show the absence of single-ion anisotropy, indicating an ideal realization of
the Haldane scenario. In contrast to that, in susceptibility measurements
an AFM magnetic ground state is observed for temperatures below T ≈ 8 K.
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Magnetization measurements reveal a spin-flop at magnetic fields around
3.5 T. Additionally, a low temperature Curie tail in the susceptibility proves
the presence of impurities in the sample. At temperatures below 8 K ESR
measurements at 93 GHz confirm the AFM order. Additionally, the param-
agnetic line broadens, decreases in intensity, but persists down to very low
temperatures. This indicates the coexistence of the Haldane behavior and
antiferromagnetic order. The coexistence between singlet quantum ground
state and ordered state has been shown before in the doped spin-Peierls
S = 1/2 chain CuGeO3 and in the doped Haldane S = 1 chain PbNi2V2O8.
It is attributed to spatially varying magnetic order due to impurities. µSR
measurements confirm the long range magnetic order in the Ni-hybrid. An
unusual relaxation behavior observed is similar to that of doped CuGeO3,
supporting the possible coexistence of both states. In agreement with the
absence of single ion anisotropy no singlet triplet transitions are observed
in the low temperature ESR measurements.

Both materials investigated show competing magnetic behavior. They are
promising systems for the understanding of low-dimensional spin physics
and for the realization of systems with externally tunable ground states.
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CHAPTER 9
Motivation

The material systems based on Si are technologically well-established. In
contrast to III-V materials the spin-orbit coupling in group IV semiconduc-
tors is fairly weak [112]. This enables long spin lifetimes and coherence
times offering possibilities in spintronics applications and devices. Another
limiting factor for relaxation and coherence times in III-V, namely GaAs,
semiconductor structures is the hyperfine interaction with the nuclear spins
[113]. In Si and Ge, this effect is much smaller and can be further reduced
by isotopic purification, enabling even longer dephasing times [33, 114]. Si
and Ge are indirect semiconductors, so optical methods are not best suited
to study their spin states. Among other techniques, such as optical and elec-
trical approaches, ESR has emerged as a reliable and well-suited method
to investigate spin states in semiconductors. ESR provides direct access to
static and dynamics of spin ensembles. In particular, information about the
g -factor and the dephasing and relaxation times can be extracted from con-
tinuous wave ESR measurements.

Traditionally ESR on Si based systems is concerned with the physics of the
localized electron spin on donor impurities and delocalized electrons in the
conduction band. ESR of bulk Ge and especially Si have been studied exten-
sively in the past [33, 115, 116, 117, 118, 119]. Electrons contributing to an
ESR signal can be localized on donors (e.g. phosphorus) embedded in Si
or Ge [33, 117]. In heavily n-doped bulk Si the g -factor is isotropic with
g = 1.99875 [33] due to the singlet orbital ground state. In Ge an isotropic g -
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factor of g = 1.56 is found [116]. However, if a uniaxial compressive strain is
induced in the Si, higher states admix and the effective g -factor is described
by an axial symmetry tensor [119]. Quantum operations involving electron
and nuclear spins of donors in Si have been reported recently [120].

An alternative way to localize electrons within semiconductor heterostruc-
tures is the creation of SiGe/Si self-assembled quantum dots [121]. These
quantum dots are self-assembling structures grown with molecular beam
epitaxy. The spatial positioning of quantum dots can be controlled laterally
and vertically [122]. With potentially different timescales for the spin states
than those of donor electrons, quantum dots can facilitate new controllable
building blocks for more diverse and complex spintronic devices. Differ-
ent spintronic and quantum computational schemes have been proposed
for SiGe quantum dots [123, 124]. Recent advances in strained layer epi-
taxial growth have allowed the fabrication of defect-free heterostructures,
initiating novel investigations into low-dimensional physics. For instance
it has been shown that in SiGe based heterostructures a two-dimensional
electron gas (2DEG) can be formed in strained Si channels [125, 126]. ESR
investigations pointed out that in these systems the g -factor and the line-
width is anisotropic as a result of the Bychkov-Rashba-effect [127].

More recently, it has been shown that for SiGe nanostructures coherently
embedded in Si the band-edge alignment is a type II alignment [128]. This
leads to localized confining potential for electrons in the Si matrix [129, 121].
As a consequence, self-assembled SiGe islands can assure precise control
and an external addressability to the localized electron spin states. In addi-
tion, the introduction of spin-resonance transistors based on SiGe nanos-
tructures into the main stream Si technology opens up new degrees of free-
dom via band structure and strain engineering. Despite the large interest
SiGe nanostructures have attracted, ESR investigations on such a system
are still scarce. To our knowledge there are only two experimental works
reported in Refs. [130, 131], whose results and their fundamental interpreta-
tion differ significantly. This makes a detailed and systematic study neces-
sary to understand the behavior of the electronic states of SiGe nanostruc-
tures.

In Chapter 10 the materials system Si/Ge is introduced. The characteriza-
tion of the samples investigated is presented. Based on this, the electronic
structure modeling is given in Chapter 11. In Chapter 12 the ESR results are
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presented and all results are discussed in context. This part of the thesis is
based on the publications [132, 133, 134].





CHAPTER 10
SiGe Semiconductor

Nanostructures

10.1 Background

10.1.1 Silicon and Germanium

Silicon and Germanium are group IV semiconductors. They are indirect gap
semiconductors. The transition of an electron from the valence band to the
conduction band requires not only additional energy but also a change in
momentum of the electron. Fig. 10.1 shows a section of the energy bands
E(k) of Silicon. The valence band maximum consists of two degenerate
bands at the Γ-point, the center of the Brillouin zone at [000]. They have
small and large curvatures and are therefore referred to as heavy and light
hole bands, respectively. A third band is separated from them by an energy
of 44 meV due to spin-orbit coupling. The latter is called split-off-band. The
conduction band minimum is located along [100] close to the ∆-point. The
energy gap is about 1.11 eV between valence band and conduction band.
Because of the symmetry of the fcc lattice there are six equivalent conduc-
tion band minima. Due to the relatively small number of electrons in the
conduction band (and holes in the valence bands), the dispersion relation
at the extrema can be approximated by a harmonic potential in the limit of
the effective mass theory [13]. The diagonal form of the energy dispersion
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Figure 10.1: (a) Section of Si bandstructure. Valence band maximum is at the Γ-
point [000]. Conduction band minimum along [100] close to the ∆-point. (b) Sec-
tion of Ge bandstructure. Valence band maximum is found at the Γ-point as well.
The conduction band minimum is located at [111]. Figs. (a) (b) from [13, 135] (c) Si
∆ conduction band valleys.
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The surface of constant energy are six ellipsoids defined by the longitudinal
effective mass ml = 0.98m0 along the (100), (010) and (001) directions and
the transverse effective mass mt = 0.19m0 perpendicular to it [Fig. 10.1(c)].
m0 denotes the free electron mass. Those ellipsoids of constant energy are
often referred to in literature as "conduction band valleys". Correspond-
ingly the term ∆-band is used.

For Ge the valence band maximum occurs at the Γ-point as well, where
heavy and light hole bands are degenerate in energy while a third band is
displaced in energy by about 290 meV. The conduction band minima occur
along [111] at the L-point (Fig. 10.1). The indirect bandgap from Γ to L is
with EGe = 0.67 eV smaller than in Si.
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Si Ge
(a) (b)

Figure 10.2: Schematic growth of Ge island on Si substrate. (a) Ge wetting layer is
tetragonally deformed: It is compressed in the plane and expands perpendicular
to it. (b) In Ge islands strain relaxation takes place.

Combining different semiconductor materials, single crystalline heterostruc-
tures can be realized which show diverse electronic, optical and magnetic
properties.

10.1.2 Epitaxial Growth of SiGe Heterostructures

The technology of molecular beam epitaxy (MBE) is able to deposit mate-
rials with mono-atomic layer (monolayer - ML) precision. With this it is
possible to combine different materials to assemble so-called epitaxial het-
erostructures. In the epitaxial structures the lattice structure is continued
over the boundary of the different materials, effectively preserving the sin-
gle crystallinity. Silicon crystallizes in the diamond structure with a lattice
constant at room temperature of about 5.431 Å [136]. Germanium exhibits
the same structure with a slightly larger lattice constant of 5.657 Å [136].
This small difference of about 4.2% in the lattice constants and the differ-
ence in the bandgap makes Si and Ge very good systems for the creation of
heterostructures with the MBE technique.

The growth of epitaxial layers of different materials leads to the formation of
self-assembled islands. Island formation is driven by the strain within the
material system, but minimization of surface energy also plays a role [121].
Let us consider a simplified way for the growth of SiGe islands: A single
layer of Ge is grown epitaxially on a atomically flat Si surface. Each Ge atom
adapts to the Si atom below it to keep the bond structure [see Fig. 10.2(a)].
With that the lattice constant of Si is preserved in the Ge layer in-plane. This
means that the Ge atoms are displaced laterally compared to their original
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position in a pure Ge crystal. This displacement corresponds to a biaxial
compressive strain in the lateral direction of the epitaxial Ge layer. In order
to conserve the volume of the Ge unit cell, the Ge layer has to expand in the
direction perpendicular to the plane. Such a monolayer is called pseudo-
morphic layer.

The strain increases with the thickness of the pseudomorphic layer. There
exists a critical thickness tc , above which new monolayers do not grow pseu-
domorphically. During the MBE growth the system is not in thermal equilib-
rium. This way thicknesses larger than the critical thickness can eventually
be realized. Then the critical thickness of the pseudomorphic layer depends
on the growth parameters, e.g. growth temperature and Ge content x [137].
Above tc a strain relaxation is realized through an increased roughness of
the layer which leads to nucleation sites for island formation or a flat dislo-
cated layer [138].

Ge islands can grow defect free on Si(001) in the so-called Stranski-Krasta-
now growth mode [139, 140]. This means the SiGe islands form on top of
the pseudomorphic layer, not directly at the Si. For the Stranski-Krastanow
growth the pseudomorphic layer is called wetting layer, indicating the very
thin, complete coverage of the Si surface. In three-dimensional Ge islands
the strain relaxation can be realized without creating dislocations. From
layer to layer Ge atoms are slightly displaced laterally and an elastic strain
relaxation takes place until the original lattice constant of Ge is reached [see
Fig. 10.2(b)].

One important effect in the growth of self-assembled SiGe islands beyond
the simple strain model, is the intermixing of Si into the Ge islands [141]. At
typical growth temperatures of 500-850◦C a significant solid state diffusion
between Si and Ge can take place. So even though pure Ge is deposited on
top of a Si substrate, the island is found to be an alloy of Si(1−x)Gex . The
Ge concentration x is not necessarily constant throughout the islands, but
can have more complex profiles [141]. By changing the MBE growth param-
eters (e.g. growth temperature) the intermixing as well as the morphology
of the islands can be changed significantly [142, 143]. Among the differ-
ent forms of SiGe islands are those characterized as hut clusters, pyramids,
domes, barns and superdomes [144, 145, 146, 147, 148]. Also, within these
classes, there can be differences in the actual alloy composition, the strain
and the corresponding electronic structure. Additionally, the overgrowth
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D2-cb
HH-vb

LH-vb

D4-cb

Si Ge(1-x) x Si Figure 10.4: Type II band align-
ment between Si(1−x)Gex and Si.
In Si the lowest conduction band
is the ∆2-band. The highest va-
lence band is the light hole band
(LH). In Si(1−x)Gex the heavy hole
(HH) band becomes the highest
in energy, while the ∆4 is low-
ered. Electrons are confined in
the ∆2-band in Si, while holes are
confined in the HH-band in SiGe.
Confined hole and electron are
spatially separated.

of the SiGe islands with Si can change the morphology of the islands sig-
nificantly [149, 150]. The SiGe islands investigated in this work are domes
overgrown with Si. The characterization will be discussed in Section 10.2.

For now let us consider only the idealized overgrowth of the SiGe islands
with Si, neglecting intermixing. On top of the dot the Si(1−x)Gex is relaxed
completely and its lattice constant is given in the first approximation by a
linear interpolation between the lattice constants of Si and Ge as a function
of alloy concentration x [151].

aSi(1−x)Ge(x) = (1−x) ·aSi +x ·aGe (10.2)

Deviations from this behavior through non-linear bowing effects [152] can
be considered in quantitative calculations.

When a SiGe island is overgrown with Si the strain process takes place in
the Si matrix on top of the dot, meaning that now the Si adapts to the SiGe
lattice constant. This results in a biaxially tensile strained Si region at the
apex of the SiGe island. The island induces a biaxial tensile strain also below
the island. At the base of the island the Si is subject to biaxial compressive
strain.

10.1.3 Strain

Numerical calculations based on the envelope function approach or finite
element calculations can be performed to gain quantitative analysis of the
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properties of SiGe heterostructures. For this quantitative models for the de-
scription of strain and bandstructures are necessary. The strain in a mate-
rial due to external stress depends on the elastic constants of the material.
For a cubic crystal the stress tensor is related to the strain tensor as:
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where the σi j and ǫi j are the stress and strain components respectively and
Ci j are the elasticity constants.

For the growth of a pseudomorphic layer on a substrate the strain parallel
to the interface is biaxial and given by:

ǫ∥ = ǫxx = ǫy y (10.4)

Biaxial strain can be represented by a hydrostatic and an uniaxial strain
component. Perpendicular to the interface along the (001)growth direction
the uniaxial strain is:

ǫ⊥ =−2C12/C11ǫ∥ =−Dǫ∥ = ǫzz (10.5)

The strain can also be defined in terms of the lattice constants as

ǫ∥ =
a0

a
−1 ǫ⊥ = D

(

1− a0

a

)

(10.6)

where a0 is the lattice constant of the substrate and a the equilibrium lat-
tice constant of the layer material [128]. The quantitative modeling of the
strain profiles for three-dimensional structures as performed with the pro-
gram nextnano3 is discussed in Chapter 11. By defining the strain in the
dependence of the lattice constants, intermixing profiles can be included
in calculations easily.

10.1.4 Band Deformation

The difference in the band structure between Si and Ge makes it possible to
create heterostructures in which the electronic structure can be designed in
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such a way that quantum mechanical confinement is realized.

In addition to the band offsets due to the chemical potential, the strain
between the different materials influences the band structure significantly.
Imagine a Ge island embedded in Si: At the interface between Si and Ge
band offsets for the conduction bands and the valence bands are present.
On the absolute energy scale, the lowest conduction band is the ∆-band
in Si, while the highest valence band is the heavy hole band in Ge. The
strong misalignment between the energy bands creates a boundary at the
interface. Because of that, holes are confined within the Ge island. Since
the lowest electron states are in the ∆-band of Si, electrons are not confined
within the Ge island, but are located in the Si. This band-alignment is called
type II, in contrast to the type I alignment in many III-V semiconductors
where electrons and holes can be localized within the island. The type II
band alignment was experimentally confirmed in strained layers of Si/SiGe
[125] and Ge islands embedded in Si [121]. The terms SiGe island and SiGe
quantum dot refer to the same object.

The biaxial strain component can be decomposed into a hydrostatic and
a uniaxial component. The hydrostatic strain shifts the average conduction
and valence energy levels according to

∆E c/v
h = ac/v (2ǫ∥+ǫ⊥) (10.7)

where ac and av are the absolute deformation potentials for the conduction
and valence band, respectively. Uniaxial strain splits the six equivalent ∆-
valleys. For the (001) growth direction, the ∆-band splits into four in-plane
valleys ∆4 =∆x y and the two valleys along the growth direction ∆2 =∆z .

∆E∆

c =







+2
3Ξ

∆
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3Ξ

∆
u (ǫ⊥−ǫ∥) for the ∆4−band

(10.8)

where Ξ
∆
u is the band deformation potential for the ∆-band. The initial de-

formation potentials were calculated by van de Walle [153]. For the model-
ing the deformation potentials can be implemented in a database and band
offsets are calculated accordingly.

As mentioned earlier in real structures, one does not deal with pure Ge is-
lands, but usually with island of a Si(1−x)Gex alloy on top of Si. For Ge frac-
tions up to x ≈ 0.85 the band-structure is Si-like with the lowest electron
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Figure 10.5: (a) Schematic sample structure. Si spacers are 20 nm, 70 nm and
100 nm for the individual samples. (b) AFM top view of sample with 70 nm spacer
grown at 700◦C. AFM measurement: F. Pezzoli

band being the ∆-band. Then a crossing of the L-band with the ∆-band
occurs and for higher Ge content the L-band is lower in energy [154].

10.2 Sample Structure and Characterization

Two sets of SiGe/Si multilayers were grown by means of solid source molec-
ular beam epitaxy (MBE). After the deposition of a 100 nm-thick Si buffer
on p-Si(001) substrates, 4-fold stacks of 6.5 monolayers (ML) and 8.5 ML
of Ge separated by Si spacers were deposited at 600 ◦C and 700 ◦C, respec-
tively. For each sample the thickness of the Si spacers was constant and
equal to 20, 70 or 100 nm. All the structures were capped with the same
amount of Ge for further surface morphology investigations. A schematic
for the sample structure is shown in Fig. 10.5(a). It should be noted that the
samples are not intentionally doped, nevertheless we estimated a residual
MBE background doping of about 2.3 ·1016 cm−3 (n-type). The most likely
impurities present in the system are P donors since the MBE chamber is
equipped with a phosphorus doping cell. As a consequence, to rule out
spurious effects and to correctly assign the spectral ESR features the follow-
ing reference structures were grown in addition to the aforementioned sam-
ples: (i) A p-doped Si(001) substrate overgrown with 100 nm of Si buffer. (ii)
Substrate and buffer with Ge wetting layers (WL) grown at 600 ◦C, i.e. SiGe
planar layers which form during the early stage of Ge deposition and always
accompany the dots, separated by 20 nm of Si as in one of the multilayers.
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Since no dots are present, the Si can be considered as unstrained. (iii) A Si
substrate overgrown with Si where the Ge layers were replaced by growth
interruptions with duration equal to the time required to deposit Ge in the
samples with dots.

The samples were characterized with Atomic Force Microscopy (AFM) and
Transmission Electron Microscopy (TEM). Based on the gained structural
information, single-band calculations were implemented to study the elec-
tronic structure of the heterostructures, which will be discussed in detail
in Chapter 11. Samples were grown at the MPI for Solid State Research
Stuttgart by M. Stoffel and F. Pezzoli. AFM measurements were performed
by F. Pezzoli. The TEM analysis was conducted by Ch. Deneke.

When islands are overgrown with Si their morphology can change signif-
icantly. However, the AFM analysis of the topmost layer can provide in-
formation of the vertical alignment between the different layers of SiGe is-
lands. Figure 10.6 shows an AFM image and a statistical analysis of it for
a sample grown at 600 ◦C with a 70 nm spacing. The size distribution of
islands is fairly narrow and indicates a single type of island morphology
(monomodal). By varying the spacing between quantum dot layers the elas-
tic coupling between layers changes [155]. The monomodal distribution of
islands indicates that no vertical alignment from one quantum dot layer to
the next occurs. Therefore the quantum dots and the confining potential in
the Si induced by them can be regarded as isolated. This also holds for the
sample with a spacing of 100 nm grown at 600 ◦C and 700 ◦C. When decreas-
ing the spacing between the dots, buried dots act, through the strain field, as
favorable sites for the formation of dots in the higher layers [156, 157, 158].
Because of this there will be a change in intermixing and size between dots
in different layers [155, 121]. In general, intermixing and sizes are larger for
dots grown at higher temperatures. Fig. 10.5(b) shows an AFM image of a
sample grown at 700◦C with a spacing of 70 nm. Different sizes and shapes
of dots are visible. This is in contrast to dots grown at 600 ◦C with 70 nm
spacer which still show a monomodal distribution. Samples of both growth
temperatures with 20 nm Si spacer show a widened distribution.

This analysis is confirmed by TEM. In Fig. 10.7 TEM pictures of samples
with 70 nm Si spacer grown at (a) 600 ◦C and (b) 700 ◦C are shown. A com-
plete vertical alignment of dots takes place only for the sample grown at
700 ◦C. In the sample grown at 600 ◦C vertical alignment can take place, but
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Figure 10.6: (a) AFM image of the top layer; (b) aspect ratio (defined as height to
base ratio) as a function of island volume; (c) Histogram of the island heights AFM

measurement: F. Pezzoli

50 nm50 nm

(a) (b)

Figure 10.7: TEM of sample with 70 nm spacer grown at (a) 600◦C and (b) 700◦C.
Dots are much smaller in samples grown at lower temperatures. TEM measure-

ment: Ch. Deneke
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dot formation also occurs spontaneously in higher layers. The distance be-
tween the quantum dots in the vertical direction of more than 50 nm is still
too large for an electronic coupling to occur (see next chapter). The buried
dots in the individual samples are similar in size and shape. The size differ-
ence for the different growth temperatures is evident from the TEM images
(Fig. 10.7). When comparing buried dots with dots of the topmost layer the
modified shape is clearly visible. This is more so in the structures grown
at 700 ◦C [Fig. 10.7(b)]. The overgrown dots are much shallower and wider.
The Si overgrowth flattens and compresses the dots. This effect is reduced
in the samples grown at 600 ◦C. This results in a difference in size of about
200 nm base diameter for dots in the 700 ◦C samples, as compared to 80 nm
base diameters for dots in the 600 ◦C samples.





CHAPTER 11
Modelling of SiGe/Si

Heterostructures

The experimentally investigated Si/Ge heterostructures consist of multiple
layers of SiGe/Si quantum dots with about 109 dots cm−2. Quantum dots
have heights of up to 20 nm and base diameters of up to 200 nm. To per-
form ab-initio calculations on strain and electronic structure of even a sin-
gle quantum dot of that size would require an extensive computational ef-
fort. Because of this the program nextnano3 [159] was chosen to perform
simulations of the heterostructure systems. The program is based on the
envelope function approach and allows the definition of a device or het-
erostructure geometry consisting of multiple materials [160]. Strain and
electronic structure can be calculated. Self-consistent solutions of single
band Schrödinger-equations allow to investigate the quantum mechanical
effects. The numerical calculations are run on a desktop PC.

In this chapter an overview of the program nextnano3 is given. The pro-
gram structure is described. Computational methods themselves are not
discussed, but the reader is pointed to the more detailed documentation re-
ported in [159, 160, 161, 162, 163, 164] and references therein. Material pa-
rameters as well as computational parameters chosen for the calculations
of Si/Ge heterostructures are discussed. Finally the results for single dots
and multiple SiGe/Si quantum dots are presented and discussed in the con-
text of the experimental data.
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11.1 Program Structure

The program nextnano3 uses an input file in which the user can define the
system of interest and the calculation parameters. For this the geometry
of the heterostructure has to be specified. The geometry consists of sev-
eral regions, which are characterized by their coordinates and their geo-
metric shape. By combining different geometric forms realistic structures
can be implemented in the calculations. The basic forms well-suited to
describe the experimentally investigated structures are dome-like (semiel-

lipsoid) or pyramid shapes for the SiGe islands and rectangular (cuboid)
shapes, mainly for the regions around them. When building the structure
an overlap between consecutive regions can sometimes not be avoided. By
assigning different priorities the region with lower priority is suppressed
only in the overlap. With this a consistent structure is created.

Every region is assigned a material. The parameters for any specific ma-
terial include structural parameters like lattice constants and elastic con-
stants as well as electronic parameters like band energies and effective mas-
ses. The band energies are given with respect to a reference energy in or-
der to compensate for band offsets of different material systems [162]. In
addition to the bulk materials alloys like Si(1−x)Gex are also implemented.
The Ge content x can be constant or have a linear or Gaussian distribution
within an assigned region. The material parameters are read-in from a sepa-
rate database. The material parameters used for the calculations of the SiGe
heterostructures correspond to the nextano3 database as of [165].

In order to perform the different calculations the real space geometry, in
which the heterostructure is built is overlaid with a grid. The grid point po-
sitions are defined in the input file along the three cartesian coordinates (x,
y, z) of the structure. To every physical grid point physical parameters are
allocated and the actual calculations are peformed. On intersections be-
tween different regions physical grid points have to be present. In order to
deal with discontinuities (e.g. in the density) on interfaces multiple points
are created at the same position, but their allocated values depend on the
direction from which the point is approached. In addition to the physical
grid there is also the material grid. The material grid points are placed in
between the physical grid points and are assigned the material information.

In a similar way to material regions, doping regions can be implemented.
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The type of dopant as n- or p-type is defined, their ionization energies, the
dopant concentration and the doping profile can be given for any specific
region.

Contact regions can also be specified. This allows a voltage to be applied to
the structure through ohmic or Schottky contacts. Additionally, von-Neu-
mann or Dirichlet boundary conditions for the electric potential can be ap-
plied.

For regions of the structure where quantum mechanical effects become im-
portant quantum regions can be defined. In those regions different models
can be applied to calculate the electronic structure, electronic densities as
well as eigenvalues and eigenstates of bound states. Quantum regions must
not overlap but can extend over different materials. Therefore it is possible
to calculate properties on the interface of the SiGe/Si quantum dots quan-
tum mechanically.

11.2 Implementation of Si/Ge System

For any calculation a consistent heterostructure has to be created. As ini-
tially the different materials are combined only as geometric forms, discon-
tinuities of strain, charge densities and mismatch in the electronic structure
are present at the interfaces between them. At first the strain of the het-
erostructure is calculated. For this a reference material is specified in the
input file. This usually corresponds to the unstrained substrate material,
which is Si for all structures modeled in this work. The growth direction
of the structure is defined as the z-axis. Upon consideration of the alloy
concentration and profile, the displacement for each material point is then
calculated with respect to the unstrained Si.

The effect of strain on the bandstructure was discussed in more detail in Sec-
tion 10.1.2 for the SiGe system. The calculations in nextnano3 are based on
the calculations by van de Walle who developed the well-established model
for the shift of energies and splitting of bands due to the strain [128, 153].
The lowest lying band edges are the ∆-bands, which shift and are split in en-
ergy in the presence of biaxial strain into the two-fold degenerate ∆2- and
the four-fold degenerate ∆4-bands.
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Calculations of the electronic structure of SiGe systems with the 8x8 k.p.
method are limited to electrons at the Γ-point [161]. Since the relevant (low-
est lying) states are in the ∆-band, the calculations were carried out with the
effective mass method. In the quantum regions the quantum mechanical
electronic density is calculated by solving single-band Schrödinger equa-
tions, one for the ∆2- and two for the ∆4-bands.

All calculations were performed for a system in three dimensions. The z-
direction corresponds to the (001) growth direction. Most calculations were
performed on a cube with 300 nm edge length, but simulation spaces with
up to 500 nm edge length were implemented. Periodic boundary conditions
for the strain calculations were chosen. For arrangements of single dots
and vertically stacked dots parameters along x- and y-direction were cho-
sen centro symmetrically from the simulation midpoint, in contrast to the
situation where dots are arranged laterally.

For solving the eigenvalue problem of the Schrödinger equation different
numerical methods based on packages implemented in nextnano3 can be
specified. For the calculations reported here the ARPACK package was used
[166]. Most of the time the calculation of five additional eigenvalues was
requested to improve convergence.

Most calculations were performed with isotropic effective masses. Only
when calculating eigenstates and wave functions in magnetic fields are an-
isotropic effective masses relevant and were included. Strain changes the
electron effective masses slightly as described in [167]. This cannot be con-
sidered in the program, but in the investigated structures the effect is less
than 10% for ml and less than 5% for mt .

For the calculations usually a homogenous doping with n = 2.3 ·1016 cm−3

and E =−45 meV was defined. This concentration corresponds to the mea-
sured residual doping as described in Section 10.2 with the most likely im-
purities present being phosphorus donors. The P donor ionization energy
in unstrained Si is E =−45 meV.

ESR experiments were performed mainly at temperatures around 4 K. A tem-
perature of 4 K was specified in the calculations. This has an effect on the
bandgap through defined Varshni parameters [168]. In the calculations the
valence band is kept constant and the absolute energy of the conduction
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band is changed. The lattice constants are dependent of temperature as
well. The change of the lattice parameters with temperature is defined by
temperature coefficients ∆a (nm/K). For Si and Ge these are different by
about ∆a(Si )/∆a(Ge) ≈ 0.3. This results in an effective decreasing of the
strain at the (Si)Ge/Si interface with decreasing temperature. However, the
effect on the strain for 4 K as compared to room temperature is only about
0.2% for a pure Ge/Si interface. For the Si(1−x)Gex alloy the parameters are
approximated linear according to x.

11.3 Results

The SiGe/Si heterostructures investigated experimentally consist of four lay-
ers of SiGe/Si quantum dots. On top there is another layer of SiGe islands.
For the calculations, the dot shapes extracted from TEM analysis and AFM
measurements are approximated by semiparabola. Islands for structures
grown at different temperatures differ significantly in size. For the dots
grown at 600◦C an average base diameters around 80 nm was estimated.
Dots grown at 700◦C are typically around 200 nm. Heights for both are about
10 nm. At higher temperatures the upper part of a SiGe dome can get cut by
the overgrowth of Si. The dots appear flattened. By placing an additional Si
block with a higher priority, this shape can be implemented. However, since
the large semiparabola are very flat already, the influence on band and con-
fining energies is negligible. Therefore all calculations reported here are on
semiparabolic quantum dots between 200 nm and 80 nm base diameter.

Before presenting calculations on multiple stacked quantum dots let us dis-
cuss the strain, conduction band potential and energy states of single quan-
tum dots.

11.3.1 Single Quantum Dot

The uniaxial strain (ǫzz−ǫxx) is shown in Fig. 11.2 exemplarily for a Si(1−x)Gex

semiparabolic quantum dot with a Ge content of x = 0.36. This contour plot
shows the strain in the xz-plane as a cut through the center of the dot at y0 =
150 nm. The quantum dot is placed on a Ge wetting layer, which is clearly
visible in the figure as a horizontal line along x. At the base side around
the island, the uniaxial strain is positive, corresponding to a compressively
strained region. On top of the dot, as well as at the bottom, the uniaxial
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Figure 11.2: Uni-
axial strain profile
ǫzz −ǫxx of Si(1−x)Gex

semiparabolic quan-
tum dot with a base
diameter of 80 nm,
height 10 nm and
constant Ge content
x = 0.36. The biaxial
compressive strained
region in Si around
the base and the ten-
sile strained region
above and below the
islands are visible.
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Figure 11.3: ∆2 conduction band profile for a semiparabolic quantum dot with
height h = 10 nm, base diameter d = 80 nm and Ge content of 36 %. E = 0 corre-
sponds to the unstrained conduction band in Si. (a) In z-direction the conduction
band potential shows a sharp barrier for the penetration of the electron wave func-
tions at the SiGe/Si interface at z0 and a smooth increase away from it. (b) In the
x y-plane the confining potential can be approximated by a parabolic or Gaussian
form.
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Figure 11.4: (a) s-like-state and (b) p-like-state normalized probability wave func-
tions for a magnetic field H = 3400 Oe along z-direction. (c) Eigenvalues for dots of
different base diameters relative to the eigenvalue s1 close to E = 0. s1 corresponds
to the s-like state on top of the SiGe island, s2 to the one below. The same applies
to the p1- and p2-states.

strain is negative which corresponds to tensile strained regions. The tensile
strain is maximal at the apex of the dot. The effect of strain on the band-
structure is given by equation (10.8). Fig. 11.3 shows a ∆2-conduction band
profile of the same semiparabolic quantum dot with 80 nm base diameter.
In order to better see the potential variations the two subfigures represent
cuts at (a) x = y = 150 nm and (b) y = 150 nm, z = 113.5 nm, with the SiGe/Si
top boundary located at x0 = y0 = 150 nm, z = z0 = 110 nm. Looking at the
single dot structure the potential in z-direction (growth direction) shows a
sharp edge at the boundary between SiGe and Si. From there it increases
smoothly until the conduction band energy reaches that of the unstrained
Si. At the boundary the potential is similar to a single interface of a mod-
ulation doped quantum well. In the perpendicular plane (b) the confining
potential is close to a Gaussian or parabolic form. This behavior is the same
below the SiGe islands, but the potential is not as deep.

The aspect ratio of a quantum dot defined as height/base diameter is rel-
evant for the strain and with that the band deformation. Since the height
is roughly the same for all dots with h ≈ 10 nm, the aspect ratio is deter-
mined primarily by the size of the base and dots are classified according to
their base diameters. The base diameters are around 80 nm and 200 nm for
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samples grown at 600◦C and 700◦C, respectively. For larger quantum dots
the band potential becomes shallower. That results in eigenstate energies
closer to the conduction band. In addition to the absolute energy, the en-
ergy difference between s- and p-like-states ∆Esp, as well as between higher
states decreases with increasing size. While for small dots ∆Esp ≈ 2 meV, for
large dots ∆Esp ≈ 0.4 meV.

The wave functions calculated in the effective-mass approximation for dis-
crete states have a pancake-like form and extend over more than 20 nm in-
plane, but less than 10 nm in z-direction for a dot of 80 nm size. s- and p-
like-state wave functions are shown in Fig. 11.4 for a magnetic field H of
3400 Oe applied along the growth direction z. With a shallower potential
the size of the wave functions increases: Fig. 11.5(a) shows the ground state
wave function for dots of base diameters (i)/(ii) 80 nm and (iii)/(iv) 120 nm.
The s-like wave function is extending, but the symmetry is preserved. The
same applies to larger dots up to 200 nm base diameter. Correspondingly,
the excited states increase in size. A magnetic field has no visible effect
on the s-like wave function, but the p-like wave function is influenced. In
Fig. 11.5(b) the p-like wave function is shown for a magnetic field applied
in the (i)/(ii) x y-plane and (iii)/(iv) along z-direction.

The electron s-like wave function is centered in the silicon on top of the dot,
directly at the SiGe/Si interface z0. With the spatial extensions of the wave
functions significantly larger than the Bohr-radius in Si the dot might act
as a single heterointerface. The barrier effect depends on the intermixing
as can be seen by comparing Figs. 11.4(a) and 11.5(a) where dots of 80 nm
base diameter are shown with different Ge content. The wave function in
the xz-plane appears more flattened for larger Ge content. This barrier ef-
fect will be somewhat different for the p-states, which have a node at the
apex of the dot and extends larger in-plane. In addition to the states at the
apex of the dot, there are confined states below the SiGe island. Since the
conduction band potential is slightly shallower, the confined energy states
are also slightly higher in energy. Nevertheless the symmetry of the individ-
ual wave functions is the same mirrored at the SiGe barrier.

The alloy distribution within the Si(1−x)Gex islands and the Ge content in-
fluences the strain profile. Ge content can be estimated from the AFM and
TEM analysis. For dots grown at 600◦C the average Ge content x ≈ 0.5. Dots
grown at 700◦C have x ≈ 0.4. The Ge content at the apex of the dot can be
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Figure 11.5: (a) s-like state wave function for dots with x = 0.5 and with base di-
ameter of (i)/(ii) 80 nm and (iii)/(iv) 120 nm. (b) p-like state wave function for a
magnetic field of 3400 Oe in x y-plane (i)/(ii) and along z-direction (iii)/(iv) for a
dot of 120 nm base diameter.

higher than the average value. For small dots the Ge content has a relatively
large effect on the conduction band profile and the ground state energy. For
a 80 nm dot with x = 0.5 the minimum of the confining potential is ∆E ≈
−53 meV below the ∆ conduction band of unstrained Si. For x = 0.4 it is just
slightly below 40 meV. The energy difference between the corresponding s-
states is ∆Es ≈ 10 meV. For the large dots, variations from 0.35 ≤ x ≤ 0.45
result in a change of ground state energies within ∆Es ≈ 3 meV. For both
types of dots, the relative energy difference between s- and p-states changes
within 20% of ∆Esp for alloy concentrations from x = 0.36−0.52.

11.3.2 Multiple Quantum Dots

Several calculations were performed where two dots were placed laterally
or multiple dots were arranged laterally and vertically. For the lateral spac-
ing dot densities were estimated from the AFM pictures. Even for small dot
spacings of 20 nm base edge to base edge, the influence on the ∆2 state at
the apex is negligible. Also, no electronic coupling occurs between the ∆4-
states at the base. The ∆4-band edge at the base of the dot is still higher in
energy then the ∆2-band edge at the apex. Therefore the ground state is still
to be expected at the apex of the dot. This is in agreement with simulations
for patterned samples where SiGe quantum dots are regularly spaced [122].

The strain fields around a SiGe island can extend quite far into the Si ma-
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Figure 11.6: ∆2 conduction band profile along z-direction, centered in the middle
of the x y-plane. (a) A single dot, (b) stacked dots with 70 nm Si spacer and stacked
dots spaced 20 nm apart with varying Ge content from dot to dot (c) and linear
Ge variation within the dots (d) are shown. Shaded areas indicate range of donor
ionization energies. For details see text.

trix. From the AFM analysis it is visible that an alignment of dots does not
take place anymore for a vertical spacing of 100 nm. The dots can be re-
garded as isolated. At the smallest spacers of 20 nm islands are vertically
aligned. This results in a variation of the dot sizes within and from layer to
layer. For a spacer of 70 nm dots are aligned for the 200 nm dots, while the
80 nm dots are also randomly distributed in every layer. Simulations were
performed on three to five vertically stacked dots. For simplicity the shape
of dots in the top layer were assumed to be identical in shape and the simu-
lation space was closed by a Si region as the top region.
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Figure 11.7: ∆2 conduction band profile along z-direction, centered in the middle
of the x y-plane. (a) A single dot with constant x = 0.4 and (b) x = 0.45; (c) stacked
dots with 70 nm Si spacer and (d) stacked dots spaced 20 nm apart with varying Ge
content from dot to dot. Dashed lines indicate range of donor ionization energies.
For details see text.

The conduction band profiles for these different cases are shown in Fig. 11.6
for the small dots and Fig. 11.7 for the large dots. In Fig. 11.6(a) an isolated
single dot is shown with a constant x = 0.5. In agreement with the AFM anal-
ysis, at distances of about 100 nm away from the dot, the conduction band
energy is that of unstrained Si. This dot is representative for isolated dots in
the structures with 100 nm vertical spacing. In Fig. 11.6(b) there are five dots
spaced 70 nm apart. Their Ge content is constant as well. One can see that
the conduction band does not recover completely to the unstrained band
edge in between the quantum dots. Nevertheless the potentials above and
below the dots are still fairly steep and electronically isolated. For the fifth
(top) dot only the lower barrier is shown in correspondence to the real struc-
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ture. In Fig. 11.6(c) dots with a spacing of only 20 nm are plotted. Here the
Ge content in each dot is kept constant, but it is changing linearly from the
bottom (0.52) to the top dot (0.47). The fifth dot and the Si on top is shown
completely. The abrupt changes in the band energy above and below the
dots are due to the reduced number of grid points and the way the quan-
tum region is defined for this simulation. The four dots in Fig. 11.6(d) have
a linearly increasing Ge content from the bottom (0.25) to the top (0.52) of
each dot. The last two subfigures are representations of Vegard dependen-
cies, in order to test the higher disorder expected in the aligned samples.
For both scenarios there is no significant difference in the confining poten-
tials and the energy states. From (c) and (d) it can be seen that at a distance
of 20 nm in between quantum dots there is a joint electronic state possible.
Overall, the confining potentials are deeper for the dots with 20 nm spacing
compared to the isolated dot. This results in a first confined state of -46 meV
at the stacked dots as compared to -34 meV at the isolated dot. Confining
potentials for aligned dots with 70 nm spacing and isolated dots are almost
identical.

In Fig. 11.7 the limiting cases for the 200 nm dots are shown: Isolated dot
with different Ge contents as compared to the stacked dots spaced 70 nm
and 20 nm apart. For the single dots in Fig. 11.7(a) and (b) the potentials
are very shallow with conduction band minima found close to 25 meV. This
is significantly smaller than in the smaller dots. The dots with 70 nm spac-
ing are slightly lower in energy. Although their potential is very shallow and
the conduction band is lowered in between the dots, the confined states
are still located at the individual dots. The lowest energy state is found at
Es/p ≈ 26 meV below the conduction band edge. Note that for the conduc-
tion band profile shown in Fig. 11.7(c), due to computational reasons, the
spacing of grid points had to be reduced. Therefore the profiles below the
dots and at the boundaries of the structure are not very accurate. Five dots
spaced 20 nm apart are shown in Fig. 11.7(d). The conduction band minima
is close to 39 meV. Similarly for the smaller dots, there is a joint confining po-
tential in between the dots.

11.4 Discussion

One important consequence of temperature is the carrier concentration in
a semiconductor. At temperatures where thermal activation of electrons
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from the valence band to the conduction band is not possible anymore the
carrier concentration is dominated by the doping profiles. Donors and ac-
ceptors are treated in nextnano3 as additional charges in defined regions.
Due to this, the quasi-Fermi levels are changing and with that the electronic
potential. Donor concentrations and their ionization energies can be de-
fined within the regions. Although discrete energy levels can be specified
the effect of impurity bands at high impurity concentrations and, more im-
portantly, strain and alloy effects on the energy levels cannot be implemen-
ted.

As described in Section 10.2 background doping is present with the phos-
phorus donor the most likely one present in the investigated heterostruc-
tures. The ionization energy for the shallow donor P in Si is 45 meV. Under
the influence of strain doublet and triplet states become populated. Their
energy is found around 30 meV below the conduction band edge. In Ge the
ionization energy for P is with 13 meV significantly smaller than in Si. The
ionization energy for P donors in Si(1−x)Gex was experimentally determined
to decrease with increasing Ge content [169]. For the highest Ge content
x = 0.27 investigated in [169], an ionization energy of Ei ≈ 26 meV was re-
ported. Considering that the SiGe structures investigated in this thesis can
have Ge contents of x ≈ 0.5, Ei ≈ 20 meV and even smaller seem likely. Since
there are quasi continuous strain fields around the quantum dots in Si, as
well as changing alloy profiles (and strain effects) within the SiGe islands, a
broad distribution of energy levels between 45 meV and 20 meV can be ex-
pected.

The energy range between 50 meV and 20 meV is indicated as shaded area
in Figs. 11.6 and 11.7. If the energy states at the quantum dots are lower or
within this range electrons can be trapped at the quantum dots instead of
the donors. For the smaller quantum dots the conduction band is lowered
to 50 meV or even below. Potentially, almost all electrons can be trapped at
the quantum dots in the heterostructures for all three spacings.

For the large dots confining energies are smaller. The conduction band min-
ima for the isolated dots are just around 25 meV and the confined states are
slightly higher in energy. That means that the dots can only be populated
by few electrons, namely those which originate from donors with smaller
ionization energy. Eventually some dots are not populated at all. At the
dots with 70 nm spacing the lowest confined state is with 26 meV still higher
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in energy than the donor states in pure Si. Therefore a low population of
quantum dots is expected as well. Differently, the confined states for the
20 nm spaced quantum dots are with 35 meV in the range of donor states
in strained Si. A higher population is expected, but still not all donors can
contribute electrons to the quantum dots.

The estimated impurity concentration is 2.3 ·1016 cm−3. This corresponds
to a single donor in a volume of Vd ≈ (34 nm)3 ≈ (4 nm·100 nm·100 nm), ap-
proximately the size of a SiGe island. That means there are only few do-
nors present inside SiGe islands, in the strained Si regions around it and
few more which are not subjected to strain at all. Therefore the electronic
population of quantum dots should be small.

In this discussion a potential interplay between the two confining states,
namely the donor state and the quantum dot potential is not considered.
In principle, since the states are close in energy, there could be more com-
plex interactions present. This is certainly a point worth looking into, but
which is beyond this qualitative model.

11.5 Summary

The influence of different parameters, as alloy contribution, size, shape and
magnetic field, on the ∆ conduction band profile and confined states was
studied for single SiGe islands embedded in Si.

The lowering of the conduction band depends primarily on the aspect ratio
of the semiparabolic quantum dots. Secondarily the Ge content influences
the conduction band energy. The relative energy difference between con-
fined states decreases significantly with increasing base size of the quantum
dot. The size of the wave functions increases, but its symmetry is preserved.

Calculations for the experimentally investigated structures show that SiGe
quantum dots grown at 600◦C have confining states on the order of donor
states in Si. Quantum dots grown at 700◦C have a shallower potential with
confining states on the order of donor states in SiGe and strained Si. The
latter dots are expected to be populated by a few electrons only.

While electronic states for 70 nm and 100 nm spacing are only seeing one
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SiGe/Si barrier the electronic states for 20 nm spacing are expected to be
confined in between two barriers. The effect on the shape of the wave func-
tions is small.





CHAPTER 12
ESR Experiments on Si/SiGe

Quantum Dots

In this chapter the experimental results of ESR on the SiGe quantum dot
structures are reported. Two ESR peaks with different g -factor tensors were
found around g = 1.999 in some structures, while in others only a single
peak was observed. These spectral features are only observed in samples
with quantum dots. Their spin dephasing time T ∗

2 is estimated to be on the
order of 0.2-0.5µs, whereas the spin lifetime T1 is on the order of 10µs. The
relative intensity of the ESR signals can be changed by illumination with in-
frared light, with energy below the gap of bulk Si and of the wetting layer. A
qualitative model of the electronic structure of the heterostructures based
on calculations with nextnano3, derived in the last chapter, enables us to
attribute the observed ESR signals to confined electronic states at the quan-
tum dots.

12.1 ESR on Si Structures

Semiconductors can be doped with impurity atoms. If a Si atom is replaced
by an atom from group V of the periodic table an unsaturated bond remains.
The additional electron is only weakly bound to this donor atom. Typical do-
nor atoms in Si and Ge are the group V elements P, As, Sb. They are shallow
donors with ionization energies of 54 meV, 45 meV and 39 meV respectively
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[170]. The ionization energies are small compared to the bandgap energy
of 1.11 eV of Si. At negligible impurity concentrations the semiconductor is
called an intrinsic semiconductor and the carrier concentration is given by
the thermal activation of carriers from the valence to the conduction band.
In the case of strong doping (usually n > 1018 cm−3) the electron wave func-
tions of the donor atoms overlap and form impurity bands. Those bands
are located at energies just below the conduction band energy, as seen from
the ionization energy compared to the bandgap energy. In the intermediate
doping regime, donors are regarded as isolated impurities.

This simple description of donors in a semiconductor can be similarly ap-
plied to acceptors, dealing with holes instead of electrons and the valence
band instead of the conduction band. Beyond this very basic description
the multi-valley structure of the valence band has to be considered, which
is specific for the individual semiconductor and usually more complicated
than for the conduction band [170].

A multitude of ESR experiments have been performed on Si-based systems.
ESR signals in bulk Si can originate from impurities which are shallow and
deep donors (or acceptors). When an electron is bound to a donor it acts
as a paramagnetic defect and can be detected with ESR. Although already
widely investigated in the 1960s today it is a highly active field due to the
need to understand the physics of donor states in Si structures for photo-
voltaic applications [35] as well as having the possibility to perform quan-
tum computational operations in those systems [120].

Thinking of an electron bound to a donor we are dealing with an electron-
hole system, where the electron is spatially confined in the Coulomb po-
tential of the donor. In contrast to the donor electrons, conduction band
electrons in Si can be regarded as free in the three spatial dimensions. At
low temperatures the conduction band electron can be generated by illu-
minating the Si sample. An ESR signal of the three-dimensional impurity
band electrons is found with a g -factor g = 1.99875 [33]. Their ESR signal is
isotropic and its linewidth at about 10 GHz is about 1 G [33].
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Figure 12.1: ESR spectra of a sample with only wetting layers and a sample with
quantum dots; A narrow ESR peak is observed in the quantum dot samples (QD)
which is amplified under sub-bandgap light λ = 1310 nm illumination; reference
structures - here a sample with only wetting layers (WL) - do not show the signal

12.2 Experimental Results

In an electron spin resonance experiment the overall response of the sam-
ple is measured. Therefore great care has to be taken to separate an ESR
signal attributed to SiGe nanostructures from signals originating from do-
nors or impurities in the bulk substrate or in the deposited material, as well
as effects caused by the boundaries between different materials [171]. As
a consequence the reference structures were measured to ensure that the
observed signals are only due to the presence of the SiGe dots.

Experiments were performed at T . 4 K. Surprisingly, in all our structures
the well known signal of electrons on donors [33] in Si is not observed. This
might be due to the fact that the absolute number of donors is on the or-
der of the number of quantum dots, but their ESR-linewidth is about one
order of magnitude broader than the ESR linewidth of quantum dots. This
results in weaker intensity of the line. Furthermore, for the samples with
quantum dots the inhomogeneity of the sample may contribute to an addi-
tional broadening: Donors are distributed throughout the whole structure
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Figure 12.3: ESR signal (single peak)
associated with dots in the sample
grown at 600◦C with a spacer of
100 nm. The two spectra were taken
with magnetic field oriented parallel
and perpendicular to the growth di-
rection (001).
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randomly. Thus, electrons on donors experience different strain. Since the
repopulation effect between the donor states results in a reduction of hy-
perfine splitting with increasing strain [119], their ESR signal is expected to
broaden even more. A quantitative description is given in Section 12.3.

Fig. 12.1 shows ESR spectra of a WL and a quantum dot sample in the re-
gion around a g-factor value of 2. The spectrum of the WL sample is repre-
sentative for all reference structures which show only a single peak with a
linewidth ∆Hpp ≈ 5Oe centered at g ≈ 2.005. This signal is attributed to the
oxidized sample surface, since it is in good agreement with previous reports
on ESR of dangling bonds of Si at the Si/SiO2 interface[172]. In all quantum
dot samples we observe an additional narrow peak, showing quantitative
differences for the individual multilayer samples. This feature is absent in
all reference structures. Therefore these signals are analyzed in more detail
for the different quantum dot structures.

12.2.1 Samples grown at 600◦C

All samples grown at 600◦C - with a silicon spacer thickness of 20 nm, 70 nm
and 100 nm - give an ESR signal showing only a single Lorentzian line (R)
(see Fig. 12.3). For an incident microwave power Pmw of 1 mW the line for
the 100 nm sample (Fig. 12.3) shows a small anisotropy in g -factor of ∆g =
g∥− g⊥ = 1.1(2) ·10−4 with the g -factor being axially symmetric and an ani-
sotropy in the linewidth ranging from ∆Hpp ∥ ≈ 0.25 Oe to ∆Hpp ⊥ ≈ 0.45 Oe.
At higher powers the line broadens and the signal starts to saturate.
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The g -anisotropy for all samples grown at 600◦C is the same within the
experimental error [see later Fig. 12.5 (a)] ranging from ∆g = 1.1(2) · 10−4

to 1.3(2) · 10−4. However, the absolute values of the g-factors are slightly
higher for the 20 nm sample than for 70 nm and 100 nm spacing. g -factors
are listed in Tab. 12.1. Control measurements carried out at another time
show slightly different values of the g -factor. This reproducibility is within
an error of about δg∥ = 3 · 10−5 and δg⊥ = 4 · 10−5, but does not affect the
anisotropy ∆g .

Sample g∥ g⊥ ∆g g0

600◦C, R

20 nm 1.99925(2) 1.99912(2) 0.00013 1.99916
70 nm 1.99919(2) 1.99906(2) 0.00013 1.99910

100 nm 1.99917(2) 1.99906(2) 0.00011 1.99910
700◦C, R

20 nm 1.99925(2) 1.99912∗ 0.00013 1.99916
70 nm 1.99926(2) 1.99914(2) 0.00012 1.99918

100 nm 1.99923(2) 1.99907(2) 0.00016 1.99912
700◦C, L

20 nm 1.99941(2) 1.99923∗ 0.00018 1.99929
70 nm 1.99945(2) 1.99909∗ 0.00036 1.99921

100 nm 1.99943(2) 1.99892∗ 0.00051 1.99909

Table 12.1: g -factors measured at Pmw = 1mW; the reproducibility is 3 ·10−5 for g∥
and 4 · 10−5 for g⊥; values marked with ∗ are extrapolated from the fit around g∥
shown in Fig. 12.5. For this an axial symmetry of the g -factor is assumed.

12.2.2 Samples grown at 700◦C

All samples grown at 700 ◦C show a remarkable difference with respect to
samples grown at 600◦C: the observation of two ESR peaks [see Fig. 12.4(a)].
This double peak spectrum is a new feature which has not been reported
before for ESR studies of SiGe islands [130, 131]. The peaks are sharper
than the single peak observed in samples grown at 600 ◦C. The relative inten-
sity between the two peaks is the same for samples with 100 nm and 70 nm
spacer. Exemplarily, let us focus on the latter.
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Figure 12.4: Spectra of the sample grown at 700 ◦C with 70 nm spacer (a) g∥(R) =
1.99926 and g∥(L) = 1.99945 at Pmw = 5mW and (b) Pmw = 0.2mW; (c) linewidth
of the peak with lower g-factor (R) and schematic of sample orientation. Angle
α indicates the direction of the external magnetic field from the (001) direction
(α= 0◦) to the perpendicular direction (α= 90◦).

The two ESR peaks shown in Fig. 12.4 are characterized by g-factors of about
1.9992 (R) and 1.9994 (L) (with the magnetic field in growth direction) and
by different intensities. The stronger peak R is the one with the lower g-
factor. When the magnetic field is turned towards the in-plane direction of
the quantum dots the signals broaden and cannot be resolved [Fig. 12.4(a),
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Figure 12.5: Angular dependence of the g-factor determined at Pmw = 1mW; (a)
samples grown at 600◦C, (b) samples grown at 700◦C. The spacer thickness is indi-
cated.

(b)]. By varying the microwave power the relative intensity of the two peaks
changes. At low powers L is almost not visible which makes further char-
acterization of R possible [Fig. 12.4(b)]. By changing the orientation of the
sample with respect to the external magnetic field again an anisotropy in
the linewidth [Fig. 12.4(c)] and of the g-factor of peak R becomes appar-
ent [Fig. 12.5(b)]. The linewidth broadens from ∆Hpp ≈ 0.12 Oe to ∆Hpp ≈
0.32 Oe. From the linewidth below saturation the dephasing time T ∗

2 can be
calculated as[10]:

T ∗
2 = 1.3131 ·10−7

g∆Hpp [Oe]
[s] (12.1)

Linewidths correspond to T ∗
2 -times ranging from T ∗

2 ≈ 0.5µs to ≈ 0.2µs.
This provides a lower limit for the T2 spin coherence time, which is usually
longer than T ∗

2 . The g -factor of R shows an axial symmetric anisotropy with
g∥(R) = 1.99926(2), g⊥(R) = 1.99914(2) and ∆g = 1.2 ·10−4.

Unfortunately a complete characterization of L is not possible for this sam-
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ple, since even for the highest microwave power below saturation the con-
tribution from R cannot be separated completely from L as the sample is
turned towards the in-plane direction. Because of this, L is only charac-
terized in an angle of ±20◦ around α = 0◦, H0 ∥ (001) for which the lines
are still resolved yielding g∥(L) = 1.99945(2). When assuming the same ax-
ial symmetry derived for g (R), the value for g⊥(L) can be extrapolated to
g⊥(L) = 1.99909 (Fig. 12.5).

For the sample with the smallest spacing of 20 nm silicon the spectrum
looks quite different (see later Fig. 12.8). Still two peaks are observed, but
with L having higher intensity. Nevertheless, the g -factor corresponding to
L and R for different samples is almost identical regardless of the change in
relative intensity. This indicates that L and R originate from individual spin
states which are present in all samples.

The integrated intensity of the ESR signal below saturation is proportional
to the number of resonating spins contributing to the signal. Thus, in a
non-saturated regime for both signals their relative intensity gives informa-
tion about the relative population of those two states. For the 100 nm and
70 nm samples the integrated intensity ratio is about L/R ≃ 1/5, while for
the 20 nm sample it is about L/R ≃ 1/1. Thus, a drastic change in the rel-
ative population of the two states takes place as the distance between the
dots is decreased. Due to this transfer of the spectral weight, both peaks
can only be determined in an angle of ±40◦ around g∥. The g -values for
R are the same as for the 20 nm spaced dots grown at 600◦C. Since the g -
factor anisotropy of L is stronger the two lines merge upon rotation of the
field towards the sample plane and are not resolved anymore. For R alone a
broadening is observed as well.

The linewidth in cw-ESR is connected to the dephasing time T ∗
2 of a spin

ensemble. The additional broadening as well as the anisotropic g -factor in-
dicates a change in the spin-orbit coupling as the magnetic field is turned
in-plane.

Considering inhomogeneities of the magnetic field throughout the sample
as well as dipole-dipole interactions, the ESR signal of an ensemble of iden-
tical spins should show a Gaussian line. Since all lines observed are of a
Lorentzian form, there has to be a mechanism present that narrows the line
again. Since the distance between the dots is substantially longer than the
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power dependence
of ESR peaks L and
R as a function of
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for the sample
with 70 nm spacer.
Saturation power
is indicated as a
dashed line for both
spectra.

size of the confining potential, the isotropic exchange interaction between
the spins at the same quantum dot seems to be a primary source of the line
narrowing.

12.2.3 T1-Relaxation Time

The saturation of a signal in continuous wave ESR is related to the T1-relaxa-
tion time, which is the time for a single spin to reverse its orientation. By ap-
plying high microwave radiation powers the thermal equilibrium between
the split spin orientations in magnetic field can be disturbed yielding equal-
ization of the population of both spin states. Thus, the ESR signal saturates
and eventually decreases in intensity.

By determining the saturation power the relaxation time can be calculated.
For the power resulting in the maximal derivative amplitude of the ESR sig-
nal T1 is given by [10]:

T1 =
0.49 ·10−7

∆Hpp [Oe]

g H 2
1 [Oe2]

[s] (12.2)

It has to be noted that the microwave magnetic field H1 at the sample is cal-
culated from the known calibration of the resonator without quartz cryostat.
The real H1 might be different due to the quartz cryostat and the microwave
conductivity of the sample itself. Therefore values obtained for T1 cannot
be very precise. In addition, the weak intensity makes it difficult to find the
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direction (001).
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exact saturation point. Nevertheless, an order of magnitude estimate of T1

yields a value of the order of T1 . 10µs for both peaks. Typically relaxation
times of L are just slightly longer than those of R.

12.2.4 Effect of Illumination

Samples were illuminated with light at wavelengths of λ1 = 655 nm (red) or
λ2 = 1310 nm (infra-red - IR). This corresponds to energies E1 = 1.5 eV and
E2 = 0.95 eV respectively. With the Si bandgap being at Eg = 1.1 eV elec-
tron hole pairs in Si can be generated with the red laser. Ionization of the
shallow donors and acceptors in Si (for instance: phosphorus and boron
EP ≃ EB ≃ 45 meV) also takes place. Looking at photoluminescence mea-
surements of the samples 1 (see Fig. 12.10) it is evident that the excitation
wavelength of the IR-laser is below the Si bandgap and even partially below
the wetting layer. On the other hand, the quantum dot emission is well be-
low the IR excitation energy.

While no ESR signal could be found in any reference sample without light,

1Micro-Photoluminescence (µPL) investigations have been performed at about 8 K, us-
ing a cold-finger helium flow cryostat and a 532 nm frequency doubled Nd:YVO4 laser. The
laser spot diameter on the sample surface was of about 1.5µm with a power of about 1 mW.
The same µPL microscope was then used to collect the PL emission, which is dispersed by
a 500 mm focal length spectrometer, equipped with a liquid nitrogen cooled InGaAs array
detector. Measurements: F. Pezzoli
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an ESR signal around g = 1.9995 was observed on those samples under il-
lumination with the red laser light (λ1 = 655 nm). This g -factor is identical
with the g -factor of conduction band electrons in Si. The linewidth is simi-
lar to the one reported previously for bulk silicon [173] ∆H ≈ 1Oe. Since the
g-factors of conduction band electrons and electrons on quantum dots are
very close, so that their ESR signals might overlap, the experiments focussed
on illumination with sub-bandgap light.
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For the sub-bandgap IR-laser no additional signal in all reference structures
can be seen. In contrast to that, in the quantum dot structures the already
visible signal increases significantly (Fig. 12.1).

By illuminating the quantum dot samples grown at 600◦C the intensity of
the single ESR peak increases strongly. The increase does not go along with
a change of the linewidth which would indicate a faster relaxation. Thus, it
can be interpreted as a pure increase of the number of spins giving rise to
the ESR signal.

More interesting is the behavior of the double peak spectra: The two signals
are amplified differently under illumination with sub-bandgap light. For
the 100 nm sample at a microwave power of 1mW [Fig. 12.11(a)] the two
peaks are well separated for the spectrum without illumination and only R

is increasing in intensity upon illumination. From the data it is not clear if
L is simply masked by R or if it is even decreasing in intensity. Thus, the
electronic state corresponding to R gets populated under illumination, re-
vealing a non-linear dependence on the laser power for the integrated ESR
intensity [Fig. 12.11(a), inset].

For the 20 nm sample the two peaks are also clearly visible at a microwave
power of 1mW in the spectrum without illumination [Fig. 12.11(b)]. Upon
illumination with only a small laser power L decreases while R increases. By
increasing the laser power R increases further and L is not visible anymore.
This indicates a shift in population from L (or the electronic state giving rise
to L) to R at first, and, with higher light intensity, a continuous increase of
the population of the R-state.

We rationalize the above observations as follows: In silicon at temperatures
around 4 K most of the electrons are localized at shallow donors and the
electron concentration in the conduction band is small. Upon illumination
with above bandgap light electrons are excited from the valence to the con-
duction band. This increase in the electron concentration makes observa-
tion of the conduction band electrons with ESR possible even at low temper-
atures in the reference structures (cf. [173]). Besides the direct generation
of carriers from the valence band, ionization of donors takes place as well.
Illuminating at a wavelength of λ2 = 1310 nm, with an energy well below the
bandgap of silicon and below the wetting layer emission energy, the ioniza-
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tion of donors is the major process providing conduction band electrons in
the reference structures. The concentration in the conduction band is in-
creasing, but is much lower than for the electron-hole generation from the
valence band with above bandgap light. The ionization of donor electrons
alone does not provide a sufficient amount of conduction band electrons
that could be detected by continuous-wave (cw) ESR.

In the samples where quantum dots are present, ionization of donors takes
place under illumination with sub-bandgap light. Furthermore, electrons
may also be generated by direct absorption of photons on the quantum
dots. Consequently, for both scenarios electrons are trapped on the quan-
tum dots, resulting in an increase of the signal.

12.3 Discussion

ESR signals were observed in samples containing quantum dots only, not in
any of the reference structures. The spectra differ quantitatively for the indi-
vidual samples. For samples containing small dots a single peak is observed,
while for large dots an additional peak is found. The double peak spectrum
originates from two spin sites. The microwave power dependence, the be-
havior under illumination with sub-bandgap light as well as the anisotropy
∆g are different for the individual peaks L and R. This behavior for the indi-
vidual peaks is consistent throughout all samples investigated.

There are two well-studied scenarios which can serve as limiting cases to
the discussion of spin states on SiGe islands. (i) Electrons can be confined
at donor atoms in Si, due to the Coulomb potential of the nucleus. (ii) Elec-
trons can be confined in strained Si between SiGe barriers forming a two-
dimensional electron gas.

(i) Donor states

The first well accepted theory for donor states in Si was developed by Kohn
and Luttinger [174]. The Kohn-Luttinger theory describes the additional
charge from the donor as being localized due to the Coulomb potential of
the donor nucleus. In unstrained Si the six ∆ conduction band valleys are
degenerate and the ground state is a singlet state where all valleys are popu-
lated equally. Due to the finite probability for an electron to be found at the
nucleus a hyperfine splitting is observed for the ground state [175]. Under



12.3. Discussion 149

the application of uniform applied stress along (001) the valley degeneracy
is lifted and electrons populate the ∆2 valleys. The hyperfine splitting van-
ishes [119]. Electrons of a single valley (two equivalent ∆2-valleys), can be
characterized with ESR. It turns out that the g -factor for an electron in a sin-
gle valley is anisotropic with an axial symmetry coinciding with the effective
mass tensor.

g = g∥e001 + g⊥e010 + g⊥e100 (12.3)

with ei the unit vectors along the crystallographic directions i , g∥ = 1.9995
and g⊥ = 1.9984 for P and the resulting ∆g = 1.1 ·10−3 with g0 = 1.99875.

(ii) 2DEG

It is possible to confine conduction band electrons in a two-dimensional
electron gas (2DEG). For this a Si channel is grown in between two relaxed
Si(1−x)Gex layers with a one-sided modulation doping. The Si-channel is
strained due to the lattice mismatch between SixGe(1−x) and the Si. There-
fore the conduction band electrons are confined to the ∆2-band [125]. The
ESR signal of such conduction band electrons exhibits an anisotropy in the
g -factor and the linewidth. The g -factor and its anisotropy, with respect
to a magnetic field applied in the plane of the 2DEG and perpendicular
to it, depend linearly on the electron concentration. The mean g -factor
is g0 = 2.0007 with an anisotropy of ∆g ≈ 10−4 [127]. The anisotropy was
attributed to the Byshkov-Rashba-effect [176]: The one-sided modulation
doping results in an effective electrical field which is perpendicular to the
p-vector of the electrons. This leads to an effective magnetic field causing a
spin splitting already at zero magnetic field. However, on similar quantum
well samples other effects seem to be dominating over the Byshkov-Rashba-
effect [177].

12.3.1 Quantum Dots

In the samples investigated in the present work the situation is somewhere
in between the two scenarios described above: The conduction band is sub-
ject to strain around the SiGe islands. ∆2 and ∆4 bands are well separated
in energy. Electrons are localized in the ∆2 band and discrete electronic
states are formed. However the strain is not homogenous as in the case
of an uniaxial applied stress, but decreases continuously with the distance
from the island. In fact the ∆2 conduction band profile is similar to that of
a modulation doped quantum well along the z-direction. In the x y-plane a
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harmonic-like potential is formed, limiting the extension of the wave func-
tion.

The electron wave functions have a pancake like form (Fig. 11.4) which is
due to the anisotropy of the effective mass tensor and the asymmetric po-
tential. Additionally the wave function is flattened at the SiGe/Si interface,
since it acts as a strong barrier for the wave function. The s-like-state wave
function is larger than that of the singlet ground state in Si, which is on the
size of the Bohr radius in Si a0 ≈ 3 nm. The wave functions for the p-states
(and for higher states) extend even further. For the large quantum dots the
potentials are shallower and wave functions are even larger. Primarily the
wave function extends in the x y-plane.

It is not possible to treat extended electron wave functions as conduction
electrons. Nevertheless a spin-orbit coupling could be present due to the
primary motion in the plane. The breaking of structural inversion symme-
try (SIA) [16] along (001) indicates a Byshkov-Rashba-like spin-orbit coup-
ling for the wave functions. g -factor and the anisotropy ∆g are then differ-
ent as compared to those of electrons in a homogenously strained Si region.

The g -factors observed for both peaks are in between the values for elec-
trons localized on donors and ∆ conduction band electrons in a 2DEG. Do-
nor electrons under strain and 2DEG electrons have the form of an axial
symmetry of g as observed in the quantum dots. The anisotropy∆g found is
generally smaller than that expected for donor states, but in the range of ∆g

observed for electrons in 2DEGs [127]. For peak L the g -factor anisotropy
is larger than for R. The largest anisotropy is observed for the spectrum of
isolated dots where ∆gL is almost half of the anisotropy of localized donor
states. The broadening of the lines is consistent with a Bychkov-Rashba-like
spin-orbit coupling.

12.3.2 Assignment of ESR Lines

The calculations on large quantum dots described in Section 11.3.2 show
that they can only be populated by a few electrons. On those dots two ESR
lines can be distinguished experimentally. Since we are dealing with an
ensemble of dots, their confining energies differ throughout an individual
sample. Calculations for large quantum dots show that the energy differ-
ence ∆Esp between s- and p-states is only about 0.4 meV. The variations in
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confining energies of the quantum dots within the samples allow for dots to
be populated differently. This can result in individual dots where the dots
are only populated by single electrons, i.e. the quantum dot is in the s-state.
For other dots p-states and eventually higher states can become populated.

The left peak L observed in the doublet spectra (Fig. 12.8) shows a stronger
g -factor anisotropy. This is associated with a stronger localization and is
therefore attributed to electrons in the s-states. The right peak R has a
smaller anisotropy. It can therefore be identified as originating from a more
extended, a p-like-states. When regarding the top of the dot as a single het-
erointerface, an anisotropic g -factor is expected since the discrete states at
the quantum dots are not spherically symmetric. The s-state is expected
to have the strongest anisotropy following more closely the confining po-
tential. Note that such an effect (much stronger in magnitude) was already
observed in InGaAs quantum dots for s- and p-states [178].

Dots spaced 100 nm apart can surely be regarded as isolated. But let us
consider the situation when the dots are brought closer together: With a
smaller vertical spacing between the quantum dot layers and a height of
the quantum dots of roughly about 10 nm, quantum dots are aligned ver-
tically. This results in an accumulation of strain in between the quantum
dots, leading to a deeper potential. Their size is not significantly different
for aligned dots in different layers. However, the overall size distribution
becomes wider. From the simulations in Chapter 11 it can be seen that the
energy states are still on the level of donors in SiGe and the electronic states
at the quantum dots are still isolated. In agreement with this, no change
in the relative population of the two peaks is observed changing the spacer
from 100 nm to 70 nm, but the absolute intensity of the ESR signal is increas-
ing. This indicates more dots are being populated.

The shift in the spectral weight, as the spacing between quantum dot lay-
ers is decreased to 20 nm, reflects a change from favored p-state to s-state
population [compare Fig. 12.8 (a), (b)]. In general more donor electrons can
be transferred to the quantum dots because of the lowered energy for con-
fined quantum dot states. This would result in a higher population. Still no
donors in unstrained Si can contribute electrons. Additionally, the number
of dots in this particular structure is higher by a factor of two which results
in a smaller donor/dot ratio equivalent to a lower occupation of a single dot
on average. Also, the higher disorder in the structure results in a spread of
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confining energies and with that quantum dots differently populated.

In general dots grown at 600◦C are smaller in size with an average Ge con-
tent of about 50%. For those dots the areal coverage is higher and thus the
average number of donors per dot is lower. But with larger confining en-
ergies more donors can contribute electrons to the quantum dots. This is
sufficient for s-states to be filled completely and higher states to be partly
populated. An ESR signal can only be observed from unpaired electrons.
This means completely filled levels – up and down spin – are ESR silent.
Therefore, the single peak observed, which shows very small anisotropy in
g -factor, can be attributed to extended electron wave functions in p-like
states.

The ESR experiments with sub-Si-bandgap light illumination further sup-
port the above assignment of the signals. Under illumination with light the
electron concentration is increased by ionization of donors. By illuminat-
ing over the time of the measurement an increased equilibrium Fermi level
is established. Alternatively a generation of electron-hole pairs from the
quantum dots is possible as well. However, dots are not excited resonantly,
so that electrons are pumped (direct transition) in higher states and then
relax back to the lowest unoccupied state.

In both possible scenarios, electrons from the conduction band are trapped
in the potentials around the nanostructures populating additional dots and
higher states in the individual potentials. Confined levels are filled from
the lowest unoccupied state first. As more levels are filled the s-state ESR
signal decreases. At the same time p-states are getting more and more pop-
ulated. Therefore the increase of the intensity of the ESR signal R under
illumination with sub-bandgap light means a further population of the p-
states (and eventually higher states) and a filling of the s-state [Fig. 12.11
(b)]. The quantitative analysis, showing a stronger increase for the isolated
dots, indeed indicates that initially (without illumination) not all quantum
dots were populated in this sample.

The occupation of quantum dots is certainly not limited to s- and p-states.
It is possible that peak R is a convolution of p-states and higher states, but
the spectral resolution to resolve the g -factors is too low for ESR experiment
at X-band frequencies and the corresponding magnetic fields. Also their en-
ergy difference ∆Epd cannot be resolved at temperatures around 4 K.
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12.3.3 Relaxation Times

Due to the small size and shape variation of the ensemble of quantum dots
it is not expected that g -factors are identical. This causes a broadening of
the ESR line. However, the spread in g-factors is obviously smaller than
the difference in g -factors between the two resolved lines observed (∆g ≃
2 · 10−4). Considering the abovementioned mechanisms of the inhomoge-
neous broadening, the ESR signal of the ensemble of spins should show a
Gaussian line. Because all lines observed are of a Lorentzian form, there has
to be a mechanism present that narrows the line again. Since the quantum
dots are occupied by several electrons the isotropic exchange interaction be-
tween the spins at the same quantum dot seems to be the primary source of
the line narrowing. Such interaction is within the spin ensemble and there-
fore can significantly enlarge the T ∗

2 time, whereby it does not affect the T1

time directly. A secondary narrowing effect could be due to the inter-dot ex-
change interaction. However, we did not find a direct correlation between
average inter-dot distance and the linewidth. Eventually, the extended wave
functions can already cause a motional narrowing effect.

The estimated T1-times T1 ≈ 10µs are longer than what was observed in
Si/SiGe quantum well structures for which T1 ≈ 1µs [126], but significantly
shorter than that of donor states in silicon [115]. Since the electrons on the
quantum dots are spatially not as strongly confined as on the donors this
value seems reasonable. The T1 time is larger than the T ∗

2 time suggesting
that the spin lattice relaxation does not contribute substantially to the spin
dephasing at low temperatures. However, as the spin coherence time T2

could be longer than T ∗
2 the spin lifetime T1 could be a limiting factor for

spin coherence on SiGe quantum dots.

Recently a pulsed ESR study on SiGe quantum dots was published [179].
The reported relaxation and coherence times T2 are in good agreement with
the relaxation and dephasing times T ∗

2 found in the structures investigated
in this work [132].

12.3.4 Donors in Heterostructures

As mentioned earlier, electrons bound to donors constitute paramagnetic
defects which are ESR active. Since the confinement on donors and quan-
tum dots takes place on the same energy scale the questions arises if the
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ESR signals observed can be explained by the presence of donor electrons.

In the investigated samples a n-type background doping of 2.3 · 1016cm−3

is present. The typical donors in Si are Sb, As and P. Sb and As can safely
be excluded as dopants, since they were never present in the MBE chamber
used for the sample growth. It is plausible that the background doping is
partly due to phosphorus, since the chamber is equipped with a P doping
chamber. Even in the reference structures the typical hyperfine splitting of
P donors in Si was not observed. Thus, it is likely that the donor concentra-
tion is in fact lower than the background doping which was determined in
another set of samples.

In the presence of quantum dots electrons from donors are partly trans-
ferred to the quantum dots. Nevertheless, in some of the structures inves-
tigated this should not be the case for all donor electrons. One can ratio-
nalize what a signal originating from the donor states in the heterostruc-
ture should look like: Electrons bound to donors in the vicinity of quan-
tum dots are subject to strain, which influences the g -factor. The calcula-
tions for the g -factor dependence under strain [119] can be correlated with
the calculated strain profiles of the heterostructures. In the limits of maxi-
mum biaxial tensile strain at the apex of the dot and maximal compressive
strain at the base of the dots the full g -factor anisotropy ∆g = 1.1 ·10−3 can
be reached. The g -factor anisotropy of an initial donor at the apex of the
dot is larger than the one observed in the quantum dot structures and the
average g -factor is lower. The question of distributions of donors in the
heterostructures arises. An enhanced incorporation of Sb donors in biaxi-
ally tensile strained Si was suggested, causing increased conductivity [180].
It was attributed to the relative large difference in size between Si and Sb
atoms. This effect is drastically reduced for As [181]. Being of similar size
than Si, it is not expected that P donors show an increased incorporation
in biaxial strained Si (The covalent radii are: rSi = 111 pm, rP = 106 pm,
r As = 119 pm, rSb = 138 pm). Thus, a homogenous distribution of donors
in Si is likely. The anisotropy of an observed g -factor can indeed be reduced
by assuming a distribution of donors. However, the average g -factor g0 is
clearly smaller than the one observed in experiment. Donors can be incor-
porated in SiGe islands as well. Since the lowest conduction band in Ge is
the L-band, only g -factors for this band were experimentally determined
[116]. The g -factors for ∆-electrons in Ge can be calculated as g∥ = 2.0412
and g⊥ = 1.8873 [131] after [182]. A linear change between Si and Ge g -
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factors according to the Ge fraction 0 < x < 0.55 is assumed. For this g0

shifts to even lower values, while ∆g becomes larger with increasing Ge frac-
tion. Also this scenario cannot explain the ESR spectra observed.

As discussed, a distribution of donors under the strain profile of the SiGe
islands translates into different g -factors for the individual donors. This
means that the ESR resonance occurs under slightly different external mag-
netic fields. This translates into a broadening of the ESR spectrum and
a decrease in the weighted intensity. The experimentally observed donor
linewidths are 2.4 Oe≤ ∆H ≤ 3.2 Oe [33]. This is already much larger than
the linewidth observed on the heterostructures. The additional broadening
due to the strain profile amounts to

δH ≈ h

µB

(

ν

g∥
− ν

g⊥

)

≈ 2 Oe (12.4)

with g∥ and g⊥ values according to [119] for P donors. Accordingly, the g -
factor distribution inside the SiGe islands with inhomogeneous alloy distri-
butions causes an additional broadening with a decrease in ESR intensity.

Much more significant for the broadening is the influence of the strain on
the hyperfine interaction. For the P donor in unstrained Si two hyperfine
split lines are observed with a distance of 42 G [33]. Under increasing biaxial
strain this hyperfine splitting decreases, due to the increasing population of
the doublet and eventually the triplet state. When assuming a distribution
of donors under strain, the donor spectrum is broadened over the range
of 42 G. The expected linewidth would then be two orders of magnitude
larger than the one observed in heterostructures. The line broadening is
connected to a decrease in intensity (since the integrated intensity remains
constant). Therefore it is unlikely that an ESR line can be observed in the
investigated system.

One other important point is that relaxation times for donor states in Si are
orders of magnitude larger than the ones observed in this work [33, 115].

To summarize, the g -factor anisotropy observed cannot be explained by
single donors in the strain field of SiGe islands. The considerations of dis-
tributions of donors in the material results in a spread of g -factors and dis-
tributed hyperfine splitting, consequently in a broadening of the linewidth
and a decrease in intensity. From these considerations it can be concluded
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that the observed signals cannot be associated with electrons localized on
donors.

12.4 Summary

A systematic study on SiGe heterostructures was presented. Two sets of
samples, grown at different temperatures, were investigated. ESR investi-
gations were carried out on samples with quantum dots and different refer-
ence structures. ESR investigations reveal narrow spectra only observed on
samples containing quantum dots. Their g -factor g ≈ 1.999 are close to the
free electron g -factor. An axial symmetry is found with a small anisotropy
of ∆g ≈ 10−4. The behavior of g and ∆g is consistent with the limiting sce-
narios of electrons localized on donor states and that of conduction band
electrons confined to a 2DEG. The linewidth broadening observed can be
explained by a Bychkov-Rashba-like spin-orbit coupling.

While on the small dots a single ESR line is found, two ESR lines are ob-
served at the large dots. The relative population between the two lines can
be changed by illumination with sub-bandgap light. The anisotropy ∆g is
slightly different for the two states. The ESR spectrum with larger anisotropy
is attributed to quantum dots in the s-like-state, while the other spectrum
corresponds to p-like-states with eventual contributions from higher popu-
lated states.

For the spin states on quantum dots the spin dephasing times T ∗
2 are es-

timated to be on the order of 0.2-0.5µs, whereas the spin lifetimes T1 are
just below 10µs.



CHAPTER 13
Summary and Outlook

In this part a systematic study on SiGe/Si quantum dots was presented. Two
sets of SiGe heterostructures were grown at different growth temperatures.
In the intentionally undoped heterostructures residual background doping
is present which most likely originates from P impurities. The structures
consist of four capped layers of SiGe islands. The vertical spacing between
the layers was varied in individual samples. There is a significant difference
in size of the quantum dots for the two growth temperatures. The base di-
ameters are about 80 nm for dots grown at 600◦C and about 200 nm for dots
grown at 700◦C.

Based on TEM analysis and AFM images, calculations with the program
nextnano3 were performed. Strain, electronic structure and quantum me-
chanical energy states were modeled. Electrons are confined in the Si on top
or below the SiGe island. The confining potentially is spatially anisotropic.
It exhibits a sharp boundary at the SiGe/Si interface and a smooth increase
in growth direction, while it has the form of a quasi-harmonic potential for
the perpendicular directions. It was found that dots with a vertical spac-
ing of 100 nm can be regarded as completely isolated structurally and elec-
tronically. Dots spaced 70 nm apart are (partly) arranged vertically but their
electronic confining potentials are still isolated. On dots with spacings of
20 nm the confined ground state is that of a joint potential of two vertically-
aligned quantum dots. The energy difference between quantum dot states
decreases with the increasing size of the quantum dot. It is found that the
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confining potential in the small dots is on the order of donor ionization en-
ergies in strained and unstrained Si. For the larger dots the energy states are
on the order of donor ionization energies in SiGe and strained Si. Therefore
the electron occupation of the quantum dots is low with only a few elec-
trons per dot on average.

ESR was used to study in detail electrons confined by SiGe nanostructures.
Based on electronic structure simulations the observed ESR spectra were as-
signed to electronic states on SiGe quantum dots. Two resonances were de-
tected which were attributed to s- and p-like states of confined electrons on
the quantum dots. By applying sub-bandgap illumination the relative popu-
lation between the states can be changed. Structural differences determine
the confinement of electrons and with that the population of dots under
constant doping. g -factors are close to the free electron g -factor, showing
only a small anisotropy with an axial symmetry. The anisotropy is stronger
for the s-like state. The linewidth broadening is consistent with a Bychkov-
Rashba-like spin-orbit coupling. Relaxation and dephasing times are in the
range of µs.

The presented study reveals new possibilities for spintronic applications
and possibilities for spintronic devices based on SiGe quantum dots. The
relaxation and dephasing times determined enable spin manipulation on
experimentally accessible timescales. The separation and characterization
of the two states on quantum dots might even enable selective spin con-
trol with established ESR techniques on the quantum dot states themselves.
The fact that both lines can be observed even for broad ensembles is syn-
onymic to fairly low requirements on sample quality, which is advantageous
for development of devices. However, structures still have to be optimized
in order to increase the signal/noise ratio.

The simulations carried out for this work lay a good foundation for the de-
sign of strain engineered heterostructures and devices. The interplay be-
tween quantum dots and donor states can be influenced by varying the
shape of dots and consequently their confining potentials, as well as by
modifying the donor doping profiles. It is interesting to explore possibili-
ties to facilitate the significantly different relaxation and dephasing times of
donor and quantum dot states and the interactions between those states.
Probing and manipulation of spin states is possible with ESR and possi-
bly Electrical Detected Magnetic Resonance (EDMR). The proven manip-
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ulation with sub-bandgap light proves that the spin states can be manipu-
lated simultaneously by optical means. By probing and manipulating spin
states on quantum dots embedded in capacitance structures [183] electric
manipulation is possible as well. The combination of these different manip-
ulation methods allows for complex control of spintronic devices based on
self-assembled SiGe quantum dots.

The interaction between different SiGe quantum dots is important, since
it critically influences the coherence times on the quantum dots. The con-
ditions under which (hopping) transport can occur laterally between dot
potentials can be addressed. For this SiGe quantum dots on patterned sub-
strates with varying distances between dots are necessary. A first study on
this kind of structures did not result in an observable signal due to a low
number of quantum dots and thus a low signal/ noise ratio and a signifi-
cant As background doping present in these structures grown with a differ-
ent MBE machine. Here the application of EDMR might also yield new in-
sights. With EDMR the question of vertical transport in three-dimensional
quantum dot crystals [122] can also be targeted.

The observation and characterization of electron states on SiGe quantum
dots presented in this work, paves the way to address spin states on self-
assembled SiGe quantum dots and offers new possibilities for spintronic
applications and devices.
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