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Abstract

Near-field optical microscopy allows the nondestructive examination of surfaces with

a spatial resolution far below the diffraction limit of Abbe. In fact, the resolution of

this kind of microscope is not at all dependent on the wavelength, but is typically in

the range of 10 to 100 nanometers. On this scale, many materials are anisotropic,

even though they might appear isotropic on the macroscopic length scale. In the

present work, the previously never studied interaction between a scattering-type

near-field probe and an anisotropic sample is examined theoretically as well as ex-

perimentally.

In the theoretical part of the work, the analytical dipole model, which is well

known for isotropic samples, is extended to anisotropic samples. On isotropic

samples one observes an optical contrast between different materials, whereas on

anisotropic samples one expects an additional contrast between areas with different

orientations of the same dielectric tensor. The calculations show that this anisotropy

contrast is strong enough to be observed if the sample is excited close to a polariton

resonance.

The experimental setup allows the optical examination in the visible and in

the infrared wavelength regimes. For the latter, a free-electron laser was used as

a precisely tunable light source for resonant excitation. The basic atomic force

microscope provides a unique combination of different scanning probe microscopy

methods that are indispensable in order to avoid artifacts in the measurement of the

near-field signal and the resulting anisotropy contrast.

Basic studies of the anisotropy contrast were performed on the ferroelectric sin-

gle crystals barium titanate and lithium niobate. On lithium niobate, we examined

the spectral dependence of the near-field signal close to the phonon resonance of the

sample as well as its dependence on the tip-sample distance, the polarization of the

incident light, and the orientation of the sample. On barium titanate, analogous

measurements were performed and, additionally, areas with different types of do-

mains were imaged and the near-field optical contrast due to the anisotropy of the

sample was directly measured.

The experimental results of the work agree with the theoretical predictions. A

near-field optical contrast due to the anisotropy of the sample can be measured and

allows areas with different orientations of the dielectric tensor to be distinguished

optically. The contrast results from variations of the dielectric tensor components

both parallel and perpendicular to the sample surface. The presented method allows

the optical examination of anisotropies of a sample with ultrahigh resolution, and

promises applications in many fields of research, such as materials science, informa-

tion technology, biology, and nanooptics.





Kurzfassung

Die optische Nahfeldmikroskopie ermöglicht die zerstörungsfreie optische Unter-

suchung von Oberflächen mit einer räumlichen Auflösung weit unterhalb des klas-

sischen Beugungslimits von Abbe. Die Auflösung dieser Art von Mikroskopie ist

unabhängig von der verwendeten Wellenlänge und liegt typischerweise im Bereich

von 10-100 Nanometern. Auf dieser Längenskala zeigen viele Materialien optisch

anisotropes Verhalten, auch wenn sie makroskopisch isotrop erscheinen. In der

vorliegenden Arbeit wird die bisher noch nicht bestimmte Wechselwirkung einer

streuenden Nahfeldsonde mit einer anisotropen Probe sowohl theoretisch als auch

experimentell untersucht.

Im theoretischen Teil wird das für isotrope Proben bekannte analytische Dipol-

modell auf anisotrope Materialien erweitert. Während für isotrope Proben ein reiner

Materialkontrast beobachtet wird, ist auf anisotropen Proben zusätzlich ein Kontrast

zwischen Bereichen mit unterschiedlicher Orientierung des Dielektrizitätstensors zu

erwarten. Die Berechnungen zeigen, dass dieser Anisotropiekontrast messbar ist,

wenn die Probe nahe einer Polaritonresonanz angeregt wird.

Der verwendete experimentelle Aufbau ermöglicht die optische Untersuchung von

Materialien im sichtbaren sowie im infraroten Wellenlängenbereich, wobei zur re-

sonanten Anregung ein Freie-Elektronen-Laser verwendet wurde. Das dem Nahfeld-

mikroskop zugrunde liegende Rasterkraftmikroskop bietet eine einzigartige Kombi-

nation verschiedener Rastersondenmikroskopie-Methoden und ermöglicht neben der

Untersuchung von komplementären Probeneigenschaften auch die Unterdrückung

von mechanisch und elektrisch induzierten Fehlkontrasten im optischen Signal.

An den ferroelektrischen Einkristallen Lithiumniobat und Bariumtitanat wurde

der anisotrope Nahfeldkontrast im infraroten Wellenlängenbereich untersucht. An

eindomänigem Lithiumniobat wurden das spektrale Verhalten des Nahfeldsignals

sowie dessen charakteristische Abhängigkeit von Polarisation, Abstand und Proben-

orientierung grundlegend untersucht. Auf Bariumtitanat, einem mehrdomänigen

Kristall, wurden analoge Messungen durchgeführt und zusätzlich Gebiete mit ver-

schiedenen Domänensorten abgebildet, wobei ein direkter nachfeldoptischer Kon-

trast aufgrund der Anisotropie der Probe nachgewiesen werden konnte.

Die experimentellen Ergebnisse dieser Arbeit stimmen mit den theoretischen

Vorhersagen überein. Ein durch die optische Anisotropie der Probe induzierter

Nahfeldkontrast ist messbar und erlaubt die optische Unterscheidung von Gebie-

ten mit unterschiedlicher Orientierung des Dielektriziätstensors, wobei eine Än-

derung desselben sowohl parallel als auch senkrecht zur Probenoberfläche messbar

ist. Diese Methode erlaubt die hochauflösende optische Untersuchung von lokalen

Anisotropien, was in zahlreichen Gebieten der Materialwissenschaft, Speichertech-

nik, Biologie und Nanooptik von Interesse ist.
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Lj Geometrical factors of an ellipsoidal particle (j = x, y, z)

m∗ Effective mass of the AFM cantilever

n Relative index of refraction (complex value)

nm Index of refraction of the sample surrounding medium (complex value)

ns Index of refraction of the sample (complex value)

p Dipole moment of a ferroelectric unit cell

ppy Pyroelectric coefficient

P Electric polarization of a ferroelectric sample

Pr Remanent polarization of a ferroelectric sample

Ps Image dipole in the sample

Ps Saturation polarization of a ferroelectric sample

Pt Tip dipole

Ptot Total dipole of the tip-sample system

q Charge close to a sample surface

q′ Image point charge

r Distance between scattering center and observation

ri Refraction angles, i=o,eo

rik Reflection coefficients of an anisotropic sample (i,k=s,p)

rp Reflection coefficient on an isotropic sample for p-polarized light

rs Reflection coefficient on an isotropic sample for s-polarized light

S Mechanical stress

Sj Strength of the jth infrared-active mode in the Lorentz oscillator model

T Vector scattering amplitude

T Temperature

t Thickness of the AFM cantilever

t Time

TC Curie temperature
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V Visibility

Vaa Optical contrast between differently oriented a domains

Vac Optical contrast between a and c domains

VUC Volume of a unit cell

w Width of the AFM cantilever

Abbreviations and Acronyms

4Q-PD Four-quadrant photodiode

ac Alternating current

a domain Sample region with the optical axis parallel to the sample surface

AFM Atomic force microscopy

Al Aluminum

AM Amplitude-modulated control of noncontact AFM mode

AOM Acousto-optical modulator

a-SNOM Aperture-type scanning near-field optical microscopy

Au Gold

Ba Barium

BaTiO3 Barium titanate

c domain Sample region with the optical axis perpendicular to the sample surface

dc Direct current

eo Extraordinary

FEL Free-electron laser
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FZD Forschungszentrum Dresden-Rossendorf

HeNe Helium-Neon
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KPFM Kelvin probe force microscopy
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MMP Method of multiple multipoles

Nb Niobium

O Oxygen

o Ordinary

OOP Out-of-plane
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PFM Piezoresponse force microscopy

PLL Phase-locked loop

Pt-Ir5 Platinum-iridium

Pt Platinum

Q factor Quality factor

SEM Scanning electron microscopy

SiC Silicon carbide

SI International System of Units

Si Silicon

SNOM Scanning near-field optical microscopy
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1 Introduction

The optical appearance of an object is its first property we observe with our own

eyes. This might be the reason why the optical properties of materials are subject of

the oldest and most common examination methods. Already in the ancient world,

people discussed the origin of the ”optike”, which is the ancient Greek word for

appearance or look [Wik07]. One opinion was that the eye sends out a beam which

raster-scans the surrounding matter in order to form an image; another imagination

was that a beam made of light atoms is sent out from the matter and reaches the

eye (Demokrit, Aristoteles) [Tip94]. All these ideas had the linear propagation of

light in common.

In the 17th century the question arised as to whether light is a particle beam

(Isaac Newton) or a wave (Christian Huygens, Robert Hooke). Newtons reputation

resulted in the refusal of the wave theory, until in 1801 Thomas Young explained

interference phenomena by the wavelike properties of light. His explanation was

confirmed ten years later by the work of Augustin Fresnel concerning interference,

diffraction, and the theoretical description of light as a wave. In 1860, James Clerk

Maxwell published his theory of electromagnetism, which was confirmed experimen-

tally in 1887 by Heinrich Hertz as well as by Kirchhoff and others. The properties

of light seemed to be properly described by the wave theory until Einstein showed

that this model could not explain the photoelectric effect and he proposed the quan-

tization of light into photons. Finally in 1920, Davisson, Germer, and Thompson

observed the wavelike behavior of electrons which lead to the wave-particle dualism,

which is still state-of-the-art.

In the last century, optics has continuously developed new fields. The laser,

which was invented around 1960, opened many new fields of optical research and is

used today in numerous applications, such as medical sciences and surgery, cutting

and welding, as a pointer, and for scanning and printing. Optical fibers are used for

high-speed data transfer, and many data storage devices such as CDs and bar-code

labels are read by means of laser light. In order to achieve higher storage densities,

strong efforts are being undertaken in order to scale down these data storage devices

as well as integrated optics to the nanometer scale. The interaction of light with

such small structures is described by evanescent waves, waves that recede over a

distance smaller than the wavelength and are present in the very proximity of the

matter.
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These evanescent waves may be observed in so-called near-field optical micro-

scopes and, as they carry information on the local sample properties, they allow the

optical examination of samples way below the diffraction limit. The basic princi-

ple of near-field microscopy – as proposed by Synge in 1928 [Syn28] and realized

experimentally for the first time in the 1970s [Ash72] – is the illumination of the

sample through an aperture of subwavelength size. As only this very sample area is

illuminated, one achieves a resolution which is no longer limited by the wavelength

but by the size of the aperture. Another type of near-field microscope, which is used

in the present work, is the scattering-type near-field optical microscope, in which the

aperture is replaced by a scatterer being small compared with the wavelength and

acting as a nanoscopic light source. A more detailed description of these methods is

given in chapter 2.

As the resolution of near-field optical microscopes is no longer limited by the

wavelength, these nondestructive methods are applied to many fields, such as mate-

rials science, biology, and nano-electronics. Even at IR wavelengths it is possible to

reach a resolution on the nanometer scale, which opens a broad field of applications.

Near-field optical microscopy is described with models assuming mostly isotropic

samples or periodic structures of the sample. As most samples show anisotropies on

the nanometer scale – even though they appear isotropic on the macroscopic scale

– the question arises as to how this anisotropy influences the near-field signal and

whether this anisotropy may be measured.

The present work examines the influence of optical anisotropy of a sample in

s-SNOM. The work is divided in a theoretical part and an experimental part.

Theoretically, we extend a known model – applied to the s-SNOM examination

of isotropic samples (see chapter 5) – to anisotropic samples and calculate a contrast

caused by the anisotropy of a sample in addition to the well-known material con-

trast (see chapter 6). As the anisotropy contrast is expected to be fairly small, we

find that a resonant excitation of the sample is necessary to measure this contrast

experimentally.

As highly ordered and well-defined samples, we chose ferroelectric single crystals,

which are optically uniaxial birefringent materials with an atomically flat surface.

The basic properties of these sample are discussed in chapter 3.

An additional objective of the present work – in continuation of the preceding

diploma thesis – is the design and assembly of a proper experimental setup (see

chapter 8), which allows the examination of the anisotropy contrast. The basis is

an atomic force microscope with additional illumination of the probe tip for optical

investigations (for a short introduction to scanning probe microscopy in general see

chapter 4). As the expected contrast is fairly small, we focus on the reduction of the

characteristic artifacts scanning probe microscopy is known for, such as topographic

or electrostatic cross-talk. The resulting unique setup is suitable for the visible and

the IR wavelength regimes. As the samples show resonances in the IR regime and,
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hence, the anisotropy contrast is highly enhanced for these wavelengths, we focus

mainly on the measurements performed in the IR. As a light source we use the most

powerful light source in the IR, namely a free-electron laser at the Forschungszentrum

Dresden-Rossendorf, offering a wavelength regime of 4 to 22 µm at the time of this

work, which has meanwhile been extended to a wavelength range up to 150 µm.

As far as we know, the combination of a near-field optical microscope with a free-

electron laser is unique in the world. It offers great application possibilities due to

its precisely and continuously tunable wavelength.

In order to examine the resonantly excited ferroelectric samples with near-field

optical microscopy, we use several complementary techniques such as spectroscopy,

z scans, and lateral scans. For studying the anisotropy contrast mechanism, we

analyze two different samples, namely lithium niobate and barium titanate, which

show resonances at different wavelengths. We compare the results with theoretical

calculations and find resonances at the predicted wavelengths. In order to examine

the anisotropy contrast, we correlate the optical signals with the local anisotropy

distribution of the samples and scan sample areas with different anisotropic prop-

erties. The results for lithium niobate and barium titanate are summarized in the

chapters 9 and 10.





Part I

Fundamental Aspects





2 Near-Field Optical Microscopy

In this chapter we give a general introduction into near-field optical microscopy.

Even though it is a rather new technique which has been fast-paced in the last decades,

the principle idea is 80 years old. The history of near-field microscopy and the basic

ideas of the different types are introduced as well as possible applications to several

fields of science.

2.1 Near-field Optical Microscopy in General

Optical microscopy is one of the most commonly used examination methods in sci-

ence, as it is fast, non-destructive and easy to interpret. In the last decades, the

growth of nanotechnology has raised the need for high-resolution imaging techniques,

followed by a boost of numerous scanning probe microscopy methods. Various prop-

erties of a sample can be imaged with ultrahigh resolution down to the atomic scale

by using the appropriate techniques. In order to measure the optical properties

below the diffraction limit, we examine the evanescent light bound to the material

surfaces.

In 1928 Synge [Syn28] proposed that one could examine a sample optically with

a resolution surpassing the diffraction limit of E. Abbe [Abb73, Abb83] by illumi-

nating the sample locally. This can be realized by placing a screen with a hole small

compared to the wavelength close to the sample of interest. The sample is illumi-

nated only through this hole, which acts as a small light source, and thus any light

collected from the sample has its origin at this small area (see figure 2.1a,b). Fol-

lowing Babinet’s principle of complementary screens [Jac83], instead of the hole also

the complementary inverted structure - i.e. a small scatterer - may be placed close

to the sample surface, allowing the same resolution as the aperture (see figure 2.1c).

For Synge in 1928 it was not possible to prove his predictions in experiments,

because, firstly, he was not able to prepare a small-enough aperture and, secondly,

it was even more difficult to bring the aperture close enough to the sample surface.

Almost 50 years later, in 1972, Ash and Nicholls for the first time reported a reso-

lution of λ/60 with this technique by using microwaves of around λ = 3 cm and an

aperture size of a = 1.5 mm= λ/20 [Ash72]. At visible wavelengths it was still not

possible to observe a near-field effect, because the aperture could not be positioned
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>λ/2 a a

(a) (b) (c)

Figure 2.1: (a) Classical optical examination of a sample, limited in resolution

by the wavelength in accordance with Abbe’s diffraction limit [Abb83]. (b) Illu-

mination with evanescent waves through an aperture allows a resolution that is

limited by the diameter of the aperture a only (Synge 1928) [Syn28]. (c) Follow-

ing Babinet’s principle of complementary screens, a particle of the same shape as

the aperture in (b) should allow the same resolution.

close enough to the sample surface.

With the advent of SPM, techniques were developed that allowed the experi-

menter to position a probe close to a sample surface with a dramatically improved

precision. In, for example, STM and AFM the distance between the probe and

the sample is kept constant at 1 to 50 nm with an accuracy better than 0.1 nm

[Bin82, Bin86, Sar91]. In 1984, several groups reported the design and first results of

scanning near-field optical microscopy at visible wavelengths, using small apertures

to reach a resolution way below the diffraction limit. Lewis et al. reported the trans-

mission through fixed apertures of different diameters as a pre-result showing the

possible resolution of the scanning optical microscope down to λ/10 at λ = 488 nm

[Lew84]. Only a couple of months later Pohl et al. reported first results of an ”opti-

cal stethoscope”, which consisted of an aperture with a diameter of less than 20 nm

scanning over a sample surface, with a resolution of λ/20 at λ = 488 nm [Poh84].

The aperture scattering scanning near-field optical microscope (a-SNOM) was born.

Using a particle or a tip instead of an aperture in near-field microscopy was pro-

posed by Wessel [Wes85] and first realized by Specht et al.. They excited a plasmon

in a gold film and probed its near-field with a STM, achieving a resolution of 3 nm

(λ/200) [Spe92]. Scattering the light directly at a metal tip placed close to a sam-

ple surface was for the first time reported in 1994 by Inouye and Kawata [Ino94].

Only a couple of months later Zenhäusern et al. showed a similar technique with a

resolution of 3 nm (λ/200) [Zen94, Zen95]. Both groups modulated the tip-sample

distance in order to suppress the background. With this, the first scattering scan-

ning near-field optical microscopes (s-SNOM) had entered the stage. A couple of

years later, in 1996, first s-SNOM measurements were performed at IR wavelengths

(10.6 µm) with a resolution of 17 nm, showing clearly that the resolution does not

depend on the wavelength but only on the radius of the tip apex [Lah96].
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Figure 2.2: Sketch of (a) aperture-type SNOM (a-SNOM) with near-field il-

lumination of the sample through a fiber, (b) scattering-type SNOM (s-SNOM)

with scattering of light at a tip with the sample within near-field reach.

In the literature there are several abbreviations used for near-field optical mi-

croscopy such as SNOM [Bar96, Hil00, Lah96, Mag01, Ras05, Tau04a, Wur98],

NSOM [Bet86, Bet91, DW06, Ham98, Ino94, Kar95, Mar96, Tal96, Zen94], NFOM

[Bac94], and NFOS [Dür86, Fis88]. Because it is easiest to pronounce, in this work,

we use the acronym SNOM. As the aperture-type SNOM was chronologically the

first type and hence no separation from other types was needed, it is simply called

SNOM or NSOM, while the apertureless or scattering-type SNOM has a prefix: AN-

SOM [Hub98, Lev00], a-SNOM [Aub03, Bek06], or s-SNOM [Hil00, Ras05, Tau04a].

In order to differentiate clearly between the two types of SNOM, in the present work

we call the aperture type ”a-SNOM” and the scattering type ”s-SNOM”.

In the following sections we will discuss in detail the two variants of near-field

microscopy, i.e. a-SNOM and s-SNOM, as sketched in figure 2.2.

2.2 Aperture Scanning Near-Field Optical

Microscopy

In a-SNOM a small aperture is placed close to a sample surface. Historically this

aperture was a hole in a screen or diaphragm [Fis85, Lew84, Syn28]. Today the

method has been improved a lot and usually one uses pulled glass fibers with or

without a metal coating [Bet92]. The metal coating decreases the aperture size at

the end of the fiber, which can be as small as 70 nm [Buk97]. 20 years after the

development of the first SNOMs, the basic physics of near-field microscopy are well

understood. a-SNOM is no longer the matter of basic research only but is also a

standard instrument which is even commercially available [Nan07a, Omi07, WiT07].

This illustrates clearly the high interest of the scientific community in high-resolution

optical microscopy.

The different operation modes in a-SNOM are sketched in figure 2.3. The fiber
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(a) (b) (c)

Figure 2.3: Different illumination modes in aperture SNOM: (a) illumination

through the fiber, (b) detection through the fiber and (c) illumination and detec-

tion through the fiber.

can be used as a nanoscopic light source in that light is transmitted through the

fiber while the light coming from the sample is collected by far-field optical elements

(fig. 2.3a) [Dür86, Mur95, Sei01]. Conversely the sample may be illuminated through

far-field optical elements while the near-field is detected by a fiber as illustrated in

figure 2.3b. For far-field illumination, the sample is mostly placed on a prism and

illuminated in total internal reflection [Cou89, Nov06], as also used for the excitation

of surface plasmons in metal films [Kre71]. Finally, it is possible to both illuminate

and detect through the fiber (see figure 2.3c), which is however done in rare cases

only as the through-put of the aperture is very small.

For near-field microscopy it is important to control the distance between the

probe and the sample in the range of a few nanometers. For fiber tips, this distance

control is mostly done by so-called shear-force control. The fiber is oscillating and

the interaction with the sample causes a damping of this oscillation. The oscillation

may be detected optically by focusing a laser beam on the tip and measuring the

signal modulated by the motion of the tip. For this detection method the light needs

to be focused on the fiber close to the tip end, causing an additional illumination

of the region of interest of the sample. Therefore, most groups use a nonoptical

distance control, such as the method developed by Karrai and Grober [Kar95]. They

mounted the fiber on one prong of a crystal quartz tuning fork. The fork is excited

on resonance by an external piezo. Typically, the resonance frequency is about

33 kHz and the Q factor is about 1700. When the tip interacts with the surface, the

system will be damped and thus the Q factor decreases. This can be detected as a

change of the induced piezo-voltage at the electrodes of the fork. This method works

quite well, but every new fiber tip needs to be attached separately to a tuning fork

which requires a large preparation effort. Additionally, the high Q factors require

slow scan rates [Bar96]. Barenz et al. attached the fiber tip to a four segmented

piezotube that could be oscillated at frequencies of 10 kHz and higher. One segment
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of the piezotube excited the fiber tip on resonance, while the other three segments

detected the tip vibration, similar to a piezomicrophone. When the tip is damped

by shear forces, the induced voltage at the three segments changes, which can easily

be detected with a lock-in amplifier [Bar96]. A further detection method is based

on a bent glass fiber used like an AFM cantilever [Mur95, Nan07a, Tal96, Tay97].

The main advantage of a-SNOM is clearly the small background field. Routinely

a resolution of 100 nm can be achieved, the ultimate resolution being 20 nm.

The resolution in a-SNOM is in principle limited by the diameter of the aperture.

However, as the light penetrates into the metal cladding, the effective aperture

cannot be made smaller in diameter than approximately twice the skin depth of

the metal coating, which is around 20 nm for aluminum. Additionally, a-SNOM

struggles with low signal levels. Even highly sophisticated tips have a transmittance

of no more than 10−3 for a 70-nm-diameter aperture [Buk97]. As high powers cannot

be used, because the heating will cause the metal coating to flake off, a-SNOM is

hence limited to very small signals [Lev00, Stä96].

Examining anisotropic samples such as ferroelectrics with an a-SNOM is realized

usually by either examining the polarization dependence of the near-field signal by

modulating the polarization of the incident light [McD98, Ram02], by modulating

the electro-optical response of the sample by an external voltage [Hub98, Lev00,

Ott04, Orl00], or by imaging second harmonic generation [Smo99, Smo01a, Smo01b,

Xie01].

2.3 Scattering Scanning Near-Field Optical

Microscopy

In scattering scanning near-field optical microscopy (s-SNOM) a scatterer is placed

close to the sample surface. This scatterer can be a particle or a SPM tip. Light

scattered by this probe contains information about the near-field interaction with

the region of the sample next to the scatterer. Basically the near-field signal depends

on the local dielectric constant, so that a contrast arises between regions of different

optical properties.

In principle, it is possible to distribute many particles on the sample surface

and to address optically one selected particle for reading a certain sample area.

Unfortunately, the near-field signal depends strongly on the shape of the particle

and hence the particles distributed on the sample would need to have precisely

the same shape and size to deliver clear information rather than simply producing

statistical data. Hence, it is more convenient to move one and the same particle

over the sample and compare the scattering signals on different sample areas.

In scanning probe microscopy the scanning of the sample as well as the very deli-

cate problem of distance control have already been solved. Using such an SPM-based

s-SNOM one gets complementary information about various sample properties, such
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as topography, mechanical hardness, or electrical properties. The s-SNOMs used to-

day are based on STM [Spe92, Wes85] or AFM [Bre05, Hil00, Kei04, Lev00, Tau03,

Wur98].

If the tip is placed close to the sample surface, meaning at distances h smaller

than the radius a of the tip apex and much smaller than the wavelength λ, the

resolution of the s-SNOM is only limited by the tip radius a. Typically, the resolution

of the s-SNOM is in the order of the resolution of the underlying AFM. In particular,

the resolution does not depend on the wavelength.

There are various modes of illumination in s-SNOM. The tip can be illuminated

directly – from the side [Bek06] or the top [Bac94, Mar97] – or it can be illuminated

through the sample in transmission mode [Mag01]. Many groups use an illumination

in total internal reflection in order to reduce the background [Aub03, Ham98, Ino94,

Wur03]. The interpretation of data measured in transmission mode is complicated,

as the light is modified by the sample already before reaching the tip, even without

any near-field interaction. Therefore we recommend the application of transmis-

sion mode for thin samples only. In particular for the thick polar samples used

in the present work, an illumination in transmission mode is not advisable, as the

birefringent sample changes the field distribution at the position of the tip.

For detection there are as well several possibilities. Some groups detect as much

light as possible using an ellipsoidal mirror [Kno99a, Kno99b]. In principle all di-

rections of detection are suitable, but one should keep in mind that a non-spherical

tip shows a main scattering direction due to an antennalike behavior [GL99, Kni76].

Detection in forward direction has the disadvantage of increased background in the

detected signal. In our setup we measure the backward-scattered light, the main

advantage being that only one focus has to be adjusted [Bek06, Hil00]. The col-

lection of the scattered light through the sample is possible as well, with the same

restriction to thin and transparent samples as mentioned above for the transmission

illumination mode [Mag01].

The main problem in near-field detection is to separate the small near-field signal

from the huge background with an acceptable signal-to-noise ratio. A second task

is to disentangle the amplitude and phase of the scattered wave.

First of all it is advisable to use a proper tip material and wavelength to excite

the tip-sample system in a region where a large near-field signal is expected. For

example a spherical gold particle as a scatterer shows plasmon resonances in the

visible wavelength regime depending on the size of the particle [Kal04]. A detailed

description of the wavelength dependence of the coupled tip-sample system is given

in the theoretical part of this work (section 6.3). The background may be reduced

by using an illumination geometry that by itself produces little background, for

example total internal reflection. There is even one group that developed a near-

field microscope without any light source to avoid the background completely – they

measure the thermal infrared evanescent field emitted by the surface itself [DW06].
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Figure 2.4: Principle of higher-harmonic demodulation. Demodulation of the

signal at nΩ with n ≥ 2 allows the suppression of any far-field signal.

Another possibility is to detect only the light from the very area of interest by using,

for example, confocal detection [Wur03].

As already shown in the first s-SNOMs reported in the literature [Ino94, Zen94],

one can use the distance dependence of the near-field signal to modulate the scat-

tered light by vibrating the tip with a certain amplitude and frequency Ω close to

the sample surface [Bek05, Lab00, Mag01]. In AFM such a cantilever oscillation is

used for distance control in the so-called noncontact mode and, hence, it is easy to

realize with a SPM-based setup. In order to avoid any cross talk between the me-

chanical tip-sample interaction and the near-field signal it is important to maintain

a constant amplitude of this oscillation on different sample materials and regions.

As the near-field signal depends strongly on the distance and the modulation ampli-

tude [Tau05, Bek05], it is advised to use an additional amplitude controller to reduce

topographical artifacts as reported in the literature [Bek06, Bil06, Lab00, Tau03].

For more details see the description of our experimental setup in chapter 8.

The method of so-called higher-harmonic demodulation allows us to separate the

far-field from the near-field signal as illustrated in figure 2.4 [Hil01b]. As the far field

depends essentially linearly on the distance, it is modulated at the tip oscillation

frequency Ω and contains virtually no higher harmonics. On the other hand, as the

near-field signal depends highly nonlinearly on the distance, it shows contributions

to all higher harmonics. A more detailed discussion is given in the theoretical part

of this work (section 5.3) as well as in the experimental part (chapter 8).

In order to separate the near-field optical amplitude and phase, an interferometric

detection can be used to compare the scattered light with a reference beam having

a fixed phase correlation to the incident light. Basically there are two different

interferometric detection methods: homodyne and heterodyne detection.

In homodyne interferometric detection the reference beam has the same fre-

quency as the light scattered by the tip. Basically the setup is a Michelson inter-

ferometer with the near-field microscope placed at the position of one mirror. The

phase between the scattered beam and the reference beam depends on the pathlength

difference. By performing two measurements at selected positions of the reference
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mirror, we are able to calculate the optical amplitude and phase separately from the

two measurements [Tau04b]. Another possibility is to modulate the relative phase

by vibrating the reference mirror at a certain frequency [Ceb06, Oce06]. A detailed

description is given in the theory part of this work in section 5.3. The main advan-

tage of this method is that it is applicable at any wavelength. The principle works

for visible wavelengths as well as in the IR - only the displacement of the reference

mirror needs to be adjusted.

In heterodyne interferometric detection, the reference beam is shifted in fre-

quency by ∆ by means of, for example, an acousto-optical modulator (AOM). Hence,

the interference of scattered beam and reference beam produces a beating signal with

the beating frequency ∆. Using lock-in technique, one can directly measure the op-

tical amplitude and phase of the scattered light. The reference amplitude can be

used to increase the signal by a constant factor, which increases the signal-to-noise

ratio. Additionally, the shift of the signal of interest to higher frequencies reduces

background noise due to mechanical instabilities and electric noise. The main dis-

advantage is that the method is essentially restricted to visible wavelengths, as the

AOM is limited to this wavelength range. A detailed description is given in the

theoretical part of this work (section 5.3) and in the description of our experimental

setup used at visible wavelengths (section 8.3).

s-SNOM has been applied at visible wavelengths to a wide range of materi-

als reaching from anorganic structures – such as metal structures for data storage

[Mar97] or plasmon excitation [Hil03, Wur03] – to organic materials [Hra02, Mar96].

The near field of light-emitting laser diodes has been examined [Bac98, Wur99] and

spectroscopical studies on tobacco mosaic viruses have been performed [Mar96].

The resolution of s-SNOM is not limited by the wavelength. During the last

ten years, there has been a rapid increase in the number of s-SNOM setups used

in the IR regime. Many samples show interesting properties at IR wavelengths

that have never before been examined optically with such an ultrahigh resolu-

tion about 1000 times higher than with classical optical microscopy. As a typi-

cal light source in the IR regime, most groups use a CO2 laser with λ ∼= 10 µm

[Akh02, Hil04, Kno98, Kno99c, Lah96]. They report a resolution as good as 30 nm

on structured metal films [Hil04, Kno99b]. Other samples examined by IR-s-SNOM

were phonon-active materials such as SiC [Hil02b, Hub05, Hub06, Tau04b], Si3N4

[Hil04], and SiC with ion-beam-implanted structures [Oce04], as well as organic ma-

terials such as polymers [Tau04a], biological samples such as DNA strands [Akh02].

A line-tunable CO laser (λ ∼= 6 µm) was used for the IR spectroscopic mapping

of tobacco mosaic viruses [Bre06b]. An alternative light source in the IR is the

frequency comb laser offering simultaneously a set of discrete wavelengths between

λ = 9 µm and 12µm [Sch05b]. First measurements have been reported, allowing

so-called ”snapshots” of IR spectra [Bre06a], but the method still suffers from low-

power signals. Combining s-SNOM with a FEL, as in the present work, is so far
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unique in the world and offers access to a large wavelength range at high power.

The optical resolution in s-SNOM is not limited by the wavelength, but depends

only on the size of the probe and possibly could be improved down to the atomic

scale [Hil04, Tau03]. This wavelength independence facilitates many applications in

biology, chemistry, materials science, as well as in basic research. For example near-

field studies on diblock-copolymer nanostructures at IR wavelengths (λ ∼= 3.4 µm)

are reaching intramolecular infrared spectroscopy [Ras05]. Very recently, examina-

tions of specially designed metamaterials proved the superlensing effect [Pen00] at

infrared wavelengths (λ ∼= 10.85 µm) [Tau06].

As these applications are heading towards ultrahigh optical resolution in near-

field microscopy the question arises whether the model of an isotropic sample is

still valid. On the nanometer scale nearly every sample shows local anisotropy even

when it is isotropic on the macroscopic scale. The question how this anisotropy

changes the near-field signal is the topic of the present work, with special reference

to ferroelectric crystals. These samples show well-defined anisotropic structures

while having an atomically flat surface and are thus the ideal samples for anisotropy

investigations (see chapter 3).

2.4 Summary

In this chapter we have given a short overview of the history of scattering scanning

near-field optical microscopy. We have illuminated the basic idea of Synge of optical

resolution below the diffraction limit. Today there are two types of SNOMs using

either an aperture or a scattering particle to examine the near-field properties of

the sample of interest. The applications of s-SNOM fill a wide range due to the

wavelength-independent ultrahigh resolution of the method.





3 Ferroelectrics

Ferroelectric single crystals are examined in the present work to study the in-

fluence of sample anisotropy on the near-field interaction with a scattering probe.

We chose these samples because they show an atomically flat surface while having

a well-defined domain distribution with different orientations of the optical axis and

thus allow us to image a purely optically induced contrast without cross talk from the

topography.

Ferroelectrics have many applications because of their unique material properties.

In this chapter, a short introduction to ferroelectric materials is given, focussing on

the materials and properties relevant for this work.

3.1 Basic Properties of Ferroelectrics

Pyroelectrics are materials showing a spontaneous electric polarization without an

external electric field. If the direction of this polarization can be reoriented by an

external electric field, the pyroelectric material is called ferroelectric. The name

ferroelectricity comes from the analogy to ferromagnetic materials, which show a

spontaneous magnetic polarization that is switchable by an external magnetic field

[Was03].

The dependence of the polarization P on the external electric field E typically

follows a hysteresis loop as shown in figure 3.1a [Was03]. At large electric fields the

polarization is saturated at Ps. When the electric field is decreased to zero again,

the polarization does not go to zero but a certain remanent polarization Pr remains.

In order to reduce the polarization to zero, a coercive field Ec is necessary [Was03].

As ferroelectrics are pyroelectric (see figure 3.1b), a change of the temperature

∆T causes a change of the polarization of the material

∆P = ppy∆T (3.1)

with ppy the pyroelectric coefficient. The change of the polarization generates charges

on the sample surface which can be electrically detected as a current if electrodes

are attached. This effect is used in some IR detectors at room temperature.

All pyroelectric materials are also piezoelectric (see figure 3.1b), i.e., an applied

mechanical stress S changes the polarization of the material. For small changes of
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Figure 3.1: (a) Hysteresis of the polarization P as a function of an external

electric field E for ferroelectric materials: Maximal polarization is the saturation

polarization Ps. The hysteresis curves cuts the ordinate at Pr, which is the rema-

nent polarization. In order to reduce the polarization to zero, a coercive field Ec is

necessary. [Was03]. (b) Classification of ferroelectric materials. Ferroelectrics are

a subgroup of pyroelectrics, which again are a subgroup of piezoelectrics [Sch05a].

S the polarization is given by

P = dS (3.2)

with d the piezoelectric coefficient. Again the change of polarization can be mea-

sured as a current, which finds an application in, for example, mechanical sensors.

The converse piezoelectric effect is the mechanical strain caused by an applied elec-

tric field. This effect is used in mechanical actuators. As the piezoelectric coefficient

is a third-rank tensor, the resulting polarization is not necessarily oriented along the

direction of the mechanical stress. Ferroelectric materials show a response in the

parallel component d33 – meaning polarization and stress are in the same direction

–, in the perpendicular component d31 – polarization perpendicular to the applied

stress–, and in the shear component d15 - the reaction of the polarization when a

shear stress is applied [Was03]. These components can be examined in piezoresponse

force microscopy described below (see section 4.2).

Many properties of ferroelectric structures are unique and thus find applica-

tions in various fields. Their high dielectric constant over a wide temperature and

frequency range makes ferroelectrics useful as dielectric in integrated or surface-

mounted-device (SMD) capacitors. Due to their large piezoelectric coefficients they

are also are used as electromechanical sensors, actuators, and transducers, while

their large pyroelectric coefficients are used in IR sensors. The birefringence and

nonlinear optical behavior of the crystals find applications in optical and electro-

optical elements. The direction of the spontaneous polarization is directly used

as the information-carrying quantity in nonvolatile memories [Auc98, Was03], for
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example in the Sony PlayStation 2 [Son07].

Most ferroelectric materials are paraelectric above a certain transition temper-

ature, the so-called Curie temperature TC . The transition between different states

can either be a second or a first-order transition, corresponding to the order para-

meter in the Ginzburg-Landau theory of ferroelectric phase transitions. Basically,

in the second-order transition, the polarization as the order parameter diminishes

continuously to zero at the phase transition temperature TC , while in the first-order

transition there is a discontinuous change [Kit05].

Ferroelectric materials may be divided into two main classes: the order-disorder

class and the displacive class. The order-disorder class includes hydrogen-bonded

systems such as KDP (potassium dihydrogen phosphate). The displacive class in-

cludes ionic crystal structures as the perovskites. As both ferroelectrics used in this

work are ionic crystals, we will focus on the second class in the following.

Most ferroelectrics are ion crystals in which the centers of positive and negative

ions are displaced against each other. Thus each unit cell of the crystal has a certain

dipole moment p. The polarization of the crystal is the average dipole moment per

unit volume. The possible directions of the polarization are limited by the crystal

structure. For example in ferroelectrics with a tetragonal unit cell, there are six

possible orientations The polarization can be along any of three orthogonal axes,

pointing either in the forward or backward direction.

Regions with a uniform direction of the spontaneous polarization are called do-

mains. The boundaries between different domains are called domain walls and are

characterized by the angle between the polarization directions on either side of the

wall. For example, a 180◦ domain wall is the boundary between domains with an-

tiparallel polarizations, while a 90◦ domain wall separates, for example, two domains

with up and a left polarization, respectively.

The formation of the domains is caused by electrical and mechanical boundary

conditions. Most crystals form domains with opposite polarizations in order to min-

imize the electrical depolarization energy. In stable single crystals, the domain walls

go straight through the crystal – the domain distribution on the surface represents

the domain distribution in the whole crystal.

In the following, we will discuss the special properties of the ferroelectrics used

in the present work, namely BaTiO3 and LiNbO3.

3.2 Barium Titanate

BaTiO3 is a typical displacive ferroelectric crystal with a so-called perovskite struc-

ture as shown in figure 3.2. At high temperatures it is cubic in the paraelectric

phase. The volume of the unit cell is VUC
∼= 64 · 10−24cm3 corresponding to an edge
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Figure 3.2: Unit cell of BaTiO3 (a) in the cubic phase above the Curie temper-

ature and (b) in the tetragonal phase below TC . The positive ions Ba2+ and Ti4+

are displaced with respect to the negative O2−-ions, resulting in a polarization of

the unit cell [Kit05].

Monoclinic TetragonalRhombohedral

Temperature (°C)

Figure 3.3: Spontaneous polarization of BaTiO3 as a function of temperature

[Kit05].
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Figure 3.4: (a) Combination of adjacent domains that are forbidden because

of charged 180◦ domain walls. (b) Possible combinations of adjacent domains

separated by 180◦ and (c) 90◦ domain walls, respectively. (d) Sketch of typical

domain distribution in BaTiO3 single crystals in top and side view. Subfigures

(a)-(c) are correspond to side view.

length of 4 Å. Below TC = 120◦C it becomes ferroelectric with a tetragonally de-

formed unit cell with a displacement of δ ∼= 0.1 Å resulting in a spontaneous dipole

moment of p ∼= 2 · 10−29 Cm. At room temperature it is in this tetragonal phase

[Kit05]. At lower temperatures, BaTiO3 shows two more phase transitions leading

to a orthorhombic and finally to a rhombohedral unit cell as shown in figure 3.3

[Jon62, Kit05]. All phase transitions are 1st -order transitions showing discontinu-

ities in the spontaneous polarization.

In the tetragonal phase, BaTiO3 is uniaxially birefringent with the optical axis

parallel to the spontaneous polarization of the crystal. If the surface of the crystal

is a (100) surface, the optical axis can be oriented either perpendicularly to the

sample surface or lie within the surface plane along either of two axes at right angle

to each other. The corresponding domains are called c domains for perpendicular

orientation and a domains for parallel orientation.

The typical domain distributions of BaTiO3 in the tetragonal phase are restricted

to a limited set of possible combinations of domains, due to the crystal structure

and because of charged domain walls being energetically unfavorable [Hip50, Mer54].

Two domains separated by a 180◦ wall have antiparallel polarizations. As the tetrag-

onal distortion of the unit cell is in the same direction in both domains, all combina-

tions sketched in figure 3.4a,b are possible from the crystallographic point of view.

If the two polarizations are facing each other as sketched in figure 3.4a, then the

domain walls are charged and thus the structure is not stable for energetic reasons.

As the unit cell is only slightly tetragonally distorted, also 90◦ domain walls are

possible. To compensate for the misfit of the unit cells on either side of the 90◦

domain wall, the surface of the a domain is tilted by typically 0.66◦ [Gru97a] with

respect to the surface of the adjacent c domain. Furthermore due to the tetrago-
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nality of the unit cell, the 90◦ wall runs through the crystal at an angle of 44.66◦

with respect to the polarization directions on either side. Avoiding again charged

domain walls, four 90◦ domains walls are possible as sketched in figure 3.4c. Fig-

ure 3.4d shows a typical domain distribution of BaTiO3 in top and side view. Due

to the crystal structure, neighboring out-of-plane domains are typically separated

by a meanderlike 180◦ domain wall, while the 180◦ domain walls between in-plane

domains are always straight. In the side view sketch we observe the typical 44.66◦

angle of the 90◦ domain walls, while the 180◦ domain walls are perpendicular to the

sample surface.

3.3 Lithium Niobate

LiNbO3 shows large optical nonlinearities and is thus used in the field of electro-

optic modulators, parametric oscillators, harmonic generators, etc. It is ferroelectric

at room temperature and can be grown in the form of large optic-quality single

crystals. It is uniaxial at all temperatures with only a single structural phase

transition to the paraelectric phase, which is of second order, corresponding to a

continuous change of the spontaneous polarization [Lin77]. It has a Curie tem-

perature of TC = 1200◦C and the spontaneous polarization at room temperature

is P ∼= 71 µC/cm2 [Kit05, Abr66]. The unit cell of LiNbO3 has a size of about

(5.1×5.1×13.8) Å3, which is much larger than the unit cell of BaTiO3 [Vei02]. The

displacement of the lithium and niobium ions in the ferroelectric phase is δLi
∼= 0.9 Å

and δNb
∼= 0.5 Å, respectively [Kit05].

LiNbO3 shows a much more complex crystal structure than BaTiO3 as shown in

figure 3.5. It consists of planar sheets of oxygen atoms in approximately hexagonal

close packing. The resulting octahedral interstices are one-third occupied by Nb5+

and one-third by Li+, the remainder being vacant. Figure 3.5a shows the sequence of

distorted octahedra along the polar c axis with Nb at the origin. The corresponding

view along the polar axis is displayed in figure 3.5b, in which the Nb and Li ions

are indicated within the outlined unit cell. The oxygen lattice has been idealized for

simplicity [Abr66].

LiNbO3 is uniaxially birefringent with ∆n ∼= 0.1 with the optical axis being

parallel to the spontaneous polarization. Because of its crystal structure, there are

only two possible directions of the polarization, which are antiparallel with respect

to each other. Hence, only 180◦ domain walls are possible, separating the two types

of domains.

Periodically poled lithium niobate is used to achieve quasi-phase-matching in

nonlinear optics. Here, the ferroelectric domains point alternately in the +c and the

-c directions, with a period of typically between 5 and 25 µm. The shorter periods

are used in second-harmonic generation, while the longer ones are suitable for optical

parametric amplification. The periodic poling is achieved by electrical poling with

periodically structured electrodes.
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Figure 3.5: Unit cell of LiNbO3 [Abr66].

3.4 Examination of Ferroelectric Domains

Ferroelectrics show various properties, which can be examined with numerous meth-

ods of which only some are mentioned here.

An easy and fast method is transmission optical microscopy with the ferroelectric

sample placed between crossed polarizers [Jon62]. It allows the examination of the

orientation of the optical axis of birefringent ferroelectrics. If the optical axis is

oriented along the k vector of the incident light, then the polarization is not changed

by the sample and the domain appears dark. The presence of a component of the

optical axis perpendicular to k will lead to a rotated polarization, depending on the

orientation and the thickness of the ferroelectric. Thus such regions appear bright.

The combination of optical microscopy and electric voltage allows the examina-

tion of the electro-optic response of the sample. For this the optical properties of

the sample are mostly modulated by application of an ac voltage and imaged in the

far field [Hub97, Hub00, Tik00] or in the near field [Ott04]. With this method, not

only the domain distribution can be studied but also the mobility of the domain

walls [Hub99].

Various methods transform the domain structure into a topographic information

by, for example, selective etching or powder deposition. The topography can be

examined with conventional methods such as optical microscopy in reflection, atomic

force microscopy, or scanning electron microscopy. Chemical etching [Blu96, Jon62]

happens at different rates on different domain ends and is used, for example, on
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poled LiNbO3. A clear disadvantage is the irreversible modification of the surface.

Another possibility is to distribute a powder of charged particles on the sample in

order to identify differently charged domain ends [Jon62]. These particles in general

can be removed afterwards.

Several scanning probe microscopy methods (see chapter 4) allow the investiga-

tion of different properties of the ferroelectric domains. All methods discussed below

were used in-situ with the s-SNOM experiments as discussed in the experimental

part of this work (see section 8).

Some crystals show a domain-specific topography tilt due to unit-cell-misfit (see

section 3.2). We can image this tilt directly by sensing the topography by an atomic

force microscope. With this method we locate the position of 90◦ domain walls, but

we cannot identify the domains further.

As the samples are piezoelectric, we can image the domain distribution by imag-

ing the corresponding orientation of the piezoelectric tensor using piezoresponse

force microscopy. For this we apply an alternating voltage between the tip and the

sample which causes an alternating mechanical deformation of the unit cell. As tip

and sample are in contact, the mechanical deformation causes a deflection of the

cantilever. A deformation normal to the sample surface bends the cantilever, while

a deformation of the sample parallel to the surface causes a torsion of the cantilever.

With this method differently oriented domains can be identified precisely with a

resolution on the nanometer scale.

As different domain ends carry different charges, we can image the electrostatic

interaction of these charges with an AFM tip using Kelvin probe force microscopy

or surface potential microscopy. Unfortunately, at ambient conditions, the surface

charges may be screened and blurred by a water film on the sample surface.

3.5 Summary

In this chapter, we have given a short introduction into the classification, the basic

properties, and the application of ferroelectrics. We have discussed the crystal struc-

ture and possible domain distributions in general as well as the specific properties

of the ferroelectrics BaTiO3 and LiNbO3, which are the samples examined in this

work. Finally, common examination methods have been specified.
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Since the invention of the first scanning probe instrument (SPM) – the scanning

tunneling microscope (STM) – in 1982 by Binnig and Rohrer [Bin82] numerous

scanning probe microscopes (SPM) have been developed. They are able to precisely

position and scan a probe, such as the aperture or the scatterer in a SNOM (see

chapter 2), in close proximity to a sample surface, thereby offering the possibility

to image sample properties such as topography, piezoelectric properties, and surface

charges. In this chapter, we will give a general description of all techniques used in

the present thesis, namely atomic force microscopy (AFM) in contact and noncontact

mode, piezoresponse force microscopy (PFM) and Kelvin probe force microscopy

(KPFM).

4.1 Atomic Force Microscopy

The basis of all methods used in the present work is an AFM – being the second SPM

developed by Binnig et al. in 1986 [Bin86] – which is used in contact or noncontact

mode. For both methods a microfabricated tip on a cantilever is used as a probe,

as shown in figure 4.1 [Nan07b, Wol91].

Typically, the probe is made of n-doped silicon and is for our applications coated

with a 25-nm-thick metal film of platinum-iridium5 (Pt-Ir5)1. In order to be sensitive

to small forces, the spring constant k of the cantilever has to be as small as possible

(k ∼= 0.01..100 N/m). On the other hand, the influence of acoustic waves and

building vibrations should be minimized and the resonance frequency f0 has to be

high (f0
∼= 10− 100 kHz). The resonance frequency is given by [Lop00a, Mey92]

f0 =
1

2π

√
k

m∗ (4.1)

with m∗ being the effective mass of the cantilever including the attached tip2.

1The metal coating is necessary for in-situ PFM and KPFM measurements, as both techniques
bth require an electrically conductive tip (see section 4.2 and 4.3). Additionally, a metal-coated
bth tip exhibits a larger scattering cross section in the visible spectral range as well as a flat optical
bth spectrum in the infrared regime, which is advantageous for the s-SNOM measurements (see
bth section 8.1).

2The effective mass m∗ = mc + 0.24md consists of the concentrated mass of the tip, mc
∼=

bth 10−12 kg, and the distributed mass, md = lwtρ, of the cantilever with length l, width w,
bth thickness t, and density ρ.
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Figure 4.1: Scanning electron microscopy picture showing a typical Pt-Ir5-

coated AFM cantilever as used in this work, made of n-doped silicon. Addi-

tionally, the definitions of the cantilever dimensions and their typical scale are

sketched: being thickness t, width w, and length l [Nan07b].

Therefore, the mass of the cantilever has to be minimized by decreasing the di-

mensions of the cantilever [Mey92]. The typical thickness t, width w, and length

l are t × w × l = 7 × 38 × 225 µm3 for the cantilever type applied in the present

work (see figure 4.1). The silicon cantilever (Young’s modulus E = 1, 69 · 1011N/m2,

density ρ = 2.33 · 103kg/m3) has thus a spring constant of [Wol91]

k =
Et3w

4l3
∼= 48 N/m (4.2)

and a resonance frequency of about f0 = 170 kHz. The cantilever is attached to a

support with a size of 1.5 × 3.5 mm having the same coating as the cantilever and

the tip. The tip itself is shaped as a polygon-based pyramid with a height of about

10− 15 µm [Nan07b].

There are two different modes of operation in AFM, namely contact mode (or

static mode) and noncontact mode (or dynamic mode).

In contact mode, the cantilever bends in response to the force F which acts on the

probing tip, until the static equilibrium is established. As derived from Hooke’s law,

the deflection of the cantilever is proportionality to the force with the proportional

constant being the spring constant k. By detecting the cantilever deflection, typical

forces between 10−10 and 10−6 N can be measured.

While the tip is scanned across the surface, the deflection can be kept constant
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Figure 4.2: (a) Resonance of an AFM cantilever with and without sample inter-

action. The damping induced by the sample decreases the cantilever oscillation

amplitude A at the resonance fr. In FM mode, this amplitude might be con-

trolled by an additional controller. The shift of the resonance towards lower

frequencies corresponds to a positive slope of the force as function of the distance

[Zer02]. The points of operation for FM and AM mode are marked by red dots.

(b) Force calculated from the Lennard-Jones potential as a function of the dis-

tance h between tip and sample [Sar91]. At small distances, the repulsive force

is dominating, while for large distances the attractive force is.

by regulating the height of the sample relative to the probing tip. This mode, called

equiforce mode, is the most common mode. The height profiles are interpreted as

reflecting the topography. As an alternative, the height position of the sample may

be kept constant and the variations of the lever deflection recorded. This mode,

called variable-deflection mode, allows high scanning speeds, but is only advised for

samples with small height variations [Mey92].

In noncontact mode, the lever is oscillating close to its resonance frequency f0.

Any changes of the interaction force gradient ∂F/∂z between the tip and the sample

change the resonance frequency. to first order3, the new resonance frequency fr of

the cantilever can be described by an effective spring constant keff = k − ∂F/∂z:

fr =
1

2π

√
keff

m∗ . (4.3)

A repulsive force (F > 0) increases the resonance frequency whereas an attractive

force lowers it (see figure 4.2a). The shift of the resonance frequency is used to

control the distance between tip and sample via a feedback loop. This loop ei-

3Here, we assume the cantilever oscillation amplitude to be small compared to the length scale
bth on which the force gradient ∂F/∂z changes. For more detailed calculations using perturbation
blh theory, see the work of Giessibl [Gie97].
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ther ensures constant amplitude (amplitude-modulated (AM) control) or keeps the

frequency constant (frequency-modulated (FM) control). Both methods keep the

resonance curve of the cantilever at a fixed position while measuring profiles of con-

stant gradient. For the AM mode, the excitation frequency is constant, while the

shift of the resonance curve causes a decrease ∆A of the oscillation amplitude (see

figure 4.2a). In the FM mode, the shift ∆f of the resonance frequency is mea-

sured and the cantilever is always excited at its resonance fr (see figure 4.2a). This

technique allows the additional control of the oscillation amplitude by adjusting the

excitation amplitude [Lop00a]. It is the FM mode that is able to keep the scattering

conditions constant in s-SNOM and that is used throughout this thesis.

The interaction between tip and sample in AFM is given by intermolecular forces,

mainly covalent forces, van der Waals forces, electrostatic forces, and magnetic

forces. A good description is given by the Lennard-Jones potential, which combines

the long-range attractive van der Waals and the short-range repulsive atomic poten-

tials (see figure 4.2). A detailed overview is given in the literature [Mey92, Sar91].

There are various methods to detect the cantilever deflection. Besides the mea-

surement of the capacitance, the tunnel current, or of an interferometric signal,

the beam deflection method, as used in the present work, is the most common one

[Mey92, Sar91]. For the latter one, a laser beam is focused on the back of the

cantilever and is reflected back onto a four-quadrant photodiode [Ale89, Mey88a,

Mey88b]. Any deflection of the lever causes a certain quadrant to collect more light

than the others, which is measured electronically. The difference between the top

and the bottom quadrants is called the top-minus-bottom (T-B) signal and is sensi-

tive to changes of the deflection of the cantilever. On the other hand, the difference

between the left and the right segments, the left-minus-right (L-R) signal, is sensi-

tive to any torsion of the cantilever (see figure 4.3). For a more detailed description,

we refer to the literature [Ale89, Mey88b, Sar91].

The AFM which was used in the present work is described in detail in section 8.1.

For the s-SNOM investigations, we use the AFM in the noncontact mode. The dis-

tance modulation in this AFM mode causes a modulation of the highly distance-

dependent optical signal, which allows us to separate the near- and far-field signals

from each other using higher-harmonic demodulation (see section 2.3 and 5.3). In

order to measure the domain distribution with complementary techniques, we per-

form in-situ KPFM as well as PFM. Because for PFM the AFM is used in contact

mode, no simultaneous measurements are possible, but only an examination before

or after the s-SNOM investigations.
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Figure 4.3: Determination of the cantilever oscillation by the beam deflection

method [Ale89, Mey88a, Mey88b]. (a) Sketch of the beam deflection setup. (b)

The top-minus-bottom (T-B) signal represents the bending of the cantilever, while

(c) the left-minus-right (L-R) signal reflects its torsion.

4.2 Piezoresponse Force Microscopy

Since ferroelectrics are also piezoelectric (see section 3.1) and the orientation of

the piezoelectric tensor is directly correlated with the direction of the spontaneous

polarization, we can use piezoresponse force microscopy4 to observe the local polar-

ization of the crystal [Güt92]. For this, we monitor the local inverse piezoelectric

effect, which reveals the three-dimensional distribution of the ferroelectric polariza-

tion [Was03].

We use an AFM in contact mode and apply an ac voltage between the conductive

tip and an electrode on the back of the sample. The ac voltage has an amplitude of

typically Up
∼= 1 to 5 V and a frequency fp

∼= 20 kHz [Abp98, Eng99a]. The adequate

amplitude depends strongly on the sample properties and the proper frequency de-

pends on the mechanical resonances of the AFM. The generated electric field at the

tip causes a geometrical distortion of the sample by the inverse piezoelectric effect

(see section 3.1). As the field is concentrated close to the tip-sample contact, we

obtain the local piezoelectric response of this very area of the sample. The resolution

is mainly limited by the tip radius and is comparable to the resolution of the AFM,

being around 10 nm [Sch05a].

The response of the sample to the electric field is a geometrical distortion depend-

ing on the orientation of the polarization of the sample. In the following we assume

the polarization of the sample to be oriented either perpendicularly (c domain) or

parallel (a domain) to the sample surface, and we assume the applied electric field

to be perpendicular to the sample surface. The electric field causes a deformation

4Also called voltage modulated scanning force microscopy [Eng99a] and
bth dynamic contact electrostatic force microscopy [Lab00].



30 4 Scanning Probe Microscopy

of the sample in z direction on a c domain (out-of-plane (OOP) deformation)

∆z = −d33sgn(Pz)Upsin(2πfpt) (4.4)

and in x direction on an a domain (in-plane (IP) deformation)

∆x = −d15sgn(Px)Upsin(2πfpt) . (4.5)

These deformations are sensed by the cantilever as a deflection for ∆z and a torsion

or buckling for ∆x. Deflection and buckling may be measured via the T-B signal of

the 4-quadrant photodiode (see section 4.1), while the torsion gives a contribution

to the L-R signal. The buckling vanishes if the polarization of the a domain is

oriented perpendicularly to the cantilever axis. Hence, the two domains give only

a contribution to one signal of the 4Q photodiode – namely the T-B signal for

the c domain and the L-R signal for the a domain – and can hence be identified.

Antiparallel orientations of the polarization are sensed via the sign of the geometric

deformation, as indicated in equations 4.4 and 4.5. Hence, when demodulating the

signal with a lock-in amplifier, we measure a phase shift of 180◦ between antiparallel

domains.

In this work, we make use of the linear piezoelectric response of the sample,

which is correlated with the piezoelectricity and the polarization. By sensing the

2nd-harmonic piezoelectric response of the sample at 2fp, one can additionally obtain

information about the electrostriction and the permittivity of the sample [Fra94].

A typical PFM image of a BaTiO3 crystal is depicted in figure 4.4. As we

use the AFM in contact mode, we simultaneously measure the topography of the

sample, which shows a meander shape typical to Remaika-grown BaTiO3 crystals

[Rem54], as depicted in figure 4.4a, which represents the domain structure during

the growing of the crystal. Additionally, we observe steps in the topography as

well as a corrugated surface. The corresponding PFM images are not correlated

with the topography. The OOP signal 4.4b shows a similar meander structure of

bright and dark areas corresponding to antiparallel c domains, interrupted by grey

stripes being a domains. In the IP signal 4.4c, the c domains appear as grey areas,

while the stripes that were grey in the OOP signal show antiparallel a domains as

dark and bright areas [Eng98b, Eng99a]. In both PFM pictures we observe a cross

talk from the complementary component, but we can clearly identify the domains.

As discussed in section 3.2, on BaTiO3 only 6 kinds of domains are possible – two

antiparallel a domains in x and y and two antiparallel c domains – and the 90◦

domain walls are always straight lines.

In contact mode, it is also possible to manipulate the domain distribution by ap-

plying a dc voltage between the tip and the sample [Eng98a, Hu99, Hid96, Gru96].

As the electric field is oriented mainly perpendicularly to the sample surface, the

poled area is usually a c domain with two possible states of polarization which can

be switched by applying a dc voltage of opposite sign [Hu99, Gru97b]. This domain
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(a) (b) (c)

Figure 4.4: PFM data of a BaTiO3 single crystal (scan range: 10 µm). (a)

Topography (z range: 55 nm), (b) PFM out-of-plane signal, and (b) PFM in-

plane signal.

writing may be used in data storage devices [Auc98, Was03].

For our s-SNOM investigations the AFM is used in noncontact mode and thus

an simultaneously PFM measurement is not possible. Hence, we perform PFM

measurements before and after the s-SNOM measurements to determine the domain

structure of the examined area.

4.3 Kelvin Probe Force Microscopy

In Kelvin probe force microscopy (KPFM) [Lop04, Non91, Non92, Wea91], we de-

termine the work function of a metal or the static surface charges on an isolating

sample by measuring the electrostatic interaction between the tip and the sample.

KPFM is based on the capacitor method of Lord Kelvin, which he used to ex-

amine the contact potential difference of two metal plates [Kel98]. He compared the

work functions of two parallel plates by interconnecting them electrically and mov-

ing one plate in the direction normal to the plates. This distance variation changes

the capacitance C of the system, resulting in a current I

I =
dC

dt
Ucpd (4.6)

with Ucpd being the contact potential difference. By applying an additional voltage

UK,0, the contact potential difference may be compensated and the current

I =
dC

dt
(Ucpd − UK,0) (4.7)

is nullified for UK,0 = Ucpd. As Ucpd corresponds to the difference of the work function

of the two materials, knowing the work functions of one metal allows us to determine

the work function of the sample plate.
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Figure 4.5: Electrostatic force F as a function of the voltage UK,0, showing the

typical parabolic shape. For UK,0 = Ucpd, the force modulation is nullified.

In an AFM, the metal-coated cantilever works as the reference part of the ca-

pacitor, interacting electrostatically with the sample. The resulting force

F = −1

2

∂C

∂z
U2

cpd (4.8)

may be measured as an additional modification of the cantilever oscillation in non-

contact mode (see section 4.1) [Che02, Gie97, Lei03, Mar88, Sch05a, Wea91].

If an ac voltage UK is applied between tip and sample with a typical amplitude

UK
∼= 0.5 to 1.5 V and a frequency fK

∼= 10 kHz, the electrostatic interaction is

modulated and can be detected by lock-in technique. Analogously to Lord Kelvin’s

method, applying an additional dc voltage UK,0 allows us to compensate the potential

difference between tip and sample and hence to nullify the modulation of the elec-

trostatic interaction for UK,0 = Ucpd [Non91, Non92, Wea91, Lop04, Zer02, Zer05].

Figure 4.5 shows the typical parabolic shape of the force F as a function of the

applied dc voltage UK,0

F = −1

2

∂C

∂z
(Ucpd − UK,0)

2 . (4.9)

Modulating the voltage by UK causes a modulation of the force ∆F , except at the

maximum of the parabola where the resulting modulation is zero. On a conductive

sample, the compensating voltage can be correlated with the work function of the

sample, while for insulating samples it represents basically the local electric poten-

tial on the sample surface due to static surface charges [Dur99, Sau90, Ter90].

On ferroelectric samples different polarizations in the sample generate different

charges on the sample surface. By KPFM, we can identify antiparallel c domains

as well as a domains on the sample. At room temperature these bound charges are
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partly screened by adsorbates on the sample surface, such as water [Fel04, Jac98,

Kit98]. Hence, the domain distribution is blurred in the KPFM picture. When

irradiated by IR light, the water film might be vaporized and the domain structure

can be observed more clearly [Sch07b].

During the s-SNOM measurements, we use KPFM as an simultaneous technique

for domain imaging. But more importantly, we use KPFM to minimize the elec-

trostatic interaction between tip and sample, which otherwise would influence the

damping on different sample areas and hence the cantilever oscillating amplitude

[Hon01], resulting in artifacts in the s-SNOM image, as reported in the literature

[Bil06]. A detailed description of our setup is given in section 8.1.





Part II

Theory





5 Basic Theory of s-SNOM

In s-SNOM we scatter light off an AFM tip, which acts as a scatterer small com-

pared with the wavelength. The interaction of this probe with the sample of interest

makes the scattering characteristic of the coupled tip-sample system different from

that of the tip alone. The coupling mechanism is a near-field interaction between tip

and sample. The scattering process transforms the evanescent field, which is bound

to the material surface, into a propagating wave. In the far field we are thus able

to obtain optical near-field information on the local dielectric properties of a small

sample area beneath the scatterer.

Theoretically, the quasi-electrostatic model of interacting dipoles in the tip and

in the sample describes the scattering process as well as the interaction with the

sample. This model is an easy-to-understand analytical model which explains the

dependences in s-SNOM amazingly well. Comparison with numerical calculations

confirms its results. The extension of this model to anisotropic samples is a main

topic of this work and is described in the separate chapter 6.

5.1 Scattering by a Small Particle

Bohren and Huffman have treated in detail the scattering by small particles [Boh98].

For a particle small compared with the wavelength, the scattering process is well

described by Rayleigh scattering, which is the quasi-electrostatic limit of the Mie

theory [Mie08].

5.1.1 General Description

When a particle is illuminated, the incident light generates an external electric field

E0 at the position of the particle.1 The scattered light Esca is correlated with the

incident electric-field vector by the complex scattering coefficient σ̂ and, in the far

field, can be described by its vector scattering amplitude T:

Esca = σ̂ · E0 =
eikr

−ikr
·T (5.1)

1In the theory chapters, all variables being vectors are typed bold and all tensors with a circum-
bth flex. If a parameter is complex valued, we simply mention this when introducing the parameter,
blh but we do not use any special notation. We use the International System of Units (SI).



38 5 Basic Theory of s-SNOM

with k the wave number, being 2π/λ,

λ the wavelength, and

r the distance between the scattering center and the point of observation.

Knowing the scattering amplitude T, we can calculate measurable quantities

such as the differential scattering cross section dCsca

dΩ
, which specifies the angular

distribution of the scattered light and which is given by

dCsca

dΩ
=

|T|2
k2 · |E0|2

. (5.2)

By integrating the differential scattering cross section over the surface of an imag-

inary sphere around the scattering center, we get the total scattering cross section

Csca of the particle:

Csca =

∫ 2π

0

∫ π

0

dCsca

dΩ
sin θdθdφ (5.3)

with θ, φ being the angles of the polar coordinate system with the particle in the

center.

If the particle is small compared with the wavelength, we can use the electrostatic

approximation of the Mie theory: The external electric field E0 induces a dipole

moment Pt in the scattering particle given by

Pt = ε0εm · α̂t · E0 (5.4)

with ε0 the permittivity of the vacuum, being 8.854 · 10−12 F/m,

εm the complex dielectric constant of the surrounding medium, and

α̂t the polarizability of the particle.

In general, the polarizability is a complex tensor, which depends on the shape and

material of the particle (see below). Knowing the dipole moment Pt induced in the

particle, we can calculate the vector scattering amplitude T:

T =
ik3

4πεmε0

· er × (er ×Pt) (5.5)

with er being the radial unit vector of the polar coordinate system with the dipole

in the center. The scattering cross section is then given by

Csca =
k4

6πε2
0ε

2
m

· |Pt|2
|E0|2

. (5.6)

This cross section shows the typical 1/λ4 dependence of Rayleigh scattering, which

is the electrostatic limit of Mie scattering. Furthermore, the cross section depends

on the direction e0 of the external electric field E0 at the position of the particle

e0 =
E0

|E0| (5.7)
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and on the dipole Pt of the particle, i.e., its polarizability ât and the dielectric

constant of the surrounding medium εm.

In the following parts of the present section we will discuss different particle

shapes and materials and their polarizabilities. This is not absolutely necessary in

order to understand the basic principles of s-SNOM, so if you want, you can take a

shortcut to section 5.2.

5.1.2 Selected Particles

Isotropic sphere

For an isotropic sphere with radius a and dielectric constant εt the polarizability of

the particle is a scalar given by [Jac83]

αt = 4πa3 εt − εm

εt + 2εm

. (5.8)

The dipole Pt of the particle is parallel to the external electric field E0. The scat-

tering cross section is given by

Csca =
k4

6π
|αt|2 (5.9)

and the corresponding absorption cross section Cabs is

Cabs = k=m(αt) . (5.10)

Note that the cross sections depend only on the wave number k and on the

polarizability α̂t of the particle, i.e., on its size (radius a) and material (dielectric

constant εt) as well as on the dielectric constant εm of the surrounding medium.

Figure 5.1 shows the two cross sections of the sphere as functions of the real and

imaginary parts of its dielectric constant εt. At <e(εt) = −2 the polarizability has

a resonance and both cross sections show a pronounced maximum. With increasing

imaginary part, the resonance broadens and both maxima decrease. Far away from

the resonance, the scattering cross section decreases with increasing imaginary part

of the dielectric constant, while the absorption cross section increases. The absorp-

tion of the particle is determined by the imaginary part of its dielectric constant,

while the corresponding real part defines the position of the resonance.

For an isotropic sphere the system is of spherical symmetry. This symmetry is

reduced if the particle is anisotropic for geometrical or material reasons. Both cases

will be discussed in the following.

Sphere made of an anisotropic material

We discuss the case of a sphere having a diagonal dielectric tensor with the elements

εt,j with j = x, y, z. The dipole moment of the particle is [Boh98]

Pt = ε0εm · α̂t · E0 (5.11)
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Figure 5.1: (a) Sketch of the properties of an isotropic particle having a spherical

shape (radius a) and a dielectric tensor of spherical symmetry (dielectric constant

εt). Scattering cross section Csca(b) and absorption cross section Cabs (c) of the

isotropic sphere as functions of its dielectric constant εt (a = 10 nm, εm = 1,

λ = 633 nm)

with α̂t being the diagonal polarizability tensor with the elements

αt,j = 4πa3 · εt,j − εm

εt,j + 2εm

(5.12)

Therefore the scattering cross section is given by

Csca =
k4

6π
· |α̂t · E0|2

|E0|2
. (5.13)

Compared to the former case, the symmetry of the system is reduced, as the

scattering cross section of the anisotropic sphere depends additionally on the orien-

tation of the external electric-field vector with respect to the dielectric tensor of the

particle.

Figure 5.2 shows the scattering cross section of a uniaxial anisotropic sphere as

a function of the real parts of its dielectric tensor elements. The two components of

the dielectric tensor perpendicular to the anisotropy axis are equal (εt,1 = εt,2 = εt,a)

and so are the corresponding elements of the polarizability tensor: αt,1 = αt,2. The

dielectric constant in the direction of the optical axis is εt,c, resulting in a polarizabil-

ity αt,c. We plot the scattering cross section as a function of <e(εt,a) and <e(εt,c) for

orientations of the external electric field parallel (Csca,c) and perpendicular (Csca,a)

to the optical axis of the sphere. We observe that the scattering cross section has

a maximum when the dielectric constant in the direction of the electric field equals

−2. The dielectric constant perpendicular to the electric field does not influence the

scattering cross section at all.

Ellipsoid made of an isotropic material

For an ellipsoid made from an isotropic material with semiaxes ax ≤ ay ≤ az the

components of the polarizability tensor in its diagonal form are given by [Boh98]

αt,j = 4πaxayaz
εt − εm

3εm + 3Lj · (εt − εm)
(5.14)
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Figure 5.2: (a) Sketch of the properties of a uniaxial anisotropic sphere with

radius a and a dielectric tensor of cylindrical symmetry (dielectric constants εt,a

and εt,c). (b) and (c): Scattering cross sections of the uniaxial anisotropic sphere

as functions of the real parts of its dielectric tensor elements εt,a and εt,c (a =
10 nm, εm = 1, λ = 633 nm, =m(εt,a) = =m(εt,c) = 1). (b) Scattering cross

section when the external electric field is oriented along the optical axis of the

sphere and (c) scattering cross section for perpendicular orientation.

with Lj (j = x, y, z) being geometrical factors:

Lj =
axayaz

2

∫ ∞

0

dq

a2
j + q2

. (5.15)

Because of the relation

Lx + Ly + Lz = 1 (5.16)

only two of the three geometrical factors are independent. Moreover, they satisfy

the inequalities Lx ≥ Ly ≥ Lz. The scattering cross section is again given by

equation 5.13.

For a prolate (cigar-shaped) ellipsoid, the two minor axes are equal (ax = ay)

and the two corresponding geometrical factors are

Lx,y =
1− e2

e2
·
(
−1 +

1

2e
· ln 1 + e

1− e

)
(5.17)

and

Lz = 1− 2 · Lx,y (5.18)

where e is the eccentricity given by

e2 = 1− a2
x

a2
z

. (5.19)

Figure 5.3 shows the scattering cross sections of such a cigar-shaped ellipsoid

normalized to its volume, as functions of the real part of its dielectric constant εt

and of the ratio of the major and minor axes. Similarly as for the anisotropic sphere,

we plot Csca for the cases when the external electric field is either parallel or perpen-

dicular to the geometric axis of the particle. For an axis ratio of c/a = 1 we observe



42 5 Basic Theory of s-SNOM

a

c

a

c

a

c

Re(εεεεt)
-10 c/

a

1
3

C
sc

a,
c/

V
 

[1
0-

16
cm

2 /
n

m
3 ]

0

10

0

6

c/
a

1
3

C
sc

a,
a/

V
 

[1
0-

18
cm

2 /
n

m
3 ]

(b) (c)

Re(εεεεt)
-10 0Re(εεεεt)
-10 00

(a)

εtεtεt

E0 E0

Figure 5.3: (a) Sketch of the properties of a cigar-shaped ellipsoidal particle

(axes a and c) made from an isotropic material (dielectric tensor has spherical

symmetry, dielectric constant εt). (b) and (c): Scattering cross sections nor-

malized to the volume V of the particle as functions of the dielectric constant

and of the ratio between the two axes c/a (a minor axis, c major axis, εm = 1,
λ = 633 nm). (a) Scattering cross section for orientation of the external electric-

field vector along the major axis of the ellipsoid and (b) for perpendicular orien-

tation.

the resonance at <e(εt) = −2, which represents the limit of a spherical particle.

With increasing axis ratio the scattering cross sections for the two orientations of

E0 change differently: If E0 is oriented along the major axis, the resonance becomes

dramatically stronger and shifts towards more negative values of <e(εt). If E0 lies

along a minor axis, the maximum increases only slightly and shifts towards larger

<e(εt).

The scattering cross section of the isotropic ellipsoid depends on the dimensions

of the ellipsoid in all directions. Even when the external electric field is oriented

along the minor axis of the ellipsoid, an increase of the major axis can be sensed. In

contrast, for a sphere made of an anisotropic material an increase of the dielectric

element along one axis is not sensed when the electric field is oriented perpendicularly

to this axis.

5.1.3 AFM Tip as the Scatterer

In most s-SNOMs a typical AFM tip is used as the scatterer. The shape of such an

AFM tip is well-defined by the fabrication process (see figure 4.1 and section 8.1).

Still, it is very difficult to determine the size and shape of that part of the tip which

contributes to the near-field signal.

As a first approximation, we can assume that the tip is an isotropic sphere. The

shaft of the tip is neglected as well as its elongated shape, corresponding to the

assumption that only the very end of the tip contributes to the near-field signal.

This approximation works quite well as long as we choose the polarization of the

incident light along the tip axis and thus perpendicular to the sample surface. Also,
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we have begun to prepare improved tips with a metallic nanoparticle attached to

the AFM tip [Wen07], which shows the spectrum of a spherical or elliptical single

particle [Kal04].

In a more precise approximation we model the tip as a prolate ellipsoid with the

major axis along the tip axis. With this method we take the different polarizabilities

of the tip along and perpendicular to the tip axis into account. In most cases the

cylindrical symmetry of the cigar-shaped particle corresponds quite well with the

symmetry of the AFM tip.

As the symmetry of the tip-sample system is never higher than cylindrical, a

tip shape of cylindrical symmetry with the corresponding axis perpendicular to the

sample surface can be easily included in the model (see section 5.2). Any other

tip shape is difficult to incorporate in the dipole model, because the symmetry of

the coupled system is reduced and the formulae get much more complicated. In

principle the dipole model holds for arbitrary tip shape as long as we can determine

the polarizability of the tip.

5.1.4 Alternative Models

Using the dipole model to describe the scattering process in s-SNOM allows us to un-

derstand the interaction as well as the scattering process with simple formulae. The

analytical model has the main advantage of clearly showing the various correlations.

Most other models describing the tip-sample interaction are numerical models,

such as the method of multiple multipoles (MMP) [Haf90, Haf93, Nov97, Ren04].

This semianalytic boundary method expresses the electric and magnetic fields as a

superposition of known exact solutions of Maxwell’s equations, such as plane waves,

multipole fields, or waveguide modes. By minimizing the error at the boundary,

the code computes the expansion coefficients that best satisfy the boundary condi-

tions. In this method only the boundary need to be discretized, which reduces the

numerical effort and allows very accurate solutions [Ren04]. Within this model we

are limited to isotropic materials as anisotropic materials may generate additional

charges besides the considered surface charges. MMP calculations for spherical and

ellipsoidal tips confirm the results of the dipole model. It has also been shown that

at small distances the location of the point dipole in the tip is shifted towards the

sample surface because of the strong gradient of the evanescent field [Ren05, Ren06].

Thus, in the dipole model it is necessary to use tip-sample distances which are smaller

than the tip radius a to get the same results as in the numerical calculations. Com-

parison of measurements with theoretical data show that for our setup a distance of

about 0.7a corresponds to the tip being essentially in contact with the sample (see

chapter 9).

We can also think about a model describing the scattering as the tip acting as

an antenna. This approach takes into account that the tip has a preferred scattering

direction, as shown theoretically and experimentally for metal tips by several groups

[GL99, Kni76]. The main disadvantage of this model is that it is very difficult to
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as described by the polarization angle ϕ between the tip dipole and the sample

normal.

include the near-field interaction. Yet, most groups account for the antennalike

behavior of the tip by choosing an appropriate angle of incidence in the experiments.

In the following section we describe the near-field interaction between an AFM

tip and an isotropic sample using the dipole model. For simplicity we assume the

tip to be an isotropic sphere. All formulae in the following section can be easily

extended to a tip with one principal axis of the polarizability being perpendicular

to the sample surface. Other tip shapes can be included by a more complicated

extension of the model taking a tilt between the tip axis and the sample normal into

account.

5.2 Tip-Sample Interaction in s-SNOM

In order to calculate the near-field interaction of tip and sample we assume the

sample to fill the half-space next to the tip. The tip itself is placed outside the

sample at a certain distance h to its surface. In the following calculations, the tip

dipole is treated as a point dipole that is induced by an external electric field. The

presence of the sample leads to a distortion of the electric field of the tip, which is

calculated by the method of image charges. As the tip dipole is induced by the local

electric field, the field distortion caused by the sample modifies the tip dipole. This

model has been applied in the literature by several groups to calculate the optical

near-field signal in s-SNOM [Kog97, Mad98, Kno99b, Kno00].

We define a cartesian coordinate system with its origin on the sample surface

underneath the tip and with the sample surface located in the xy plane (see fig-

ure 5.4a). The distance h is assumed to be small compared to the wavelength,

which allows us to neglect any retardation effects.
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5.2.1 Method of Image Charges

The tip dipole induces charges on the sample, leading to a distortion of its electric

field. Using the well-known method of image charges [Jac83], we calculate the electric

field outside the sample by introducing an additional image dipole Ps in the sample

at (−hez) given by

Ps = βĈ ·Pt . (5.20)

The factor β is the so-called response function of the sample:

β =
εs − εm

εs + εm

(5.21)

with εs the complex dielectric constant of the sample. Ĉ is the matrix

Ĉ =



−1 0 0

0 −1 0

0 0 −1


 , (5.22)

which accounts for the fact that the sample dipole is oriented differently depending

on the orientation of the tip dipole: For a tip dipole perpendicular to the sample

surface (z direction) the corresponding sample dipole is parallel to the tip dipole

(see figure 5.4b), while for a tip dipole parallel to the sample surface (xy plane) the

sample dipole is oriented antiparallel (figure 5.4c). Any mixed orientation is given

by a superposition of the two cases and is defined by the polarization angle ϕ, which

is the angle between the tip dipole and the sample normal (see figure 5.4d).

The electric field outside the sample is given by the superposition of the electric

fields of the two electric dipoles Ps and Pt. Observing this field far away from the

tip, we can consider the two dipoles to be at the same position. The electric field is

then given by a total tip-sample dipole Ptot being the sum of both dipoles.

5.2.2 Induced Tip Dipole

Because the tip dipole is induced by the local electric field E0, the distortion of the

electric field by the sample changes the tip dipole. In addition to the external field,

we have the field Es of the sample dipole Ps, which is situated at r0 = hez:

Es =
3n(Psn)−Ps

4πε0 |r− r0|3
, n =




0

0

1


 . (5.23)

Being the image of the tip dipole, the sample dipole is described by equation 5.20

and hence its field at the position of the tip is given by

Es = K̂ ·Pt (5.24)
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with the interaction matrix

K̂ =
1

64πε0h3




2β 0 0

0 2β 0

0 0 4β


 . (5.25)

The tip dipole given by equation 5.4 is modified by the electric field of the sample:

Pt = ε0εmα̂t (E0 + Es(Pt)) . (5.26)

Solving this equation for Pt, we get

Pt = (Î − ε0α̂tK̂)−1α̂tE0 = α̂′tE0 (5.27)

with the identity matrix Î and the modified tip polarizability α̂′t:

α̂′t = (Î − ε0α̂tK̂)−1α̂t . (5.28)

The total dipole moment of the tip-sample system is given by the sum of the

modified tip dipole Pt and the corresponding sample dipole

Ptot = Pt + Ps = ε0εmα̂tot · E0 (5.29)

with the total polarizability α̂tot of the tip-sample system being

α̂tot =
(
Î + βĈ

)
· α̂′t . (5.30)

With this total tip-sample dipole, we can calculate any desired scattering parameter,

as discussed for the single particle in section 5.1; e.g. the scattering cross section:

Csca =
k4

6πε2
0ε

2
m

· |Ptot|2
|E0|2

. (5.31)

If the tip is an isotropic sphere with a scalar polarizability αt, the scattering cross

section simplifies in that the external electric field E0 cancels. Still, the direction

of the external electric field determines the size of the scattering cross section. The

two special cases in which the external electric field is either perpendicular (⊥) or

parallel (‖) to the sample surface are given by

C⊥ =
k4

6π
·
∣∣∣∣∣
(1 + β)αt

1− αtβ
16πh3

∣∣∣∣∣

2

and (5.32)

C‖ =
k4

6π
·
∣∣∣∣∣
(1− β)αt

1− αtβ
32πh3

∣∣∣∣∣

2

.

In contrast to the tip alone, the scattering cross section of the coupled tip-sample

system always depends on the polarization of the incident light. For a spherical

tip the system is no longer of spherical, but of cylindrical symmetry. For such a
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Figure 5.5: (a) Distance dependence of the scattering cross section for different

orientations of the tip dipole with respect to the sample surface. For easier

comparison, the scattering cross section of the parallel-oriented tip dipole (‖) has

been multiplied by 100. (b) Scattering cross section as a function of distance

h and polarization angle ϕ as defined in figure 5.4d with ϕ = 0◦ and ϕ = 90◦

corresponding to ⊥ and ‖ orientation, respectively.

system, figure 5.5a shows the characteristic distance dependence of the near-field-

enhanced scattering cross section. In the calculations we assume the tip to be a

gold sphere with radius a = 10 nm close to a gold sample with the excitation

occurring at λ = 633 nm. Typically, the scattering cross section increases almost

exponentially when the tip is approached to the sample. Note that the exponential

decay length does not depend on the wavelength, but mainly on the tip radius,

as long as the system is not excited at its resonance (see section 6.3). Figure 5.5a

displays two curves referring to a parallel and perpendicular orientation, respectively,

of the tip dipole with respect to the sample surface. We clearly observe a much

larger scattering cross section for the perpendicular case, which results from the

constructive superposition of the tip and sample dipoles, as they are oriented in

the same direction. For the parallel orientation, the tip and sample dipoles are

antiparallel to each other and therefore superpose destructively. Thus the signal

is much smaller than for the perpendicular case (please note that in figure 5.5a

the parallel component of the scattering cross section has been multiplied by 100

for easier comparison with the perpendicular component). Figure 5.5b shows the

scattering cross section as a function of the distance h and the polarization angle

ϕ as defined in figure 5.4d. Comparing again the signals for parallel (ϕ = 90◦,
‖) and perpendicular orientation (ϕ = 0◦, ⊥) of the external electric field, we see

clearly that the signal is maximized for perpendicular orientation, while the parallel

component of E0 produces almost no signal, even when the tip is very close to the

sample surface.



48 5 Basic Theory of s-SNOM

Au sphere (a=10 nm)
λ=633 nm, ⊥

Si

Au

0.6

2.4
C

sc
a

[1
0-1

4 
cm

2 ]

h [nm]
10 30 50

V

8.5

34

V
  [

%
]

(a) (b)

C
sc

a
[1

0-1
4 
cm

2 ]

10

5

0

Re(εεεεs)
-3.5 0 h 

[n
m

]10
20

εs=-2.3

εs=-1.4

Figure 5.6: (a) Distance dependence of the scattering cross section for different

sample materials. The calculations were done for a spherical gold tip (radius

a = 10 nm) with its dipole moment being perpendicular to the sample surface,

and for λ = 633 nm. Additionally, the optical contrast V between gold and

silicon is plotted as a function of the distance h. (b) Scattering cross section as

a function of distance h and the dielectric constant εs of the sample.

5.2.3 Optical Material Contrast

During a scan in s-SNOM, the tip properties, the wavelength, and the polarization of

the incident light, as well as the distance between tip and sample can be considered

constant. Therefore, the scattering cross section only depends on the dielectric

constant εs of the sample. We thus expect to measure different signals on regions of

the sample with different dielectric constants, i.e., different materials. Figure 5.6a

shows the distance dependence of the scattering cross section on a gold (Au) and on

a silicon sample (Si) at λ = 633 nm. The calculations were done for a spherical gold

tip with a = 10 nm and an external electric field oriented perpendicularly to the

sample surface. On both sample materials we observe an increase of the scattering

signal close to the sample surface. For the gold sample the signal is much higher

than for the silicon sample.

Figure 5.6b shows the dependence of the near-field signal on the distance h as

well as on the dielectric constant εs of the sample. For each distance h, we observe a

maximum in the scattering cross section. With decreasing distance, this maximum

increases strongly while moving towards smaller dielectric constants of the sample.

For large distances the maximum is located at <e(εs) = −1. This sample-induced

resonance of the tip-sample system will be discussed in more detail for anisotropic

samples in section 6.3.

The quantity that represents the difference in the measured signal between dif-

ferent sample areas A and B, is the complex optical contrast or visibility V , which

is in general defined as

V (f) =
fA − fB

fA + fB

. (5.33)

with f representing the measured quantity, which is different for different detection

methods (see section 5.3). If, for example, the absolute scattering cross section is
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measured, the visibility V is given by

V (Csca) =
Csca,A − Csca,B

Csca,A + Csca,B

. (5.34)

In figure 5.6a this cross section contrast between gold and silicon is plotted as a func-

tion of the distance between tip and sample. We observe that the optical contrast

increases dramatically with decreasing distance. When the tip touches the sample

surface, we expect a contrast of about 34% between gold and silicon.

Because this contrast is caused by spatial variations of the dielectric constant

of the sample, we call it a material contrast. In chapter 6 we will introduce an

additional contrast mechanism caused by variations of the anisotropy of the sample.

5.2.4 Reflection at the Sample Surface

Illuminating a tip close to a sample surface in a real experiment is not possible with-

out reflection at the sample surface. This reflection changes the external electric field

E0 at the position of the tip, which determines all scattering parameters discussed

in section 5.1. Here we analyze how this external electric field is connected to the

electric field Einc of the incident light .

Without restriction, we choose the x axis of the coordinate system defined above

to be parallel to the plane of incidence. The incident electric field is given by

Einc = Eses + Epep (5.35)

with Es and Ep denoting the s- and p-polarized components of the electric field

defined by the unit vectors

es =




0

−1

0


 , ep =




cos γ

0

sin γ


 , (5.36)

where γ is the incident angle, defined as the angle between the k vector of the

incident light and the negative z axis, which is normal to the sample surface (see

figure 5.7a).

The reflection at the surface of a material with index of refraction2 ns is given

by the Fresnel reflection coefficients rs and rp [Fow89]:

rs =
cos(γ)−

√
n2 − sin2(γ)

cos(γ) +
√

n2 − sin2(γ)
, (5.37)

rp =
n2cos(γ)−

√
n2 − sin2(γ)

n2cos(γ) +
√

n2 − sin2(γ)

2The index of refraction n of a material is correlated to its dielectric constant ε by n2 = ε.
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Figure 5.7: Definitions of the incident angle γ, of the unit vectors es and ep

used to describe the incident polarization, and of the corresponding quantities

referring to the reflected wave (γ′, e′s, and e′p). View in the plane of incidence

(a) and in a plane perpendicular to the k vector of the incident light (b) or of

the reflected light (c).

with the relative index of refraction n given by the ratio of the indices of refraction

of the sample material (ns) and of the surrounding medium (nm):

n =
ns

nm

. (5.38)

Note that some textbooks prefer to define rp with the opposite sign [Fow89] because

of a different definition of the unit vectors by which the reflected-light polarization

is described.

Figure 5.8a shows the reflection coefficients as functions of the incident angle γ for

a silicon sample. For easier comparison with the literature, we plot −rp. For γ = 0◦

both components Es and Ep of the incident electric-field vector are parallel to the

sample surface and hence the corresponding reflection coefficients are equal. The s

component decreases with γ to more negative values and reaches -1 at γ = 90◦, while

rp increases with γ, crosses zero at Brewster’s angle, and reaches +1 at γ = 90◦. At

Brewster’s angle the reflected light is purely s polarized [Fow89].

Knowing the reflection coefficients rs and rp, we can calculate the reflected elec-

tric field Erefl according to

Erefl = rsEses + rpEpĈep (5.39)

with Ĉ given by

Ĉ =



−1 0 0

0 −1 0

0 0 1


 . (5.40)

Knowing the electric fields of both the incident and the reflected light, we can

calculate the external electric field E0 at the position of the tip. For small distances

h between tip and sample it is given by the sum

E0 = Es(1 + rs)es + Ep(Î + rpĈ)ep . (5.41)
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Figure 5.8: (a) Reflection coefficients −rp and rs as functions of the incident

angle γ for a silicon sample with εs = 15. At Brewster’s angle γB
∼= 75.5◦, the

reflected light is purely s polarized as rp is zero. (b) Electric-field components

normalized to the electric-field strength of the incident light at the position of the

tip as functions of the incident polarization ϕ for an incident angle of γ = 70◦

as used in the experiments. The thick lines show the components along the x, y,

and z axis with the reflection at the sample taken into account. For comparison,

the thin lines of the corresponding color show the electric field of the incident

light.

Figure 5.8b shows the resulting electric-field components at the position of the

tip as functions of the polarization angle ϕ of the incident light for an incident angle

of γ = 70◦ as used in the experiments. For comparison, we plot the corresponding

electric-field components of the incident wave as thin lines of the same color. For

p-polarized light (ϕ = 0◦), we have components along the x and the z axis, which are

slightly modified in their magnitudes by the reflection at the sample surface. Both

components decrease with ϕ and are zero for s-polarized light. The most drastic

change is observed for the y component, which is the direction of the s polarization.

It is zero at ϕ = 0◦ and increases with the polarization angle. The y component

of the incident light reaches 1, while the field vectors of the light reflected at the

sample surface is antiparallel to the incident one and, hence, decreases it such that

it reaches a value of less than 0.2 at ϕ = 90◦.
In figure 5.9 we compare the scattering cross sections with and without reflection

at the sample surface taken into account. As an example we assume the tip to be

a gold sphere next to a silicon sample and depict the scattering cross sections as

functions of the incident angle γ and the polarization angle ϕ of the incident light.

In figure 5.9a the reflection at the sample surface has been neglected and the

external electric field at the position of the tip is assumed to be the electric field of the

incident light. For p-polarized light and an incident angle of γ = 90◦ the electric-field

vector at the tip is perpendicular to the sample surface. We observe a maximum in

the scattering cross section corresponding to a maximized constructive superposition

of the tip and the sample dipoles. With increasing polarization angle ϕ, the parallel
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Figure 5.9: Scattering cross section of a spherical gold tip (radius a = 10 nm)

next to a silicon sample (h = 10 nm) as a function of the incident angle γ and the

polarization angle ϕ of the incident light. In (a) reflection at the sample surface

is neglected, while it is included in (b).

component of the tip dipole increases. This component has an antiparallel image

dipole and hence the signal decreases. For smaller incident angles γ, the p-polarized

part of the incident electric field has not only a component perpendicular to the

sample surface but also a parallel component. Hence, the scattering cross section

decreases again.

In figure 5.9b the scattering cross section with reflection at the sample surface

included is plotted for the same parameters. In contrast to figure 5.9a, we observe a

maximum at γ ∼= 67◦, which is about 30 % higher due to the additional contribution

of the reflected field parallel to the incident electric field. At Brewster’s angle of

γB
∼= 75◦ the reflected field has no p component and the cross section has about

the same size as without reflection as the contribution from the s component is

negligible. For γ > γ◦B, the reflected field is antiparallel to the incident field and

the cross section is smaller than in figure 5.9a. At γ = 90◦ the z component is zero

and so is the cross section except for a negligible contribution from the s-polarized

component.

These pictures show clearly the influence of reflection at the sample surface. On

anisotropic samples the impact is even higher, because the polarization of the light

is changed by the reflection at the sample surface (see chapter 6).

In the following section we will discuss different possibilities of collecting the

scattered light. Different methods allow us to measure different quantities of the

scattering process.
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5.3 Demodulation and Detection

The detection of the optical near-field signal is crucial for the results we obtain. The

easiest method is to detect the scattered light directly as it is done in our IR setup

(see section 8.4). We will describe the method of direct detection in the first part of

this section.

The maybe most delicate point in measuring near-field signals is the separation

of the very small near-field signal from the huge background signal. For all types

of detection, this discrimination can be realized by higher-harmonic demodulation.

The underlying principle is discussed in section 2.3, while in this section we will

describe the method theoretically as it applies in the case of direct detection.

As the near-field signal is very small, many groups use homodyne or heterodyne

interferometric detection to enhance the signal-to-noise ratio. In addition, interfer-

ometric detection allows us to distinguish between the amplitude and phase of the

complex near-field signal.

5.3.1 Direct Detection of the Scattered Light

One of the main problems in detecting the scattered light directly is the small amount

of backscattered light. The signals are still large enough to be measured with an

ordinary detector, but what we want to measure are tiny changes of this small signal.

It does not help very much to collect as much light as possible with, for example,

an ellipsoidal mirror [Kno99a, Kno99b] to take advantage of the full scattering cross

section of about 10−14 cm2, because it is difficult to find a mirror that fits the special

setup and because the adjustment is delicate. This is the reason why most groups

simply use a lens to collect the scattered light. For a lens with a numerical aperture

of 0.25 we expect the effective scattering cross section to be about 10−16 cm2. Direct

detection with a lens is sketched in figure 5.10a.

With the direct-detection method we collect and measure the power of the scat-

tered light, which is proportional to its intensity Isca given by the square modulus

of the scattered electric field Esca

Isca = |Esca|2 . (5.42)

The power scattered in a certain direction is directly proportional to the differential

scattering cross section (see equation 5.2) multiplied by the actual intensity at the

tip I0 = |E0|2:
Isca ∼ dCsca

dΩ
I0 . (5.43)

The particular cross section CΩ detected by a lens can be calculated by integrating

the differential cross section over the solid angle covered by the lens

CΩ =

∫ ∫
dC

dΩ
sin θdθdφ . (5.44)
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Figure 5.10: (a) Sketch of direct detection with incident angle γ and distance

h between tip and sample. (b) Background suppression by higher-harmonic de-

modulation: As a result of the cantilever oscillating at a frequency Ω, the far-field

signal, which depends linearly on h, is modulated at Ω, while the near-field signal

contains a whole spectrum of frequencies nΩ.

Determining a realistic sector of detection is difficult as we do not know the

exact orientation of the tip-sample dipole with respect to the incident k vector.

Furthermore, the real tip-sample system does not show a pure dipole radiation pat-

tern. Even though the tip-sample interaction is well described by the electrostatic

approximation, a real tip exhibits a mixture of dipole and antenna properties (see

section 5.1). Studies on more needle-shaped tips have clearly shown this antenna

characteristic [GL99, Kni76]. In our experimental setup we account for this behavior

by illuminating the tip at the proper angle of incidence (γ = 70◦) corresponding to

the main lobe of the antenna pattern. As we measure the backscattered light at

the same angle, we expect the lens to collect a radiation maximum. In view of the

above uncertainties, we use the total power radiated into the upper half-space as

a measure of the signal to be expected when direct detection is used. This power

corresponds to half the total scattering cross section:

fdir =
1

2
Csca . (5.45)

The optical contrast (equation 5.33) is then given by

Vdir =
Csca,A − Csca,B

Csca,A + Csca,B

. (5.46)

With the method of direct detection we measure signal changes caused by the

amplitude of the scattered wave. We are not sensitive to any variations of its phase

and thus we lose that piece of information about the near-field interaction. Measur-

ing both signals is possible with interferometric detection methods described in the

sections below.

Please note that in this section the direct detection has been described as an ideal

system in which the detector only collects light that is scattered by the tip. In the

corresponding experiments, one usually has backreflections from optical elements
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such as mirrors, lenses, and beamsplitters, but also from the tip-sample junction.

As these backreflected beams interfere with the scattered beam, the measured signal

is in fact sensitive to both the amplitude and phase of the scattered wave [Bla03].

Interferometric detection suppresses these terms and replaces them by controlled

interferences with a well-defined reference beam.

Before discussing how to distinguish between optical amplitude and phase by

using interferometric detection, we detail how to suppress the huge far-field signal,

such that the small near-field signal becomes accessible. This can be realized with

the method of higher-harmonic demodulation.

5.3.2 Higher-Harmonic Demodulation

In the experiment, the light scattered by the tip contains not only the near-field

signal but also a contribution due to reflections at the tip shaft as well as far-field

interferences between different light paths. To single out the small near-field signal

from this background, we use the method of so-called higher-harmonic demodulation.

In noncontact mode, the cantilever is oscillating at a certain frequency Ω and

thus the distance between the tip and the sample is modulated. As the near-field

signal depends strongly on the distance, it is modulated at the cantilever frequency as

well. In fact, the nonlinear distance dependence causes a modulation not only at the

cantilever frequency Ω, but also at multiples n ·Ω with n = 1, 2, 3, ..., which are the

so-called higher-harmonic frequencies (see figure 5.10b). As the far-field background

exhibits only a weak, essentially linear dependence on the distance between tip

and sample, the modulation of the background occurs only at Ω. Hence, when

demodulating the signal at one of the higher harmonics using lock-in technique, we

measure a pure near-field signal (see figure 5.10b).

The different higher harmonics can be calculated by Fourier transformation of

the signal. We will discuss this for the example of direct detection.

The signal measured by direct detection is proportional to the scattering cross

section (see equation 5.43). For simplicity we assume the tip to have a scalar polar-

izability αt and the external electric field at the tip to be oriented perpendicularly

to the sample surface. Hence, the measured signal is given by (see equation 5.32)

f(h) =
k4

2 · 6π

∣∣∣∣∣
αt(1 + β)

1− αtβ
16πh3

∣∣∣∣∣

2

. (5.47)

If the tip oscillates in z direction at the frequency Ω and with the amplitude h1, the

distance h as a function of time is given by

h(t) = h0 + h1(1 + cos(Ωt)) . (5.48)

with h0 being the distance at the turning point of the oscillation at the surface.

After inserting this formula for h in equation 5.47, we can calculate the con-

tributions to the nth higher-harmonic signal by calculating the respective Fourier
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Figure 5.11: (a) Higher harmonics of the directly detected near-field signal as

functions of the tip-sample distance h. The tip is assumed to be a metal sphere

(a = 10 nm) far from any resonance (αt
∼= 4πa3) at λ = 633 nm. (b) shows the

absolute values of the signals as measured by lock-in technique in the experiments

shown below.

coefficient Hn

Hn =
Ω

π

∫ 2π/Ω

0

f(h(t)) cos (nΩt)dt . (5.49)

For modulation amplitudes small compared with the tip radius a (h1 ¿ a), the

nth Fourier component is given by the nth derivate of f with respect to the distance

h [Hil01a], corresponding to the nth coefficient of a Taylor expansion.

Figure 5.11a shows the higher-harmonic signals as functions of the tip-sample

distance h for a nonresonant spherical tip next to a resonantly excited sample with

εs = −4 (see section 6.3). The 0th order is positive for all h and has a maximum at

hmax
∼= 0.8a. The 1st harmonic, corresponding to the derivate of the 0th-order signal

is positive for h < hmax, crosses zero at h ∼= hmax, and is negative for h > hmax.

This harmonic shows two extrema, a positive maximum and a negative minimum.

Accordingly, the 2nd harmonic, reflecting the derivate of the 1th harmonic, shows 3

extrema, the 3rd harmonic has 4 extrema, and so on. The corresponding functions are

plotted in figure 5.11a. The signal decreases dramatically with increasing order. For

easier comparison, we have depicted the nth harmonic multiplied with the factor 103n.

Figure 5.11b shows the absolute values of the higher-harmonic signals which are the

quantities measured by lock-in technique in the experiment. When demodulating

the signal at nΩ, we only have two possible phases - reflecting the sign of the
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Figure 5.12: Sketch of homodyne interferometric detection showing (a) a static

method and (b) a dynamic method to separate optical amplitude and phase.

corresponding higher harmonic. Usually in the experiments, we collect the amplitude

of the harmonics and measure the corresponding phase only for completeness.

The calculations of higher harmonics, as shown here for direct detection, can

easily be extended to any arbitrary signal f , as long as we can determine the distance

dependence of the measured quantity. In the following parts we will discuss the

methods of homodyne and heterodyne interferometric detection.

5.3.3 Homodyne Interferometric Detection

For homodyne interferometric detection, we make the scattered wave interfere with

a reference wave having a fixed phase correlation to the incident laser light. A

beam splitter is used to split the laser beam into a reference beam and the beam

illuminating the tip. The same beam splitter recombines the scattered light and the

reference wave on the detector. This setup corresponds to a Michelson interferometer

with the s-SNOM replacing the mirror in one of the branches of the interferometer

(see figure 5.12a). The total power as measured by the detector is given by3 [Fow89]

fhom = |Esca + Eref |2 = |Esca|2 + |Eref |2 + 2 |Esca| |Eref | cos θhom (5.50)

with Esca the electric-field vector of the scattered light (see eq. 5.1),

Eref the electric-field vector of the reference beam,

and the phase difference θhom between the scattered light and the reference beam

θhom = φref − φsca (5.51)

with φref the phase of the reference beam and

φsca the phase of the scattered light.

3Please note that, for simplicity, we assume Esca‖Eref .
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The phase of the reference beam is fixed with respect to the phase of the incident

light, while the phase of the scattered light might be changed by the scattering

process as well as the near-field interaction.

In comparison with direct detection, the detected power has increased by the

power of the reference beam Iref = |Eref |2, and additionally we measure an interfer-

ence term which includes contributions of both reference beam and scattered light.

This interference term is proportional to the quantity of interest |Esca| multiplied

by a constant factor being twice the reference beam amplitude |Eref |. Also, the

interference term is sensitive to the phase between the two beams. Thus, changes

of the detected signal can result from either an amplitude or a phase change of the

scattered wave.

In order to separate amplitude and phase of the near-field signal, usually het-

erodyne interferometry is used, as described in the next subsection. In principle,

it is also possible to separate the optical amplitude and phase by means of homo-

dyne interferometry. Taubner et al. [Tau04b], for example, measure the homodyne

signal (eq. 5.50) twice for each point on the sample surface, first at an arbitrary

mirror position and then at a position shifted by λ/8, which corresponds to a phase

shift of ∆φref = π/2 (see figure 5.12a). The corresponding data f1 and f2 are

proportional to cos (θ) and to sin(θ), respectively. After substraction of the offset

I0 = |Esca|2 + |Eref |2, the equations for the optical amplitude and phase measured

with this method are given by

Ahom =
√

(f1 − I0)2 + (f2 − I0)2 = 2 |Esca| |Eref | , and (5.52)

φhom = arctan f2−I0
f1−I0

= φref − φsca . (5.53)

This method works correctly only if the offset I0 is chosen properly. Furthermore,

every data point has to be measured twice, which leads to a longer aquisition time

and hence to a decreased signal-to-noise ratio because of stability problems.

Separating the optical amplitude and phase in a homodyne interferometric setup

is also possible by vibrating the reference mirror at a certain frequency ωref . This

oscillation causes a well-defined modulation of the reference phase φref

φref = φref,0 + ∆φref cos (ωref t) (5.54)

Two different methods using such a phase-modulated homodyne interferometer have

been reported in the literature: In the first method, the mirror oscillates with a large

amplitude, which generates a whole spectrum of interference terms. By demodu-

lating these terms by lock-in technique the optical amplitude and phase can be

calculated [Oce06]. In the second method, a rather small mirror oscillation ampli-

tude is used together with an additional controller that keeps the average phase

shift between reference beam and scattered beam constant by displacing the refer-

ence mirror. With this method the optical amplitude and phase can be measured

directly [Ceb06]. Both methods allow the separation of amplitude and phase. They

are in principle applicable for arbitrary wavelengths, but are quite complex in com-

parison to the heterodyne interferometer described in the following.
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Ω ∆∆∆∆
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Figure 5.13: Sketch of heterodyne interferometric detection including a fre-

quency shift ∆ of the reference beam (dashed lines) by an AOM, scattering at an

AFM tip oscillating at the frequency Ω and interference after the beam splitter

cube.

5.3.4 Heterodyne Interferometric Detection

For heterodyne interferometric detection as used in our setup at visible wavelengths,

the measured quantity is again the interference term between the scattered wave

and a reference wave. In contrast to homodyne interferometric detection, the two

interfering beams have slightly different frequencies, which allows us to directly

separate amplitude and phase of the scattered light. Also, the method improves the

signal-to-noise ratio by transforming the signal to a higher frequency.

For heterodyne detection part of the incident beam is frequency shifted to act as

the reference beam which is superimposed on the scattered light (see figure 5.13).

The measured signal fhet includes the interference between the fields of the reference

beam Eref and of the scattered light Esca:
4

fhet = |Eref |2 + |Esca|2 + 2 |Eref | |Esca| cos θhet , (5.55)

where the phase relation between the two fields θhet is given by

θhet = ∆ · t + φref − φsca (5.56)

with ∆ the frequency shift of the reference beam and

t the time.

Due to the different frequencies of the two beams, the interference term is a beating

signal. This beating signal can be demodulated by a lock-in amplifier, which allows

us to measure its phase as well as its amplitude:

Ahet = 2 |Eref | |Esca| and

φhet = φref − φsca .
(5.57)

4Please note that, for simplicity, we assume Esca‖Eref .
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Hence, this detection scheme is able to disentangle the phase φsca and the am-

plitude |Esca| of the scattered wave. Similarly to homodyne detection, the reference

amplitude enters the signal as a factor, so we may increase the signal by using a

more intense reference beam. At the same time, the method of heterodyne inter-

ferometric detection has several advantages over homodyne detection: The signal

amplitude does not depend on the absolute reference mirror position. Unlike in

phase-modulated homodyne detection, no additional controller is needed to control

the reference phase. Moreover the beating shifts the signal to higher frequencies.

If we use an acousto-optical modulator (AOM) to shift the frequency of the refer-

ence beam, we can typically achieve ∆ ' 80 MHz. In this regime, there is almost

no mechanically or electronically induced noise. We thus expect a much higher

signal-to-noise ratio.

5.4 Summary

In this chapter we have described the theory of s-SNOM of isotropic samples, using

the well-known electrostatic dipole model. We assume the AFM tip to be small

compared with the wavelength. For a given tip polarizability we can calculate scat-

tering parameters such as the vector scattering amplitude and the scattering cross

section. The shape and material of the tip determine its polarizability and lead to

a certain polarization dependence of the scattered signal.

The method of image charges is used to include the interaction between tip and

sample in the model. The sample distorts the electric field of the tip and decreases

the symmetry of the system. The tip-sample interaction enhances the scattering,

when the tip is brought close to the sample surface. We expect a material contrast

in the s-SNOM signal between isotropic sample materials with different dielectric

constants.

We have theoretically described different detection methods that are commonly

used in s-SNOM, such as direct detection, homodyne interferometric detection, and

heterodyne interferometric detection. We found that with interferometric detection

it is possible to separate the optical amplitude from the phase of the scattering

signal, while direct detection yields only the amplitude. For all detection methods

we can use the method of higher-harmonic demodulation to suppress far-field signals,

thereby gaining access to the pure near-field signal.
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In chapter 5 we discussed the theoretical description of scattering scanning near-

field optical microscopy of isotropic samples. The scattering by the tip is described by

the electrostatic limit of the Mie theory, being basically Rayleigh scattering, while the

near-field interaction between the scattering tip and the isotropic sample is described

by the electrostatic dipole model. This model is well established for isotropic samples.

In this chapter we extend the model to anisotropic samples, e.g. ferroelectric

materials. We are interested in the optical contrast induced by the anisotropy of the

sample. In ferroelectric materials a contrast can arise between ferroelectric domains

in which one and the same dielectric tensor is oriented differently.

The anisotropy of the sample disturbs the symmetry of the system. This can

be described by a modified image dipole. Moreover, the reflection at the surface of

an anisotropic sample depends strongly on the orientation of the dielectric tensor.

As the reflected light contributes to the electric field at the position of the tip (see

section 5.2), this reflection strongly influences the optical signal. How to include

these modifications in the dipole model is described in section 6.1. In section 6.2,

the possible optical contrast between regions in a uniaxial sample differing by the

orientation of the dielectric tensor is discussed for selected tip shapes. In order to

enhance this anisotropy contrast, the coupled tip-sample system may be excited close

to its resonances. These resonances can be induced by resonant excitation of either

the tip or the sample. We calculate the scattering occurring when a gold tip is excited

at its plasmon resonance in the visible wavelength regime or when a sample is excited

close to a phonon resonance in the IR. Finally we discuss the two samples used in our

experimental work, LiNbO3 and BaTiO3, both showing multiple phonon resonances

in the IR regime. Close to these phonon resonances the scattering cross section

as well as the optical contrast between different domains are strongly enhanced (see

section 6.3).

6.1 Anisotropic Samples in s-SNOM

In this section we extend the known dipole model to anisotropic samples. We intro-

duce the corresponding method of image charges, the extended dipole interaction, as

well as the modified Fresnel formulae describing the reflection at anisotropic samples.
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6.1.1 Method of Image Charges for Anisotropic Samples

In section 5.1 we calculated the distorted field of the scatterer close to an isotropic

sample by introducing a dipole in the sample according to the well-known method

of image charges. The image charge problem was solved for an anisotropic sample

in 1996 when Ismo Lindell et al. presented first calculations for an anisotropic

half-space slightly deviating from transverse isotropy [Lin96]. One year later, they

reported that arbitrary anisotropic samples can be treated [Lin97] by introducing -

in addition to the image point charge in the case of an isotropic sample [Jac83] - an

image sheet charge in the sample accounting for the anisotropy. In this work, we

restrict ourselves to samples having a diagonal dielectric tensor ε̂s with one principal

axis being perpendicular to the sample surface

ε̂s =




εx 0 0

0 εy 0

0 0 εz


 . (6.1)

For the electrostatic calculations of Lindell, the elements εj (j = x, y, z) are assumed

to be real and nonnegative numbers. Without restriction, the x axis is the direction

of the largest dielectric constant within the surface plane (εx ≥ εy).

For an anisotropic sample the image charge of a point charge situated at z = h

above the surface is the superposition of a point charge q′ at z = −h and a sheet

charge distribution σ (see figure 6.1a). Similarly to the isotropic case, the point

charge is given by

q′ = βq (6.2)

with q the charge outside of the sample at z = h and

β the response function of the sample.

For an anisotropic sample the response function is given by

β =

√
εzεy − 1

√
εzεy + 1

. (6.3)

The sheet charge fills an angular sector in the xz plane below the position of the

image point charge, z = −h, (see figure 6.1a) with an opening angle τ , which depends

on the degree of anisotropy parallel to the sample surface:

τ = arctan

√
εx − εy

εy

. (6.4)

The sheet charge is given by [Lin97]

σ = −q
2
√

εz(εx−εy)|z+h|
π
√

(εx−εy)(z−h)2−εyx2

εz [(εx−εy)(z+h)2−εyx2]−x2

(εz [(εx−εy)(z+h)2−εyx2]+x2)2

·δ[y]θ[(εx − εy)(z + h)2 − εyx
2]θ[−(z + h)] .

(6.5)
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Figure 6.1: (a) Schematic figure of a point charge q and its image charge distri-

bution consisting of a point charge q′ and a two-dimensional charge distribution

σ [Lin97]; (b) sheet charge distribution for εx = 10, εy = 3, εz = 2; the half angle

of the sector is τ = 57◦. (c) Profile of the sheet charge distribution at z = −2h

[see dashed line in (a)] for εy = 3 and εz = 2 and for different values of εx. As εx

comes closer to εy the sheet charge distribution becomes narrower and more and

more resembles a quadrifilar line charge as indicated by the dashed lines in (c).

with δ(x) the delta function and

θ(x) the Heaviside step function θ(x) =
∫ x

−∞ δ(t)dt .

Figure 6.1b shows the sheet charge as a function of the xz position for a sample

with εx = 10, εy = 3, and εz = 2, and hence with a half angle τ = 57◦. At the

borders of the sector, the sheet charge is positive, while in the center it is negative.

At any distance z from the sample surface the integral of σ across x is 0. For a

sample being isotropic in the plane parallel to the sample surface (εx = εy) the sheet

charge vanishes (σ = 0).

In order to determine the interaction between the tip and the sample in the

dipole model, we need to calculate the field of the image dipole at the position of

the tip dipole. The field of the image charge distribution σ is given by [Jac83]

Eσ(r) =
1

4πε0

∫
σ(r′)

r− r′

|r− r′|3d3r′ . (6.6)

In general, this integral is not solvable for anisotropic samples, but it may be solved

for samples showing weak anisotropy with

τ ∼= tan τ ∼=
√

εx − εy

εy

¿ 1 . (6.7)

In this case the sheet charge reduces to a quadrifilar line charge σ′ described by

σ → σ′ = −2qη(z + h)∂2
xδ [x] δ [y] θ [− (z + h)] (6.8)
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with the anisotropy response function

η =

√
εzεy · (εx − εy)

2εy ·
(√

εzεy + 1
)2 . (6.9)

Figure 6.1c illustrates the structure of the line charge. We plot a cross section

of the sheet charge at z = −2h for several sets of dielectric constants. For small in-

plane anisotropy the angle τ decreases and the sheet charge becomes narrower until

only 4 line charges are left as indicated by the dashed lines. The typical structure

of the sheet charge is reflected by the four line charges being positive, negative,

negative, and positive with equal absolute values. Mathematically, the lines are

described by the second derivation of the delta function ∂2
xδ [x]. The δ function in

y and the Heaviside function θ(−(z + h)) limit the charges to y = 0 and z ≤ −h,

respectively. Away from z = −h the absolute value of the four line charges increases

linearly along the z axis.

From the point of view of symmetry, a point charge next to an isotropic sample

generates circular lines of equal potential on the sample surface. The system is of

cylindrical symmetry and the electric field can be described by adding an image point

charge. For a sample being anisotropic in the plane parallel to the sample surface,

these circular lines are distorted to ellipses with the major axis in the direction of

the larger dielectric constant. The sheet charge or - in the case of weak anisotropy

- the quadrifilar line charge generates this distortion of the equipotential lines.

In the following section we apply this method of image charges for anisotropic

samples to the dipole model.

6.1.2 Dipole Model for Anisotropic Samples

On the basis of the above-described method of image charges we can extend the

dipole model to anisotropic samples. We assume the anisotropy of the sample to be

small (eq. 6.7) so that equation 6.8 applies.

As in section 5.2 we assume the tip dipole to be a point dipole induced by an

external electric field. The electric field of the tip dipole in the presence of an

anisotropic sample is given by the superposition of the fields of the tip dipole and

of the image charge distribution in the sample. At distances r large compared with

the distance h between tip and sample, the total electric field is the field of the total

tip-sample dipole Ptot given by (see eq: 5.29)

Ptot = α̂totε0E0 (6.10)

with

α̂tot =
(
Î + βĈ

)
· α̂′t (6.11)

and

α̂′t = (Î − ε0α̂tK̂)−1α̂t . (6.12)
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Figure 6.2: (a) Sketch of the tip-sample system for anisotropic samples. In

addition to the isotropic case, we define the angle δ between the plane of incidence

and the x axis. The x axis is defined as the principal axis with the larger in-plane

dielectric constant of the sample. (b) Distance dependence of the scattering cross

section of a gold sphere (a = 10 nm) next to an anisotropic sample (εx = 3.5,

εy = 3, εz = 2) for different orientations of the tip dipole with respect to the

sample surface. For better comparability the two scattering cross sections for

orientation of the tip dipole along the directions x or y are multiplied by a factor

of 5. In order to stress the difference between these two components, their mutual

visibility Vxy is plotted additionally.

For an anisotropic sample the response function β of the sample is given by equa-

tion 6.3 and the interaction matrix K̂ is modified by the anisotropy response function

η:

K̂ =
1

64πε0h3




2β + 3η 0 0

0 2β + η 0

0 0 4β + 4η


 . (6.13)

Note that the image sheet charge, which is characterized by the anisotropy response

function η, modifies the tip dipole via α′t, but does not contribute to the dipole

moment of the sample. This is because the symmetry of the sheet charge makes its

dipole moment vanish so that it does not contribute directly to the radiated field.

The tip-sample system for anisotropic samples is no longer of cylindrical sym-

metry. This is reflected by the polarizability of the system having different x and y

components. Hence, in order to describe the system for anisotropic samples, we de-

fine an additional angle δ, which is the azimuthal angle between the incident plane

and the x axis, which we have defined as the direction with the largest in-plane

dielectric constant of the sample (see figure 6.2a).

In figure 6.2b the scattering cross sections are plotted as functions of the distance

h for three possible orientations of the tip dipole along the x, y, or z axis above an

anisotropic sample with εx = 3.5, εy = 3, and εz = 2. As for isotropic samples, the

scattering is much stronger when the tip dipole is along the z axis than when it is

parallel to the surface. In figure 6.2 the scattering cross sections for the latter case

have been multiplied by five for better legibility. The difference between the x and
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the y directions is depicted as the visibility Vxy = (Csca,x − Csca,y)/(Csca,x + Csca,y),

which turns out to be smaller than 0.4 %. The difference may be increased by

selected tip shapes (see section 6.2) or by resonant excitation of the sample (see

section 6.3).

All the samples examined experimentally in this work are optically uniaxial with

only a few possible orientations of the optical axis (see chapter 3). In the following

we discuss the simplifications of the model that apply to these specific samples.

6.1.3 Uniaxial Anisotropic Samples

For optically uniaxial crystals the dielectric tensor ε̂s is diagonal with two identical

elements εa perpendicular to the optical axis and a different element εc along the

optical axis (c axis). As our calculations above are restricted to a diagonal dielectric

tensor with one axis perpendicular to the sample surface, there are two possible ori-

entations of the optical axis: either perpendicular (c domain) or parallel (a domain)

to the sample surface. The corresponding dielectric tensors ε̂a
s and ε̂c

s in the xyz

coordinate system read

ε̂a
s =




εa 0 0

0 εc 0

0 0 εa


 , ε̂c

s =




εa 0 0

0 εa 0

0 0 εc


 . (6.14)

In ferroelectric samples we call regions having these orientations of the dielectric

tensor a domains and c domains (see section 3.2).

In c domains the sample is isotropic within the surface plane and thus of cylin-

drical symmetry. This results in

ηc = 0 (6.15)

as in the isotropic case, while the factor β becomes

βc =

√
εaεc − 1√
εaεc + 1

. (6.16)

The situation is very similar to that of an isotropic sample. Clearly, the symmetry

of the tip-sample system on a c domain is cylindrical and thus the scattering cross

section does not depend on the azimuthal angle δ.

On the other hand, for an a domain with εa > εc the optical axis coincides with

the y axis according to the convention that the x axis is the axis with the largest

dielectric constant in the surface plane. The anisotropy factor is given by

ηa =

√
εaεc(εa − εc)

2εc(
√

εaεc + 1)2
, (6.17)

whereas β remains unchanged:

βa = βc =

√
εaεc − 1√
εaεc + 1

. (6.18)
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Figure 6.3: Definition of the unit vectors es and ep for the incident beam and

the beam reflected on the anisotropic sample surface (marked with dash) (a) Side

view, projection on the plane of incidence and (b) top view, projection on the

sample surface.

On an a domain, the cylindrical symmetry of the system is lost and the scattering

cross section depends on the angle δ between the plane of incidence and the x axis.

In the following we discuss the reflection at an anisotropic sample, which shows

a strong dependence on the orientation of the dielectric tensor.

6.1.4 Reflection at Anisotropic Samples

Unlike in the case of an isotropic sample, reflection at the surface of an anisotropic

sample leads to partial transformation of p into s polarization and vice versa. Math-

ematically this can be expressed by introducing mixed reflection coefficients rsp

and rps in addition to the Fresnel coefficients rs and rp. The field reflected by an

anisotropic sample is thus given by

Erefl = (rssEs + rspEp)es + (rppEp + rpsEs)Ĉep , (6.19)

with Es and Ep being the s and p components of the incident electric-field vec-

tor, defined as the components along the directions given by the unit vectors (see

figure 6.3

ep =




cos δ cos γ

− sin δ cos γ

sin γ


 and es =



− sin δ

− cos δ

0


 . (6.20)

In 1928 Szivessy calculated these coefficients for arbitrary anisotropy [Szi28]1.

The derivation for the most general and for the special case of uniaxial anisotropy is

reported in appendix A. The results for a c domain and for two specific orientations

of an a domain are discussed here.

1For reflection at a sample showing weak anisotropy, see also the work of Grafström [Gra06].
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Figure 6.4: Fresnel coefficients rik of anisotropic BaTiO3. (a) (−rc
pp) and rc

ss of

a c domain as functions of the incident angle γ (rc
sp = rc

ps = 0). (b) Differences

of the Fresnel coefficients between an a and a c domain for γ = 70◦ as functions

of the azimuthal angle δ. The variation with δ is due to the a domain, since on

the c domain, the coefficients are constant: rc
pp = −0.053, rc

ss = −0.733, and

rc
ps=rc

sp=0. The small negative value of rpp indicates that γ is slightly above

Brewster’s angle.

For a c domain the reflection coefficients are given by

rc
pp =

nanc cos (γ)− nm

√
n2

c − n2
m sin2 (γ)

nanc cos(γ) + nm

√
n2

c − n2
m sin2 (γ)

rc
ss =

nm cos (γ)−
√

n2
a − n2

m sin2 (γ)

nm cos(γ) +
√

n2
a − n2

m sin2 (γ)
(6.21)

rc
sp = rc

ps = 0

with na =
√

εa, nc =
√

εc the indices of refraction of the a and the c direction of

the crystal and nm =
√

εm the index of refraction of the surrounding medium. As

the c domain is of cylindrical symmetry, the coefficients rc
ik do not depend on the

azimuthal angle δ. In figure 6.4a their dependence on the incident angle γ is plotted

for a c domain of BaTiO3 (na = 2.36, nc = 2.412 at λ = 633 nm [Zgo94]). For

easier comparison with textbooks, we have plotted (−rpp). The different sign in our

calculation is caused by the different definition of Ĉ in equation 6.19 as compared to

Szivessy. For γ = 0◦ both coefficients have the same value of (1−na)/(1+na) ∼= −0.4.

With increasing γ −rpp increases, crossing zero at Brewster’s angle [Fow89] of about

70◦ and rising further until reaching 1 at γ = 90◦. On the other hand, rss decreases

with increasing γ, reaching -1 at γ = 90◦. The behavior of the reflection coefficients

of a c domain is very similar to that found for an isotropic material. As rsp and rps

are zero, there is no transformation of p into s polarization or vice versa.

For an a domain the reflection coefficients are much more complex as they depend

additionally on δ. For an a domain with the optical axis perpendicular to the plane
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of incidence, corresponding to δ = 0◦, the coefficients are given by

ra,0
pp =

n2
a cos (γ)− nm

√
n2

a − n2
m sin2 (γ)

n2
a cos(γ) + nm

√
n2

a − n2
m sin2 (γ)

ra,0
ss =

nm cos (γ)−
√

n2
c − n2

m sin2 (γ)

nm cos(γ) +
√

n2
c − n2

m sin2 (γ)
(6.22)

ra,0
sp = ra,0

ps = 0 .

while for δ = 90◦ they are

ra,90
pp =

nanc cos (γ)− nmm
√

n2
a − n2

m sin2 (γ)

nanc cos(γ) + nmm
√

n2
a − n2

m sin2 (γ)

ra,90
ss =

nm cos (γ)−
√

n2
a − n2

m sin2 (γ)

nm cos(γ) +
√

n2
a − n2

m sin2 (γ)
(6.23)

ra,90
sp = ra,90

ps = 0 ,

with

m =

∣∣∣∣∣
n2

an
2
c − (n2

a − n2
c)n

2
m sin (γ)2

n2
an

2
c + (n2

a − n2
c)n

2
m sin (γ)2

∣∣∣∣∣ . (6.24)

In general, for an a domain, the mixed coefficients ra
sp and ra

ps have to be taken

into account as functions of δ (see appendix A). For δ = 0◦ or δ = 90◦ they are both

zero.

The differences of the Fresnel coefficients ∆rik between an a and a c domain of

BaTiO3 are plotted in figure 6.4b for an incident angle of γ = 70◦ as functions of the

azimuthal angle δ. As the coefficients are constant on the c domain, the variation

with δ is due to the a domain.

Knowing the reflection coefficients, we can calculate the external electric field

at the position of the tip from he superposition of the electric-field vectors of the

incident and of the reflected wave

E0 = Ep · ep + (rppEp + rpsEs) · Ĉ · ep + (6.25)

Es · es + (rspEp + rssEs) · es.

The polarization of the external electric field at the position of the tip may

be changed significantly by the reflection at the sample surface. This polarization

change depends strongly on the orientation of the dielectric tensor of the sample.

Hence, we expect an additional contrast due to the reflection. In the following

section, we will discuss this influence on the contrast for different tip shapes for

nonresonant excitation.

6.2 Optical Contrast Arising from Anisotropy

In this section we study the optical contrast between regions characterized by differ-

ent orientations of the dielectric tensor of the sample for a nonresonant tip-sample
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Figure 6.5: (a) Sketch of the possible orientations of the optical axis of a uniaxial

crystal, e.g. BaTiO3 with three possible types of domains. For such a sample

system we expect two different kinds of contrast: Vac between different types

of domains and Vaa between differently oriented a domains. (b) Scattering cross

section as a function of the incident polarization ϕ for scatterers of different shape

touching the surface of a c domain of BaTiO3: sphere (red) with a radius of 10 nm,

prolate ellipsoid (axis ratio 10:3) with the long axis normal to the sample surface

(blue) or perpendicular to the plane of incidence (green). The prolate ellipsoids

were adjusted in size to have the same volume as the sphere.

system. As the anisotropic sample lowers the symmetry of the system, we expect the

scattering to be highly sensitive to the polarization of the incident light as well as

to the tip geometry. Therefore, we will not only discuss the contrast for a spherical

tip, but also for a cigar-shaped tip with its major axis being oriented either parallel

or perpendicularly to the sample surface.

In the following we assume the sample to be uniaxial with the optical axis either

perpendicular or parallel to the sample surface (see section 6.1). In analogy to

the possible domains in BaTiO3 we consider – in addition to the c domain – two

possible a domains with their optical axes at right angle to each other as sketched

in figure 6.5a. For such a sample we expect a contrast Vac between different types

of domains as well as a contrast Vaa between differently oriented a domains (see

figure 6.5a).

In the following we discuss the optical contrast between domains of ferroelectric

BaTiO3 for selected tip shapes as a function of the azimuthal angle δ and the po-

larization ϕ of the incident light. For all calculations we assume an incident angle

γ = 70◦, a wavelength λ = 633 nm, and a gold tip with radius a = 10 nm touching

the sample surface (h = a) [Sch05c].
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Figure 6.6: Optical contrast between ferroelectric domains in BaTiO3 probed

with a gold sphere touching the surface: the contrast Vac between an a and

a c domain is illustrated in (a) and (c), while (b) and (d) depict the contrast

Vaa between two a domains of different orientation. The contrast is shown as a

function of the azimuthal angle δ and the polarization angle ϕ in the region close

to s polarization. The two contributions to the contrast are displayed separately:

the contrast caused by the probe-sample interaction is shown in (a) and (b), and

the contribution due to the Fresnel coefficients is plotted in (c) and (d).

6.2.1 Spherical Tip

First we discuss the contrasts between a and c domains (Vac) as well as between

differently oriented a domains (Vaa) for a spherical tip. In figure 6.6 these contrasts

are plotted as functions of the polarization of the incident light and of the azimuthal

angle δ. The two contributions to the contrast discussed in section 6.1 are displayed

separately: The contrast caused by the probe-sample dipole interaction is shown in

(a) and (b) and the contribution due to reflection at the sample surface is plotted in

(c) and (d). As it needs only a small normal field component to make the perpen-

dicular dipole dominate the scattering, a behavior similar to that observed for pure

p polarization is obtained already at fairly small angles ϕ. Therefore, only a limited

range of ϕ close to s polarization is displayed. Furthermore, reversing the sign of ϕ

has the same effect as replacing δ by 180◦− δ. Hence, we can restrict the discussion

to positive ϕ.

The anisotropy causes only a small change in the tip-sample interaction such

that the resulting contrast is no more than a fraction of a percent, far too small
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to be measured. The domain-dependent Fresnel coefficients – which are depicted

in figure 6.4b – on the other hand lead to a much more pronounced contrast of

up to several percent. In all cases discussed in the following it is a general feature

that the dipole interaction between tip and sample gives rise to negligible contrast

only. Therefore, we concentrate on the discussion of the contribution stemming

from the Fresnel coefficients. Nevertheless, for completeness the dipole contribution

is included also in figures 6.7 and 6.8 as subfigures (a) and (b).

Let us first discuss the ac contrast Vac depicted in figure 6.6c. For s polarization

both the Fresnel coefficients rss and rps contribute. If the electric field points along

the y axis (δ = 0◦, or equivalently 180◦), the dielectric constant sensed by the

incident wave is εa on the c domain and εc on the a domain. This leads to a difference

in rss causing an ac contrast of 2.2%. For δ = 90◦ any difference in reflectivity

vanishes (∆rss = ∆rps = 0) and so does the corresponding contrast. The coefficient

rps is always zero on the c domain. On the a domain, this coefficient vanishes at

δ = 0◦ and 90◦ but reaches a maximum positive or negative value at δ = 45◦ and

135◦, respectively. Here, part of the light is transformed to p polarization so that

a dipole perpendicular to the surface arises. As such a dipole is more efficiently

excited than a dipole parallel to the surface (see sections 5.2 and 6.1) this leads to

stronger scattering on the a domain resulting in a small positive contribution to the

ac contrast.

If now the polarization is rotated slightly so that the incident wave contains a

p-polarized component, the influence of rps is such that the normal field component

is enhanced around δ = 45◦, whereas it is reduced around δ = 135◦. This leads

to an increase or decrease of the scattered power on the a domain, respectively,

resulting in positive and negative extrema of the ac contrast of±4% for a polarization

angle ϕ ≈ 2◦. For larger angles ϕ outside the region displayed in Fig. 6.6(c), the

contrast becomes more and more dominated by the difference in rpp between the two

domains, which is largest for δ = 90◦, where it gives rise to Vac = −1.4% for pure

p polarization. Unlike rps, the Fresnel coefficient rsp − despite being equal to rps

in absolute magnitude − has little impact on the contrast, as the resulting dipole

parallel to the sample surface contributes only weakly to the scattering.

Concerning the aa contrast, we first note the general feature that replacing δ by

δ+90◦ simply interchanges the two domains and, hence, leads to sign reversal of Vaa.

Again, the Fresnel coefficients represent the main source of contrast (see figure 6.6d).

For pure s polarization, rps has no influence on Vaa since it is equally effective on

both domains. The contrast is then most pronounced at δ = 0◦ and 90◦, where it

amounts to ±2.2%. However, as soon as the polarization deviates from ϕ = 0◦, rps

comes into play in a similar way as for Vac, because its sign is different on the two

domains. This again gives rise to extrema in the contrast close to s polarization, this

time reaching a value of ±8%. Pure p polarization provides a maximum contrast of

±1.2% for δ = 0◦ and 90◦ as a consequence of rpp.
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Figure 6.7: Same as Fig. 6.6 but calculated for a prolate (cigar-shaped) scatterer

in contact with the BaTiO3 surface, having its long axis aligned with the surface

normal. The axis ratio was set to 10:3.

6.2.2 Ellipsoidal Tip

Real experiments commonly use a metal tip as the scatterer. The elongated geometry

leads to larger polarizability along the tip axis than in the xy plane. To model such

a situation we may replace the sphere by a prolate (cigar-shaped) ellipsoid having

its long axis aligned with the sample normal. As an example we take a gold ellipsoid

with an axis ratio of 10:3. In this case, the polarizability along the particle is more

than 40 times larger than in the transverse direction [Boh98]. This strongly enhances

the influence of rps on the contrast for ϕ close to s polarization. Here, both Vac and

Vaa are increased to almost ±100% around δ = 45◦ and 135◦ (see figures 6.7c and

6.7d). These extrema now move very close to ϕ = 0◦. On the other hand, the

behavior for pure p polarization is essentially the same as for the spherical probe.

As follows from the discussion above, one may gain in relative contrast (as ex-

pressed by Vac and Vaa) by choosing ϕ close to s polarization. However, this benefit

is obtained only at the expense of an extreme loss in absolute signal level, as indi-

cated by the scattering cross section of the sphere and the prolate ellipsoid shown

in Fig. 6.5(b) (red and blue curve, respectively). The two probes were assumed to

have the same volume and to touch the surface of a c domain. For the sphere, the

scattered power obtained with s polarization is two orders of magnitude smaller than

with p polarization. For the cigar-shaped particle the difference is even five orders

of magnitude. Therefore, one has to make a trade-off between signal strength and
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Figure 6.8: Same as Fig. 6.6 but for a prolate scatterer (axis ratio 10:3) in

contact with the surface, with its long axis perpendicular to the plane of incidence.

Note that in these plots the full range of polarization angle is displayed.

contrast to find the optimal conditions providing the best signal-to-noise ratio.

If the prolate ellipsoid is aligned with its long axis perpendicular to the plane of

incidence instead, excitation of the dipole parallel to the sample surface by the s-

polarized component of the field is strongly promoted. This results in a much weaker

dependence of the scattering cross section on polarization (see figure 6.5b, green

curve). At the same time, the contrast Vac and Vaa amounts to ≥ 2% over a broad

range of polarization angles if the azimuthal angle is chosen properly (figure 6.8c,d).

In this case, rsp plays a prominent role in that it produces maximum contrast of up

to ±4% close to p polarization (δ ≈ 80◦).

As illustrated in this chapter, in principle we can achieve a contrast of up to 100 %

between differently oriented a domains and of 80 % between a and c domains even

for off-resonant excitation. This contrast is only possible if we choose a proper tip

shape and control the polarization as accurately as 0.1 ◦. However, the corresponding

scattering cross sections are very small. Orientation of the tip ellipsoid with its

major axis perpendicular to the plane of incidence causes a contrast of around 4 %

with a scattering cross section of measurable size which is not that sensitive to the

polarization of the incident light. Both results do not allow much variation of the

parameters and are thus not very attractive for experimental examinations.
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Another possibility to enhance both relevant quantities – scattering cross section

and optical contrast – is to excite the tip-sample system close to its resonance, which

will be discussed in the following section.

6.3 Resonant Tip-Sample System

The scattering cross section discussed for isotropic samples in chapter 5 and for

anisotropic samples in section 6.1 represents the coupled tip-sample system. Both

parts of the system, tip and sample, can be excited resonantly which leads to a res-

onance of the coupled system. For a typical metallic tip this resonance corresponds

to the excitation of a surface plasmon in the tip at visible wavelengths. The sample

excitation depends strongly on the sample material. The ferroelectric samples show

a resonance corresponding to the excitation of a phonon in the IR regime.

First, the conditions for a resonant excitation of the tip-sample system will be

discussed in general. Furthermore, we describe a tip-induced resonance for a metal

tip. Finally, a sample-induced resonance is illustrated for an isotropic sample with a

single phonon resonance in the IR as well as for the anisotropic ferroelectrics LiNbO3

and BaTiO3 showing multiple phonon resonances in the IR regime.

6.3.1 General Description

The scattering cross section Csca depends on the tip polarizability (α̂t), the sample

response (β and η), the distance h between tip and sample, and the wavelength λ.

Under the assumption that the tip dipole is oriented perpendicularly to the sample

surface (z direction), the scattering cross section is given by (see equations 5.31 and

6.10)

Cz
sca =

k4

6π

∣∣∣∣∣
(1 + β)αt

1− αt(β+η)
16πh3

∣∣∣∣∣

2

(6.26)

with k the wave number, being 2π/λ,

αt the tip polarizability,

being αt = 4πa3 εt−1
εt+2

for a spherical tip (radius a),

β the response function of the sample β =
√

εzεy−1√
εzεy+1

,

η the anisotropy sample response function η =
√

εzεy ·(εx−εy)

2εy·(√εzεy+1)
2 , and

h the distance between tip and sample,

being typically in the order of a for near-field investigations.

This scattering cross section has a pole at

αt(β + η) = 16πh3 . (6.27)

If the tip dipole is parallel to the sample surface, we find analogous formulae for the

poles, namely

αt(2β + 3η) = 64πh3 (6.28)
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Figure 6.9: Distance dependence of the dielectric constants εpol that result in a

resonant excitation of the coupled tip-sample system. (a) Tip-induced resonance

of a spherical tip (radius a) next to a nonresonant sample. (b),(c) Sample-induced

resonance of a nonresonant spherical tip next to an (b) isotropic sample and (c)

next to a uniaxial anisotropic sample (optical axis along y axis) with εpol
s = εs =√

εaεc and τ =
√

(εa − εc)/εc = 0.3.

for x orientation and

αt(2β + η) = 64πh3 (6.29)

for the y direction. Basically there are two possibilities to excite the system at

these poles: a proper polarizability of the tip αt or a matching sample response β.

Accordingly, we call the resonance tip-induced or sample-induced.

In both cases the resonant conditions are fulfilled when the corresponding quan-

tity is excited close to its uncoupled resonance. In general, the interaction between

tip and sample shifts these resonance only slightly, depending on the distance h.

For a spherical tip we expect a maximum of the polarizability when the real part

of its dielectric constant is −2 (see section 5.1):

<e(εt) = −2. (6.30)

The interaction with the sample shifts the corresponding tip-induced resonance of

the tip-sample system slightly towards smaller dielectric constants of the tip. The

resonances are located at εpol
t,j (j = x, y, z)

εpol
t,x = εpol

t,y = −2− 3
16h3

(2β+η)a3 − 1
and (6.31)

εpol
t,z = −2− 3

4h3

(β+η)a3 − 1

for the tip dipole oriented along the x, y, and z axis, respectively. These poles are

depicted in figure 6.9a as functions of the tip-sample distance h for a nonresonant

isotropic sample with β ∼= 1. On the isotropic sample the system is of cylindrical

symmetry and, hence, the poles in x and y direction coincide. These parallel poles

and the z pole converge towards −2 for large h. For small h both components split
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while they shift towards more negative values with decreasing h. As the scattering

cross section is directly correlated with the square of the absolute value of the po-

larizability of the tip, we expect a highly enhanced scattering cross section when the

tip is excited at its resonance.

The sample contribution to the scattering cross section of the tip-sample system

is mainly given by the response function β. For large β the image dipole in the

sample is much larger than the original tip dipole itself. In fact, for very large

β À 1 the tip dipole can be neglected.

For an isotropic sample (η = 0), we expect a maximum in the response function

β when the real part of its dielectric constant is −1:

<e(εs) = −1. (6.32)

As for the tip-induced resonance, the interaction with the tip shifts the spectral

position of the sample-induced resonance slightly towards smaller dielectric constants

of the sample. Hence we expect poles of the coupled tip-sample system at εpol
s

εpol
s,x = εpol

s,y = −1− 2
32πh3

αt
− 1

(6.33)

εpol
s,z = −1− 2

16πh3

αt
− 1

for the tip dipole being oriented along the x, y, and z axis, respectively2. Figure 6.9b

shows these poles as functions of the distance h, for the case when the tip is an

isotropic sphere excited far from its resonance. As the tip-sample system is again of

cylindrical symmetry, the x and y components coincide. Both poles are located at

εs = −1 for large distances h. With decreasing h the resonances split while shifting

towards more negative values.

For anisotropic samples, the formulae for the sample-induced poles are much

more complicated, as η 6= 0 and as the resonance might be induced by poles along

different crystallographic directions of the sample. However, for a uniaxial sample

with weak optical anisotropy the poles can be calculated from the above equa-

tions 6.27, 6.28, and 6.29. The resonant conditions deviate only slightly from the

poles of an isotropic sample, if we replace the sample dielectric constant by the

geometric mean εs =
√

εaεc of the two components of the dielectric tensor of the

sample. Figure 6.9c shows the corresponding poles as functions of h. As the system

is not of cylindrical symmetry any more, the x and y components lead to different

poles. Also, there are two solutions for each h to excite the system at its resonance,

2Please note that the applied method of image charges (see section 6.1.1) is valid only for
weakly anisotropic samples with real and nonnegative elements of the dielectric tensor. Hence, for
a resonantly excited sample, these formulae can only be used to estimate the dipole contribution
to the near-field signal. The additional calculations for the reflection on the sample surface as
discussed in section 6.1.4 hold for the resonant case.
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Figure 6.10: Higher-harmonic signals at the sample-induced resonance as func-

tions of the distance h and the dielectric constant εs of an isotropic sample for a

tip-dipole perpendicular to the sample surface. The 0th harmonic represents the

scattering cross section itself, while the nth higher harmonic is the corresponding

nth Fourier component.

one which is shifted towards smaller dielectric constants as for isotropic samples and

a second one close to εs = −1, which is related to the anisotropy factor η. As the

scattering cross section at the latter pole is small compared with the first resonance,

it can be neglected for samples with nonzero damping.

In order to obtain pure near-field signals, we measure so-called higher harmonics

of the near-field signal (see section 5.3.2). These higher harmonics are generated

by distance modulation and are demodulated by lock-in technique (see chapter 8).

For a sample-induced resonance of a system with the tip dipole perpendicular to the

sample surface, figure 6.10 shows the expected signals of the 0th to 4th harmonics as

functions of the distance h and the dielectric constant of an isotropic sample. The

0th harmonic represents the scattering cross section itself as denoted in eq. 6.26. The

nth higher harmonic represents the nth Fourier component and is in first approxima-

tion proportional to the nth derivation of the scattering cross section with respect

to h. For large distances, all harmonics show a maximum around εs = −2. With

decreasing h, this resonance shifts towards smaller dielectric constants as discussed

above and as indicated by the dashed lines in fig. 6.10. As the resonance broadens

for smaller distances, the signal has a characteristic, lobelike shape in the images

displayed in figure 6.10. The corresponding nth harmonic shows typically n lobes

with the most pronounced one at about the same position as the lobe seen in the
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uniaxial BaTiO3 for a tip dipole oriented perpendicularly to the sample surface.

The indices ⊥ and ‖ of the a domain indicate the direction of the optical axis

with respect to the plane of incidence. (c) Corresponding contrast Vac and Vaa.

scattering cross section (compare dashed lines).

Figure 6.11 shows the real parts of the dielectric constants of the spherical gold

tip and the BaTiO3 sample, the scattering cross sections of the coupled system,

as well as the optical contrasts between ferroelectric domains as functions of the

wavelength. In the scattering cross section we clearly observe the resonances of

the system, which are located in the visible wavelength regime, corresponding to

a tip resonance, and in the IR regime for the sample resonance. The contrast is

clearly enhanced at certain wavelengths in the IR regime due to the sample-induced

resonance, while at the tip-induced resonance the optical contrast is smaller than

1 %. A more detailed discussion is given in the following.

6.3.2 Tip-Induced Resonance

In a metallic tip we can excite a resonance corresponding to a surface plasmon. For

noble metals the plasmon can typically be excited in the visible wavelength regime.

It gives rise to a maximum of the polarizability of the tip. The spectral position
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depends on the tip material as well as on its shape.

The dielectric constant of a metal is determined by the density of free electrons

in the metal. The classical model describing the resulting optical properties is the

Drude model [Boh98]. Within this model the dielectric function of the free electrons

in the metal is given by

εt = 1− ω2
p

ω2 + iγpω
(6.34)

with ωp the plasma frequency of the metal,

ω the angular frequency (ω = ck), and

γp the damping constant.

For gold, the Drude model yields a good description of the dielectric constant only

for a very limited wavelength range. Hence, we use experimental data from [Lid92]

for our calculations. The plasma frequency of gold, by means of <e(ε) = 0, is

around λp
∼= 220 nm [Lid92]. In the wavelength range λ = 350 to 600 nm <e(εt)

varies between −1 and −6, which is the range where the tip-induced resonance of

the sample system can be excited.

Figure 6.12 shows the behavior of a coupled system consisting of a resonantly

excited gold tip (a = 10 nm) touching a BaTiO3 (h = 0.75a). In order to calculate

the sample influence properly, we take into account the reflection at the sample

surface as well as the response functions β and η representing the dipole interaction.

The resulting scattering cross sections and the expected contrasts are shown for

p- and for s-polarized incident light. For p-polarized light (fig. 6.12a and c), the

scattering cross section is highly enhanced around 562 nm, which corresponds to

the excitation of the pole εpol
t,z
∼= −4.5 at h = 0.75 nm (see figure 6.9a). For the

tip-induced resonance, the scattering cross section on the different types of domains

is enhanced by the same factor. Hence, the expected optical contrast (fig. 6.12c)

is only slightly affected by the resonance and is smaller than 1 %. For s-polarized

light, the resonance is located at λ = 531 nm, corresponding to the pole εpol
t,x
∼= −3.2

parallel to the sample surface. The scattering cross section for s-polarized light is 3

orders smaller in magnitude than the signal for p-polarized light. The corresponding

optical contrasts are slightly larger than for p-polarized light, but still smaller than

2.5 %.

The tip-induced resonance of the system clearly increases the scattering cross

section. Unfortunately, the anisotropy contrast Vaa between differently oriented

a domains is not influenced, while the contrast Vac between different types of domains

is enhanced only in a very narrow wavelength regime. Similarly as for the special tip

shapes discussed in section 6.2, it is not possible to enhance both relevant quantities

– the scattering cross section and the optical contrast – by tip-induced resonant

excitation of the tip-sample system.

In the following, we will discuss the sample-induced resonance for an isotropic

sample in general and for specific anisotropic samples, namely the ferroelectrics
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Figure 6.12: Scattering cross sections and optical contrasts for different polar-

izations for a tip-sample system consisting of a gold tip (radius a, =m(ε) = 2)
touching a BaTiO3 surface (h = 0.75a, εa = 5.82, εc = 5.57 [Zgo94]). In (a) and

(b) the scattering cross sections are depicted for p- and for s-polarized incident

light, while (c) and (d) show the corresponding optical contrasts. The indices ⊥
and ‖ of the a domain indicate the direction of the optical axis with respect to

the plane of incidence.

LiNbO3 and BaTiO3.

6.3.3 Resonant Isotropic Sample

As the tip resonance increases the scattering cross section but not the anisotropy

contrast, we will now discuss the sample-induced resonance. We assume the tip

polarizability to be α ∼= 4πa3 corresponding to a metal at IR wavelengths, where

metals have large negative dielectric constants. First, we discuss the basic proper-

ties of the sample-induced resonance of an isotropic sample exhibiting one phonon

resonance in the IR regime. Later, we will show calculations for the anisotropic

ferroelectrics BaTiO3 and LiNbO3, which have multiple phonon resonances.

The dielectric constant of an ionic crystal is determined by the ions in the lattice

and their interaction. The optical excitation of lattice vibrations can be described

by the well-known Lorentz oscillator model. In general, the dielectric constant is

given by [Kit05]

ε = ε∞

(
1 +

Ω2
LO − Ω2

TO

Ω2
TO − ω2 − iγω

)
(6.35)

with ε∞ the high-frequency dielectric constant,
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Figure 6.13: (a) Dielectric constant of an isotropic sample close to its phonon

resonance at λ = 20 µm. (b),(c) Scattering cross section of a metal sphere

(a = 10 nm) touching the sample, with the tip-sample dipole being normal (b)

or parallel (c) to the sample surface.

ΩLO the longitudinal optical-phonon frequency,

ΩTO its transverse optical-phonon frequency, and

γ the damping constant.

Figure 6.13a shows the dielectric constant of an isotropic sample with ε∞ = 5,

ΩLO = 592 cm−1, ΩTO = 500 cm−1 and γ = 35 cm−1.3 We observe a maximum in

the imaginary part of the dielectric constant around λ = 20 µm (FWHM = 1.25)

corresponding to the phonon resonance of the sample at λres = 1/Ω. The real part

of the dielectric constant is 5 for large frequencies, i.e., for small wavelengths. It

first decreases with λ and crosses zero at λ = 1/ΩLO
∼= 17 µm. It decreases further

and reaches a minimum of −11.2 at λ ∼= 19.4 µm. Around the phonon resonance at

20 µm, it crosses zero again an reaches a positive maximum of 22.2 at λ ∼= 20.6 µm.

After that, it decreases and approaches 8 for large λ. In the range of 17 to 20 µm the

real part is negative and a sample-induced resonance of the tip-sample system may

be induced in the range of 17.3 µm (<e(εs) ∼= −0.7) to 18.5 µm (<e(εs) ∼= −5.4)

(see figure 6.9b).

In figure 6.13b we depict the scattering cross section of a metallic sphere (a =

10 nm) next to this sample for selected distances h and for the tip dipole oriented

3In spectroscopy, typically one uses the wavenumber notation ν = 1/λ with the unit cm−1

bth instead of the frequency ω = (2πc)/λ. As the constant factor (2πc) is canceled in all formulae
blh (e.g. eq. 6.35), we will use this spectroscopic notation in the following.
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perpendicularly to the sample surface. The scattering cross section shows a reso-

nance on the high-frequency side of the phonon resonance. It has a minimum at

around λ ∼= 16.7 µm (<e(εs) ∼= 0.5), which shifts only very slightly with the dis-

tance h. This corresponds to a destructive superposition of the tip dipole and the

sample dipole, which are antiparallel (β < 0) in the range −1 ≤ εs ≤ 1. For larger

wavelengths the scattering cross section has a maximum which increases towards

smaller distances while shifting to larger λ. For h = 2a it is located at λ ∼= 17.6 µm

(<e(εs) ∼= −1.5) and for h = 0.75a at λ ∼= 18.2 µm (<e(εs) ∼= −3.9). This affirms

the above findings that the sample-induced resonance occurs at small negative di-

electric constants of the sample and shifts towards smaller (more negative) dielectric

constants for smaller h (see section 6.3.1).

Figure 6.13c shows the scattering cross section for a tip dipole oriented parallel

to the sample surface. For nonresonant near-field interaction (not shown here),

the scattering is negligible in this case, but for the resonant system it is only one

order of magnitude smaller than the normal component. For ε ∼= −1 the sample

dipole becomes much larger than the tip dipole. Thus the parallel component has a

maximum at λ ∼= 17.3 µm (<e(εs) ∼= −0.9) followed by a minimum at λ ∼= 20.2 µm

(<e(εs) ∼= 13.8) close to the maximal absorption of the sample.

For small negative values of the dielectric constant, the sample-induced reso-

nance enhances the scattering cross section for both possible orientations of the tip

dipole, parallel and perpendicular to the sample surface. This offers the possibility

to measure the different components of the tip-sample anisotropy (see section 6.1)

by using different polarization of the incident light. Please note that this is only pos-

sible for the case of a sample-induced resonance. For a tip-induced resonance and

for nonresonant excitation, the parallel component is several orders of magnitude

smaller than the perpendicular component and is hence not measurable.

In the following we discuss the more complex system of an anisotropic sample

with multiple resonances for two specific examples, namely ferroelectric LiNbO3 and

BaTiO3.

6.3.4 Resonant Sample LiNbO3

As first anisotropic sample, we chose ferroelectric LiNbO3, which is a uniaxial crys-

tal with phonon resonances in the IR regime. It has a hexagonal unit cell (see

section 3.3) with different resonances of the a and the c direction of the crystal.

Due to its crystallographic structure, LiNbO3 single crystals show only antiparallel

domains with 180◦ domain walls. As these domains are optically identical as long as

no electric voltage is applied, we assume LiNbO3 to be a uniaxial single crystal with

the optical axis oriented either perpendicularly or parallel to the sample surface.

The optical properties of LiNbO3 were examined with FTIR measurements in

transition and reflection. As discussed in the experimental part of the thesis (see

section 9.1), the results are in good accordance with the theoretical reflection spectra

calculated from dielectric constants found in the literature. As ferroelectric LiNbO3
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j Sj Ωj [cm−1] γj [cm−1] λj [µm]

E-type modes, E⊥ opt. axis (ordinary ray), εa,∞ = 5

1 0.2 670 47 13.2

2 3.3 586 35 17.1

3 bli0.18bli li431li li12li 23.2

4 2.3 363 33 27.5

5 2.2 322 11 31.1

6 5.5 265 12 37.7

7 0.8 236 12 42.4

8 22 152 14 65.8

A1-type modes, E‖ opt. axis, εc,∞ = 4.6

1 0.13 692 49 14.5

2 2.55 628 34 15.9

3 0.16 307 25 32.6

4 1 274 14 36.5

5 16 248 21 40.3

Table 6.1: Strengths, frequencies, and linewidths of the phonon resonances in

LiNbO3 according to equation 6.36 [Bar67]. The corresponding wavelengths are

quoted for easier comparison with figure 6.14.

shows several resonance in the IR regime, we have multiple oscillators in the crystal

resulting in a sum of Lorentz oscillators. The dielectric constant of our samples is

well described by [Bar67]:

ε = ε∞ +
∑

j

SjΩ
2
j

Ω2
j − ω2 + iωγj

(6.36)

with ε∞ the high-frequency dielectric constant,

Sj the strength of the jth infrared-active mode,

Ωj the frequency of the jth infrared-active mode, and

γj the linewidth of the jth infrared-active mode

with the parameters given in table 6.1

Figure 6.14 shows the dielectric constants of the two directions of the LiNbO3

crystal. Both functions show several resonances corresponding to the phonon modes

of table 6.1. For the c direction, the dielectric constant is dominated by the reso-

nances at 15.9 µm and 40.3 µm, while for the a direction all 8 resonances of table 6.1

contribute significantly. Additionally, we depict the reflectivity of LiNbO3 crystals

for an incident angle of γ = 0◦, which can be directly compared with the experi-

mental FTIR data (see section 9.1). Due to higher absorption around the phonon

resonances, the reflectivity at the corresponding wavelengths is decreased.
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Figure 6.14: Dielectric constants of a LiNbO3 crystal calculated by the Lorentz

oscillator model for the two different crystallographic directions in the single

crystal (a) along the optical axis (εc) and (b) perpendicular to it (εa) [Bar67].

(c) Corresponding reflectivities for perpendicularly incident light, being Rc for a

c domain crystal and Ra,‖, Ra,⊥ for an a domain crystal with the optical axis

parallel and perpendicular, respectively, to the electric field of the incident light.

On the high-frequency side of the phonon resonances of LiNbO3 in the IR regime,

its dielectric constant is close to <e(εs) = −1. As discussed above in detail, in this

regime, the near-field-coupled tip-sample system shows a resonance. As we are

limited in the experiment to a wavelength range of 4 to 25 µm we will focus on the

resonance around 16 µm in the following discussion.

Figure 6.15 shows the scattering cross sections on all possible types of domains

as functions of the wavelength λ for two different polarizations of the incident light.

In order to compare the difference, we additionally plot the corresponding optical

contrast, even though this contrast is not directly measurable on the single domain

crystals.

For p-polarized incident light (fig. 6.15a,c), we observe a distinct resonance of the

scattering cross section at 13.3 µm (εa = −3.9 + i0.9, εc = −3.9 + i1.2) on all types

of domains. A second maximum at 24.2 µm (εa = −3.9 + i4.2, εc = −0.5 + i1.1)

is observable on the a domains, corresponding to the phonon mode E3 around λ =

23.2 µm (see table 6.1). These resonances correspond to poles along the z axis of

the system. The excited in-plane poles are much weaker in magnitude. They are
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Figure 6.15: Scattering cross sections on resonantly excited LiNbO3 for p-

polarized (a) and s-polarized (b) incident light (γ = 70◦). (c) and (d) show the

corresponding optical contrast between different domains. The indices ⊥ and ‖ of

the a domain indicate the direction of the optical axis with respect to the plane

of incidence.

observable at around 12.5 µm (εa = −2.0 + i0.5, εc = −1.6 + i0.6) as a shoulder

of the large resonance and at around 23.4 µm (εa = −0.2 + i7.4, εc = +0.6 + i1.0)

next to the narrow resonance. The corresponding optical contrasts show a small

maximum of about ±30 % at the shoulder of the first resonance. At the resonance

itself we expect a contrast of about 8 %. Around 24 µm we observe an additional

maximum in the optical contrast of up to 100 %, as the corresponding resonance is

only excitable on the a domains.

For the experiments, both parameters, scattering cross section and optical con-

trast, need to be enhanced. First of all we need a signal of measurable size. For our

measurements discussed in chapter 9, we chose the resonance around 13.3 µm as it

is broad and has a large magnitude.

For s-polarized light, we observe a distinct maximum at 12.4 µm (εa = −1.8 +

i0.5, εc = −1.4 + i0.5) for all domain types due to dipole interaction. For smaller

wavelength, we observe a maximum at 10.65 µm (εa = +0.7+ i0.2, εc = +1.1+ i0.2)

for the c and the a‖ domain and at 11 µm (εa = +0.4 + i0.2, εc = 0.7 + i0.2) for

the a⊥ domain. This maximum corresponds to a maximal reflection at the sample

surface (see section 6.1.4). Again we observe a second maximum at 24 µm which is

about 2 orders smaller than the first maximum. The corresponding optical contrasts
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shows several maxima and contrast reversals. Around 12.4 µm we expect a contrast

of 30 %, while at 24 µm it is up to 80 %.

The sample-induced resonance on LiNbO3 affects the optical contrast between all

types of domains, at the same time providing a scattering cross section of measurable

size. While the contrast in the visible regime was mainly caused by different reflec-

tion on the different domains (see section 6.2), the contrast for the sample-induced

resonance is generated by both dipole interaction and reflection.

6.3.5 Resonant Anisotropic Sample BaTiO3

As second anisotropic sample we chose the ferroelectric BaTiO3, which has a well

known and simple crystal structure. In BaTiO3 single crystals, there are 6 different

domains possible, with the optical axis either along the x, y, or z direction with two

possible orientations of the permanent dipole moment in each case (see section 3.2).

As antiparallel domains show the same optical properties as long as no electric field is

applied, we do not include the electric dipole in the model and limit our calculations

to 3 types with the optical axis in x, y, or z direction. As for LiNbO3, the optical

properties of BaTiO3 were examined by FTIR measurements in transmission and

reflection. As discussed in the experimental part of the thesis, the results are in

good accordance with the theoretical reflection spectra (see section 10.1).

As for LiNbO3, ferroelectric BaTiO3 shows several resonances in the IR regime

resulting in a dielectric constant which may be described by a sum of Lorentz oscil-

lators [Ser80]

εs = ε∞ +
∑

j

∆εj ·
Ω2

j,TO

Ω2
j,TO − ω2 + iγj,TOω

. (6.37)

with ∆εj the strength of the jth oscillator,

Ωj,TO the resonance frequency of the TO mode of the jth oscillator, and

γj,TO the corresponding damping constant.

The set of parameters used for the following calculations is given in table 6.2.

Figure 6.16a,b shows the real and imaginary parts of the calculated dielectric

constants εa and εc as functions of the wavelength. In the range 10 to 70 µm we

observe basically two resonances in both components, one at around 20 µm and

the second one at around 55 µm. These resonances correspond to the TO modes

around ΩTO = 482 cm−1 and ΩTO = 306 cm−1 for the a direction and around

ΩTO = 507 cm−1 and ΩTO = 280 cm−1 for the c direction. For both directions the

phonon mode around 35 µm is barely visible. We expect an additional resonance

around λ = 300 µm for the a direction, which is indicated by the further decreasing

real part of the corresponding dielectric constant. The real part of the dielectric

constant of the c direction is nearly constant for large wavelengths. As we are limited

in the experiment to a wavelength range of 4 to 25 µm we will focus on the resonance
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j Ωj,TO [cm−1] γj,TO [cm−1] blib∆εjblib λj [µm]

E-type modes, E⊥ optical axis (ordinary ray), εa,∞ = 5.82

1 482 21 0.4 20.8

2 306 9 0.05 32.7

3 181.8 2.8 1.4 55.0

4 34 100 2000 294.1

A1-type modes, E‖ optical axis, εc,∞ = 5.57

1 507 45 1.1 19.7

2 280 120 22 35.7

3 180 4 3.6 55.6

Table 6.2: Oscillator strengths, frequencies, and damping constants of the TO

mode used for the calculation of the dielectric constants according to equation 6.37

[Ser80, Zgo94]. For easier comparison with the following, we list the corresponding

wavelengths λj .

around 20 µm. In addition we plot the corresponding reflectivity in figure 6.16c

for normal incidence, calculated for comparison with the FTIR measurements in

section 10.1. Due to higher absorption around the phonon resonances, the reflectivity

around 20 µm and 55 µm is decreased.

In figure 6.17 the scattering cross sections on all possible domains of BaTiO3

and the corresponding contrasts are plotted as functions of the wavelength λ. We

assume the tip to be a metal sphere touching the BaTiO3 surface at h = 0.75a and

the incident light to be either p or s polarized at γ = 70◦.
For p-polarized light (fig. 6.17a), the scattering cross sections show a resonance

around 18.1 µm (εa = −3.0 + 1.5i, εc = −6.5 + 4.4i) which is slightly shifted for the

different domains. The signal on the a‖ domain is enhanced by a factor of 2 due to

a larger reflection coefficient. An additional maximum on all domains is observable

at 23.8 µm (εa = −5.4 + 3.2i, εc = −5.8 + 7.9i), being about one order smaller in

its magnitude than the first resonance. The corresponding contrasts are up to 38 %

and 13 % at the resonance wavelengths of 18.1 µm and 23.8 µm, respectively, and

reach a maximum value of 45 % at around 16.5 µm.

For s-polarized light, we observe a broad maximum consisting of at least two

peaks around 13.6 µm (εa = 1.2+0.6i, εc = 0.8+0.8i) and 15.6 µm (εa = −0.3+0.9i,

εc = −1.4+1.5i) for the a⊥ domain and at 14.5 µm (εa = 0.5+0.7i, εc = −0.1+1.1i)

and 15.6 µm for c and a‖ domains. A second maximum is located around 22 µm (εa =

−2.1+3.5i, εc = −1.8+6.8i) with an about 2 orders of magnitude smaller magnitude.

The corresponding contrast of up to 42 % is mostly negative corresponding to a

brighter c domain. At 15.6 µm the contrasts are expected to be 15 − 30 % and

around 22 µm they are about 12 %.

Close to the maximum of the sample-induced resonance of the tip-sample system

both relevant quantities, the scattering cross section as well as the optical contrasts,

are enhanced sufficiently under resonant excitation of the sample. Their spectral
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Figure 6.16: Calculated dielectric constants of a BaTiO3 crystal calculated by

the Lorentz oscillator model for the two different crystallographic directions in

the single crystal (a) along the optical axis (εc) and (b) perpendicular to it (εa)

[Ser80]. (c) Shows the corresponding reflectivities for perpendicularly incident

light, being Rc for a c domain crystal and Ra,‖, Ra,⊥ for an a domain crystal

with the optical axis parallel and perpendicular, respectively, to the electric field

of the incident light.

behavior is determined by both reflection and dipole interaction.

6.4 Summary

In this chapter we have extended the known dipole model to anisotropic samples. We

have included a modified method of image charges in order to describe the tip-sample

interaction as well as extended Fresnel formulae for reflection at an anisotropic

sample surface. As the anisotropy reduces the symmetry of the tip-sample system

compared to a system with an isotropic sample, it is much more sensitive to the

polarization of the incident light as well as to the tip shape.

For uniaxial samples we defined 3 types of contrast corresponding to the possible

orientations of the optical axis either perpendicular or parallel to the sample surface.

Analogously to ferroelectric domains in BaTiO3, we call these orientations c domains

and a domains. In the near-field-coupled system we expect a contrast between a

and c domains as well as between different a domains with their optical axes at right
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Figure 6.17: Scattering cross sections on resonantly excited BaTiO3 for p-

polarized (a) and s-polarized (b) incident light (γ = 70◦). (c) and (d) show the

corresponding optical contrast between different domains. The indices ⊥ and ‖ of

the a domain indicate the direction of the optical axis with respect to the plane

of incidence.

angle to each other.

The influence of the tip shape on the contrast were discussed for the nonresonant

tip-sample system. We found that the optical contrast is highly enhanced for a

certain tip shape and a certain polarization of the incident light. Unfortunately the

corresponding scattering cross section is rather small.

Exciting the system at its resonances is possible by exciting either the metallic

tip close to its plasmon frequency or the sample close to its phonon resonance.

Both possibilities enhance the scattering cross section, but only the sample-induced

resonances also enhance the optical contrast. Calculations for the ferroelectrics

BaTiO3 and LiNbO3 are directly comparable with the experiments shown in the

experimental part of this work.

In general, the calculations for anisotropic samples predict a contrast between

domains with different orientations of the dielectric tensor of the sample. The optical

signal does not only carry information about the dielectric component perpendicular

to the sample surface, but is also sensitive to the parallel component. Hence, we are

able to measure the in-plane and out-of plane dielectric constants of the resonantly

excited sample.
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The near-field interaction between a probe and the sample is described by the

dipole model which is well known for isotropic samples. The light scattered by the

probe is modified by the presence of the sample and hence includes information

about the local optical properties of the sample. The scattering process transforms

the information of the near-field interaction into a propagating wave which may be

measured in the far field.

This far field may be detected directly or with interferometric detection. For

all detection methods higher-harmonic demodulation allows the separation of the

small near-field signal and the huge far-field signal, which is due to reflection at

the tip shaft and to interferences between different light paths. The interferometric

detection methods additionally allow us to increase the small near-field signal by a

constant factor and, much more importantly, they allow us to measure the optical

scattering amplitude and the scattering phase separately. These parameters may

be correlated with complementary information about the sample, such as dielectric

properties and absorption.

The shape and material of the tip influence strongly the scattering properties of

the probe. As the probe is assumed to be constant in experiments, we expect the

tip properties to influence mainly the absolute value measured in s-SNOM, but not

the contrast. This is true for isotropic samples showing a material contrast between

regions with different dielectric constants.

The extension of the dipole model to anisotropic samples is a main topic of the

present work. A modified dipole interaction is included as well as the reflection at

the anisotropic sample, which may change the polarization of the light. In addition

to the material contrast for isotropic samples, we found an anisotropy contrast due

to different orientations of the dielectric tensor in one and the same sample. This

contrast depends strongly on the polarization of the incident light, the orientation

of the sample, and the tip geometry. Only when controlling all these parameters,

we expect a contrast of noticeable size for a nonresonant tip-sample system.

On the other hand, the coupled tip-sample system shows resonances which can

be induced by the tip or by the sample. Tip-induced resonances can be excited close

to the plasmon resonance of the typically metallic probe. Close to this resonance the

scattering cross section is highly enhanced, but the anisotropy contrast stays small.

As the properties of the tip are constant during the experiment, the scattering
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properties are enhanced similarly on different sample regions.

When the sample is excited at its resonance, not only the scattering cross section

is enhanced, but usually also the anisotropy is more pronounced, i.e. the difference

between different crystallographic directions. Hence, the corresponding anisotropy

contrast is much larger and of measurable size. As the different crystallographic

directions of the anisotropic sample in general show resonances at different wave-

lengths, we can spectroscopically differ between these regions and identify, for ex-

ample, different ferroelectric domains.

Calculations for our ferroelectric samples, which show multiple phonon reso-

nances in the IR regime, predict two different types of contrast on the crystals

corresponding to the out-of-plane and the in-plane component of the dielectric ten-

sor. The latter seems surprising as the large field enhancement is known to be

perpendicular to the sample surface. The calculations showed that this is only the

case for nonresonant excitation. For resonant excitation of the sample, the sample

influence is enhanced such that also the in-plane component may be sensed.



Part III

Experimental Setup and Results





8 Experimental Setup

The s-SNOM setup used in this work was specially designed for the examination

of polar sample materials such as ferroelectrics. It is a unique combination of differ-

ent scanning probe microscopy methods such as AFM, PFM, KPFM (see chapter 4),

and s-SNOM (see section 2.3). This ensures the optical examination without cross-

talk from mechanical or electrostatic interactions. For the optical measurements we

illuminate the AFM tip with laser light in the visible and IR regimes, and measure

the light scattered off the tip-sample junction in the backward direction.

In this chapter we schematically describe this setup used in the visible and IR

regimes, but then complement our findings with first results obtained in the visible

wavelength range.

8.1 Atomic Force Microscope

The basis of our s-SNOM setup is a home-built AFM which is specifically designed for

the examination of polar materials using SNOM methods as well as complementary

techniques allowing domain imaging of ferroelectric materials (see section 3.4 and

chapter 4). In designing this setup we mainly focussed on the following aspects:

The AFM provides good mechanical stability while at the same time the tip

is accessible by optical focussing elements. A frequency-modulated (FM, see sec-

tion 4.1) electronic controls the distance between tip and sample, while an additional

controller stabilizes the cantilever oscillation amplitude to minimize the cross-talk

between the mechanical and near-field interactions [Bil06]. For comparison with the

results of other groups, it is also possible to use alternative AFM control modes such

as amplitude control (see section 4.1). A third controller minimizes the electrostatic

interaction between the tip and the sample by compensating for surface charges on

the polar sample (KPFM). This method moreover allows us to locate and identify

ferroelectric domains through charge mapping. A more precise imaging of the ferro-

electric domain distribution is possible with the complementary technique of PFM.

In order to ensure constant scattering conditions at the oscillating tip, it is kept

at a fixed position in the laser focus during the experiments, while the sample is

scanned for imaging. Also, the sample can be changed without moving the tip. The

birefringence of the thick ferroelectric samples used in this work limits the possible

modes of illumination, as any transmission through the polar sample causes changes
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Figure 8.1: (a) Picture of the home-built AFM including head, post, and sam-

ple holder with piezoelectric scanner tube. (b) Sketch of the main elements of

the AFM with (A) the AFM cantilever and its excitation piezo, (B) the beam

deflection unit, and (C) the sample holder.
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of the optical signal, that are correlated with the domain structure but not due to

near-field interaction. Therefore illumination or collection through the sample, as

used by other groups [Ino94, Mag01], is not appropriate. We illuminate the sample

from the side and detect the light scattered in backward direction [Hil00].

AFM head and sample holder

A picture of the AFM head is shown in figure 8.1. In our group, several compatible

scan heads of the same design have been built for numerous applications. They

are all made out of 15-mm-thick stainless steel and very compact to ensure high

mechanical stability and stiffness.

In the following, the parts of the scan head are described in detail with reference

to the numbering in figure 8.1b: The cantilever (A1) is attached at an angle of 15◦

via a commercial cantilever holder clip1 (A2) with the counterpart fixed to the AFM

head. The cantilever is excited via a piezoelectric shaker plate placed between two

insulating pieces2 (A3). It is possible to apply a voltage to the cantilever holder

and thus to the cantilever tip itself, e.g., for PFM or KPFM measurements. For

those SPM techniques a conductive cantilever is mandatory3. Therefore, we use

commercially available platinum-iridium-coated cantilever tips4 (see section 4.1).

We measure the deflection of the cantilever by so-called beam deflection: The light

of a laser diode is coupled into a glass fiber (B1) and then focused onto the back of

the cantilever via a lens (B2). The fiber end together with the lens can be positioned

with a home-built kinematic mount (B3). A mirror (B4) directs the reflected light

onto a four-quadrant photodiode (4Q-PD) (B5). The deflection of the cantilever

is measured via the displacement of the laser spot on the 4Q-PD. The vertical

displacement of the reflected spot corresponds to the bending of the cantilever and

is measured via the difference signal between the two top segments and the two

bottom segments of the 4Q-PD, which is called the top-minus-bottom signal (T-B).

Conversely, the difference between the two segments on the left and the two segments

on the right is called the left-minus-right signal (L-R) and is sensitive to a torsional

motion of the cantilever.

The sample is mounted below the tip on a magnetic sample holder (C1) attached

to a piezoelectric scanner tube (C2). The piezotube D2 has a xy scan range of

14 µm×14 µm and a z range of 1.6 µm. For optimal positioning of the sample, the

piezotube is mounted on a 3D translation stage5. With this stage not only the xy

position can be adjusted over a range of 13 mm with a precision of 1 µm6, but also

the coarse approach of the sample to the tip in z direction can be accomplished via

1Omicron, S308301-S [Omi07]
2Macorr, machinable glass ceramics by Corning Inc. [Cor07]
3Metal-coated tips also offer a higher scattering cross section in the visible wavelength regime

bth as discussed in section 2.3, chapter 5, and section 8.2.
4Nanosensors, PPP-NCLPt [Nan07b]
5Newport, ULTRAlign Model 561D [New07]
6Newport, SM-13 [New07]
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Figure 8.2: The left-hand side illustrates the AFM contact mode with the T-B

signal of the 4Q photodiode used for distance control. On the right-hand side

the additional components needed for piezoresponse force microscopy (PFM) are

shown: the T-B and L-R signals are used to measure the out-of-plane and in-plane

components of the piezoelectric tensor of the sample.

a high-precision micrometer screw7 with a coarse travel of 8 mm and a fine travel of

0.3 mm providing an accuracy of 20 nm.

Contact mode

When the AFM is used in contact mode, the sample is approached to the tip until

the desired deflection of the cantilever is measured by the 4Q-PD (see section 4.1 for

general description). The (T-B) signal is kept constant via a control loop regulating

the sample height (see left-hand side in figure 8.2).

A common technique to image ferroelectric domains is PFM (see section 4.2 for

general description). The electronic setup for PFM is shown on the right-hand side

in figure 8.2. An additional ac voltage with a frequency fp in the kHz range and an

amplitude Up depending strongly on the sample is applied. For BaTiO3 bulk crystals

we typically use Up ' 5 Vpp. The applied voltage causes a mechanical distortion

due to the inverse piezoelectric effect (see section 3.1), which can be recorded as a

bending or torsion of the cantilever at the applied frequency. By demodulating the

(T-B) or (L-R) signal of the 4-segment diode at fp using a lock-in amplifier8 (LIA),

we are able to measure the out-of-plane (OOP) or in-plane (IP) component of the

piezoelectric properties of the sample.

A typical PFM picture of ferroelectric BaTiO3 (one of the samples examined

in the IR, see section 10.5) is shown in figure 8.3. The OOP and IP components,

7Newport, DS-4F [New07]
8Stanford Research Systems, SR830 [Sta07]
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Figure 8.3: PFM measurements of a ferroelectric BaTiO3 sample. (a) Out-of-

plane component showing oppositely oriented c domains (
⊙

and
⊗

) as bright

and dark areas, while the a domain on the right-hand side appears as a grey area.

(b) In-plane component showing the a domain as bright area and no difference

between different c domains. The white line is drawn for easier comparison of the

two pictures as well as of the corresponding s-SNOM images shown in figure 10.12.

The line marks the position of a topographic edge at a typical 0.6◦ surface tilt as

expected between a and c domains (see section 3.2).

deliver complementary information about the domain distribution of the sample

[Eng99a, Eng00]. On the left-hand side the OOP component clearly shows dark and

bright areas with meandering boundaries corresponding to the two different types of

c domains with the remanent electric polarization either pointing towards or away

from the sample surface (
⊙

and
⊗

). On the right-hand side of the OOP image

we again observe bright areas as well as grey regions corresponding to a domains.

The IP component shows the corresponding a domain distribution. We observe one

bright area corresponding clearly to an a domain of characteristic shape. Besides the

a domain, the sample appears uniformly dark in the IP component, in particular,

there is no difference between the antiparallel c domains (
⊙

and
⊗

) observed in

the OOP component. The shape of the a domain is not typical for BaTiO3, where

the boundaries between a and c domains as well as between differently orientated

a domains normally are straight due to their crystallographic structure (see sec-

tions 3.2 and 4.2). We therefore assume that the crystal structure is disturbed by

crystal defects. Irrespectively of such defect, the PFM technique allows us to specify

all types of domains and their spatial distribution [Eng99b].

Noncontact mode

For s-SNOM imaging, the AFM is operated in the true noncontact mode (fig. 8.4)

[Lop00b]. Therefore, the cantilever is excited at its resonance frequency (for oscil-

lation in free space: f0 ' 170 kHz) with a given amplitude of A = 2 − 50 nm.
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Figure 8.4: Sketch of the AFM in noncontact mode using a PLL and an ad-

ditional amplitude control loop (left hand side). On the right-hand side the

additional control electronics for KPFM measurements is shown [Wea91].

A phase-locked-loop system9 (PLL) excites the cantilever at its true resonance fre-

quency fr, which may be shifted due to tip-sample interaction (see section 4.1 for

general description) [Lop98, Lop00a]. A frequency feedback loop keeps this reso-

nance shift constant by controlling the distance between tip and sample. At the

same time, a second feedback loop keeps the oscillation amplitude at a constant

value by adjusting the driving voltage. This is mandatory to avoid that amplitude

variations produce artifacts in the s-SNOM image due to the strong dependence of

the optical signal on the tip-sample distance and the oscillation amplitude [Bil06].

Moreover only a constant oscillation amplitude at a constant average tip-sample

distance ensures that the conditions for the scattering by the tip remain constant

and, hence, the results are quantitative and comparable.

On ferroelectric materials different domains regions have different surface charge

densities resulting in an additional electrostatic interaction. To avoid crosstalk to the

mechanical interaction between tip and sample, the Kelvin probe force microscopy

(KPFM) (see section 4.3) is used to compensate for the surface charges and thus to

minimize the electrostatic interaction between tip and sample [Ter90]. The principle

setup used for KPFM is shown on the right-hand side in figure 8.4. An ac voltage

(fK ' 10 kHz, UK ' 3 Vpp) with an adjustable dc offset (UK,0) is applied between

tip and sample. Due to electrostatic interaction, the tip-sample distance and thus

the deflection of the cantilever is modulated at fK unless the electric potentials

of tip and sample are equal. An additional loop is used to adjust UK,0 such that

the modulation of the cantilever deflection is nullified and thus the electrostatic

interaction is minimized.

9Nanosurf, easyPLL plus [nan07c]
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8.2 Cantilever Tip as the Scatterer in s-SNOM

For s-SNOM measurements, the AFM is operated in the noncontact mode as de-

scribed in section 8.1. At visible wavelengths we use a helium neon (HeNe) laser at

λ = 632.8 nm as the light source and a heterodyne detection system. A tunable in-

frared light source is provided by the free-electron laser (FEL)at the Forschungszen-

trum Dresden-Rossendorf (FZD) close to Dresden.

For all optical measurements we use platinum-iridium(Pt-Ir5)-coated silicon can-

tilevers10 (see figure 4.1) for several reasons: First of all, compared to other metal

coatings such as gold, Pt-Ir5 is mechanically very stable. Thus, we do not ex-

pect big changes of the tip geometry and scattering behavior. Second, having an

electrically conductive tip coating is indispensable for performing PFM and KPFM

measurements. Third, these cantilevers are also used by other groups [Tau03] for

the visible and IR wavelength regimes, which allows direct comparison with their re-

sults. Fourth, at visible wavelengths the metal coating increases the scattering cross

section of the probe because of surface plasmon resonances. Therefore, the signal-

to-noise ratio (S/N) is increased. And finally, fifth, in the IR wavelength regime we

spectroscopically examine phonon resonances of the sample. Here, any wavelength

dependence of the tip would distort the near-field signal. The metal coating exhibits

an optically flat response in the IR regime.

Figure 8.5 shows optical reflection spectra of commercially available AFM tips

with different coatings. These data were taken with a FTIR spectrometer11 by

focussing the light onto the cantilever support of the AFM tips coated within the

same procedure as the tips. The reflectivities of all metal coatings (Pt-Ir5, Al, Au,

and Pt) are flat in the IR regime. For comparison, we also examined the uncoated

support, which shows clear resonances of the n-doped silicon. Note that the absolute

values are not comparable, because the size as well as the position of the FTIR spot

on the support are different for each measurement.

For all setups the tip is illuminated from the side at 90◦ with respect to the

cantilever axis and at 70◦ with respect to the tip axis . The angle of 70◦ takes the

antenna behavior of the tip into account [Kni76] (see section 5.1) and additionally

allows the tip to be illuminated without shading by the sample.

The backscattered light is collected with the same lens (or parabolic mirror for

the IR) as used for illumination. The detection method is different for the two setups:

In the visible regime, we use a heterodyne interferometer, while in the IR we detect

the light directly. These special setups are described in the following sections 8.3

and 8.4. The detected light is demodulated at higher harmonics, i.e., at multiples of

the cantilever frequency (see section 2.3 and 5.3). A frequency mixer generates the

reference signal for the LIA from the cantilever oscillation frequency measured via

the 4-segment diode. This ensures a fixed phase of the reference signal with respect

10Nanosensors, PPP-NCLPt [Nan07b]
11Bruker, Equinox 55 [Bru07]
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Figure 8.5: FTIR reflection spectra of commercially available AFM tips with

different coatings: Pt-Ir5, Al, Au, Pt. For comparison, we show the spectrum of

an AFM tip with no coating. The absolute values are not comparable because

of different sizes and positions of the illumination spot on the AFM cantilever

support.

to the oscillation.

8.3 Setup in the Visible Wavelength Regime

A schematic of the setup as used at visible wavelengths is shown in figure 8.6. We

use a heterodyne interferometric detection system as described in the sections 2.3

and 5.3 [Hil01a, Hil00].

The light of a HeNe laser12 (λ = 632.8 nm) passes a Faraday optical isolator13

(FOI) to avoid destabilization of the HeNe laser by backreflected light. An acousto-

optical modulator14 (AOM) diffracts the beam into several beams with their fre-

quencies shifted by n · Ω (Ω ' 70MHz, n = 0, 1, 2, ...) and the diffraction angles

being n · 13.5 mrad with respect to the 0th-order beam. The AOM is aligned in the

way that the Bragg condition is fulfilled for the 1st order. Hence, mostly 0th and

1st order are transmitted with about equal intensities, but also higher orders with

less intensity. The polarization of all orders is rotated by a λ/2 plate, placed right

behind the AOM. An iris diaphragm (id) blocks all higher orders, transmitting only

the 0th - and one 1st-order beam. The 0th-order beam is the main beam and is di-

12Polytec PL-750-P, Power P=5 mW, [Pol07]
13Leysop Type FOI 5/57 [Ley07]
14Isomet Corp., Type 1205C-2 [Iso07]



8.3 Setup in the Visible Wavelength Regime 103

λ/2

HeNe-Laser FOI

AOM
bs

id
fl

d

dl

col
main

reference

Figure 8.6: Optical setup for illumination and detection at visible wavelengths,

including a helium-neon laser, a Faraday optical isolator (FOI), an acousto-optical

modulator (AOM), an iris diaphragm (id), a collimator (col), a beam splitter cube

(bs), two focussing lenses (fl, dl), and a detector (d).

rected onto the AFM tip, while the 1st-order beam is used as a reference. A two-lens

system (col) collimates both beams and increases their diameters by a factor of 5.2

to allow full illumination of the focussing lens (fl). The 0th-order beam, passes a

polarization-independent 50:50 beam splitter cube15 (bs) and is then reflected at an

angle of 20◦ towards the table to illuminate the tip at an angle of 70◦ with respect

to the tip axis. The light is focussed on the tip by an aspheric lens16. The backscat-

tered light is collected by the same lens, reflected by the beam splitter cube (bs),

and focussed by the detector lens (dl) on a high-speed photodetector17 (d). The

1st-order beam – the reference beam – is reflected by two mirrors before passing the

beam splitter cube (bs) to them overlap the scattered light. It interferes with the

scattered beam and is also focussed by the detector lens (dl) on the detector (d).

Every part of the illumination and detection systems was analyzed in detail, es-

pecially concerning their polarization dependence. The FOI rotates the polarization

by 45◦. To minimize depolarization by the mirrors and by the highly-polarization

dependent AOM, we adjust the laser and the FOI such that the light exiting the

AFOM is polarized perpendicularly to the optical table. After the AOM, no po-

larization dependent elements are used. Therefore we place the λ/2-plate directly

15Thorlabs, BS-013 [Tho07]
16Thorlabs, aspheric lens 350220-A [Tho07]
17Thorlabs, Det210/M [Tho07],

bth In earlier measurements we used a passive photodiode to avoid any power supply noise:
bth Hamamatsu, Si PIN Photodiode S5972 [Ham07]



104 8 Experimental Setup

A O M
D

C a n t i l e v e r  o s c i l l a t i o n
4 - s e g m e n t  d i o d e

W

m i x e r

r e f e r e n c e - s i g n a l
t o  L I A

f i l t e r

D 1

W
F T

w

f i l t e r

123 44 321

f i l t e rF T

wD 3

W

123 44 321

b )a )

c )

Figure 8.7: Schematic of the reference frequency generation: (a) signal gener-

ation, signal-to-filter correlation for (b) the 1st- and (c) the 3rd-harmonic signal

generation

behind the AOM to adjust the polarization of both the main and the reference beam

in the same way.

In principle, a heterodyne interferometer as described in section 2.3 does not

depend on the retardation between the reference and the main beam. In a real

setup it is still advisable to make both paths similar in length, not only because of

the divergence of the beams, but also to avoid destructive superposition of different

longitudinal laser modes.

For measuring higher harmonics of the near-field signal, we demodulate the signal

at the sideband of the beating term (∆± n ·Ω). To produce the reference signal for

the LIA18, we mix19 the AOM frequency ∆ ' 70MHz with the cantilever frequency

Ω measured by the 4-quadrant photodiode. We use a crystal filter20 to isolate one

distinct order, which is then used as the reference signal. As the filter has a fixed

frequency, we adjust the AOM frequency to shift the frequency spectrum in such

a way that the desired higher harmonic coincides with the filter frequency (see

figure 8.7).

Figure 8.8 shows approach curves on aluminum. On the left-hand side we display

the signal demodulated at the cantilever frequency: Even for distances of up to

600 nm the amplitude is large and shows a clear periodic variation with distance.

This typical behavior can be attributed to interference terms, i.e., it represents a

pure far-field signal. Only very close to the sample surface we can observe some

deviation from this periodic shape. On the right-hand side, we see the optical

amplitude of the 3rd-harmonic signal. For distances larger than 100 nm, we observe

a constant signal, while for smaller distances, the signal changes dramatically, due

to near-field interaction between tip and sample. These measurements clearly show

18Stanford Research Systems, SR844, up to 80 MHz [Sta07]
19mixer: minicircuits ZP-5MH [Min07]
20Kinseki MXF70-30B [Kin07]
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Figure 8.8: Approach curves on an aluminum sample for two different harmon-

ics: For demodulation at Ω, a periodic far-field signal is observed with only a very

small deviation close to the sample surface. In the 3rd-harmonic signal (3Ω) we

see no far-field signal any more, but a clear near-field signal for distances smaller

than 80 nm.

the suppression of far-field contributions in the higher-harmonic signals, leading to

a pure near-field measurement. The observed distance dependence and far-field

suppression look very similar to those seen in approach curves measured by other

groups on gold samples [Hil00, Bek06].

For comparison with the results of other groups, we examined so-called Fischer

patterns, i.e., projection patterns named after U. Fischer [Fis81, Fis02]. To produce

such patterns, latex spheres are distributed in a dense-packed monolayer on a glass

substrate. This structure is covered by about 15 nm of vapor-deposited aluminium,

and afterwards the latex spheres are removed. This leaves only the aluminum on

the surface that passed through the gaps between the spheres to directly wet the

surface of the substrate. These islands of trianglelike shape reflect the hexagonal

structure of the dense monolayer of spheres.

Figure 8.9 shows s-SNOM images of such a structure at λ = 633 nm. Figure 8.9a

shows the topography of the sample with some of the bright triangular aluminum

islands being separated while others are or connected to form larger island. In

figure 8.9a the corresponding near-field signal is depicted, as demodulated at the

2nd harmonic (2Ω). The metal islands are bright in the optical signal on the dark

glass substrate. In comparison to measurements on a similar pattern reported in the

literature [Bek06, Hil02a, Bre05], the near-field signal at the second harmonic looks

much noisier. At the third harmonic, the signal-to-noise ratio of our s-SNOM is too

low to perform a reproducible optical scan. We believe that the weak signal is mainly

caused by difficulties in the adjustment of the tip in the laser focus. Moreover,

any mechanical cross-talk is minimized and no topographical induced contrast is

measured. This can also be observed in figure 8.9b as no edge-enhanced signal is

measured of the kind discussed in [Bek06], which is due to our more sophisticated

feedback control system.
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Figure 8.9: Scan on a Fischer pattern showing (a) the topography (∆z = 25 nm)

and (b) the corresponding optical amplitude demodulated at the 2nd harmonic

(2Ω).

With our setup for the visible wavelength regime, we studied the general behavior

of the near-field signal on metal samples such as gold or aluminum. We focussed

on the dependence of the different harmonics on the polarization of the incident

light and the amplitude of the cantilever oscillation, and on how the different modes

of our control system influence the optical signal [Sch07b]. We performed these

measurements not only for the near-field signal, but also for the far-field interferences

observed at large distances of up to 5 µm [Sch07a]. These examinations showed the

excellent reproducibility and stability of our s-SNOM setup.

As we focus on ferroelectric systems in this work, we will not go into the details

here. We also tried some near-field measurements with visible light on a BaTiO3

sample. Unfortunately the signal was very weak and was dominated by far-field in-

terference patterns. Also, the contrast between the ferroelectric domains is expected

to be very small. This is the reason why we use the free-electron laser in Rossendorf

as a light source for near-field investigations on ferroelectric crystals. The setup used

for the IR measurements is described in the following section.

8.4 Setup in the Infrared Wavelength Regime

Using near-field microscopy to image the optical anisotropy of the samples meets

with mainly two problems: small signals in general and small optical contrast. Both

parameters can be increased if the sample is excited at a resonance (see chapter 6).

Ferroelectrics, which are the materials we are interested in, show phonon resonances

in the IR regime. These resonances are slightly different for different crystal axes

due to the anisotropy of the ferroelectric. This can be used to increase the optical

contrast, which we measure by using a FEL as an IR light source. In this section

the setup used for these examinations will be described.
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Figure 8.10: Setup for the infrared wavelength regime, including power mea-

surement, focussing on the AFM tip, and direct detection of the backscattered

light

The free-electron laser at the Forschungszentrum Dresden-Rossendorf (FZD) pro-

duces IR light with a wavelength that can be tuned to any value from 4 to 22 µm21

with a spectral width of about 100 nm [Mic04]. The wavelength is determined by

the electron energy and the gap width between the permanent magnets of the un-

dulator, i.e., the magnetic field. For spectroscopic purposes it is possible to sweep

the wavelength by increasing or decreasing the undulator gap without changing the

electron energy [FZD07]. Changing the wavelength by such a gap scan takes about

2 s and can be done directly from the user lab. In this way, a wavelength range of

∆λ = 2 − 3 µm around a preset center wavelength is accessible. This was used for

the spectroscopic measurements presented in chapters 9 and 10.

The beam of the free-electron laser is delivered to the user laboratory through a

vacuum beam line. When entering the lab, it is polarized parallel to the optical table,

but can be switched to perpendicular orientation. In our experiments, these two

polarizations correspond to s- and p-polarized light, respectively, with respect to the

plane of incidence at the sample. The setup using either incident light polarizations

is shown in figure 8.10 and described in the following.

First we split off part of the laser light by a beam splitter foil22 (bs1) to measure

the current laser power with a powermeter23. This is essential, because the power

may change drastically during the gap scan. The light transmitted through the

beam splitter foil (bs1) passes two iris diaphragms (id) serving for easier alignment,

and is reflected by a second beam splitter foil (bs2, Mylar). This part of the laser

light is focussed on the AFM tip by a parabolic mirror (fm2). The parabolic mirror

and an additional plane mirror are mounted on a translation stage (ts) by which the

two mirrors and, hence, the focus can be moved along the line of the beam hitting

the AFM tip. The light backscattered by the tip is collected with the same parabolic

21A larger wavelength regime up to 150 µm will be accessible for users starting in 2007
22Biaxially oriented polyethylene terephthalate(PET) film called Mylarr by DuPont [DuP07].
23Melles Griot, 13PEM001 Broadband Power and Energy Meter [Mel07]
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Figure 8.11: FTIR spectra of Mylar foil as used in the beam splitters, showing

the reflectance (R) and transmittance (T) as functions of wavelength. The green-

marked areas correspond to the wavelength ranges used for near-field examination

of LiNbO3 and BaTiO3.

mirror, transmitted through the beam splitter foil (bs2), and focussed by a second

parabolic mirror (pm2) on a detector (d)24. The signal is demodulated at higher

harmonics (up to the 4th ) by a LIA25, which has an internal reference mixer. The

reference input of the LIA is the cantilever oscillation signal as measured by the

4-segment diode.

As the laser beam passes through beam splitters made of Mylar foil several

times, it is important to know their properties. FTIR spectra of the foil are shown

in figure 8.11. The wavelength regimes used for the examination of the ferroelectric

samples, 11.5 to 14.5 µm for LiNbO3 and 15.5 to 18.5 µm for BaTiO3, are marked

in the figure. In the regime applying to LiNbO3 the beam splitter has a pronounced

absorption line around 13.7 µm26, while in the range relevant to BaTiO3 the spectra

are rather flat. The wavelength dependence of the beam splitter needs to be taken

into account in the analysis of the near-field data, especially of their spectral depen-

dence. Therefore, we measured in detail the spectral dependence of the beam splitter

(bs1) of the setup across the wavelength range used in the near-field measurements.

Focussing an invisible beam on an AFM tip is a nontrivial problem. To make

sure that the tip is placed accurately in the focus, we apply the following procedure.

24Liquid-nitrogen-cooled mercury cadmium telluride (HgCdTe) detector J15D16 by Judson
bth Technologies [Jud07]

25EG&G model 5302 [EGG07]
26The absorption A may be calculated from the data shown in figure 8.11 by A = 1−R− T .
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Figure 8.12: Scattered power as a function of the z position of the tip in the

focus (λ = 12.8 µm).

First we use the red light of a semiconductor laser for preadjustment. To position

the tip in the focus, we use both the translation stage (ts) and the kinematic mount

of the focussing mirror (fm2) as well as the screw on the AFM adjusting the tip

height. With the free-electron laser, we then measure the 1st-harmonic signal for

different z positions of the AFM tip, which is made to oscillate at its resonance

frequency with an amplitude of about 50 nm. The result is shown in figure 8.12.

We see the optical amplitude as a function of the z position of the tip. The signal

increases until a maximum is reached, which is followed by a minimum going down

to nearly the noise level and a second maximum of nearly the same height as the

first maximum. Demodulation at the 1st harmonic yields a nonzero signal only if

the scattered power is modulated by the tip oscillation. This happens only if the

intensity has a gradient across the tip. The focus of the FEL is homogeneous in

intensity in the center but has a large gradient at the borders. We thus believe

that the two maxima in figure 8.12 correspond to the edges of the focus whereas the

minimum corresponds to the center. Note that variation of the z position is much

larger than the amplitude of the cantilever oscillation. The focus spot is expected to

be a few hundred micrometers in diameter while the cantilever oscillation amplitude

is around 50 nm.

We now take approach curves for selected z positions and different harmonics on

a reference sample (150 nm-gold film on glass). The result is depicted in figure 8.13

for the z positions (1) to (3) marked in figure 8.12. For point (1) (focus more on the

cantilever than on the tip) we observe a small far-field signal in the 1st harmonic,

which is zero at the sample surface. The 2nd- and 3rd-harmonic signals are very weak

and show only a slight distance dependence, which could be correlated with the far-

field signal. At point (2) we see a much larger far-field signal in the 1st harmonic
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Figure 8.13: Approach curves on a reference sample for different positions of

the tip in the focus of the FEL beam. The approach curves were measured at

different harmonics, showing the separation of near-field and far-field signals.

with a small deviation close to the sample surface. The 2nd harmonic still contains

some contribution of the far field even at distances of about 900 nm, but exhibits

a strong increase of the signal for distances smaller than about 200 nm. In the 3rd-

harmonic signal there is no obvious contribution of the far field any more, but a clear

near-field signal at distances smaller than 80 nm. At point (3) the far-field signal

looks much different. At a distance of 600 nm, all harmonics vanish. The second-

and 3rd-harmonic signals show a similar distance dependence as the 1st harmonic,

but have smaller absolute values. For z positions close to the second maximum in

figure 8.12 the dependence looked the same as for (3), but the amplitude decreased

dramatically. These approach curves confirm the above interpretation concerning the

focal spot. We thus believe that the tip is in the middle of the focus at the minimum

in figure 8.12 between point (2) and (3). The approach curves are consistent with

s-SNOM measurements using a CO2 laser as IR light source [Tau04b, Akh02].

With the direct detection method used in the IR setup, we measure the ampli-

tude of the near-field signal (see section 5.3. To additionally obtain information on

the near-field optical phase, an interferometric detection is being planned also for

measurements in the IR (see section 2.3, 5.3). This will be part of the PhD thesis

of Marcus Cebula.

8.5 Summary

In this chapter, the experimental setup used in this work has been described and

discussed in detail. The basic AFM is home-built and designed especially for the

examination of polar materials. It can be used in contact mode, mainly to im-

age ferroelectric domains via PFM, as well as in noncontact mode as needed for

s-SNOM and KPFM. The noncontact mode, which allows the signal to be demodu-

lated at higher harmonics and hence the far- and near-field signals to be separated,
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was used for all s-SNOM measurements. For the visible wavelength regime, we use

a heterodyne-interferometric detection system, while for the IR, we measure the

backscattered light directly.

Measurements in the visible regime demonstrated how higher-harmonic demodula-

tion suppresses the far-field signal, and provided a clear near-field contrast on a

Fischer pattern. For the IR we discussed the dependence of the optical signal on the

position of the tip in the focus for a reference sample. The near-field investigation

of ferroelectric samples will be discussed in the following chapters 9 and 10.





9 Results on Single-Domain

LiNbO3 Single Crystals

In this chapter, we present experimental results achieved by the excitation of

the tip-sample system close to the phonon resonances of the ferroelectric LiNbO3

sample at infrared wavelengths. We examine the resonance of the coupled tip-sample

system as a function of the tip-sample distance and the wavelength. By comparing

the signals obtained with different sample orientations, we prove that the in-plane

dielectric properties of the sample contribute to the optical near-field signal. Finally,

it is shown that the spectral response of the sample depends characteristically on the

polarization of the incident light.

9.1 LiNbO3: Sample Description

LiNbO3
1 is a ferroelectric crystal described in detail in section 3.3. We chose it for

near-field investigations, because, being a uniaxial single-domain single crystal, it

is as close as possible to the ideal system used for the calculations. In addition it

has – due to its high mechanical and chemical stability – a perfectly flat surface

with nearly no scratches or defects. The examined sample is highly oriented with

its optical axis lying in the plane of the sample surface, i.e. it is a y- cut, or

a domain crystal. Hence, when turning the sample macroscopically around the

surface normal, we change the orientation of its in-plane optical properties, while

the component of the dielectric tensor perpendicular to the sample surface remains

unaffected. s-SNOM measurements on this sample were performed for parallel (a‖)
and perpendicular (a⊥) orientation of the optical axis with respect to the plane of

incidence (see figure 9.1a).

As the sample is a single-domain crystal, the optical properties on the nanome-

ter scale are expected to be similar to the macroscopic ones, which are well known

from far-field studies. Far-field Fourier transform infrared (FTIR) spectroscopy

measurements on our sample are shown in figure 9.2. Reflection and transmis-

sion spectra were taken for two different sample orientations with the optical axis

either parallel (Fig. 9.2a) or perpendicular (Fig. 9.2b) to the incident electric-field

vector. The measured spectra agree very well with the theoretical data obtained

1Crystal Technologies [Cry07]
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Figure 9.1: (a) Excitation geometry of the s-SNOM setup. Measurements on

a domain LiNbO3 were performed for two different orientations of the anisotropic

sample, with the in-plane optical axis being either parallel (a‖) or perpendicular

(a⊥) to the plane of incidence. (b) Real (ε′) and imaginary (ε′′) parts of the

dielectric function of LiNbO3 in the relevant wavelength regime.

from the dielectric constants of LiNbO3 reported in the literature [Bar67] (see sec-

tion 6.3). From the known components of the dielectric tensor of the sample, we

expect to observe phonon resonances in the wavelength range accessible by the FEL

around λ = 14.5 and 15.9 µm for the electric field along the optical axis and around

λ = 13.2, 17.1, and 23.2 µm for the perpendicular component (see table 6.1). On the

high-frequency side of these phonon resonances, the real part of the dielectric con-

stant ε′ is close to -1. In this regime, the near-field-coupled tip-sample system shows

a resonance due to excitation of a surface polariton in the sample (see section 6.3).

The dielectric constants of the different crystal directions are shown in figure 9.1b

for the relevant wavelength range. For both directions the real parts decrease nearly

linearly with wavelength and they cross at about 13.3 µm, while the imaginary

parts and their difference rise strongly. We expect the region from λ = 12.6 to

13.6 µm (ε = −2 to −5) to be the relevant one where the polariton can be excited

(see section 6.3.1). At 13 µm the dielectric constants differ by ∆ε ' 0.2 + i0.2

corresponding to a relative difference of about 6 % (see figure 9.1). Even though the

anisotropy is very small, we expect to measure an optical contrast (see section 6.3.4),

which is mainly caused by differences in the imaginary part of the dielectric constant.

9.2 Distance-Dependent Near-Field Spectra

Measuring the characteristic distance dependence of the near-field signal at different

wavelengths provides a spectroscopic fingerprint of the coupled system. The signals

measured at several higher harmonics form a unique set of data which can be clearly

compared to theoretical predictions.
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Figure 9.2: FTIR examination of a LiNbO3 sample. Orientation of the sample

with respect to the polarization of the incident light: (a) parallel orientation

and (b) perpendicular orientation. (c) Reflection spectra obtained for the two

orientations. The solid lines show the normalized measured data, while the dotted

lines show normalized theoretical spectra.

For the distance-dependent near-field spectra we take several approach curves

above one and the same sample region at different wavelengths. We usually start

at the largest wavelength and then decrease it by widening the undulator gap (see

section 8.2). The approach curves were taken by decreasing the tip-sample distance

until the damping became 5% higher than under active stabilization of the tip-

sample distance by the feedback loop. This corresponds to an additional decrease

of the distance by ∆h ∼= 10− 20 nm. During the approach, the PLL, the amplitude

controller, and the Kelvin controller are still active to avoid cross talk between the

mechanical or electrostatic interaction and the near-field signal (see section 8.2).

During the approach we record the scattered power – demodulated at multiples

of the cantilever oscillation frequency (see section 5.3.2)–, the corresponding phase,

the mechanical damping, and the current laser power (see figure 8.10). The mea-

surements are repeated at least once for each wavelength to ensure reproducibility.

We perform these measurements at several higher harmonics to collect a data set

that can be clearly compared to the theoretical data.

Figure 9.3 shows the optical signal measured on the LiNbO3 sample with the

optical axis perpendicular to the plane of incidence (see figure 9.1a). The second- and

3rd-harmonic signals shown here represent raw data, whereas the 1st-harmonic data

have been corrected: as the signal at 1Ω still contains a large amount of background,

we extrapolated the weakly varying background signal measured at somewhat larger

distances and subtracted it from the measured data.

In the 1st-harmonic signal we observe a near-field signal at distances smaller than

130 nm. At h′ = 100 nm, maximum near-field signal is obtained at λ = 12.9 µm.

This maximum shifts towards larger wavelengths for smaller tip-sample distances,

being located at λ = 13.05 µm for h′ ∼= 50 nm and at λ = 13.2 µm for h′ ∼= 20 nm.

In the 2nd-harmonic signal, we observe zero amplitude at points of a phase change
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Figure 9.3: Distance-dependent near-field spectra of LiNbO3 as demodulated at

1Ω (a), 2Ω (b), and 3Ω (c) measured with a cantilever oscillation of A ' 50 nm

(left column). The optical axis of the crystal was oriented perpendicularly to

the plane of incidence. The second- and third-harmonic data represent raw data,

whereas the 1st-harmonic data have been corrected by subtracting a linear far-

field contribution. The right column shows the corresponding theoretical data

as calculated within the dipole model for an isotropic sample with the dielectric

constant being εs =
√

εaεc. h′ = 0 is the smallest measured distance between tip

and sample and corresponds to h ∼= 0.7a in the calculations (see section 5.1).

by 180◦ of the optical signal. This characteristic point moves to larger wavelengths

for smaller distances, being located at 13.2 µm for h′ = 0 nm. The 3rd-harmonic

signal has a maximum at about 13.1 µm for h′ = 0 nm, which moves slightly towards

smaller wavelengths for larger distances. The characteristic shift of the resonance

with distance as well as the concentration of the signal at the sample surface are

typical for the near-field-coupled system as discussed in detail in section 6.3.1. It

has also been reported for other systems, such as SiC, which shows a resonance at

around 10.5 µm [Tau04b].

In order to compare these results with theoretical data, we calculate the Fourier

components of the near-field signal corresponding to the different higher harmonics.

As the wavelength range is narrow, we may assume the real and imaginary parts of

the dielectric constant to be linearly dependent on the wavelength. The difference
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in the optical signal due to the anisotropy of the sample is expected to be small

compared to the absolute values. Therefore, in the model calculations we assume

the sample to be isotropic with a dielectric constant ε =
√

εaεc representing the

geometric mean of the components of the dielectric tensor.

We plot the calculated optical amplitude as a function of the wavelength λ and

the distance h in units of the tip radius. In order to compensate for a constant

far-field contribution in the 2nd harmonic signal we added an offset of 1.5 to the

corresponding theoretical data set. Knowing both the real cantilever oscillation am-

plitude and the total distance moved during the approach, we are able to determine

the size of the part of the tip contributing to the near-field signal to be around

600 nm. This does not directly represent the radius of the tip apex, but rather the

part effectively contributing to the higher-harmonic signal [Sch07c].

We find that the calculations fit the measured data quite well for all harmonics.

The positions of the resonance as well as the correlation between the different higher

harmonics are alike. Having a closer look at the scale bars of the plotted data, we see

that even the ratios between the different harmonics are the same for experiment

and theory. The correlation of experiment and theory indicates clearly that we

have found the sample-induced resonance of the system. In the following section we

discuss the influence of the in-plane anisotropy on the near-field signal.

9.3 LiNbO3: Anisotropy Contrast Vaa

In order to examine the influence of the anisotropy of the LiNbO3 sample, we perform

measurements for two different orientations of the sample with respect to the plane

of incidence as shown in figure 9.1a. While the sample is turned by 90◦, the tip

is not moved at all and thus remains at the same focus spot. As the LiNbO3

sample is a highly uniform single-domain crystal, the data obtained with the two

different orientations are comparable even though they were not taken on exactly

the same spot on the sample. We cannot exclude changes of the far-field signal

due to a slightly different tilt of the sample. However, the spectral behavior of

the near-field signal should not be affected by this. Turning the sample leaves

the out-of-plane dielectric constant unchanged, whereas the optical axis is rotated

from perpendicular to parallel orientation with respect to the plane of incidence.

Theoretical calculations have predicted that this will change the near-field signal

due to the in-plane anisotropy (see section 6.3.4).

In figure 9.4, distance-dependent near-field spectra of the 2nd- and 3rd- harmonic

signals are shown for the two different sample orientations. These data were acquired

across a much larger wavelength range than the data displayed in figure 9.3. We

observe a clear difference between the two cases in the spectral dependence as well

as in the distance dependence and in the intensities.

For perpendicular orientation of the optical axis with respect to the plane of

incidence (a⊥, fig. 9.4a,b), the distance-dependent near-field spectrum shows the
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Figure 9.4: Distance-dependent near-field spectra at the 2nd and 3rd harmonics

(p-polarized light) for different orientations of a LiNbO3 single crystal with the

c axis either (a), (b) perpendicular (a⊥) or (c), (d) parallel (a‖) to the plane of

incidence. The data have been normalized to the corresponding laser power and

corrected for the spectral dependence of the beam splitter and of the detector

sensitivity. The bright lines around 13.8 µm correspond to an absorption line of

the beam splitter (see fig. 8.11) which increases the noise level upon normalization

of the data.

typical near-field shape of the higher harmonics with lobelike resonances shifting to

larger wavelength with decreasing h (see section 6.3.1). In the 2nd-harmonic signal

we clearly observe two maxima, one around 14 µm and a smaller one at around

13.2 µm for h′ = 0 nm. The 3rd-harmonic signal is fairly small, but still shows

correlative information. Comparing the results with theoretical predictions, we find

that the signal on the a⊥ domain is well described by the dipole model. From theory

we expect a maximum scattering cross section at around 13.3 µm for h ∼= 0.7a (see

section 6.3.4). Compared to that value, the measured spectrum is slightly shifted

to larger wavelengths by ∆λ ∼= 0.5 µm. This shift might be caused by an offset of

the signal which changes the ratio between the two lobes or it might be caused by

a deviation of the local dielectric constant. Determining the absolute value of the

dielectric constant is up to now not possible, as a statistically significant number of
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reference measurements is not available yet.

When the optical axis is parallel to the plane of incidence (a‖, fig. 9.4c,d), the

signal looks completely different: In the 2nd-harmonic signal we observe an enhance-

ment close to the sample surface for wavelengths larger than 13 µm. There is no

distinct shift of this resonance with distance in contrast to the former case. As this

data is reproducible and as the corresponding 3rd harmonic signal shows the same

spectral behavior, we are sure that this is a true near-field signal. For this sample

orientation, the dipole model predicts a near-field signal which is very similar to the

one on the a⊥ domain, as the dielectric constants differ only slightly. A maximum

is expected at around λ ∼= 13.3 µm as well. Neither the reflection at the sample

surface nor a tilt of the sample surface affects the signal in the way the measured

data show. An explanation for the blurred spectrum could be that the signal is a

complex superposition of the two near-field components, namely parallel and per-

pendicular to the sample surface, and of the reflection. A theoretical proof of this

assumption could not be achieved yet.

The measurements above clearly show a change in the optical near-field signal

due to the in-plane anisotropy of the sample. These are the first experimental results

confirming the theoretical prediction that changes of the in-plane dielectric constant

are measurable.

Additionally, in the case of a resonant sample, the parallel modes of the near-

field-coupled system are expected to be sufficiently enhanced to be of measurable size

(see section 6.3). In the following we examine the spectral response of the different

components of the near-field-coupled system by using different polarizations of the

incident light.

9.4 Polarization Dependence of Near-Field Spectra

In order to study the correlation between near-field spectra as shown in figure 9.4

and the orientation of the dielectric tensor of the sample, we perform measurements

for different polarizations of the incident light (s and p). The orientation of the

electric field of the incident light defines the directions of the tip dipole and of its

corresponding image dipole in the sample.

The dipole model predicts different spectral positions of the tip-sample reso-

nances for the tip dipole being oriented perpendicularly or parallel to the sample sur-

face (see section 6.3). For an anisotropic medium with tan τ =
√

(εa − εc)/εc = 0.3

we expect a splitting of the parallel component. Assuming h = 0.7a and with the

definition εpol
s =

√
εaεc, the poles are located at εpol

x = −2.07, εpol
y = −2.12, and

εpol
z = −6.23 for x, y, and z orientation of the tip dipole, respectively (see sec-

tion 6.3.1). For p-polarized light, the incident electric field and, hence, the induced

tip dipole have components perpendicular as well as parallel to the sample surface

in the plane of incidence. For parallel-oriented LiNbO3 (a‖), we expect to excite the

resonances at εpol
z and εpol

y , which occur at different wavelengths. The spectrum is
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Figure 9.5: Distance-dependent near-field spectra at the 2nd and 3rd harmonics

for a parallel-oriented LiNbO3 single crystal (a‖) and different polarizations of the

incident light. For different polarizations we observe different spectral behaviors.

The acquired data have been normalized to the corresponding laser power and

corrected for the spectral dependences of the beam splitter and of the detector

sensitivity. The bright lines around 13.8 µm correspond to an absorption line of

the beam splitter (see fig. 8.11) which increases the noise level upon normalization

of the data.

a superposition of the two individual resonances. In comparison, s-polarized light

produces a field that is purely parallel to the sample surface and perpendicular to

the plane of incidence, corresponding to the pole εpol
x . As we only excite one reso-

nance with s-polarized light, the spectrum is expected to show the typical lobelike

shape as discussed in section 6.3.1.

Figure 9.5 shows the measured near-field spectra of the 2nd- and 3rd-harmonic

signals for the orientation of the optical axis parallel to the plane of incidence (a‖).
Figures 9.5a,b show the signals for p-polarized incident light, the same data as

depicted above in figure 9.4. As discussed above, the spectra do not show the

characteristic lobelike dependence of the near-field signals. Instead, we observe a

spectrally broad signal enhancement close to the sample surface for wavelengths

larger than 13 µm. This behavior could be caused by a superposition of the poles

in y and z direction as well as an additional contribution from the reflection at the
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Orientation Polarization Excitable Poles Contribution to rik

‖ s εpol
x εa

‖ p εpol
y , εpol

z εa, εc

⊥ s εpol
y εc

⊥ p εpol
x , εpol

z εa

Table 9.1: Possible combinations of sample orientation and polarization of the

incident light for LiNbO3: Excitable poles expected from dipole-dipole interaction

with εpole =
√

εaεc (see section 6.3) as well as contributions to the reflection

coefficient rik, i.e. rpp for p-polarized light and rss for s-polarized light.

sample surface.

For s-polarized incident light (figures 9.5c,d), we observe exactly the spectral be-

havior expected from the dipole model. We observe several maxima with opposite

phases in both harmonics (see section 5.3.2). In the 2nd-harmonic signal (fig. 9.5c),

we measure two maxima at 14.2 µm and 13.5 µm for h′ = 0 nm. The 3rd har-

monic, being in first approximation the derivation of the 2nd harmonic, shows three

maxima at 14.5, 13.7, and 13.1 µm. From theory, we expect the resonance to be

located at around 12.4 µm. The deviation of about ∆λ ∼= 1 µm is much larger than

for p-polarized light, and not fully understood yet. However, the spectral lobelike

behavior as well as the magnitude of the signal correspond to the expected values.

As expected for the sample-induced resonance of the system, the magnitude of the

in-plane component of the tip-sample dipole is on the same order of magnitude as

for the out-of-plane component.

At the wavelengths at which the s-component has a maximum, the corresponding

p-polarized data also show a clear near-field signal. This indicates that, in principle,

the latter could include a contribution of the in-plane component superposed with

an out-of-plane component and reflection effects as assumed above.

The measurements for a parallel-oriented sample (a‖, fig. 9.5) showed the influ-

ence of the polarization on the near-field signal. According to the orientation of the

electric field, we assume that with s-polarized or p-polarized light, we excite one pole

εpol
x or two poles εpol

y and εpol
z , respectively. For a perpendicularly oriented sample

(a⊥), we expect to excite the same pole εpol
z with the z component of the p-polarized

light. The poles parallel to the sample surface are expected to be interchanged, due

to the rotation of the sample by 90◦, resulting in εpol
x for the parallel component of

the p-polarized light and in εpol
y for s polarization (see table 9.1). As the parallel

poles are located at nearly the same dielectric constant εpol
x
∼= εpol

y
∼= −2.1, the dipole

model predicts the spectra of the two orientations to look very similar and to be

only slightly shifted in the frequency. Additionally, we have to take the reflection

at the sample surface into account, which depends on the orientation of the sample

and on the polarization of the incident light (see section 6.1.4). The components

of the dielectric tensor that contribute to the reflection coefficient are additionally

listed in table 9.1.
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Figure 9.6: Distance-dependent near-field spectra acquired with 2nd-harmonic

demodulation for all possible combinations of polarization and orientation of the

a domain LiNbO3 sample.

In figure 9.6 we compare the distance-dependent spectra for all the possible com-

binations of sample orientation and polarization listed in table 9.1. Both spectra for

s-polarized light (fig. 9.6a,c) show the typical spectral behavior of a single sample

resonance as expected from the dipole model. The signal for the perpendicularly ori-

ented sample is weaker, which can be explained by a slightly smaller reflectivity. The

spectra for p-polarized light look very different (fig. 9.6b,d): The parallel-oriented

sample shows a mixed spectrum as discussed above, while the spectrum for the per-

pendicular orientation looks like a single-resonance spectrum, which is even more

distinct than for s-polarized light. Although both orientations should be charac-

terized by a superposition of parallel and perpendicular poles, a blurred resonance

appears only for the parallel-oriented sample. We propose that this behavior, which

cannot be explained by the simple dipole model, is caused by reflection at the sam-

ple surface: As shown in table 9.1 and as specified in section 6.1.4, only for the

a‖ domain and for p-polarized light, we expect a reflection that depends on both

elements of the dielectric tensor and which is additionally correlated with the degree

of anisotropy of the sample (eq: 6.24).

Even though the interpretation of the data is very difficult, we believe that the

model of superposed poles describes the data adequately. Furthermore, we will

study the polarization dependence also on BaTiO3 to confirm the results by using a

different sample (section 10.2).
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Figure 9.7: Spectral width ∆λ of the free-electron laser at λ0
∼= 12.71 µm. ∆λ

causes an uncertainty ∆ε of the corresponding dielectric constant ε0.

9.5 Resolution in Distance-Dependent Near-Field

Spectra

The spectral resolution of the distance-dependent near-field spectra is mostly limited

by the spectral width of the laser light, but also by the accuracy of the distance

between tip and sample.

Figure 9.7 shows the laser intensity as a function of the wavelength. The center

wavelength of the depicted spectrum is λ0
∼= 12.71 µm and the corresponding width

∆λ ∼= 100 nm. This behavior is typical in the wavelength range used for the near-

field examination of LiNbO3 and BaTiO3. As the laser line has a certain width, also

the corresponding dielectric constant ε0 has an uncertainty ∆ε, which is 0.25 in the

example of figure 9.7.

Zero distance between tip and sample is defined by the condition applied to

terminate the acquisition of the approach curve, namely a certain damping of the

cantilever oscillation. This position is reproducible with an accuracy of 5 nm for

a typical approach length of 1 µm. Decreasing this length increases the accuracy.

During the approach, the distance is changed by the piezoelectric tube used also for

scanning. Any errors arising from the applied control voltage or from the piezoelec-

tric response of the piezotube are negligible compared to the uncertainty caused by

the determination of h = 0 nm.
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9.6 Summary

On LiNbO3 we studied the near-field signal close to the resonance of the tip-sample

system induced by a sample phonon polariton. The observed resonances show the

expected spectral behavior, including the characteristic shift of the resonance to

larger wavelengths when the tip-sample distance is decreased. The experimental

data match the theoretical prediction very well. On the LiNbO3 single crystal we

studied the influence of different orientations of the dielectric tensor by macroscop-

ically rotating the sample. We were able to measure a clear difference between two

orientations of the sample. Furthermore, polarization-dependent measurements were

performed for different orientations of the sample, showing a characteristic that is

explainable by the dipole model provided that reflection at the sample surface is

taken into account. The measurements for the first time confirmed the influence of

the in-plane anisotropy on the near-field signal.



10 Results on Multi-Domain

BaTiO3 Single Crystals

On BaTiO3 we measure distance-dependent near-field spectra on different do-

mains of the sample. An anisotropy contrast is observed between different types of

domains having an orientation of the optical axis either parallel or perpendicular

to the sample surface. Hence, the optical contrast is not only caused by in-plane

changes of the dielectric tensor, but also by changes perpendicular to the sample

surface. The dependence of the near-field spectra on the polarization is examined,

showing the coupling of the electric field to different components of the dielectric

tensor.

As the multi-domain sample shows a certain domain structure, it is possible to

measure so-called line-scan near-field spectra: While scanning along a line on the

sample surface that crosses several domains, we measure the near-field spectrum.

Hence, we can correlate the near-field resonances at different wavelengths with the

lateral domain distribution of the sample. Systematic studies are done for various

harmonics, s and p polarization, as well as different amplitudes of the cantilever os-

cillation. At selected wavelengths we perform two-dimensional scans showing clearly

the domain distribution in the near-field signal. By choosing the wavelength care-

fully, we are able not only to maximize the contrast between the domains but even

to reverse this contrast at a characteristic wavelength.

10.1 BaTiO3: Sample Description

The ferroelectric BaTiO3 samples used in this work are single crystals1 with a pol-

ished (100) surface. Due to the mechanical polishing procedure, the surface is slightly

rougher than the surface of LiNbO3. The samples used show a striped structure of

alternating a and c domains. The orientation of this structure with respect to

the plane of incidence is shown in figure 10.1a: the domain walls on the surface

are oriented perpendicularly to the plane of incidence. Due to the crystallographic

structure, the topography is not flat, but shows a small tilt of the surface of typically

0.6◦ between a and c domains [Gru97a]. This tilt is indicated in fig. 10.1a as well as

the fact that the 90◦ domain walls between a and c domains run through the crystal

1BaTiO3 standard quality crystals, MaTeck GmbH [Mat07]
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Figure 10.1: (a) Excitation geometry of the s-SNOM setup for the examination

of BaTiO3. Measurements on BaTiO3 were performed for orientation of the 90◦

domain walls perpendicular to the plane of incidence. For such an orientation,

the optical axis of the a domain is oriented parallel to the plane of incidence.

The optical axis of the cylindrically symmetric c domains is always oriented

perpendicularly to the sample surface, i.e., parallel to the plane of incidence. (b)

Real and imaginary parts of the dielectric function of BaTiO3 in the relevant

wavelength range.
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Figure 10.3: (a) AFM and (b) simultaneous KPFM measurements on BaTiO3

with a scan range of (13.4 µm)2 and a z range of 10 nm. The graph in (c) shows

a cross section of the topography with an angle of α ∼= 0.14◦ between a and

c domains, and the corresponding KPFM data averaged over about 50 lines to

decrease the noise.

at an angle of 45◦ with respect to the (100) sample surface (see also section 3.2).

As for LiNbO3, the optical properties were studied with Fourier transform in-

frared (FTIR) spectroscopy in transmission and reflection. Figure 10.2 shows the

reflection spectra for two different orientations of a single-domain BaTiO3 crystal,

which was bought from the same company [Mat07] as the multi-domain crystal. The

orientation of the optical axis with respect to the polarization of the incident light

is either parallel (fig. 10.2a) or perpendicular (fig. 10.2b). We compare the mea-

sured spectra with those calculated from theoretical values of the dielectric constant

(see section 6.3, [Ser80]). In all curves we observe a minimum in the reflection at

around 21 µm. The position of this minimum agrees very well with the theoretical

data. For smaller wavelengths, the theoretical data are slightly different from the

measured curves, which may be attributed to our sample being doped. However,

we expect the theoretical data to represent the sample properties very well in the

relevant wavelength range around 18 µm.

As for the LiNbO3 sample, close to the phonon resonance of the sample, the

real part of the dielectric constant is negative and therefore fulfills the resonance

conditions of the near-field-coupled tip-sample system. The dielectric constants

in the relevant wavelength range are shown in figure 10.1b. Both real parts are

negative and decrease with larger wavelengths, while the imaginary parts increase.

The difference between the two crystallographic directions is much larger than for

LiNbO3. In the interesting regime, the real parts differ by up to 50 % and the

imaginary parts even by up to 200 %.

The domain structure is well known from scanning probe microscopy images of

topography (AFM), surfaces charges (KPFM), and piezoelectric response (PFM)

(see section 4), which were taken before, during, and after the acquisition of the

s-SNOM pictures.

Figure 10.3a shows AFM and KPFM measurements of the same sample area that

is examined also optically by s-SNOM. In both pictures we can faintly discern the
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Figure 10.4: (a) Topography and (b) simultaneous out-of-plane PFM-

measurement on BaTiO3 with a scan range of (13.4 µm)2. We observe the typical

striped domain structure of alternating a and c domains. (c) Cross sections of

the topography and of the corresponding PFM data showing again the angle of

α ∼= 0.13◦ as in figure 10.3 and respectively a pronounced difference between a
and c domains. Please note that the horizontal line in the PFM image is caused

by the interaction of the tip with a particle which is imaged at the same posi-

tion in the topographic image. The line is not correlated with the piezoelectric

properties of the sample.

stripelike domain structure. In the AFM picture we see the typical tilt of the surface,

described in detail in section 3.2. In the KPFM picture we observe the difference

in surface charge between different domains. The charge distribution is blurred

most likely because of the presence of a water film on the sample under ambient

conditions (see section 4.3). Figure 10.3c shows a cross section of the topographical

and KPFM pictures. The slope change between a and c domains was analyzed to be

about 0.14◦. This is much smaller than the expected typical angle of 0.6◦ reported in

the literature [Gru97a]. This indicates that the surface of the BaTiO3 single crystal

is not exactly a (100) surface but slightly tilted by about 0.4◦ due to the polishing

procedure. This explains also the the needle shape of some of the domains [Eng07].

In a perfect crystal, no needles should be formed, but perfectly parallel stripes. The

KPFM data seems to reproduce the topography more than the charge distribution.

PFM offers a more direct examination method of the domain distribution (see

section 4.2). Although it requires the AFM to be operated in the contact mode and

therefore cannot be performed in parallel with SNOM, but only before and after-

wards, it is the most common and certain way to know the exact domain distribution

of the sample. Figure 10.4 shows a PFM and a topography image taken in AFM

contact mode. The topography again reflects the typical tilt of the surface, while

the piezoresponse image shows the striped domain distribution. From additional

experiments including switching of the domains it follows that the bright stripes

correspond to c domains, while the dark stripes are a domains. In figure 10.4c cross

sections of the AFM and PFM images are depicted. Again we observe an angle of

0.13◦ between different types of domains, confirming the measurements in noncon-

tact mode. The PFM cross section shows basically two levels of the signal coinciding
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with positive or negative slopes, respectively, in the AFM picture. This agrees very

well with the assumption that the bright areas are c domains, while the dark areas

are a domains.

Knowing the domain distribution of the sample and the direction of the surface

tilt allows us to also derive the direction of the 90◦ domain walls within the bulk

crystal. As already sketched in figure 10.1a it runs through the crystal at an angle of

45◦ with respect to the sample surface and 125◦ with respect to the incident k vector.

This will play a role in the interpretation of the scan data discussed in sections 10.4

and 10.5.

In the following studies we always perform additional PFM measurements to

unambiguously correlate the optical data to the domain pattern. While measuring

the s-SNOM signals, we perform KPFM at the same time, not only in order to

image the domain distribution but, even more importantly, in order to minimize the

electrostatic interaction between tip and sample (see section 4.3).

In the next section we will discuss the results of the distance-dependent near-field

spectra on BaTiO3.

10.2 Distance-Dependent Near-Field Spectra

On the BaTiO3 samples we perform distance-dependent spectroscopy studies. A

general description of this method is given in section 9.2 for LiNbO3. Here we

perform the same kind of measurement in another wavelength range, close to a

phonon resonance of the BaTiO3 sample. We took distance-dependent near-field

spectra for the 1st to 4th harmonics on both a and c domains.

In figure 10.5 the experimental results are shown for the 2nd to 4th harmonics

(left-hand side) in comparison with theoretical calculations (right-hand side). Even

more pronounced than on LiNbO3, maxima appear in the spectrum of the near-field

signal. They shift to larger wavelengths when the distance between tip and sample

is decreased. This is observed in all higher harmonics: In the 2nd-harmonic signal

we measure a near-field signal at distances of up to 140 nm at around 16.6 µm.

This resonance broadens close to the sample and at the same time moves to larger

wavelengths, reaching 17.5 µm at zero distance. In the 3rd-harmonic signal, we

observe a maximum at a distance of about 90 nm at around 16.8 µm which moves

to 17.6 µm at zero distance. The 4th harmonic shows two maxima with opposite

phase, one moving from 17.2 µm at a distance of 50 nm to 17.7 µm at the surface,

and the second moving from 16.3 µm at 10 nm distance to 16.6 µm at the surface.

Again the experimental data match very well the theoretical spectra for all har-

monics. As the results again show the predicted dependences, we believe that our

method is working quite well.

In the following section we compare spectra on different domains for selected

polarizations of the incident light.
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Figure 10.5: Distance-dependent near-field spectra of BaTiO3 with the optical

axis oriented perpendicularly to the sample surface (c domain) and p-polarized

incident light (left column). The near-field signal was demodulated at (a) 2Ω,

(b) 3Ω, and (c) 4Ω. All data represent raw data, normalized to the current laser

power. The right column shows the corresponding theoretical data as calculated

within the dipole model. The dashed lines are shown for easier comparison of the

data in the left and in the right column.
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Domain Polarization Excitable Poles Contribution to rik

c s εpol
x,c εa

c p εpol
x,c, εpol

z,c εa, εc

a s εpol
x,a εa

a p εpol
y,a, εpol

z,a εa, εc

Table 10.1: Possible configurations of domains on the BaTiO3 sample and

polarizations of the incident light and the corresponding excitable poles expected

from dipole-dipole interaction with εpol
s =

√
εaεc (see section 6.3). Additionally,

we list the elements of the dielectric tensor contributing to the corresponding

reflection coefficient rik: rpp for p-polarized light and rss for s-polarized light.

10.3 BaTiO3: Anisotropy Contrast Vac in

Distance-Dependent Near-Field Spectra

As the sample is oriented as shown in figure 10.1a, the electric field may excite the

following poles of the tip-sample system (see table 10.1). For s-polarized light, it has

a component along the x axis of the sample on both a and c domains, corresponding

to poles at εpol
x,a and εpol

x,c, respectively, (see section 6.3.1)2. For p-polarized light, the

tip dipole has components both perpendicular and parallel to the sample surface. In

both cases, one component is along the c axis, namely the perpendicular component

on the c domain and the parallel component on the a domain. The corresponding

excitable poles are εpol
z,c and εpol

y,c = εpol
x,c for the c domain and εpol

z,a and εpol
y,a for the

c domain (see table 10.1). As for LiNbO3, the reflection at the sample surface

contributes as well to the near-field signal. The correlation of reflection coefficients

and the elements of the dielectric tensor depends on the domain type and on the

polarization of the incident light (see table 10.1).

In figure 10.6 the distance-dependent near-field spectra for 2nd- and 3rd-harmonic

demodulation are shown for p-polarized incident light on the c domain (fig. 10.6a,b)

and the a domain (fig. 10.6c,d). We observe a distinct spectral behavior with

distance-dependent resonances. Even for the third harmonic we have a clear sig-

nal up to 50 nm above the sample. For both harmonics, we observe two maxima,

at around 17.7 µm and 16.7 µm for the smallest distance between tip and sam-

ple, which corresponds very well with the resonance around 18.1 µm expected from

the dipole model (see section 6.3.5). The two maxima are 180◦ phase-shifted and

the corresponding zero crossing is located at around 17 µm. No strong blurring of

the spectra due to reflection is observed as it was the case on LiNbO3. The only

anomaly in the spectra of both harmonics is a small dip in the near-field intensity

at around 17.9 µm on the c domain and at 17.7 µm on the a domain (arrows in

figure 10.6). As these dips are reproducible and as they are located at different wave-

2The indices a and c at indicate that the anisotropy factors on the a and on the c domain are
different (see section 6.1.3).
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Figure 10.6: Distance-dependent near-field spectra of the 2nd- and 3rd-harmonic

signals on different domains of the BaTiO3 sample for p-polarized incident light.

The upper two pictures show the data on a c domain with the optical axis per-

pendicular to the sample surface, while the lower two data sets were taken on an

a domain with the optical axis parallel to the sample surface and to the plane of

incidence. The arrows mark dips which may correspond to the superposition of

two excited poles.

lengths for the two different domains, it seems to be a true near-field effect, which

may correspond to the superposition of the two poles perpendicular and parallel to

the sample surface. The pole at larger λ corresponds to a more negative dielectric

constant and is thus most likely the pole perpendicular to the sample surface, while

the pole at smaller wavelength is also observable for s-polarized light as discussed

in the following paragraph.

Figure 10.7 shows the corresponding spectra for s-polarized incident light on

the two different domain types for the 2nd and 3rd harmonics. Again we observe

a clear near-field signal with two maxima: For the smallest distance between tip

and sample, one is located at around 17.4 µm and the other at around 16.4 µm.

Both maxima are located at much larger wavelength than expected from the dipole

model, which predicts a resonance at 15.6 µm. Again the maxima are of opposite

phase and the corresponding zero crossing is located at around 16.8 µm.
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Figure 10.7: Distance-dependent near-field spectra on different domains of

BaTiO3 for 2nd- and 3rd-harmonic demodulation and for s-polarized incident

light.

The spectra differ only slightly between the two kinds of domains. Only on a

closer look can we observe a slight shift of the spectra as well as a small difference

in the intensity. To study the possible contrast, we calculate the visibility V =

(Cc −Ca)/(Cc + Ca) from the measured data sets for p-polarized incident light (see

figure 10.6) and show the results in figure 10.8 for selected distances between tip and

sample. The visibility has a value of -0.8 to +0.8 with negative values corresponding

to a domains being brighter than the c domains and positive values corresponding to

brighter c domains. For the second harmonic, we observe a dip in all three visibility

spectra at around 17.9 µm. This dip as well as the maxima next to it at around

17.7 µm do not depend on the distance and both are thus most likely no near-field

effects. Starting at 17.5 µm, we observe an increase in the red curve (the spectrum

for h = 0 nm). The signal rises until a maximum of about 0.55 around 16.9 µm.

Then it decreases strongly until a negative minimum of -0.85 at around 16.7 µm is

reached. After this minimum it increases again gently and approaches zero. The red

curve shows two zero crossings corresponding to points of contrast reversal: one at

around 17.5 µm and one at around 16.85 µm. For larger distances (green curve for

h = 25 nm and blue curve for h = 50 nm) we observe the same qualitative behavior
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Figure 10.8: Contrast Vac on the BaTiO3 sample calculated by V = (fa −
fc)/(fa + fc) from the measured data sets shown in figure 10.6. Depicted are the

2nd- and 3rd-harmonic contrasts for p-polarized incident light and for selected dis-

tances h. Positive and negative contrasts correspond to a brighter a or c domain,

respectively.

but shifted towards smaller wavelengths. The positive maximum (bright c domains)

is located at 16.7 µm for the green and at 16.4 µm for the blue spectrum, while the

negative minimum (bright a domain) is at 16.4 µm and below 16 µm, respectively,

in the two cases. The zero crossings are also shifted to smaller wavelengths, namely

16.95 µm and 16.55 µm for the green, and 16.9 µm and 16.25 µm for the blue curve.

Also, for both curves at larger distance we observe an additional broad negative

minimum (bright a domains) between 17 and 17.4 µm. The distance dependence

of the visibility spectra shows a typical spectral near-field shift. From these data,

we expect a maximum contrast of 80% and contrast reversals around 16.85 µm

and 17.5 µm for h = 0. The visibility spectra for the 3rd-harmonic signal are very

noisy and show no obvious near-field characteristics. Anyway, they are shown for

completeness in figure 10.8.

In conclusion, the measured distance dependence spectra show a very similar

near-field signal on the two types of domains for both polarizations of the incident

light. An enhanced signal with a typical lobelike character is observed around the

wavelength expected from the dipole model. On a closer look, a small shift of the two

spectra is observable, with the c domain resonance at slightly smaller wavelengths

compared to the a domain. In the corresponding visibility spectra, we observe

maximum contrast between the a and the c domain of up to 80 % as well as contrast

reversals at characteristic wavelengths. Both maxima and contrast reversal shift with

the wavelength, which indicates the near-field-coupled character of the signal.

As the sample shows two different types of domains, we can now measure the

optical contrast or visibility directly by scanning the sample. This was done in

2-dimensional scans at selected wavelengths (section 10.5) as well as in so-called

line-scan near-field spectra discussed in the following section.



10.4 Line-Scan Near-Field Spectra on BaTiO3 135

2nd harmonic 3rd harmonic
16

x [µm]0 13.40 x [µm] 13.40

(a) (b)

λλ λλ
[µ

m
]

18

17

16

λλ λλ
[µ

m
]

18

17

Figure 10.9: Line-scan near-field spectra on a BaTiO3 sample for (a) 2nd-

and (b) 3rd-harmonic demodulation. The length of the scanned line was 13.4 µm

(horizontal direction in the images) while the wavelength was varied from 18.2 µm

to 16 µm in steps of ∆λ = 120 nm (vertical direction).

10.4 Line-Scan Near-Field Spectra on BaTiO3

In addition to the distance-dependent near-field spectra, we measured spectra under

feedback control of the tip-sample distance while scanning along a single line on the

sample surface. Knowing the domain distribution of the sample, we chose a line

crossing both domain types several times to avoid random errors. We start scanning

the line at large wavelengths and then decrease the wavelength by increasing the un-

dulator gap (see section 8.2) in steps of typically ∆λ ∼= 100 nm. For each wavelength

we make 10 scans each in forward and backward direction. At each wavelength, the

laser power changes strongly during the first scan, which can be observed easily in

the measurement. After reaching the last wavelength, we switch back to the first one

to make a reference scan, which takes about one minute. For all the measurements

shown here, these reference scans reproduce the signal at the starting wavelength

and are thus not depicted here. The reference scans as well as the corresponding

topography scans ensure that there is no drift of the sample for all measurements

which are presented here.

Figure 10.9 shows the measured data for 2nd- and 3rd-harmonic demodulation

using p-polarized incident light. For both harmonics we see a stripy contrast along

the scanned line – the horizontal direction of the picture – which changes with

wavelength. For describing the data, we proceed from large to small wavelengths

(bottom to top), which was the scan direction also in the experiment.

In the 2nd-harmonic signal at 18.2 µm we see two bright lines with a lateral

distance of about 9 µm that move to the right at the next wavelength step. We

believe that these maxima correspond to far-field interference maxima at the sample
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surface. At smaller wavelengths, we observe a substructure consisting of 5 bright

lines. First, the positions of these bright lines do not change when we change the

wavelength until reaching λ ∼= 17.0 µm. Then, the intensity of the bright lines

decreases, while the intensity of the dark lines increases until the contrast is reversed.

Surprisingly, the lines seem to move to the right before the contrast reverses (see

red marks in the picture). We believe that this movement is caused by the near

field probing a certain depth in the sample. As the 90◦ domain wall runs through

the crystal at an angle of 45◦ with respect to the sample surface, there are certain

regions with an a domain on the sample surface and the c domain underneath or

vice versa (see figure 10.1a). At these domain-mixed intersections, the distance

between e.g. the tip and the c domain underneath the a domain is larger than on

a pure c domain and hence the spectral response is shifted to smaller wavelengths.

Knowing the domain distribution, we can identify the domains. The lines which

are bright at larger wavelengths correspond to a domains, while the dark areas are

c domains. The contrast reversal takes place at about 16.8 µm.

In the 3rd-harmonic signal we see again the two bright lines at large wavelengths,

which are much weaker than for the 2nd harmonic. This confirms the assumption that

this is a far-field effect. Again, for smaller wavelengths we observe a substructure

of 5 bright and dark lines which reverse in the contrast at a certain wavelength

(λ ∼= 17.3 µm) with the same movement to the right as observed for the 2nd harmonic

(see red mark). When the wavelength is decreased further, the contrast jumps back

to the former contrast at 16.7 µm, corresponding to the 180◦ phase shift of the higher-

harmonic signals discussed above (see section 5.3.2). Then, the contrast reverses

again with a similar movement to the right (see green marks) at λ ∼= 16.4 µm.

Comparing these observations with the distance-dependent near-field spectra

shown in figure 10.6 we can estimate the distance between tip and sample dur-

ing the scan. We may assume that the number of contrast reversals correlates with

the number of maxima in the distance-dependent near-field spectra. The region

where the 2nd harmonic shows only one contrast reversal, while the 3rd harmonic

shows two, is limited to a distance of about h′ = 45 to 55 nm in the correspond-

ing distance-dependent spectra (see figure 10.6). This is a realistic value for the

distance, considering the smaller frequency shift of the cantilever oscillation during

the scan due to distance control. For p-polarized light and a distance of 50 nm the

visibility between a and c domains is depicted in figure 10.8. Here the 2nd harmonic

shows contrast reversals at 16.8 µm as well as 16.25 µm, which matches perfectly the

observations of the lateral scan. The visibility of the 3rd-harmonic signal as depicted

in figure 10.8 is too noisy to find any accordance to the lateral-scan data.

Distance dependence

Knowing the distance-dependent near-field spectra, we can test the agreement with

the line-scan near-field spectra by measuring at a different distance between tip and

sample. In noncontact AFM mode this can be realized by changing the amplitude of
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Figure 10.10: Line-scan near-field spectra of the 2nd-harmonic signal on BaTiO3

for different amplitudes of the cantilever oscillation. The length of the scanned

line was 13.4 µm (horizontal direction), while the wavelength was changed from

18.2 µm to 15.44 µm in steps of 140 nm (vertical direction).

the cantilever oscillation. Taking half the amplitude corresponds to a good approx-

imation to half the distance. Closer to the sample surface we expect the contrast

reversal to happen at larger wavelengths, because the resonances on both domain

types are shifted to larger wavelengths. The absolute value of the optical signal

should be smaller because of the smaller modulation amplitude, while the lateral

resolution of the signal is expected to be higher [Wur99, Tau05].

The result of such a measurement is shown in figure 10.10 for 2nd-harmonic

demodulation: The spectrum taken at an amplitude of about 40 nm is shown on the

left-hand side and its counterpart acquired at half the amplitude on the right-hand

side. Both spectra were taken along the same line on the sample surface. The half-

amplitude image is much noisier due to less optical signal. At large wavelengths both

spectra are dominated by far-field contributions, which shift to the right when the

wavelength is decreased. At about 17.8 µm we observe the stripelike substructure

of the ferroelectric domains in both pictures. First, they do not move when the

wavelength is reduced further. For the large amplitude we observe a contrast reversal

(red lines in fig. 10.10a) at about 16.6 µm, which is in good accordance to the earlier

measurement. For half the amplitude this contrast reversal happens at a clearly

larger wavelength, namely at about 17.1 µm (see red lines in fig. 10.10b). The signal

for half the amplitude is noisier, but we can clearly observe a second contrast reversal

at about 16.0 µm (green lines in fig. 10.10b).

Comparing the results with the distance-dependent near-field spectra, we observe

all expected features: For smaller oscillation amplitudes, the spectra are shifted

towards larger wavelengths. Due to the smaller distance between tip and sample,

we observe a second phase-inverted maximum around 16.0 µm in the 2nd-harmonic
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Figure 10.11: Line-scan near-field spectra of the 2nd-harmonic signal on BaTiO3

for different polarizations of the incident light. The length of the scanned line was

13.4 µm (horizontal direction), while the wavelength was changed from 18.2 µm

to 15.44 µm in steps of 140 nm (vertical direction).

signal. These observations fit to the distance-dependent near-field spectra shown in

figure 10.6, if we assume the distance between tip and sample to be smaller than

40 nm. Comparing these results with the visibility plots of figure 10.8, we find a good

agreement with the visibility at h = 25 nm, where the contrast is shifted by about

300 nm towards larger wavelengths. The second point of reversal cannot be found

in the visibility curve. Note that the corresponding distance-dependent near-field

spectra were taken at larger amplitudes and therefore cannot serve for quantitative

comparison.

Polarization dependence

We know from the distance dependent measurements that the near-field signal de-

pends strongly on the polarization of the incident light. Therefore we also acquire

line-scan near-field spectra for different polarizations of the incident light.

In figure 10.11 you see the line-scan near-field spectra demodulated at the 2nd har-

monic for p- and s-polarized incident light. The measurement with p-polarized light

reproduce the measurements discussed before and shown in figure 10.9, which were

taken on a different day and with slightly different FEL settings. Again the contrast

reversal occurs at a wavelength of about 16.85 µm. For s-polarized light, we observe

two contrast reversals, one at around 17.05 µm and a second one at around 16.3 µm.

As for the 3rd harmonic depicted in figure 10.9, we observe a jump between the two

lines at around 16.6 µm. This agrees with the distance-dependent near-field spectra

depicted in figures 10.6 and 10.7 if we again assume that the distance between tip

and sample during the line scan was about 45 nm.
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In conclusion, the method of line-scan near-field spectra is a good complementary

method to the distance-dependent near-field spectra. It affirms the results of the

latter if we assume the distance during the scan to be about 45 nm larger than the

smallest distance in the approach curves. All measurements at different harmonics,

selected amplitudes, and s- and p-polarized incident light coincide completely with

the results from the distance-dependent near-field spectra. The line-scan near-field

spectrum in general provides a fast spectral and spatial examination of the sample

at one single tip-sample distance. In particular, it is very helpful in finding the right

wavelength that yields the maximal contrast in spatial two-dimensional scans, which

are discussed in the following section.

10.5 Scans at Selected Wavelengths with Contrast

Reversal

The above results show the principle of s-SNOM based on a tunable light source

at IR wavelengths. The comparison with theory facilitates the interpretation of the

data and the usage of the method for spectroscopic examinations. In this section we

will discuss the additional application of s-SNOM in the IR as an imaging technique

at selected wavelengths.

As the deviation of the anisotropic dielectric tensor from a scalar in most fer-

roelectric samples is too small to be imaged at visible wavelengths with a common

tip, many groups have used the electro-optic properties of the ferroelectric sample

to extract optical information [Hub98, Lev00, Ott04, Orl00]. Close to the phonon

resonance of the sample, s-SNOM allows a purely optical examination of ferroelectric

domains.

For imaging a ferroelectric domain distribution (or any other structure showing

spatial variations of the optical anisotropy), the wavelength should be chosen such

that the optical contrast is as large as possible. The lateral scans discussed in

section 10.4 are a good preliminary investigation to find the right wavelength. From

those measurements we know the point of contrast reversal and the points of maximal

optical contrast before and after the contrast reversal.

Scans at selected wavelengths

Figure 10.12 shows a whole set of scans at several fixed wavelengths on a sample

region where we have a c domain to the left and an a domain to the right (separated

by the white line in the images). The first and second rows show measurements of

the 2nd- and 3rd-harmonic signals, respectively. From left to right the wavelength

increases from 15.9 µm to 17.4 µm. For wavelengths smaller than 16 µm, we see

no contrast between the domains. When increasing the wavelength, we see first

some far-field features. At about 16.6 µm the c domain is clearly brighter than the
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Figure 10.12: Scans on BaTiO3 single crystal at selected wavelengths (2nd and

3rd harmonic). The white line indicates the 90◦ domain wall between a c domain

to the left and an a domain to the right side. For the corresponding PFM picture

see figure 8.3.

a domain in both harmonic signals. This contrast is maximal at about 16.8 µm.

At about 17 µm the contrast reverses and the a domain gets brighter than the

c domain. This contrast increases for larger wavelengths and has its maximum at

about 17.4 µm.

In the scans at selected wavelengths we can clearly observe the domain struc-

ture. The characteristically shaped a domain, which is deformed most likely due to

defects in the crystal, can easily be identified. The corresponding PFM picture was

shown earlier in figure 8.3. Please note that – as expected from theory – no contrast

is observed between antiparallel c domains (
⊙

and
⊗

in fig. 8.3a). At the domain

wall, we see some additional features which we do not understand completely yet.

Due to the edge in the topography, we surely have some scattering effects, which

modify the appearance of the domain wall at some wavelengths – e.g. at 17.4 µm

in the lower part of the 2nd-harmonic image. These effects seem to be weaker in

the 3rd-harmonic signal. Additionally, the transition of the optical signal between

the two domains is displaced laterally with respect to the location of the domain

wall as measured by PFM, which is marked by a white line in the picture. This

effect is stronger for the a-resonant case at 17.4 µm than for the c-resonant case at

16.8 µm. We believe that this displacement is caused by the near field probing a

certain depth in the sample. As discussed earlier, the 90◦ domain wall runs through

the crystal at an angle of 45◦ with respect to the sample surface (see figure 10.1a).

Thus the scattering signal measured above the domain wall, contains information

on the c domain as well as the a domain, the latter being located at different depths

underneath the tip. For the measurements shown here, this effect cannot be clearly

examined, because the ferroelectric structure is not well-defined due to defects in

the crystal. However, these scans reproduce nicely the spatial distribution of the

domains and their spectral response with a contrast reversal at a certain wavelength.

On another sample with a nondeformed stripelike domain structure, as shown in
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Figure 10.13: Contrast reversal in the 2nd-harmonic signal on a BaTiO3 sam-

ple due to different wavelengths. The dashed lines correspond to the domain

distribution known from PFM measurements (see figure 10.4).

the PFM images depicted in figure 10.4, we performed scans at two selected wave-

lengths, namely 16.7 µm and 17.2 µm. Figure 10.13 depicts both scans separately

as well as a combined image showing half of either scan to point out the correla-

tion of the two pictures. We can clearly observe the stripelike domain structure as

measured by PFM. As a good pin point in the pictures we take the needle in the

lower left corner of the scans (marked red in figure 10.13c). The PFM measurements

show that this needle is the end of a c domain. At 16.7 µm this c domain needle is

brighter than the surrounding a domains, while at 17.2 µm the contrast is reversed.

Again the optical contrast is not simply reversed between the two wavelengths

but also shows some displacement at the domain walls. At 16.7 µm we can clearly

distinguish two levels of the optical signal: high signal corresponding to the c do-

mains (for example the needle) and low signal for the a domains. At 17.2 µm the

borders are blurred. The signal changes only slowly across the domain walls. Again,

most likely the penetration depth of the near-field interaction is the reason for this

blurring.

Scans at selected amplitudes

As already examined by means of line-scan near-field spectra in section 10.4, also

the amplitude of the cantilever oscillation influences the contrast between a and

c domains. A change of this amplitude changes the mean distance between the tip

and the sample and therefore changes the resonance of the coupled system. For

smaller amplitudes we expect the optical signal to be smaller, but the resolution to

be increased [Wur99, Tau05].

Figure 10.14 shows measurements performed with an amplitude of about 40 nm

– like in the above measurements – in comparison with data obtained at half the

amplitude. We measured the 3rd-harmonic signal at 17.2 µm on one and the same

sample region. Again we chose the same sample area containing the c domain

needle (marked red in figure 10.14c), but we chose a smaller scan range. Because of
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Figure 10.14: Contrast reversal in the 2nd-harmonic signal on a BaTiO3 sample

due to different amplitudes. The dashed lines correspond to the domain distrib-

ution known from PFM measurements (see figure 10.4).

the different harmonic, the needle is now bright at an amplitude of 40 nm. When

halving the amplitude, we find a clear contrast reversal. This shows that close to a

resonance of the tip-sample system, variations of the amplitude during a scan can

cause a contrast reversal. This is in contradiction to the common assumption that

the amplitude only influences the signal-to-noise ratio and the lateral resolution but

not qualitatively the contrast [Tau05], which is however true only for the off-resonant

case.

Additionally, we find that the resolution of the optical measurement changes: For

the large amplitude the needle seems to end within the picture, while for the small

amplitude it is still observable at the upper border of the scan. A repeated scan

showed that no drift was present. We believe that the higher resolution at smaller

amplitude allows us to image the very narrow domain end, which is not visible at

larger amplitudes. Also note that the resonance frequency of the near-field-coupled

tip-sample system is shifted and therefore the intensity as well as the contrast have

changed. An additional feature can be observed in the lower right corner: At large

amplitudes we observe a broad bright area, while for smaller amplitudes, within the

dark area, we observe a bright line, which was identified by PFM as the end of an

a domain needle (marked green in figure 10.14c). This confirms that the spatial

resolution in near-field microscopy is higher if a smaller modulation amplitude is

chosen, as discussed in [Wur99, Tau05].

In conclusion, scans of the sample at selected wavelengths clearly show the do-

main distribution via a purely optical contrast. As expected from theory and from

the above spectral investigations, we observe a contrast reversal at a certain wave-

length. At selected wavelengths, a contrast reversal can also be observed for different

amplitudes corresponding to different distances between tip and sample. Addition-

ally, smaller distances offer a higher resolution of the lateral scan, which will be

discussed in the following section.
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10.6 Resolution in s-SNOM

The resolution of the distance-dependent near-field spectra is discussed for LiNbO3

in section 9.5. The spectral width of the FEL is the same in the wavelength regimes

used for BaTiO3 and for LiNbO3. This spectral resolution of about ∆λ = 100 nm

corresponds for BaTiO3 to a difference in the dielectric constant of ∆ε = 0.15.

In the line-scan near-field spectra we observe in addition to the wavelength de-

pendence of the signal, a correlation to the domain distribution along a line on the

sample surface. For the 2nd-harmonic signal and p-polarized light (see figure 10.9),

we observe clearly the striped domain structure with a mean period of 1 µm. It is

difficult to define the lateral resolution, as the near-field has a certain penetration

depth and thus we image an average of the domain structures in the sample at dif-

ferent distances from the sample surface. The 90◦ domain wall has an angle of 45◦

with respect to the sample surface (see 10.1a) and hence the domain distribution is

shifted for different depths. We can estimate the resolution to be better than 300 nm.

The resolution does not depend on the wavelength, as expected from theory. The

resolution is mainly limited by the tip radius, but also by the distance h between tip

and sample and the amplitude A of the cantilever oscillation. The tip radius defines

the lateral size of the nanoscopic light source as well as the strength and the decay

length of the near-field, while the distance h determines the illuminated area on the

sample. Additionally, the distance h defines the penetration depth of the near-field

as well as the response of the sample, i.e., the strength and spectral position of the

resonance. The amplitude A controls the mean distance h as well as the z modu-

lation, which determines the higher-harmonic generation. In conclusion, a smaller

tip-radius and a smaller distance provide a higher lateral resolution in s-SNOM.

In figure 10.15a,c we depict two-dimensional scans of BaTiO3 demodulated at

the 2nd harmonic using λ = 17.2 µm and two different oscillation amplitudes of

the cantilever. The needle-shaped domains with a width below 200 nm are clearly

resolved for A = 20 nm. The cross sections along lines 1 and 2 are depicted in

figure 10.15b and 10.15d, respectively. Line 1 crosses a needle-shaped c domain on

the left-hand side of the scan area, which is bright for A = 40 nm (fig. 10.15a) and

dark for A = 20 nm (fig. 10.15c). From PFM measurements (see figure 10.4), we

know the domain to be roughly 180 nm wide at the position of line 1. This needle

can be barely observed for A = 40 nm, while it is clearly mapped for A = 20 nm. At

line 2 (fig. 10.15d) we cross the same c domain needle at a different position, where

it has a width of about 1 µm, and additionally we cross the end of an a domain

needle being about 150 nm wide according to the PFM data. This second needle

is only resolved for A = 20 nm, appearing to be around 315 nm wide. From this

observation we deduce that our s-SNOM resolves structures as small as 150 nm

with a resolution of about 85 nm, corresponding to λ/200. This resolution depends

strongly on the distance between tip and sample and can be increased further by

using smaller amplitudes.
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Figure 10.15: Illustration of the lateral resolution in s-SNOM. (a),(c) show the

optical amplitude as measured in two-dimensional scans at λ = 17.2 µm with

different cantilever amplitudes A = 40 nm and A = 20 nm respectively. (b) and

(d) show cross sections along the dashed lines in the scan images. The smallest

structure resolved is about 150 nm wide and is imaged with a resolution of around

85 nm (see text).

10.7 Summary

By the measurements on BaTiO3, we were able to confirm the validity of our method

for another sample material and hence for another wavelength range. Thereby, we

extended the measurements to a more complex sample system showing a well-known

domain distribution. In addition to the spectroscopic examinations using distance-

dependent near-field spectra, we measured the spatial distribution of the near-field

signal on the sample. We scanned along a single line on the sample surface while

changing the wavelength. With this method we were able not only to identify the

domains but also to find the characteristic wavelength of contrast reversal. Addi-

tionally, we performed two-dimensional scans across the sample surface at selected

wavelengths. We found the wavelengths of maximal contrast and of contrast rever-

sal and performed near-field scans with a resolution of about 85 nm at λ = 18 µm,

corresponding to λ/200.
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With our unique s-SNOM setup we combine several scanning probe microscopy

methods allowing the examination of topographic, electrical, and optical properties

of the sample. This allows us not only to image all these properties in situ, but also

to minimize any cross talk from mechanical or electrical interaction to the near-field

signal. For the optical examination we have two separate setups, one for visible and

a second one for the IR regime.

At visible wavelengths, we reported basic examinations on a test sample showing

a contrast between different materials, namely gold and glass. Measurements of

the distance dependence confirmed the suppression of the far-field signal by the

method of higher-harmonic demodulation. In the IR regime we used a free-electron

laser as a precisely tunable light source. We excited ferroelectric samples close to

their phonon resonances, which allowed the near-field-coupled tip-sample system

to be excited resonantly. Several imaging techniques were used to study the basic

properties of the near-field signal.

On a single-domain single crystal of ferroelectric LiNbO3 we examined the el-

ementary behavior of the near-field signal close to the resonance by measuring

distance-dependent near-field spectra. These measurements are in good agreement

with the theoretical calculations for all higher-harmonic signals. By rotating the

single-domain sample, we demonstrated the dependence of the near-field signal on

changes of the in-plane components of the dielectric tensor of the sample. This influ-

ence has been predicted by theory, but has never been proven before experimentally.

Measurements at different polarizations of the incident light showed a systematic

change of the signal. It is obvious that for the resonant excitation of the tip-sample

system also the component of the electric field parallel to the sample surface con-

tributes the the near-field signal. With measurements at different polarizations we

can couple to different components of the dielectric tensor, leading to complementary

information.

By measurements on a multi-domain single crystal of ferroelectric BaTiO3, we

proved the validity of our method for another wavelength regime and for another

sample material. The distance-dependent near-field spectra showed basically the

same behavior as the spectra on the first sample material, but were shifted to a dif-

ferent wavelength range. The data were again in good agreement with the theoretical

spectra from the dipole model. Additionally, on the multi-domain sample, we were
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able to examine the near-field signal on different domains where the dielectric tensor

is oriented differently. On this sample we do not only have changes in the plane of

the sample surface but also of the perpendicular component. Distance-dependent

spectra were measured on different domain types and for different polarizations of

the incident light.

As the multi-domain sample offers the opportunity to scan over an area with

several domains, we introduced the additional method of line-scan near-field spectra.

Using this method, we scanned along line on the sample surface while changing the

wavelength of the incident light. For selected wavelengths we see a contrast between

different kinds of domains which reverses at a characteristic wavelength. Systematic

investigations for various harmonics, different polarizations, and selected distances

between tip and sample were done and showed a consistent behavior. Finally we

imaged the domain distribution of the sample at selected wavelengths. We observed

a contrast reversal at a characteristic wavelength as well as at a certain distance

between tip and sample. The domain distribution was clearly identified with a

resolution of λ/200.



12 Conclusions and Outlook

This work combines the theoretical description of near-field optical microscopy

on anisotropic dielectrics with the experimental examination of anisotropic ferro-

electrics.

In the theoretical part we extended the known dipole model to anisotropic sam-

ples. For these samples we expect – in addition to the well-known material contrast

– an anisotropy contrast between sample regions with different orientations of the

dielectric tensor. For nonresonant excitation of the tip-sample system, this contrast

is observable for selected tip shapes, but is characterized by a rather small scattering

cross section. Hence, we concluded that it is necessary to excite the tip-sample sys-

tem at one of its resonances, by resonant excitation of either the tip or the sample.

For the tip-induced resonance, the scattering cross section is successfully enhanced,

but the corresponding anisotropy contrast is yet rather small. Only for sample-

induced resonances we expect an enhancement of both, the scattering cross section

as well as the anisotropy contrast.

In order to measure the rather small anisotropy contrast, we designed a setup

which is a unique combination of atomic force microscopy, Kelvin probe force mi-

croscopy, and near-field observation. We reduced any possible artifacts due to me-

chanical or electrostatic cross-talk by using a frequency-modulated distance control

with an additional amplitude controller as well as a third controller minimizing

the electrostatic interaction between tip and sample. In the visible wavelength

regime, we performed basic studies on our system such as the discrimination of

near-field from far-field contributions to the signal by higher-harmonic demodu-

lation. At IR wavelengths we used the free-electron laser at Forschungzentrum

Dresden-Rossendorf as a continuously tunable light source, thereby for the first

time combining a FEL with a near-field microscope. In order to study the basic

properties of the anisotropy contrast, we excited ferroelectric samples close to their

phonon resonances. On two different samples – lithium niobate and barium titanate,

both excited resonantly at different wavelengths –, we found the resonances of the

near-field-coupled system at the predicted spectral positions.

On lithium niobate we studied the principle spectral behavior of the near-field

signal on anisotropic materials, as these single-domain crystals are as close as possi-

ble to the ideal sample system of our calculations. In so-called distance-dependent

near-field spectra we measured characteristic fingerprints for different polarizations
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of the incident light as well as different orientations of the sample. With these

measurements we proved for the first time the impact of in-plane anisotropy on the

near-field signal. As the anisotropy of the sample is homogeneous across the crystal,

a direct measurement of the anisotropy contrast was not possible with this sample,

but only the comparison between different orientations.

The second sample, a multi-domain barium titanate single crystal, shows do-

mains with the anisotropy axis oriented either parallel or perpendicularly to the

sample surface. On both types of domains, we performed analogous spectral exam-

inations as for lithium niobate. Additionally, we performed lateral scans in combi-

nation with spectroscopy and found a clear anisotropy contrast, which is maximized

for resonant excitation. As the two domains show resonances at different wave-

lengths, we observed a contrast reversal between the two wavelengths in several

higher harmonics. By performing 2-dimensional scans at selected wavelengths, we

were able to measure the domain distribution with a clear contrast between the dif-

ferent domains, which reverses at a certain distance between tip and sample and for

a characteristic wavelength. In these scans we achieved a lateral resolution of λ/200.

In the near future, we plan to study the resolution limit of this method by down-

scaling the domain size. Additionally, we will directly study the in-plane anisotropy

contrast on bismuth ferrite showing the appropriate domain structure. Up to now

this was not possible, because these samples show resonances at around 25 µm,

which was out of the accessible wavelength range. As these samples are multiferroic,

we plan to study the response of ferroelectric and ferromagnetic domains, head-

ing towards addressing the different types with the proper wavelengths and thus

separating them in the optical image.

Additionally, we have started examining specially designed tips with nanoparti-

cles of arbitrary size and shape attached to the tip end. By controlling the scattering

behavior of the tip with this technique, we are able to achieve a higher resolution and

a better reproducibility. Furthermore, it may become possible to examine anisotropic

samples with nonresonant excitation at visible wavelengths.

The extension of the detection system for IR wavelengths to interferometric de-

tection is under construction. This method allows the separation of optical am-

plitude and optical phase at arbitrary wavelengths, which provides complementary

information about the sample response.

Furthermore, the examination of other sample systems showing resonances in

the IR regime is planned. In order to examine the local spectral behavior of organic

samples, we will extend our method to surface-enhanced infrared absorption spec-

troscopy. On ion-implanted structures, we will study systematically the penetration

depth of the near-field for different scan parameters and at different wavelengths.

Finally, we are excited by latest developments in the field of metamaterials, allowing

e.g. transmission of the near-field information over distances of several micrometers

with the superlensing effect of metamaterials.



Appendix A Reflection at

Anisotropic Materials

For isotropic samples the reflection coefficients are well known as the Fresnel

coefficients:

rs =
cos γ −

√
n2 − sin2 γ

cos γ +
√

n2 − sin2 γ
(A.1)

rp =
n2 cos γ −

√
n2 − sin2 γ

n2 cos γ +
√

n2 − sin2 γ

with the incident angle γ and the relative index of refraction n given by the ratio of

the index of refraction of the sample ns and the surrounding material nm

n =
ns

nm

. (A.2)

The s- and p-polarized components of the reflected field Pp, Ps can be calculated

by

Pp = rpAp (A.3)

Ps = rsAs .

with Ap, As the p- and s-polarized components of the electric-field vector of the

incident light.

For anisotropic samples the formulae are more complex. For uniaxial anisotropy

there are two refracted beams - the ordinary (o) and the extraordinary (eo) beams.

There are four reflection coefficients, connecting the incident s- and p-polarized field

vectors to the reflected ones:

Pp = rppAp + rpsAs (A.4)

Ps = rspAp + rssAs .

The coefficients were calculated for the general case by Szivessy in 1928 [Szi28].

The calculation is based on the so-called method of ”uniradial oscillation az-

imuths”. For each crystal axis, there is one certain polarization α (angle between

the incident plane and the electric-field vector) and amplitude A of the incident
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light, which, at a certain incident angle, will produce only one refracted beam with

the amplitude 1. Calling these incident polarizations, due to the produced refracted

beams, αo for the ordinary and αeo for the extraordinary one and the corresponding

incident amplitudes Ao and Aeo, the resulting reflected polarizations ρo, ρeo and the

amplitudes of the reflected wave Po and Peo we get the s- and p-components of the

incident and reflected wave with

As,o/eo = Ao/eo sin αo/eo (A.5)

Ap,o/eo = Ao/eo cos αo/eo

Ps,o/eo = Po/eo sin ρo/eo

Pp,o/eo = Po/eo cos ρo/eo

Thus the reflection coefficients are given by

rpp =
1

d
(−Po,pAeo,s + Peo,pAo,s) (A.6)

rsp =
1

d
(+Po,pAeo,p − Peo,pAo,p)

rps =
1

d
(−Po,sAeo,s + Peo,sAo,s)

rss =
1

d
(+Po,sAeo,p − Peo,sAo,p)

with

d = (Ao,sAeo,p − Ao,pAeo,s) . (A.7)

The equation system for calculating the components Ai, Pi and αi, ρi with i =

e, eo is

(Ai cos αi + Pi cos ρi) sin γ = cos ηi sin ri (A.8)

(Ai sin αi − Pi sin ρi) sin γ cos γ = sin ηi sin ri cos ri

(Ai sin αi + Pi sin ρi) sin2 γ = sin ηi sin
2 ri

(Ai cos αi − Pi cos ρi) cos γ sin2 γ = (cos ηi cos ri + tan ζi sin ri) sin2 ri

and

cot αi = cos (γ − ri) cot ηi +
sin2 ri tan ζ

sin (γ + ri) sin ηi

(A.9)

cot ρi = cos (γ + ri) cot ηi +
sin2 ri tan ζ

sin (γ − ri) sin ηi

.

with γ the incident angle between incident k vector and the positive z axis,

ηi the polarization of the refracted beams,

ri the refraction angles between the k vector of the refracted beam

and the negative z axis ,

ζi the angle between the wave normal of the refracted beam

and its Poynting vector.



151

The calculation of these parameters for uniaxial crystals in general are described

in the following.

For a uniaxial crystal the refractive indices are given by

n1 = n2 = na (A.10)

n3 = nc

In order to solve the equation system A.8 we need to calculate a set of parameters

(Ai, αi, Pi, ρi, ηi, ri and ζi with i = o, eo) for the ordinary (o) and the extraordinary

(eo) refractive wave. First we describe the orientation of the crystal relative to the

incident plane (xz). The refractive indices of the sample are given by:

1

n2
ik

=
αiαk + βiβk

n2
a

+
γiγk

n2
c

(A.11)

with i, k = 1, 2, 3 and

α1 = cos ξ cos ε α2 = sin ξ cos ε α3 = − sin ε

β1 = − sin ξ β2 = cos ξ β3 = 0

γ1 = cos ξ sin ε γ2 = sin ξ sin ε γ3 = cos ε

(A.12)

with

with ε the angle between the optical axis and the z axis and

ξ the angle between optical axis and x axis in the xy plane.

The angles ri between the refracted beams and the negative z axis can be calcu-

lated by solving

f (ri) =
((

n2
m · sin2 γ − n2

a

) · tan2 ri + n2
m sin2 γ

) · (d0 tan2 ri + d2

) ≡ 0 (A.13)

with

d0 = n2
m sin2 γ · (n2

a +
(
n2

c − n2
a

) · sin2 ε cos2 ξ
)− n2

an
2
c (A.14)

d2 = n2
m sin2 γ · (n2

c cos2 ε + n2
a sin2 ε

)
.

The corresponding polarizations ηi of the refracted waves are given by

cot ηi =

(
1

n2 sin2 γ
− 1

n2
22

)
· tan2 ri − 1

n2
22(

1
n2

12
− tan2 ri

n2
23

)
·
√

1 + tan2 ri

(A.15)

For the refracted ordinary wave the refractive index ni is equal to the refractive

constant

no = na , (A.16)

the wave normal is parallel to the Poynting vector

ζo = 0 (A.17)
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and the refraction angle r0 is not dependent on the orientation of the crystal

ro = arctan
nm · sin γ√

n2
a − n2

m sin2 γ
(A.18)

The polarization ηo is given by the normal of the plane that includes the optical axis

as well as the wave normal.

For the refracted extraordinary wave the refractive index neo depends on the

angle b between the wave normal and the optical axis

1

n2
eo

=
cos2 b

n2
a

+
sin2 b

n2
c

. (A.19)

The wave normal is not parallel to the Poynting vector. The angle ζeo between the

two vectors is dependent on the refractive constants nik and the angle b between the

wave normal and the optical axis of the crystal:

tan ζeo = arctan
(n2

c − n2
a) sin b cos b

n2
c cos2 b + n2

a sin2 b
(A.20)

The refraction angle reo depends on the orientation of the crystal

reo = arctan

√
−d2

d0

(A.21)

with d0 and d2 as described in equation A.14. The polarization ηeo is given by a

vector perpendicular to the wave normal and lies in the plane which includes the

optical axis as well as the wave normal.

For the special case of a uniaxial crystal with the optical axis being normal

(c domain) or parallel to the sample surface (a domain) along the x axis (δ = 90◦)
or the y axis (δ = 0◦), the parameters of the refracted and the reflected light are

given in table A.1. The resulting reflection coefficients are given in section 6.3

(equations 6.21, 6.22, and 6.23).
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c domain a domain

δ = 0◦ (ay) δ = 90◦ (ax)

ε 0◦ 90◦ 90◦

ξ arbitrary 90◦ 180◦

α1 cos ξ 0 0

α2 sin ξ 0 0

α3 0 -1 -1

β1 − sin ξ -1 0

β2 cos ξ 0 -1

β3 0 0 0

γ1 0 0 -1

γ2 0 1 0

γ3 1 0 0

n11 na na nc

n22 na nc na

n33 nc na na

n12 = n21 0 0 0

n13 = n31 0 0 0

n23 = n32 0 0 0

ζo 0 0 0

tan ζeo
(nc2−na2) sin reo cos reo

cos2 reon2
c+sin2 reon2

a
0 (nc2−na2) sin reo cos reo

sin2 reon2
c+cos2 reon2

a

d0 n2
a(sin

2 γ − n2
c) n2

a(sin
2 γ − n2

c) n2
c(sin

2 γ − n2
a)

d2 n2
c sin2 γ n2

a sin2 γ n2
a sin2 γ

tan ro
sin γ√

n2
a−sin2 γ

sin γ√
n2

a−sin2 γ

sin γ√
n2

a−sin2 γ

tan reo
nc sin γ

na

√
n2

c−sin2 γ

sin γ√
n2

c−sin2 γ

na sin γ

nc

√
n2

a−sin2 γ

b reo 90◦ 90◦ − reo

ηo 90◦ (s) asljh 0◦ 90◦

ηeo 0◦ (p) asljh 90◦ 0◦

αo 90◦ (s) asljh 0◦ 90◦

αeo 0◦ (p) asljh 90◦ 0◦

ρo 90◦ (s) asljh 0◦ 90◦

ρeo 0◦ (p) asljh 90◦ 0◦

rpp eq. 6.21 eq. 6.22 eq. 6.22

rsp 0 0 0

rps 0 0 0

rss eq. 6.21 eq. 6.22 eq. 6.22

Table A.1: Parameters of refraction and reflection for a uniaxial crystal with the

optical axis perpendicular (c domain) or parallel to the sample surface (a domain)

in the plane of incidence (δ = 90◦) or perpendicular to it (δ = 0◦). For simplicity

we assume the dielectric constant of the surrounding medium to be n = 1.
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