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ABSTRACT

In this work, the design and application of Polynomial-Based Filters (PBF) for continu-

ously variable Sample Rate Conversion (SRC) is studied. The major contributions of this work are

summarized as follows.

First, an explicit formula for the Fourier Transform of both a symmetrical and nonsymmet-

rical PBF impulse response with variable basis function coefficients is derived. In the literature

only one explicit formula is given, and that for a symmetrical even length filter with fixed basis

function coefficients.

The frequency domain optimization of PBFs via linear programming has been proposed in

the literature, however, the algorithm was not detailed nor were explicit formulas derived. In this

contribution, a minimax optimization procedure is derived for the frequency domain optimization

of a PBF with time-domain constraints. Explicit formulas are given for direct input to a linear

programming routine. Additionally, accompanying Matlab code implementing this optimization

in terms of the derived formulas is given in the appendix.

In the literature, it has been pointed out that the frequency response of the Continuous-Time

(CT) filter decays as frequency goes to infinity. It has also been observed that when implemented in

SRC, the CT filter is sampled resulting in CT frequency response aliasing. Thus, for example, the

stopband sidelobes of the Discrete-Time (DT) implementation rise above the CT designed level.

Building on these observations, it is shown how the rolloff rate of the frequency response of a

PBF can be adjusted by adding continuous derivatives to the impulse response. This is of great
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advantage, especially when the PBF is used for decimation as the aliasing band attenuation can

be made to increase with frequency. It is shown how this technique can be used to dramatically

reduce the effect of alias build up in the passband. In addition, it is shown that as the number of

continuous derivatives of the PBF increases the resulting DT implementation more closely matches

the Continuous-Time (CT) design.

When implemented for SRC, samples from a PBF impulse response are computed by eval-

uating the polynomials using a so-called fractional interval, µ. In the literature, the effect of quan-

tizing µ on the frequency response of the PBF has been studied. Formulas have been derived

to determine the number of bits required to keep frequency response distortion below prescribed

bounds. Elsewhere, a formula has been given to compute the number of bits required to represent

µ to obtain a given SRC accuracy for rational factor SRC. In this contribution, it is shown how

these two apparently competing requirements are quite independent. In fact, it is shown that the

wordlength required for SRC accuracy need only be kept in the µ generator which is a single accu-

mulator. The output of the µ generator may then be truncated prior to polynomial evaluation. This

results in significant computational savings, as polynomial evaluation can require several multipli-

cations and additions.

Under the heading of applications, a new Wideband Digital Downconverter (WDDC) for

Synthetic Instruments (SI) is introduced. DDCs first tune to a signal’s center frequency using a

numerically controlled oscillator and mixer, and then zoom-in to the bandwidth of interest using

SRC. The SRC is required to produce continuously variable output sample rates from a fixed input

sample rate over a large range. Current implementations accomplish this using a pre-filter, an arbi-
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trary factor resampler, and integer decimation filters. In this contribution, the SRC of the WDDC is

simplified reducing the computational requirements to a factor of three or more. In addition to this,

it is shown how this system can be used to develop a novel computationally efficient FFT-based

spectrum analyzer with continuously variable frequency spans.

Finally, after giving the theoretical foundation, a real Field Programmable Gate Array

(FPGA) implementation of a novel Arbitrary Waveform Generator (AWG) is presented. The new

approach uses a fixed Digital-to-Analog Converter (DAC) sample clock in combination with an ar-

bitrary factor interpolator. Waveforms created at any sample rate are interpolated to the fixed DAC

sample rate in real-time. As a result, the additional lower performance analog hardware required

in current approaches, namely, multiple reconstruction filters and/or additional sample clocks, is

avoided. Measured results are given confirming the performance of the system predicted by the

theoretical design and simulation.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

The two motivating applications for this work are Synthetic Instrumentation (SI) [1,2,3,4,5,

6,7,8] and Software Defined Radio (SDR) [9,10,11,12]. One of the main goals of SDR is to replace

as many of the analog and hard-wired digital circuits as possible with programmable devices. This

makes a radio (any wireless communication device, e.g. cell phone, walkie-talkie) more flexible

in the sense that it can be reconfigured to handle a different type of communication waveform

simply by changing its programming. This concept is illustrated in Fig. 1 where the single SDR

on the right can handle all of the waveforms produced by the multiple hardware defined radios on

the left. This type of reprogrammability is being driven by many factors including the desire for

multi-mode terminals — we want bluetooth and wireless internet in the same device — as well

as the major problem of different branches of the military not being able to communicate because

they have different radios.

The SI movement takes the same approach in that it seeks to use flexible Digital Signal

Processing (DSP) based architectures to provide many functions on a single platform. Multiple

measurement functions can be synthesized from a limited set of “generic” SI components as op-

posed to discrete instrument types such as a spectrum analyzer [13]. This concept is shown in Fig.

2, where the SI platform on the right performs the same functions as the discrete instruments on

the left. In the figure, the example SI platform consists of a monitor for display on top of a card
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Waveform N
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SDR

Figure 1: Software Defined Radio Concept

cage housing the generic SI components. Examples of generic SI components include frequency

downconverters, digitizers, and frequency upconverters.

The differences between SDR and SI are quite small in the area of RF and communications

instrumentation, such as the Vector Signal Analyzer (VSA) and Vector Signal Generator (VSG).

In fact the SI implementation of the VSA can be thought of as a gold standard SDR receiver [7].

Hence, advances in SDR can be taken advantage of in the development of new SI’s and vice-versa.

In both areas, DSP plays a prominent role. One of the major tasks being Sample Rate Conversion

(SRC) or resampling [14, 15]. SDR’s and SI’s use sampled data modems. That is, an incoming

signal passes through an Analog to Digital Converter (ADC) sampling at a fixed rate before the

information symbols are recovered. In order to recover the symbols, the data must be sampled
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at the symbol rate or an integer multiple thereof. Since different communications standards use

different symbol rates, a method is needed to adjust the sample rate entirely in the discrete-time

domain. Moreover, since the sample rate may not be an integer multiple of the symbol rate, the

SRC must be able to convert between arbitrary sampling rates [16,17,18]. Another SI application

is FFT-based spectral analysis. Here, it’s desired to compute the spectrum of a signal over a certain

bandwidth or span using FFT techniques. In order to make the choice of spans continuously

variable (like in a traditional spectrum analyzer), continuously variable SRC is needed [5]. There

are many other applications of continuously variable SRC including image zooming [19], digital

audio resampling [20], reconstruction of non-uniformly sampled data [21,22], and continuous-time

signal processing [23].
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1.2 Introduction to Sample Rate Conversion

A CT signal, xa(t), can be perfectly reconstructed from its samples given by

x(kTs) = xa(t)
∣

∣

∣

t=kTs

, (1.1)

where Ts is the sampling period in seconds and

Fs =
1

Ts

(1.2)

is the sample rate in Hz. Given that xa(t) has a strictly bandlimited Fourier Transform Xa(F ), or

∣

∣

∣Xa(F )
∣

∣

∣ = 0, for |F | > B. (1.3)

The sample rate required to perfectly reconstruct xa(t) from its samples, x(kTs), must follow

Fs ≥ 2B (1.4)

This is the sampling theorem [24]. The constraint in 1.4 prevents aliasing [25]. In practice, the

sample rate must, in most cases, be slightly greater than the minimum bound given in (1.4). Ex-

tensions of the sampling theorem to other types of signals, e.g. bandpass signals, can be found

in [26, 27, 28].

4



SRC

x(kTin) y(lTout)
xa(t) ya(t)

Tout = 1/FoutTin = 1/Fin

R = Fout/Fin

Figure 3: Sample Rate Conversion

Figure 3 depicts the sample rate conversion of a discrete-time input signal, x(kTin), having

sample rate Fin and corresponding sample period Tin. The output of the system is the signal y(lTout)

having sample rate Fout and corresponding sample period Tout. Also, xa(t) is the underlying CT

signal from which the samples x(kTin) are generated, while ya(t) is the underlying CT signal from

which the output samples y(lTout) are generated.

The sample rate conversion factor is given by

R = Fout/Fin, (1.5)

such that the output sample rate is given by,

Fout = RFin. (1.6)

When R > 1 the SRC process is referred to as interpolation, while the 0 < R < 1 case is referred

to as decimation.
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DAC ha(t)
x(k) xs(t) ya(t) y(l)

Fin Fout

Sample at t = lTout

Figure 4: CT Model for Sample Rate Conversion

The process of SRC just described can be modeled with the system in Fig. 4 [24,29,30,31,

32]. In this model, the input samples are reconstructed to form a CT signal. The CT signal is then

resampled at a new sampling rate. In Fig. 4, the samples to be reconstructed are input to an ideal

DAC followed by filtering with ha(t), the CT reconstruction filter. The output of the ideal DAC is

the impulse train given by

xs(t) =
∞
∑

k=−∞

x(kTin)δa(t− kTin) (1.7)

where δa(t) is the Dirac delta function. The next step is to determine how the reconstruction filter

should be designed. Taking the Fourier Transform of (1.7) provides some insight, and is given by

Xs(F ) =
1

Tin

∞
∑

k=−∞

Xa(F + kFin) (1.8)

From (1.8) it can be seen that the spectrum now contains the original spectrum in addition to an

infinite number of spectral replicas centered at integer multiples of the sample rate. These replicas

are referred to as images and represent distortion. Therefore, to reconstruct the original signal, one

simply needs to design ha(t) to remove the images and preserve the original lowpass spectrum.
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To summarize the filtering requirements for signal reconstruction, given that the signal

follows (1.3), the filter should approximate

Ha(F ) =



















































1, for |F | ≤ B

0, for kFin −B < |F | < kFin +B

don’t care, otherwise

, (1.9)

where k is an integer ranging from −∞ to ∞. Figure 5 illustrates the reconstruction process from

a spectral point of view.

passband

don’t care bands

F

F

FFin 2FinB

Fin-B Fin+B

Xa(F )
Xs(F )

Ya(F )

Ha(F )

Figure 5: Signal Reconstruction

7



Returning to the analysis of Fig. 4, the CT output of the filter is given by

ya(t) =
∫

∞

−∞

xs(λ)ha(t− λ)dλ

=
∞
∑

k=−∞

x(kTin)
∫

∞

−∞

δa(λ− kTin)ha(t− λ)dλ

=
∞
∑

k=−∞

x(kTin)ha(t− kTin) (1.10)

The CT signal is then resampled at the desired times t = lTout yielding the Discrete-Time (DT)

signal output

y(lTout) =
∞
∑

k=−∞

x(kTin)ha(lTout − kTin). (1.11)

This result shows that the computation of the resampled output signal only requires the DT input

signal x(kTin), and samples from the CT impulse response ha(t) [24, 29, 30]. No explicit Digital-

to-Analog or Analog-to-Digital Conversion is required. All that remains is to design a CT filter

such that its samples can be readily computed. Once this is accomplished, the entire resampling

operation can take place in the DT domain. Fast, on-line computation of the samples required

to perform the resampling operation in (1.11) is readily accomplished by constructing ha(t) as a

piecewise polynomial as shown in Chapter 3.

When Fout > Fin reconstruction of the original signal is accomplished by simply removing

the images as shown in Fig. 5. When the signal is resampled, no aliasing will occur, because the

new sample rate is higher than the original sample rate. The type of filter that accomplishes this

is called an anti-imaging filter. Since the images to be removed reside at integer multiples of the

input sample rate, then the filter to remove them must have stopbands at these integer multiples as

given in 1.9.
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In like manner, when Fout < Fin the filter should remove the spectral images. However,

because the output sample rate is less than the original sample rate, it must also be protect the

bandwidth of interest from aliasing. Frequency bands centered at multiples of the output sample

rate will alias into the baseband as a result of sampling. Therefore, the filter should have stopbands

located at integer multiples of the output sample rate. Given that the signal to protect is lowpass of

single sided bandwidth W , the filtering requirement to prevent aliasing is given by

Ha(F ) =



















































1, for |F | ≤ W

0, for kFout −W < |F | < kFout +W

don’t care, otherwise

. (1.12)

This type of filtering protects the desired band from aliasing while allowing it in the don’t care

bands. Alternatively, if no aliasing is allowed the filtering requirement becomes

Ha(F ) =



























1, for |F | ≤ W

0, for |F | > Fout/2

. (1.13)
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CHAPTER 2: LITERATURE REVIEW

Digital methods for SRC by integer factors have been studied extensively [25,33,24]. This

type of SRC falls under two headings: decimation and interpolation. Decimation is the term used

for a reduction of the sample rate by an integer factor while interpolation is used for sample rate

increase by an integer factor. Structures for efficient realization of integer sample rate conversion

are the polyphase filters [34], and, in cases where the signal bandwith is small with respect to the

sample rate, the cascaded-integrator-comb (CIC) filters [35]. Interpolation followed by decimation

results in SRC by a rational factor. Here the sample rate is first increased by a factor L before

being reduced by a factor K to yield the over all SRC factor R = L/K. When R is a ratio of two

small integers, this operation can be performed efficiently by a single polyphase filter [36]. This

technique becomes inefficient whenR is a ratio of two large relatively prime integers [18], or when

the SRC factor is to be continuously variable.

Upon observing the continuous-time (CT) model for sample rate conversion, it was dis-

covered that the resampling of a signal can be accomplished entirely in the discrete-time (DT)

domain [29, 37]. All that is needed is the sequence to be resampled and samples from a CT im-

pulse response used for signal reconstruction. The question then becomes: How does one design

such a CT impulse response such that samples from it can be readily computed? Initially, this idea

led to the use of classical piecewise polynomial interpolation kernels (e.g. Lagrange) for the CT

impulse response [29, 30]. These kernels are attractive because they have explicit formulas for the

coefficients, can be evaluated at the proper time instants via a single parameter, and can be imple-
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mented in real-time with the Farrow Structure [38, 39]. The drawback to this approach is that the

frequency response of the CT filter is governed by the choice of interpolation kernel. This is quite

restrictive from a filter design point of view, especially since these kernels often have an unsuitable

frequency response for many applications. The solution to this problem came in [40, 31], where it

was realized that the zero phase frequency response of a symmetric Polynomial-Based Filter (PBF)

is linear with respect to the coefficients. This meant that the coefficients could be optimized to meet

a desired frequency response via linear programming [41,42]. Driven by the Farrow Structure im-

plementation, the PBF impulse response had been constructed with polynomial pieces with length

equal to the input sample period Tin. This yields a frequency response normalized to the input sam-

ple rate Fin = 1/Tin. This is what one wants in the case of sample rate increase, but not for sample

rate decrease [5]. This was solved by constructing the PBF impulse response with pieces hav-

ing length equal to the output sample period Tout yielding new implementation structures [43, 44].

These fall under the heading of the Transposed Farrow Structure. More general structures have

also been proposed which are constructed of PBF’s with pieces having different lengths [45], or

equal lengths of a multiple of the input or output sample period. These techniques can reduce

the number of fixed coefficients needed to implement a desired frequency response at the expense

of additional general purpose multipliers needed for polynomial evaluation [46]. Other strucutres

based on CIC filters have also been developed which take advantage of oversampling [47, 18].

In practical implementation, the SRC factor is always approximated by a ratio of two, not

necessarily small, relatively prime integers. This insight led to the observation that for a particular

SRC factor R = L/K, there exists a polyphase filter implementation exactly equivalent to the

11



PBF implementation [48]. When SRC is performed using a PBF the CT impulse response is

uniformly sampled yielding a DT FIR filter equivalent. Now, filters could be designed by first

designing a DT filter and then converting it to a polynomial-based filter [48]. The advantage to this

approach is that in the DT model, filter aliasing is taken into account, thus the designed stopband

attenuation is exactly the same as in implementation. When the CT-designed impulse response is

sampled, aliasing occurs, thus the actual stopband sidelobes may rise far above the designed level.

The disadvantage to the DT-design method is that it only optimizes the filter for a particular rate

change, and the performance for other rate changes severely degrades to an unacceptable level.

Thus, in [49] it was concluded that for applications where the SRC factor is to be continuously

variable the CT design method is sufficient.

The effect of quantizing the fractional interval on the frequency response of the PBF has

also been studied in [50, 51]. It was shown that fractional interval quantization effectively applies

a Zero Order Hold (ZOH) to the impulse response. This causes image distortion in the frequency

response. The relationship between the level of the distortion images caused by quantization and

the number of bits used was derived.
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CHAPTER 3: DESIGN OF POLYNOMIAL-BASED FILTERS

3.1 Introduction to Polynomial-Based Filters

Polynomial-Based Filters (PBF) are continuous-time finite duration impulse response fil-

ters. As the name suggests PBFs are polynomial-based, that is, they are constructed of polyno-

mials. To be more precise, PBFs are composed of concatenated (arranged side by side) piecewise

polynomial segments of equal length. To introduce this concept consider the following two poly-

nomial pieces.

h0(t) =



























t/T, 0 ≤ t < T ,

0, otherwise.

(3.1)

h1(t) =



























1 − t/T, 0 ≤ t < T ,

0, otherwise.

(3.2)

Equations (3.1) and (3.2) are equal length, linear polynomials in t. Concatenation is performed by

shifting h1(t) to the right and adding the two pieces as follows.

ha(t) = h0(t) + h1(t− T ) (3.3)

This example produces the linear interpolation kernel. A graphical illustration of this process is

given in Fig. 6.
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Figure 6: Construction of a PBF
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3.2 Impulse Response

In general, ha(t) can be constructed with N concatenated polynomial pieces of degree M

and length T as follows [43, 44, 18, 46]. Define a polynomial piece as

hn(t) =



























∑M
m=0 cm(n)

(

a
(

t
T

)

+ b
)m

, 0 ≤ t < T ,

0, otherwise.

(3.4)

Equation (3.4) describes anM th order polynomial in t of length T . The cm(n)’s are the polynomial

coefficients and a and b are constants. The overall impulse response is given by the summation of

the shifted pieces

ha(t) =
N−1
∑

n=0

hn(t− nT )

=
N−1
∑

n=0

M
∑

m=0

cm(n)ψm(n, T, t), (3.5)

where

ψm(n, T, t) =



























(

a
(

t−nT
T

)

+ b
)m

nT ≤ t < (n+ 1)T ,

0 otherwise.

(3.6)

are the basis functions.
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3.3 Frequency Response

Given a PBF consisting of N polynomial pieces of order M ,

ha(t) =
N−1
∑

n=0

M
∑

m=0

cm(n)ψm(n, T, t), (3.7)

where,

ψm(n, T, t) =



























(

a
(

t−nT
T

)

+ b
)m

, nT ≤ t < (n+ 1)T ,

0, otherwise.

(3.8)

The Fourier Transform is given by

Ha(Ω) =
N−1
∑

n=0

∫ (n+1)T

nT

(

M
∑

m=0

cm(n)ψm(n, T, t)

)

e−jΩtdt

=
N−1
∑

n=0

M
∑

m=0

cm(n)
∫ (n+1)T

nT
ψm(n, T, t)e−jΩtdt

=
N−1
∑

n=0

M
∑

m=0

cm(n)Ψm(n, T,Ω), (3.9)

where,

Ψm(n, T,Ω) =
∫ (n+1)T

nT
ψm(n, T, t)e−jΩtdt

=
∫ (n+1)T

nT

(

a
(

t− nT

T

)

+ b
)m

e−jΩtdt. (3.10)

Making a change of variables, we let

u = − jΩt− jΩT
b

a
+ jΩnT

→ du = − jΩdt. (3.11)
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This gives,

t = −
u

jΩ
−
b

a
T + nT

→ dt = −
du

jΩ
. (3.12)

The new integration limits become

u1 = − jΩt1 − jΩT
b

a
+ jΩnT = −jΩT

b

a

u2 = − jΩt2 − jΩT
b

a
+ jΩnT = −jΩT

(

1 +
b

a

)

. (3.13)

Substituting (3.11), (3.12), and (3.13) into (3.10) gives

Ψm(n, T,Ω) =
∫ u2

u1

(

au

−jΩT

)m

eue−jΩnT ejΩT b
a
du

−jw

=
e−jΩnTamejΩT b

a

−jΩ(−jΩT )m

∫ u2

u1

umeudu

=
e−jΩnTamejΩT b

a

−jΩ(−jΩT )m

[

eu
m
∑

k=0

(−1)k m!

(m− k)!
um−k

∣

∣

∣

u2

u1

]

=
e−jΩnTamejΩT b

a

−jΩ(−jΩT )m

[

m
∑

k=0

(−1)k m!

(m− k)!

(

eu2u2
m−k − eu1u1

m−k
)

]

. (3.14)

Simplifying (3.14) gives

Ψm(n, T,Ω) = Te−jΩnT
m
∑

k=0

akm!

(m− k)!

(

1

jΩT

)k+1
(

bm−k − e−jΩT (a+ b)m−k
)

. (3.15)

The final form is then given by

Ha(Ω) =
N−1
∑

n=0

M
∑

m=0

cm(n)Ψm(n, T,Ω), (3.16)

where Ψm(n, T,Ω) is given by (3.15).
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A more useful form for design purposes is the normalized frequency response given by

Ha(ω) =
Ha(Ω)

T

∣

∣

∣

∣

∣

Ω=ω/T

=
N−1
∑

n=0

M
∑

m=0

cm(n)Ψm(n, ω), (3.17)

where

Ψm(n, ω) =
Ψm(n, T,Ω)

T

∣

∣

∣

∣

∣

Ω=ω/T

= e−jωn
m
∑

k=0

akm!

(m− k)!

(

1

jω

)k+1
(

bm−k − e−jω(a+ b)m−k
)

. (3.18)
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3.3.1 Linear Phase Filters

Linear phase filters have the property of impulse response symmetry. This condition can

be imposed on the PBF in the design process by restricting the impulse response to be symmetric.

This has the added benefit of giving a real-valued zero-phase frequency response, which eases

the task of PBF design in the frequency domain. The causal PBF ha(t) centered at t = NT/2 is

symmetric if

ha(t) = ha(NT − t). (3.19)

Equations (3.7) and (3.8) may be written in terms of each polynomial segment, hn(t), as

ha(t) =
N−1
∑

n=0

hn(t− nT ), (3.20)

where

hn(t) =



























∑M
m=0 cm(n)

(

a
(

t
T

)

+ b
)m

, 0 ≤ t < T ,

0, otherwise.

(3.21)

Equation (3.19) is satisfied if

hn(t) = hN−n−1(T − t), (3.22)

where,



























n = 0, 1, . . . , N−1
2
, for N odd

n = 0, 1, . . . , N
2
− 1, for N even.

(3.23)
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Substituting Eq. (3.4) into Eq. (3.22) gives

M
∑

m=0

cm(n)
(

a
(

t

T

)

+ b
)m

=
M
∑

m=0

cm(N − n− 1)
(

a
(

T − t

T

)

+ b
)m

=
M
∑

m=0

cm(N − n− 1)
(

−a
(

t

T

)

+ b+ a
)m

=
M
∑

m=0

(−1)mcm(N − n− 1)
(

a
(

t

T

)

− b− a
)m

.

Letting

a = −2b, (3.24)

gives

M
∑

m=0

cm(n)
(

a
(

t

T

)

+ b
)m

=
M
∑

m=0

(−1)mcm(N − n− 1)
(

a
(

t

T

)

+ b
)m

, (3.25)

such that,

cm(n) = (−1)mcm(N − n− 1). (3.26)

The coefficient symmetry given in (3.26) has the major implementation benefit of reducing the

required number of coefficient multiplications.

Given that the symmetry condition is imposed, the zero phase PBF is obtained by shifting

the center of the causal impulse response to the origin as follows

hzp(t) = ha(t+NT/2). (3.27)

Because the impulse response is now symmetric about the origin, it is by definition an even function

giving

hzp(t) =
1

2

[

hzp(t) + hzp(−t)
]

. (3.28)
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Now,

Hzp(Ω) = ej ΩNT
2 Ha(Ω), (3.29)

but, from (3.28), (3.29) can be written as

Hzp(Ω) =
1

2

[

Hzp(Ω) +H∗

zp(Ω)
]

=
1

2

[

2
(

ℜ
{

Hzp(Ω)
} ) ]

= ℜ
{

ej ΩNT
2 Ha(Ω)

}

. (3.30)

Finally, substituting (3.17) into (3.30) gives

Hzp(Ω) =
N−1
∑

n=0

M
∑

m=0

cm(n)ℜ
{

ejΩ NT
2 Ψm(n, T,Ω)

}

, (3.31)

which for N even can be reduced to

Hzp(Ω) = 2

N
2
−1
∑

n=0

M
∑

m=0

cm(n)ℜ
{

ejΩ NT
2 Ψm(n, T,Ω)

}

. (3.32)

The key observation at this point is that because the frequency response is real-valued (i.e.

we do not need to take the magnitude), it is linear with respect to the coefficients cm(n). Because

of this, linear programming can be used to optimize the coefficients to achieve a desired frequency

response.
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3.3.2 Example

Before turning to PBF optimization, we pause to illustrate the use of the formulas via the

simple example given in the introduction to this chapter. The example PBF from (3.3) has N = 2

polynomial pieces of order M = 1. Each piece can be mapped to (3.4) with a = 1 and b = 0 as

follows,

h0(t) =



























∑1
m=0 cm(0)

(

t
T

)m
, 0 ≤ t < T ,

0, otherwise.

(3.33)

h1(t) =



























∑1
m=0 cm(1)

(

t
T

)m
, T ≤ t < 2T ,

0, otherwise.

(3.34)

The overall impulse response is given by the summation

ha(t) =
1
∑

n=0

hn(t− nT )

=
1
∑

n=0

1
∑

m=0

cm(n)ψm(n, T, t). (3.35)

The coefficients can be expressed compactly using a coefficient matrix given by

CN×(M+1) =





















c0(0) c1(0) · · · cM(0)

c0(1) c1(1) · · · cM(1)
...

...
...

c0(N − 1) c1(N − 1) · · · cM(N − 1)





















. (3.36)

For this example (3.36) becomes

C =







0 1

1 −1





 (3.37)

22



The frequency response can be determined by using (3.15) with a = 1 and b = 0 giving

Ψm(n, T,Ω) = Te−jΩnT
m
∑

k=0

m!

(m− k)!

(

1

jΩT

)k+1
(

0m−k − e−jΩT
)

. (3.38)

Then, substituting (3.38) into (3.17) gives

Ha(Ω) =
1
∑

n=0

1
∑

m=0

cm(n)Ψm(n, T,Ω)

=
1
∑

n=0

[

c0(n)Ψ0(n, T,Ω) + c1(n)Ψ1(n, T,Ω)
]

= c0(0)Ψ0(0, T,Ω) + c1(0)Ψ1(0, T,Ω) + c0(1)Ψ0(1, T,Ω) + c1(1)Ψ1(1, T,Ω)

= Ψ1(0, T,Ω) + Ψ0(1, T,Ω) − Ψ1(1, T,Ω)

= Te−jΩT





sin
(

ΩT
2

)

ΩT
2





2

. (3.39)

This is the expected result of the Fourier transform of a triangle function [52]. Finally, the zero

phase frequency response is obtained by shifting the center of the impulse response to the origin.

Since this filter is symmetric, it is linear phase and has a real-valued zero-phase frequency response

given by

Hlin(Ω) = ejΩTHa(Ω)

= T





sin
(

ΩT
2

)

ΩT
2





2

. (3.40)

Here, we use the subscript “lin” as this is the frequency response of the so called linear interpola-

tor. Equation (3.40) is plotted in Fig. 7.
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Figure 7: Frequency Response of Linear Interpolator

The linear interpolator is actually a B-spline function, see [53, 54, 55] for the background

on B-splines. A B-spline of order M , denoted βM(t), is obtained by the M -fold convolution of

the rectangle function with itself. Thus, a zeroth order B-spline is a rectangle function (also called

the nearest neighbor interpolator), the first order B-spline is a triangle function, and so on. The

repeated convolution of length T rectangle functions yields an M th order impulse response of

length NT = (M + 1)T . For ha(t) = βM(t), the coefficients are given by,

cm(n) =
n
∑

k=0

(−1)k

(

N

k

)

(n− k)M−m

(M −m)!M !
, (3.41)
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for m = 0, 1, . . . ,M and n = 0, 1, . . . , N − 1, where N = M + 1.

The impulse and frequency response of the B-spline functions up to order M = 4 are given

in Fig. 8 and Fig. 9, respectively.
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Figure 8: Impulse Response of B-spline Functions
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Figure 9: Frequency Response of B-spline Functions
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3.3.3 The Matrix Formulation

Before proceeding with design techniques, it will be useful to develop some more notation.

First, it should be pointed out that evaluating each polynomial piece, hn(t) over the interval t ∈

[0, T ) before shifting is equivalent to evaluating the shifted polynomial, hn(t − nT ), over the

interval t ∈ [nT, (n+ 1)T ), or

hn(t) ≡ hn(t− nT )
∣

∣

∣

t=t+nT
. (3.42)

Therefore, we define a new variable

µ =
t

T
. (3.43)

Substituting (3.43) into (3.4) gives the polynomial piece in terms of µ as

hn(µ) =



























∑M
m=0 cm(n) (aµ+ b)m , 0 ≤ µ < 1,

0, otherwise.

(3.44)

Now, we define the uniform sampling of ha(t) with spacing T and offset µ as

ha(n, µ) = ha((n+ µ)T )

=
M
∑

m=0

cm(n) (aµ+ b)m , (3.45)

and the vector ha(µ) to be the set of T -spaced impulse response samples

ha(µ) =
(

h0(µ) h1(µ) · · · hN−1(µ)

)T

(3.46)

This is illustrated in Fig. 10.
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Figure 10: Uniform Sampling of ha(t)

The length N vector of impulse response samples, ha(µ), is readily generated using the coefficient

matrix from (3.36) as follows

ha(µ) = Cµ

=
(

h0(µ) h1(µ) · · · hN−1(µ)

)T

=





















c0(0) c1(0) · · · cM(0)

c0(1) c1(1) · · · cM(1)
...

...
...

c0(N − 1) c1(N − 1) · · · cM(N − 1)









































1

(aµ+ b)
...

(aµ+ b)M





















, (3.47)
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where

µ =





















1

(aµ+ b)
...

(aµ+ b)M





















. (3.48)

A nice property of the PBF is that since it is constructed of polynomials, its derivative has

a simple closed form. From (3.45) the ith derivative is given by

h(i)
a (n, µ) =

M
∑

m=i

cm(n) (aµ+ b)m−i aim!

(m− i)!
, (3.49)

Equation 3.49 is valid for each polynomial piece. Border discontinuities between each polynomial

piece give rise to impulses in the derivative. This is of no consequence for our purposes, see [56]

for more on the derivative of piecewise polynomials with border discontinuity. Using (3.47) and

(3.49) the vector of samples of the derivative impulse response is given by

hi
a(µ) = C∆(i)µ, (3.50)

where

∆(i) =
(

δ
(i)
i δ

(i)
i+1 · · · δ

(i)
M−i

)

(M+1)×(M+1)
, (3.51)

and

δ(i)
m =















m zeros

∆(i)(m)

M −m zeros















(M+1)×1

, (3.52)

where

∆(i)(m) =



























aim!
(m−i)!

, m ≥ i,

0, otherwise.

(3.53)
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The frequency response given in (3.17) can be represented as

Ha(ω) = Tr (CΨ(ω)) , (3.54)

where,

Ψ(ω) =





















Ψ0(0, ω) Ψ0(1, ω) · · · Ψ0(N − 1, ω)

Ψ1(0, ω) Ψ1(1, ω) · · · Ψ1(N − 1, ω)
...

...
...

ΨM(0, ω) ΨM(1, ω) · · · ΨM(N − 1, ω)





















. (3.55)

Alternatively, (3.54) can be expressed as

Ha(ω) = ψ(ω)c, (3.56)

where,

ψ(ω) =























































































Ψ0(0, ω)

Ψ1(0, ω)
...

ΨM(0, ω)

Ψ0(1, ω)

Ψ1(1, ω)
...

ΨM(1, ω)
...

Ψ0(N − 1, ω)

Ψ1(N − 1, ω)
...

ΨM(N − 1, T, ω)























































































T

1×N(M+1)

, (3.57)
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and,

c =























































































c0(0)

c1(0)
...

cM(0)

c0(1)

c1(1)
...

cM(1)
...

c0(N − 1)

c1(N − 1)
...

cM(N − 1)























































































N(M+1)×1

. (3.58)

Now, define a length P frequency response vector which contains the values of Ha(ω) at P fre-

quency points, ω = ωp as

ha(ωp) = Ψ̂(ωp)c,

=





















Ha(ω0)

Ha(ω1)
...

Ha(ωP−1)





















P×1

, (3.59)

where,

Ψ̂(ωp) =





















ψ(ω0)

ψ(ω1)
...

ψ(ωP−1)





















P×N(M+1)

. (3.60)
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Likewise, the impulse response can be written as

ha(µ) = M(µ)c, (3.61)

where, using (3.48),

M(µ) =





























µT 0 0 · · · 0

z µT 0 · · · 0

z z µT . . . 0
...

...
. . .

. . . 0

z z · · · z µT





























N×N(M+1)

, (3.62)

and z is a length M + 1 zero vector,

z =
(

0 0 · · · 0

)

1×(M+1)
(3.63)

The derivative of the impulse response can be arranged in a similar manner giving

h(i)
a (µ) = M(i)(µ)c, (3.64)

where,

M(i)(µ) =





























∆(i)µT 0 0 · · · 0

z ∆(i)µT 0 · · · 0

z z ∆(i)µT . . . 0
...

...
. . .

. . . 0

z z · · · z ∆(i)µT





























N×N(M+1)

, (3.65)
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3.3.3.1 The Linear Phase Case

For the linear phase PBF, the N even case yields

Ha(ω) = ψE(ω)cE, (3.66)

where,

ψE(ω) =























































































2ℜ{Ψ0(0, ω)}

2ℜ{Ψ1(0, ω)}
...

2ℜ{ΨM(0, ω)}

2ℜ{Ψ0(1, ω)}

2ℜ{Ψ1(1, ω)}
...

2ℜ{ΨM(1, ω)}
...

2ℜ{Ψ0(N/2 − 1, ω)}

2ℜ{Ψ1(N/2 − 1, ω)}
...

2ℜ{ΨM(N/2 − 1, ω)}























































































T

1×(N/2)(M+1)

, (3.67)
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and

cE =























































































c0(0)

c1(0)
...

cM(0)

c0(1)

c1(1)
...

cM(1)
...

c0(N/2 − 1)

c1(N/2 − 1)
...

cM(N/2 − 1)























































































(N/2)(M+1)×1

. (3.68)

The P length frequency response vector is now given by

ha(ωp) = Ψ̂E(ωp)cE,

=





















Ha(ω0)

Ha(ω1)
...

Ha(ωP−1)





















P×1

, (3.69)

where,

Ψ̂E(ωp) =





















ψE(ω0)

ψE(ω1)
...

ψE(ωP−1)





















P×(N/2)(M+1)

. (3.70)

Likewise, the impulse response for n = 0, 1, . . . , N/2 − 1 can be written as

haE(µ) = ME(µ)cE, (3.71)
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where, using (3.48),

ME(µ) =





























µT 0 0 · · · 0

z µT 0 · · · 0

z z µT . . . 0
...

...
. . .

. . . 0

z z · · · z µT





























N/2×N/2(M+1)

, (3.72)

The derivative of the impulse response for n = 0, 1, . . . , N/2 − 1 can be arranged in a similar

manner giving

h
(i)
aE(µ) = M

(i)
E (µ)cE, (3.73)

where,

M
(i)
E (µ) =





























∆(i)µT 0 0 · · · 0

z ∆(i)µT 0 · · · 0

z z ∆(i)µT . . . 0
...

...
. . .

. . . 0

z z · · · z ∆(i)µT





























N/2×N/2(M+1)

, (3.74)
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3.4 Filter Optimization

The optimal filter is the one for which the maximum of the error, E(ω), from a desired

frequency response D(ω) is minimized over all ω, where

E(ω) = W (ω) [D(ω) −Ha(ω)] . (3.75)

In (3.75)Ha(ω) is the actual frequency response andW (ω) is a weighting function allowing tuning

of the relative size of the error over frequency. Thus, the weighting function may be used for

example to emphasize stopband attenuation over passband ripple. If δ is the maximum error, then

the problem can be stated as

− δ ≤ E(ω) ≤ δ, (3.76)

where the goal is to minimize the maximum error [41]. This is why this type of optimization is

termed Minimax Optimization. Substituting (3.75) into (3.76) gives

− δ ≤ W (ω) [D(ω) −Ha(ω)] ≤ δ, (3.77)

Equation (3.77) can be re-written as

D(ω) −
δ

W (ω)
≤ Ha(ω) ≤ D(ω) +

δ

W (ω)
. (3.78)

In order to perform filter optimization, the frequency variable ω must be discretized. Therefore,

(3.78) is written in its discretized form using (3.69) as

d(ωp) − δŵ(ωp) ≤ ha(ωp) ≤ d(ωp) + δŵ(ωp), (3.79)
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where,

d(ωp) =





















D(ω0)

D(ω1)
...

D(ωP−1)





















P×1

, (3.80)

and,

ŵ(ωp) =





















W (ω0)
−1

W (ω1)
−1

...

W (ωP−1)
−1





















P×1

, (3.81)

Writing (3.69) in terms of in (3.68) gives

d(ωp) − δŵ(ωp) ≤ Ψ̂E(ωp)cE ≤ d(ωp) + δŵ(ωp), (3.82)

This step exposes the linearity of the frequency response with respect to the coefficients. It is this

fact that allows the optimization to be carried out via Linear Programming.
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3.4.1 Linear Programming

Linear Programming solves the problem (see [57] and [41])

min
x

gTx, such that



















































Ax ≤ b

Aeqx = beq

lb ≤ x ≤ ub

. (3.83)

The minimax problem given in the last section can be modified to fit this form as follows. First,

split (3.82) into two inequalities given by

Ψ̂E(ωp)cE ≤ d(ωp) + δŵ(ωp)

−Ψ̂E(ωp)cE ≤ −d(ωp) + δŵ(ωp) (3.84)

Then, rearrange them as

Ψ̂E(ωp)cE − δŵ(ωp) ≤ d(ωp)

−Ψ̂E(ωp)cE − δŵ(ωp) ≤ −d(ωp). (3.85)

The two inequalities in (3.85) can be combined in matrix form as







Ψ̂E(ωp) −ŵ(ωp)

−Ψ̂E(ωp) −ŵ(ωp)













cE

δ





 ≤







d(ωp)

−d(ωp)





 (3.86)
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Equation (3.86) now is in the form of (3.83) with

A =







Ψ̂E(ωp) −ŵ(ωp)

−Ψ̂E(ωp) −ŵ(ωp)







2P×(N/2(M+1)+1)

(3.87)

x =







cE

δ







(N/2(M+1)+1)×1

(3.88)

b =







d(ωp)

−d(ωp)







2P×1

(3.89)

g =





























0

0
...

0

1





























(N/2(M+1)+1)×1

(3.90)

Using (3.90) and (3.88), it is clear that the minimization in (3.83) now becomes

min
x

gTx = min
x
δ. (3.91)

This is the desired result, namely, minimization of the maximum error.

The linear programming problem in (3.83) also allows inclusion of equality constraints

given by

Aeqx = beq, (3.92)

and bounds on x given by

lb ≤ x ≤ ub. (3.93)

These can be left out of the optimization, but (3.92) proves quite useful in the inclusion of simulta-

neous time domain constraints during minimax optimization. This will be demonstrated in a later

section.
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To summarize, given a desired frequency response and weighting function, the matrix A

and the vectors g and b can be constructed and input to a linear programming routine. One such

routine is Matlab’s linprog routine. The output is the vector x containing the optimized coeffi-

cients cE and the minimized maximum error, δ. An example will be given in the next section for

clarification.
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3.4.2 Example

The frequency domain optimization of a PBF using linear programming will now be illus-

trated by an example. A filter is to be designed with the following parameters

1. Normalized passband edge: ωpass = 2πfpass = 2π(.2)

2. Normalized stopband edge: ωstop = 2πfstop = 2π(.8)

3. Number of polynomial pieces: N = 6

4. Order of each piece: M = 3

5. Basis function constants: a = 1, b = −1/2

6. Passband weight: Kpass = 10

7. Stopband weight: Kstop = 1

Now, two uniformly spaced frequency grids are chosen for the passband and stopband of

100 and 500 points respectively. This results in a total of

P = 100 + 500 = 600 (3.94)

points for optimization. These are the only points optimized. The transition band is a “don’t care”

band. The passband extends from 0 to ωpass, while the stopband extends from ωstop to ∞.

The infinite extent of the stopband is not really a problem as far as optimization is con-

cerned. As will be shown in a later section, the PBF frequency response rolls-off as ω → ∞ with
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a decay proportional to the smoothness of the PBF impulse response. In practice, the optimization

need only be carried out to ω ≈ 8π. The response at higher frequencies can be inspected after

optimization to ensure good behavior.

A Matlab script implementing this optimization is given in the Appendix. The optimization

results in a minimized maximum error of

δ = 0.0020, (3.95)

and optimized coefficients

cE =















































































0.0138

0.0687

−0.0079

−0.1415

−0.1066

−0.2875

0.3480

0.8925

0.5923

1.5384

−0.3324

−1.7383















































































. (3.96)

The frequency response of the filter is given in Fig. 11.
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Figure 11: Frequency Response of Optimization Example Filter
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The vector cE contains only half the coefficients of the linear phase PBF since this is all

that is needed for optimization. The complete coefficient matrix of (3.36) can be constructed using

(3.26), which yields

C =



































0.0138 0.0687 −0.0079 −0.1415

−0.1066 −0.2875 0.3480 0.8925

0.5923 1.5384 −0.3324 −1.7383

0.5923 −1.5384 −0.3324 1.7383

−0.1066 0.2875 0.3480 −0.8925

0.0138 −0.0687 −0.0079 0.1415



































(3.97)

The vector uniformly spaced impulse response samples can now be computed for any µ using

(3.47). For example, for µ = .25, (3.47) gives

ha(µ = 0.25) =



































0.0138 0.0687 −0.0079 −0.1415

−0.1066 −0.2875 0.3480 0.8925

0.5923 1.5384 −0.3324 −1.7383

0.5923 −1.5384 −0.3324 1.7383

−0.1066 0.2875 0.3480 −0.8925

0.0138 −0.0687 −0.0079 0.1415























































1.0000

−0.2500

0.0625

−0.0156





















(3.98)

=



































−0.0017

−0.0269

0.2140

0.9289

−0.1427

0.0282



































(3.99)

These values are plotted on top of a more densely sampled version of the impulse response in Fig.

12.
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Figure 12: Impulse Response of Optimization Example Filter
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3.4.3 Time Domain Constraints

When optimizing PBFs without time domain constraints, the impulse response exhibits

only piecewise smoothness. This phenomenon is easily observed by zooming in on one of the

borders between adjacent polynomial pieces. Figure 13 shows the impulse response of Fig. 12

zoomed in on the border between ha(0, µ) and ha(1, µ). These border discontinuities may or may

not be acceptable depending on the application.
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Figure 13: Zoomed Impulse Response of Optimization Example Filter
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An observation of Fig. 13 reveals the key to making the impulse response, or its ith deriva-

tive continuous across segment borders, namely,

h(i)
a (n, 1) = h(i)

a (n+ 1, 0), for 0 ≤ n ≤ N − 2. (3.100)

Because the first and last piece have no adjacent piece to the left and right, respectively, the fol-

lowing condition must also be imposed

h(i)
a (0, 0) = h(i)

a (N − 1, 1) = 0. (3.101)

Finally,

h(i)
a (N/2 − 1, 1) = 0, for i odd. (3.102)

Due to symmetry in the linear phase case, (3.100) becomes

h(i)
a (n, 1) = h(i)

a (n+ 1, 0), for 0 ≤ n ≤ N/2 − 2, (3.103)

and (3.101) becomes

h(i)
a (0, 0) = 0. (3.104)

As mentioned in section 3.4.1, these constraints can be included in the optimization via

(3.92). The first step is to rearrange the constraints of (3.103) as

h(i)
a (n, 1) − h(i)

a (n+ 1, 0) = 0, for 0 ≤ n ≤ N/2 − 2. (3.105)
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Equation (3.105) can be written as




























h(i)
a (0, 1)

h(i)
a (1, 1)

...

h(i)
a (N/2 − 2, 1)

0





























−





























h(i)
a (1, 0)

h(i)
a (2, 0)

...

h(i)
a (N/2 − 1, 0)

0





























=





























0

0

0
...

0





























(3.106)

In (3.106), an extra zero has been appended to the end of each vector so that each one is of length

N/2. This was done in order to construct equations in terms of (3.73).

Before proceeding, it is useful to define

e1, e2, . . . , el (3.107)

as the standard basis of R
l, where ej is a length l column vector with a 1 in the j th position as the

only nonzero entry. For example, for R
3, the space of length l = 3 vectors over the real numbers,

the standard basis is given by

e1 =















1

0

0















, e2 =















0

1

0















, e3 =















0

0

1















. (3.108)

Also define

0 =





















0

0
...

0





















l×1

, (3.109)

to be a length l column vector consisting of only zero entries.

Using (3.73), (3.106) becomes

PM
(i)
E (1)cE − QM

(i)
E (0)cE = 0 (3.110)

48



where, in R
N/2

P =
(

e1 e2 · · · eN/2−1 0

)

N/2×N/2
, (3.111)

and,

Q =
(

0 e1 e2 · · · eN/2−1

)

N/2×N/2
. (3.112)

Simplifying (3.110) gives

(

PM
(i)
E (1) − QM

(i)
E (0)

)

cE = 0

Ã1cE = b̃1 (3.113)

Equation (3.104) can also be written in terms of (3.73) as

RM
(i)
E (0)cE = 0

Ã2cE = b̃2, (3.114)

where

R =
(

e1 0 0 · · · 0

)

N/2×N/2
. (3.115)

Equation (3.102) can also be written in terms of (3.73) as

SM
(i)
E (1)cE = 0

Ã3cE = b̃3, (3.116)

where

S =
(

0 0 · · · 0 eN/2

)

N/2×N/2
. (3.117)
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Finally, (3.113), (3.114), and (3.116) can be combined into the form of 3.92 as

Aeqx = beq

(

Ã 0

)







cE

δ





 = b̃ (3.118)

where,

Ã =















Ã1

Ã2

Ã3















, (3.119)

and,

b̃ =















b̃1

b̃2

b̃3















, (3.120)

where Ã3 and b̃3 are only included for i odd. A Matlab function that generates these constraint

matrices can be found in the Appendix.
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3.4.4 Example with Constraints

In this section, we demonstrate the use of the time domain constraints developed in the

preceding section. The optimization parameters are the same as the example from section (3.4.2),

except that impulse response continuity is imposed. A Matlab function implementing this example

optimization can be found in the Appendix. The optimization results in a minimized maximum

error of

δ = 0.0029, (3.121)

and optimized coefficients

cE =















































































0.0172

0.0649

−0.0489

−0.2194

−0.1146

−0.2192

0.4413

0.7620

0.5967

1.4215

−0.3829

−1.5289















































































. (3.122)

The frequency response of the filter is given in Fig. 14.
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Figure 14: Frequency Response of Optimization Example Filter
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The vector cE contains only half the coefficients of the linear phase PBF since this is all

that is needed for optimization. The complete coefficient matrix of (3.36) can be constructed using

(3.26), which yields

C =



































0.0172 0.0649 −0.0489 −0.2194

−0.1146 −0.2192 0.4413 0.7620

0.5967 1.4215 −0.3829 −1.5289

0.5967 −1.4215 −0.3829 1.5289

−0.1146 0.2192 0.4413 −0.7620

0.0172 −0.0649 −0.0489 0.2194



































. (3.123)

The impulse response and its first derivative are plotted in Fig. 15.

The effectiveness of the constrained optimization is shown in Fig. 16 where it is clear that

the impulse response is now continuous.
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Figure 15: Derivative Impulse Response of Opt. Example with Constraints
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Figure 16: Zoomed Impulse Response of Opt. Example with Constraints

55



CHAPTER 4: IMPLEMENTATION

In this chapter we derive modified forms of the two main PBF implementation structures,

the Farrow Structure and the Transposed Farrow Structure. These structures efficiently implement

PBFs having polynomial pieces of equal length. In the case of the Farrow Structure, the length of

each polynomial piece is T = Tin while the Transposed Structure has pieces of length T = Tout.

Other structures have been proposed that implement PBFs with polynomial pieces of different

lengths [45] as well as structures that use equal length pieces equal to a multiple of T = Tout

or T = Tin [46, 43]. These structures can give some performance enhancement at the cost of

additional design and implementation complexity.

Starting with equation (1.11) which is repeated here for convenience

y(lTout) =
∑

k

x(kTin)ha(lTout − kTin)

we observe, as noted in [29], that the resampled signal can be computed entirely digitally. All

that is needed is the input sequence and samples from the impulse response ha(t) at the proper

time instants. This poses the question: How do we access samples of the continuous-time impulse

response ha(t)? Samples of ha(t) are readily computed on the fly if ha(t) is constructed as a PBF

as detailed in section 3.2.
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4.1 The Farrow Structure

The Farrow Structure [38] implements a PBF whose impulse response is composed of

length T = Tin polynomial pieces. A general form of the Farrow Structure can be derived as

follows. With t = lTout − kTin

ha(t) =
N−1
∑

n=0

M
∑

m=0

cm(n)ψm(n, Tin, lTout − kTin)

=
N−1
∑

n=0

M
∑

m=0

cm(n)

(

a

(

lTout − kTin

Tin

− n

)

+ b

)m

(4.1)

for

nTin ≤ lTout − kTin < (n+ 1)Tin (4.2)

and zero otherwise. From (4.2) we see that

⌊

lTout − kTin

Tin

⌋

= n, (4.3)

so that,

(

lTout − kTin

Tin

− n

)

=
lTout − kTin

Tin

−

⌊

lTout − kTin

Tin

⌋

(4.4)

Here we see that (4.4) is the fractional part of the time distance between the desired output sample

and the current input sample as a fraction of the input sample period. This so-called fractional

interval, µl, can be simplified to

µl =
lTout

Tin

−

⌊

lTout

Tin

⌋

(4.5)

Equation (4.5) can be computed using an overflowing accumulator as

µl+1 = µl +
Tout

Tin

−
⌊

µl +
Tout

Tin

⌋

(4.6)
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where from (4.2) we see that µl ∈ [0, 1). In the above, ⌊·⌋ and ⌈·⌉ are the floor and ceiling operators,

respectively. Substituting (4.5) into (4.1), and using (3.45) gives

ha(lTout − kTin) =
N−1
∑

n=0

M
∑

m=0

cm(n) (aµl + b)m

=
N−1
∑

n=0

ha((n+ µl)Tin) (4.7)

Here we see that (4.7) represents the impulse response of the continuous time filter ha(t) uniformly

sampled with period Tin and offset µlTin. For each output sample, µl flags the correct set of impulse

response samples of ha(t) for the computation in (1.11). Substituting (4.7) into (1.11) gives

y(lTout) =
N−1
∑

n=0

x ((kl − n)Tin)ha((n+ µl)Tin) (4.8)

=
M
∑

m=0

[

N−1
∑

n=0

cm(n)x ((kl − n)Tin)

]

(aµl + b)m , (4.9)

where,

kl =

⌊

lTout

Tin

⌋

. (4.10)

The input/output timing is given in Fig. 17 where it is clear that x(klTin) is the input sample

occurring just prior to or at the same instant as the desired output sample.

The expression in square brackets in (4.9) can be understood as the parallel filtering of

x(klTin) with M + 1, N -tap FIR filters operating at the input sample rate. The filter coefficients

are given by the columns of (3.36). The final output is then formed using Horner’s rule. The

implementation structure is given in Fig. 18. In practice, the structure can be simplified because

each subfilter cm(n) operates on the same set of input samples, thus only one delay line is needed.

Also, in the linear phase case coefficient symmetry can be exploited to reduce the number of

multiplications required by each subfilter.
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Input x(kTin)
Output y(lTout)

(l − 1)Tout lTout (l + 1)Tout (l + 2)Tout

µl

µl+1

µl+2

klTin

ya(t)

time

Figure 17: Farrow Structure Input / Output Timing

x(kTin)

aµl + b

y(lTout)

cM(n) cM−1(n) c0(n)

Figure 18: Farrow Structure
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4.2 The Transposed Farrow Structure

One of the drawbacks to the original Farrow Structure and traditional signal processing

methods for arbitrary sample rate conversion [38, 58, 37] was that they performed poorly for the

case of decimation [44, 59]. The reason for this poor performance is that the polynomial segments

of ha(t) are constructed as piecewise polynomials over the input sample intervals Tin rather than

the output sample intervals Tout. This yields a frequency response normalized to the input rather

than the output sample rate. Solutions to this problem were given in [43] and [44], yielding trans-

posed forms of the Farrow Structure. Of the two structures, the one found in [44] is the more

computationally efficient. In this section, we derive a more general form of this structure. In order

to derive the Transposed Farrow Structure, we start with equation (1.11) which is repeated here for

convenience

y(lTout) =
∑

k

x(kTin)ha(lTout − kTin)

where, with t = lTout − kTin

ha(t) =
N−1
∑

n=0

M
∑

m=0

cm(n)ψm(n, Tout, lTout − kTin)

=
N−1
∑

n=0

M
∑

m=0

cm(n)

(

a

(

lTout − kTin

Tout

− n

)

+ b

)m

(4.11)

for

nTout ≤ lTout − kTin < (n+ 1)Tout (4.12)

and zero otherwise. From (4.12) we see that

⌊

lTout − kTin

Tout

⌋

= n (4.13)
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so that

(

lTout − kTin

Tout

− n

)

=
lTout − kTin

Tout

−

⌊

lTout − kTin

Tout

⌋

= µk (4.14)

Here we see that (4.14) is the fractional part of the time distance between the desired output sample

and the current input sample normalized to the output sample period. This so-called fractional

interval, µk, can be simplified to

µk =

⌈

kTin

Tout

⌉

−
kTin

Tout

(4.15)

where from (4.12) we see that µk ∈ [0, 1). In the above, ⌊·⌋ and ⌈·⌉ are the floor and ceiling

operators, respectively. The relationship between µk and the input and output samples is illustrated

in Fig. 19.

µkTout

µk+1Tout

µk+2Tout

x(k) (input samples)

y(l) (output samples)

ya(t)

(l − 1)Tout kTin (k + 1)Tin (k + 2)Tin lTout time

Figure 19: Input / Output Sample Time Relationship

Substituting (4.15) into (4.11) gives

ha(lTout − kTin) =
N−1
∑

n=0

M
∑

m=0

cm(n) (aµk + b)m

=
N−1
∑

n=0

ha((n+ µk)Tout) (4.16)
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Here we see that (4.16) represents the impulse response of the continuous time filter ha(t) uni-

formly sampled with period Tout and offset µkTout. For each input sample, µk flags the correct set

of impulse response samples of ha(t) for the computation in (1.11). Also, from (4.14)

kTin = (l − n− µk)Tout (4.17)

Substituting (4.16) and (4.17) into (1.11) gives

y(lTout) =
∑

k, while
µk∈[0,1)

N−1
∑

n=0

x
(

(l − µk − n)Tout

)

ha((n+ µk)Tout) (4.18)

=
N−1
∑

n=0

M
∑

m=0











∑

k, while
µk∈[0,1)

x
(

(l − µk − n)Tout

)

(aµk + b)m











cm(n) (4.19)

An implementation of (4.19) is given in Fig. 20. The I&D (Integrate-and-Dump) blocks

perform the summation over k. As can be seen from Fig. 19, multiple input samples can be involved

in the computation of each output sample. One way to sum over the correct input samples is to

implement the computation of µk as a down-counter/subtracting accumulator and use the inherent

wrap around to issue a “dump” command to the I&D blocks. In this scenario µk is computed upon

the arrival of each new input sample as

µk+1 = µk −
Tin

Tout

−
⌊

µk −
Tin

Tout

⌋

(4.20)

Since this sequence is strictly decreasing over each Tout interval, the accumulator output can be

monitored for the condition µk+1 ≥ µk indicating wrap around. When this condition is met, the

outputs of the I&D blocks are passed to the Farrow coefficient network which computes a new

output sample by performing the remaining summations over m and n.

62



aµk + b µk

x(kTin)

y(lTout)

I&DI&DI&D dump

k

c0(0)

c0(1)

c0(N -1)

c1(0)

c1(1)

c1(N -1)

cM(0)

cM(1)

cM(N -1) z-1

z-1

Figure 20: Transposed Farrow Structure
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4.3 Quantization of the Fractional Interval

4.3.1 Polynomial Evaluation with a Quantized Fractional Interval

As mentioned in the two previous sections, in implementation, the fractional interval, µ, is

computed via an overflowing accumulator. This means that µ must be quantized, or represented

with a finite number of bits. The Bq-bit quantized fractional interval is given by (see [50, 51] for a

similar derivation)

µq =
kq

2Bq
, for 0 ≤ kq ≤ 2Bq−1, (4.21)

for kq ∈ Z, such that µq can take on

Nq = 2Bq (4.22)

possible values. The effect of quantizing µ on the PBF CT impulse response is shown in Fig. 21,

where Bq = 2. It is clear that the effect is equivalent to first sampling the CT impulse response

with a period of Ts = T/Nq followed by reconstruction with a ZOH. The ZOH has a frequency

response given by

HZOH(Ω) =
Ts sin

(

ΩTs

2

)

ΩTs

2

. (4.23)

For this particular example, Nq = 22 = 4, thus the sampled filter has four samples per polynomial

piece.

The frequency response of the CT filter, the sampled filter, and the quantized filter are given

in Fig. 22, Fig. 23, and Fig. 24, respectively. In [50] it was determined that the maximum level of
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Figure 21: The Effect of 2-bit Quantization of µ on ha(t)

the quantization images relative to the passband in dB can be approximated by

Îmax ≈ 20 log10(fp) − 6.02Bq. (4.24)

Alternatively, to keep these images Îmax dB down, one should use

Bq ≥ (20 log10(fp) − Îmax)/6.02. (4.25)

bits to represent µ. In the above, fp is the normalized passband edge frequency.
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Figure 22: Frequency Response of CT Filter
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Figure 23: Frequency Response of Sampled Filter
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Figure 24: Frequency Response of Quantized Filter
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4.3.2 Fractional Interval Generation

From (4.5) the fractional interval, in the case of the Farrow Structure, can be written in

terms of the SRC factor (1.5) as

µl =
lTout

Tin

−

⌊

lTout

Tin

⌋

=
l

R
−

⌊

l

R

⌋

. (4.26)

The accumulator of (4.6) then becomes

µl+1 = µl +
Tout

Tin

−
⌊

µl +
Tout

Tin

⌋

= µl +
1

R
−
⌊

µl +
1

R

⌋

. (4.27)

Likewise, from (4.15) the fractional interval, in the case of the Transposed Farrow Structure, can

be written in terms of the SRC factor (1.5) as

µk =

⌈

kTin

Tout

⌉

−
kTin

Tout

= ⌈kR⌉ − kR (4.28)

The accumulator of (4.20) then becomes

µk+1 = µk −
Tin

Tout

−
⌊

µk −
Tin

Tout

⌋

= µk −R− ⌊µk −R⌋ (4.29)

Thus the generation of the fractional interval is accomplished via an overflowing accumulator with

input 1/R or R for the Farrow or Transposed Farrow Structure, respectively.
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As mentioned in the previous section, in order to compute µ, it must be quantized. This

means that the input to the µ generator, or the SRC factor, must be quantized. The precision used

to represent µ determines the precision of the SRC factor, and thus the precision of the SRC itself.

For the remainder of this section, we focus on the Transposed Farrow Structure. Similar

derivations can be done for the Farrow Structure. Define the quantized SRC factor as

Rq = Q[R] =
kq

2Bgen
, for 0 ≤ kq ≤ 2Bgen−1,

=
L

K
, (4.30)

where L and K are relatively prime integers with L < K (decimation). Note that if R = P/Q is

already a rational fraction, it can be represented exactly with

Bgen = ⌈log2(Q)⌉ (4.31)

bits [18]. If R is irrational, or to be continuously variable, then, for a fixed input sample rate the

output sample rate precision or resolution can be written in terms of the input sample rate as

∆Fout =
Fin

2Bgen
, (4.32)

such that, given a desired resolution the number of bits required in the fractional interval accumu-

lator to achieve this resolution can be calculated as

Bgen =
⌈

log2

(

Fin

∆Fout

)⌉

(4.33)
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4.3.3 Combining the Quantization Requirements for Implementation

From the results of the previous two sections, the system given in Fig. 25 can be used to

implement the µ generator.

z−1

R Q[·] Q[·]

Bgen Bgen Bq

To Transposed Farrow

Overflow Detect

µq

Figure 25: Fractional Interval Generator

Here, two quantizers are employed such that a different number of bits may be used for

controlling SRC resolution and ZOH image distortion. This is of major advantage as compared to

using one wordlength that satisfies both requirements. From the figure, we see that controlling the

SRC resolution only affects the number of bits used in a single accumulator, while the number of

bits used for polynomial evaluation are passed to the filter which performs all the shifts, additions,

and multiplications. In practice, for continuously variable SRC, a large number of bits may be

used in the µ generator to give very fine resolution control over the SRC. Then, these bits may be

truncated before being passed to the Transposed Farrow Structure.
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To give a specific example, consider the following. Given

1. Fin = 100 MHz

2. Fout is to be continuously variable with resolution of .001 Hz

3. The PBF has normalized passband edge of fp = .2

4. ZOH image distortion is to be kept at −80dB

From (4.33),

Bgen =
⌈

log2

(

100 MHz

.001 Hz

)⌉

= 37. (4.34)

But, from (4.25)

Bq ≥ (20 log10(0.2) − (−80))/6.02 ≥ 10.97 (4.35)

Therefore,

Bq = 11 (4.36)

bits are sufficient to keep ZOH images at ≈ −80dB. This example points out the dramatic savings

that can be achieved by employing two quantizers instead of one, and this without giving up any

of the desired performance.
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4.4 The Discrete-Time Model

It has been shown [48], that when implementing SRC by a rational factor R = L/K using

PBFs, there exists an exactly equivalent DT model. In fact, in practical implementation R is

quantized and thus is always given exactly by a rational factor as shown in (4.30). The DT model

for SRC is given in Fig. 26.

@Fin @Fout

x(kTin) y(lTout)
hd(n) KL

Figure 26: Discrete-Time Model for SRC

In Fig. 26, the input signal is first upsampled by L followed by filtering with a DT FIR

filter, hd(n), whose output is then downsampled by K to obtain the final output. The relationship

between the CT designed PBF and the DT filter is given by

hd(n) = ha(t)
∣

∣

∣

t=nTs

= ha(nTs), (4.37)

where,

Ts =



























Tin/L, for the Farrow Structure

Tout/K, for the Transposed Farrow Structure

(4.38)

This sampling of the CT impulse response results in aliasing. Thus, since the CT filter is not

perfectly bandlimited, the DT filter will not match the designed CT filter in the frequency domain.
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For example, if R = 2/3 for the Transposed Farrow Structure, the impulse response has

only 3 samples per polynomial piece, or

hd(n) = ha

(

n
Tout

3

)

. (4.39)

When this sampling effect occurs during implementation the CT frequency response aliases upon

itself yielding the DT filter. This sampling is applied to the example filter from Fig. 22 illustrating

this phenomenon.
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Figure 27: Frequency Response of CT Filter
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As can be seen from Fig. 22, the stopband decays as frequency increases. Because of this,

as the sample rate of the DT filter increases, the effect of aliasing decreases. This observation leads

to the following question: Can the filter be made to decay faster such that the effect of aliasing is

not as severe? The answer is in fact yes. Through the design techniques presented in section 3.4.3,

the impulse response of a frequency domain optimized PBF can be made to have the γth derivative

continuous. This means the filter will exhibit a decay rate of (see [56, 36])

D.R. =
1

fγ+1
. (4.40)

Figure 28 shows the CT frequency response of a multi-band PBF (M = 5, N = 6) with

no continuity constraints as well as a filter of the same order and length whose zeroth derivative is

made continuous. The dramatic difference in decay rate is obvious from the figure. It is also worth

pointing out that the stopband attenuation starts out at virtually the same level. Figure 29 shows a

zoomed in view of the passband where it can be seen that the continuity constraint increases the

ripple level by an insignificant amount.

Figure 30 shows the decrease in stopband attenuation versus the normalized sample rate

(K for the Transposed Farrow Structure) of the filters of Fig. 28, as well as a filter of the same

order and length with its first derivative made continuous. Also, given in the legend is the worst

case stopband attenuation the CT Filter achieved from optimization. The plots show how each of

the filters deviate from their design as a function of the sample rate. As can be seen, the filters with

continuity constraints vary the least. In fact, the filter with its first derivative continuous actually

improves in performance when sampled. This comes at the expense of a small initial decrease
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in the CT designed stopband attenuation due to the degrees of freedom lost in imposing more

restrictive time domain constraints.
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Figure 28: Difference in Filter Decay Rate
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Figure 29: Difference in Filter Ripple Level
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Figure 30: Decrease in Stopband Attenuation Due to Aliasing

78



The decay rate of the filter also plays an important role in decreasing alias build up in the

passband. When the filter is used for decimation, each of the frequency bands centered at multiples

of Fout aliases into the passband. This phenomenon can be quantified in terms of the Integrated

Sidelobe Level (ISL) [36]. The ISL represents the amount of power that will be concentrated in

the passband as a result of the summation of all of the aliasing bands. As an illustration, consider

the application of decimation by 12. This gives K = 12 and L = 1. Figure 31 shows the filters

from Fig. 28 after being sampled according to (4.37). Also shown are the aliasing bands that will

fold over into the passband as a result of decimation. As can be seen from Fig. 31, the filter with
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Figure 31: Aliasing in Decimation
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continuity constraints retains the CT decay rate. This results in a major performance improvement

over the filter with no continuity constraints. The ISL for each filter is given in Table 1.

Table 1: ISL Comparison

Filter Continuity ISL

None −56.2 dB

Zeroth Derivative −69.7 dB

Thus, the filter with continuity constraints exhibits an effective alias suppression improve-

ment of 13.5 dB!
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CHAPTER 5: APPLICATIONS

5.1 Wideband Digital Downconverters

The flexibility and high speed operation of Field Programmable Gate Arrays (FPGA) have

made them ideal targets for real-time DSP algorithms in SIs. Of these algorithms, the Digital

Down Converter (DDC) plays a major role. The DDC is the digital signal processing front end

of modern Vector Signal Analyzers (VSA) and Spectrum Analyzers (SA) [5]. In an SI platform,

the DDC would most likely be found in the digitizer component. The term DDC has come to

refer to the process of spectral translation, filtering, and Sample Rate Conversion (SRC). DDC’s

first tune to a signal’s center frequency using a complex valued Numerically Controlled Oscillator

(NCO). The NCO is then mixed with the input signal, producing the signal’s baseband Inphase (I)

and Quadrature (Q) components. SRC is then used to zoom-in to the bandwidth of interest while

rejecting signals outside this bandwidth. Because the SRC is required to produce continuously

variable output sample rates from a fixed input sample rate over a large range, it becomes the

complexity driver of the system.

The SRC subsystem takes input signals sampled at a rate of Fin samples per second (sps)

and produces output signals sampled at Fout = Fin/D sps. The overall decimation factor is defined

as

D = Fin/Fout (5.1)
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where D ∈ R which is continuously variable between 1 and some maximum value. Many current

systems implement only integer factor SRC in real-time hardware, leaving the non-integer re-

mainder to software for off-line computation [60]. In order to increase measurement speed, other

systems implement the complete SRC in real-time [61, 62]. These real-time systems perform the

SRC in three steps. First, the input signal is passed through an Anti-Aliasing Filter (AAF). Then,

it is resampled by a small, non-integer factor. Finally, the signal is decimated by the remaining in-

teger factor to accomplish the overall SRC. These systems are quite complex [63], and can require

multi-chip Application Specific Integrated Circuit (ASIC) implementations [61].

In this section, the SRC of the WDDC is simplified reducing the computational require-

ments by a factor of three or more. Reducing computational cost translates into hardware imple-

mentation savings and the use of FPGAs as the main implementation platform. This is of great

advantage in future-proofing SI platforms because FPGAs provide the flexibility to make algorithm

upgrades and add new functions simply by reprogramming.
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5.1.1 Wideband Digital Downconverters

First, the term wideband must be defined. By wideband, we mean that the maximum band-

width supported is on the order of the Analog-to-Digital Converter (ADC) sample rate. This is in

contrast to narrowband where the signal bandwidth is much less than the sample rate. The wide-

band nature of SI digitizers precludes the exclusive use of the power/resource efficient techniques

used in narrowband systems. A block diagram of a WDDC illustrating the “Tune & Zoom” effect

is given in Fig. 32.

@Fin 00

SRC

SRC

cos

-sin

Q

“Tune & Zoom”

Fcenter

FcenterNCO

I

Input Output

Input Spectrum Output Spectrum

ADC
.5Fin @Fout .5Fout−.5Fout

Figure 32: Wideband Digital Downconverter

The system complexity is driven by the SRC. The SRC must be able to produce continuously

variable output sample rates from a fixed input sample rate while protecting the bandwidth of

interest from aliasing. The output sample rate determines the available output or zoom bandwidth.

The zoom bandwidth is a constant fraction of the output sample rate, a typical choice being .8Fout.
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5.1.1.1 Current Implementations

Current Implementations of the real-time WDDC are based on the block diagram given in

Fig. 33, examples of which are found in [61, 62].

Filter

Filter

-sin@Fin

@Fout@Fres

cos

Resample

Resample

Decimate

Decimate

NCOADC

Input

Q

I

Figure 33: Signal Processing in Current DDCs

The Filter block is a band-limiting filter that reduces the input bandwidth to prevent the

resampler from aliasing. The Resample block then reduces or increases the sample rate by a non-

integer factor between 1 and 2. The Decimation block completes the SRC by reducing the sample

rate by an integer factor.

The resampler has a frequency response normalized to the input sample rate. This means

that if the resampler is used for variable sample rate reduction, the filter preceding it must band-

limit the input signal by a variable amount to prevent aliasing, as in [61]. This is because resamplers

based on the input sample rate are anti-imaging filters, not anti-aliasing filters [5]. The resampling

process causes the input spectrum to replicate at integer multiples of Fres, where Fres is the out-

put sample rate of the resampler. In order to protect a zoom bandwidth ∈ (−.4Fres, .4Fres) from
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aliasing, the input must be band-limited to ±.6Fres before resampling. This will keep the spectral

replicas located at multiples of Fres from overlapping in the zoom bandwidth.

The Decimation block typically performs sample rate reduction by powers of two [64]. This

can be accomplished by cascading Nfilts stages of identical decimate-by-two filters. This provides

output sample rates of Fout = Fres/k, where k ranges from 20 to 2Nfilts .

A typical set of design specifications for the SRC allow no more than .1 dB of ripple in

the zoom bandwidth, attenuate aliasing components by at least 80 dB, and provide a linear phase

response. The variable band-limiting filter can be implemented with the same structure as a fixed

Finite Impulse Response (FIR) filter by computing the coefficients at setup time [42]. This is done

by first designing two optimal prototype filters. The coefficients of the prototype filters can be used

to compute the coefficients of the tunable filter. The coefficients of the tunable filter are a simple

function of the cutoff frequency and allow fast computation at setup. As shown in Fig. 34, a filter

of length 51 is sufficient to bandlimit the input signal by a variable amount, while still meeting the

attenuation and ripple specifications.

Ignoring the resampler for now, we move to the Decimation block. Halfband FIR filters

are particularly suited to decimation by two [24, 36]. When the filter is decomposed into its two

polyphase subfilters for implementation, one subfilter reduces to a delay and scale. This reduces

the multiplications required by two. A 47 tap Halfband filter meets the specifications given above.
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Figure 34: Tunable FIR filter
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5.1.1.2 High Performance, Computationally Efficient WDDCs

In this section a new high performance, computationally efficient WDDC is presented.

The optimal sample rate converter for lowering the sample rate should have a frequency response

normalized to its output sample rate. This is illustrated in Fig. 35.

passband

stopbandstopband

don’t care bands

Fp Fout-Fp Fout Fout+Fp 2Fout-Fp 2Fout 2Fout+Fp F

Figure 35: SRC Passband/Stopband Requirements

Here, Fp = .4Fout is the passband edge of the zoom bandwidth. A SRC system with this

type of frequency response protects the zoom bandwidth from aliasing regardless of changes in the

output sample rate.

A resampler with frequency response normalized to its output sample rate, Fres, can be

designed using a Polynomial-Based Filter (PBF). The PBF implementation structure can be derived

from the Continuous-Time (CT) model for resampling given in Fig. 4. As shown section 4.2 this

results in the so-called Transposed Farrow Structure. The derivation is summarized as follows.
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First, inserting (3.5) into (5.2) with T = Tres.

y(lTres) =
∞
∑

k=−∞

x(kTin)ha(lTres − kTin). (5.2)

where, with t = lTres − kTin

ha((n+ µk)Tres) =
M−1
∑

m=0

cm(n) (aµk + b)m
(5.3)

for

nTres ≤ lTres − kTin < (n+ 1)Tres, (5.4)

and zero otherwise. From section 4.2, µk is the distance between the desired output sample and

the current input sample as a fraction of the output period and is termed the fractional interval. It

is given by

µk =

⌈

kTin

Tres

⌉

−
kTin

Tres

. (5.5)

In the above, ⌊·⌋ and ⌈·⌉ are the floor and ceiling operators, respectively. The relationship between

µk and the input and output samples is illustrated in Fig. 36.

µkTres

µk+1Tres

µk+2Tres

x(k) (input samples)

y(l) (output samples)

ya(t)

(l-1)Tres kTin (k+1)Tin (k+2)Tin lTres time

Figure 36: Resampler Input / Output Sample Time Relationship
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Substituting (5.3) into (5.2) gives the final form

y(lTres) =
k2
∑

k=k1

N−1
∑

n=0

x(kTin)ha((n+ µk)Tres)

=
N−1
∑

n=0

M
∑

m=0





k2
∑

k=k1

x(kTin) (aµk + b)m



 cm(n). (5.6)

An implementation of (5.6) is given in Fig. 37. The I&D (Integrate-and-Dump) blocks

perform the summation over k. Multiple input samples can be involved in the computation of each

output sample. One way to sum over the correct input samples is to implement the computation of

µk as a down-counter/subtracting accumulator and use the inherent wrap around to issue a “dump”

command to the I&D blocks. In this scenario µk is computed upon the arrival of each new input

sample as

µk+1 = µk −
Tin

Tres

−
⌊

µk −
Tin

Tres

⌋

. (5.7)

Since this sequence is strictly decreasing over each Tres interval, the accumulator output can be

monitored for the condition µk+1 ≥ µk indicating wrap around. When this condition is met, the

outputs of the I&D blocks are passed to the Farrow coefficient network which computes a new

output sample by performing the remaining summations over m and n.
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Figure 37: Transposed Farrow Structure
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Further simplifications can be made by restricting ha(t) to be symmetric. This yields the

linear phase property we desire and has the added benefit of reducing the number of fixed coeffi-

cients by two (see [44, 59], and section 3.3.1). For a symmetric ha(t), the cost of implementation

is M multiplications at Fin and (M + 1)N/2 multiplications at Fres. As an aside, it is interesting

to note that given a particular rational SRC factor, the Transposed Farrow Structure has an exactly

equivalent polyphase filter implementation (See [48] for the details.).

Given the same set of specifications as in the previous section, .1 dB ripple and 80 dB of

attenuation, a polynomial based filter with M = 4 and N = 6 in cascade with a single halfband

filter meet the specifications. The ripple and attenuation specifications can be met with a halfband

filter of 47 taps. The system block diagram is given in Fig. 38, and the frequency response is

given in Fig. 39. In Fig. 39, the passband, extending from zero to .4Fout, passes the desired zoom

bandwidth. The stopbands, located at integer multiples of Fout, protect the zoom bandwidth from

aliasing by attenuating the aliasing bands by more than 80 dB.
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Q

FcenterNCO

2

2
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ADC

Transposed Farrow

Transposed Farrow

@Fout@2Fout

Figure 38: High Performance, Computationally Efficient WDDC
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Figure 39: Freq. Response of Proposed WDDC Fout = .5Fres
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5.1.2 Computational Complexity Comparison

In order to compare the two types of systems, we consider the worst case multiplication

rate in terms of Multiplications Per Input Sample (MPIS). The system parameters are:

1. Zoom Bandwidth = .8Fout

2. Less than .1 dB of ripple in the Zoom Bandwidth

3. ADC sample rate Fin = 100 Msps

4. Output sample rate range 100 Msps to 10 ksps

The number of MPIS of the example current implementation given in section 5.1.1.1 can be com-

puted as,

MPIScurr = Nfilter + Nres + Ndec (5.8)

where Nfilter, Nres, and Ndec are the worst case MPIS required by the Filter block, the Resample

block, and the Decimate block from Fig. 33, respectively. The worst case multiplication rate

occurs when Fres ≈ Fin. As shown in section 5.1.1.1, the Filter block could be implemented with a

51-tap filter. This results in Nfilter = 51 MPIS. The number of MPIS from the Decimate block can

be computed as,

Ndec = 12.5





Nfilts−1
∑

k=0

1

2k



 (5.9)

where the number of halfband filters required to perform the largest rate change is Nfilts = 13, and

each halfband filter is 47-taps. This gives Ndec ≈ 25 MPIS. Allowing the current system to require
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the same number of computations as the new system for the resampler, the total becomes

MPIScurr = 95. (5.10)

Now, let us consider the new system proposed in section 5.1.1.2. The worst case number

of MPIS is ≈ M + (M + 1)N/2 for the resampler and 12.5 for the halfband filter. The total for

the proposed system is given by

MPISnew = 19 + 12.5 = 31.5. (5.11)

Thus, the proposed system significantly reduces the computational requirements! These results are

summarized in Table 2.

Table 2: Computational Complexity in MPIS

Filter Resample Decimate Total

Current 51 19 25 95

New — 19 12.5 31.5
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5.1.3 Simulation

To illustrate the operation of the proposed system of Fig. 38 as designed in Section 5.1.1.2,

a simulation was carried out. A zoom bandwidth of 10.24 MHz centered at Fcenter = 21.4 MHz is

to be analyzed. There also exists an unwanted signal that will alias on top of the desired signal due

to SRC. This is done to illustrate the effectiveness of the system in providing anti-aliasing. For a

zoom bandwidth of 10.24 MHz, the output sample rate is

Fout = (10.24 Msps)/.8 = 12.8 Msps, (5.12)

giving a decimation factor of

D = Fin/Fout = (100 Msps)/(12.8 Msps) = 7.8125. (5.13)

Fig. 40 is a plot of the spectrum at 3 locations in the system: the input, the output of the

mixer, and the final output of the system. The middle plot shows the desired signal band centered

at zero and an unwanted signal at Fout. The unwanted signal will fold on top of the desired signal

as a result of the resampling process. This is shown in the bottom plot, where it can be seen that

the desired signal is intact, while the aliasing band is in the noise floor, having been attenuated by

more than 80 dB.

95



-3

-3

-2

-2

-1

-1

0

0

0

3

3

2

2

1

1

0

0

0

-20

-20

-20

-40

-40

-40

-60

-60

-60

-80

-80

-80

-100

-100

-100

0.50.40.30.20.1-0.5 -0.4 -0.3 -0.2 -0.1

Desired Zoom Bandwidth of 10.24 MHz

Aliasing Band

M
ag

n
it

u
d

e
(d

B
)

M
ag

n
it

u
d

e
(d

B
)

M
ag

n
it

u
d

e
(d

B
)

Input

Zoomed Spectrum

Output of Mixer

F/Fout

F/Fout

F/Fout

Figure 40: Spectral Zooming with Decimation Factor D = Fin/Fout = 7.8125
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5.1.4 FFT-Based Spectral Analysis

e−j2πFIFnTin

00Fc FIF

Fin

.5Fin .5Fout

Fout = Fin/D

Down-

span

converter ADC

zoom

D Memory

Figure 41: FFT-Based Spectrum Analyzer and Associated Spectra

A major application of the WDDC is FFT-based spectral analysis. A high level block

diagram of an FFT-based spectrum analyzer is given in Fig. 41. Some of the basic parameters

required to make a measurement are center frequency (Fc), span, and frequency resolution (∆F ).

The downconverter translates the desired Fc to an intermediate frequency (FIF) for digitization. The

analog to digital converter(ADC) samples at fixed rate, Fin, and typically supports a bandwidth of

0.4Fin. This, along with the final IF filter, sets an upper bound on the instantaneous bandwidth

(or span) of the spectrum analyzer. In order to view larger spans, multiple spans of the maximum

instantaneous bandwidth or less are pasted together. After digitization, the FFT could be directly

computed and displayed. If the desired span was less than the instantaneous bandwidth, only the

desired portion would be displayed. This technique is shown to be inefficient upon observing the

relationship between sample rate, span, and frequency resolution.
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The relationship between sample rate and frequency resolution is given in (5.14).

∆F =
Fin

Nsamp

(5.14)

Nsamp is the number of samples collected for FFT computation [25]. From (5.14) we see that in

order to increase the frequency resolution(i.e., decrease ∆F ) we can lower the sample rate and/or

increase the number of samples. Anytime the desired span is less than the maximum instantaneous

bandwidth, the sample rate may be lowered while still preserving the span. This means that fewer

samples can be collected for a given resolution by lowering the sample rate (decimation), thereby

reducing the amount of computations and memory required to perform the measurement. As an

example, consider a system with a 30 MHz instantaneous bandwidth and a 65 MegaSample Per

Second (Msps) ADC. If it is desired to compute the spectrum over a 10 kHz span with 10 Hz

frequency resolution and the sample rate is left unchanged,

Nsamp = 65 Msps/10 Hz = 6, 500, 000 samples (5.15)

would be required. On the other hand, if the sample rate was lowered to 12.5 kHz, the number of

samples required would be

Nsamp = 12.5 kHz/10 Hz = 1250 samples. (5.16)

This clearly merits the use of an adjustable sample rate converter. This insight led to the devel-

opment of “zoom” spectral analysis [65, 66]. In zoom spectral analysis, a complex digital down-

conversion is performed followed by decimation by D before FFT computation. This operation

is illustrated in Fig. 41 as indicated by the dashed box. A key issue in performing this opera-
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tion is anti-aliasing, wherein the desired span must be protected from interference. This is readily

accomplished by constructing the sample rate converter as a PBF as described in section 5.1.1.2.
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5.2 Arbitrary Waveform Generators

The stimulus functionality of a SI is comprised of a digital source, Digital to Analog Con-

version (DAC), and an Up Converter (UC) [67]. The DAC can often reside on an Arbitrary Wave-

form Generator (AWG) providing the baseband / Intermediate Frequency (IF) source to the UC.

The digital source provides the flexible modulation functionality while the upconverter provides

the frequency translation functionality.

Digital Signal Processing (DSP) plays a central role in the implementation of SIs. Moving

as many signal processing tasks as possible from the analog to the digital domain makes for a more

flexible, future-proof system. Advances in DSP can also be exploited to reduce the complexity of,

or remove completely, the analog components.

Sampling theory provides the foundation for making efficient, high performance AWGs.

Samples taken from a Continuous-Time (CT) signal at a periodic rate are sufficient to perfectly

reconstruct the CT signal, provided a few conditions are met [25]. This is how AWGs work. CT

signals or waveforms are synthesized by reconstructing signal samples stored in memory. The

maximum time length of a waveform is given by the product of the time spacing of the samples,

or sample period, and the maximum number of samples that can be stored in memory. Thus,

for a fixed amount of memory, the maximum signal duration can be increased by increasing the

sample period of the waveform, or equivalently by decreasing the sample rate. Therefore, from

a storage savings perspective, it is highly desirable to have the sample rate of the waveform as

low as possible. This is the point at which sampling theory provides valuable information. Given
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that the CT signal to be reconstructed is a lowpass strictly bandlimited signal, then the minimum

sample rate required to reconstruct the signal is twice the signal bandwidth. For practical reasons

the minimum sample rate is usually selected to be slightly higher than the theoretical minimum.

Nevertheless, this insight can be used to maximize the storage efficiency and playback time of an

AWG.

The majority of AWGs simply clock waveform samples from memory into a Digital-to-

Analog Converter (DAC) at the DAC sample rate which is equal to the waveform sample rate

[68, 69]. DACs create analog signals by taking input samples and producing an analog voltage

proportional to the sample amplitude at the output. These voltage levels change only when a new

input sample arrives, thus producing a stair-step approximation to the original CT signal. These

stair-steps in the time domain correspond to what are called images in the frequency domain. These

images are spectral replicas of the original signal occurring at integer multiples of the sample rate.

These images must be filtered out to reconstruct the original signal. Herein lies a problem. If

the sample rate changes, the position of the images changes, therefore the filter must change. This

conflicts with the previous observation of the benefits of having the minimum sample rate possible.

Fixing the sample rate in this type of system requires all waveforms to be stored in memory at

that rate. Since it is an arbitrary waveform generator, it is desirable to provide the capability

to synthesize narrowband as well as wideband signals. Thus, fixing the waveform sample rate

to accommodate all signals would require narrowband signals to be highly oversampled. As has

been shown, this dramatically increases the memory requirements and consequently decreases

waveform playback time. Due to this tradeoff, most currently available AWGs provide a maximum
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sample rate that can be divided down by an integer factor in conjunction with a few switchable

analog filters for CT signal reconstruction [69].

An alternative to this approach is to use Field Programmable Gate Array (FPGA) based

Real-Time Signal Processing (RTSP) to increase the sample rate by an integer factor in the digital

domain as an intermediate step between the waveform memory and the DAC. In this manner,

the waveform can be stored at the minimum rate, but can be clocked into the DAC at a fixed

higher rate. In this manner, only one analog reconstruction filter is required at the DAC output.

This approach achieves memory and hardware savings, yet is inflexible in the choice of sample

rates. Another similar approach uses two hardware sample clocks. One sample clock provides

a spectrally pure integer submultiple of the maximum clock rate for high performance, and the

other offers the flexibility of high resolution frequency selection at the expense of spectral purity.

See [70, 71, 68, 72] for examples of both types.

In this section, advanced Digital Signal Processing (DSP) techniques are used to create a

flexible, high performance AWG. The new approach provides added flexibility and performance

while simultaneously reducing analog hardware complexity. The proposed system allows wave-

forms to be stored in memory at a minimum sample rate which does not have to be related to

the DAC sample rate. Using real-time arbitrary factor interpolation the waveform sample rate is

increased to a fixed DAC sample rate. This technique allows an essentially infinite number of

waveform sample rates. Since the DAC sample rate is fixed a single analog filter can be used to

reconstruct the CT signal.
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5.2.1 New Flexible AWGs with RTSP

In order to provide a flexible, high performance AWG without increasing hardware com-

plexity, we propose the use of real-time FPGA-based interpolation in conjunction with a single,

fixed frequency DAC sample clock. Since the DAC sample clock is fixed, the proposed system

must be able to increase the sample rate of the waveform stored in memory by an arbitrary fac-

tor R. Thus, real-time continuously variable Sample Rate Conversion (SRC) by arbitrary factors

is employed. Moreover, to make SRC possible, a procedure is devised to request samples from

waveform memory at the proper time instants.

In this work, a PBF as described in Chapter 3 is used as the real time interpolator in the

design of the system. Polynomial-based filters are an attractive option for continuously variable

sample rate conversion by arbitrary factors. This class of filters finds efficient real-time implemen-

tation in the Farrow Structure of Fig. 18 [38,29,30,58] and its variants [5,40,46,44,43,18,73]. They

can also be designed directly from a set of frequency domain specifications [31]. The computa-

tional cost is (M +1)N multiplications at the lower input sample rate, and only M multiplications

at the higher output sample rate. As shown in Chapter 3, constraining the impulse response to

be symmetric about (N/2)Tin yields a linear phase filter with symmetric polynomial coefficients.

This reduces the number of fixed coefficients required for implementation resulting in (M+1)N/2

multiplications at the input sample rate for N even.

A key component in the system is the computation of the fractional interval, µl. An over-

flowing accumulator is employed to compute µl as given in (4.6) which runs at the fixed DAC
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sample rate

FDAC = Fout =
1

Tout

. (5.17)

Since the waveform sample rate is increased, multiple output samples can be generated for each

input sample. This is illustrated in Fig. 42, where it can be seen that the µ values are increasing

over each input sample period.

lTDAC

µl

µl+1

µl+2

(l + 1)TDAC (l + 2)TDAC

Output Samples

Input Samples

Input Sample Period, Tin

Figure 42: Interpolator Input/Output Timing

When a new input sample is required, the generated µ value is less than or equal to the

previous µ value. This condition is indicated when the accumulator overflows signaling a “new

input sample request”. This technique obviates the need for an adjustable sample clock making

possible the use of a fixed frequency oscillator for clocking the DAC. Also, because the DAC

sample clock is fixed, a single analog filter can be used to remove DAC images regardless of the

original sample rate at which the waveform samples were created.
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The PBF and sample requester form the foundation of the AWG. In addition to this base,

several more features can be included such as real-time carrier generation. This allows all wave-

forms to be stored in memory in lowpass form at the minimum sample rate required to reconstruct

the signal. The lowpass signal can then be carrier modulated in real-time. This avoids the need

to store the higher frequency carrier signal in memory which would require a higher sample rate.

Also, to accommodate the class of linear digital modulation schemes, ubiquitous in modern com-

munication systems, a programmable pulse shaping filter can be added to the system just before

the PBF. Since pulse shaping is performed in real-time, only the data symbols need to be stored in

memory. This is discussed in the next section.
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5.2.2 Vector Signals

Vector modulated signals encompass the popular linear modulation schemes including

Phase Shift Keying (PSK), Pulse Amplitude Modulation (PAM), and Quadrature Amplitude Mod-

ulation (QAM) [74]. The baseband representation of a vector signal is given by

s(t) =
∞
∑

k=−∞

akp(t− kTsym)

= sI(t) + jsQ(t). (5.18)

In (5.18), ak = aIk+jaQk are the complex valued data symbols, and p(t) is the impulse response of

a pulse shaping filter. The data symbols are coordinates chosen from a signal space constellation in

the I/Q plane. Carrier modulation to an Intermediate Frequency (IF), wIF, is performed by mixing

the baseband signal with a complex exponential and taking the real part,

x(t) = ℜ
{

s(t)ejΩIFt
}

= sI(t) cos(ΩIFt) − sQ(t) sin(ΩIFt). (5.19)

The signal s(t) is generated by feeding symbol pulses into the shaping filter at the symbol

rate Fsym = 1/Tsym. This operation is readily accomplished in the sampled data domain using FIR

filters having impulse response

p(nTs) = p
(

n
Tsym

L

)

. (5.20)

In (5.20), Ts is the sample period of the filter andL is an integer representing the number of samples

per symbol contained in the shaped pulse. The filter thus accepts symbol pulses at the symbol rate

and produces shaped pulses at the sample rate Fs = LFsym.
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AWGs that cannot adjust the waveform sample rate to the symbol rate would require the

symbols to be shaped and resampled to one of the available waveform sample rates offline. This

is a major drawback for two reasons. First, the number of samples required to store the waveform

in memory will increase, possibly dramatically, depending on the available sample rates. Second,

since the shaping and resampling is done offline, the computation time can be excessive, especially

for long waveforms. One way to solve this problem is to provide a high resolution sample clock that

can adjust the waveform sample rate to virtually any symbol rate over a given range and perform

pulse shaping in real-time. Therefore, only the symbol values need to be stored in memory. This

is the approach taken by some systems and will be explored in the next section.
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5.2.3 Current Flexible AWGs with RTSP

To achieve improved memory compression and the flexibility of virtually continuously vari-

able waveform sample rates, some recently developed systems provide two sample clocks [70,72].

As mentioned in the introduction, one sample clock provides a spectrally pure integer submultiple

of the maximum clock rate for high performance, and the other offers the flexibility of high resolu-

tion frequency selection at the expense of spectral purity degradation. Sample clock spectral purity

is essential in producing high fidelity signals with DACs. The reason for this is that any spurs and

phase noise present on the sample clock will be convolved with the signal being converted and

appear as distortion in the DAC output. This is clearly seen from observing the plots in [72], which

compare the use of an external sample clock with the high resolution sample clock. When the high

resolution sample clock is used, spectral distortion components appear as high as ≈ 50 dB below

the intended signal. The high resolution sample clock in [72] is a Direct Digital Synthesis (DDS)

based sample clock. Besides an extra sample clock adding to the hardware complexity and cost, the

wideband Spurious Free Dynamic Range (SFDR) of current integrated DDS chips is limited to the

40 to 60 dB range for typical sample rates approaching 100 MHz or more (see for example [75]).

These spurious components are what cause the undesirable distortion in the output spectrum of the

AWG.
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5.2.3.1 Pulse Shaping and Interpolation

A block diagram of the FPGA signal processing for pulse shaping and interpolation in the

example current system [72] is given in Fig. 43.

@Fsym

L
@FDAC@Fcic 6th order

aIk sI

Zero Stuff

FIR CIC

Large Rate Change

Interpolate by 6 − 256

95−TAP

Pulse Shaping×2,×4, or × 8

Figure 43: I-path Pulse Shaping and Interpolation. (Q-path is the same)

Here, symbols are fed into an upsampler which stuffs zeros into the symbol stream increas-

ing the sample rate by L = 2, 4, or 8 times. The upsampled symbols are then routed to a 95-TAP

FIR filter running at

Fcic = LFsym, (5.21)

which corrects for the Cascaded-Integrator-Comb (CIC) filter droop and shapes the symbol pulses.

The shaped symbols are then interpolated to the DAC sample rate by a 6th order CIC filter. The

overall interpolation ranges supported are 12-512 in steps of 2, 512 to 1024 in steps of 4, and

1024 to 2048 in steps of 8. With the FIR filter providing pulse shaping, the interpolation image

suppression is totally provided by the CIC filter.

The worst case image suppression occurs when the input signal bandwidth to the CIC filter

is at a maximum. This system supports Nyquist pulse shapes (see [76,74,77] for details on Nyquist
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pulses) with rolloff factors of .1 ≤ α ≤ .9. The rolloff factor determines the single sided bandwidth

of the shaped pulses and is equal to

B = (1 + α)Fsym/2. (5.22)

This can be mapped to the design space of the CIC filter by rewriting the equation in terms of the

CIC input sample rate, where from (5.21),

B = (1 + α)
Fcic

2L
. (5.23)

The minimum image attenuation provided by the CIC filter can now be plotted as a function of α,

for each L value as shown in Fig. 44.
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The quantization noise level of an n-bit signal is approximately 6n dB below the signal

level [25]. Most high performance AWGs use 12-16 bit DACs. Also, modern DACs can achieve

SFDRs of 75-100 dB depending on output signal frequency. A reasonable design choice for the

amount of image suppression required is to attenuate images to or below the quantization noise

level and/or DAC SFDR. As can be observed from Fig. 44, L = 2 provides inadequate image

suppression for all α’s, L = 4 is acceptable for lower α values, and L = 8 is over designed. The

choice of multiple L values provides more selections for the overall interpolation factor,

Overall Interpolation = L× (CIC Interpolation) , (5.24)

since the CIC Interpolation factor is limited to 6-256. However, performance somewhere in be-

tween the L = 4 and L = 8 curves for a 16-bit AWG would be ideal.

After the data symbols are shaped and interpolated to the DAC sample rate, carrier modu-

lation to an IF is performed based on (5.19). The result of this operation is to produce a single real

bandpass signal from the I/Q signals.
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5.2.4 The New Approach to Pulse Shaping and Interpolation

As discussed in section 1.2, the design specifications for an interpolation filter can be de-

rived by observing that any time the sample rate of a signal is increased, images are created at

multiples of the original sample rate. Consequently, if we want to interpolate lowpass signals of

single sided bandwidth B, then the interpolation filter needs to eliminate images residing in the

frequency bands kFin ± B, where k = 1, 2, . . ., and Fin is the sample rate of the signal at the

interpolator input.

In this section, we show how the limited image suppression and narrow range and resolution

of overall interpolation factors provided by the system of Fig. 43 can be overcome using the new

approach. A block diagram of the new pulse shaping and interpolation is given in Fig. 45.

p0(n)

p1(n)

p2(n)

p3(n)

M = 5, N = 8@Fsym @Fin

= 4Fsym

@FDAC

aIk sI
PBF

Interpolate by R

Polyphase FIR

Pulse Shaping

Figure 45: New I-path Pulse Shaping and Interpolation. (Q-path is the same.)
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In this system, the pulse shaping filter interpolates by a fixed factor of four. However, this

does not restrict the choice of the overall interpolation factor. The overall interpolation factor is

given by

I = 4R, (5.25)

where R is an arbitrary factor, not necessarily an integer. To reduce computational complexity,

the pulse shaping filter is implemented in its polyphase form [24]. The same 95-tap FIR filter

from Fig. 43 reduces to 4 subfilters of length 24, each operating at Fsym. The objective of the PBF

is to eliminate interpolation images centered at multiples of its input sample rate for all possible

input signal bandwidths, i.e. for the full range of supported α’s. The filter was designed to have

stopbands that would attenuate the worst case input signal by at least 80 dB. The worst case input

signal corresponds to the signal having the maximum bandwidth, or equivalently, the largest α

value.

For this case, α = .9, thus from (5.22),

Bmax = (1 + .9)Fsym/2 = .95Fsym. (5.26)

Rewriting (5.26) in terms of the PBF input sample rate, we obtain

Bmax = .95Fin/4 = .2375Fin. (5.27)

Equation (5.27) is the worst case input single-sided bandwidth. Therefore, to provide guaranteed

image rejection, the filter must have stopbands of kFin ± B, where k = 1, 2, . . .. Normalizing to

the input sample rate gives,

Filter Stopbands = k ± .2375, for k = 1, 2, . . . . (5.28)
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The frequency response of the PBF is given in Fig. 46, where the observable stopbands are cen-

tered at normalized frequencies of 1,2, and 3. As can be seen from the figure, the stopbands are

attenuated by at least 80 dB.
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Figure 46: PBF Frequency Response M = 5, N = 8

After the data symbols are shaped and interpolated to the DAC sample rate, carrier mod-

ulation to an IF is performed. Due to the availability of DACs which accept I/Q inputs, perform

integer interpolation, and coarse frequency shifting, we can eliminate taking the real part in (5.19)

and let the DAC perform that operation. Thus, a complex bandpass signal is produced for input

to the DAC. Since the DAC can increase the sample rate of the signal by an additional integer
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factor, a higher carrier frequency can be produced. By leaving the signal complex, there is no neg-

ative frequency image which generates an additional sideband due to the final frequency shifting

performed by the DAC.
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5.2.5 Interpolation Comparison

In order to compare the computational cost of the two systems, the worst case number of

Multiplications Per Output Sample (MPOS) is examined for the case where the pulse shaping filter

output sample rate is 4Fsym. The required number of MPOS of the current system of Fig. 43 result

from the FIR filter. The filter is symmetric and thus requires

MPOScurr = ((95 − 1)/2 + 1)/6 = 8. (5.29)

The additional factor of 6 in (5.29) is due to the fact that the filter operates at a maximum of 6 times

less than the overall output sample rate. This is because the CIC filter interpolates by a minimum

of 6.

The new system of Fig. 45 requires MPOS from both of its subsystems. The pulse shaping

filter consists of four subfilters of length 24, operating at Fsym. This gives

MPOSnew PS = 24(4)/(4(6)) = 4. (5.30)

As in (5.29), the factor of 6 comes from the minimum interpolation by 6 from the following stage,

in this case the PBF. From Section 5.2.4, the MPOS for the PBF is given by

MPOSnew PBF = M + ((M + 1)N/2)/6

= 5 + ((5 + 1)8/2)/6 = 9. (5.31)

Hence, the total MPOS for the new system is given by the sum of (5.31) and (5.30),

MPOSnew total = 4 + 9 = 13 (5.32)
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Table 3: System Comparison Summary

Min. Image Att. Interpolation Factor MPOS

Curr. System ≈ 64 dB 24-2048 (Integers) 8

New System ≈ 80 dB 24-32768 (Arb. Factors) 13

Table 3 summarizes the findings.

The maximum interpolation factor of the proposed system was chosen arbitrarily to be

32,768, but may be chosen higher or lower. As shown in section 4.3.2, the precision of the rate

conversion depends only on the precision used in the µ generator and may be adjusted by increasing

the number of bits used to represent µ. For comparison purposes, we limited the example design of

the new system of Fig. 45 to the minimum interpolation factor of the current system of Fig. 43 when

the pulse shaping filter outputs four samples per symbol. This gives a total minimum interpolation

factor of 24. However, the proposed approach is fully capable of becoming a more wideband

system supporting lower minimum overall interpolation, at the expense of more MPOS. In fact, the

system can be designed to meet virtually any image suppression specifications required. This is in

contrast to the use of a CIC filter, which is traditionally meant for narrowband interpolation [35].

Another benefit of the proposed approach is that the pulse shaping filter need not correct for the

inherent passband droop of the CIC filter. Therefore a user may define their own pulse shaping

coefficients without having to adjust them to compensate for the CIC filter.
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5.2.6 Simulation

In order to show the effectiveness of the proposed approach in performing pulse shaping

and interpolation by arbitrary factors, a simulation of the system of Fig. 45 was carried out. The

simulation consists of generating a 3.2MHz Quaternary Phase Shift Keying (QPSK) signal from

only its symbols. The simulation parameters are as follows.

1. Fsym = 3.2 MHz

2. FDAC = 100 MHz

3. Raised Cosine Pulse Shaping, α = .75

4. Overall Interpolation Factor = FDAC/Fsym = 31.25

5. PBF interpolation factor R = 31.25/4 = 7.8125

Fig. 47 shows the spectrum of the output of the shaping filter and the output of the PBF. As can be

seen from the figure, interpolation images are held below the designed level of 80 dB.
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5.3 Hardware Implementation

In this section, it is shown how the combination of a new FPGA-based signal synthesis

technique developed in section 5.2 with high speed interpolating DAC creates a flexible, high

performance source for an UC in a SI.

The signal synthesis technique uses a fixed frequency sample clock in combination with

a real-time, arbitrary factor interpolator. The interpolator converts waveform samples having any

arbitrary sample rate to the DAC sample rate. Following interpolation, fine center frequency tuning

and gain adjustment is performed. Then, the DAC optionally interpolates the signal by an addi-

tional integer factor and performs coarse frequency shifting to center the signal’s spectrum at the

desired IF.

The new system has the following advantages over current FPGA-based approaches us-

ing real-time signal processing (see e.g. [70]). First, unlike systems with variable DAC sample

rates, the new approach fixes the DAC sample rate. This allows the use of a single analog filter

to guarantee removal of distortion images at the DAC output regardless of the waveform sample

rate. Second, similar to the system found in [72], because the waveform is interpolated, it can be

stored at virtually the minimum sample rate required to reconstruct the signal. This yields dramatic

memory savings of up to several orders of magnitude. Unlike the system in [72], the interpolation

factor can easily be extended beyond 2048 making possible even more memory savings for signals

sampled at slow rates. Additionally, using a DAC with coarse frequency shifting ability and inter-
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polation allows higher IFs to be generated. Consequently, the filtering burden of the UC is relaxed

by an increased separation between the signal and its mirror spectrum.

A real implementation of the proposed system is presented showing the feasibility and

attainable performance of such an approach. Measured results are given confirming expectations

from design and simulation.
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5.3.1 New FPGA-Based Fixed Sample Clock AWG

A block diagram of the new AWG is given in Fig. 48.
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and
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Adjust

Figure 48: Flexible, High Performance, Fixed Sample Clock AWG

In Fig. 48, the DAC is given a sample clock of fixed frequency FDAC Hz. Data Clock is a clock

derived from the sample clock for the digital source driving the DAC, in this case the FPGA AWG.

Data Clock is also of frequency FDAC Hz. The µ generator computes the normalized fractional time

distance between the next interpolated output sample and the current input sample. The µ values

are used by the Farrow Structure [38] to compute interpolated output samples. New input sample
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requests are generated by an overflow detector which monitors the µ values for the condition

µl+1 ≥ µl. (5.33)

This indicates that a new input sample is required to generate the next interpolated output sample.

In this configuration, the Farrow Structure takes as input a Discrete-Time signal sampled at Fin

Hz. The Continuous-Time (CT) signal underlying the DT input signal is then reconstructed and

resampled at a rate of Fout = FDAC Hz. This is illustrated in Fig. 49.

Input Samples

Output Samples

µl

µl+1

µl+2

kTin (k + 1)Tin

Continuous-Time

Reconstruction of Waveform

time

Figure 49: Farrow Structure Input / Output Timing

The output sample rate is given by Fout = RFin. R is the Sample Rate Conversion (SRC)

factor from section 1.2, defined as

R =
Fout

Fin

. (5.34)

Upon a new input sample request, waveform samples are supplied from Waveform Memory to the

user-defined digital filter(s) P (z). If P (z) is interpolating, then the Sample Requests derived from
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the overflow detector request samples from P (z). P (z), in turn, requests samples from memory at

a slower rate. P (z) serves two purposes. First, it can provide real-time pulse shaping for digital

modulation schemes [76]. This means that only the symbol values need to be stored in memory

rather than a highly oversampled waveform. The details on implementing P (z) as a pulse shaping

filter can be found in [1]. Second, P (z) can simply interpolate the input waveform by a small

integer factor. This can reduce the complexity of the Farrow Structure significantly.

After the DT signal is filtered and interpolated, gain adjustment can be performed to fine

tune the signal output level. It is then mixed with a complex exponential of frequency FDIF Hz

whose real and imaginary parts are generated by a Numerically Controlled Oscillator (NCO). As-

suming the input spectrum is centered at DC, this operation produces a complex bandpass signal

centered at FDIF Hz (A review of complex signal processing is given in [78]). This is illustrated

in Fig. 50. If the AWG is used as the baseband/IF source in a SI, it provides the input signal to

the UC component. The FPGA AWG can be combined with a DAC that provides interpolation

by integer factors and complex, coarse frequency shifting [79]. This combination simplifies the

filtering burden of the UC. This is because the additional frequency shift increases the separation

between the signal and its mirror spectrum. As can be seen from Fig. 50, there is no mirror spec-

trum while the signal is in complex form. The mirror spectrum only appears when the complex

bandpass signal is converted to a real bandpass signal as illustrated in Fig. 51. This is the final step

the signal undergoes before it is converted to an analog voltage or current waveform by the DAC.
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Figure 51: DAC Complex Mixer Input / Output Spectra
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To see why the UC filtering requirement is relaxed by a higher IF frequency, consider the

real upconversion shown in Fig. 52 (see [80] for transmitter/UC filtering and architectures).

Input

BPF

Output

cos(2πFLOt)

Figure 52: UC First Mixer and BandPass Filter (BPF)

The mixer translates the entire input spectrum to FLO Hz. Since this is a real upconversion,

both the desired signal and its mirror spectrum are translated. The objective of the BandPass

Filter (BPF) is to eliminate the translated mirror spectrum located 2FIF from the desired spectrum.

Obviously as FIF is increased, the separation between the mirror spectrum and the desired spectrum

is also increased. This in turn allows a more relaxed filtering requirement as illustrated in Fig. 53.
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5.3.2 Hardware Implementation

To demonstrate the feasibility of the new approach, a high performance system is imple-

mented on a Xilinx xc3s5000-4fg900 Spartan-3 FPGA [81] in conjunction with a 16-bit Analog

Devices interpolating DAC [79]. The DAC is configured to interpolate the complex input signal

by a factor of 8. The DAC sample clock is FDAC = 311.04 MHz. Since the DAC interpolates the

output of the FPGA AWG by a factor of 8, it provides a Data Clock of FDAC/8 = 38.88 MHz

rather than FDAC MHz. P (z) is a programmable, 95-tap, interpolate by 4 polyphase Finite Impulse

Response (FIR) filter. The Farrow Structure implements a Polynomial-Based Filter (PBF) having

N = 8 polynomial pieces of order M = 5 (See [1, 3] for the details on the PBF design). The filter

is designed to provide more than 87 dB of interpolation image suppression for single-sided input

bandwidths up to .2Fin. The frequency response of the PBF is given in Fig. 54.
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Figure 54: PBF Frequency Response M = 5, N = 8
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The Farrow Structure input sample rate is not restricted, and thus can be equal to the out-

put sample rate. In practice, the system implementation cost could be reduced by lowering the

maximum input sample rate to the Farrow Structure. However, this comes at the cost of reduced

maximum signal bandwidth. The device utilization summary is given in Table 4.

Table 4: Device Utilization for Xilinx Part # xc3s5000-4fg900

Logic Utilization Used Available Utilization

Number of Slice Flip Flops 20,482 66,560 30%

Number of 4 input LUTs 11,061 66,560 16%

Total Equivalent Gate Count 1,007,485 - -
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5.3.3 Measured Results

To demonstrate the performance of the system, the AWG is set up to generate a 1 Msym-

bol/sec, raised cosine pulse-shaped, Quaternary Phase Shift Keying (QPSK) signal from only its

symbols. The 1 Msymbol/sec QPSK symbol stream is shaped and interpolated by four, in real-

time, by P (z) before entering the Farrow Structure. This interpolation by four results in Fin = 4

MHz. The corresponding SRC factor is given by

R =
Fout

Fin

=
38.88 MHz

4 MHz
= 9.72. (5.35)

The test setup is given in Fig. 55. In Fig. 55, the analog output of the new AWG is

connected to an Agilent MXA Signal Analyzer [82] for spectral analysis.

RF IN
FPGA

AWG

DAC

Agilent MXA

Signal Analyzer

Figure 55: Measurement Test Setup

As a first step, the implementation output is captured and stored in memory before exiting

the FPGA. Fig. 56 presents the AWG output spectrum generated from bit-true simulation as well

as the actual output spectrum captured from the FPGA implementation.
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Figure 56: QPSK signal Simulation Versus FPGA Implementation
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As can be seen from Fig. 56, the two closely match. In addition, the designed interpolation

image suppression, Fig. 54, matches the actual interpolation image suppression.

The AWG analog output results are given next. Figures 57, 58, and 59 are plots of the

spectrum trace data saved from the Agilent MXA. In Fig. 57, the DAC does not shift the AWG

output spectrum. The AWG NCO is tuned to FDIF = 10 MHz. Thus, the DAC output spectrum is

centered at 10 MHz. As can be seen from Fig. 57, there is no visible image distortion or sample

clock spurious, which is in contrast with the plots in [70], where sample clock spurious and/or

image distortion appear at ≈ 50 dBc. This confirms the high performance expected from the

theoretical design of the proposed approach. Figure 58 shows the DAC output spectrum when the

DAC is configured to shift the center of the spectrum by FDAC/8 = 38.88 MHz. In this scenario,

the AWG tunes the signal’s spectrum to FDIF = −8.88 MHz resulting in a DAC IF output of

FIF = 38.88+(−8.88) = 30 MHz. Finally, Fig. 59 gives the spectrum of the signal when the DAC

is configured to shift the center of the spectrum by FDAC/2 = 155.52 MHz. The feasibility of high

IF signal synthesis is thus demonstrated, even when the waveform is generated at a much lower

frequency. As previously shown, the filtering requirement of the UC is significantly relaxed.
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Figure 57: QPSK signal centered at 10 MHz
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Figure 58: QPSK signal centered at 30 MHz
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Figure 59: QPSK signal centered at 155.52 MHz
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CHAPTER 6: FUTURE WORK

Future work in the design, implementation, and application of Polynomial-Based Filters

includes the following.

First under design, new optimization techniques are to be investigated and compared with

the linear programming technique presented in this work. New types of PBFs will be studied

including complex filters and filters with non-linear phase.

Second, the real implementation of PBFs will be further analyzed. The effects of quanti-

zation and finite arithmetic will be researched. Implementation structure modification will also be

investigated.

Finally, new applications are to be studied. These include power-efficient techniques for

SDR, the use of PBFs in SI applications not covered in this work, and the application of PBFs in

biomedical engineering.
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APPENDIX: MATLAB CODE
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Several Matlab functions are given in this appendix. Some of the functions call some of

the other functions. For ease of use, copy and save all of the functions into a single directory. Per

Matlab protocol, each function should be saved with the same name as the function itself.

141



PBF Optimization Example 1

This function will return the coefficient matrix (3.36) of the optimized PBF and display the

minimized maximum error, δ, and cE . It will also plot the frequency and impulse responses.

function C = PBF_optim_examp

% PBF parameters

N = 6; % Number of polynomial pieces

M = 3; % Order of the polynomial pieces

a = 1; b = -1/2; % Basis function, psi_m(n,T,t), constants

bsave = b; % b will get used, so save it for later

% Passband / Stopband definition and weighting

omega_pass = 2*pi*.2; % passband edge

omega_stop = 2*pi*.8; % stopband edge

passband = linspace( 2*pi*.01, omega_pass, 100 ); % passband

stopband = linspace( omega_stop, 2*pi*4, 500 ); % stopband

omega_p = [passband stopband]; % frequency points to optimize

P = length(omega_p);

K_pass = 10; % passband weight

K_stop = 1; % stopband weight
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W = K_pass*(omega_p<=omega_pass)+...

K_stop*(omega_p>=omega_stop); % Total weighting function

w_hat = 1./W’; % Invert the weighting to fit the linear program

d = (omega_p <= omega_pass)’; % Desired response --> 1’s in the

% passband and 0’s in the stopband

% Construct matrices for optimization

Psi_hat_E = Psi_hat_even( M, N, omega_p, a, b );

A = [ Psi_hat_E, -w_hat;

-Psi_hat_E, -w_hat ];

b = [ d ; -d ];

g = [ zeros( N/2*(M+1), 1 ) ; 1 ];

% Solve linear program

x = linprog(g,A,b);

cE = x(1:end-1)

delta = x(end)

% Build the C matrix

C = cE_to_C(cE,N,M);
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% Compute the frequency response for verification

b = bsave; % we want the basis constant

omega_p = linspace( 2*pi*.01, 2*pi*12, 1024 );

ha_omega = PBF_freq_resp(C, omega_p, a, b);

% Plot versus f

f_p = omega_p / (2*pi);

plot( f_p, 20*log10(abs(ha_omega)),’k’,’linewidth’,2);

ylim([-80 10]); grid on;

xlabel(’Normalized Frequency, f’)

ylabel(’Normalized Magnitude (dB)’);

% Compute the impulse response

i_der = 0; % don’t compute any derivatives

mu = [0:.01:.99]’; % mimic continuous time

[n_mu, ha_n_mu] = PBF_imp_resp(C,mu,a,b,i_der);

figure; plot(n_mu, ha_n_mu, ’k’); grid on; hold on;

mu = .25; % sample the impulse response

[n_mu, ha_n_mu] = PBF_imp_resp(C,mu,a,b,i_der);

stem(n_mu, ha_n_mu, ’k’, ’filled’);

legend(’continuous-time’,’sampled response’);
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Convert Even PBF Coefficient Vector to Full Matrix

This function transforms cE of (3.68) to the PBF coefficient matrix C of (3.36).

% Translate cE to C

function C = cE_to_C(cE,N,M)

mscale = repmat( ((-1).^(0:M)), N/2, 1 ); % cm(n) = (-1)^m * cm(N-n-1)

C = [ reshape(cE,M+1,N/2)’;

mscale .* flipud(reshape(cE,M+1,N/2)’) ];

end
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Compute Even PBF Basis Frequency Response Vector

Given a length P frequency vector, ωp, M , N , a, and b, this function returns Ψ̂E(ωp) of

(3.70).

function Psi_hat_E = Psi_hat_even( M, N, omega_p, a, b )

% Generate Basis Frequency Response Matrix

w = omega_p; P = length( w ); temp_k = 0; mn = 1;

Psi_hat = zeros( P, (M+1)*(N/2-1) );

for p = 1:P

for n = 0:N/2-1

for m = 0 : M

for k = 0 : m

temp_k = temp_k + ...

exp(-j*w(p)*n) .*...

( a^k * ( factorial(m) / factorial(m-k) ) .* ...

( 1 ./ (j*w(p)) ).^(k+1) .* ...

( b^(m-k) - exp(-j*w(p)) .* (a+b).^(m-k) ) );

end

Psi_hat_E( p, mn ) = 2 * real( exp(j*w(p)*N/2) * temp_k );

temp_k = 0; mn = mn + 1;

146



end

end; mn = 1;

end;
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Convert Full Matrix to PBF Coefficient Vector

This function transforms the PBF coefficient matrix C of (3.36) to the vector c of (3.58).

function c = C_to_c(C)

[N,MM] = size(C);

M = MM - 1;

c = reshape(C’,N*(M+1),1);

end
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Compute PBF Basis Frequency Response Vector

Given a length P frequency vector, ωp, M , N , a, and b, this function returns Ψ̂(ωp) of

(3.60).

function Psi_hat = Psi_hat_omega( M, N, omega_p, a, b )

% Generate Basis Frequency Response Matrix

w = omega_p; P = length( w ); temp_k = 0; mn = 1;

Psi_hat = zeros( P, (M+1)*(N-1) );

for p = 1:P

for n = 0:N-1

for m = 0 : M

for k = 0 : m

temp_k = temp_k + ...

exp(-j*w(p)*n) .*...

( a^k * ( factorial(m) / factorial(m-k) ) .* ...

( 1 ./ (j*w(p)) ).^(k+1) .* ...

( b^(m-k) - exp(-j*w(p)) .* (a+b).^(m-k) ) );

end

Psi_hat( p, mn ) = temp_k;

temp_k = 0; mn = mn + 1;
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end

end; mn = 1;

end
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Compute PBF Frequency Response

Given a length P frequency vector, a, b, and C of (3.36), this function returns ha(ωp) by

computing (3.59).

function ha_omega = PBF_freq_resp(C, omega_p, a, b)

[N,MM] = size(C);

M = MM - 1;

c = C_to_c(C);

Psi_hat = Psi_hat_omega( M, N, omega_p, a, b );

ha_omega = Psi_hat*c;

end
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Compute PBF Impulse Response

Given a length P vector of µ values, a, b, and C of (3.36), this function returns the ith

derivative of the impulse response of (3.45), given in (3.49,3.50) and the normalized time axis

(n+ µ)T , where T = 1.

function [n_mu, ha_n_mu] = PBF_imp_resp( C, mu_p, a, b, i );

[N,MM] = size(C);

M = MM-1;

muab = a*mu_p+b;

P = length(muab);

mu_mat = repmat(muab’,M+1,1);

Delta_i = zeros(M+1,M+1);

% Create derivative transformation matrix

Delta_i = der_trans_mat(M,i,a,b);

% Construct matrix of mu vectors

for p = 1:P

mu_mat(:,p) = ( ( mu_mat(:,p)’.^(0:M)’ ) );

end
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% Compute Impulse response matrix

Hn = C * Delta_i * mu_mat;

% Reshape matrix to vector of impulse response samples

ha_n_mu = reshape( Hn’, N*P, 1 ); % The impulse response

n_mu = reshape( ( repmat( mu_p’, N, 1 ) +...

repmat([0:N-1]’,1,P))’, N*P, 1 ); % The normalized time

% axis
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Compute Derivative Transformation Matrix

Given M , a, b, and i from (3.51), this function returns the (M + 1)× (M + 1) matrix ∆(i)

function Delta_i = der_trans_mat(M,i,a,b)

Delta_i = circshift( diag([ zeros(1,i), a^i * factorial(i:M)./...

factorial(0:M-i) ]), [0 -i] );
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Time Domain Equivalence Matrices

Given N,M, a, b, and num der, this function will return the equivalence matrices Aeq and

beq for constraining a PBF impulse response to have num der continuous derivatives. A value

of num der= −1 does nothing, num der= 0 makes the impulse response itself continuous, and

num der= k makes the impulse response and its derivatives up to the kth derivative continuous.

function [Aeq,beq] = cont_eq_matrices(N,M,a,b,num_der)

if num_der < 0

% If no continuity is required, do nothing!

Aeq = [];

beq = [];

else

% Create the P matrix

P = eye(N/2); % [ e_1 e_2 ... e_N/2 ]

P(:,end) = zeros(N/2,1); % zero out the last column

% Create the Q matrix

Q = circshift(P,[0 1]);
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% Create the b1_tilde, b2_tilde, and b3_tilde vectors

b1_tilde = zeros(N/2,1);

b2_tilde = zeros(N/2,1);

b3_tilde = zeros(N/2,1);

% Create the R matrix

R = zeros(N/2); % [ 0vec 0vec ... 0vec ]

R(1,1) = 1; % [ e_1 0vec ... 0vec ]

% Each continuous derivative requires its own matrix set

for i = 0:num_der

% Create A1_tilde matrix

M_muE0 = mu_matrix_even(0,M,N,a,b,i);

M_muE1 = mu_matrix_even(1,M,N,a,b,i);

A1_tilde = P*M_muE1 - Q*M_muE0;

% Create A2_tilde matrix

A2_tilde = R*M_muE0;

% Create the Aeq and beq matrices
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A_tilde = [A1_tilde ; A2_tilde];

Aeqi = [A_tilde , zeros(N,1)];

beqi = [b1_tilde ; b2_tilde];

% If ith derivative is odd, make center of impulse response = 0 to avoid a

% point in the (i-1)th derivative

if mod(i,2)~=0

S = zeros(N/2); % [ 0vec 0vec ... 0vec ]

S(end,end) = 1; % [ 0vec 0vec ... e_N/2 ]

% Create A3_tilde matrix

A3_tilde = S*M_muE1;

% Create the Aeq and beq matrices

A_tilde = [A_tilde ; A3_tilde];

Aeqi = [A_tilde , zeros(3*N/2,1)];

beqi = [beq ; b3_tilde];

end

if i>0

Aeq = [Aeq;Aeqi];
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beq = [beq;beqi];

else

Aeq = Aeqi;

beq = beqi;

end

end

end
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Compute The Mu Matrix for Even Length PBFs

Given N,M, a, b, µ and i, this function will return the matrix M
(i)
E (µ) of (3.74).

function M_muE = mu_matrix_even(mu,M,N,a,b,i)

Delta_i = der_trans_mat(M,i,a,b);

mu_T = [ (Delta_i*(a*mu+b).^(0:M)’)’ zeros(1,(N/2-1)*(M+1)) ];

M_muE = repmat(mu_T,N/2,1);

for n = 0:N/2-1;

M_muE(n+1,:) = circshift(M_muE(n+1,:)’, n*(M+1))’;

end
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PBF Optimization Example 2

This function will return the coefficient matrix (3.36) of a PBF optimized with time domain

impulse response continuity constraints and display the minimized maximum error, δ, and cE . It

will also plot the frequency and impulse responses.

function C = PBF_optim_examp_eq

% PBF parameters

N = 6; % Number of polynomial pieces

M = 3; % Order of the polynomial pieces

a = 1; b = -1/2; % Basis function, psi_m(n,T,t), constants

bsave = b; % b will get used, so save it for later

num_der = 0; % number of continuous derivatives, -1

% if the impulse response itself is not

% continuous

% Passband / Stopband definition and weighting

omega_pass = 2*pi*.2; % passband edge

omega_stop = 2*pi*.8; % stopband edge

passband = linspace( 2*pi*.01, omega_pass, 40 ); % passband

stopband = linspace( omega_stop, 2*pi*4, 200 ); % stopband
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omega_p = [passband stopband]; % frequency points to optimize

P = length(omega_p);

K_pass = 10; % passband weight

K_stop = 1; % stopband weight

W = K_pass*(omega_p<=omega_pass)+...

K_stop*(omega_p>=omega_stop); % Total weighting function

w_hat = 1./W’; % Invert the weighting to fit the linear program

d = (omega_p <= omega_pass)’; % Desired response --> 1’s in the

% passband and 0’s in the stopband

% Construct matrices for optimization

Psi_hat_E = Psi_hat_even( M, N, omega_p, a, b );

A = [ Psi_hat_E, -w_hat;

-Psi_hat_E, -w_hat ];

b = [ d ; -d ];

g = [ zeros( N/2*(M+1), 1 ) ; 1 ];

% Include Time-Domain Continuity Constraints

[Aeq,beq] = cont_eq_matrices(N,M,a,bsave,num_der);
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% Solve linear program

x = linprog(g,A,b,Aeq,beq);

cE = x(1:end-1)

delta = x(end)

% Build the C matrix

C = cE_to_C(cE,N,M);

% Compute the frequency response for verification

b = bsave; % we want the basis constant

omega_p = linspace( 2*pi*.01, 2*pi*12, 1024 );

ha_omega = PBF_freq_resp(C, omega_p, a, b);

% Plot versus f

f_p = omega_p / (2*pi);

plot( f_p, 20*log10(abs(ha_omega)),’k’,’linewidth’,2);

ylim([-80 10]); grid on;

xlabel(’Normalized Frequency, f’)

ylabel(’Normalized Magnitude (dB)’);

% Compute the impulse response
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i_der = 0;

mu = [0:.01:.99]’; % mimic continuous time

[n_mu, ha_n_mu] = PBF_imp_resp(C,mu,a,b,i_der);

figure; plot(n_mu, ha_n_mu, ’k’); grid on; hold on;

% Compute the derivative of the impulse response

[n_mu, ha_n_mu] = PBF_imp_resp(C,mu,a,b,i_der+1);

plot(n_mu, ha_n_mu, ’--k’); grid on; hold on;

legend(’impulse response’,’derivative response’);
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