
 -i-

Plagiarism Detection in
Text Collections
Panagiotis Kalampokis
SID: 3306150007

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Mobile and Web Computing

November 2016

THESSALONIKI – GREECE

http://www.tech.ihu.edu.gr/index.php/msc-in-mobile-and-web-computing

-ii-

Plagiarism Detection in
Text Collections

Panagiotis Kalampokis
SID: 3306150007

Supervisor: Prof. Apostolos Papadopoulos

Supervising Committee Mem-

bers:

Assoc. Prof. Name Surname

Assist. Prof. Name Surname

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Mobile and Web Computing

November 2016

THESSALONIKI – GREECE

http://www.tech.ihu.edu.gr/index.php/msc-in-mobile-and-web-computing

 -iii-

To my beloved Father who gives his example.

To my beloved Mother who gives her advice.

To the Runner who keeps failing…

-iv-

Abstract
This is a dissertation thesis submitted for the degree of MSc in Mobile and Web

Computing at the International Hellenic University.

The main purpose of this dissertation was to find an efficient way to compare a big

corpus of document texts among them and check which of them have been subjected

plagiarism.

We will walk through a set of algorithms which are used for calculating the similari-

ty between a set of documents, and we will conclude to an algorithm that is used most,

for big data sets, (the MinHash algorithm).

 The MinHash algorithm makes extensive use of Hashing functions so as to reduce

the dimensionality space kept for the “useful” part of a document during the action of

preprocessing, and estimates the probability, that two documents resemble each other

with the LSH technique. We will discuss what “useful” part means along the way while

explaining the algorithm.

 First of all I would like to express my gratitude to my supervisor and professor dr.

Apostolos Papadopoulos, for the support and guidance he offered along the way, to the

successful completion of my dissertation.

Panagiotis Kalampokis

11/2016

 -v-

Contents
ABSTRACT.. IV

CONTENTS... V

1 INTRODUCTION ... 7

1.1 PLAGIARISM DEFINITION .. 7

1.2 PLAGIARISM DETECTION ... 7

1.3 WHAT IS OUR PROBLEM? ... 8

2 SIMILARITY ... 9

2.1 SIMILARITY OF SETS .. 10

2.2 JACCARD SIMILARITY ... 10

3 SHINGLES ... 13

3.1 SHINGLING SIZE ... 13

3.2 HASHING SHINGLES.. 14

3.3 PRESERVE SIMILARITY OF SETS WHILE SHRINKING THE SPACE 15

3.4 REPRESENTATION OF SETS ... 18

4 THE MIN-HASH ALGORITHM ... 20

4.1 MIN-HASHING .. 20

4.2 MINHASH AND JACCARD SIMILARITY CONNECTION 22

4.3 MINHASH SIGNATURES .. 23

4.4 CREATING MINHASH SIGNATURES ... 24

5 LOCALITY SENSITIVE HASHING .. 40

5.1 LSH AND DOCUMENTS .. 40

5.2 LSH AND MIN-HASH SIGNATURES ... 41

5.3 BANDING TECHNIQUE... 44

5.4 MERGING THE TECHNIQUES ... 46

6 CONCLUSIONS... 49

-vi-

6.1 APPLICATIONS AND OTHER USES... 49

6.2 EVALUATION OF THE ALGORITHM ... 50

BIBLIOGRAPHY ... 50

7 APPENDIX ... 53

7.1 DATA SAMPLES .. 53

7.2 SOME RESULTS ... 55

7.2.1 The Shingling phase .. 56

7.2.2 Hashing the Shingles... 57

7.2.3 The MinHash Signature .. 59

7.2.4 The LSH Banding Technique ... 60

7.3 SOURCE CODE ... 65

 -7-

1 Introduction

Plagiarism is the "wrongful appropriation", "stealing and publication" of another au-

thor's "language, thoughts, ideas, or expressions" and the representation of them as one's

own original work. [2]

1.1 Plagiarism Definition

Plagiarism etymology comes from the very beginning of the 1st century, from the

use of the Latin word plagiarius (literally kidnapper) to denote stealing someone else's

work. [3] Plagiarism definition does have many uses and many references from every

part of the earth. Plagiarism in some extreme cases takes the form of copyright in-

fringement but it is not considered a crime. Plagiarism is considered an ethical offense

in academia and industry, and calls for various sanctions like penalties, suspension or

even expulsion in some extreme cases.

In this thesis we will try to address the plagiarism plague that has made its presence

more and more frequent nowadays, thereby deteriorating the situation of copyright- in-

fringement. With the widespread presence of Plagiarism, a degeneration of intellectual

property and creation has become more apparent.

1.2 Plagiarism detection

Plagiarism has made its presence almost everywhere nowadays and has significantly

evolved in the past few years. Academia, scientific papers, documents, essays, reports

and source code are some of the examples where plagiarism is found in abundance.

 Easy access to vast information and the Internet have remarkably helped plagiarism

to rise to a totally higher level than before. The need of plagiarism detection software

has also risen significantly with the outbreak of intellectual property theft and the more

effortless ways to do it.

-8-

With the huge evolution of technology more and more plagiarism detection software

programs are making their appearance. They are very practical and way more efficient

in detecting plagiarized references or even source code by comparing millions or even

billions of files in a very short time frame, than the inefficient old manual detection

way. There is a lot of software – computer assisted plagiarism detection software which

is known as CaPD(computer assisted plagiarism detection software). This Computer

assisted plagiarism detection software, belongs to Information Retrieval approach of

finding similar text documents.

1.3 What is our Problem?

Figure 1.1: Depiction of our problem.

Our problem breaks down as follows:

From a huge corpus of Documents (e.g 10 million), find all the plagiarized documents

with above a percentage: x% of similarity.

 Artlessly, we would need to calculate all the Jaccard similarities between pairs

of documents for every document dual set. Jaccard similarity coefficient,

measures similarity between finite sample sets, and is defined as the size of the

intersection divided by the size of the union of the sample sets: 𝐽(𝐴,𝐵) = |𝐴 ∩ 𝐵|
|𝐴 ∪𝐵|

.

[7]

 -9-

 That is
𝑁 × (𝑁−1)

2
 ≈ 5 ∗ 1011 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐! That is a very high number of com-

parisons. For a generally common hardware pc, it would take more that ¾ of the

week to compute all the pairwise Jaccard similarities between the documents!

 Imagine how much time it would take for a common hardware to calculate all

the pairwise Jaccard similarities between the documents if we had 11 million

documents. it would take more than 365 days!

 We will see how this can be done in O(n) in following chapters.

Now let’s proceed with the definition of similarity.

2 Similarity

Usually when we talk about similarity, we are trying to measure how similar two

Sets are. What we mean by that is that if we represent these sets with a metric (numeric

preferably), we can then measure the distance between them using one of the distance

metrics that exist. There are many definitions of similarity and many similarity and dis-

tance metrics exist. Below we give some of them:

 Euclidean distance : d(p, q) = d(q, p) = �∑ (𝑞𝑞 − 𝑝𝑞)2𝑁
𝑖=1 .

 Cosine distance and Cosine Similarity.

 Hamming distance.

 Jaccard Similarity, etc.

It is useful to note that Cosine Similarity is used commonly in information retrieval sys-

tems and in data mining problems. We will take a closer look though in Jaccard similar-

ity as it is more appropriate in our case. Let’s begin with the similarity of sets now and

we will expand later in more detail.

-10-

2.1 Similarity of Sets

One of the most important data-mining problems is to find similar sets from a huge

collection of items.

For example we could compare a big corpus of texts for plagiarism, that is finding

quite similar texts that have been subjected to plagiarism. Or another example would be

to compare a huge corpus of images to find near duplicate images.

Generally speaking there are too many examples in real life that we can use data

mining techniques to tackle a big number of problems.

What we are after with “Similarity” meaning is: from two arbitrarily sets from our

large corpus of documents, find those sets, which have as many common elements as

they could. We then use the Shingling method to extract shingles from the initial sets. A

Shingle is a k-gram character set. We will talk more about it in the following chapters.

Then we pass all the k-grams from the Minhashing method, that is extracting the Min-

Hash Signature as it is called from the original document. This is a highly efficient and

applicable method for significantly reducing the size of the original document, while

preserving in high degree the similarity between all the documents in the corpus. We

will talk about this more extensively in the following chapters.

Finally we will talk about the Locality Sensitive Hashing technique, which is the

last and most significant piece which compounds the whole artifact. That is how the

LSH technique finds the most similar pairs in one pass instead of searching all the pairs

for similarity. We will explain that also in more detail in the next chapters.

2.2 Jaccard Similarity

Let’s start with a definition of the Jaccard Similarity and we will continue with the big

picture of the MinHashing technique. Jaccard Similarity between two sets is defined as

the Intersection divided by the Union of the elements of two sets. That is the number of

common elements divided by the number of all the elements in the two sets. Below is a

picture that represents it quite accurately.

 -11-

Figure 2.1: Jaccard similarity between two Sets.

From the above example we can easily deduce that there are two Sets. Let’s say A is

the left one and B the right one that have three elements that reside in the same space

which belongs to both sets A and B, that is the intersection sets. |Intersection(A,B)| = 3.

We can also note that there are two elements in A which belong exclusively in A set and

not in B. Also there are three elements that exist exclusively in B and not in A. So the

union of A and B is : |Union(A,B)| = 2 + 3 + 3 = 8. That is the all the elements in A and

B. So the Jaccard Similarity between those sets is: Jaccard Similarity(A,B) = 3
8
.

In order to find similar text sets between documents, we need to somehow quantify

these text sets and measure their similarity. We accomplish this with the “shingling”

technique.

-12-

But before we get into the inner workings of any approach or technique, let’s take a

look at the following diagram which gives us, a big picture of what we are about to see

and analyze in the following chapters.

Figure 2.2 : The Big picture of MinHash – LSH

What the above FIGURE 3.1 shows us, is that every document passes through these 3

phases:

1. Shingling phase: We extract the k-grams from the documents.

2. MinHashing phase: We build the minhash signature from the sets while main-

taining the resemblance of the sets.

3. Locality-Sensitive Hashing: We extract candidate pairs from the previous Signa-

ture Matrix.

We will have this big picture in mind in all following chapters, as we explain every

chapter in more detail soon. The MinHash algorithm that we are about to scrutinize very

closely and implement afterwards in the source code, is based on the book: Mining of

Massive Datasets [1]. Now let’s continue with the Shingling phase.

 -13-

3 Shingles
First of all, we will try to give an explanation of why we convert big documents to

k-gram sets, that is k-character length sets. The extraction of k-shingles from the docu-

ments is a very good approach for finding the similar sets afterwards, regardless of

whether we are addressing plagiarism problem or near duplicate document problem in-

side our corpus, because even if we mix words or sentences inside a document, it will

still find a big intersection set between the plagiarized documents. That is the Shingling

technique.

Every document is a string set of characters. K-Shingling is a sliding string window

of k character length in the document that covers the whole document, thereby creating

a set of k-shingles for each document.

3.1 Shingling size

The selection of k in k-character shingles is very important. So what we mean by k-

character shingle: for example if k = 2 => {he},{el},{ll}, {lo},… then we would have

bigrams.

You can quickly see that if k is too small we will have a big number of intersected

elements between two sets, but that number will drive us to false results. In a nutshell,

all documents will be found plagiarized, or if we had Web pages then they would have

high Jaccard Similarity because all the characters that appear in a Web page are similar

to the most common characters a web page may have, which is not a good result.

How large k should be?

That is a good question that arises when we deal with text sets. First of all, we have

to ask ourselves how big are the text sets? Are we dealing with big documents that are

about 10 pages or more long? Are we dealing with scientific papers or theses? Or are

we comparing a big corpus of e-mails from a server or possibly more servers?

Generally speaking, what is important to us for two sets (for example, a bag of words),

is that if we take a random k-character shingle from one set, the possibility for this same

k-character shingle to belong to the other set too, should be very small, unless they are

“plagiarised” or have many elements in common. For small bag of words like e-mails k

-14-

= 5 is considered a good choice, whether for bigger documents like in our case, a good

choice is to take k = 9 or k = 10.

That has to do with the approximate calculation of how many different n-grams you ex-

pect to see from the bag of words you are checking. For example how many different k-

grams do we expect in a common e-mail? Probabilistically, it is well known that a

common e-mail is much smaller than 14 million characters long. That means if we have

27 characters in English Alphabet, then: 275 = 14,348,907. That means that if we pick k

= 5 for emails, it would be a very good and accurate choice for comparing two e-mails.

Accordingly if our corpus is big texts, like documents of 10 pages or more long, k = 9

or k = 10 is proven to be a very good approach to our problem. In our case that we pick

k = 9 character long shingles, it is deemed a proper value for the solution for our prob-

lem. Let’s move on now, to how we manipulate the shingles.

3.2 Hashing shingles
Since all the shingles will pass through computer manipulation, it is better to repre-

sent all the shingles, as numbers. Numbers can be manipulated, and calculated much

better than raw k-character shingles. In order to do that, we need a good hash function

that takes raw k-character shingles, and returns a highly representative integer. In our

case (and in the source code) we use the MurMurHash 3 Hash function which gives

very good results in hashing strings.

This hash function takes a string as an argument, and returns a number which is

from (0 – a number of buckets we have chosen) which represents uniquely a shingle of

length k. So we expect from this “good” hash function that two different shingles of

length k, to return two different distinct numbers, and return the same number if and

only if these two k-string length shingles are the same. That is why we need a good hash

function which maps k-character shingles to a big number of buckets, which are essen-

tially numbers in the range we have pre-configured. In our case (0 – number of total

buckets which is 231 − 1). Here we have strongly connected the term shingle with the

term bucket, and I will explain what we mean with that.

What we mean here is that after the Hashed version of a k-character shingle to a

specific number, this specific number, now represents a specific bucket number in our

space. This space is defined to contain all the possible k-character shingles that we can

possibly make. This is a finite space of all the possible k-gram shingles. So if we repre-

 -15-

sent this space a.k.a: Universe of k-gram shingles with numbers, we have a finite Uni-

verse of numbers. That is the bucket numbers. Every distinct k-shingle represents a

bucket number.

With this representation of k-character shingles to integers, we can now use only 4-

bytes (the common length for every integer represented by a machine) for every k-gram

shingle. In this way we can manipulate k-character shingles much more efficiently with

numbers than with characters. Computer calculations and manipulations to plain num-

bers are much more efficient than String manipulations, and 4-byte standard size for

every number gives better computing quality in computing actions.

3.3 Preserve similarity of sets while shrinking the
space

Each shingle, which is a 9-character length string, is now represented by a number

which holds the “distinct” property. Even if every number takes no more than 4-bytes

and this is a good plus for operational, computational and storage efficiency in compu-

ting, if we split the document into a set of shingles (9 character string length in our

case), the number of shingles remains prohibitively high. For example if we take a doc-

ument containing of 10.000 characters, and we split it to 9 shingle character string

length, we get a set of 9,992 shingles! This set is still very large! Even using 4-bytes for

each k-gram shingle, the number of shingles saved for every document remains prohibi-

tively high. That means the space for storage remains very large. Therefore imagine

how much data storage we would have to retain if we had millions of documents. That

would be extremely high. Moreover, we haven’t achieved a big step so far, because we

would still need to calculate all the pairwise Jaccard Similarities between all those sets.

Our goal is to reduce the amount of these large sets, to smaller sets that represent

them, with as high as possible “resemblance” rate, we can achieve. We call this reduced

amount of every set, a “signature”.

The most significant property for each representative signature extracted from every

single document that has to hold, is that the true similarity percentage between two doc-

uments has to be about equal to the similarity percentage of their corresponding signa-

tures. And what we mean by Similarity percentage here, is the Jaccard similarity. So we

can arrive at the following property: JS(Doc1 , Doc2) ≈ JS(Sig(Doc1),Sig(Doc2)).

Where JS = Jaccard Similarity and Sig = Signature. It turns out to hold that the larger

-16-

the signatures we keep, that is the more elements we keep for the signatures, the more

accurate the similarity percentage we will find for the examined sets. So we can write

that:

JS(lim#𝑒𝑒𝑒𝑒 →𝑁(𝑆𝑞𝑆1 , 𝑆𝑞𝑆2) ≈ JS(𝑆𝑞𝑆1 , 𝑆𝑞𝑆2) , N >>

That is for a natural big number N, the approximate Jaccard similarity of two signatures

of two sets, is about equal the true Jaccard Similarity of those sets. We will talk about

how big N should be, and how we pick it, to give us a good approximation in later chap-

ters when we talk about the LSH technique.

One naïve approach to reduce a set of shingles and make a signature, is to pick (say)

200 randomly selected shingles from one document, and compare with another 200 ran-

domly selected shingles from another document with Jaccard Similarity.

We will see that this is very close to what we are doing with Minhash Signature Ma-

trix that shortly follows, but with a different selection technique of Shingles.

 Let’s take for example a document that is about 30.000 characters long. It is easy to

see that from this document we can extract 30.000 – k + 1 shingles. So if we pick k = 9,

we extract 30.000 – 9 + 1 = 29.992 9-gram shingles. Then we boil that number down

to 200 randomly selected shingles from our initial set of 29.992. You can imagine that,

by randomly selecting 200 shingles from our initial set, we can represent our newly

much shorter of 200 shingles set as our new Signature for this set. We will shortly see

that the random selection of 200 shingles is not actually done by this way (randomly),

but you can temporarily assume this for now. Then we can suppose we have a “quite

representative” signature from our initial set. And you can suppose also that the bigger

the signature, that is the more elements you take as your signature for representation of

a set, the more accurate this would be.

So what we have done so far is reducing significantly the initial big set of 29.992

shingles in our example, which are not actually shingles but plain numbers after they

pass from the initial Hash- Function to 200 integer signature.

Imagine now, that we have another document of 50.000 characters long. Following

the same procedure as above from 50.000 – 9 + 1 = 49.992 shingles, we also take 200

random integers to construct our 200 integer signature from the second document. Now

instead of comparing 29.992 shingles from the first document with 49.992, the second

document, we are comparing a set of 200 integers with another set of 200 integers. In

fact, we are comparing the signatures themselves instead of the original documents.

 -17-

What we have achieved so far is that we managed to significantly reduce the work-

load, the space needed for storage and we improved the efficiency of the computations

in great extent by using integers instead of strings. Please note that the signature of a

document doesn’t represent the initial document accurately 100%. We will talk about it

in more details in the next chapters.

Now let’s talk a little bit about the inner working of the MinHash algorithm.

We now give the steps that the MinHash algorithm follows to extract the MinHash Sig-

nature from a document:

1. First of all we extract all the k-character shingles from a document as we de-

scribed above. For example, for a n-character document we extract n – k + 1

shingles and we pass them to our Hash Function, so we transform them to 4-byte

integers.

2. We then pass all the hashed shingles through a hash function like:

hi(x) = (ai * x + bi) % p ,

where ai and bi are random integers, p = prime number,

we will talk about these in the following chapters.

3. We take the minimum integer from the above hash function and we add it in our

new Signature.

4. We reiterate through steps 2 and 3, as many times as we want the signature ma-

trix to be in size. That is how many elements we have pre-decided the signature

matrix to have. In our case if we want 200 element big signature matrix, we reit-

erate through steps 2 and 3, 199 times more.

Now it is obvious that we have reduced the space of every document to signatures of

200 elements. We expect that from a “good” hash function that the smallest number has

the same probability to appear as the largest number. What we mean by that is that we

expect from a good hash algorithm to distribute numbers in buckets equally. We will

see in the following chapters that the minhash algorithm is essentially a random selec-

tion from the universe of all shingles inside a document. Now, let’s continue with the

set representation.

-18-

3.4 Representation of Sets
To visualize this characteristic Matrix representation of shingles and documents we

can imagine a Matrix that has as rows all the shingle Universe that might exist in a doc-

ument. That means that if we use k = 5 character shingle size, and we use all the English

Alphabet as possible characters in the Universe, then our Universe would be 275 =

14.348.907 possible shingles. So you can imagine a Matrix with 14.348.907 rows in this

case. If we use k = 9 character shingle size and the whole English Alphabet as possible

characters as we do in our case, then we would have 279 = 76255975e+12 possible

shingles, and the same number of rows in our characteristic Matrix.

As columns in the characteristic Matrix, you can imagine the documents themselves.

That is, in the first column for example we have Document 1, in the second column

Document 2 e.t.c.

Now this characteristic matrix is a Boolean Matrix that has only the values of 0 and

1. It is obvious now that 1 in column “c” and row “r” means that the shingle in that row

(that specific shingle) exists in Document “c”. Well what do we mean with, that specific

shingle is that we have identified all the possible shingles with numbers, and have sort-

ed all these numbers. So all the elements – rows, in our characteristic matrix, you can

imagine them as sorted integers – shingles rather than just unordered numbers. This

helps to visualize how the characteristic Matrix might be, and how the MInHash algo-

rithm really works. Below we give an example:

Matrix: 3.4.1 Representing 4 Sets – Documents.

Element S1 S2 S3 S4

a 1 0 0 1

b 0 0 1 0

c 0 1 0 1

d 1 0 1 1

e 0 0 1 0

f 0 0 1 0

g 1 0 1 0

h 1 1 0 0

 -19-

i 0 1 0 1

j 0 1 0 1

k 1 0 0 0

l 1 1 1 1

m 0 0 0 1

The above characteristic Matrix represents 4 Sets – Documents as columns, and a pos-

sible Universal set of 13 elements: {a, b, c, d, e, f, g, h, i, j, k, l, m}. So we have:

S1 = {a, d, g, h, k, l}

S2 = {c, h, j, i, l}

S3 = {b, d, e, f, g, l}

S4 = {a, c, d, j, i, l, m}.

It is remarkable to note that the characteristic matrix is likely to be sparse, because it has

many 0 elements in the cells, as every document has only a tiny subset of the universe

of the shingles. Also we remind that in our case the elements are the k-character shin-

gles, which constitute the rows of the matrix and the documents are the columns. We

will examine this later in more detail.

-20-

4 The Min-Hash Algorithm
In computer science, Min-Hash is a technique for quickly estimating how similar

two sets are. The scheme was invented by Andrei Broder (1997), and initially used in

the AltaVista search engine to detect duplicate web pages and eliminate them from

search results. [4]

4.1 Min-Hashing
It is known that the minhash algorithm makes extensive use of hashing functions, to

compute the minhash signature of the characteristic Matrix. The resulting Matrix that is

constructed from the hash functions is composed of a large number of calculation opera-

tions (several hundred). Here we will describe how the minhash signature is computed

in practice, for a document – set.

 Let’s try to explain now how the Signature Matrix is created from the characteristic

Matrix from scratch. What we essentially do is that we pick N random permutations

from the rows of the initial characteristic Matrix and we pick as an element to belong in

the Signature of this Set, the first element in the permuted order we will find if we

search from top to bottom. Of course this means that this element is in the initial charac-

teristic Matrix and belongs to the Set we examine.

The job of one Hash function means:

1) Permute the order of the initial characteristic Matrix randomly.

That means all the shingles represented by rows here in the characteristic Matrix

from all the Universe will be shuffled randomly.

2) Take the first 1 you will find from the column, as you traverse the column from

top to bottom in the newly ordered characteristic Matrix and signify this shingle

(number) for possible import in the Signature Set of this column.

3) If the shingle that is about to be imported, (the number) is smaller than the al-

ready number – shingle in the Signature Matrix, then replace what already exists

in the Signature Matrix with the newly “smaller” shingle.

And that is essentially the whole essence and inner workings of every Min Hash func-

tion. We repeat all the above steps 1 – 3 for every hash function we have.

 -21-

Now how many hash functions we will use and why is explained better in the next

chapters, but for now you can assume that it is a user defined number. Also what is the

best family of Hash functions to use and why, falls out of the scope of this thesis. You

can assume it is safe to use a simple hash function family of type:

hi(x) = (ai * x + b) % p.

where ai, bi are random positive integers from our Universe.

And p is a big prime number. Usually we take p, at least, as big as the maximum num-

ber of our Universe. We will talk about this in more detail, in next chapters.

Let’s try to give an example that will help a lot in clearing out how the Minhash al-

gorithm works. From the previous characteristic Matrix let’s suppose that one hash

function gives the following random permutation: {b, j, e, m, i, k, g, a, l, h, f, d, c}.Let’

now try to construct the Signature Matrix from the previous characteristic Matrix 3.4.1.

Below is the characteristic Matrix in the permuted order:

Matrix: 4.1.1 Permutation of rows of Matrix 3.4.1

Element S1 S2 S3 S4

b 0 0 1 0

j 0 1 0 1

e 0 0 1 0

m 0 0 0 1

i 0 1 0 1

k 1 0 0 0

g 1 0 1 0

a 1 0 0 1

l 1 1 1 1

h 1 1 0 0

-22-

f 0 0 1 0

d 1 0 1 1

c 0 1 0 1

For set S1 we start looking from top to bottom:

Element: b has 0 in S1 set, so we move on to the next row – element, that is element j.

Element: j has also 0 in S1 so we move on to the next row – element, that is element e.

Element: e has 0 too in S1 so we move on to the next row, that is element m.

The next two rows also have 0 in set S1, so we continue with the next row, that is ele-

ment k.

Row element k has 1 in set S1. So we then check the Signature Matrix. We then es-

sentially exchange all the numbers from h1() to hk() in the Signature Matrix for set S1,

that are bigger than the hash values from h1 – hk in this row. We will explain that better

in the following chapter when we use the hashed versions of the elements instead of

shingles. This is an example to see how the 1st step of the algorithm rolls.

So what we do in essence is:

First we take random permutations among the rows of the characteristic Matrix. That is

changing the order of the elements in a set, according to a hash function, and taking the

first existing element from every set.

Please note that in practice, even one permutation of the rows in a huge Matrix is

strongly discouraged and not possible in terms of efficiency or good programing tech-

nique.

4.2 MinHash and Jaccard Similarity Connection
One reasonable question that comes to mind is: Why do we choose the Jaccard Simi

larity as a comparison measure between two sets in the Min – Hash Algorithm? It turns

out that there is a strong connection between the Min - Hash and the Jaccard Similarity

measure and we will explain about it right now.

The general property that holds is that the probability of every hash function that we

use in the Min – Hash algorithm for every two random Sets, (let’s denote them as S1

and S2) to give the same number, equals the Jaccard Similarity of these two sets.

 -23-

 It is actually obvious to see that, because whenever these two sets will have 1 in

their characteristic Matrix, the very same hash function will give the same result for

both of these two Sets, and the probability to give the same results in both of these sets,

is the number of rows in the intersection divided by the number of rows of the union of

these two Sets, which is the Jaccard Similarity of these two sets. But let’s try to explain

this with a better and more concrete example.

For two random Sets in our characteristic Matrix:

1) Let’s denote as X rows, the rows which have 1’s both Sets simultaneously for a

specific shingle. That is rows that belong in the intersection of the two Sets.

2) Let’s denote as Y rows, the rows that have 1, exclusively one of the two Sets, ei-

ther S1 or S2. That is when a shingle belongs to exclusively one Set.

3) Let’s denote as Z rows, the rows that have 0 both Sets for a specific shingle, or

both Sets don’t have a specific shingle. These rows are the most common ones

as the Boolean characteristic Matrix is sparse.

What we will prove here is that, for two random Sets in our characteristic Matrix, the

probability a hash function returns the same result for these two sets, equals the Jaccard

Similarity of the very same Sets. Let’s assume that there are x rows of type X, and y

rows of type Y. We don’t care about Z rows because they don’t belong in neither the

intersection or the union of the two Sets.

Well first of all it is obvious that the Jaccard Similarity of the two Sets equals:

JS(S1, S2) =
𝑋

𝑋+𝑌

Probability(h(S1) == h(S2)) = Probability(Characteristic Matrix after the permutation

of rows has 1 for S1 AND 1 for S2) = Probability(That the row to be of type X row) =

All type X rows divided by all type (X + Y) rows. That is the intersection divided by

their Union of the two Sets, which is the Jaccard Similarity of the two Sets =
𝑋

𝑋+𝑌
 =

JS(S1, S2).

4.3 Minhash Signatures
So how do we create the Signature Matrix from the characteristic matrix M in prac-

tice?

-24-

As mentioned above, every row in the characteristic matrix M represents a unique

element from our universe. That means that all rows in the Matrix represent all the

unique elements that exist in all documents of our corpus (the Universe).

 We mentioned before that constructing the Signature Matrix requires a random

number of true permutations in the rows of the characteristic matrix M. These permuta-

tions are in the range of several hundred (usually about 200 but we will see in the fol-

lowing chapters how we pick that number). So if we denote each permutation to be a

hash function, we then have several hundreds of hash functions [h1, h2, … , h200] for

example.

4.4 Creating Minhash Signatures
Picking random permutations of millions or even billions of rows, from a very large

characteristic matrix, is infeasible, time consuming and an extremely daunting task.

Thus, permuted matrices, as previously mentioned while conceptually appealing, are not

implementable at all.

Fortunately, it is possible to simulate the ineffective and time consuming task of

random permutations in the rows of matrix M by mapping rows of the characteristic

Matrix (shingles), to other rows of the very same characteristic Matrix. Actually, every

hash function maps rows to the same range of the rows in the characteristic Matrix (in

our case 0, … , 231 − 1). It is important to note here, that what we are actually trying

to do is to permute rows in the characteristic Matrix. This means that every hash func-

tion gives a specific order of the rows in the characteristic Matrix.

It is important to note the Signature Matrix will have as many columns as the char-

acteristic Matrix, but only the N rows (as many hash functions the user picked).

 We conclude to the following MinHash algorithm to build the Signature Matrix

from the characteristic Matrix with a good example.

Algorithm 4.1 for creating minhash signatures.

Let’s suppose we have chosen N Hash functions, we then do the following:

1. We calculate h1(r), h2(r), . . . , hN(r) for every row.

2.

2.1. If there is a 0 in the characteristic Matrix in row r and column c, do nothing.

 -25-

2.2. Else if there is a 1 in column S, then go to the Signature Matrix and replace in

the column S, every row that has bigger number than the corresponding hi, in

the characteristic Matrix, with that hi. Otherwise do nothing.

Below is an example of computing the Min-Hash signature of Matrix 3.4.1 with 2 hash

functions h1 and h2:

Matrix: 4.1 Representing matrix 3.4.1, with 6 hash functions.

Row S1 S2 S3 S4 x+1

mod

13

3x+1

mod

13

5x+1

mod

13

7x+1

mod

13

9x+1

mod

13

11x+1

mod

13

0 1 0 0 1 1 1 1 1 1 1

1 0 0 1 0 2 4 6 8 10 12

2 0 1 0 1 3 7 11 2 6 10

3 1 0 1 1 4 10 3 9 2 8

4 0 0 1 0 5 0 8 3 11 6

5 0 0 1 0 6 3 0 10 7 4

6 1 0 1 0 7 6 5 4 3 2

7 1 1 0 0 8 9 10 11 12 0

8 0 1 0 1 9 12 2 5 8 11

9 0 1 0 1 10 2 7 12 4 9

10 1 0 0 0 11 5 12 6 0 7

11 1 1 1 1 12 8 4 0 9 5

12 0 0 0 1 0 11 9 7 5 3

Let’s try to explain the above example. The matrix above represents matrix 3.4.2 with

some additional data. Instead of shingles, we use integer numbers between: [0, …, 12]

(These numbers denote 13 distinct elements [a,…, m]) .

We have picked the following 6 hash-functions: h1(x) = (x+1) mod 13, h2(x) =

(3x+1) mod 13, h3(x) = (5x+1) mod 13, h4(x) = (7x+1) mod 13, h5(x) = (9x+1) mod

-26-

13, and h6(x) = (11x+1) mod 13. The results of these 6 hash functions are shown in the

last columns of the characteristic Matrix. Notice that we picked number 13 as a divisor,

for two reasons. First because it is a prime number, and secondly because it is next big-

ger number of all the elements – shingles in the Universe. This means that it covers all

the rows in the characteristic Matrix for every Hash Function. Generally you can expect

collisions to happen when 2 rows hash to the same integer value.

Let’s try now to compute the signature matrix, for this example, from the above al-

gorithm. Initially the signature matrix consists of all ∞’s, as denoted in the algorithm

above:

Sig Matrix 1. Representing the initial stage of the signature Matrix.

Hash function S1 S2 S3 S4

h1 ∞ ∞ ∞ ∞

h2 ∞ ∞ ∞ ∞

h3 ∞ ∞ ∞ ∞

h4 ∞ ∞ ∞ ∞

h5 ∞ ∞ ∞ ∞

h6 ∞ ∞ ∞ ∞

First, we start with row 0 from the Matrix 4.1. We can see that all the hash func-

tions: h1(0), h2(0), h3(0), h4(0), h5(0) and h6(0) have 1 in their cells. The row number

0, has 1s only in the column sets: S4 and S1. Therefore only these are subject to change.

We can clearly see that 1 is less than ∞, so we change both sets S1 and S4. So the signa-

ture matrix becomes:

Sig Matrix 1. Representing the initial stage of the signature Matrix.

Hash function S1 S2 S3 S4

h1 1 ∞ ∞ 1

h2 1 ∞ ∞ 1

h3 1 ∞ ∞ 1

h4 1 ∞ ∞ 1

h5 1 ∞ ∞ 1

 -27-

h6 1 ∞ ∞ 1

Let’s proceed with row 1 in matrix 4.1. Only column S3 has 1, and the corresponding

hash values are h1(1) = 2, h2(1) = 4, h3(1) = 6, h4(1) = 8, h5(1) = 10, h6(1) = 12. So

according to the algorithm, the signatures become: SIG(1, 3) to 2, SIG(2, 3) to 4, SIG(3,

3) to 6, SIG(4, 3) to 8, SIG(5, 3) to 10 and SIG(6, 3) to 12. SIG(i,3) = ∞, for all

i=1,2,…, 6 so all signatures change in S3. All the other elements the Signature Matrix

are not subjected to any changes because there is 0’s in the corresponding characteristic

Matrix. So we have the following:

Signature Matrix 2.

Hash function S1 S2 S3 S4

h1 1 ∞ 2 1

h2 1 ∞ 4 1

h3 1 ∞ 6 1

h4 1 ∞ 8 1

h5 1 ∞ 10 1

h6 1 ∞ 12 1

The row numbered 2 in the initial matrix 4.1, has 1s in column sets: S2 and S4. The

hash values for row 2 are: h1(2) = 3, h2(2) = 7, h3(2) = 11, h4(2) = 2, h5(2) = 6, h6(2) =

10.

There was a possibility to change column S4 in the Signature Matrix as there is a 1

in the characteristic Matrix, but because column S4 in the Signature Matrix is [1, 1, 1, 1,

1, 1], are each less than the corresponding hash values [3, 7, 11, 2, 6, 10], so they re-

main unchanged. Since column S2 has the original initialization of ∞, we substitute

them by the new hash values [3, 7, 11, 2, 6, 10] that resulted, as follows:

-28-

Signature Matrix 3.

Hash function S1 S2 S3 S4

h1 1 3 2 1

h2 1 7 4 1

h3 1 11 6 1

h4 1 2 8 1

h5 1 6 10 1

h6 1 10 12 1

We move on to the next row from our initial matrix, (row 3). All columns but S2

here, have 1s, and the hash-values from our hash functions are h1(3) = 4, h2(3) = 10,

h3(3) = 3, h4(3) = 9, h5(3) = 2, h6(3) = 8. If we examine the Signature matrix 3 closely,

we will notice that the value h1(3) = 4 > what is already in the signature matrix, for col-

umns S1, S3 and S4 for h1 hash function, so the first row of the signature matrix doesn’t

change. We continue traversing the other rows of the signature matrix having in mind

the corresponding hash values. Again h2(3) = 10 is bigger than any of S1, S3 and S4

corresponding values of the signature matrix, so they don’t change. Now if we move on

to the next row of the signature matrix [1, 11, 6, 1], we can see that only S3 can change,

because h3(3) = 3, and is bigger than S3. So we will change that element from S3 to 3.

Accordingly, we check the following rows of the signature matrix:

• h4(3) = 9 > SigM[h4][S1, S3, S4] : So they remain the same.

• h5(3) = 2, which is bigger than SigM[h5][S1] and SigM[h5][S4], so these two

remain the same, but it is smaller than SigM[h5][S3], so SigM[h5][S3] changes

to 2.

• h6(3) = 8. 8 is only lower than SigM[h6][S3]. So SigM[h6][S3] becomes 8 from

12 before.

So the resulting signature matrix, becomes the following:

 -29-

Signature Matrix 4.

Hash function S1 S2 S3 S4

h1 1 3 2 1

h2 1 7 4 1

h3 1 11 3 1

h4 1 2 8 1

h5 1 6 2 1

h6 1 10 8 1

Notice that S2 column wasn’t part of the comparisons, because it had 0 at the initial ma-

trix in row numbered 3. Let’s continue with the other rows.

In row number 4, of the original matrix 4.1, we notice that only S3 column has 1.

So, only S3 column is likely to change, if any changes occur. Let’s examine the hash

values derived from the hash functions : h1(4) = 5, h2(4) = 0, h3(4) = 8, h4(4) = 3,

h5(4) = 11, h6(4) = 6. Following the previous tactic, for the column S3 [2, 4, 3, 8, 2, 8],

we have the following:

• h1(4) > SigM[h1][S3] => 5 > 2 . SigM[h1][S3] remains the same.

• h2(4) < SigM[h2][S3] => 0 < 4 . SigM[h2][S3] changes to 0.

• h3(4) > SigM[h3][S3] => 8 > 3 . SigM[h3][S3] remains the same.

• h4(4) < SigM[h4][S3] => 3 < 8 . SigM[h4][S3] changes to 3.

• h5(4) > SigM[h5][S3] => 11 > 2 . SigM[h5][S3] remains the same.

• h6(4) < SigM[h6][S3] => 6 < 8 . SigM[h6][S3] changes to 6.

The new signature Matrix becomes:

Signature Matrix 5.

Hash function S1 S2 S3 S4

h1 1 3 2 1

h2 1 7 0 1

h3 1 11 3 1

h4 1 2 3 1

-30-

h5 1 6 2 1

h6 1 10 6 1

We move on to the next row, row numbered 5 with the same pattern. We can clearly

see that row number 5, has also 1 only in column S3. So, as seen before, that is the only

column that might be subjected to change. The hash values which derive from the corre-

sponding hash functions are: h1(5) = 6, h2(5) = 3, h3(5) = 0, h4(5) = 10, h5(5) = 7,

h6(5) = 4. Same as before, for the column S3 [2, 0, 3, 3, 2, 6] from the previous signa-

ture matrix, we have the following:

• SigM[h1][S3] = 2 < h1(5) = 6 => 2 < 6 . SigM[h1][S3] remains the same.

• SigM[h2][S3] = 0 < h2(5) = 3 => 0 < 3 . SigM[h2][S3] remains the same.

• SigM[h3][S3] = 3 > h3(5) = 0 => 3 > 0 . SigM[h3][S3] changes to 0.

• SigM[h4][S3] = 3 < h4(5) = 10 => 3 < 10 . SigM[h4][S3] remains the same.

• SigM[h5][S3] = 2 < h5(5) = 7 => 2 < 7 . SigM[h5][S3] remains the same.

• SigM[h6][S3] = 6 > h6(5) = 4 => 6 > 4 . SigM[h6][S3] changes to 4.

The new signature Matrix becomes:

Signature Matrix 6.

Hash function S1 S2 S3 S4

h1 1 3 2 1

h2 1 7 0 1

h3 1 11 0 1

h4 1 2 3 1

h5 1 6 2 1

h6 1 10 4 1

Notice that S1, S2 and S4 columns were not part of the equation, because they had 0 at

the initial matrix, in row number 5. Therefore we didn’t bother checking them at all.

Let’s continue with the next row, row number 6.

 -31-

In row number 6, of the original matrix 4.1, we notice that only S1 and S3 columns

have 1. So, only S1 and S3 columns are likely to change, if any changes occur. Let’s

examine the hash values derived from the hash functions :

h1(6) = 7, h2(6) = 6, h3(6) = 5, h4(6) = 4, h5(6) = 3, h6(6) = 2. Following from the pre-

vious signature matrix for columns S1[1, 1, 1, 1, 1, 1], and S3[2, 0, 0, 3, 2, 4], we have

the following for S1:

• SigM[h1][S1] = 1 < h1(6) = 7 => 1 < 7 . SigM[h1][S1] remains the same.

• SigM[h2][S1] = 1 < h2(6) = 6 => 1 < 6 . SigM[h2][S1] remains the same.

• SigM[h3][S1] = 1 < h3(6) = 5 => 1 < 5 . SigM[h3][S1] remains the same.

• SigM[h4][S1] = 1 < h4(6) = 4 => 1 < 4 . SigM[h4][S1] remains the same.

• SigM[h5][S1] = 1 < h5(6) = 3 => 1 < 3 . SigM[h5][S1] remains the same.

• SigM[h6][S1] = 1 < h6(6) = 2 => 1 < 2 . SigM[h6][S1] remains the same.

And for S3:

• SigM[h1][S3] = 2 < h1(6) = 7 => 2 < 7 . SigM[h1][S3] remains the same.

• SigM[h2][S3] = 0 < h2(6) = 6 => 0 < 6 . SigM[h2][S3] remains the same.

• SigM[h3][S3] = 0 < h3(6) = 5 => 0 < 5 . SigM[h3][S3] remains the same.

• SigM[h4][S3] = 3 < h4(6) = 4 => 3 < 4 . SigM[h4][S3] remains the same.

• SigM[h5][S3] = 2 < h5(6) = 3 => 2 < 3 . SigM[h5][S3] remains the same.

• SigM[h6][S3] = 4 > h6(6) = 2 => 4 > 2 . SigM[h6][S3] changes to 2.

So the new signature Matrix results:

Signature Matrix 7.

Hash function S1 S2 S3 S4

h1 1 3 2 1

h2 1 7 0 1

h3 1 11 0 1

h4 1 2 3 1

h5 1 6 2 1

h6 1 10 2 1

-32-

Notice that S2 and S4 columns had 0 at the initial matrix, in row number 6. So we

didn’t check them at all, and they remained unchanged. Let’s continue with the next

row, row number 7.

In row number 7, of the original matrix 4.1, we can see that only S1 and S2 columns

have 1’s. So, only S1 and S2 columns are likely to change, if any changes happen. Let’s

examine the hash values derived from the hash functions :

h1(7) = 8, h2(7) = 9, h3(7) = 10, h4(7) = 11, h5(7) = 12, h6(7) = 0 or

[8, 9, 10, 11, 12, 0]. Following from the previous signature matrix for columns

S1[1, 1, 1, 1, 1, 1], and S2[3, 7, 11, 2, 6, 10], we have the following:

 For S1:

• SigM[h1][S1] = 1 < h1(7) = 8 => 1 < 8 . SigM[h1][S1] remains the same.

• SigM[h2][S1] = 1 < h2(7) = 9 => 1 < 9 . SigM[h2][S1] remains the same.

• SigM[h3][S1] = 1 < h3(7) = 10 => 1 < 10 . SigM[h3][S1] remains the same.

• SigM[h4][S1] = 1 < h4(7) = 11 => 1 < 11 . SigM[h4][S1] remains the same.

• SigM[h5][S1] = 1 < h5(7) = 12 => 1 < 12 . SigM[h5][S1] remains the same.

• SigM[h6][S1] = 1 > h6(7) = 0 => 1 > 0 . SigM[h6][S1] changes to 0.

And for S2:

• SigM[h1][S2] = 3 < h1(7) = 8 => 3 < 8 . SigM[h1][S2] remains the same.

• SigM[h2][S2] = 7 < h2(7) = 9 => 7 < 9 . SigM[h2][S2] remains the same.

• SigM[h3][S2] = 11 > h3(7) = 10 => 11 > 10 . SigM[h3][S2] changes to 10.

• SigM[h4][S2] = 2 < h4(7) = 11 => 2 < 11 . SigM[h4][S2] remains the same.

• SigM[h5][S2] = 6 < h5(7) = 12 => 6 < 12 . SigM[h5][S2] remains the same.

• SigM[h6][S2] = 10 > h6(7) = 0 => 10 > 0 . SigM[h6][S2] changes to 0.

So the new signature Matrix is:

 -33-

Signature Matrix 7.

Hash function S1 S2 S3 S4

h1 1 3 2 1

h2 1 7 0 1

h3 1 10 0 1

h4 1 2 3 1

h5 1 6 2 1

h6 0 0 2 1

Note that S3 and S4 columns had 0 in the initial matrix, in row number 7, so we didn’t

consider them in the comparisons, therefore they remained unchanged. Let’s continue

with the next row, row number 8.

In row number 8, of the original matrix 4.1, we can see that only S2 and S4 have 1’s

in their columns. So, only S2 and S4 columns are likely to change. Let’s examine the

hash values derived from the hash functions:

h1(8) = 9, h2(8) = 12, h3(8) = 2, h4(8) = 5, h5(8) = 8, h6(8) = 11 or

[9, 12, 2, 5, 8, 11]. Following from the previous signature matrix for columns

S2[3, 7, 10, 2, 6, 0], and S4[1, 1, 1, 1, 1, 1], we have the following:

 For S2:

• SigM[h1][S2] = 3 < h1(8) = 9 => 3 < 9 . SigM[h1][S2] remains the same.

• SigM[h2][S2] = 7 < h2(8) = 12 => 7 < 12 . SigM[h2][S2] remains the same.

• SigM[h3][S2] = 10 > h3(8) = 2 => 10 > 2 . SigM[h3][S2] changes to 2.

• SigM[h4][S2] = 2 < h4(8) = 5 => 2 < 5 . SigM[h4][S2] remains the same.

• SigM[h5][S2] = 6 < h5(8) = 8 => 6 < 8 . SigM[h5][S2] remains the same.

• SigM[h6][S2] = 0 < h6(8) = 11 => 0 < 11 . SigM[h6][S2] remains the same.

For S4:

• SigM[h1][S4] = 1 < h1(8) = 9 => 1 < 9 . SigM[h1][S4] remains the same.

• SigM[h2][S4] = 1 < h2(8) = 12 => 1 < 12 . SigM[h2][S4] remains the same.

• SigM[h3][S4] = 1 < h3(8) = 2 => 1 < 2 . SigM[h3][S4] remains the same.

-34-

• SigM[h4][S4] = 1 < h4(8) = 5 => 1 < 5 . SigM[h4][S4] remains the same.

• SigM[h5][S4] = 1 < h5(8) = 8 => 1 < 8 . SigM[h5][S4] remains the same.

• SigM[h6][S4] = 1 < h6(8) = 11 => 1 < 11 . SigM[h6][S4] remains the same.

So S4 remains the same because all elements of column S4 in the Signature Matrix 7,

are smaller than the corresponding hash functions h1 to h6. So the new signature matrix

8, becomes:

Signature Matrix 8.

Hash function S1 S2 S3 S4

h1 1 3 2 1

h2 1 7 0 1

h3 1 2 0 1

h4 1 2 3 1

h5 1 6 2 1

h6 0 0 2 1

S1 and S3 columns had 0 at the initial matrix, in row 8, so we didn’t check them at all,

therefore they remained unchanged. Let’s continue with the next row from our initial

matrix, row number 9.

In row number 9, of the original matrix 4.1, we can see again, that only S2 and S4

have 1’s in their columns. Therefore, only S2 and S4 columns are likely to change.

Let’s examine the hash values derived from the corresponding hash functions:

h1(9) = 10, h2(9) = 2, h3(9) = 7, h4(9) = 12, h5(9) = 4, h6(9) = 9 or

[10, 2, 7, 12, 4, 9]. Following from the previous signature matrix for columns

S2[3, 7, 2, 2, 6, 0], and S4[1, 1, 1, 1, 1, 1], we have the following:

 For S2:

• SigM[h1][S2] = 3 < h1(9) = 10 => 3 < 10 . SigM[h1][S2] remains the same.

• SigM[h2][S2] = 7 > h2(9) = 2 => 7 > 2 . SigM[h2][S2] changes to 2.

• SigM[h3][S2] = 2 < h3(9) = 7 => 2 < 7 . SigM[h3][S2] remains the same.

• SigM[h4][S2] = 2 < h4(9) = 12 => 2 < 12 . SigM[h4][S2] remains the same.

 -35-

• SigM[h5][S2] = 6 > h5(9) = 4 => 6 > 4 . SigM[h5][S2] changes to 4.

• SigM[h6][S2] = 0 < h6(9) = 9 => 0 < 9 . SigM[h6][S2] remains the same.

For S4:

• SigM[h1][S4] = 1 < h1(9) = 10 => 1 < 10 . SigM[h1][S4] remains the same.

• SigM[h2][S4] = 1 < h2(9) = 2 => 1 < 2 . SigM[h2][S4] remains the same.

• SigM[h3][S4] = 1 < h3(9) = 7 => 1 < 7 . SigM[h3][S4] remains the same.

• SigM[h4][S4] = 1 < h4(9) = 12 => 1 < 12 . SigM[h4][S4] remains the same.

• SigM[h5][S4] = 1 < h5(9) = 4 => 1 < 4 . SigM[h5][S4] remains the same.

• SigM[h6][S4] = 1 < h6(9) = 9 => 1 < 9 . SigM[h6][S4] remains the same.

So S4 still remains the same, because all elements of column S4 in the Signature Matrix

8, are smaller than the corresponding hash functions from [h1 to h6]. So the new signa-

ture matrix 9, becomes:

Signature Matrix 9.

Hash function S1 S2 S3 S4

h1 1 3 2 1

h2 1 2 0 1

h3 1 2 0 1

h4 1 2 3 1

h5 1 4 2 1

h6 0 0 2 1

S1 and S3 columns had 0 at the initial matrix, in row 9, so they are ignored. Therefore

they remained unchanged. We continue with the next row from our initial matrix, row

number 10.

In row number 10, of the original matrix 4.1, we see that only S1 column has 1.

Therefore, only this column is likely to change. Let’s examine the hash values derived

from the corresponding hash functions:

h1(10) = 11, h2(10) = 5, h3(10) = 12, h4(10) = 6, h5(10) = 0, h6(10) = 7 or

[11, 5, 12, 6, 0, 7]. Following from the previous signature matrix the column

-36-

S1[1, 1, 1, 1, 1, 0], we have the following :

For S1:

• SigM[h1][S1] = 1 < h1(10) = 11 => 1 < 11 . SigM[h1][S1] remains the same.

• SigM[h2][S1] = 1 < h2(10) = 5 => 1 < 5 . SigM[h2][S1] remains the same.

• SigM[h3][S1] = 1 < h3(10) = 12 => 1 < 12 . SigM[h3][S1] remains the same.

• SigM[h4][S1] = 1 < h4(10) = 6 => 1 < 6 . SigM[h4][S1] remains the same.

• SigM[h5][S1] = 1 > h5(10) = 0 => 1 > 0 . SigM[h5][S1] changes to 0.

• SigM[h6][S1] = 0 < h6(10) = 7 => 0 < 7 . SigM[h6][S1] remains the same.

So the new signature matrix, after calculating the hash functions and comparing S1 col-

umn becomes:

Signature Matrix 10.

Hash function S1 S2 S3 S4

h1 1 3 2 1

h2 1 2 0 1

h3 1 2 0 1

h4 1 2 3 1

h5 0 4 2 1

h6 0 0 2 1

All but S1 columns had 0 at the initial matrix, in row 10, so they were ignored. There-

fore they remained unchanged. We continue with the next row from our initial matrix,

row number 11.

In row number 11, of the original matrix, we observe that all columns have 1 in their

cells. This means that all columns are likely to change. Let’s now examine the hash val-

ues derived from the corresponding hash functions:

h1(11) = 12, h2(11) = 8, h3(11) = 4, h4(11) = 0, h5(11) = 9, h6(11) = 5 or

[12, 8, 4, 0, 9, 5]. Following from the previous signature matrix, for the column

 -37-

S1[1, 1, 1, 1, 0, 0], we have the following :

S1:

• SigM[h1][S1] = 1 < h1(11) = 12 => 1 < 12 . SigM[h1][S1] remains the same.

• SigM[h2][S1] = 1 < h2(11) = 8 => 1 < 8 . SigM[h2][S1] remains the same.

• SigM[h3][S1] = 1 < h3(11) = 4 => 1 < 4 . SigM[h3][S1] remains the same.

• SigM[h4][S1] = 1 > h4(11) = 0 => 1 > 0 . SigM[h4][S1] changes to 0.

• SigM[h5][S1] = 0 < h5(11) = 9 => 0 < 9 . SigM[h5][S1] remains the same.

• SigM[h6][S1] = 0 < h6(11) = 5 => 0 < 5 . SigM[h6][S1] remains the same.

Again we have H[12, 8, 4, 0, 9, 5]

 And S2[3, 2, 2, 2, 4, 0]

For S2:

• SigM[h1][S2] = 3 < h1(11) = 12 => 3 < 12 . SigM[h1][S2] remains the same.

• SigM[h2][S2] = 2 < h2(11) = 8 => 2 < 8 . SigM[h2][S2] remains the same.

• SigM[h3][S2] = 2 < h3(11) = 4 => 2 < 4 . SigM[h3][S2] remains the same.

• SigM[h4][S2] = 2 > h4(11) = 0 => 2 > 0 . SigM[h4][S2] changes to 0.

• SigM[h5][S2] = 4 < h5(11) = 9 => 4 < 9 . SigM[h5][S2] remains the same.

• SigM[h6][S2] = 0 < h6(11) = 5 => 0 < 5 . SigM[h6][S2] remains the same.

H[12, 8, 4, 0, 9, 5]

S3[2, 0, 0, 3, 2, 2]

For S3, we have:

• SigM[h1][S3] = 2 < h1(11) = 12 => 2 < 12 . SigM[h1][S3] remains the same.

• SigM[h2][S3] = 0 < h2(11) = 8 => 0 < 8 . SigM[h2][S3] remains the same.

• SigM[h3][S3] = 0 < h3(11) = 4 => 0 < 4 . SigM[h3][S3] remains the same.

• SigM[h4][S3] = 3 > h4(11) = 0 => 3 > 0 . SigM[h4][S3] changes to 0.

• SigM[h5][S3] = 2 < h5(11) = 9 => 2 < 9 . SigM[h5][S3] remains the same.

• SigM[h6][S3] = 2 < h6(11) = 5 => 2 < 5 . SigM[h6][S3] remains the same.

H[12, 8, 4, 0, 9, 5]

-38-

S4[1, 1, 1, 1, 1, 1]

And finaly for S4, we have:

• SigM[h1][S4] = 1 < h1(11) = 12 => 1 < 12 . SigM[h1][S4] remains the same.

• SigM[h2][S4] = 1 < h2(11) = 8 => 1 < 8 . SigM[h2][S4] remains the same.

• SigM[h3][S4] = 1 < h3(11) = 4 => 1 < 4 . SigM[h3][S4] remains the same.

• SigM[h4][S4] = 1 > h4(11) = 0 => 1 > 0 . SigM[h4][S4] changes to 0.

• SigM[h5][S4] = 1 < h5(11) = 9 => 1 < 9 . SigM[h5][S4] remains the same.

• SigM[h6][S4] = 1 < h6(11) = 5 => 1 < 5 . SigM[h6][S4] remains the same.

So the new Signature matrix, after reviewing all columns and hash values from the hash

functions that came up, becomes:

Signature Matrix 11.

Hash function S1 S2 S3 S4

h1 1 3 2 1

h2 1 2 0 1

h3 1 2 0 1

h4 0 0 0 0

h5 0 4 2 1

h6 0 0 2 1

In this row case, all columns changed their state, because all sets: S1, S2, S3, S4 had 1

in that row: row number 11, and all these sets had at least 1 element (in our case exactly

1) bigger than the corresponding hash value that derived from the corresponding hash

function.

Let’s move on now to the last row, row number 12 from our original matrix. In row

number 12, of the original matrix, we can see that all columns except S4 have 0’s in

their cells. This means that, only S4 column is likely to change. Let’s now examine the

hash values derived from the corresponding hash functions:

 -39-

h1(12) = 0, h2(12) = 11, h3(12) = 9, h4(12) = 7, h5(12) = 5, h6(12) = 3 or

[0, 11, 9, 7, 5, 3]. Following from the previous signature matrix 10, for column

S4[1, 1, 1, 0, 1, 1], we have the following :

S4:

• SigM[h1][S4] = 1 > h1(12) = 0 => 1 > 0 . SigM[h1][S4] changes to 0.

• SigM[h2][S4] = 1 < h2(12) = 11 => 1 < 11 . SigM[h2][S4] remains the same.

• SigM[h3][S4] = 1 < h3(12) = 9 => 1 < 9 . SigM[h3][S4] remains the same.

• SigM[h4][S4] = 0 < h4(12) = 7 => 0 < 7 . SigM[h4][S4] remains the same.

• SigM[h5][S4] = 1 < h5(12) = 5 => 1 < 5 . SigM[h5][S4] remains the same.

• SigM[h6][S4] = 1 < h6(12) = 3 => 1 < 3 . SigM[h6][S4] remains the same.

So the final Signature matrix, after traversing all rows one by one, and applying the pre-

vious algorithm 4.1, we saw at the beginning for creating the minhash signatures, be-

comes the following:

Final Signature Matrix.

Hash function S1 S2 S3 S4

h1 1 3 2 0

h2 1 2 0 1

h3 1 2 0 1

h4 0 0 0 0

h5 0 4 2 1

h6 0 0 2 1

 What we have achieved here is that we can make an estimation of the true Jaccard

Similarity of Sets: S1, S2, S3 and S4 from our Final Signature Matrix with high proba-

bility! For example we notice that, from our final signature matrix column S1 and S4

have Jaccard Similarity JS(S1, S4) = (S1 intersect S4) / (S1 union S4, (That is all the

elements that belong to the Union of the 2 sets)). So JS(S1, S4) = 2
5

= 0.4. If we see

-40-

closely at the initial matrix 4.1, we can derive that the true Jaccard Similarity of the sets

S1 and S4 is
3
10

= 0.3. This number is very close to our estimation 0.4.

 Although this example is very small to make a good prediction, the rule is that the

more hash functions you take as a parameter, the better the estimation. If we extend it,

the signature columns for S1 and S2 that derive from our final signature matrix is 0

(true similarity
2
9
 = 0.222… too small), while the signatures of S2 and S3 estimate also

to 0, their true Jaccard similarity is
1
10

 = 0.1.

5 Locality Sensitive Hashing
 Locality-sensitive hashing (LSH) reduces the dimensionality of high-dimensional

data. LSH hashes input items so that similar items map to the same “buckets” with high

probability. LSH differs from conventional and cryptographic hash functions because it

aims to maximize the probability of a “collision” for similar items. [5] LSH has com-

mon use in clustering and Nearest Neighbor (N-N) search problems.

5.1 LSH and Documents
 What we have achieved so far, is that we have managed to significantly reduce the

space needed to store the elements, (in our case shingles which have been hashed to in-

teger numbers) needed for a document. But as we said earlier in previous chapters, even

if we managed to significantly reduce the space needed for every document, the pair-

wise Jaccard Similarities of all the documents that are being compared is very large,

even for a small amount of documents, making this approach of finding the greatest

similarity pairs inefficient. For example if we consider 10 documents, and do the num-

ber of comparisons naively, that would be:

𝐶�102 � = 10!
2! × (10−2)!

 = 10 × (10−1) × (10−2)!
2 × (10−2)!

 = 10 × 9 × 8!
2 × 8!

 = 10 × 9
2

= 90
2

= 45

comparisons! Imagine for 1 million or a billion documents, how many comparisons we

would have! The general rule of the number of comparisons in a corpus of N documents

is :

 -41-

𝐶�𝑁2� = 𝑁!
2! × (𝑁−2)!

 = 𝑁 × (𝑁−1) × (𝑁−2)!
2 × (𝑁−2)!

 = 𝑁 × (𝑁−1)
2

Number which becomes very large, even for a “few” documents.

 Although we can use parallelism to reduce the time needed to compare sets of

hashed shingles; this mitigation of the time needed to make all these comparisons possi-

ble, is infinitesimal compared to the huge number of comparisons needed to examine

every tuple of sets in the corpus. However, there is something we can do, to find very

efficiently the most significant – greatest pairs that are possible to be similar. There is a

method that examines only pairs of Sets that might be similar to each other (those and

only those), thereby avoiding all other unnecessary pairs. This method is named Locali-

ty Sensitive Hashing or LSH for short and has many applications in nearest neighbor

search problems. Because Locality Sensitive Hashing is a general form of dimensionali-

ty reduction scheme, we will focus our attention to a more particular structure of LSH,

that is ideally used in the Min-Hash algorithm for finding near duplicates.

5.2 LSH and Min-Hash signatures
 For the purpose of LSH we use Bands and Buckets. We will explain shortly how we

use the Band and Bucket scheme. For all Bands we determine a specific number of

buckets according to a mathematical formula which we will see shortly after. So we

have for every bucket, a fixed number of items or elements that can be stored inside the

bucket.

 Let’s try to explain how the LSH technique works and how we can use it in our case

to efficiently find the most identical documents. First of all we must have created the

Min-Hash signature matrix from the initial characteristic Matrix, as described in the

previous chapters. Then we divide the Signature Matrix to B regions – Bands we will

call them, of r rows contained in each Band. Obviously it must hold:

 𝐵 × 𝑐 = #rows in the Signature Matrix.

Then we Hash every Band into a big number of buckets, we will refer to it as Bucket

Array List. Usually when we say big number of buckets, what we mean is at least as big

as all the elements in the Universe. This in our case is: 232 − 1. So what we expect is

that, only those Sets that hashed to the same bucket become the candidate pairs, and on-

ly these will be examined for similarity. Hence, we expect that only the most similar

items will hash to the same bucket, and the dissimilar ones will not.

-42-

 Of course there might be false positives, that is dissimilar pairs of Sets that hashed

to the same bucket, and false negatives (similar pairs that didn’t hashed to the same

buckets in all the Bucket Array Lists). But we expect that all false positives and false

negatives will be just a tiny percentage of the true positive and true negative pairs ac-

cordingly.

 So as we said earlier, we take every Band and hash it to a big Bucket Array List.

That means we have as many Bucket Array Lists as the number of Bands. We can use a

different Hash Function for every Band that maps subsets of the signature Matrix to a

big number of buckets but that is not essential. What is critical here is to use a good

Hash function that maps Band Sets to a big number of Buckets. This actually ensures us

that only two quite similar Sets will hash to the same bucket number and these Sets will

be considered similar and later being examined if they are truly similar.

 The following figure 5.1 depicts the implementation of the Banding technique in the

minhash signature. It depicts the Signature Matrix divided in B bands of r rows each

band.

Figure 5.1: Hashing Bands

 -43-

Let’s take a closer look at this LSH Banding technique to get a better understanding on

how it works with the following example.

Figure 5.2 that follows shows a signature Matrix of 12 rows in total, that has been

divided by the Banding technique into 4 Bands of 3 rows each. If we look closer at

Band 1, that subset of the signature Matrix, it is easy to notice that columns 2 and 4

have the same sequence of numbers: {0, 2, 1}, so we expect that columns 2 and 4 to

hash to the same bucket number in the Bucket Array List 1 that corresponds to Band 1.

According to what was said above, we can expect that there will not be any other pair of

columns that will hash to the same bucket number in this Bucket Array List. This can be

better assured depending on how many buckets we can afford in the Bucket Array List

and the capability of the hash function we use to make a good sharing of a set in a given

number of buckets.

According to the scheme in Figure 5.2 it is possible for columns 1 and 2 to hash to

the same bucket in another Bucket Array List other than the first, if they have the same

sequence of numbers for example. So we note that there are 3 other chances for every

pair of documents that didn’t hash to the same bucket number in the first Bucket Array

List, to hash in some bucket in another Bucket Array List. Be noted that there can be

accidental collisions but we expect this to be in minimum levels. Figure 5.2 below

shows this in detail:

 Figure 5.2 : Signature Matrix division consisting of 4 Bands with 3 rows each[1]

-44-

What we are more interested here is to minimize the false negatives, that is truly

similar pairs that never hashed to the same bucket number. So what we will expect and

is more important to us from the Banding strategy technique is to avoid false negatives

from our results.

5.3 Banding Technique
Now let’s try to analyze the Banding strategy with an example. Let’s suppose that

for two Sets S1 and S2 in the characteristic Matrix there is true Jaccard Similarity: s.

Also recall from Section 4.2 that the probability to be equal in any row in the Signature

Matrix for these two sets is the same as the Jaccard Similarity: s.

We will now calculate the probability for these two sets to become a candidate pair

for comparison. According to the Banding Strategy, recall that two Sets become a can-

didate pair only if any of the Bands from the Signature Matrix hashes to the same buck-

et, or equivalently if there is a bucket in any of the Bucket Array Lists that has two or

more sets hashed inside it. Let’s try to find the probability two Sets, hash to same buck-

et, in any bucket of the bucket Array Lists. That means, calculating the probability that

two Sets become a candidate pair. Below we give some probabilities for two Sets S1

and S2, for any band B with r number of rows per band:

1) The probability of agreement in one row of a Band between S1 and S2 is s.

2) The probability all rows agree in one Band is: 𝑐𝑟.

3) The probability at least one row disagrees in one Band is: 1 − 𝑐𝑐.

4) The probability at least one row disagrees in one Band for all Bands is:

(1 − 𝑐𝑟)𝑏. That means there is not a single Band that agrees in all rows.

5) The probability that there is at least one band that agrees in all rows is:

 1 − (1 − 𝑐𝑟)𝑏 .

If we try to examine it a little closer, we will see that this function resembles a lot to an

S – Curve function, where there exists a big leap somewhere in the function that rises

suddenly in a small width of x’x. From the Figure 5.3 that follows, we will see that this

 -45-

leap is found for s = 0.5. We can estimate the similarity threshold with a function of b

Bands and r rows per band.

Figure 5.3 : b-bands of r-Rows

So what is the approximation function with b and r parameters we can use to calcu-

late this S – Curve?

Well it turns out to be: �1
𝑏

𝑟
 .

Let’s give a quick example of b = 20 bands of r = 5 rows per band. Then the function:

1 − (1 − 𝑐𝑟)𝑏 takes the form of: 1 − (1 − 𝑐5)20. In Figure 5.4 below we give the re-

sult of the function for some values of the true similarity s. What we notice is that the

biggest leap the function takes is from s = 0.4 to s = 0.6, it rises more than 0.6.

-46-

 Figure 5.4 : Values of the S-Curve for b = 20 and r = 5 [1]

The figure above is essentially the probability that two columns will hash to the

same bucket in at least one Band and essentialy these two columns become a candidate

pair. The above figure is for b = 20 and r =5. Let’s make an example to see this better.

Let’s suppose that for 2 columns in the characteristic Matrix we have true Jaccard

Similarity s = 0.6, with the above b and r. If we do the math we have (1 − 0.65) = 1 -

0.07776 = 0.92224.

0.9222420 = 0.19809754616

1 - 0.19809754616 = 0.80190245384

Again that is: 1 − (1 − 0.65)20 = 0.80190245384

So what this means is that in one band the probability for all rows to agree is

0.65= 7.77%. But the probability there is at least one band from the 20 Bands that

agrees in all rows is: 0.80190245384. So there is a possibility of 20% in this case to

miss these pairs as false negatives.

5.4 Merging the Techniques
We can summarize now to the big picture of the Min-Hashing algorithm with the

LSH technique and we can conclude to the construction of the algorithm in the follow-

ing steps. But before we conclude to a concrete number of steps let’s recap some basic

and fundamental concepts of the Min – Hash algorithm. It should be noticed that this

technique produces false positives. That is pairs that marked as candidate pairs – hashed

to the same bucket by accident (we discard them after they are found not to be actually

 -47-

similar). Min-Hash also produces false negatives, that is pairs that are truly similar but

never found to be (never hashed in the same bucket in any of the Bucket Array Lists).

This case is what we are trying more to avoid. Based on the discussion in the previous

chapters, we finally provide the steps for the algorithm.

Ask user for the number k that denotes the length of k – shingles. Pick the right k

number depending on how big the sets would be. For example k = 5 for e-mails, k = 9

or 10 for bigger documents of 10 pages or more long, e.t.c. Construct from each docu-

ment the k – shingle set and pass it through a good hash function (we use Mur-Mur

Hash 3 in our case), so you are dealing with plain numbers instead of strings.

1) Short the characteristic Matrix by shingle to have the Universe of numbers –

shingles.

2) Prompt user for the number of hash functions and construct the Signature Matrix

from the algorithm 4.1 we gave in chapter 4.

3) Prompt user for a desired similarity threshold s. Tune the number of Bands b and

number of rows r so that 𝑏 × 𝑐 = 𝑐, and s ≈ �1
𝑏

𝑟 . Ask user if speed or accuracy

is desired. If user selected accuracy (that means avoiding false negatives) then

pick b and r in a way such that they give a value slightly lower that s in the

above S – Curve function: �1
𝑏

𝑟 . Accuracy actually means more bands with less-

er rows per band. Otherwise if user selected speed, then that value can be slight-

ly bigger. Speed actually means to run the algorithm faster thereby avoiding

false positives. That means lesser bands with more rows per band. It means that

if two columns manage to hash to the same bucket in one bucket Array List,

then these columns almost certainly are identical.

4) Apply the LSH technique as we explained in section 5.2 in the Signature Matrix.

5) Check if the candidate pairs found by the LSH pass the similarity threshold giv-

en by the user. That means firstly checking if the signatures of the candidate

pairs found by the LSH are over the similarity threshold. If they are not, filter

them out.

6) For those signature pairs that pass the similarity threshold, we calculate the true

Jaccard Similarity from their characteristic Matrix, to see that they are truly sim-

ilar.

-48-

The summarization of all the above steps and stages we followed to produce the final

result; that is the final candidate pairs of documents, is depicted in the initial picture 3.1,

that showed us the big picture of the MinHashing Algorithm.

 -49-

6 Conclusions
In this thesis, we have explored similarity search problems using techniques such as

Minhashing and Locality Sensitive Hashing. We saw in detail the inner workings of the

Minhashing algorithm and how it preserves the similarity of 2 columns in the MinHash

Signature Matrix while greatly shrinking the size of every document. We scrutinized the

direct correlation MinHash signatures and the signature matrix have with the Jaccard

Similarity.

We also examined the Locality Sensitive Hashing, through the Banding technique

which was based upon the MinHash Signature Matrix. We hashed the Signature Matrix

to a big number of buckets, so that documents that hashed to the same buckets, formed

candidate pairs. We also saw the probability of a “good” estimation in finding the can-

didate pairs, with regard to the right pair of Rows r and Bands b and a given similarity

threshold.

6.1 Applications and Other Uses
Min – Hash algorithm is found to have many applications like clustering and near –

duplicate elimination. Among many applications Min-Hash algorithm has been used for

finding:

 Mirror websites, or approximate mirrors

 Plagiarism detection

 Spam identification (e-mail, etc.)

 Near duplicate documents, news articles, etc.

 Document clustering and other.

There are many other similar techniques that use the Min – Hash algorithm in other

cases like image data processing.

As previously mentioned the Locality Sensitive Hashing technique is a dimensional-

ity reduction form and has many cases and illustrations in many N – N problems. LSH

can also use a plethora of techniques for estimating the distance like Haming, Cosine

distance and others, which we are not going to describe here.

-50-

The Min-Hash algorithm may be seen as a special case of LSH that makes extensive

use of hashing algorithms. In the more general Map-Reduce scheme, there are also

many similar versions of the MinHash Algorithm that are used in more specific way,

depending on the particular problem.

6.2 Evaluation of the Algorithm
Min-Hash and other algorithms have been tested and evaluated by big companies

and corporations like Google. In 2007, Google highlighted the Min-Hash algorithm with

LSH to be more appropriate for Google News personalization.

Bibliography
[1] Jure Leskovec, Anand Rajaraman, Jeff Ullman, “Stanford University” “Mining of

Massive Datasets” Book [online] available at http://www.mmds.org/

[2] From the 1995 Random House Compact Unabridged Dictionary: use or close imitation

of the language and thoughts of another author and the representation of them as one's

own original work qtd. in Stepchyshyn, Vera; Nelson, Robert S. (2007). Library plagiarism

policies. Assoc. of College & Resrch Libraries. p. 65. ISBN 0-8389-8416-9.

From the Oxford English Dictionary: the wrongful appropriation or purloining and publica-

tion as one's own, of the ideas, or the expression of the ideas… of another

qtd. in Lands (1999)

[3] Valpy, Francis Edward Jackson (2005) Etymological Dictionary of the Latin Lan-

guage, p.345 entry for plagium, quotation: "the crime of kidnapping."

[4] Broder, Andrei Z. (1997), "On the resemblance and containment of documents", Com-

pression and Complexity of Sequences: Proceedings, Positano, Amalfitan Coast, Salerno, Italy,

June 11-13, 1997(PDF),

http://www.mmds.org/
https://en.wikipedia.org/wiki/Random_House_Dictionary_of_the_English_Language
https://books.google.com/books?id=OHamIn5dPR8C
https://books.google.com/books?id=OHamIn5dPR8C
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-8389-8416-9
https://en.wikipedia.org/wiki/Oxford_English_Dictionary
https://en.wikipedia.org/wiki/Andrei_Broder
http://gatekeeper.dec.com/ftp/pub/dec/SRC/publications/broder/positano-final-wpnums.pdf
http://gatekeeper.dec.com/ftp/pub/dec/SRC/publications/broder/positano-final-wpnums.pdf
http://gatekeeper.dec.com/ftp/pub/dec/SRC/publications/broder/positano-final-wpnums.pdf

 -51-

[5] Zhao, Kang; Lu, Hongtao; Mei, Jincheng (2014). "Locality Preserving Hashing".

pp. 2874–2880. Tsai, Yi-Hsuan; Yang, Ming-Hsuan (October 2014). "Locality preserv-

ing hashing". pp. 2988–2992.

[6] https://www.princeton.edu/pr/pub/integrity/pages/plagiarism/

[7] https://en.wikipedia.org/wiki/Jaccard_index

http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8357

 -53-

7 Appendix
Below we will show the data samples it was tested, the source code and some results.

Data samples were derived from a well-known excerpt of a famous poet. [6]

Let’s begin with the data samples we tested it. Please note that due to insufficient access

to a cluster, i created and tested the source code in my personal laptop.

This program is written in Apache Spark which is an open-source cluster-computing

framework (original author Matei Zaharia), and in Scala programming language, which

is a functional language. Apache Spark is used for programming entire clusters with re-

spect to data parallelism and fault tolerance.

So it can be used and run in a cluster-computing framework, (maybe with minor

modifications). I created the source code with parallel techniques of programming in

mind from the very first place (so that it can run on a cluster mode).

Platform and OS used:

• Ubuntu 16.04, IntelijIDE,

• Spark, Scala (You can see versions from the .sbt file)

Below I give some data samples that i tested it on.

7.1 Data Samples
Below are given some examples of our test Set that vary from verbatim plagiarism, to

paraphrasing.

-54-

Haml_Othello_Original.txt

From time to time this submerged or latent theater in Hamlet becomes almost overt. It is

close to the surface in Hamlet’s pretense of madness, the “antic disposition” he puts on

to protect himself and prevent his antagonists from plucking out the heart of his mys-

tery. It is even closer to the surface when Hamlet enters his mother’s room and holds

up, side by side, the pictures of the two kings, Old Hamlet and Claudius, and proceeds

to describe for her the true nature of the choice she has made, presenting truth by means

of a show. Similarly, when he leaps into the open grave at Ophelia’s funeral, ranting in

high heroic terms, he is acting out for Laertes, and perhaps for himself as well, the folly

of excessive, melodramatic expressions of grief.

Haml_Oth_1.txt (Verbatim plagiarism, or unacknowledged direct quotation (lift-

ed passages are underlined))

Almost all of Shakespeare’s Hamlet can be understood as a play about acting and the

theater. For example, there is Hamlet’s pretense of madness, the “antic disposition” that

he puts on to protect himself and prevent his antagonists from plucking out the heart of

his mystery. When Hamlet enters his mother’s room, he holds up, side by side, the pic-

tures of the two kings, Old Hamlet and Claudius, and proceeds to describe for her the

true nature of the choice she has made, presenting truth by means of a show. Similarly,

when he leaps into the open grave at Ophelia’s funeral, ranting in high heroic terms, he

is acting out for Laertes, and perhaps for himself as well, the folly of excessive, melo-

dramatic expressions of grief.

Haml_Oth_2.txt (Lifting selected passages and phrases without proper acknowl-

edgment (lifted passages are underlined))

Almost all of Shakespeare’s Hamlet can be understood as a play about acting and the

theater. For example, in Act 1, Hamlet adopts a pretense of madness that he uses to pro-

tect himself and prevent his antagonists from discovering his mission to revenge his fa-

ther’s murder. He also presents truth by means of a show when he compares the por-

traits of Gertrude’s two husbands in order to describe for her the true nature of the

 -55-

choice she has made. And when he leaps in Ophelia’s open grave ranting in high heroic

terms, Hamlet is acting out the folly of excessive, melodramatic expressions of grief.

Haml_Oth_3.txt (Paraphrasing the text while maintaining the basic paragraph

and sentence structure)

Almost all of Shakespeare’s Hamlet can be understood as a play about acting and the

theater. For example, in Act 1, Hamlet pretends to be insane in order to make sure his

enemies do not discover his mission to revenge his father’s murder. The theme is even

more obvious when Hamlet compares the pictures of his mother’s two husbands to

show her what a bad choice she has made, using their images to reveal the truth. Also,

when he jumps into Ophelia’s grave, hurling his challenge to Laertes, Hamlet demon-

strates the foolishness of exaggerated expressions of emotion.

Note that highlighted texts: Haml_Oth_1.txt and Haml_Othello_Original.txt which

are verbatim plagiarism, are more likely to be found plagiarized from the MinHash al-

gorithm because they have the more shingles in common than the others (see the under-

lined text).

Following are some results from the program:

7.2 Some Results
First of all the program prompts the user for some essential input variables like:

• The path Directory where all the files exist.

• N-Gram size of shingles

• The level of parallelism. That is how many partitions user prefers. (Should be at

least 2 to see a level of parallelism). The default should be at least the number of

cores in the whole cluster.

• The Number of Hash-Functions.

• The Similarity threshold above which the user prefers the documents to be simi-

lar.

-56-

• And a last parameter which denotes whether the user prefers Accuracy (more

smaller bands but avoiding of false negatives) instead of Speed (Bigger bands,

but bigger Risk of false negatives, but Faster).

7.2.1 The Shingling phase

 -57-

That is the shingling phase: We extract n-shingles from the original document.

7.2.2 Hashing the Shingles

From the above picture we can see that we have hashed the Document shingles to Inte-

gers. So we have Vector[Int] now to play with.

It is also shown how the tuning process of the number of bands and rows per band takes

place, until we converge to the similarity threshold.

-58-

The above picture shows all the final parameters that were calculated and/or selected by

the user.

 -59-

7.2.3 The MinHash Signature
Below are the MinHash Signatures of every document. Note that all Vectors contain N

Hash Integers (the User input, in our case is 225).

-60-

7.2.4 The LSH Banding Technique
The following picture depicts: How the MinHash Signature is hashed into a big number

of buckets ± 231 − 1 in our case (that is 232 − 1 available buckets for every Band) and

aggregated by (Band, Bucket). So those documents that hashed to the same bucket in

some band, are a candidate pair. That is the LSH.

 -61-

From the previous step take all the candidate pairs and find the Jaccard Similarity of

their signatures, and the original Jaccard Similarity from the initial documents. (Docu-

ments that were hashed to the same bucket accidentally but the minHash Jaccard Simi-

larity didn’t exceed the similarity threshold were filtered out).

-62-

Let’s see the same example with “bigger” bands:

 -63-

-64-

You can notice lesser collisions to buckets from the following picture as the number of

rows per bucket is bigger from the previous example.

 -65-

7.3 Source code
For quick review of the source code please refer to files:

• Quick Review of the Source Files/Diss13.scala

• Quick Review of the Source Files/built.sbt

To run the program:

• Open Diss13 project with IntelijIDEA (Note that, you must have installed Inteli-

jIDEA with Spark and Scala), I run it in Ubuntu 16.04 but in Windows should

be fine too.

Or:

• To compile and Run the program without an IDEA, (Note that you must have a

system with Spark and Scala installed) do the following :

-66-

From Linux:

Get in Diss13 Directory:

1) $cd Diss13/

2) $sbt package

 [info] Packaging {..}/{..} Diss13/target/scala-2.10/diss13_2.10-1.0.jar

Then run it by:

3) $YOUR_SPARK_HOME/bin/spark-submit ./{..}/{..}Diss13/target/scala-

2.10/diss13_2.10-1.0.jar

I have an assembled diss13_2.10-1.0.jar package in [Quick Review of the Source Files/]

Directory, so we are ready to run it.

You can also find the examples in Directory:

• 3_Oth/

And more results in Directory:

• Results/

	Abstract
	Contents
	1 Introduction
	1.1 Plagiarism Definition
	1.2 Plagiarism detection
	1.3 What is our Problem?

	2 Similarity
	2.1 Similarity of Sets
	2.2 Jaccard Similarity

	3 Shingles
	3.1 Shingling size
	3.2 Hashing shingles
	3.3 Preserve similarity of sets while shrinking the space
	3.4 Representation of Sets

	4 The Min-Hash Algorithm
	4.1 Min-Hashing
	4.2 MinHash and Jaccard Similarity Connection
	4.3 Minhash Signatures
	4.4 Creating Minhash Signatures

	5 Locality Sensitive Hashing
	5.1 LSH and Documents
	5.2 LSH and Min-Hash signatures
	5.3 Banding Technique
	5.4 Merging the Techniques

	6 Conclusions
	6.1 Applications and Other Uses
	6.2 Evaluation of the Algorithm

	Bibliography
	7 Appendix
	7.1 Data Samples
	7.2 Some Results
	7.2.1 The Shingling phase
	7.2.2 Hashing the Shingles
	7.2.3 The MinHash Signature
	7.2.4 The LSH Banding Technique

	7.3 Source code

