三次元細胞培養系を用いた機械的負荷モデルの構築

2014.3

東京農工大学大学院
連合農学研究科
応用生命科学専攻

原 真佐夫
目次

序論 ... 1

第1章 関節由来の滑膜細胞における機械的負荷の影響 ... 5
 はじめに .. 5

第1節 アガロースゲル培養法の確立および繰り返し圧縮負荷の影響 .. 6
 はじめに .. 6

第2節 実験材料および方法 .. 6

第3節 結果 .. 10

第4節 考察 .. 19

第2章 真皮由来の線維芽細胞における機械的負荷の影響 ... 38
 はじめに .. 38

第1節 コラーゲンゲル培養法の確立および繰り返し圧縮負荷の影響 .. 39
 はじめに .. 39

第2節 実験材料および方法 .. 39

第3節 結果 .. 42

第4節 考察 .. 51
序論

生物学において培養とは、動植物の胚や組織または微生物を人工的に生育、発育、増殖させることを示す（Nema, 2013）。各構造を個体から分離して培養することで、組織や細胞の機能を観察できる。生体組織を培養器具中で培養することを実証したのは、1885年にRouxがニワトリ胚の神経板組織を数日間生かしたことに始まる（関口, 2007）。このときRouxは、組織を人工的に生存させただけで成長を確認したわけではなくなかった。生体組織の成長の確認は、1907年にHarrisonが、カエル神経組織をリンパ液で固め、神経線維の成長を観察したのが最初であり(Harrison, 1907)、1910年にBurrowsとCarrelが、初めて哺乳類組織を凝固血漿上での培養に成功した（Carrel, 1910）。細胞培養は、1916年にRousとJonesが、トリプシンで細胞懸濁液を作製し、培養したことから始まった（Rous, 1916）。単離した接着性細胞を培養皿に撒くと、細胞は二次元的に培養皿表面に接着することを報告している。細胞の単離には、コラゲナーゼ、ヒアルロニダーゼ、エラスターゼ、そしてトリプシンなどのタンパク質分解酵素および糖質分解酵素で組織を分解する必要がある。トリプシンはカルシウムイオンやマグネシウムイオンに阻害されるため、キレート剤としてエチレングリコール酸（EDTA）も併用される。またキレート剤は、細胞間接着を弱めるためにも用いられる。これは、細胞間接着分子であるカドヘリンが、カルシウム依存性（Takeichi, 1988）であることによると起因する。

細胞を合成高分子や天然高分子由来のゲルで包埋することで、三次元構造体を形成する事が可能である。天然高分子系の三次元培養担体として、アガロース、メチルセルロース、そしてコラーゲンなどが用いられる。線維芽細胞をコラーゲンゲル内で包埋培養すると、細胞の自己組織化によるゲル収縮が誘導され、皮膚真皮様モデルになる（Bell, 1979）。この真皮様モデルに、表皮細胞を播種した真皮モデルも提出されている（Bell, 1981）。細胞は生体組織中で三次元的に分布しており、周囲の環境の影響を受ける。たとえば、コラーゲンゲル中で培養される細胞は、コラーゲンゲル上の培養に比べ増殖速度が遅い。これは、細胞のコラーゲン接着量の違いが原因であると考えられている（Nishiyama, 1989）。また、Kienerらは、ラミンやコラーゲンを用いて滑膜細胞を三次元培養し、滑膜表層の構造に類似したモデルを作製している（Kiener, 2010）。しかし、滑膜細胞や真皮線維芽細胞は、生体内ではなく常に機械的負荷にさらされているため、これらの細胞の機能解析には、機械的負荷の影響を考慮する必要がある。
生体内の組織は、常に機械的外力負荷が加わっており、圧縮負荷（Compressive Load）、引っ張り負荷（Tensile Load）、そしてせん断負荷（Shearing load）が存在する（Silver, 2003）。これら外力に対応して、組織内部に圧縮応力（Compressive Stress）、引っ張り応力（Tensile Stress）、そしてせん断応力（Shearing Stress）が生じる。組織への機械的負荷は、細胞外マトリックスを通じて細胞にも作用する。関節への機械的負荷は、関節組織中の生理メカニズムに寄与することが報告されている（Gabay, 2008）。また、皮膚への機械的負荷は、動脈血圧（Kimura, 1995）、自律神経（Holey, 2011）、そして創傷治癒（Timmenga, 1991）に影響することが報告されている。

細胞には機械的負荷への応答機能が存在する。機械的負荷への応答に関与するタンパク質として、インテグリンがある。インテグリンは、細胞外の接着分子と結合する細胞膜貫通型受容体である。インテグリンは、α鎖とβ鎖の膜貫通型サブユニットからなるヘテロ二量体であり、細胞内ではシグナル伝達分子focal adhesion kinase（FAK）やtalin、α-actininのようなアクチン結合タンパク質を介し、細胞骨格であるアクチン繊維と結合している（Pavalko, 1991）。例えば、コラーゲンと結合するインテグリンは、コラーゲンの2本鎖中のモチーフであるGFOGER配列（O: HyP）を介して結合している。細胞がインテグリンを介して細胞外マトリックスに結合することでFAKの自己リン酸化を起点として、細胞増殖、生存維持、そして細胞骨格の再編成を果たす。これらの伝達経路は、増殖因子受容体のシグナル経路と基本的に一致する（関口, 2007）。実際、線維芽細胞をコラーゲン上で培養すると、プラスチック培養プレートよりも長期間培養可能である（Gey, 1974）。また、膜貫通型のヒアルロン酸結合タンパク質であるCD44（Clusters of differentiation-44）に関する研究が進んでいる。CD44は、アンキリンファミリー（Lokeshwar, 1994）またはERM（Ezrin, Moesin, Radixin）ファミリーのようなアクチン結合タンパク質を介し、アクチン繊維と結合している。CD44は、細胞外のヒアルロン酸と結合し、細胞の機能を制御していることが報告されている（Toole, 1997）。

生体組織は、常に機械的負荷を受けている。In vivoに近い細胞培養モデル系を確立するためには、新たな細胞培養系を確立し、生体に近い機械的負荷を加えることが重要である。機械的負荷と細胞機能の関係を検証するため、単層培養系に機械的負荷を加える装置として伸展負荷装置（FX-4000T™: Flexcell; ストレックス STB)(Banes, 1985)や流水圧負荷装置（Krueger, 1971; Owan, 1997）が考案されている。これらの装置を用いて滑膜細胞に引っ張り負荷を加え
た結果、ヒアルロン酸産生量が増加することが報告されている(Momberger, 2005)。また、真皮線維芽細胞に引っ張り負荷を加えることで細胞が伸び方向と直交して配向することが報告されている(Buck, 1980)。平板培養への負荷に対して、三次元構造体に機械的負荷を加える装置として圧縮負荷装置(Cyclic Load Simulator: Technoview; FX-4000C™)が市販されている。本装置を用いて半月板組織に圧縮負荷を加えた結果、軟骨組織に存在するプロテオグリカンであるアグリカン、ビグリカン、デコリン、そしてⅠ型コラーゲンの遺伝子発現量が減少し、マトリックスメタプロテアーゼ-1(MMP-1)の遺伝子発現量が増加した(Upton, 2003)。また、軟骨組織にFlexcellで圧縮負荷を加えた結果、プロスタグランジンE2(PGE2)やシクロオキシゲナーゼ-2(COX-2)タンパク質が産出される(Gosset, 2008; Fermor, 2002)、活性酸素の発生が促進することが報告されている(Miki, 2010)。三次元培養細胞における機械的負荷は、組織分解系の因子の活動が活性化するものと考えられる。しかし、三次元培養系への機械的負荷に関する研究は緒にいたばかりであり、未だ研究が十分とは言えない。これまでの研究から未達と思われることを以下に列挙する。

1.二次元培養と三次元培養のように培養条件を変えた場合の細胞の産生物の違いが明確でない。

2.三次元培養を行うに当たり、細胞を保持する担体の有効性が明確でない。

3.三次元培養に機械的負荷を与えた研究において、遺伝子の発現量の変化を測定しているが、生成物の変化に着目した研究が行われていない。

4.機械的負荷の条件を検討している研究報告がない。

これまでの研究を踏まえ、機械的負荷に対する実験系を確立する事を目的とし、生体において機械的負荷が常時影響する器官である関節および真皮由来細胞を用いた研究を計画した。そこで本研究では、生体組織様三次元培養簡易モデルを構築し、圧縮負荷を加えながら培養することで、細胞や細胞外マトリックス成分の変化について検討することとした。第1章では、関節由来の滑膜細胞を用いて三次元培養系を構築し、圧縮負荷の影響を検討し、第2章では、真皮由来の線維芽細胞を用いて三次元培養系を構築し、圧縮負荷の影響を検討した。関節滑膜細胞および真皮線維芽細胞は比較的多くのヒアルロン酸を産生することから、細胞応答の指標として細胞が産生するヒアルロン酸に着目し、また機械的負荷としては、定圧負荷（静的負荷）および繰り返し圧縮負荷（サイクル
負荷、動的負荷）を比較することで、細胞機能に及ぼす機械的負荷の影響を解析した。
第1章 関節由来の滑膜細胞における機械的負荷の影響

はじめに

関節は、軟骨、滑膜、そして関節液からなる。膝軟骨には、起立静止時で0.7 MPa、歩行時で5〜10 MPa、そして運動時で18 MPa以上の圧力がかかる。この圧力が、機械的負荷として関節組織中の細胞に伝わり、関節内の生理メカニズムに寄与することがわかっている(Gabay, 2008)。関節液に含まれる主要成分の1つとして、ヒアルロン酸がある(岡部平八郎, 2001)。ヒアルロン酸は、関節液の潤滑、機械的保護、そしてショック吸収などの流体力学的性質に不可欠と考えられている(Momberger, 2005)。関節液中のヒアルロン酸は、主に滑膜B細胞が供給する(Itano, 2002)。変形性関節症患者の関節液は、健常者の関節液と比べて粘度が低下することが知られている。関節液の粘度低下の原因として、関節液中のヒアルロン酸の濃度減少および低分子化が指摘されている(Takahashi, 2004)。健常者の関節液中ヒアルロン酸の平均分子量は約7,000 kDaであるが(Fraser, 1997)、変形性関節症患者のものは約1,500 kDaと報告されている(Takahashi, 2004)。低分子化したヒアルロン酸は多くのプロテオグリカンを結合させることができず、軟骨や関節液中のプロテオグリカンの分解が促進される(Rizkalla, 1992)。
第1節 アガロースゲル培養法の確立および繰り返し圧縮負荷の影響

はじめに

アガロースは水溶性であり、低融点であることから、細胞のスフェロイドを形成するための培養基質として用いられている（Bougault, 2008）。このゲルは、材料特性が安定しておりサイズが調整しやすい。細胞への圧縮負荷の検討には、圧縮負荷装置の力学強度（数十 kPa）にも耐性であり、三次元構造体に細胞を埋め込む必要がある。そこで、アガロースで三次元培養系を構築し、二次元培養と比較し、ヒアルロン酸代謝への繰り返し圧縮負荷の影響を検討する。

第1項 実験材料および方法

1.1 実験材料

細胞は、滑膜細胞（ウサギ膝関節由来滑膜細胞 HIG-82: 大日本住友製薬）を使用した。培地は、牛胎児血清（FBS: lot No.401739 made in CANADA, GIBCO）、1% penicillin streptomycin neomycin antibiotic mixture（PSN: GIBCO）を含有するF-12培地（Ham’s F-12 Nutrient Mixture: GIBCO）を使用した。

1.2 細胞培養法

細胞は、滑膜細胞（ウサギ膝関節由来滑膜細胞 HIG-82）を使用した。6 wellプレートに1.0×10⁶ cells/wellになるように、4.0 mlの10%FBS、1%PSN含有F-12培地で培養した。プレートをphosphate-buffered saline（PBS）で2回洗浄後、PSN1%含有無血清F-12培地4.0 mlで48時間培養した。培養は、5% CO₂、37℃の条件でCO₂インキュベーター（MCO-17AIC, 三洋電機）内で行った。

1.3 アガロースゲル培養法

アガロースゲル培養は、Bougaultの論文を参考にした（Bougault, 2009）。1.5×10⁶ cells/gelになるよう10%FBS、1%PSN含有F-12培地を用いて細胞液を作製し、37℃で保温した。アガロース（ピーエイチジャパン）を、2.5%濃度になるよう超純水で調製し、121℃に設定したオートクレーブで溶解した。PSN5%含有5倍濃度培地を、10倍濃度F-12培地（濃縮培養液F-12: 新田ゼラチン）で調製した。5倍濃度培地とアガロース溶液を、容量比1:4で混合し、41℃で保温した。混合液を12wellプレートに700 µl/well分注し、15分間室温で分注し
ゲル化した。なお分注には、先端を切断した1,000 μlピペットチップを用いた（Fig. 1-1）。その後、ゲルから直径13 mm、高さ3.0 mmの円形ゲル（1.0×10^6 cells/gel）を切り取った。ゲルの切り取りには、5.0 mlピペットマンチップの底面部を用いた。ゲルを12wellプレートに移し、10%FBS、1%PSN含有F-12培地4.0 mlで72時間培養した。ゲルをPBSで2回洗浄後、1%PSN含有無血清F-12培地4.0 mlで48時間培養した。培養は、5%CO_2、37℃の条件でCO_2インキュベーター（三洋電機）内で行った。なお、細胞数の影響を検討するため、3.3×10^5、5.0×10^5、または1.0×10^6 cells/gelを培養開始時に含むアガロースゲルを作製し、同様の実験に供した。

1.4 凍結切片の観察法
アガロースゲル（1.0×10^6 cells/gel）の凍結切片（ゲル中心部を水平方向に30 μm厚切断）を作製し、ヘマトキシン・エオジン（HE）染色後、顕微鏡で観察した。ゲルをCRYO DISH（硝英製作所）に入れ、OCTコンパウンド（Optimal Cutting Temperature Compound：サクラファインテックジャパン）でゲルを完全に浸した。ゲルを液体窒素で凍結し、ミクロトーム（CM3050S, Leica）を用いてゲル中心部から7.0 μmの厚さの凍結切片を作製した。凍結切片を病理研究用マイルドホルム10 N（和光純薬工業）で5分間固定した後、流水で5分間洗浄した。凍結切片を、マイヤー・ヘマトキシン染色液（Merck）で5分間染色し流水で3分間洗浄した。エオジンY染色液（Merck）で5分間染色し流水で軽く染色液を落とした。その後、凍結切片を70%エタノール、80%エタノール、90%エタノール、100%エタノール、そしてキシレンの順に軽く浸し脱水した。脱水後の凍結切片を、カナダバールサムとカバーガラスで密閉し、顕微鏡で観察した。

1.5 培養上清の精製および培養ゲルからのグリコサミノグリカンの精製法
各培養系で48時間培養後、培養上清とゲルを回収し、滑膜細胞が産生するグリコサミノグリカン（GAG）を精製した。アガロースゲル中の培地を回収するため、各ゲルをホモジナイザー（PT-1035GT, Kinematica）で粉砕し、20,000 rpm、4℃で15分間遠心分離し上澄みを回収した。Cell Strainer（Falcon）を用いて、回収液中のゲル残渣を除去した。回収液を、凍結乾燥機（FDU-830：東京理化器械）で凍結乾燥した。凍結乾燥物に3.0 mlの超純水を加え、3.0 mlの2倍濃度アクリルアセール緩衝液（100 mM Tris-HCL, 5.0 mM CaCl_2, pH7.8）を加えた。溶液を沸騰水浴で10分間熱変性し、10 mgのチモール（和光純薬工業）と、凍結乾燥物の100分の1量（重量計算）のアクリルアセールE（科研製薬）を加えた。50℃の恒温槽で24時間振とうとしてタンパク質を分解した。3.0 mlの30%トリクロロ酢酸
(TCA)を加え、4℃で1時間を静置しタンパク質を沈殿させた。9,000 rpm、0℃で15分間遠心分離し、上清を蒸留水で透析処理した。透析処理物を凍結乾燥し、50μlの超純水に懸濁したものをGAGサンプルとした。なお、アクチナーゼEはタンパク質沈澱時に取り除かれること、また仮にアクチナーゼが作用してもGAGの測定には影響が無いことから、失活処理は省略した。GAGサンプル中のヒアルロン酸の定量および分子量を解析した。

1.6 ヒアルロン酸の定量法
GAGサンプル中のヒアルロン酸を、セルロース・アセテート膜電気泳動で定量した。セルロース・アセテート膜電気泳動はHataらの方法に準じて行った（Hata, 1973）。2.0μlのGAGサンプルをセルロース・アセテート膜(MEMBRANE FILTER SELECAーⅤ：ADVANTEC)に添加した。泳動用緩衝液は、0.1Mビルジン-0.47Mギ酸緩衝液（pH3.0）を用いた。スタンダードとして、ヒアルロン酸（生化学工業）を0.5、0.25、0.0125、そして0.00625mg/mlに調製したものを用いた。膜幅1.0cmあたり1.0mAの定電流で1時間の電気泳動を行った。泳後、セルロース・アセテート膜を染色液（0.5%アルシアンブルー、25%エタノール、10%酢酸）に数分間浸して染色し、10%酢酸溶液で脱色した。膜上のヒアルロン酸のスポットを、画像解析ソフト（Scion Image: Scion; ImageJ: NIH）でデジトメトリー分析し、ヒアルロン酸を定量した。

1.7 ヒアルロン酸の分子量の解析法
GAGサンプル中のヒアルロン酸の分子量を、アガロースゲル電気泳動で解析した。1.0%アガロースゲルを、アガロース（GIBCO）と0.1Mビルジン-0.2Mギ酸緩衝液（pH3.5）で作製した。アガロースと超純水を混合し、150℃に設定したMAG-MIXER(Yamato)を用いて溶液を沸騰しない程度に加熱し、アガロースを溶解した。アガロース溶液30mlをトレー（縦100mm、横115mm、深さ10mm）に流し込み、室温で30分間静置してアガロースゲルを作製した。GAGサンプルを、10μlの超純水に溶解し、1.0μlの6xLoading Buffer（タカラバイオ）と混合し、全量添加した。泳動用緩衝液は、0.1Mビルジン-0.2Mギ酸緩衝液（pH3.5）を用いた。分子量マーカーは、1,500、1,000、700、500そして50kのヒアルロン酸（210kヒアルロン酸：協和発酵バイオ；その他のヒアルロン酸：キユーピー）を用いた。200mA、50Vの定電流で約5時間電気泳動を行った。なお、高温でゲルが溶解するのを防ぐため、4℃の冷蔵室内で電気泳動を行った。泳動後のゲルを、染色液（5.6mgStains-All、5.0mlジオキサン、90ml超純水、
0.1 ml 1.0 M酢酸、5.0 ml 0.01 Mアスコルビン酸に浸した。染色後のゲルを、超純水で脱色し、ゲル上のバンドからヒアルロン酸の分子量分布を解析した。

1.8 機械的圧縮負荷方法
FX-4000C™(Flexcell)を用いて、アガロースゲル(1.0×10^6 cells/gel)へ圧縮負荷を加えた。この装置は、ソフトウェア(FX-4000 v5.0, Windows)、コントローラー(FlexLink®, 空気ポンプに接続)、ベースプレート(BioPress® baseplate)、そして6well圧縮負荷プレート(BioPress™ Plate: Flexcell, 直径 13 mm)からなる(Fig. 1-2)。圧縮負荷プレートのwellの底には、シリコン圧盤がある。ベースプレートに4枚の圧縮負荷プレートを設置し、圧盤下部の空気量をコントロールして三次元構造体に圧力を加える。ベースプレート全体が CO₂インキュベーターに入るため、長時間の負荷実験が可能である。圧縮負荷プレートの盖(Stationary plate)は中心が空洞の外蓋と、空洞に挿入される内蓋で構成されている(Fig. 1-3)。内蓋は回転ねじになっており、外蓋に容易に挿入できる。内蓋の下側に三次元構造体を設置するため、ねじの回転数によって圧力強度が変化する。すべてのゲルを同一の力で負荷を加えるため、内蓋を時計周りに3.0回転して固定した。アガロースゲルを先端平型ピンセットで掴み、圧縮負荷プレートの各wellに入れた。各wellに、2.0 mlの 1%PSNを含む無血清F-12培地を滴下した。蓋をしたのち、内蓋を時計回りに1.0回転しゲルを固定した。圧縮負荷プレートの圧盤を指で押し、ゲルが均一の力で固定されているか目視で確認した。4つの圧縮負荷プレートをベースプレートに乗せ、CO₂インキュベーター(5% CO₂、37℃)内に移動した(Fig. 1-4)。負荷波形は、繰り返し圧縮負荷(Shape: SIN 1/2, Freq: 1.0 Hz)とした。波形の最大強度は40 kPaとして、0、30、または180分間の圧縮負荷操作後、24または48時間培養した。負荷最大強度は、ソフトウェア上の負荷強度(単位 lbs)とゲルの圧面積を計算式(PMPa=(5.65×Force lbs)/(D mm²))にあてはめて設定した。圧縮負荷後、6gel分の培養上清とゲルを回収し、培養上清からGAGを精製した。GAGサンプル中のヒアルロン酸の定量および分子量を解析した。

1.9 統計処理
MS-Excel用統計ソフトStatcel2を用いて、Tukey’s-testで検定した。
第2項 結果

2.1 三次元培養中の細胞の解析
アガロースゲル中心部の凍結切片を作製し、顕微鏡で観察した（Fig. 1・5）。滑膜細胞はアガロース線維に包埋されており、均一に分布していた。

2.2 圧縮負荷前のヒアルロン酸の解析
ヒアルロン酸量の測定に必要な細胞数の目安をつけるために、アガロースゲルにおいて、48時間培養後の上清中のヒアルロン酸量を定量した（Table 1・1）。培養開始時の細胞数を増やすに従って、培養上清中のヒアルロン酸量が増加した。このデータをもとに、1.0×10^6 cells の細胞を用いて以下の実験を行った。培養開始時の細胞数を 1.0×10^6 cells として単層培養およびアガロースゲル培養系で 48 時間培養後の、各培養皿あるいはアガロースゲルあたりの上清中のヒアルロン酸量（平均値±標準偏差, n=4）を定量した結果を Table 1・2 に示した。アガロースゲル培養は、単層培養と比べヒアルロン酸量が有意に増加した（p<0.01, p<0.05 Tukey’ s-test）。培養上清中のヒアルロン酸の分子量を解析した（Fig. 1・6）。単層培養時の分子量ピークは 50 k であった。アガロースゲル培養時の分子量ピークは 500 k だった。

2.3 圧縮負荷後のヒアルロン酸の解析
1.0×10^6 cells を培養開始時に含むアガロースゲル系で、圧縮負荷後の培養上清およびアガロースゲル中のヒアルロン酸量（平均値±標準偏差, n=3）を定量した（Table 1・3）。負荷時間が増加するに従い、ヒアルロン酸量は増加した。圧縮負荷後の培養時間を増やしても、ヒアルロン酸量は統計的な有意差はなかった。

2.4 ヒアルロン酸の分子量の解析
1.0×10^6 cells を培養開始時に含むアガロースゲル系で、0、30、または 180 分間の圧縮負荷操作後に 24 および 48 時間培養し、培養上清およびゲル中のヒアルロン酸の分子量を解析した。24 時間培養では、0、30、そして 180 分負荷時の分子量ピークは、210、500、そして 700 k であった（Fig. 1・7）。48 時間培養では、0 分、30 分、そして 180 分負荷時の分子量ピークは、50、500、そして 210 k であった（Fig. 1・8）。
Fig. 1-1 アガロースゲルの作製

(a)アガロースゲルの well への分注には、先端を切断した 1,000 μl ピペットチップを用いた。 (b) アガロースゲルの切り取りには、5.0 ml ピペットマンチップの底面部を用いた。 (c) 切り取ったアガロースゲルは、ピペットマンチップに空気を押し込むと、容易に取り出すことが可能であった。

Fig. 1-2 圧縮負荷装置

(a) 圧縮負荷制御ソフトウェア (FX-4000 v5.0)、コントローラー (FlexLink®) (b) ベースプレート (BioPress® baseplate) に 4 枚の圧縮負荷プレートを設置し、圧盤下部の空気量をコントロールして三次元構造体に圧力を加える。(c) 圧縮負荷プレート (BioPress® compression plate, 6 well) の well の底にはシリコン圧盤があり、空気圧を利用して三次元構造体に圧縮負荷を加える。
圧縮負荷プレートの蓋

(a)圧縮負荷プレートの蓋は、中心が空洞の外さと、空洞に挿入される内さで構成されている。
(b)内さの外観(é)外さと内さの組み合わせ内さは回転ねじになっており、外さに容易に挿入できる。内さの下端に三次元構造体を設置するため、ねじの回転数によって負荷強度が変化する。

圧縮負荷装置の使用方法

(a)アガロースゲルを先端平型ピンセットで掴み、圧縮負荷プレートの各 well に静置した。
(b)内さの確認 圧縮負荷プレートの圧盤を指で押し、ゲルが均一の力で固定されているか目視で確認した。（c）ベースプレート全体が CO₂インキュベーターに入るため、長時間の負荷実験が可能である。
アガロースゲルの凍結切片（ゲル中心部を水平方向に7.0 μmの厚さで切断した）を作製し、HE染色後、顕微鏡で観察した。滑膜細胞はアガロース線維に包埋されており、均一に分布していた。スケールバーは10 μmを示す。
Fig. 1-6 培養上清中のヒアルロン酸の分子量

48時間培養後の培養上清中のヒアルロン酸の分子量を解析した。(a)単層培養時(b)アガロースゲル培養 単層培養時(a)の分子量ピークは50k、アガロースゲル培養(b)の分子量ピークは500kだった。
Fig. 1-7 培養上清およびアガロースゲル中のヒアルロン酸の分子量（24 時間培養）

0、30、または 180 分の繰り返し圧縮負荷操作後に 24 時間培養し、培養上清およびアガロースゲル中のヒアルロン酸の分子量を解析した。（a）無負荷（0分）（b）30分負荷（c）180分負荷 無負荷（0分）（a）の分子量ピークは、210 k だった。30分負荷（b）の分子量ピークは、500 k だった。180分負荷（c）の分子量ピークは、700 k だった。
Fig. 1-8 培養上清およびアガロースゲル中のヒアルロン酸の分子量（48時間培養）

0、30、または180分の繰り返し圧縮負荷操作後に48時間培養し、培養上清およびアガロースゲル中のヒアルロン酸の分子量を解析した。（a）無負荷（0分）の分子量ピークは、50kだった。（b）30分負荷の分子量ピークは、500kだった。（c）180分負荷の分子量ピークは、210kだった。
Table 1-1 培養上清およびアガロースゲル中のヒアルロン酸量

<table>
<thead>
<tr>
<th>培養開始時の細胞数</th>
<th>ヒアルロン酸量</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3×10⁵ cells/gel</td>
<td>2.7 μg/gel</td>
</tr>
<tr>
<td>5.0×10⁵ cells/gel</td>
<td>3.0 μg/gel</td>
</tr>
<tr>
<td>1.0×10⁶ cells/gel</td>
<td>3.2 μg/gel</td>
</tr>
</tbody>
</table>

アガロースゲルにおいて、48時間培養後の培養上清中のヒアルロン酸量を定量した。培養開始時の細胞数を増やすに従って、培養上清中のヒアルロン酸量が増加した。

Table 1-2 三次元培養系におけるヒアルロン酸量

<table>
<thead>
<tr>
<th>培養系</th>
<th>培養開始時の細胞数 (1.0×10⁶ cells)あたりのヒアルロン酸量</th>
</tr>
</thead>
<tbody>
<tr>
<td>単層培養</td>
<td>0.5±0.5 μg</td>
</tr>
<tr>
<td>アガロースゲル培養</td>
<td>4.5±1.5 μg</td>
</tr>
</tbody>
</table>

各培養系で48時間培養後、単層培養、アガロースゲル培養系の上清中のヒアルロン酸量（平均値 ± 標準偏差, n=4）を定量した。アガロースゲル培養は、単層培養と比べヒアルロン酸量が有意に増加した（p<0.05 Tukey's test）。
Table 1-3 アガロースゲル培養系での繰り返し圧縮負荷によるヒアルロン酸量への影響

<table>
<thead>
<tr>
<th>圧縮負荷後の培養時間</th>
<th>24時間</th>
<th>48時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>無負荷（0分）</td>
<td>1.9±0.5 μg/gel</td>
<td>2.0±0.7 μg/gel</td>
</tr>
<tr>
<td>30分負荷</td>
<td>2.3±1.0 μg/gel</td>
<td>2.6±0.8 μg/gel</td>
</tr>
<tr>
<td>180分負荷</td>
<td>3.9±0.8 μg/gel</td>
<td>3.1±1.0 μg/gel</td>
</tr>
</tbody>
</table>

1.0×10^6 cellsを培養開始時に含むアガロースゲル系で、圧縮負荷後のヒアルロン酸量（平均値±標準偏差、n=3）を定量した。負荷時間が増加すると従い、ヒアルロン酸量は増加した。圧縮負荷後の培養時間を増やしても、ヒアルロン酸量は統計的な有意差はなかった。
第3項 考察

滑膜細胞のアガロースゲル中での培養において、滑膜細胞はアガロース線維に包埋されていた（Fig. 1-5）。培養上清に対する細胞数の影響を検討した結果、細胞の播種数に依存して上清中のヒアルロン酸量が増加していた（Table 1-1）。培養上清中のヒアルロン酸量は、滑膜細胞数に依存する可能性が示された。このため、各培養系で細胞播種数を1.0 × 10^6 cellsとして、48時間培養後の上清中のヒアルロン酸量を計算した。

培養上清中のヒアルロン酸産生量は、単層培養で0.5±0.5 μgであったのに対し、アガロース培養で4.5±1.5 μgであった（Table 1-2）。培養上清中のヒアルロン酸の分子量は、単層培養と比べ、アガロースゲル培養で高分子量側にシフトした。三次元培養によって滑膜細胞のヒアルロン酸代謝が変化することが確認できた。三次元培養を行った細胞は、単層培養と比べてタンパク質の代謝能力が変化する報告がある（Gruber, 2000）。椎間板由来細胞をアガロースゲルで培養した結果、単層培養と比べて細胞周囲および細胞間で細胞外マトリックスが増え、細胞の生存率が高まることを報告している。また、軟骨細胞をアガロースゲルで培養することで、細胞周囲に細胞外マトリックスが形成されており（Benya, 1982）、コラーゲンゲル中で培養すると、プロテオグリカン量が向上することが報告されている（Kimura, 1984）。これらの報告は、三次元ゲル培養により細胞のヒアルロン酸産生量が高まり、ヒアルロン酸が高分子化した本実験の結果を支持するものである。一方、滑膜細胞をコラーゲンゲル中で培養すると、コラーゲンゲルを足場として細胞増殖能が活性化する報告がある（Fox, 2006）。アガロースゲル培養により細胞数が増加した可能性もあるが、ヒアルロン酸の代謝変化も起きていると考えられる。なお、2.5または3.0%濃度アガロース溶液でゲルを作製した結果、分注前にアガロースがゲル化しまいかじめ、実験を行えなかった。2.0%濃度アガロース溶液でゲルを作製した結果、問題なくゲルを作製できた。1.5%濃度アガロース溶液でゲルを作製すると、ゲル化は不十分であり、圧縮負荷に耐えられるアガロースゲルとして、2.0%濃度を選択した。

培養単位あたりのヒアルロン酸の定量結果より、圧縮負荷時間を増やると培養上清中のヒアルロン酸量が増えることがわかった（Table 1-3）。圧縮負荷後の培養時間は24時間でも48時間でも上清中のヒアルロン酸量は同程度であり、培養あたりのヒアルロン酸産生量が一定に保たれている可能性を示唆するもの。
であった。ヒアルロン酸の分子量解析の結果より、圧縮負荷時間を増やすと培養上清中のヒアルロン酸は高分子化することがわかった（Fig. 1-7；Fig. 1-8）。圧縮負荷後の培養時間は、24時間でも48時間でもヒアルロン酸量に変化のないものであった。よって、以降の上清中ヒアルロン酸の検討には、圧縮負荷後の培養は24時間で良いと考えた。

関節の細胞に圧縮負荷を加えた研究例はいくつかある。滑膜由来培養組織に1時間の繰り返し圧縮負荷を行うことで、PGE2産生が亢進し、MMP-1およびMMP-3のタンパク質の発現量、MMP-2の酵素活性が上昇することが報告されている（Akamine, 2012）。軟骨細胞をアガロースゲル中で培養して圧縮負荷を加えた結果、細胞の代謝が高まり（Bougault, 2009）、GAGとコラーゲンの合成量、そしてプロテアーゼ活性が変化した（Sharma, 2007）。これらの報告は、圧縮負荷によりヒアルロン酸が高分子化した本実験の結果を支持するものである。

本節では、関節の維持に必要不可欠なヒアルロン酸に着目し、滑膜細胞を用いた新たな関節モデルを構築した。圧縮負荷により滑膜細胞の産生するヒアルロン酸が高分子化することを見出した。関節液中のヒアルロン酸の高分子化は、関節液の粘性の向上に繋がる。たとえば、低分子ヒアルロン酸（平均分子量200）は、マクロファージのMMPsの産生を促進し、軟骨変性を引き起こすことが報告されている（Horton, 1999）。高分子量のヒアルロン酸は、変形性膝関節症モデル動物では軟骨保護作用があり（Takahashi, 2001）、ヒアルロン酸の関節腔内注射により、変形性関節症患者の痛みを軽減する（Peyron, 1974）。平均分子量が比較的高いヒアルロン酸は、粘弾性に勝る（Garg, 2004）。滑膜細胞に対する機械的負荷は、より高分子のヒアルロン酸の産生を促進し、関節内の潤滑性に関与している可能性が明らかとなった。
第2節 コラーゲンゲル培養法の確立および繰り返し圧縮負荷の影響

はじめに
細胞への圧縮負荷の検討には、三次元構造体に細胞を包埋する必要がある。コラーゲンは、生体内の滑膜細胞を囲んでいることから、機械的負荷実験系の三次元構造体に適していると考えた。そこで、コラーゲンで三次元培養系を構築し、二次元培養と比較し、ヒアルロン酸代謝への圧縮負荷の影響について検討を行う。

第1項 実験材料および方法

1.1 実験材料
滑膜細胞は、ウサギ膝関節由来滑膜細胞HIG-82（大日本住友製薬）を使用した。FBS、PSN、F-12培地は、GIBCO製を用いた。細胞培養用皿は、低接着表面処理済みの6-well Lipidure*-Coat Multi-Dish A-6MD（日油）を使用した。10倍濃度のF-12培地は新田ゼラチン製のものを用いた。コラーゲン溶液は、0.5%ウシ真皮由来酸可溶性I型コラーゲン溶液（IAC-50：高研）のものを用いた。

1.2 細胞培養法
滑膜細胞を、2.0×10^5 cells/plateになるように10 cmプレートへ播種し、10% FBS、1%PSNを含む10 mlのF-12培地で72時間培養した。培養は、5% CO₂、37℃の条件にてCO₂インキュベーター（MC0-17AIC，三洋電機）内で行った。単層培養は、10 mlのPSNを1%含有した無血清F-12培地を用いて48時間培養した。

1.3 コラーゲンゲル培養法
1.0×10^6 cells/gelになるようにコラーゲンゲルを作製した。10倍濃度のF-12培地に30% FBSおよび3%PSNを混合することで3倍濃度のF-12培地を作製し、F-12培地（10%FBSおよび1%PSN含有）に懸濁した滑膜細胞および0.5%酸性コラーゲン溶液を混合し、滑膜細胞数が1.0×10^6 cells/gelの0.1%コラーゲン溶液になるように調製した。細胞を懸濁したコラーゲン溶液を6 wellプレートに5.0 ml/wellずつ分注し、直ちにCO₂インキュベーター（5% CO₂、37℃）に静置することでコラーゲンをゲル化した。5% CO₂濃度、37℃の培養条件にてCO₂インキュベーター内で72時間培養することで、収縮コラーゲンゲルを調製した。
0、3、6、9、12、21、24、27、33、36、48、60、そして72時間培養後にゲルの直径を測定した。また、培養48時間後に10％FBSおよび1％PSN含有F-12培地に培地交換した。また、作製した収縮コラーゲンゲル48時間培養した後、収縮コラーゲンゲルの凍結切片を作製し、HE染色後、顕微鏡でゲル中の細胞の状態を観察した。

1.4 機械的圧縮負荷方法
圧縮負荷装置は、CO₂インキュベーター内のFX-4000C™(Flexcell)を用いた。10％FBSおよび1％PSN含有F-12培地を各wellに2.0 ml添加した。負荷波形は、繰り返し圧縮負荷(Shape: SIN 1/2, Freq: 1.0 Hz)、または定圧負荷(Shape: Static)とした。0、1.5、3.0、6.0、そして12時間の圧縮負荷操作後、圧縮培養開始から48時間の培養を行った。培養上清を回収し、GAGを精製した。GAGサンプル中のヒアルロン酸の定量および分子量を解析した。また、6 gel分の培養上清を回収し、GAGを精製した。GAGの精製方法、ヒアルロン酸の定量、および分子量測定法は、第1章第1節と同様に行った。

細胞生存率を細胞数から測定した。収縮コラーゲンゲルを、5.0 mg/mlディスパーベゼⅡ(三光純薬)と5.0 mg/mlCollagenase L(新田ゼラチン)を含む1.0 mlPBSを入れ、インキュベーター(37℃, 20分間)することでコラーゲンゲルを溶解した。溶解液を、1,800 rpm、25℃で5分間遠心分離し、上清を除去した。沈殿物である細胞をPBSに懸濁し、0.4%Trypan blue stain(インヴィトロジェン)を用いて死細胞を染色した。生細胞と死細胞数を計測し、生細胞数を総細胞数で割ることで細胞生存率を測定した。

圧縮負荷直後に収縮コラーゲンゲルを回収し、1.0 mlのフェノール溶液(TRIzol Reagent: Invitrogen)を加えた。溶解液を10分間ボルテックスで混合し、ゲルと細胞を溶解した。細胞溶解液からtotal RNAを抽出し、遺伝子発現量を解析した。使用したforwardプライマーとreverseプライマーは、glyceraldehyde-3-phosphate dehydrogenase (GAPDH): 5' - GCACCCTCAAGGCTGAGAAC -3', and 5' - TGGTGAAGACGCCGACTGGA -3; hyaluronic acid synthetic enzyme-2 (HAS-2): 5' - AGTCTGACACCCCTTCAGAGCA -3', and 5' - CACCTCAAAGTGGGATCTTC -3; HAS-3: 5' - AGTCTGACACCCGACTGGA -3', and 5' - AAGATCATCTCTGATTCGACC-3' とした。GAPDHの遺伝子発現量を内部標準として、相対遺伝子発現量を解析した。GAPDHは変動が少ない遺伝子であることを確認している。PCRは、Thermal Cycler Dice Real Time System (TP800: タカラバイオ)を用いて行った。
1.5 統計処理

MS-Excel 用統計ソフト Statcel2 を用いて、Student's t-test で検定した。
第2項 結果

2.1 二次元培養と三次元培養の比較

コラーゲンゲル中心部の凍結切片を作製し、HE染色した後、細胞を観察した（Fig. 1-9）。コラーゲンゲル中の細胞（Fig. 1-9b,c）は、単層培養の細胞（Fig. 1-9a）と比べて丸みを帯びていた。また、単層培養では細胞同士が密集していたのに対し、コラーゲンゲル中では細胞はコラーゲン線維に包まれており、均一に分散していた。

2.2 三次元培養

収縮コラーゲンゲルの直径を測定した（Fig. 1-10; Fig. 1-11）。0、3、6、9、12、21、24、27、33、36、48、60、そして72時間培養後にゲルの直径を測定した。1.0×10^6 cells/gelのコラーゲンゲルは、培養開始から6時間後にゲル収縮が始めた。また、5.0×10^5 cells/gelでは、培養開始から9時間後、2.5×10^5 cells/gelでは培養開始から12時間後でゲル収縮が始まった。72時間後のコラーゲンゲルの直径（平均値±標準偏差、n=6）は1.0×10^6、5.0×10^5、および2.5×10^5 cells/gelで11.0±0.0、17.4±0.2、および24.3±0.3 mmであった。

48時間培養後の培養上清中のヒアルロン酸の分子量を測定した（Fig. 1-12）。コラーゲンゲル培養は、単層培養と比べて、培養上清中に比較的低分子（1,000k以下）のヒアルロン酸が多かった。

2.3 圧縮負荷

コラーゲンゲル培養における細胞生存率（平均値±標準偏差、n=3）は、無負荷で88.3±2.4%であったのに対し、定圧負荷を加えたゲルは79.3±1.4%であった（Table 1-4）。定圧負荷を加えたゲルは、圧縮なしのゲルと比べ、有意に生存率が低下していた（p<0.05、Student’s t-test）。

培養上清中のヒアルロン酸量は、1.5、3.0、6.0時間の繰り返し圧縮負荷で、無負荷（0時間負荷）と比べて、培養上清中のヒアルロン酸量が増加していた（Fig. 1-13）。1.5、3.0、6.0、12時間の定圧負荷では、無負荷（0時間負荷）と比べて、培養上清中のヒアルロン酸量が増加していた（Fig. 1-14）。培養上清中のヒアルロン酸の分子量をアガロースゲル電気泳動で解析した結果をFig. 1-15およびFig. 1-16に示した。無負荷（0時間）では、ヒアルロン酸の分子
量を700 k以下であったが、1.5、3.0、6.0、および12時間の繰り返し圧縮負荷では、50 k以下のヒアルロン酸が減少した。特に、6.0、12時間圧縮負荷で700 k以上のヒアルロン酸が増加した。一方、1.5、3.0、および6.0時間の定圧負荷は、無負荷（0時間）と比べて、ヒアルロン酸の分子量分布に变化は見られなかった。

圧縮負荷操作後の細胞の遺伝子発現量を解析した（Fig. 1-17）。0、1.5、3.0、6.0、そして12時間の圧縮負荷操作後の遺伝子発現量（平均値±標準偏差、n=2-5）を測定した。HAS-2 mRNAの発現量は、1.5、3.0、6.0、および12時間の繰り返し圧縮負荷において、無負荷と比べて有意な上昇が認められ、特に6.0時間の繰り返し圧縮負荷で上昇が顕著であった（繰り返し圧縮負荷：p<0.01、定圧負荷：p<0.05 Student’s t-test）。また、12時間の定圧負荷において、HAS-2遺伝子発現量の有意な減少が認められた（p<0.05, Student’s t-test）。HAS-3mRNAの発現量は、1.5、6.0および12時間の繰り返し圧縮負荷において、無負荷と比べて有意な上昇が認められ、特に1.5、12時間の繰り返し圧縮負荷で上昇が顕著であった（p<0.01, p<0.05 Student’s t-test）。
Fig. 1-9 コラーゲンゲル中の細胞の分布

(a) 単層培養における滑膜細胞を顕微鏡で観察した。 (b) コラーゲンゲル培養時、ゲル中心部の凍結切片を作製し、染色した。 (c) コラーゲンゲルを圧縮負荷後、ゲル中心部の凍結切片を作製し、染色した。スケールバーは 10 μm を示す。コラーゲンゲル中の細胞 (b, c) は、単層培養の細胞 (a) と比べて丸みを帯びていた。また、単層培養では細胞同士が密集していたのに対し、コラーゲンゲル中では細胞はコラーゲン線維に包まれており、均一に分散していた。
滑膜細胞を $2.5 \times 10^5, 5.0 \times 10^5,$ および $1.0 \times 10^6 \text{cells/gel}$ を培養開始時に含むコラーゲンゲルを調製し、低接着表面処理プレートで培養し、直径変化 (平均値±標準偏差, $n=6$) を測定した。$1.0 \times 10^6 \text{cells/gel}$ のコラーゲンゲルは、培養開始から 6 時間後にゲル収縮し始めた。また、$5.0 \times 10^5 \text{cells/gel}$ では、培養開始から 9 時間後、$2.5 \times 10^5 \text{cells/gel}$ では培養開始から 12 時間後でゲル収縮が始まった。72 時間後のコラーゲンゲルの直径 (平均値±標準偏差, $n=6$) は $1.0 \times 10^6, 5.0 \times 10^5,$ および $2.5 \times 10^5 \text{cells/gel}$ で $11.0 \pm 0.0, 17.4 \pm 0.2,$ および $24.3 \pm 0.3 \text{mm}$ であった。
滑膜細胞を 2.5×10⁵、5.0×10⁵、および 1.0×10⁶ cells/gel を培養開始時に含むコラーゲンゲルを調製し、低接着表面処理プレートで培養し、外観を観察した。
Fig. 1-12 上清中のヒアルロン酸の分子量

48時間培養後の培養上清中のヒアルロン酸の分子量を解析した。(a)単層培養,(b)コラーゲンゲル培養、コラーゲンゲル培養(b)は、単層培養(a)と比べて、培養上清中に比較的低分子(1,000 k以下)のヒアルロン酸が多かった。
繰り返し圧縮負荷後のコラーゲンゲル中のヒアルロン酸量

繰り返し圧縮負荷後、48時間培養したコラーゲンゲルの培養上清中のヒアルロン酸量を測定した。1gelあたりの培地中のヒアルロン酸量および泳動結果を示す。1.5、3.0、6.0時間の繰り返し圧縮負荷では、無負荷（0時間負荷）と比べて、培養上清中のヒアルロン酸量が増加していた。

Fig. 1–13 繰り返し圧縮負荷後のコラーゲンゲル中のヒアルロン酸量
定圧負荷後、48時間培養したコラーゲンゲルの培養上清中のヒアルロン酸量を測定した。
1gelあたりの培地中のヒアルロン酸量および泳動結果を示す。1.5、3.0、6.0、12時間の定圧負荷では、無負荷（0時間負荷）と比べて、培養上清中のヒアルロン酸量が増加していた。

Fig. 1-14 定圧負荷後のコラーゲンゲル中のヒアルロン酸量
繰り返し圧縮負荷操作後の培養上清中のヒアルロン酸の分子量を解析した。圧縮培養開始から48時間培養を行った。(a) 0時間負荷 (b) 1.5時間負荷 (c) 3.0時間負荷 (d) 6.0時間負荷 (e) 12時間無負荷 (0時間)(a)では、ヒアルロン酸の分子量を700k以下であったが、1.5(b)、3.0(c)、6.0(d)、および12時間(e)の繰り返し圧縮負荷では、50k以下のヒアルロン酸が減少した。特に、6.0、12時間圧縮負荷で700k以上のヒアルロン酸が増加した。
定圧負荷操作後の培養上清中のヒアルロン酸の分子量を解析した。圧縮培養開始から48時間培養を行った。①0時間負荷⑵1.5時間負荷⑶3.0時間負荷⑷6.0時間負荷⑸12時間負荷1.5、3.0、および6.0時間の定圧負荷は、無負荷(0時間)と比べて、ヒアルロン酸の分子量分布に変化は見られなかった。

Fig. 1-16 定圧負荷操作後の培養上清中のヒアルロン酸の分子量
圧縮負荷操作後の遺伝子発現量解析

Fig. 1-17 圧縮負荷操作後の遺伝子発現量解析

0、1.5、3.0、6.0、そして12時間の圧縮負荷操作後の遺伝子発現量（平均値±標準偏差、n=2-5）を測定した。(a) HAS-2 mRNA の発現量は、1.5、3.0、6.0、および12時間の繰り返し圧縮負荷において、無負荷と比べて有意な上昇が認められ、特に6.0時間の繰り返し圧縮負荷で上昇が顕著であった（*: p<0.01, **: p<0.05 Student's t-test）。また、12時間の定圧負荷において、HAS-2 遺伝子発現量の有意な減少が認められた（*: p<0.05, Student's t-test）。

(b) HAS-3 mRNA の発現量は、1.5、6.0および12時間の繰り返し圧縮負荷において、無負荷と比べて有意な上昇が認められ、特に1.5、12時間の繰り返し圧縮負荷で上昇が顕著であった（p<0.01, **: p<0.05 Student's t-test）。
コラーゲンゲル培養における無負荷および定圧負荷における細胞生存率（平均値±標準偏差、
\(n=3 \)）を測定した。定圧負荷を加えたゲルは、圧縮なしのゲルと比べ、有意に生存率が低下し
ていた（\(p<0.05, \text{ Student's } t \text{-test} \））。

<table>
<thead>
<tr>
<th></th>
<th>細胞生存率</th>
</tr>
</thead>
<tbody>
<tr>
<td>無負荷</td>
<td>88.3±2.4%</td>
</tr>
<tr>
<td>定圧負荷</td>
<td>79.3±1.4%</td>
</tr>
</tbody>
</table>

Table 1-4 細胞生存率
第3項 考察

コラーゲンゲル培養では、単層培養と比べて細胞は丸みを帯びていた（Fig. 1·9）。生体組織中でも滑膜細胞は丸みを帯びている（Iwanaga, 2000）ことから、コラーゲンを用いた三次元培養系における細胞は単層培養と比べ、生体内により近い状態にあると考えられる。生細胞の測定の結果、コラーゲンゲル培養では約10％が死細胞となった（Table 1·4）。この細胞死は、細胞包埋操作による影響と考えられる。ヒアルロン酸の産生量は、コラーゲンゲル培養では単層培養と比較して低分子ヒアルロン酸が多かった（Fig. 1·12）。細胞がインタグリンを介して細胞外マトリックスに結合することで、FAKの自己リン酸化を起点として、細胞増殖、生存維持、そして細胞骨格の再編成を伝達する（関口, 2007）。細胞が三次元的に培養されることで、接着できる細胞外マトリックス量が増え、代謝能力が高いが、産生されるヒアルロン酸は減少し、分子量は低分子なものが多いという結果であった。これは、コラーゲンゲル中の培地を回収しなかったことが原因と考えられた。すなわち、高分子量ヒアルロン酸は、細胞から産生されても周囲のゲルに絡まり、コラーゲンゲル外には放出されにくかったと考えられる。収縮コラーゲンゲルの分解は難しかったため、今回は培養上清中のヒアルロン酸のみを解析した。滑膜細胞をコラーゲンゲルに包埋した結果、時間経過とともにゲルが収縮した（Fig. 1·10; Fig. 1·11）。細胞数を増やすと収縮がより顕著になったことから、滑膜細胞がコラーゲンゲルを収縮させると確認できた。

コラーゲンゲルに定圧負荷を加えると、約20％が死細胞となった（Table 1·4）。イヌ軟骨組織における細胞生存率は、2.0 MPa負荷で約100％、4.0 MPa負荷で約80％という報告がある（Kuroki, 2005）。定圧負荷は、細胞死につながると言われる。HAS-2 は平均分子量 300-2000 k の高分子ヒアルロン酸を合成し、HAS-3 は平均分子量 200-300 k の低分子ヒアルロン酸を合成する報告（Spicer, 1998）がある。このため、圧縮負荷における HAS-2 および HAS-3 の遺伝子発現量の変化を解析した（Fig. 1·17）。HAS-2 および HAS-3 の遺伝子発現量は、無負荷と比べて、繰り返し圧縮負荷および定圧負荷において有意な上昇が認められた。繰り返し圧縮負荷は、定圧負荷と比べ、HAS-2 および HAS-3 の遺伝子発現量の上昇率が大きかった。6時間までの繰り返し圧縮負荷および定圧負荷は、無負荷と比べ、培養上清中のヒアルロン酸量が多かった（Fig. 1·13; Fig. 1·14）。これは、圧縮負荷による HAS 遺伝子発現量の増加によるものと考
えられる。一方、ヒアルロン酸の分子量分布は、繰り返し圧縮負荷では高分子側にシフトし、定圧負荷では変化がみられなかった（Fig. 1・15; Fig. 1・16）。軟骨細胞への繰り返し圧縮負荷では産生するGAG量が増加し、定圧負荷ではGAG量が減少した報告がある（Sharma, 2007）。Gabayの報告によれば、繰り返し圧縮負荷は抗炎症へと進み、定圧負荷は炎症発生を誘導すると考えられる（Gabay, 2008）。本実験の結果はこれらの報告と類似するため、繰り返し圧縮負荷のみが抗炎症に作用するかもしれない。

本節では、滑膜細胞の生体内における環境に着目し、コラーゲンゲル包埋による新たな関節モデルを構築した。滑膜細胞に対する繰り返し圧縮負荷は、定圧負荷と比べ、より高分子のヒアルロン酸の産生を促進し、関節内の潤滑性に関与している可能性が明らかとなった。
第2章 真皮由来の線維芽細胞における機械的負荷の影響

はじめに

皮膚は表面から順番に表皮、真皮、そして皮下組織の3層に分かれている。表皮は、角質層、顆粒層、有棘層、そして基底層からなる。表皮を下から支える真皮は、水分を多く含む結合組織の層である。真皮は、線維芽細胞、マクロファージ、肥満細胞、そして形質細胞といった細胞成分が、コラーゲン、エラスチン、そしてプロテオグリカンといった細胞外マトリックス成分で埋められている。表皮と真皮を分けるのが表皮基底膜であり、表皮側および真皮側からの双方向の選択的な刺激が常に行われている。皮膚組織へのマッサージをはじめとした機械的負荷は、動脈血圧（Kimura, 1995）、自律神経系（Holey, 2011）、そして創傷治癒（Timmenga, 1991）などに影響することが報告されている。これらの報告は、美容および医療マッサージにより皮膚組織への機械的負荷を加えることの生理的意義を示唆しており、血流改善や皮下脂肪抑制への効果だけでなく、真皮における皮膚状態の改善にも効果を示す可能性が示唆されている。

真皮線維芽細胞では、ヒアルロン酸合成酵素としてHAS-2が主に働いている（Sugiyama, 1998）。真皮におけるヒアルロン酸はプロテオグリカンと結合し、エラスチン線維やコラーゲン線維の隙間を埋めるように組織全体に広がっている。ヒアルロン酸は、真皮の保水機能を担っていると考えられているが、線維芽細胞に圧縮負荷を加えた際のヒアルロン酸代謝に与える影響を解析した研究は行われていない。そこで、本研究では、機械的負荷に対する真皮線維芽細胞が産生するヒアルロン酸量および分子量に着目し、以下のように研究を行った。

細胞への圧縮負荷の検討には、三次元構造体に細胞を包埋する必要があるため、三次元構造体として、収縮コラーゲンゲルおよびコラーゲンスキャッフォールドによる三次元構造体を用いた。この2つの系を用いて、繰り返し圧縮負荷が真皮線維芽細胞のヒアルロン酸産生に及ぼす影響を検討した。
第1節 コラーゲンゲル培養法の確立および繰り返し圧縮負荷の影響

はじめに
細胞への圧縮負荷の検討には、三次元構造体に細胞を包埋する必要がある。コラーゲンは、生体内の線維芽細胞を囲んでいることから、機械的負荷実験系の三次元構造体に適していると考えた。そこで、コラーゲンで三次元培養系を構築し、ヒアルロン酸代謝への圧縮負荷の影響について検討を行う。

第1項 実験材料および方法

1.1 実験材料
細胞は、正常ヒト皮膚組織由来線維芽細胞（NB1RGB cells: 理研）を使用した。コラーゲン溶液は、0.5%ウシ真皮由来酸可溶性I型コラーゲン溶液（IAC-50: 高研）を用いた。培養には、DMEM液体培地（6046D: SIGMA）を用いた。ウシ胎児血清（FBS: Sigma-Aldrich, Lot no. 772900）、3倍濃度培地（D5523-10L粉末培地: SIGMA, 1.5 g/50 ml）、PSN、安定型ビタミンC（AA2G: L-アスコルビン酸2-グルコシド, 252.9 mg/ml）、炭酸水素ナトリウム溶液（2.2 g/50 ml）、細胞培養用プレートとして、未処理12wellプレート（Nunc）、細胞培養表面処理12wellプレート（Nunclon™ Δ Surface plate: Nunc）、低接着表面処理12wellプレート（12-well Lipidure®-Coat Multi-Dish A-12MD: 日油）、または低接着表面処理6wellプレート（6-well Lipidure®-Coat Multi-Dish A-6MD: 日油）を用いた。収縮コラーゲンゲルの染色にbovine serum albumin（BSA A2934-25G: Sigma-Aldrich）、phalloidin（Alexa Fluor 488: Molecular Probes）、4′, 6-diamidino-2-phenylindole, dihydrochloride（DAPI: Invitrogen）を用いた。

1.2 細胞培養液調製法
Nishiyamaらの手法を参考に、線維芽細胞2.5×10⁵～1.0×10⁶ cells/gelを懸濁した中性コラーゲン溶液を作製し、コラーゲンゲル培養に用いた（Nishiyama, 1988; Amano, 2001）。以下に、6gel分の中性コラーゲン溶液の作製方法を示す。線維芽細胞含有中性コラーゲン溶液の調製方法は、pH調製液、細胞溶液、そして酸性コラーゲン溶液を混合し作製した。pH調製液は、3.5 ml FBS、4.4 ml 3倍濃度培地そして、1.5 ml炭酸水素ナトリウム溶液の混合溶液
とした。細胞溶液は、細胞を含む無血清1%PSN含有13mlDMEM培地と3.0mgの安定型ビタミンCの混合液とした。酸性コラーゲン溶液は、11.6mlウシ真皮由来酸可溶性I型コラーゲン溶液を用いた。pH調製液と酸性コラーゲン溶液を混合した後、細胞溶液を混合し、コラーゲン終濃度0.1%の線維芽細胞含有コラーゲン溶液を調製した。なお、線維芽細胞含有コラーゲン溶液は、冷やしながら6gel分ずつ作製した。これは、一度に大量に作製すると、混合過程でゲル化しやすいためである。2.0mlの線維芽細胞含有コラーゲン溶液を、処理12wellプレート、細胞培養表面処理12wellプレート、および低接着表面処理12wellプレートの各wellに分注した。未処理プレートは、浮遊細胞や血球系細胞の培養に一般に用いるプレートである。細胞培養表面処理プレートは、コロナ放電処理を施すことでプレート表面に水酸基及びカルボキシル基が付加したプレートである。細胞の接着および増殖が良好なため、一般に接着性細胞の培養に用いられる。低接着表面処理プレートは、2-Methacryloyloxyethyl-Phosphoryl-Choline(MPC)がコートされてあるプレートである。このプレートは、細胞接着を抑制するため、細胞スフェロイドや胚芽体の作製に用いられる。各プレートを48時間培養し、収縮コラーゲンゲルを調製した。インキュベート時に、画像撮影装置(ChemIDoc™: Bio-Rad)でコラーゲンゲルを上部から撮影し、解析ソフトウェア(Quantity One®, Bio-Rad)でコラーゲンゲル面積を自動測定した。培養は、5%CO₂、37℃の条件でCO₂インキュベーター(Heracell®150i:Thermo Scientific)内で行った。

1.3 コラーゲンゲル培養法
2.5×10⁵~1.0×10⁶ cells/gelの線維芽細胞含有コラーゲン溶液を、低接着表面処理6wellプレートの各wellに分注した。プレートを72時間培養し、収縮コラーゲンゲルを調製した。なお、0、3、6、9、12、21、24、27、33、36、48、60、そして72時間培養後にゲルの直径を測定した。培養は、5%CO₂、37℃の条件でCO₂インキュベーター内で行った。

1.4 蛍光染色法
収縮コラーゲンゲル(1.0×10⁶ cells/gelの中性コラーゲン溶液を低接着表面処理プレートで48時間培養したもの)を、Vernonらの手法を参考に、細胞のアクチン纖維と細胞核を染色し観察した(Vernon, 2002)。培養後、コラーゲンゲルをPBSで洗浄し、1%ホルムアルデヒドで固定した。コラーゲンゲルをPBSに15分間2回浸した。-20℃のアセトンに20分間浸し、透過処理を行った。1%BSA-PBS溶液で30分間ブロックング処理を行った。2.0units/mlのphalloidin
で1時間染色し、PBSで30分間洗浄した。7.2 μMのDAPIで15分間染色し、PBSで15分間2回洗浄した。蛍光顕微鏡（Biozero：キーエンス）で、染色後のコラーゲンゲルを上部から観察した。全ての染色工程は、室温で行った。

1.5 圧縮負荷方法
収縮コラーゲンゲル（1.0×10^6 cells/gelの線維芽細胞含有コラーゲン溶液を低接着表面処理プレートで72時間培養したもの）に、FX-4000C™（Flexcell）で繰り返し圧縮負荷（Shape: SIN 1/2, Freq: 1.0 Hz; 40 kPa, 6時間）を加えた。圧縮負荷は、5%CO₂、37℃の条件でCO₂インキュベーター（三洋電機）内で行った。42時間の培養後、4gel分の培養上清を回収しGAGを精製した。GAGサンプル中のヒアルロン酸の定量および分子量を解析した。GAGの精製方法、第1章第1節と同様に行った。GAGの精製方法、ヒアルロン酸の定量、および分子量測定法は、第1章第1節と同様に行った。

1.6 マイクロアレイ
Agilent Expression Array（SurePrintG3 Human GE 8x60K、タカラバイオ）を用いて、圧縮負荷前後の遺伝子発現量（約40,000遺伝子）の変化を解析した。圧縮負荷なしをコントロールとして、圧縮負荷ありにおける発現量が“増加した遺伝子”を分類した。“増加した遺伝子”は、遺伝子発現変化量がLog2Ratioで1以上の遺伝子とした。

1.7 統計処理
MS-Excel用統計ソフトStatcel2を用いて、Tukey’s-testで検定した。
第2項 結果

2.1 培養プレートの検討

収縮コラーゲンゲルを作製するに当たり最適なプレートを選択するために、通常の未処理プレート、表面処理プレート、そして低接着表面処理プレートについて検討を行った。各12wellプレートにおける、コラーゲンゲルの面積を示した(Fig. 2-1)。コラーゲンゲルは、包埋から6時間後にコラーゲンゲルが収縮し始めた。0、6、24、そして48時間培養後のコラーゲンゲルの面積（平均値±標準偏差, n=4）を図示した。低接着表面処理プレートで作製したコラーゲンゲルは、未処理プレートと細胞培養表面処理プレートで作製したコラーゲンゲルと比べ、面積が小さかった。なお、低接着表面処理プレート以外でのコラーゲンゲルは正円状ではないことから、結果は面積で示した。48時間培養の低接着表面処理プレートのコラーゲンゲルは円柱状であり、上部からみても正円に近かった(Fig. 2-2a)。未処理プレートと細胞培養表面処理プレートで作製したコラーゲンゲル上部の高さは、低接着表面処理プレートでは均一であり、細胞培養表面処理プレートではカルデラ状であった(Fig. 2-2b)。

2.2 コラーゲンゲルの培養条件の検討

圧縮負荷に用いるプレート(BioPress™ Plate)の各wellの直径は13mmであることから、これよりも小さい収縮コラーゲンゲルを調製する必要がある。コラーゲンゲルの直径における培養時間および細胞濃度について検討した。12、24、36、48、60、そして72時間培養後のコラーゲンゲルの直径（平均値±標準偏差, n=6）を示した。培養開始時にコラーゲンゲル内に播種していた細胞数に依存して、収縮コラーゲンゲルの直径は減少していた。なお、低接着表面処理プレートのコラーゲンゲルは正円状であること(Fig. 2-4)から、結果は直径で示した。

2.3 蛍光染色による細胞の観察

1.0×10⁶ cells/gel の線維芽細胞を含有するコラーゲンゲルを蛍光染色した蛍光顕微鏡画像をFig. 2-5に示した。アクチン繊維は、コラーゲンゲル中に均一に分散していることが確認できた(Fig. 2-5a)。また細胞の核染色により、線維芽細胞がコラーゲンゲル中に均一に分散していることが確認できた(Fig. 2-5b)。
2.4 培養上清の検討
 圧縮負荷操作後に42時間培養し、培養上清中のヒアルロン酸を解析した。セルロース・アセテート膜電気泳動の結果、上清中のヒアルロン酸量は、圧縮負荷時で0.11 μg/gel、無負荷時で0.07 μg/gelであった（Table 2-1）であった。アガロースゲル電気泳動の結果、繰り返し圧縮負荷時の上清中のヒアルロン酸の分子量は、無負荷と比べ高分子化していた（Fig. 2-6）。

2.5 マイクロアレイ
 負荷なしと比べ、繰り返し圧縮負荷で変動した遺伝子を解析した。細胞外マトリックスの産生に関与する遺伝子を抽出した。圧縮負荷により増加した遺伝子は、HAS-1、HAS-2、NFKBIZ、CREB5、IL-1A、IL-1B、IL-6、MMP-3、MMP-10、MMP-12、であった。
Fig. 2-1 各培養プレートにおける収縮コラーゲンゲルの面積

1.0×10⁶ cells/gel の 0.1%コラーゲンゲル 2.0 ml を、未処理 12well プレート、細胞培養表面処理 12well プレート、または低接着表面処理 12well プレートに分注し、コラーゲンゲルの面積（平均値±標準偏差、n=4）を図示した。低接着表面処理プレートで作製したコラーゲンゲルは、未処理プレートと細胞培養表面処理プレートで作製したコラーゲンゲルと比べ、面積が小さいものであった。なお、低接着表面処理プレート以外でのコラーゲンゲルは正円状ではないことから、結果は面積で示した。
Fig. 2-2 各培養プレートにおける収縮コラーゲンゲルの外観

(a) 48時間培養の低接着力表面処理プレートのコラーゲンゲルでは円柱状であり、上部からみても正円に近かった。未処理プレートと細胞培養表面処理プレートで作製したコラーゲンゲルは歪んでおり、内側に円状の線が認められた。スケールバーは1.0 mmを示す。(b) コラーゲンゲル上部の高さは、細胞培養表面処理プレートではカルデラ状であり、低接着力表面処理プレートでは均一であった。
線維芽細胞を2.5×10^5〜1.0×10^6 cells/gel含む0.1%コラーゲンゲルを、低着表面処理プレートに分注し、72時間培養した。コラーゲンゲルの直径（平均値±標準偏差、n=6）はFig. 2-1と同様に測定した。培養開始時にコラーゲンゲル内に播種していた細胞数に依存して、収縮コラーゲンゲルの直径は減少していた。なお、低着表面処理プレートのコラーゲンゲルは正円状であることから、結果は直径で示した。
Fig. 2-4 低接着表面処理における収縮コラーゲンゲルの外観

線維芽細胞を 2.5×10^5, 5.0×10^5, および 1.0×10^6 cells/gel を含むコラーゲンゲルを調製し、低接着表面処理プレートで培養し、外観を観察した。
線維芽細胞を1.0×10⁶ cells/gel含む0.1%コラーゲンゲルを低接着表面処理プレートで48時間培養し、細胞のアクチン繊維と細胞核を観察した。(a)細胞骨格染色画像 (b)細胞核染色画像 スケールバーは1.0 mmを示す。細胞骨格(a)および細胞核(b)の観察の結果、細胞のアクチン繊維と核はコラーゲンゲル中に均一に分散していることが確認できた。
繰り返し圧縮負荷操作後の培養上清中のヒアルロン酸の分子量

収縮コラーゲンゲル（線維芽細胞を1.0×10⁶ cells/gel含む0.1%コラーゲン溶液を低接着表面処理プレートで72時間培養したもの）へ、CO₂インキュベーター内の圧縮負荷装置FX-4000C™（Flexercell®）で繰り返し圧縮負荷（Shape: SIN 1/2, Freq: 1.0 Hz, 40 kPa, 6時間）を加えた。負荷操作後、42時間培養し培養上清からGAGを精製した。なお、24 gel 分の培養上清を回収し GAG を精製した。(a)無負荷（0分）(b)繰り返し圧縮負荷 アガロースゲル電気泳動の結果、繰り返し圧縮負荷時(b)の上清中のヒアルロン酸の分子量は、無負荷(a)と比べ、より高分子化していた。

Fig. 2-6 繰り返し圧縮負荷操作後の培養上清中のヒアルロン酸の分子量
繰り返し圧縮負荷操作後に42時間培養し、培養上清中のヒアルロン酸量を解析した。セルロース・アセテート膜電気泳動の結果、圧縮負荷時の上清中のヒアルロン酸量は、無負荷時と比べて増加していた。

Table 2-1 培養上清中のヒアルロン酸量

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>無負荷</td>
<td>0.07±0.06μg/ml</td>
<td></td>
</tr>
<tr>
<td>圧縮負荷</td>
<td>0.11±0.05μg/ml</td>
<td></td>
</tr>
</tbody>
</table>
第3項 考察

低接着表面処理プレートで作製した収縮コラーゲンゲルは円柱状であり、上部からみても正円であった（Fig. 2・2b）。低接着表面処理プレートの各wellには、ホスホコリン基がコートしてある。このホスホコリン基コーティングがコラーゲンの過度の接着を防ぎ、コラーゲンゲルの収縮を妨げなかったと考えられる。このプレートのLipidure®コーティングは、細胞毒性やタンパク質変性能がないことが報告されている（DeFife, 1995; Ishihara, 1998）。プレートのwell表面は、細胞膜表面を模しており、細胞も接着しない（Wataya, 2008; Yasuda, 2009）。未処理プレートと細胞培養表面処理プレートにおいて、収縮コラーゲンゲルの高さは部位により違った（Fig. 2・2b）のは、コラーゲンゲル収縮初期にコラーゲンゲル周辺部だけがwellから離れ、その後コラーゲンゲル全体がwellから離れたためと考えられる。

コラーゲンゲルの形状は制御可能であることから、圧縮負荷プレートのwellに収縮コラーゲンゲルを設置可能であった。細胞濃度を2.5×10^5 cells/gelから1.0×10^6 cells/gelに増やすと、コラーゲンゲルの直径はより収縮した（Fig. 2・3）。これはNishiyamaらが、1.0×10^4から2.0×10^5 cells/gelのコラーゲンゲルを培養し、コラーゲンゲルがより収縮した結果と同様のものであった（Nishiyama, 1988）。圧縮負荷実験には、1.0×10^6 cells/gelの細胞数で培養72時間の収縮コラーゲンゲルを用いることにした。この条件で作製した収縮コ
ラーゲンゲルの直径は平均9.0 mmであり、圧縮負荷プレートのwell(直径13 mm)におさまる。

コラーゲンゲルに圧縮負荷を加えたことで、上清中のヒアルロン酸の産生量が増加し(Table 2・1)、分子量が増大した(Fig. 2・6)。マイクロアレイの結果から、圧縮負荷直後には、ヒアルロン酸合成酵素であるHAS-1とHAS-2、核のIκBタンパク質の1つをコードするNFKBIZ(Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor)、cAMP応答配列結合タンパク質ファミリーをコードするCREB5(cAMP responsive element binding protein 5)、生理活性物質の一種であるIL-1A(Interleukin-1-alpha)、IL-1B(Interleukin-1-beta)、IL-6(Interleukin-6)、そしてマトリックスメタプロテアーゼであるMMP-3、MMP-10、MMP-12の遺伝子発現量が増加した。これらはすべて、ヒアルロン酸合成に関与する遺伝子である(Saavalainen, 2005; Stylianou, 1998)。コラーゲンゲル中の線維芽細胞は、圧縮負荷により遺伝子発現量に変化がおき、ヒアルロン酸産生に影響することを認めた。圧縮負荷が細胞周辺のインテグリンなどの接着因子に刺激を与え、遺伝子発現に影響を及ぼした可能性が考えられる。ラット皮膚への圧縮負荷で、皮膚中のヒアルロン酸量が増加することが報告されている(Kot, 2008)。この報告は、圧縮負荷により線維芽細胞のヒアルロン酸産生量が高まった本実験の結果を支持するものである。

本節の実験システムを用いることで、三次元培養モデルを容易に作製でき、細胞への繰り返し圧縮負荷の影響を検討できることが明らかとなった。
第2節 コラーゲンスポンジ培養法と静的荷重負荷の影響

はじめに
細胞への圧縮負荷の検討には、細胞を三次元構造体に包埋する必要がある。細胞包埋収縮コラーゲンゲルよりも、更に簡易な実験系を検討した。既存のコラーゲンキャッシュフォルードと市販のバイアルガラスを用いた静的荷重負荷実験系を構築し、ヒアルロン酸代謝への影響を解析する。

第1項 実験材料および方法

1.1 実験材料
細胞は、正常ヒト皮膚組織由来線維芽細胞(NB1RGB cells: 理研)を使用した。FBS(Sigma-Aldrich, Lot no. 106K0366), 1%PSN 含有 DMEM(Sigma-Aldrich), コラーゲンスキャッシュフォルードとして、ウシ真皮由来 I 型アテロコラーゲン製スポンジ(CSM-50: 高研)を用いた。96 well プレートは(353072: Falcon)を、6well プレートは(Multidish 6-well Nunclondelta SI: thermo Fisher Scientific)を用いた。

ウエスタンブロッキングの一次抗体には、MMP-1抗体（抗マウス，第一ファインケミカル）溶液（500倍希釈）と GAPDH 抗体（抗ウサギ，EnoGene）溶液（1,000倍希釈）を用いた。二次抗体には、Jackson ImmunoResearch Laboratories 製の抗マウス抗体 IgG（西洋ワサビベルオキシダーゼ標識ヤギ抗体マウス IgG(F(ab’)2 フラグメント製品；MMP-1抗体用）および抗ウサギ IgG（西洋ワサビベルオキシダーゼ標識ヤギ抗ウサギ IgG(F(ab’)2 フラグメント製品；GAPDH抗体用）を用いた。発光基質には、ECL Western blotting detection substrate（GE Healthcare）を用いた。

1.2 コラーゲンスポンジ培養法
10%FBS, 1%PSN 含有 DMEM に、線維芽細胞を1.0×10^7 cells/ml になるように調製した。コラーゲンスポンジ(Fig. 2-7)を 96 well プレートに設置し、スポンジ上に線維芽細胞懸濁液を50 μl播種した。播種した細胞量は、5.0×10^6 cells/sponge である。播種後、10分間インキュベートし、0または500 gで5分間遠心分離した。各 well へ 100 μlの 10%FBS, 1%PSN 含有 DMEM を加え、72時間培養した。培養は、5%CO2, 37℃の条件で CO2インキュベーター(Heracell*150i: Thermo Scientific)内で行った。
1.3 蛍光染色法
72時間の培養後、コーラーゲンスポンジを1.0%ホルムアルデヒドで固定した。コーラーゲンスポンジをPBSで2回洗浄し、アセトンで透過処理後、1.0%アルブミンPBS溶液でブロッキングした。コーラーゲンスポンジの中心部を垂直方向に50μm厚切断し、凍結切片を作製した。凍結切片を2.9μMのDAPIで10分間染色し、蛍光顕微鏡（Biozero:キーエンス）で観察した。全ての染色工程は、室温で行った。

1.4 静的荷重負荷方法
コーラーゲンスポンジを6wellプレートに設置し、上部に50mlバイアルガラス（9-852-09:AS ONE）を乗せて静的荷重負荷を加えた（Fig. 2-9a,b）。接触圧は、バイアル内の水量で調節し、0kPa（負荷なし）、20kPa（バイアルに0mlの水を含む）、または40kPa（バイアルに32.6mlの水を含む）とした。40kPaの接触圧（0.41kgf/cm²）は、65.2gの荷重がコーラーゲンスポンジの断面積15.9mm²へかかるものとして決定した。バイアルガラスがずれないように、上部を別の6wellプレートで固定した。5%CO₂、37℃の条件でCO₂インキュベーター内にプレートを静置し、静的荷重負荷を1時間加えた。静的荷重負荷操作後、コーラーゲンスポンジを0〜24時間培養した。このとき、0、1.0μMのプロテアソーム阻害剤（MG132）を培地に加えて培養した。

1.5 DNAの測定法
静的荷重負荷操作後、DNA抽出キット（Nucleo Spin Tissue:タカラバイオ）を用いて細胞中のDNAを抽出した。抽出したDNAの量を、260nmの吸光度から測定した。

1.6 ヒアルロン酸の定量
静的荷重負荷操作後、ヒアルロン酸ELISAキット（280566:生化学工業）を用いて、培養上清中のヒアルロン酸量を測定した。

1.7 ウェスタンブロッティング法
静的荷重負荷操作後の培養上清中のMMP-1を、ウェスタンブロッティングで解析した。コーラーゲンスポンジと培養上清をホモジナイザー（Biomashe®: ニッピバイオマトリックス研究所）で均質化し、泳動サンプル用緩衝液（Z sample buffer:アトーロ）と混合した。5〜20%SDS-PAGEゲル（e-PAGEL® E-T/R/D520L:アトーロ）に試料を注入し、電気泳動を行った。なお添加量は、タンパク質量測定キット（Pierce® BCA Protein Assay:Thermo）を用いて、タンパク質量を合わせた。
分子量の目安として、スタンダード(Precision Plus Protein™ Standards: BIO-RAD)を用いた。泳動後、SDS-PAGE ゲル上のバンドを PVDF 膜(Clear Blot membrane-P: アトー)に転写した。転写後の SDS-PAGE ゲルにバンドが残らないことを、CBB 染色試薬(EzStain AQua, アトー)で確認した。ノンスペックバンドを抑制するため、膜をブロックング溶液 (N101: 日油) に1時間浸した。1次抗体は、MMP-1 抗体と GAPDH 抗体を用いた。2次抗体として、MMP-1 抗体には抗マウス抗体 IgG、GAPDH 抗体には抗ウサギ IgG を用いた。バンドの発光は、発光基質を用いた。膜上のバンドを、画像撮影装置(Chemidoc™ XRS+: Bio-Rad)で検出した。

1.8 ゼラチンザイモグラフィー法

コラーゲンスポンジ内外の培養上清中の MMP-2 と MMP-9 を、ゼラチンザイモグラフィーキット(AK-45: ブライマリーセル)で解析した。なお、ゼラチンの染色には、キット付属品ではなく、クマシブリアントブルー(CBB)染色試薬を用いた。試料添加量は、タンパク質量を合わせた。

1.9 遺伝子発現解析法

0～24 時間培養後、コラーゲンスポンジ中の細胞から total RNA を抽出した。コラーゲンスポンジを 1.0 ml のフェノール溶液に 40 分浸すことで、細胞溶解液を調製した。0.2 ml のクロロホルム(和光純薬工業)を加え、よく攪拌した後、13,000 rpm、4℃で 15 分間遠心分離した。遠心分離後の溶解液は、上層が RNA、中層がタンパク質、下層が DNA を多く含む層に分離した。上層を別の 1.5 ml チューブに回収し、そこへ 0.5 ml のプロピルアルコール(和光純薬工業)を加え攪拌し、常温で 10 分間静置した。その後、13,000 rpm、4℃で 10 分間遠心分離し、デカンテーションで上清を除去し、風乾した。風乾物を、39.5 μl の 0.1% Diethyl Dicarbonate(和光純薬工業)を含む DEPC 溶液に懸濁した。溶液中に残った DNA を除去するため、DNA-free(DNase treatment removal reagent: Ambion)を使用した。39.5 μl RNA 懸濁液と 5.0 μl 10×DNase buffer、そして 0.5 μl DNase を混合し、37℃で 30 分間酵素分解した。5.0 μl DNase Inactivation Reagent を加えて反応を停止し、15,000 rpm、4℃で 1 分間遠心分離した。上清を 0.6 ml チューブに回収し、これを total RNA 溶液とした。total RNA 溶液中の RNA 濃度を、吸光度をもとに測定した。DEPC 水で 100 倍希釈した total RNA 溶液の 260 nm の吸光度を、Gene Spec I (Naka Instruments)で測定した。専用のソフトウェア(Gene Spec I)を用いて、total RNA 濃度を計算した。cDNA 合成を、Prime Script RT-PCR kit(タカラバイオ)を用いて行った。
total RNA溶液をRNase Free dH₂Oで希釈し、14 μlの溶液中に2.0 μgのRNAを含む濃度とした。この溶液に、1.0 μlの20 μM Random 6mers、4.0 μlの5×Prime Script Buffer、そして1.0 μlのPrime Script RT Enzyme Mixを加えた。サーマルサイクラーで逆転写反応を行い、二倍に希釈して鋳型cDNAを作製した。遺伝子発現量解析は、PCRとSYBR Greenを用いたインターフォークター法(Higuchi, 1993)を用いて行った。反応チューブ(0.2 ml Hi-8-Tube:タカラバイオ)12.5 μlのSYBR Premix Ex Taq(Taq DNA Polimerase、dNTP mixture、Mg²⁺、そしてSYBR Green Iを含む試薬:タカラバイオ)、9.5 μlの滅菌水、センスおよびアンチセンスの0.5 μlの100 pmol/μl特異的プライマー、そして2.0 μlのcDNAを入れ、混合液を調製した。使用したforwardプライマーとreverseプライマーは、GAPDH: 5'-GCACGGTCAAGGCTGAGAAC-3'、and 5'-TGTTGAAAGCCAGTGGA-3'; interleukin-6(IL-6): 5'-AATTCCGTACATCCTGACGG-3'、and 5'-TTGGAAGGTTCAGGTTTCTT-3'; MMP-1: 5'-ATTCTACTGATATCGGGCTTGA-3'、and 5'-GTGTCCCTTGGGATCCGTGATAG-3'; MMP-2: 5'-ATGTCCTTGGGGTATCCGTGTAGG-3'; tissue inhibitor of metalloproteinase-1(TIMP-1): 5'-AGAGTGTCTGCGGATACTTC-3', and 5'-CCAACAGTGTAGGTCTTGGTG-3'とした。GAPDH遺伝子発現量を内部標準とした。GAPDHは変動が少ない遺伝子であることを確認している。PCRは、Thermal Cycler Dice Real Time System(StepOnePlus™ Real-Time PCR Systems: Applied Biosystems)を用いて行った。

1.10 統計処理
MS-Excel用統計ソフトStatcel2を用いて、Dunnett's multiple-comparisonで検定した。
第2項 結果

2.1 コラーゲンスポンジ培養
細胞をコラーゲンスポンジ(Fig. 2・7)へ播種したのみでは、細胞はスポンジ上部のみに分布していた。細胞播種後に遠心処理を行った結果、細胞はコラーゲンスポンジ中心部まで分布した(Fig. 2・8)。なお、遠心処理を行っても、プレート well 上に細胞は存在しなかった。

2.2 静的荷重負荷の影響
本研究では、市販のバイアルガラスをスポンジ上部に静置することで静的荷重負荷を加えた(Fig. 2・9a, b)。20 kPa を比較的弱い負荷、40 kPa を比較的強い負荷として設定した。静的荷重負荷操作後、細胞核を DAPI で染色し、コラーゲンスポンジ中央部の切片を作製した結果、静的荷重負荷操作後も線維芽細胞はコラーゲンスポンジに接着していることを確認した(Fig. 2・9c)。

2.3 DNA 量測定
静的荷重負荷により細胞数が変化しているか確認するため、負荷前後での DNA 量を測定した。コラーゲンスポンジ中の DNA 量(平均値±標準偏差, n=3)は、0, 20, そして 40 kPa 負荷で、28.8±2.0, 27.8±1.9, そして 26.0±0.8 μg/ml であった。群間に統計的有意差はなかったが、静的荷重負荷強度が高いほど、DNA 量が少ない傾向があった。

2.4 線維芽細胞のヒアルロン酸産生におよぼす静的荷重負荷の影響
静的荷重負荷操作後に 24 時間培養し、培養上清中のヒアルロン酸量を解析した(Table 2・2)。上清中のヒアルロン酸量は、圧縮負荷によって変化しなかった。

2.5 線維芽細胞のマトリックスメタロプロテアーゼ (MMP) 産生におよぼす静的荷重負荷の影響
24 時間培養後、培地とコラーゲンスポンジを混合した試料中の MMP-1 をウェスタンプローティングで解析した(Fig. 2・10a)。40 kPa 静的荷重負荷群におけるグリコシル化 Pro-MMP-1 (57 k) と Pro-MMP-1 (52 k) 発現量は、負荷なし群と比べて多かった。なお、GAPDH (37 k) 発現量は変化していなかった。プロテアソーム阻害剤 (1.0 μ M MG132) を添加して培養した結果、培地中の MMP-1 の産生量は変化しなかった(Fig. 2・10b)。
24時間培養後、培地とコラーゲンスポンジを混合した試料中のMMP-2とMMP-9をゼラチンザイモグラフィーで解析した（Fig. 2・10c）。40 kPaにおけるPro-MMP-2（72 k）発現量は、負荷なしと比べて多かった。20 kPaにおけるMMP-2（62 k）発現量は、負荷なしと比べて多かった。Pro-MMP-9（92 k）とMMP-9（83 k）のバンドは検出されなかった。

MMP-1、MMP-2、MMP-9、IL-6、そしてTIMP-1の遺伝子発現量をリアルタイムRT-PCRで解析した（Fig. 2・11）。静的荷重負荷直後（t=0）は、20 kPaの静的荷重負荷は、無負荷と比べてIL-6の遺伝子発現量が有意に増加した。
Fig. 2-7 コラーゲンスポンジ

コラーゲンスポンジ外観（Akamine, 2012 より引用）

Fig. 2-8 コラーゲンスポンジ中の細胞の分布

細胞をコラーゲンスポンジに播種し、72 時間培養後、コラーゲンスポンジの凍結切片を作製した。凍結切片中の細胞核の分布を DAPI で確認した。（a）細胞を播種し、遠心処理を行わなかったコラーゲンスポンジ、（b）細胞播種後、遠心処理（500g, 5 分間）したコラーゲンスポンジスケールバーは 1.0 mm を示す。
Fig. 2-9 簡易 静的荷重負荷装置

(a)細胞を包埋したコラーゲンスポンジを6wellプレートに設置し、バイアルガラスで静的荷重負荷を加えた。静的荷重負荷はCO₂インキュベーター(5％CO₂、37℃)内で加えた。(b)バイアルガラスの重さで、コラーゲンスポンジへ静的荷重負荷を加えた。負荷強度は、バイアル内の水量で調節し、負荷なし(0 kPa)、20 kPa(0 mlの水をバイアルに入れた)、または40 kPa(32 mlの水をバイアルに入れた)として、1時間の静的荷重負荷を加えた。バイアルガラスの上部は別の6wellプレートで固定した。(c)静的荷重負荷操作後、コラーゲンスポンジ中の細胞の核部をDAPIで染色し、コラーゲンスポンジ中心部の切片を観察した。静的荷重負荷操作後も線維芽細胞はコラーゲンスポンジに接着していることを確認した。スケールバーは200 μmを示す。
細胞をコラーゲンスポンジに包埋し、ガラスバイアルで 0、20、そして 40 kPa の静的荷重負荷を 1 時間加えた。静的荷重負荷操作後に 24 時間培養し、培地とコラーゲンスポンジを混合した試料中の MMP-1、MMP-2、そして MMP-9 のタンパク質をウェスタンプロテイングとゼラチンサイモグラフィーで解析した。試料添加量は、タンパク質量を合わせて決定した。(a)ウェスタンプロテイング解析結果。静的荷重負荷 40 kPa におけるグリコシル化 Pro-MMP-1 (57 k) と Pro-MMP-1 (52 k) 発現量は、負荷なし群と比べて多かった。なお、GAPDH (37 k) 発現量は変化していなかった。（b）プロテアソーム阻害剤 (1.0 μM MG132) を添加して培養した結果、培地中の MMP-1 の産生量は変化しなかった。（c）ゼラチンサイモグラフィー解析結果。静的荷重負荷 40 kPa における Pro-MMP-2 (72 k) 発現量は、負荷なしと比べて多かった。20 kPa における MMP-2 (62 k) 発現量は、負荷なしと比べて多かった。Pro-MMP-9 (92 k) と MMP-9 (83 k) のバンドは検出されなかった。

Fig. 2-10 静的荷重負荷操作後の培地の解析
コラーゲンスポンジに細胞を包埋し、ガラスバイアルで0、20、そして40 kPaの静的荷重を1時間加えた。静的荷重負荷操作後に0～24時間培養後、コラーゲンスポンジ中の細胞からtotal RNAを抽出した。total RNAからReal-time RT-PCRで遺伝子発現量を解析した。解析対象は、静的荷重負荷前（pre）、静的荷重負荷直後（t=0）、3、6、12そして24時間培養として、荷重前を1とした相対遺伝子発現量（平均値±標準偏差、n=3）で示した。20 kPaの静的荷重負荷で、静的荷重負荷直後（t=0）と比べて、IL-6の遺伝子発現量が増加した（Dunnett’s multiple-comparison tests, P < 0.05）。
Table 2-2 培養上清中のヒアルロン酸量

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>無負荷</td>
<td>1.6 ± 1.2 μg/ml</td>
</tr>
<tr>
<td>静的荷重負荷</td>
<td>1.7 ± 0.1 μg/ml</td>
</tr>
</tbody>
</table>

静的荷重負荷操作後に24時間培養し、培養上清中のヒアルロン酸量を解析した。上清中のヒアルロン酸量は、圧縮負荷によって変化しなかった。
第3項 考察
近年、細胞用の伸展負荷装置が開発され、細胞に対する機械的負荷の影響が検討されてきた（Russell, 2004; Shelton, 2003）。真皮線維芽細胞は伸展負荷に応答するが、これは細胞膜上の機械的負荷の受容体によるものである（Kessler, 2001）。しかし、これらの伸展負荷装置は、単層培養した細胞に適用するため、細胞を三次元的に囲む細胞外マトリックスの影響は考慮できなかった。三次元培養は、単層培養と比べて細胞応答性が異なる（Pedersen, 2005）。このため、三次元培養環境に圧縮負荷を加えるシステムが望まれていた。既存の三次元培養系での圧縮負荷実験システムは、三次元構造体に対し、空気圧（FX-4000C: Flexcell）や荷重ピストン（Cyclic Load Stimulator: Technoview）を利用し、定圧負荷または繰り返し圧縮負荷操作が可能である。たとえば、頸関節滑膜由来細胞に荷重ピストンで定圧負荷を加えた結果、炎症性サイトカインとMMP-3の産生が促進した（Akamine, 2012）。本節では、より簡易な機械的負荷実験系として、市販のコラーゲンスキャッフォルード、バイアルガラス、そして標準的な研究機器だけで静的荷重負荷実験系を構築した。

本研究では、市販のバイアルガラスをスポンジ上部に静置することで静的荷重負荷を加えた（Fig. 2-9a）。20 kPaを比較的弱い負荷、40 kPaを比較的強い負荷として設定した。40 kPaの静的荷重負荷では、今回用いたコラーゲンスポンジは崩壊しない（Akamine, 2012）。コラーゲンスポンジ（CSM-50; 直径 4.4 mm、高さ 3.0 mm、ボアサイズ 100-200 μm）は、滅菌済み製品であるため、線維芽細胞の培養足場として利用できた。コラーゲンスポンジは不溶化コラーゲン線維の集合であり、細胞はコラーゲン線維上に接着する。このため、厳密には三次元培養とはいえない。コラーゲングル培養のような包埋系を構築するためには、コラーゲンスポンジに細胞を播種し、その後スポンジ中にコラーゲングルを注入する方法が考えられる。今回用いたバイアルガラスの直径は34.90 mmであり、6wellプレートの well直径は34.96 mmである。このため、バイアルガラスは6wellプレートの well に収まった（Fig. 2-9b）。ウケイ酸ガラス製のバイアルガラスは、容易に滅菌でき再利用も可能である。またバイアルガラス内の水量の調整で、静的荷重負荷強度を変更できた。

コラーゲンスポンジに静的荷重負荷を加えた結果、無負荷と比べ細胞数が微減したのにも関わらず、培地中のMMP-1とMMP-2量が増加した（Fig. 2-10a,c）。プロテアソーム阻害剤（1.0 μM MG132）を用いても、MMP-1量は変化しなかった。
(Fig. 2・10b)。また、静的荷重負荷直後で、無負荷と比べて IL-6 の遺伝子発現量が増加した(Fig. 2・11)。このことから静的荷重負荷は、遺伝子発現量とは関係なく、MMPs 合成を促進している可能性が考えられる。なお、培養上清中のヒアルロン酸産生量は変化がみられなかった(Table 2・2)。

静的荷重負荷は、コラーゲンスポンジ中の線維芽細胞に影響し、MMPs 産生に影響した。この影響は、IL-6 を介した経路で細胞外マトリックスの分解を促進する可能性が考えられる。本節のシステムを用いることで、簡便かつ安価に細胞への静的荷重負荷の影響を検討できることが示された。
第3章 総括

本論文では、機械的負荷に対する実験系を確立する事を目的とし、生体における機械的負荷が常時影響する器官である関節および真皮由来細胞を用いた研究を実施した。本研究では、生体組織様三次元培養モデルを簡易に作製し、圧縮負荷を加えながら培養することで、細胞や細胞外マトリックス成分の変化について検討した。

第1章では、関節の維持に必要不可欠なヒアルロン酸に着目し、滑膜細胞を用いた新たな関節モデルを構築することを計画した。

第1章第1節では、滑膜細胞を1.0×10⁶ cells 含む2.5%アガロースゲルを調製し、48時間培養後の上清を解析した。培養上清中のヒアルロン酸の分子量は、単層培養と比べ、アガロースゲル培養で高分子量側にシフトした。アガロースゲル培養により細胞数が増加した可能性もあるが、ヒアルロン酸の代謝変化も起きていると考えられる。アガロースゲルに0、30、または180分の40 kPaの繰り返し圧縮負荷を行った結果より、圧縮負荷時間を増やすと培養上清中のヒアルロン酸量が増えることがわかった。圧縮負荷後の培養時間は24時間でも48時間でも上清中のヒアルロン酸量は同程度であり、培養あたりのヒアルロン酸産生量が一定に保たれている可能性を示唆するものであった。ヒアルロン酸の分子量解析の結果より、圧縮負荷時間を増やすと培養上清中のヒアルロン酸は高分子化することがわかった。

第1章第2節では、滑膜細胞を1.0×10⁶ cells 含む0.1%コラーゲンゲルを調製し、48時間培養することでゲル収縮を誘導した。この収縮コラーゲンゲルに40 kPaの繰り返し圧縮負荷を行った結果より、6時間まで繰り返し圧縮負荷および定圧負荷は、無負荷と比べ、培養上清中のヒアルロン酸産生量が増加した。これは、圧縮負荷によるHAS遺伝子発現量の増加によるものと考えられる。一方、ヒアルロン酸の分子量分布は、繰り返し圧縮負荷では高分子側にシフトし、定圧負荷では変化がみられなかった。滑膜細胞に対する繰り返し圧縮負荷が、定圧負荷と比べ、より高分子のヒアルロン酸の産生を促進し、関節内の潤滑性に関与している可能性が明らかとなった。
三次元構造体として、滑膜細胞を含有した収縮コラーゲンゲルを用いることは、生体条件を反映していることから圧縮負荷実験に適していると考えられる。しかし、実際に膝にかかっている100 kPa以上の圧力に耐えることができないため、より生体に類似したモデル系とするには、収縮コラーゲンとアガロースなどの構造体で滑膜細胞を包埋する系の開発が必要であることが示された。

第2章では、皮膚の保湿性と弾力性維持に必要不可欠なヒアルロン酸に着目し、真皮線維芽細胞を用いた新たな真皮モデルの構築を計画した。

第2章第1節では、真皮線維芽細胞を1.0×10⁶ cells含む0.1%コラーゲンゲルを調製し、低接着表面処理プレートで72時間培養した。作製した収縮コラーゲンゲルは円柱状であり、上部からみても正円に近かった。コラーゲンゲルの形状を制御可能であることから、圧縮負荷プレートのwellに収縮コラーゲンゲルを設置することが可能であった。コラーゲンゲルに40 kPaの繰り返し圧縮負荷を6時間加えたことで、上清中のヒアルロン酸の産生量が増加し、分子量が増大した。マイクロアレイの結果から、ヒアルロン酸合成に関与する遺伝子群の発現量が増加した。コラーゲンゲル中の線維芽細胞は、圧縮負荷により遺伝子発現量に変化がおき、ヒアルロン酸産生に影響することを認めた。線維芽細胞をコラーゲンゲルに包埋した真皮モデルを構築でき、ゲルへの圧縮負荷により、産生するヒアルロン酸が滑膜細胞の場合と同じに高分子化することが明らかとなった。

第2章第2節では、より簡易な実験系の確立を目的に、コラーゲンスポンジに線維芽細胞を包埋し、三次元構築させた真皮モデルを構築した。市販のコラーゲンスポンジに真皮線維芽細胞を5.0×10⁵ cellsを浸透させた細胞培養モデルを作製し、72時間培養した。市販のバイアルガラスをスポンジ上部に静置することで静的荷重負荷を加えた。コラーゲンスポンジに40 kPaの静的荷重負荷を1時間加えた結果、培地中のMMP-1とMMP-2量が増加し、プロテアーゼ阻害剤を用いても、MMP-1量は変化しなかった。しかし、培養上清中のヒアルロン酸産生量は変化がみられなかった。このことから静的荷重負荷は、遺伝子発現量とは関係なく、MMPs合成を促進しているが、ヒアルロン酸の産生量には影響を与えないので考えられる。本実験方法は、簡便かつ安価に細胞への静的荷重負荷の影響を検討できることが示された。

線維芽細胞に対する繰り返し圧縮負荷は、より高分子のヒアルロン酸の産生を促進し、皮膚組織内の保湿性と弾力性維持に関与している可能性がある。
た、線維芽細胞に対する静的荷重負荷は、細胞外マトリックスの分解に関与する可能性がある。この結果は、美容および医療マッサージにより、皮膚組織への機械的荷重を加えることの生理的意義を示唆しており、血流改善や皮下脂肪抑制への効果だけでなく、真皮における皮膚状態の改善にも効果を示す可能性が示唆された。

本研究では、生体組織樣三次元培養モデルを簡易に作製し、圧縮負荷を加えながら培養することで、細胞や細胞外マトリックス成分の変化について検討した。今後、本研究で構築した三次元培養モデルと動物由来の組織の挙動を比較し、生体組織との相関を検討することで、より生体に類似した圧縮負荷モデルを確立することが出来、動物実験代替法や薬剤探索などのスクリーニング法としての発展が期待できる。
引用文献

Rizkalla G, Reiner A, Bogoch E, Poole AR. Studies of the articular cartilage proteoglycan aggrecan in health and osteoarthritis. Evidence for molecular

岡部平八郎, 功刀俊夫, 三島優. 高機能潤滑剤の開発と応用. 2001.
関口清俊. 再生医療のための細胞生物学. 2007.
謝辞

本論文をまとめるにあたり、終始暖かい激励とご指導、ご鞭撻を頂いた東京農工大学農学部 硬蛋白質利用研究施設 皮革研究部門 野村義宏教授に心より感謝申し上げます。野村教授には、筆者の東京農工大学在学中より、生体材料学に関してご指導をいただきました。再び、生体材料学の道に導いていただいたことに心より感謝申し上げます。

本学位論文作成にあたり、適切なご助言、ご鞭撻を頂きました東京農工大学 西山敏夫教授、ならびに宇都宮大学 東德洋教授に深く感謝致します。

また、論文審査では、東京農工大学 三浦豊教授、ならびに茨城大学 長南茂雄教授にご教授頂きました。心より感謝申し上げます。

また、数々の面で御協力してくださった硬蛋白質利用研究施設の皆様と卒業生に心から感謝いたします。特に、津田祐一氏、上原一貴氏、並木郷氏、松尾俊輝氏、中島正博氏、横野智砂子氏には大変お世話になりました。

また、仕事と学位取得の両立を支援していただきました日油株式会社の皆様に心から感謝申し上げます。特に、小橋仁氏、押部義宏氏、桜本裕之氏、姜義哲氏、橋爪論氏、田中信治氏、土田衛氏、大久保剛氏、木下修平氏、吉崎舟洋氏、藤井敬洋氏、今村龍太郎氏、沼尻いく子氏、野地美由紀氏には大変お世話をなりました。

最後になりましたが、博士課程に進学する機会をくださり、見守り続けてくれた両親と妻に感謝の意を申し上げます。