INTRODUCTION

Endophyte is an organism, often a bacterium or fungus, that lives within a plant for at least part of its life without causing apparent disease (Bacon and White, 2000). Endophytes are ubiquitous and have been found commonly in plants. Many economically important forage and lawn grasses carry fungal endophytes (Neotyphodium sp.) which may improve the ability of these grasses to tolerate abiotic stresses such as drought, as well as improve their resistance to insect and herbivores. The relationship between the plant and its endophytes is one of the symbiotic nature whereby the endophytes colonize the internal tissues of the plant (Schulz et al., 1999; Stone et al., 2004; Strobel, 2003; Zhang et al., 2006). There is growing interest in endophytes and their origins, biodiversity, endophyte–host interactions, role in ecology, and the characterization of their secondary metabolites (Arnold, 2007; Saikkonen et al., 2004). Strobel et al. (2004) stated that there is a need for new and beneficial compounds that can provide relief against ailments and diseases. The untapped source of biological diversity represented by microbial endophytes is a promising source of novel natural products for medicine and industry. Endophytic waterborne conidial fungi may also provide products useful in biotechnology and agriculture (Bills and Polishok, 1992; Petrini, 1991; Dreyfuss and Chapela, 1992).

Ingold (1942) described the occurrence of waterborne conidial fungi in abundance on submerged decaying leaf litter and foam from freshwater stream. Waterborne conidial fungi are also recorded as root endophytes in roots of living plants including grasses and pteridophytes from wet fields near ravine areas (Waid, 1954). Many riparian plants extend their roots into streams and rivers in search of water and nutrients. Since waterborne conidial fungi are the major fungal colonizers of plant detritus in running waters, they would also infect these healthy aquatic plant roots (Fisher et al., 1991; Marvanova and Fisher 1991; Marvanova et al., 1992). Endophytic fungi have now been reported from diverse plants including grasses, mosses, ferns, conifers, and angiosperms (Bernstein and Carroll, 1977; Carroll and Carroll, 1978; Petrini, 1986; Clay, 1989, 1990; Petrini et al., 1992a, b; Fisher and Petrini, 1989; Wilson and Carroll, 1994). Some reports on these fungi are also available from Indian continent (Sridhar and Barlocher, 1992a; Raviraj et al., 1996; Ananda and Sridhar, 2002; Sati and Belwal, 2005; Sati et al., 2006). During the course of the present study, many waterborne conidial fungi have been isolated from high-altitude Kumaun Himalayan streams. In this paper, the species of...
aquatic hyphomycetes occurring as root endophyte from this area are described.

MATERIALS AND METHODS

For determining the endophytic waterborne conidial fungi, living roots of different healthy plants growing in the wet and ravine areas of two selected sites, namely Dogaon (1050 m a.s.l.) and Ramgarh (2050 m a.s.l.), Nainital, Kumaun Himalayas (India), located in the outer Central Himalayas 28° 44’ to 30° 49’ N Latitude and 78° 45’ to 81° 1’ E Longitude, were collected. It comprises a temperate hilly zone, ranging 5-15°C temperature in winter while 25-35°C during summer having monsoon pattern of rainfall. The collected root samples were cut into 15-20 cm pieces with a sharp sterile knife and brought to the laboratory in sterile polythene bags for further processing.

Isolation and Culture

The collected root segments were washed under running tap water for 2-3 h and were dipped in 90% alcohol for 2-3 min for surface sterilization. After that, these root segments were rinsed with sterile water. These segments were then transferred into sterile Petri dish containing sterile water and incubated at 20°C ± 2°C for 10-15 days. For the detection of the conidia of endophytic fungi, incubated dishes were observed periodically under low power of microscope. Some of the root segments were also immersed in 0.01% sodium hypochlorite solution for 3-6 min and then dipped in 90% ethanol up to 30 s. After surface sterilization, root segments were cut up to 1-2 cm long and rinsed with sterile water. These segments were placed into Petri dish containing 2% malt agar supplemented with antibiotics and incubated at 20°C ± 2°C for 10-15 days depending on the growth of emerging fungi. For sporulation, a small block of agar piece was cut from the periphery of the well-grown fungal colony and placed in sterile water. After 3-6 days, tremendous conidia were formed on the edge of submerged agar piece. This agar block was then examined under a microscope for different developmental stages of species, spore morphology, and method of spore release required for the identification of root endophytic fungi.

RESULT AND DISCUSSION

A total of 15 species representing 15 genera, Alatospora, Anguillospora, Beltrania, Campylospora, Claviriopsis, Cylindrocarpon, Flagellospora, Helicomyces, Helicosporium, Pleurophragmium, Pestalotiopsis, Seiridium, Setosynema, Tetrachaetum, and Tetracladium of waterborne conidial fungi were recovered as root endophytes (Table 1). This shows that 60% of root endophytes were recovered from a high-altitude stream of Ramgarh and 40% were recorded from a low-altitude stream of Dogaon. As evident from Table 1, 9 species were restricted to Ramgarh stream while two species were restricted to Dogaon stream. The variation in the occurrence of root endophytes may be due to the altitudinal difference and suggests that most of the root endophytes are low temperature loving.

Table 1: Root endophytes recorded from different plants growing in ravine areas of Nainital, Kumaun Himalayas

<table>
<thead>
<tr>
<th>Root endophytes</th>
<th>Host plant</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. acuminata Ingold</td>
<td>C. viminea, E. adenophorum</td>
<td>+</td>
</tr>
<tr>
<td>A. longissima (Sacc.and Therry) Ingold</td>
<td>R. scripta, R. hastatus</td>
<td>+</td>
</tr>
<tr>
<td>B. rhombitica Penzing</td>
<td>Elatostemma sp., Golfusia sp., P. scripta, R. Hastatus</td>
<td>+</td>
</tr>
<tr>
<td>C. chaetocladia Ranzioni</td>
<td>C. viminea, E. adenophorum, Pteridophytes, R. alpina*, V. wallichii</td>
<td>+</td>
</tr>
<tr>
<td>C. aquatica de Wildeman</td>
<td>C. viminea, E. adenophorum, Elatostemma sp., V. viminea, UG</td>
<td>+</td>
</tr>
<tr>
<td>C. aquaticum (Nils.) Marv. and Descals</td>
<td>C. viminea, P. scripta, V. wallichii, R. hastatus, UG</td>
<td>+</td>
</tr>
<tr>
<td>F. penicillioides Ingold</td>
<td>Elatostemma sp., Golfusia sp., P. scripta, V. wallichii</td>
<td>+</td>
</tr>
<tr>
<td>H. roseus Link</td>
<td>C. viminea, E. adenophorum, R. alpina*, V. wallichii</td>
<td>+</td>
</tr>
<tr>
<td>H. lumbriboideus* Linder</td>
<td>C. viminea, Pteridophytes, R. hastatus, UG, V. wallichii</td>
<td>-</td>
</tr>
<tr>
<td>P. submersus Sati and Tiwari</td>
<td>C. viminea, E. adenophorum</td>
<td>+</td>
</tr>
<tr>
<td>P. sonum ** Sati and Tiwari</td>
<td>R. scripta, V. canescens*</td>
<td>-</td>
</tr>
<tr>
<td>Seiridium sp.</td>
<td>R. hastatus, V. wallichii, UG</td>
<td>+</td>
</tr>
<tr>
<td>S. isthmosporum** Shaw and Sutton</td>
<td>C. viminea, P. scripta, R. hastatus</td>
<td>+</td>
</tr>
<tr>
<td>T. marchalianum de Wildeman</td>
<td>C. viminea, Elatostemma sp., V. canescens</td>
<td>-</td>
</tr>
<tr>
<td>T. elegans Ingold</td>
<td>UG, V. wallichii</td>
<td>+</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>13 06</td>
</tr>
</tbody>
</table>

All these endophytic fungi were recorded from the roots of pteridophytes and grasses (Carpessium viminea, Elatostemma sp., Eupatorium adenophyllum, Golfusia sp., Pilea scripta, Rumex hastatus, Roscoea alpina, Valeriana wallichii, and Viola canescens). Four plant species, namely, Elatostemma sp., Golfusia sp., Roscea alpina, and Viola canescens are found as new host (Table 1) while Helicosporium lumbricoides, Pleurophragmium sonum, and Setosynnema isthomosporum are found for the first time as root endophytes.

All the species isolated as root endophytes possess different conidial shapes such as cylindrical, helical, rounded, sigmoid as well as tetraradiate (Figures 1 and 2). It is interesting to note that the root endophytes found in the present study belong to different group of fungi as Beltrania rhombica and Pestalotopsis submersus belong to dematacious fungi while Helicomyces roseus and H. lumbricoides belong to helicosporous fungi and other represent to triradiate or tetraradiate conidial fungi. Earlier, these fungi have also been reported from submerged leaf litter in running freshwater bodies (Ingold, 1942; Marvanova, 1975; Sati et al., 1989, 1992, 2002a, b), Sati and Tiwari, 1993 a, b; Sridhar and Barlocher, 1992). Sati et al. represented 26 species of aquatic hyphomycetes as root endophytes from Kumaun Himalayas (Sati and Belwal, 2005; Sati et al., 2006, Arya and Sati, 2008; Sati et al., 2009). With the addition of these three new endophytes, the total record from Kumaun Himalayas, India, reached 29 species.

Sridhar and Barlocher (1992) also reported some aquatic hyphomycetes as root endophytic fungi from the roots of Acer spicatum, Betula papyrifera, and Picea glauca. Sati and Belwal (2005) recorded 18 species as root endophytes, of which 10 species, namely, Alatospora acuminata, A. pulchella, Acaulopage tetraceros, Anguillospora crassa, Campylospora chaetocladia, Lemonniera cornuta, L. Pseudofloscula, L. terrestris, P. submersus, and Tetrachaetum elegans were reported for the first time. Sati et al. (2006) added three more species, namely, Camposporium pellucidum, Diplocladiella scalaroides, and H. roseus as root endophytes. Later, Arya and Sati (2008) also isolated five species of aquatic hyphomycetes as new root endophytes. By the addition of these three new root endophytes, i.e. H. lumbricoides, P. sonum, and S. isthomosporum, new root endophytes, i.e. H. lumbricoides, P. sonum, and S. isthomosporum, now there are 21 new root endophytic aquatic hyphomycetes from Kumaun Himalayas.

The endophytes have different biological niche with the host plant, and the study of root endophytes has also been suggested for the detection of many new products which are useful in biotechnology and agriculture (Bills and Polishok, 1992, Petrini, 1991; Dreyfuss and Chapela, 1992). Reports are available that the antimicrobial
bioactive compounds are present in endophytic aquatic fungi. Quinaphthin was obtained from *Helicoon richonis* (Fisher et al., 1988) and anguillosporal was recorded from *Anguillospora longissima* (Harrigan et al., 1995).

The antimicrobial activity of some root endophytic fungi has been studied by Arya and Sati (2011) and they found good antifungal and antibacterial activities of these root endophytic fungi. Recently, Singh and Sati (2014) studied the antimicrobial activity of a root endophytic fungus *Cylindrocarpon aquaticum* and reported that it can inhibit the growth of some pathogenic bacteria. Thus, the antibacterial potentiality of root endophytic fungi can be used in pharmaceutical companies for the production of useful compounds.

Nowadays, more attention is being given to the biology of endophytes as these microorganisms have now been noticed for their potentiality as the source of new bioactive compounds (Strobel, 2003). Besides the use of endophytes for new bioactive compounds required in the preparation of drugs, these may be also useful in industrial or agricultural applications.

ACKNOWLEDGMENTS

This work is supported by a grant from SAP (DRS) UGC, New Delhi, India.

REFERENCES

Saikkonen K, Wali P, Helander M, Faeth SH. Evolution of

