SUBORDINATION PROPERTIES FOR A CERTAIN CLASS OF ANALYTIC FUNCTIONS WITH COMPLEX ORDER

SERAP BULUT - MOHAMED KAMAL AOUF

In this paper, we derive several subordination results for a certain class of analytic functions defined by the generalized Al-Oboudi differential operator. Relevant connections of some of the results obtained with those in earlier works are also provided.

1. Introduction

Let \mathcal{A} denote the class of all functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

which are analytic in the open unit disk

$$\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}.$$

Further, by \mathcal{S} we will denote the class of all functions in \mathcal{A} which are univalent in \mathbb{U}.

Also let $\mathcal{S}^*(b)$ and $\mathcal{K}(b)$ denote, respectively, the subclasses of \mathcal{A} consisting of functions that are starlike of complex order $b \ (b \in \mathbb{C} \setminus \{0\})$ and convex of complex order $b \ (b \in \mathbb{C} \setminus \{0\})$ in \mathbb{U}.

Entrato in redazione: 11 settembre 2013

AMS 2010 Subject Classification: 30C45.

Keywords: Analytic functions, Fractional derivative, Fractional integral, Subordinating factor sequence, Hadamard product, Al-Oboudi operator.
In particular, the classes $S^*: = S^*(1)$ and $K: = K(1)$ are the familiar classes of starlike and convex functions in U, respectively.

For two functions f and g, analytic in U, we say that the function f is subordinate to g in U, and write

$$f(z) \prec g(z) \quad (z \in U),$$

if there exists a Schwarz function ω, which is analytic in U with $\omega(0) = 0$ and $|\omega(z)| < 1$ $(z \in U)$ such that

$$f(z) = g(\omega(z)) \quad (z \in U).$$

Indeed, it is known that

$$f(z) \prec g(z) \quad (z \in U) \Rightarrow f(0) = g(0) \quad \text{and} \quad f(U) \subset g(U).$$

Furthermore, if the function g is univalent in U, then we have the following equivalence

$$f(z) \prec g(z) \quad (z \in U) \iff f(0) = g(0) \quad \text{and} \quad f(U) \subset g(U).$$

The following definition of fractional derivative by Owa [10] (also by Srivastava and Owa [15]) will be required in our investigation.

The fractional derivative of order γ is defined, for a function f, by

$$D^{\gamma}_zf(z) = \frac{1}{\Gamma(1-\gamma)} \frac{d}{dz} \int_0^z \frac{f(t)}{(z-t)^{\gamma}} dt \quad (0 \leq \gamma < 1), \quad (2)$$

where the function f is analytic in a simply connected region of the complex z-plane containing the origin, and the multiplicity of $(z-t)^{-\gamma}$ is removed by requiring $\log(z-t)$ to be real when $z-t > 0$.

It readily follows from (2) that

$$D^{\gamma}_zf^k = \frac{\Gamma(k+1)}{\Gamma(k+1-\gamma)} z^{k-\gamma} \quad (0 \leq \gamma < 1, k \in \mathbb{N} = \{1, 2, \ldots\}).$$

Using the operator D^{γ}_zf, Owa and Srivastava [11] introduced the operator $\Omega^\gamma : A \rightarrow A$, which is known as an extension of fractional derivative and fractional integral, as follows:

$$\Omega^\gamma f(z) = \Gamma(2-\gamma) z^{\gamma} D^{\gamma}_zf(z)$$

$$= z + \sum_{k=2}^{\infty} \frac{\Gamma(k+1)\Gamma(2-\gamma)}{\Gamma(k+1-\gamma)} a_kz^k \quad \gamma \neq 2, 3, 4, \ldots \quad (3)$$
Note that
\[\Omega^0 f(z) = f(z). \]

In [2], Al-Oboudi and Al-Amoudi defined the linear multiplier fractional differential operator \(D_{\lambda}^{n,\gamma} \) (which is known as the generalized Al-Oboudi differential operator) as follows:
\[
D_0^0 f(z) = f(z),
\]
\[
D_\lambda^{1,\gamma} f(z) = (1 - \lambda) \Omega^\gamma f(z) + \lambda z (\Omega^\gamma f(z))',
\]
\[
= D_\lambda^\gamma (f(z)), \quad \lambda \geq 0, \quad 0 \leq \gamma < 1,
\]
\[
D_\lambda^{2,\gamma} f(z) = D_\lambda^\gamma \left(D_\lambda^{1,\gamma} f(z) \right),
\]
\[
\vdots
\]
\[
D_\lambda^{n,\gamma} f(z) = D_\lambda^\gamma \left(D_\lambda^{n-1,\gamma} f(z) \right), \quad n \in \mathbb{N}.
\]

If \(f \) is given by (1), then by (3), (4) and (5), we see that
\[
D_\lambda^{n,\gamma} f(z) = z + \sum_{k=2}^{\infty} \Psi_{k,n}(\gamma, \lambda) a_k z^k, \quad n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\},
\]
where
\[
\Psi_{k,n}(\gamma, \lambda) = \left[\frac{\Gamma(k+1) \Gamma(2-\gamma)}{\Gamma(k+1-\gamma)} \left(1 + \lambda (k-1) \right) \right]^n.
\]

Remark 1.1. (i) When \(\gamma = 0 \), we get Al-Oboudi differential operator [1].
(ii) When \(\gamma = 0 \) and \(\lambda = 1 \), we get Salagean differential operator [12].
(iii) When \(n = 1 \) and \(\lambda = 0 \), we get Owa-Srivastava fractional differential operator [11].

Let \(G_{\gamma,\lambda}^{n}(\delta, b, A, B) \) denote the class of functions \(f \in \mathcal{A} \) satisfying
\[
1 + \frac{1}{b} \left(1 - \delta \frac{D_{\lambda}^{n,\gamma} f(z)}{z} + \delta (D_{\lambda}^{n,\gamma} f(z))' - 1 \right) < \frac{1 + A z}{1 + B z}
\]
or satisfying
\[
\left| \frac{1 - \delta \frac{D_{\lambda}^{n,\gamma} f(z)}{z} + \delta (D_{\lambda}^{n,\gamma} f(z))' - 1}{(A - B) b - B \left[1 - \delta \frac{D_{\lambda}^{n,\gamma} f(z)}{z} + \delta (D_{\lambda}^{n,\gamma} f(z))' - 1 \right]} \right| < 1,
\]
where \(z \in \mathbb{U}, \ b \in \mathbb{C} \setminus \{0\}, \delta \geq 0, \ -1 \leq B < A \leq 1 \) and \(D_{\lambda}^{n,\gamma} \) is the generalized Al-Oboudi differential operator.
In [13], by using the Salagean differential operator D^n, Sivasubramanian et al. defined the class

$$G^n_{0,1} (\delta, b, A, B) = G_n(\delta, b, A, B)$$

$$= \left\{ f \in A : 1 + \frac{1}{b} \left((1 - \delta) \frac{D^n f(z)}{z} + \delta (D^n f(z))' - 1 \right) < \frac{1 + Az}{1 + Bz} \right\}$$

which generalizes the class

$$G^n_{0,1} (\delta, b, 1, -1) = G_n(\delta, b)$$

$$= \left\{ f \in A : \Re \left\{ 1 + \frac{1}{b} \left((1 - \delta) \frac{D^n f(z)}{z} + \delta (D^n f(z))' - 1 \right) \right\} > 0 \right\}$$

introduced by Aouf [3].

We note that, for $z \in \mathbb{U}$,

(i) $G^n_{\gamma, \lambda} (\delta, b, 1, -1) = G^n_{\gamma, \lambda} (\delta, b)$

(ii) $G^n_{\gamma, \lambda} (0, b, 1, -1) = G^n_{\gamma, \lambda} (b)$

(iii) $G^n_{\gamma, \lambda} (1, b, 1, -1) = R^n_{\gamma, \lambda} (b)$

(iv) $G^0_{\gamma, \lambda} (0, b, 1, -1) = G(b)$

(v) $G^0_{\gamma, \lambda} (1, b, 1, -1) = R(b)$

(vi) $G^0_{\gamma, \lambda} (0, 1 - \alpha, 1, -1) = G_{\alpha}$

(vii) $G^0_{\gamma, \lambda} (1, 1 - \alpha, 1, -1) = R_{\alpha}$

(viii) $G^0_{\gamma, \lambda} (\delta, b, 1, -1) = G(\delta, b)$

The class $R(b)$ was studied by Halim [8], the class G_{α} was studied by Chen [5, 6] and the class R_{α} was studied by Ezrohi [7].

Definition 1.2 (Hadamard product or Convolution). Given two functions f and g in the class A, where f is given by (1) and g is given by

$$g(z) = z + \sum_{k=2}^{\infty} b_k z^k,$$

the Hadamard product (or convolution) $f \ast g$ is defined by

$$(f \ast g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k = (g \ast f)(z) \quad (z \in \mathbb{U}).$$
Definition 1.3 (Subordinating Factor Sequence). A sequence \(\{b_k\}_{k=1}^\infty \) of complex numbers is said to be a subordinating factor sequence if, whenever \(f \) of the form (1) is analytic, univalent and convex in \(\mathbb{U} \), we have the subordination given by
\[
\sum_{k=1}^\infty a_k b_k z^k < f(z) \quad (z \in \mathbb{U}; \quad a_1 = 1).
\]

Lemma 1.4 ([16]). The sequence \(\{b_k\}_{k=1}^\infty \) is a subordinating factor sequence if and only if
\[
\Re \left\{ 1 + 2 \sum_{k=1}^\infty b_k z^k \right\} > 0 \quad (z \in \mathbb{U}).
\]

2. Main Result

Now, we prove the following theorem which gives a sufficient condition for functions belonging to the class \(\mathcal{G}_n^{\gamma, \lambda} (\delta, b, A, B) \).

Theorem 2.1. Let the function \(f \) which is defined by (1) satisfy the following condition:
\[
\sum_{k=2}^\infty (1 + |B|) (1 + \delta (k - 1)) \Psi_{k,n} (\gamma, \lambda) |a_k| \leq (A - B) |b|, \quad (10)
\]
then \(f \in \mathcal{G}_n^{\gamma, \lambda} (\delta, b, A, B) \).

Proof. Suppose that the inequality (10) holds. Then we have for \(z \in \mathbb{U} \),
\[
\begin{align*}
&\left| (1 - \delta) \frac{D_{\lambda}^{n, \gamma} f(z)}{z} + \delta \left(D_{\lambda}^{n, \gamma} f(z) \right)' - 1 \right| \\
&\quad - (A - B) b - B \left| (1 - \delta) \frac{D_{\lambda}^{n, \gamma} f(z)}{z} + \delta \left(D_{\lambda}^{n, \gamma} f(z) \right)' - 1 \right| \\
&\quad = \sum_{k=2}^\infty (1 + \delta (k - 1)) \Psi_{k,n} (\gamma, \lambda) a_k z^{k-1} \\
&\quad - (A - B) b - B \sum_{k=2}^\infty (1 + \delta (k - 1)) \Psi_{k,n} (\gamma, \lambda) a_k z^{k-1} \\
&\quad \leq \sum_{k=2}^\infty (1 + \delta (k - 1)) \Psi_{k,n} (\gamma, \lambda) |a_k| |z|^{k-1} \\
&\quad - (A - B) |b| - |B| \sum_{k=2}^\infty (1 + \delta (k - 1)) \Psi_{k,n} (\gamma, \lambda) |a_k| |z|^{k-1} <
\end{align*}
\]
Let in the subordination result (function class G) the inequality which consists of functions f, g, h, and suppose that $g \in A$ and let f defined by (12) and Srivastava and Attiya (14). Then we have

$$< \sum_{k=2}^{\infty} (1 + |B|) (1 + \delta (k - 1)) \Psi_{2,n}(\gamma, \lambda) |a_k| - (A - B) |b| \leq 0,$$

which shows that f belongs to the class $G_{\gamma, \lambda} (\delta, b, A, B)$.

In view of Theorem 2.1, we now introduce the subclass $G_{\gamma, \lambda}^n (\delta, b, A, B)$ which consists of functions $f \in A$ whose Taylor-Maclaurin coefficients satisfy the inequality (10). We note that

$$G_{\gamma, \lambda} (\delta, b, A, B) \subset G_{\gamma, \lambda}^n (\delta, b, A, B).$$

In this work, we prove several subordination relationships involving the function class $G_{\gamma, \lambda}^n (\delta, b, A, B)$ employing the technique used earlier by Attiya [4] and Srivastava and Attiya [14].

Theorem 2.2. Let the function f defined by (1) be in the class $G_{\gamma, \lambda}^n (\delta, b, A, B)$ and suppose that $g \in K$. Then

$$\frac{(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda)}{2 [(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda) + (A - B) |b|]} (f * g)(z) < g(z) \quad (z \in U) \quad (11)$$

and

$$\Re \{ f(z) \} > - \frac{(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda) + (A - B) |b|}{(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda)} \quad (z \in U). \quad (12)$$

The constant factor

$$\frac{(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda)}{2 [(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda) + (A - B) |b|]}$$

in the subordination result (11) cannot be replaced by a larger one.

Proof. Let $f \in G_{\gamma, \lambda}^n (\delta, b, A, B)$ and let $g(z) = z + \sum_{k=2}^{\infty} c_k z^k \in K$. Then we have

$$\frac{(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda)}{2 [(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda) + (A - B) |b|]} (f * g)(z) = \frac{(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda)}{2 [(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda) + (A - B) |b|]} \left(z + \sum_{k=2}^{\infty} a_k c_k z^k \right). \quad (13)$$

Thus, by Definition 1.3, the subordination result (11) will hold true if the sequence

$$\left\{ \frac{(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda)}{2 [(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda) + (A - B) |b|]} a_k \right\}_{k=1}^{\infty} \quad (14)$$
is a subordinating factor sequence, with \(a_1 = 1 \). In view of Lemma 1.4, this is equivalent to the following inequality:

\[
\Re \left\{ 1 + \sum_{k=1}^{\infty} \frac{(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda)}{[(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda) + (A - B) |b|]} a_k z^k \right\} > 0 \quad (z \in \mathbb{U}).
\]

(15)

Since

\[(1 + \delta (k - 1)) \Psi_{k,n}(\gamma, \lambda)\]

is an increasing function of \(k \) \((k \geq 2)\), when \(|z| = r\) \((0 < r < 1)\), we have

\[
\Re \left\{ 1 + \sum_{k=1}^{\infty} \frac{(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda)}{[(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda) + (A - B) |b|]} a_k z^k \right\} \]

\[
= \Re \left\{ 1 + \frac{1 + |B|}{(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda) + (A - B) |b|} \sum_{k=2}^{\infty} (1 + \delta) \Psi_{2,n}(\gamma, \lambda) a_k |r^k - 1| (1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda) + (A - B) |b| \right\} \]

\[
\geq 1 - \frac{1 + |B|}{(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda) + (A - B) |b|} \sum_{k=2}^{\infty} (1 + \delta (k - 1)) \Psi_{k,n}(\gamma, \lambda) a_k |r^k - 1| (1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda) + (A - B) |b| \]

\[
> 1 - \frac{(A - B) |b|}{(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda) + (A - B) |b|} \]

\[
= 1 - r > 0,
\]

where we have also made use of the assertion \((10)\) of Theorem 2.1. Then \((15)\) holds true in \(\mathbb{U} \). This proves the inequality \((11)\). The inequality \((12)\) follows from \((11)\) by taking the convex function

\[
g(z) = \frac{z}{1 - z} = z + \sum_{k=2}^{\infty} z^k.
\]

To prove the sharpness of the constant

\[
\frac{(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda)}{2 [(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda) + (A - B) |b|]},
\]

we consider the function \(f_0 \in \mathcal{G}_{\gamma,\lambda}^{n+}(\delta, b, A, B) \) given by

\[
f_0(z) = z - \frac{(A - B) |b|}{(1 + |B|) (1 + \delta) \Psi_{2,n}(\gamma, \lambda)} z^2.
\]

(16)
Thus from (11), we have
\[
\frac{(1 + |B|)(1 + \delta)\Psi_{2,n}(\gamma, \lambda)}{2[(1 + |B|)(1 + \delta)\Psi_{2,n}(\gamma, \lambda) + (A - B)|b|]} f_0(z) < \frac{z}{1 - z} \quad (z \in \mathbb{U}). \tag{17}
\]

It can easily be verified for the function \(f_0\) given by (16) that
\[
\min_{|z| \leq r} \left\{ \mathcal{R} \left(\frac{(1 + |B|)(1 + \delta)\Psi_{2,n}(\gamma, \lambda)}{2[(1 + |B|)(1 + \delta)\Psi_{2,n}(\gamma, \lambda) + (A - B)|b|]} f_0(z) \right) \right\} = -\frac{1}{2}. \tag{18}
\]

This shows that the constant
\[
\frac{(1 + |B|)(1 + \delta)\Psi_{2,n}(\gamma, \lambda)}{2[(1 + |B|)(1 + \delta)\Psi_{2,n}(\gamma, \lambda) + (A - B)|b|]
\]
is the best possible, which completes the proof of Theorem 2.2. \(\square\)

For the choices \(\gamma = 0\) and \(\lambda = 1\) in Theorem 2.2, we get the following corollary.

Corollary 2.3 ([13, Theorem 2.2]). *Let the function \(f\) defined by (1) be in the class \(G_n^* (\delta, b, A, B)\) and suppose that \(g \in \mathcal{K}\). Then*
\[
\frac{(1 + |B|)(1 + \delta)2^n}{2[(1 + |B|)(1 + \delta)2^n + (A - B)|b|]} (f * g)(z) < g(z) \quad (z \in \mathbb{U}) \tag{19}
\]

and
\[
\mathcal{R} \{f(z)\} > -\frac{(1 + |B|)(1 + \delta)2^n + (A - B)|b|}{(1 + |B|)(1 + \delta)2^n} \quad (z \in \mathbb{U}).
\]

The constant factor
\[
\frac{(1 + |B|)(1 + \delta)2^n}{2[(1 + |B|)(1 + \delta)2^n + (A - B)|b|]
\]
in the subordination result (19) cannot be replaced by a larger one.

For the choices of \(\gamma = 0\), \(\lambda = 1\) and \(A = 1, B = -1\) in Theorem 2.2, we get the following corollary.

Corollary 2.4 ([3, Theorem 1]). *Let the function \(f\) defined by (1) be in the class \(G_n^* (\delta, b)\) and suppose that \(g \in \mathcal{K}\). Then*
\[
\frac{(1 + \delta)2^n}{2[(1 + \delta)2^n + |b|]} (f * g)(z) < g(z), \quad (z \in \mathbb{U}) \tag{20}
\]

and
\[
\mathcal{R} \{f(z)\} > -\frac{(1 + \delta)2^n + |b|}{(1 + \delta)2^n}, \quad (z \in \mathbb{U}).
\]
The constant factor
\[
\frac{(1 + \delta) 2^n}{2 [(1 + \delta) 2^n + |b|]}
\]
in the subordination result (20) cannot be replaced by a larger one.

For the choices of \(n = 0, \gamma = 0, \lambda = 1 \) and \(A = 1, B = -1 \) in Theorem 2.2, we get the following corollary.

Corollary 2.5. Let the function \(f \) defined by (1) be in the class \(G^*(\delta, b) \) and suppose that \(g \in \mathcal{K} \). Then
\[
\frac{1 + \delta}{2 (1 + \delta + |b|)} (f * g)(z) < g(z), \quad (z \in \mathbb{U}) \tag{21}
\]
and
\[
\Re \{f(z)\} > -\frac{1 + \delta + |b|}{1 + \delta}, \quad (z \in \mathbb{U}).
\]
The constant factor
\[
\frac{1 + \delta}{2 (1 + \delta + |b|)}
\]
in the subordination result (21) cannot be replaced by a larger one.

For the choices of \(\delta = 0, n = 0, \gamma = 0, \lambda = 1 \) and \(A = 1, B = -1 \) in Theorem 2.2, we get the following corollary.

Corollary 2.6. Let the function \(f \) defined by (1) be in the class \(G^*(b) \) and suppose that \(g \in \mathcal{K} \). Then
\[
\frac{1}{2 (1 + |b|)} (f * g)(z) < g(z), \quad (z \in \mathbb{U}) \tag{22}
\]
and
\[
\Re \{f(z)\} > -(1 + |b|), \quad (z \in \mathbb{U}).
\]
The constant factor
\[
\frac{1}{2 (1 + |b|)}
\]
in the subordination result (22) cannot be replaced by a larger one.

For the choices of \(b = 1 - \alpha \) (\(0 \leq \alpha < 1 \)), \(\delta = 0, n = 0, \gamma = 0, \lambda = 1 \) and \(A = 1, B = -1 \) in Theorem 2.2, we get the following corollary.
Corollary 2.7. Let the function f defined by (1) be in the class G_α^* and suppose that $g \in \mathcal{K}$. Then
\[
\frac{1}{2(2-\alpha)} (f \ast g)(z) < g(z), \quad (z \in \mathbb{U})
\] (23)
and
\[
\Re \{f(z)\} > -(2-\alpha), \quad (z \in \mathbb{U}).
\]
The constant factor
\[
\frac{1}{2(2-\alpha)}
\]
in the subordination result (23) cannot be replaced by a larger one.

For the choices of $b = 1 - \alpha$ ($0 \leq \alpha < 1$), $\delta = 1$, $n = 0$, $\gamma = 0$, $\lambda = 1$ and $A = 1, B = -1$ in Theorem 2.2, we get the following corollary.

Corollary 2.8. Let the function f defined by (1) be in the class R_α^* and suppose that $g \in \mathcal{K}$. Then
\[
\frac{1}{3-\alpha} (f \ast g)(z) < g(z), \quad (z \in \mathbb{U})
\] (24)
and
\[
\Re \{f(z)\} > -\frac{3-\alpha}{2}, \quad (z \in \mathbb{U}).
\]
The constant factor
\[
\frac{1}{3-\alpha}
\]
in the subordination result (24) cannot be replaced by a larger one.

REFERENCES

SERAP BULUT
Kocaeli University
Civil Aviation College
Arslanbey Campus
41285 İzmit-Kocaeli, Turkey
e-mail: serap.bulut@kocaeli.edu.tr
bulutserap@yahoo.com
MOHAMED KAMAL AOUF
Faculty of Science
Mansoura University
Mansoura 35516, Egypt

e-mail: mkaouf127@yahoo.com