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Abstract 
 
Thyroid hormone is produced by the thyroid gland through the hypothalamic-pituitary-
thyroid axis. It is critical for growth, development, and homeostasis, and its action is 
mediated by the thyroid hormone receptor alpha1 (TRα1). TRα1 is a transcription factor 
that activates or represses target genes in response to thyroid hormone. Although 
primarily localized to the nucleus at steady state, TRα1 shuttles rapidly between the 
nucleus and cytosol. This thesis research focused on elucidating how post-translational 
modification of TRα1 modulates its nucleocytoplasmic transport. TRα1 is known to be 
acetylated at lysine residues 128, 132, and 134. In order to determine whether acetylation 
of TRα1 plays a role in regulating nucleocytoplasmic transport, expression plasmids for 
GFP or mCherry-tagged TRα1 mutants that mimic acetylation (lysine to glutamine 
substitutions) and nonacetylation (lysine to arginine substitutions) were constructed. 
Fluorescence microscopy was used to determine the nuclear/cytosolic (N/C) ratio of the 
fusion proteins in transfected cells by measuring fluorescence intensity. N/C data showed 
that the TRα1 nonacetylation mimic and wild-type TRα1 both have a primarily nuclear 
localization, and that intracellular distribution patterns of the TRα1 nonacetylation mimic 
and wild-type TRα1 were not hormone dependent. Furthermore, when co-transfected the 
presence of the TRα1 nonacetylation mimic did not change wild-type TRα1 localization. 
In contrast, the TRα1 acetylation mimic showed a lower N/C ratio compared to wild-type 
TRα1, indicating a significant decrease in nuclear localization. Taken together, these data 
suggest that interactions between TRα1 and transport factors may depend on 
electrostatic interactions. These findings will extend understanding of the role of post-
translational modifications in regulating the fine balance between nuclear import, export, 
and nuclear retention, and how this interplays with TRα1 transcriptional regulation. 
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General Introduction 

In a typical eukaryotic cell, there is a distinct separation between nuclear 

genomic material and other compartments in its aqueous environment. This separation 

necessitates the highly controlled bidirectional traffic of macromolecular molecules such 

as RNA and regulatory proteins (Terry et al., 2007). Elucidating the complex pathway of 

nuclear entry and exit has been the goal of researchers for the past several decades. 

The major goal of this thesis work was to determine the effect of post-translational 

modification of the thyroid hormone receptor alpha1 (TRα1) by acetylation on the 

receptor’s complex transport pathway. TRα1 is a transcription factor that activates or 

represses target genes in response to thyroid hormone. The following introduction 

provides background information on the thyroid hormone receptor (TR) and presents an 

historical context to the field of nucleocytoplasmic transport. In addition, the methods 

and objectives of this thesis research are explained.  

 

Thyroid Hormone  

Thyroid hormone affects many processes such as the growth, development, and 

metabolism of virtually all tissues within our body (Chen et al., 2013; Samuels & Tsai, 

1973). The hormone is exclusively produced through a feedback loop that includes the 

hypothalamus, pituitary, and thyroid gland, commonly referred to as the hypothalamic-

pituitary-thyroid (HPT) axis (Vella et al., 2014; Yen et al., 2001). The hypothalamus is 

also responsible for regulating the production of all other hormones within our bodies. 

The HPT axis essentially involves a series of signal transduction cascades, where a 
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signal sent from the hypothalamus “master gland” eventually arrives at the thyroid 

gland.  

The thyroid hormone is produced in two forms, and the structure of each form is 

directly tied to its function. Thyroxine (T4) contains four iodine molecules and 

triiodothyronine (T3) contains three. T4 is the major form of thyroid hormone that is 

produced by the thyroid gland, and T3 is the active form generally synthesized from the 

deiodination of T4 (Gnocchi et al., 2016). T4 is not directly involved in mediating gene 

expression; instead, it indirectly influences gene expression by cell signaling. In 

contrast, because T3 binds to TR within the cell it is directly involved in mediating gene 

expression.  

 The intricate balance between thyroid hormone production, conversion from T4 to 

T3, and binding of T3 to TR is critical for receptor mediated gene expression; as a result, 

the dysregulation of this process leads to diseases such as: resistance to thyroid 

hormone, cancer, dwarfism, and metabolic disorders (Cheng, 2005). These diseases 

are a motivation for this thesis work. The basic research on the transport pathway of TR 

specifically dealing with acetylation, a post-translational modification, helps to 

breakdown the complex interactions of TR with other proteins and thyroid hormone. 

 

Thyroid Hormone Receptor 

Structure  

In humans the two main isoforms of TR, alpha (α) and beta (β), are transcribed 

by two genes on chromosomes 17 and 3, respectively (Ruiz-Llorente et al., 2010). After 

post-transcriptional processing the transcripts are then transported out of the nucleus to 
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be translated by ribosomes into a functional TR isoform. The overall structure of TR 

consists of modular domains lettered A/B, C, D, E, and F. These letters represent the 

evolutionarily conserved domains of nuclear receptors: activation function-1, DNA 

binding domain, hinge region, dimerization/ligand binding, and activation function-2, 

respectively (Pawlak et al., 2012). TRα contains two nuclear localization signals (NLSs). 

The stronger of the two is in its hinge region and the weaker is in its A/B domain. TRβ 

contains only one NLS in its hinge region (Mavinakere et al., 2012). Members of the 

importin family of karyopherins, specifically importin 7, importin β1, and adapter importin 

α1 recognize the NLSs and directly mediate the nuclear import of TRα (Roggero et al., 

2016). The cycle of transcription, transport of the mRNA out of the nucleus, translation 

of TR mRNA, and then import of TR into the nucleus begins anew.  

 

Regulatory Activity  

Once in the nucleus, TR regulates gene expression responsible for cellular 

functions such as differentiation, development and metabolism (Lopez et al., 1993; 

Ruiz-Llorente et al., 2011; Suh et al., 2013; Wagner et al., 1995; Xing et al., 2016). 

Transcriptional regulation is conducted through the interactions with coactivator or 

corepressor complexes that modify DNA to facilitate or inhibit the activity of transcription 

factors (Green and Han, 2011).). Many studies show that thyroid hormone plays an 

important role in TRα1 transcriptional regulation (Bernal and Morte, 2013; Brent, 2012; 

Fondell, 2013; Grøntved et al., 2015; Yuan et al., 2013). In the absence of thyroid 

hormone, expression of thyroid hormone related genes is usually silenced (Brent, 2012; 

Zhang et al., 2000). There are some instances of TR’s regulatory activity in which gene 
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expression is activated in the absence of thyroid hormone (Aranda and Pascual, 2001; 

Ayers et al., 2014). 

 

Nucleocytoplasmic transport  

The field of nucleocytoplasmic transport has been rapidly growing since the 

1960s; since then there have been many landmark discoveries that have helped to 

further advance the field. This review discusses some of these landmark studies, 

focusing in particular on: assembly/disassembly of the karyopherin complex, transport 

factors, and the binding specificity of transport factors to cargo. 

 

Background 

Nucleocytoplasmic transport is an essential cellular activity that occurs through 

nuclear pore complexes (NPCs) residing in the double membrane of the nuclear 

envelope (Dickmanns et al., 2015). The NPC is composed of nucleoporins (nups); each 

nup is composed of amino acids linked together by peptide bonds. Together the nups 

form a basket-like structure that binds transport factors. Nups are typically made up of 

repeat regions of amino acids such as phenylalanine (F), glycine (G), and leucine (L). 

Nuclear import and export pathways are mediated by a family of transport factors known 

as importins or exportins, collectively known as karyopherins. In order to be targeted to 

the nucleus, proteins must contain a specific amino acid sequence called a nuclear 

localization signal (NLS). NLS-containing proteins interact with members of the importin 

family of receptors by either a monopartite (consisting of one part) or bipartite 

(consisting of two parts) NLS, and nuclear export signal (NES) containing proteins 
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interact with members of the exportin family of receptors by either a monopartite or a 

bipartite NES (Allison, 2012).  

Due to the NPC, the passage of proteins into and out of the nucleus is very 

tightly regulated. This tightly regulated transport of proteins through the NPC has been 

recognized as a crucial step in many cellular processes (Hodel et al., 2001). Some of 

these cellular processes include: mitosis and gene expression (Matsuura and Stewart, 

2004); communication between neurons (Panayotis et al., 2015); regulation of the cell 

cycle and proliferation of normal and malignant cells (Gravine et al., 2014). By the late 

twentieth century, it was already established that nups function as docking proteins for 

karyopherin-mediated binding of substrates in a nuclear import/export pathway across 

the NPC (Radu et al., 1995). 

 

Karyopherin Complex Assembly and Disassembly 

 In a landmark study (Rexach and Blobel, 1992), researchers sought to 

understand the interactions that take place between the mobile phase of transport 

(transport factors and substrate) and the stationary phase (nucleoporins). They first 

found, using a solution binding assay, that the karyopherin heterodimer (kap60 and 

kap95) bound to the FXFG (X indicates small amino acid residues such as serine, 

glycine or alanine; Bayliss et al., 2002) repeat region of Nup1 and 2, but not to the 

GLFG repeat region of Nup57 or 145. 

Rexach and Blobel (1992) also examined, once they established that kap60 and 

kap95 were able to bind to the NPC, the assembly of the kap60 and kap95 heterodimer 

to an NLS-containing protein. They found that kap60 monomers bound to the NLS 
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protein and that kap95 monomers did not. Furthermore, the addition of increasing 

amounts of kap95 resulted in an increase in the binding of kap60 to the NLS protein. 

Taken together, these results established that the karyopherin heterodimer-GST-NLS 

complex binds to the FXFG repeat region in a fashion that stimulates the release of the 

NLS protein from kap60. This finding led to the question of how the dissociation of the 

karyopherin heterodimer complex occurs with the interaction of the NPC FXFG repeat 

region. The researchers sought to determine whether Ran, in its bound and unbound 

guanine phosphate forms, had a distinct effect on the dissociation of karyopherins from 

the FXFG repeat region. They found that Ran in its GTP bound form was able to cause 

the dissociation of both karyopherin subunits from the repeat region. Using Ran bound 

GMPPcP they were able to establish that GTP hydrolysis was not required for this 

reaction. Ran bound GMPPcP is a guanine nucleotide analog that was used as a 

screen to test for GTPase activity as a requirement for dissociation of the cargo 

complex. 

The next question asked by Rexach and Blobel (1992) dealt with where RanGTP 

had to bind in order for dissociation of the karyopherin subunits from the FXFG repeat 

region. They found that RanGTP disrupts the karyopherin heterodimer by binding to 

karyopherin β. Taken together, their findings revealed several association-dissociation 

reactions that occur between nucleoporin FXFG repeat regions, transport factors, and 

NLS proteins. 

Another landmark study helped to elucidate the structural basis for the assembly 

of a nuclear export complex (Matsuura and Stewart, 2001). The researchers’ goal was 

to address the opposite function of RanGTP in nuclear export, specifically, why was 
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complex formation required to bind rather than release cargo in the nucleus? They 

addressed this question by establishing the crystal structure of the nuclear export 

complex formed by exportin Cse1P complexed with its cargo (kap60p) and RanGTP. 

They found that in the complex Cse1P coils around both RanGTP and kap60, stabilizing 

the RanGTP-state and clamping the kap60 importin-β-binding domain, ensuring that 

only cargo-free kap60p is exported.  

These early studies helped to establish the basis for the assembly and 

disassembly of transport factors via the Ran gradient. They also helped to distill the 

complex steps of nucleocytoplasmic transport into simple stepwise reactions. 

 

Transport Factors  

 In an important study to the field of nucleocytoplasmic transport, researchers 

painted a more elaborate picture of transport factors (Bonifaci et al., 1997). Their 

findings suggested that import of nuclear proteins occurs by multiple pathways, and that 

proteins are directed into these pathways by distinct NLSs. During the time this paper 

was published, the transport factors found in yeast such as kap60p (karyopherin α) and 

kap95p (karyopherin β) were used as substitutes for their mammalian homologs. 

Studies in yeast had revealed the existence of three proteins both structurally and 

functionally related to kap95p; as a result, they were classified as members of the yeast 

karyopherin β family. All four yeast β karyopherins [kap95p, kap104p, Pse1p, and 

kap123p] had been shown to serve as nuclear protein import transport factors. These 

yeast karyopherins help to elucidate the transport pathways of their mammalian 

homologs. 
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 A study that illustrates characterization of transport factors, specifically those 

found in the importin β superfamily, was conducted by Jakel et al. (1999). In this study, 

the researchers investigated the nuclear import of linker histone H1 and found that two 

receptors, importin β (Impβ) and importin 7 (Imp7 or RanBP7), play a critical role in this 

process. At the time this study was conducted, it was still unclear as to whether 

RanGTP-binding to Imp7 was needed to complete NPC passage or just to release the 

cargo from Imp7 into the nucleus. The model proposed by Jakel et al. is summarized in 

FIG.1. 

 Chaves and Jonathan (2011) took a different approach to the study of nuclear 

transport by asking the question of whether mutations in a cargo proteins’ NLS was 

sufficient to switch its cognate karyopherin. Even though recent advances in the field 

suggested the likelihood that each of the karyopherins recognizes its own type of NLS, 

this step was still poorly understood (Bonifaci et al., 1997). Thus, Chaves and Jonathan 

(2011) sought to provide evidence that the affinity of the karyopherin/signal interaction 

was a critical factor in determining transport efficiency and selectivity by characterizing 

the NLS of the yeast homolog of the mammalian La protein, Lhp1. The La protein plays 

a major role in a variety of processes such as: stabilization of RNA structure, retention 

of small RNAs in the nucleus, facilitation of RNP (ribonucleoprotein) assembly, and 

accurate tRNA processing (Chaves and Jonathan, 2011). The Lhp1 NLS consists of 

112 residues and is targeted to the nucleus in a kap108-dependent manner (Chaves 

and Jonathan, 2011). They found that the mutation of three of the 275 residues in full-

length Lhp1 alters its import pathway to a kap121-dependent process; in addition, wild-

type function was not retained by the mutant. Chaves and Jonathan (2011) proposed  
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Figure 1. Diagram of histone (H) import into the nucleus. 
Histones are one of the most abundant import substrates, and during S-phase in HeLa 
cells, approximately one histone molecule per second is imported into the nucleus. This 
diagram shows a trimeric cargo complex assembled in the cytoplasm. The complex 
translocates through the NPC into the nucleus, and the disassembly of the trimeric 
complex results from RanGTP binding. The histone is then free to bind DNA. 
 

Adapted from Jakel et al., 1999 
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that kap121 functions as a chaperone, one that can serve as a genetic buffer, to 

transport mutated proteins to the nucleus. 

 

Binding Specificity 

 There has been intense research effort put into the analysis of the recognition of 

NLSs by import factors since the first NLS peptides were discovered in the 1980s 

(Soniat and Chook, 2015). In a key study by Conti et al. (1998), researchers used X-ray 

crystallography to analyze the recognition of a NLS by karyopherin α 50 (kapα50). They 

found that the structure of kapα50 contained ten tandem armadillo (ARM) repeats, 

organized in a right-handed superhelix of helices. Their work in analyzing the overall 

structure of kapα50 revealed the determinants of NLS specificity and suggests a model 

for the recognition of bipartite NLSs. 

 Recently, there has been a drive toward understanding nucleocytoplasmic 

transport in terms of a charge-driven mechanism. With the development of better 

technology and higher microscopic resolution, researchers are now able to uncover the 

mechanistic fundamentals for nuclear transport of charged substrates through the NPC. 

Goryaynov and Yang (2014) sought to examine the role of molecular surface charge, 

compared to the influence of molecular size and specific signal, in nucleocytoplasmic 

transport. They found that electrostatic interaction between negative surface charges on 

transiting molecules and the positively charged FXFG (FG) nups, although enhancing 

their probability of binding to the NPC, does not usually play a dominant role in 

nucleocytoplasmic transport (FIG. 2). 
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Figure 2. Transport routes of small passively diffusing molecules and transiting 
cargo complexes. 
A selective barrier formed by the NPC allowing for the passive diffusion of small signal-
independent molecules, and transport-receptor facilitated translocation of signal-
dependent cargo molecules.  
 
Adapted from Goryaynov and Yang, 2014 
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With respect to nucleocytoplasmic transport in neurons, Lever et al. (2015) asked 

the question of whether there is an ‘importin code’ in neuronal transport from synapse-

to-nucleus. To date, there has been very little research on importin function in neurites. 

In their opinion paper, the researchers point out the reductionist nature of research  

regarding nuclear import, and propose that nuclear import is much more complicated 

than commonly thought. They specifically point out the limitations of the classical 

importin pathway, namely that as non-canonical importin functions are emerging, the 

role of importins in transport cargo specificity is likely being underestimated (Lever et 

al., 2015). As a result, in an attempt to provide an explanation for the regulation of which 

synaptic proteins are to be transported into the nucleus, they hypothesize the existence 

of an ‘importin code’ for neurons that acts as a highly specific system capable of 

selecting more than 200 synaptic proteins for activity-dependent nucleocytoplasmic 

shuttling in accordance with the current environment (FIG.3). 

 

Future Prospects 

 The field of nucleocytoplasmic transport has made many key advances since the 

mid-1900s, from the identification of a nuclear protein containing a nuclear localization 

signal, to the stepwise characterization of the localization signal and its resulting 

cognate karyopherin. With the establishment of the basics of nucleocytoplasmic 

transport, there have been recent trends towards application of this information to target 

human diseases such as cancer and subvert viral infections (Cautain et al., 2015). The 

field of nucleocytoplasmic transport has come a long way in the past several years, and  
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Figure 3. Canonical and non-canonical importin structures and the Importin Code. 
A depiction of the proposed ‘importin code’. 1) Canonical importin cargo complex. 2) 
Caveats to the canonical description of complex formation. Importin α can mediate cargo 
transport alone, cargos can execute their own nuclear import, importin β can mediate 
transport, and importins can carry two cargos. 3) Proposed importin code incorporating 
non-importin family member cargo-specific importins (NICSIs). 4) A highly speculative 
model of importin code complex formation. The importin code could be best described as 
unique importin combinations that provide tight control over synaptic protein selection for 
nuclear import and the governance of cellular phenotypes, much like how a barcode can 
read and decode a specific item into the readout of a price. There are estimated to be 
approximately 2700 synaptic proteins, and out of these approximately 10% possess bona 
fide NLSs. Some of these synaptic proteins include: tau, contactin-associated protein 1 
(Caspr1), disrupted in schizophrenia 1 (DISC1), and others (consulted from R&D Systems 
a biotechne brand, 2015). 
 

Adapted from Lever et al., 2015 
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the continued drive to find new discoveries has paved the way to better understand the 

fundamentals of processes that take place within the cell. 

 

Post-translational modification  

 There are more than 200 types of both rare and common post-translational 

modifications (PTMs) that have been found to occur in proteins (Azevedo and Saiardi, 

2016a). PTMs play a significant role in the regulation of proteins by altering structure, 

enzymatic activity, stability or degradation, subcellular localization, protein-protein 

interactions, and diverse cell signaling (Cui et al., 2004; Dohmen, 2004; Hock et al., 

2010; Ito et al., 2007; Johnson, 2004; Lee et al., 2016; Li et al., 2002; Meek and 

Knippschild, 2003; Pinceti et al., 2015; Tan et al., 2014; Vierstra, 2012). Many amino 

acid side chains such as serine, threonine, and tyrosine are post-translationally 

modified; however, lysine residues are targeted by an extremely high number of PTMs 

including methylation, ubiquitination, sumoylation, and acetylation (Azevedo and 

Saiardi, 2016b). 

 

Acetylation  

Acetylation of histones and other proteins and the functional consequences of 

acetylation have been topics of scientific interest for the past 50 years (Simon et al., 

2016; Yang et al., 2015). Since lysine acetylation was initially identified in histones, 

many lysine acetyltransferases and lysine deacetylases are often referred to as histone 

acetyltransferases and histone deacetylases (Choudhary et al., 2009; Kadiyala & Smith, 

2014; Yang and Seto, 2008). Acetylation regulates the biological functions of many 



 

15 

 

proteins that play a role in cellular homeostasis. Furthermore, it has been proposed as 

an additional mechanism for regulating subcellular localization (Bannister et al., 2000; 

Bonaldi et al., 2003; Gay et al., 2003; Madison et al., 2002; Santos-Rosa et al., 2003; 

Soutoglou et al., 2000; Spilianakis et al., 2000). 

  The acetylation of lysine residues within proteins takes place on the epsilon (ɛ) 

amino group (NH3
+) of lysines. The addition of an acetyl group on lysines neutralizes the 

positive charge on the amino group and significantly impacts the electrostatic properties 

of the protein (Dancy and Cole, 2015; Glozak et al., 2005; Wang et al., 2010). Some 

nuclear receptors that have been shown to be acetylated include the androgen receptor 

(AR) (Fu et al., 2000), the estrogen receptor alpha (ERα) (Cui et al., 2004; Kim et al., 

2006), TRβ (Lin et al., 2005), and TRα (Sanchez-Pacheco et al., 2009). The discovery 

that lysine residues could be acetylated in the AR led researchers to use amino acid 

sequence equivalency to determine corresponding amino acid motifs that contain lysine 

residues in other nuclear receptors. The acetylation residues are part of a 

lysine/arginine motif present in the hinge domain of several members of the nuclear 

receptor family. To characterize the effect of acetylation on TRα, Sanchez-Pacheco et 

al. (2009) mutated lysine residues at varies sites on TRα to determine the functional 

consequences of acetylation on TRα. The main conclusion reached was that the lysine 

amino acid residues at sites 128, 132, and 134 in the hinge domain of TRα are essential 

for receptor acetylation, and that T3 induced acetylation of wild-type TRα resulted in 

increased binding to DNA. However, a direct functional role of acetylation on ligand-

dependent transcriptional activation or repression could not be established. 
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Subcloning 

Genetic engineering is the use of molecular tools to manipulate DNA. Gene 

manipulation results in novel combinations of DNA and the techniques used to do this 

are referred to as recombinant DNA technology (Freeman, 2011). Subcloning is one of 

the main approaches in modern molecular biology, biochemistry, and protein 

engineering used to combine fragments of DNA to generate a single DNA molecule 

capable of autonomous replication in a given host cell (Ahmad et al., 1991; An et al.,  

1979; Biener et al., 2002; Erokhin et al., 2016; Hartley et al., 2000; Pham et al., 1998; 

Searle et al., 1984; Struhl et al., 2001; Zhang et al., 2015) (FIG.4). Enzymes known as 

restriction endonucleases (and DNA ligase) account for the success of subcloning 

(Fromme and Klingenspor, 2007). 

 

Restriction Endonucleases 

 Restriction endonucleases are part of the restriction-modification systems that 

protect bacterial cells against foreign DNA (Mucke et al., 2003). These enzymes 

evolved from nonspecific endonucleases to cleave DNA sequences at highly specific 

target sites (Pingoud et al., 2014; Saravanan et al., 2008; Tóth et al., 2014). When used 

in vitro (in test tube), T4 DNA ligase from the T series of bacteriophages is used to 

recombine DNA fragments made by restriction endonucleases (Guo et al., 2016; Pusch 

et al., 1998; Rossi et al., 1997). The emergence of restriction endonucleases has 

helped in the advancement of human gene therapy techniques against diseases caused 

by mutations in DNA, such as X-linked severe combined immunodeficiency (X-linked 

SCID) (Flotte, 2007). 
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Figure 4. A schematic diagram of Subcloning 

The upper region contains the two vectors the reaction starts with, i.e. the entry vector 

and the destination vector. The two vectors contain a recognition sequence for 

restriction endonucleases, in this case, BglII and KpnI. The destination vectors’ 

recognition sequence is represented by the green box (MCS). MCS or, Multiple Cloning 

Sites, simply contain recognition sequences for many restriction endonucleases. By the 

step-wise enzymatic actions (arrows) of BglII and KpnI, these vectors are linearized to 

form linear intermediate products as shown. The asterisk (*) represents the cuts made 

by BglII and KpnI. These intermediates are subject to T4 DNA ligase activity and can 

then be ligated to yield the desired product vector. 

 

Adapted from Fromme and Klingenspor, 2007  
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Thesis Objective 

The fine balance between nuclear import, export, and nuclear retention has 

emerged as a critical control point for regulating TRα1 transcriptional activity 

(Mavinakere et al. 2012). In addition, Sanchez-Pacheco et al. (2009) determined that 

acetylation plays a role in TRα1’s transcription activity. Because the amino acid lysine 

residues that are acetylated occur within the hinge domain of TRα1, there exists the  

possibility that acetylation may play a role in TRα1 transport activity. In this thesis 

research, the objective was to determine the effect of acetylation on TRα1’s 

nucleocytoplasmic transport. 

To test this a two-step process was used: 

1. Construct TRα1 mutants that mimic TRα1 in its acetylated and nonacetylated 

states following standard practice (Yang et al., 2016) (FIG.5). 

2. Analyze the subcellular localization of the mutants using fluorescence 

microscopy. 

 

We hypothesized that the TRα1 nonacetylation mimic would have a 

predominantly nuclear localization and the TRα1 acetylation mimic would have a more 

cytosolic localization. This is because acetylation neutralizes the positive charge on 

lysine residues, and as the lysine residues K128, K132, and K134 are located within the 

hinge region NLS of TR, its affinity to bind importins would be reduced. 

The results from this work will further our understanding of the mechanisms 

behind TRα1 nucleocytoplasmic transport and that of other nuclear receptors. 
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Figure 5. TRα1 mutant constructs 

A diagram of the TRα1 domains, and the amino acid sequence of the NLS’s in the 
Hinge and A/B domain. The top represents wild-type TRα1 and the bottom two 
represent the acetylation and nonacetylation mimics, respectively. Standard practice is 
to use the amino acid residue glutamine (Q) to mimic the effect of acetylation, and the 
amino acid residue arginine (R) to mimic the effect of nonacetylation. 
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Methods  

Plasmids 

The plasmid pGFP-TRα1 encodes a functional green fluorescent protein (GFP)-

tagged rat TRα1 fusion protein (Bunn et al., 2001), and pmCherry-TRα1 encodes a red 

fluorescent protein (mCherry)-tagged rat TRα1 fusion protein. The expression vectors 

for enhanced GFP and mCherry, EGFP-C1 and EmCherry-C1, were obtained from 

Clontech Laboratories, Inc. (Mountain View, CA). 

The mutant TRα1 acetylation mimic plasmid consisting of lysine (K) amino acid 

residues 128, 132, and 134 substituted for glutamine (Q) (TRα1-K128/132/134Q), and 

TRα1 nonacetylation mimic plasmid consisting of lysine (K) amino acid residues 128, 

132, and 134 substituted for arginine (R) (TRα1-K128/132/134R) were designed and 

purchased from GeneArt, Inc. (Burlingame, CA). After purchase, 5 µg of the mutant 

plasmids were shipped from GeneArt to The Allison Lab, Department of Biology, 

College of William and Mary. 

  

Subcloning 

Mutant TRα1 acetylation mimic was subcloned into a mCherry expression vector 

and the mutant TRα1 nonacetylation mimic plasmid was subcloned into mCherry or 

GFP expression vectors. BglII and KpnI restriction digest enzymes obtained from New 

England Biolabs, Inc. (Ipswich, MA) were used for subcloning. The fluorescent  tagged 

mutant TRα1 expression plasmids were then transformed into E. coli-DH5α subcloning 

efficiency bacteria obtained from New England Biolabs, and purified using ZymoPURE 

Plasmid Midiprep Kit, Zymo Research Corporation (Irvine, CA) per the manufacturer’s 
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instructions. Plasmid concentration was determined by UV spectroscopy with the 

NanoDrop® ND-1000 full-spectrum UV/Vis Spectrophotometer, and final constructs 

were verified by gene sequencing on the departmental ABI PRISM® 3700 Genetic 

Analyzer.  

 

Cell culture 

 HeLa cells (American Type Culture Collection [ATCC], # CCL-2) were cultured in 

Minimum Essential Medium (MEM) supplemented with 10% fetal bovine serum (FBS) 

(Life Technologies, Grand Island, NY) at 37ºC under 5% CO2 and 98% humidity. Cells 

were grown to approximately 80% confluency before transient transfection procedures. 

 

Transient transfection 

HeLa cells were seeded at a density of 2-3 x 105 cells per well on 22 mm 

Coverslips for Cell Growth™ (Fisher Scientific, Pittsburgh, PA) in 6 well culture dishes. 

Twenty four hours post-seeding, cells were transfected with 2 µg of wild-type or mutant 

GFP or mCherry-TRα1 expression plasmid using Lipofectamine 2000 (Life 

Technologies). The transfection medium was replaced with fresh MEM containing 10% 

FBS at 6 hours post-transfection. Approximately 18 h later, cells were fixed in 3.7% 

formaldehyde, and coverslips were mounted with Fluoro-Gel II mounting medium 

(Electron Microscopy Sciences, Hatfield, PA) containing the DNA counter stain 4´,6-

diamidino-2´-phenylindole dihydrochloride (DAPI, 0.5µg/ml). Cells were then analyzed 

for the cellular localization of wild-type or mutant GFP or mCherry-TRα1 by 

fluorescence microscopy. 
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For co-transfection, a similar experimental procedure was followed. However 

instead of 2 µg of plasmid DNA, 1 µg of wild-type or mutant GFP or mCherry-TRα1 

expression plasmid were transfected into cells either alone (GFP or mCherry) or 

together (GFP and mCherry). 

For hormone treatment, the same experimental procedure was followed as 

described. However, after transfection, the transfection medium was replaced with MEM 

containing 10% charcoal-stripped FBS (minus T3) where 100 nM T3 (plus T3) could then 

be added. A 100 nM thyroid hormone concentration is the standard concentration used 

in most studies (Bondzi et al., 2011; Bunn et al., 2001; Grespin et al., 2008; Mavinakere 

et al., 2012; Nagl et al. 1995). 

 

Fluorescence Microscopy Analyses 

 Since the late twentieth century, there has been significant progress in the 

methods used to analyze the complex biochemical processes within cells. Fluorescence 

microscopy is a powerful method used to analyze the subcellular localization, transport 

routes, and binding interactions of fluorescent proteins in living cells (Lippincott-

Schwartz et al., 2001). Cells transfected with expression plasmids for fluorescent 

proteins, such as GFP and its variants, contain highly accurate information about the 

spatial organization of the target proteins they are bound to, allowing for analysis of their 

movement within cellular compartments (Lippincott-Schwartz et al., 2003; Betzig et al., 

2006). Therefore, the movement patterns of fluorescently tagged wild-type or mutant 

TRα1 was analyzed using fluorescence microscopy.  
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Semi-quantitative analysis 

 The semi-quantitative method of analysis relies on the categorization of 

transfected cells into three distinct categories based on the distribution of TRα1 within 

the cell (FIG.6). If TRα1 is primarily distributed to the nucleus, the cell is classified as 

having a nuclear TRα1 localization. In a similar fashion, if TRα1 has a distinct cytosolic 

population but still is distributed mostly to the nucleus then the cell is classified as 

having a combined nuclear and cytoplasmic localization. Finally, if TRα1 is distributed 

throughout the nucleus and cytoplasm without a clear distinction between the two 

compartments, the cell is classified as having a whole cell localization. For this method, 

a sample of at least two hundred cells was counted, each cell counted was sorted into 

its representative category, and the percent of each category was taken. Bar graphs 

were made and statistical analyses were performed using Microsoft Excel 2013. 

 

Quantitative analysis 

A quantitative method of fluorescence microscopy analysis was developed during 

this thesis research. The quantitative method is based on the utilization of region of 

interest (ROI) squares to compare the fluorescence intensity between the nucleus and 

cytoplasm of the cell (see Appendix for details). 

 

Cell scoring  

 A semi-quantitative method of analysis was initially used until a quantitative 

method of analysis was developed. For both analyses, an inverted Nikon ECLIPSE TE  
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Figure 6. Semi-quantitative scoring categories 

HeLa cells transfected with GFP-TRα1. Cells were scored as nuclear, nuclear plus 

cytoplasm, and whole cell. These categories were used to score the GFP or mCherry 

TRα1 nonacetylation mimic. In normal conditions GFP-TRα1 predominantly localizes to 

the nucleus. 
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2000-E fluorescence microscope (Nikon Ultraviolet Excitation: UV-2E/C filter block for 

DAPI visualization; Blue Excitation: B-2E/C filter block for GFP visualization; Red  

Excitation: T-2E/C filter block for mCherry visualization) was used with a Nikon Plan 

Apo 40x/0.75 objective. A CoolSNAP HQ2 CCD camera (Photometrics, Tucson, AZ) 

and NIS-Elements AR software was used for image acquisition and primary image 

processing.  

 For the semi-quantitative method of analysis, the localization of wild-type or 

mutant GFP or mCherry-TRα1 was scored in either one of three categories: nuclear, 

nuclear and cytoplasmic, or whole cell. Data were quantified as the percentage of cells 

in a given category. 

 For the quantitative method of analysis, region of interest (ROI) squares were 

used to compare relative fluorescence intensity between the nucleus and cytoplasm to 

determine average nuclear/cytoplasmic (N/C) ratio.  

 For both methods, cells were scored blind without knowledge of the treatment 

conditions. The slides’ original labels were removed and replaced with random number 

or letter labels by another lab member, who made a key and kept it secure until the 

scoring was completed and data were analyzed. All experiments consisted of a 

minimum of 3 replicates and at least 100 cells were scored per replicate. 

 To minimize any factors that could have affected the accuracy of the data, care 

was taken be consistent in the timing of scoring of slides to avoid the gradual loss of 

fluorescence intensity over time, in the length of time cells were exposed to microscope 

fluorescent light, and in the placement of ROI squares within the nucleus or the 

cytoplasm of the cell.  
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Results 

TRα1 nonacetylation mimic and wild-type TRα1 have similar nuclear localization 

patterns 

 Both GFP-tagged and mCherry-tagged TRα1 nonacetylation mimic were 

constructed to ensure that there were no tag-specific effects on distribution. HeLa cells 

transfected with GFP-TRα1 nonacetylation mimic had a primarily nuclear localization of 

TRα1, comparable to cells transfected with wild-type GFP-TRα1 (FIG.7). Likewise, 

similar results were seen with the mCherry-TRα1 nonacetylation mimic and mCherry-

TRα1. The results show that at steady state 70% to 90% of transfected cells have a 

primarily nuclear localization. For both graphs, the y-axis represents the percent of cells 

and the x-axis represents the subcellular distribution of TRα1. Scoring categories were 

nuclear (N), nuclear plus cytoplasmic (NC), and whole cell (W), and a sample size of 

200 cells was counted per microscope slide. These preliminary data consisted of 

multiple slides made in one transfection experiment (technical replicates), with 200 cells 

scored per slide. For GFP, GFP-TRα1, and GFP-TRα1 nonacetylation mimic there was 

one technical replicate each, and for the mCherry-TRα1 nonacetylation mimic there 

were three technical replicates. The data show that the TRα1 nonacetylation mimic 

shares a similar localization pattern to wild-type TRα1 at steady state (FIG.8). Similar 

trends seen in both GFP and mCherry provide validation for this result. A replicate 

experiment of the TRα1 nonacetylation mimic was used to compare the quantitative 

method of analysis with the semi-quantitative method analysis. Both methods of 

analysis yielded comparable results.  
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Figure 7. TRα1 nonacetylation mimic and wild-type TRα1 have similar nuclear 
localization patterns 

Intracellular distribution pattern of TRα1 nonacetylated mimic (lysine to arginine 
substitutions) compared to wild-type TRα1. A) HeLa cells transfected with GFP, GFP-
TRα1, and GFP-TRα1-K123/132/134R (and mCherry analogs) expression plasmids 
were fixed and analyzed by fluorescence microscopy using semi-quantitative scoring, 
after staining with DAPI to visualize DNA. Bars indicate B) one technical replicate of 
GFP, GFP-TRα1, GFP-TRα1-K123/132/134, and C) three technical replicates for 
mCherry-TRα1-K123/132/134R. 
 

  

C 
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Figure 8. TRα1 nonacetylation mimic and wild-type TRα1 have similar nuclear 

localization patterns (2) 

Distribution pattern of a nonacetylated TRα1 mimic (lysine to arginine substitutions) 

compared to wild-type TRα1. HeLa cells transfected with GFP-TRα1, and GFP-TRα1-

K123/132/134R or mCherry analogs expression plasmids were fixed and quantitatively 

analyzed for TRα1 localization. For both A) GFP and B) mCherry graphs, the y-axis 

represents the N/C ratio, the x-axis represents the proteins analyzed. Bars indicate the 

nuclear/cytosolic ratio of TRα1 (n=3 independent, biologically separate replicate 

experiments, with 100 cells per replicate), and error bars indicate plus or minus 

standard error of the mean. P=0.640 > 0.05; student’s t-test.  

  

A B 



 

30 

 

Thyroid hormone does not affect the localization of either TRα1 nonacetylation 

mimic or wild-type TRα1 

 The next step was to determine whether thyroid hormone has a ligand dependent 

effect on either wild-type TRα1 or TRα1 nonacetylation mimic transport activity. The 

data obtained from semi-quantitative analysis of subcellular distribution suggest that 

thyroid hormone has no effect on the transport activity of either the wild-type or TRα1 

nonacetylation mimic (FIG.9). 

 

Co-transfection of TRα1 nonacetylation mimic with wild-type TRα1 has no effect 

on wild-type TRα1 localization pattern 

 The research conducted by Sanchez-Pacheco et al. (2009) revealed that not only 

did the TRα1 nonacetylation mimic lose its ability to activate transcription at high thyroid 

hormone concentrations, it also acted as an inhibitor to wild-type TRα1’s transcriptional 

activity. To determine whether this inhibition carried over to TRα1’s transport activity, 

mCherry-wild-type TRα1 was co-transfected with GFP-TRα1 nonacetylation mimic or 

GFP-wild-type TRα1 with mCherry-TRα1 nonacetylation mimic. The nonacetylation 

mimic did not show an inhibitory effect on TRα1 (FIG.10). 
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Figure 9. Thyroid hormone does not affect the localization of either TRα1 

nonacetylation mimic or wild-type TRα1 

HeLa cells were transfected with GFP, GFP-TRα1, and GFP-TRα1-K123/132/134R (A) 

or mCherry analogs (B) expression plasmids, and thyroid hormone treatment of 100nM 

was added 6 hours post transfection. Cells were sorted into N, NC, or W categories. 

The y-axis for both graphs represent the percent of cells with either N, NC, or W 

localization patterns, and the x-axis represents the proteins analyzed along with plus or 

minus thyroid hormone. Two-hundred cells were counted per slide, and at least three 

biologically separate replicates were analyzed. Error bars indicate plus/minus the 

standard error of the mean, and a student’s t-test with a significance value of P=0.268 > 

0.05 provides statistical evidence that thyroid hormone does not affect localization. Both 

wild-type and TRα1 nonacetylation mimic retain high nuclear localization.   

A 

B 
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Figure 10. Co-transfection of TRα1 nonacetylation mimic with wild-type TRα1 has 

no effect on wild-type TRα1 localization pattern 

HeLa cells were transfected in a six-well plate with GFP-TRα1 and GFP-TRα1-

K123/132/134R (green), or mCherry-TRα1 and mCherry-TRα1-K123/132/134R (red), 

and the N/C ratio quantified by fluorescence microscopy. Striped bars represent one 

well of cells transfected with both mCherry-TRα1 and GFP-TRα1-K123/132/134R. 

Checkered bars represent one well of cells transfected with both GFP-TRα1 and 

mCherry-TRα1-K123/132/134R. Error bars indicate plus or minus standard error of the 

mean. P=0.767 > 0.05; student’s t-test. 
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TRα1 acetylation mimic shows a reduced nuclear localization compared to wild-

type TRα 

 In the previous analysis of the TRα1 nonacetylation mimic, the data showed that 

nuclear localization remains the same as wild-type TRα1, and that transport activity of 

the TRα1 nonacetylation mimic does not interfere with wild-type TRα1’s transport 

activity. Thus, the next step was to determine the localization of the TRα1 acetylation 

mimic. Preparation of the GFP-acetylation mimic was unsuccessful via subcloning; 

therefore, HeLa cells were transfected with only mCherry-TRα1 acetylation mimic. The 

data showed a statistically significant decrease in nuclear localization for the GFP-TRα1 

acetylation mimic compared to wild-type TRα1 (FIG.11).  

 

Thyroid hormone does not affect localization of the TRα1 acetylation mimic  

 With the more cytosolic localization pattern of the TRα1 acetylation mimic 

established, the next step was to determine whether thyroid hormone would alter its 

distribution Consistent with the previous experiment on the effect of thyroid hormone on 

the localization of the TRα1 nonacetylation mimic, thyroid hormone had no effect on the 

localization of the TRα1 acetylation mimic (FIG.12). 
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Figure 11. TRα1 acetylation mimic shows a reduced nuclear localization 

compared to wild-type TRα 

Intracellular distribution pattern of the TRα1 acetylation mimic (lysine to glutamine 

substitutions) compared to wild-type TRα1. A) HeLa cells were transfected with 

mCherry, mCherry-TRα1, and mCherry-TRα1-K128/132/134Q expression plasmids, 

and analyzed by quantitative fluorescence microscopy. B) The y-axis represents the 

N/C ratio; the x-axis represents the proteins analyzed. Bars indicate the 

nuclear/cytosolic ratio of TRα1 (n=3 independent, biologically separate replicate 

experiments, with 100 cells per replicate), and error bars indicate plus or minus 

standard error of the mean. *P=0.011 < 0.05; student’s t-test. 
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Figure 12. Thyroid hormone does not affect localization of the TRα1 acetylation 

mimic 

Cells were transfected and treated with 100nM thyroid hormone as described in FIG.9. 

Bars indicate the nuclear/cytosolic ratio of TRα1 (n=3 independent, biologically separate 

replicate experiments, with 100 cells per replicate), and error bars indicate plus and 

minus the standard error of the mean. P=0.150 > 0.05; student’s t-test. 
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Discussion 

The data presented in this thesis show that the TRα1 nonacetylation mimic 

(lysine to arginine substitutions) is localized primarily to the nucleus, comparable to wild-

type TRα1. Consistent with this finding, co-transfection of the TRα1 nonacetylation 

mimic did not alter the localization pattern of wild-type TRα1. 

In striking contrast, the distribution of the TRα1 acetylation mimic (lysine to 

glutamine substitutions) was shifted towards a more cytosolic localization. Lastly, 

localization patterns remained the same in the presence or absence of thyroid hormone 

for wild-type or TRα1 nonacetylation and acetylation mimics. 

 

Acetylation plays a role in TRα1 transport 

 The results presented here point to the possibility that acetylation may play an 

important role in TRα1’s subcellular localization. Because acetylation occurs within the 

hinge domain NLS-1, it is highly likely that acetylation may function to regulate TRα1 

import, by decreasing the affinity of NLS-1 for interaction with importins. Similar 

research conducted using different proteins support the finding that acetylation may 

modulate nuclear import. Song et al. (2015) found that the subcellular localization of 

Rho GTPase Net1A is controlled by acetylation within the NLS of this protein. To 

determine the effect of Net1A acetylation, acetylation sites in the protein were mutated 

into acetylation-mimic glutamine residues and nonacetylation-mimic arginine residues. 

While the nonacetylation-mimic did not have a change in nuclear localization, the 

acetylation-mimic showed a significant cytosolic localization. Prior to this work, it had 

been found that acetylation markedly alters the subcellular cellular location of the viral 
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oncoprotein E1A (Madison et al., 2002); non-receptor tyrosine kinase c-Abl (Bari et al., 

2006); DNA helicase RECQL4 (Dietschy et al., 2009); immune response protein IFI16 

(Li et al., 2012); and the S-phase kinase associated protein 2 (Inuzuka et al., 2012). 

Acetylation of these proteins was investigated with the use of acetylation mimics, and in 

all cases acetylation in the NLS promoted cytosolic localization. This thesis research 

contributes to the existing knowledge of the importance of acetylation in regulating NLS 

activity.  

 

Electrostatic charge interactions may influence importin binding  

This thesis research also provides evidence for an elegant model for the 

mechanism of interaction that takes place between importins and TRα1. An explanation 

as to why the TRα1 acetylation mimic had a distinct shift towards a more cytosolic 

localization may be due to electrostatic charge interactions between the NLS and 

importins. This form of interaction has been recently proposed in work conducted with 

the androgen receptor (Zhou et al., 2010). Zhou et al. identified a novel NES from the 

rice field eel androgen receptor containing a negative charge, and posited that the 

negative charge found in the NES may be indicative of an export pathway mediated by 

electrostatic interactions. In addition, structural studies by Gino et al. (2002) revealed 

that interaction of importin β with its cargo occurs via electrostatic interactions, enabled 

by acidic amino acid side chains along its surface. Furthermore, research on the nuclear 

export factor CRM1 reveals a method for modulating its binding with NESs. CRM1 

changes its structure to expose or bury acidic or basic amino acid residues that lie on 

either the outer surface or inner surface of the protein (Fox et al. 2011). Theoretical 
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work by Zhang et al. (2011) suggests that protein-protein electrostatic interactions begin 

with the formation of transient intermediates that then relax into stable complexes. Thus, 

taking into account the physiological pH of HeLa cells and the fact that importins of the 

β family are negatively charged, it is probable that positively charged lysine residues 

128,132,134 on TRα1 are neutralized due to acetylation. As a consequence, the binding 

affinity of NLS-1 for importin 7, importin β1, and the adaptor importin α1 complex 

(Roggero et al., 2016) is likely to be significantly reduced. 

 

Support for the regulatory activity of acetylation  

 Not only does acetylation play a role in the subcellular localization of NLS-

containing proteins, it can also regulate processes that play a part in cytoskeleton 

remodeling, cell migration, metabolism, and aging (Close et al., 2010). Zhao et al. 

(2010) showed that acetylation occurs in almost every enzyme that catalyzes cellular 

metabolism as a result to changes in extracellular nutrient availability. In addition, 

Nguyen et al. (2016) discovered that acetylation regulates the activity of the enzyme 

glutamine synthetase.  Other roles for this post-translational modification include 

acetylation of histone H3 lysine 23, which regulates gene expression responsible for the 

development of Drosophila melanogaster (Bodai et al., 2012); acetylation of 

transcription factors responsible for the differentiation and maintenance of quiescence in 

adult hematopoietic stem cells (Bararia et al., 2016); and regulation of  the essential 

functions of the small GTP-binding protein Ran (De Boor et al., 2015; Knyphausen et 

al., 2015). Gorsky et al. (2016) constructed a lysine to glutamine acetylation mimic, and 

a lysine to arginine nonacetylation mimic of the human protein Tau (hTau) to observe 
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the contribution of acetylation to hTau toxicity, as observed in many neurodegenerative 

disorders such as Alzheimer’s disease (AD). They found that the acetylation of the 

single K128 residue in hTau is enough to worsen hTau neurotoxicity in vivo, suggesting 

that acetylation of hTau contributes to the events leading to neurodegeneration in AD. 

 

Conclusion 

Prior studies show that TRα1 rapidly shuttles between the cytoplasm and nucleus 

of the cell (Bunn et al., 2001). Multiple exportins mediate its export pathway (Grespin et 

al., 2008; Subramanian et al., 2015), and import of TRα1 into the nucleus is mediated 

via a number of importins, specifically importin 7, importin β1, and the adaptor importin 

α1 (Roggero et al., 2016). However, the exact mechanism of interaction between 

transport factors and TRα1 remains unclear. This thesis work proposes a mechanism of 

electrostatic charge interactions in which transport factors may interact with TRα1 to 

facilitate nucleocytoplasmic translocation. Even though the proposed mechanism might 

be a possible explanation as to the functional consequence of TRα1 acetylation, it is still 

unknown as to why the receptor is initially acetylated. Is acetylation a regulatory 

checkpoint in TRα1 transport? What are the signals that result in nuclear receptor 

acetylation? What is the evolutionary significance of TRα1 acetylation? These 

questions, and many more, still remain to be answered in order to fully understand the 

complete story behind TRα1 acetylation. 
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Future Directions 

 Future steps include conducting co-transfection experiments to determine the 

effect of the TRα1 acetylation mimic on wild-type TRα1 localization. In addition, work is 

currently done by a graduate student in our lab, Dylan (Jibo) Zhang, to verify that the 

TRα1 nonacetylation mimic is, indeed, nonacetylated, by GFP/RFP-trap co-

immunoprecipitation using an acetylated lysine-specific antibody. Further mutagenesis 

experiments in which TRα1’s NLS-2 in the A/B domain is removed will be done to 

determine whether NLS-2 accounts for the fact that the acetylation mimic can still 

localize, in part, to the nucleus. Finally, work with TRβ will be done to determine the 

functional consequences of acetylation on TRβ’s subcellular localization.             
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Appendix 
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Detailed protocol for Quantitative Microscopy Analysis 

Program: NIS-Elements   

 

Access to ROIs:   

To create ROIs on an image, click the small black arrow next to the ROI icon  on the 

right border of the image window.   

   
(Cells transfected with GFP-TRα1-K128/132/154R) 

   

Draw ROI using the Draw Rectangular ROI:   

    

Options for creating ROIs:  

Exposure time 

must remain 

constant. 
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Drawing the ROIs on the image:   

 
 Select the ROI form (for this example Draw Rectangular 

ROI was chosen).   

 Draw around selected area.  

 When done, right click to duplicate ROI.  

 Another ROI with similar dimensions will appear.     

 

 
(Cell transfected with GFP-TRα1) 

 

These are sample sizes and areas to select. Only select smooth, homogenous areas of 

GFP-TRα1 in the cell. Labeling of ROI’s can be arbitrary as long as a system to 

distinguish between the nucleus and cytoplasm is developed. 

 

Access to ROI Statistics:     

Right click on the NIS-Elements desktop and select Analysis Controls, then select ROI 

Statistics. 
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Using ROI Statistics Dialog:                                                                                                    

 ROI statistics will report Area, Mean, Min, Max, Sum StDev Intensity and the 
ratio of Signal/ Background.   

 What you are interested in is the Mean Intensity. 

   
 

Exporting Data from ROI Statistics:                                                                                    

To export ROI data: 

 Select the small black arrow to view a drop down of possible export locations.   

 Select the desired export location.   

   

 Click on the Export button.  

 

 

 Once exported save the Excel file to the name of your microscope slide. 

 After scoring, copy and paste ROI ID and ROI Mean unto a new excel sheet.  

 Sort ROI Mean such that the data from the nucleus is on top of the data from 

the cytoplasm. 

 Divide each cells nuclear (N) over cytoplasmic data (C) to determine the N/C 

ratio. 

 Take the average of each cells N/C ratio, then use that average to create a bar 

graph. 

 
 

Adapted from Nikon Instruments Inc., 2013 
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