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Abstract. In the conventional procedure for accurate Monte Carlo simulation of

radiotherapy, a CT number given to each pixel of a patient image is directly converted

to mass density and elemental composition, using their respective functions that

have been calibrated specifically for the relevant x-ray CT system. We propose an

alternative approach that is a conversion in two steps: the first from CT number to

density and the second from density to composition. Based on the latest compilation

of standard tissues for reference adult male and female phantoms, we sorted the

standard tissues by mass density into groups and represented them by the averaged

materials per group. With these representative tissues, we formulated polyline relations

between mass density and each of electron density, stopping-power ratio and elemental

densities. We also revised a procedure of stoichiometric calibration for CT-number

conversion and demonstrated the two-step conversion method for a theoretically

emulated CT system with hypothetical 80-keV photons. For the standard tissues,

high correlation was generally observed between mass density and the other densities,

excluding those of C and O for the light spongiosa tissues between 1.0 g/cm3 and 1.1

g/cm3 occupying 1% of the human body mass. The polylines fitted to the dominant

tissues were generally consistent with similar formulations in the literature. The

two-step conversion procedure was demonstrated to be practical and will potentially

facilitate Monte Carlo simulation for treatment planning and for retrospective analysis

of treatment plans with little impact on the management of planning CT systems.
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1. Introduction

In treatment planning (TP) for radiotherapy (RT), a patient body is commonly modeled

to be made of H2O of variable effective density (ED), which is an approximate concept for

a physical interaction of interest. The ED is generally regarded as the relative electron

density for energetic photons or as the stopping-power ratio for charged particles.

Commonly, the patient model is derived from single-energy (SE) kilovoltage (kV) x-

ray computed tomography (CT) with a selectable function to convert a CT number of

each image pixel to an ED for RT. The standard approach to an accurate conversion

function involves experimental x-ray modeling and stoichiometric analysis of standard

body tissues to relate the CT number with the ED (Schneider et al 1996, Kanematsu et

al 2003). To address multiple interactions in dose calculation for proton and ion RT, a

two-step approach is often applied, in which a CT number is converted conventionally

to a primary ED and then automatically to an interaction-specific secondary ED using

a predefined invariant relation between the EDs (Fippel and Soukup 2004, Kanematsu

et al 2012, Farace 2014, Kanematsu et al 2014, Inaniwa et al 2015a, 2015b, 2016).

With the advancement of computer technology, Monte Carlo (MC) simulation

for the best achievable accuracy is becoming realistic. In a MC simulation of RT,

radiation is simply handled as a collection of particles that individually interact with

matter according to the basic laws of subatomic physics. For the modeling of body

tissues, Schneider et al (2000) applied the stoichiometric approach to derive functions

to convert a CT number directly to a mass density and elemental weights. The

resultant functions for the particular scanning condition of their planning CT system

are, however, not readily applicable to other planning CT systems or other scanning

conditions (Vanderstraeten et al 2007). Calibration and maintenance of the complex

one-to-many relations could discourage the practice of MC simulation. As well as for

TP, MC simulation is potentially useful for detailed retrospective analysis of archived

treatment plans, especially when they were partly planned with a retired CT system.

In such cases, while the CT number may have been calibrated accurately against the

primary ED, any other calibration may no longer be feasible.

To facilitate MC simulation for TP and for retrospective analysis, in this paper

we extend the two-step approach to the derivation of mass density and elemental

composition based on the latest compilation of standard tissue data. Accordingly, we

also revise a CT-number conversion procedure currently in use for the first step of the

two-step conversion. We compare the proposed conversion method with similar methods

in the literature and demonstrate its implementation with a hypothetical planning CT

system, primarily for proton and ion RT.
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2. Materials and Methods

2.1. Standard tissues and material properties

We used the standard tissue data in ICRP Publication 110 (2009), which is the latest

compilation of this kind. The publication offers the voxel representation of reference

male and female phantoms structured with 141 organs, which are made of 53 standard

tissues of enumerated mass density ρ and elemental weights w. The spongiosa tissues in

the compilation may include mixing of the surrounding organ tissues such as trabecular

bone, bone marrow and cartilage because their volumes could not be resolved due to the

limited voxel resolution of the phantoms. For the ICRP-110 tissues, we derived electron

density ne by

ne =
ρ

u

∑

i

wiZi

Ari

, (1)

where u is the unified atomic mass unit, Zi is the atomic number and Ari is the relative

atomic mass for element i. We also derived stopping-power ratio S/Sw by

S

Sw

≈
ne

new

ln mec2

I
− 1

3

ln mec2

Iw
− 1

3

with ln I =

∑

i
wiZi

Ari
ln Ii

∑

i
wiZi

Ari

, (2)

where subscript w indicates water, mec
2 = 511 keV is the electron rest energy,

new = 3.343 × 1023 cm−3 is the electron density of water, Ii is the mean excitation

energy for element i in compounds (ICRU 1984) and Iw = 75.3 eV is the I value

consistently calculated for water (Kanematsu et al 2012). In the approximation, we

adopted a typical ionizing-particle speed of 0.577 c corresponding to a kinetic energy of

211 MeV for protons. We also derived tissue mass fraction m per person of an equal

mixture of the male and female phantoms from the relevant organ masses.

As six major elements M = {H, C, N, O, P, Ca} generally dominate the human

body, we collected all other minor elements of each tissue into a residual weight and

calculated its mean (̄ ) residual atomic number by

wres =
∑

r /∈M

wr and Z̄res =

∑

r /∈M Zrwr

wres

, (3)

where Zr is the atomic number of residual element r. The residual weight may be

assigned to the element consistent with Z̄res to be reasonably included in MC simulation

for general interactions.

2.2. Representative tissues

Among the ICRP-110 tissues, below ρ = 0.90 g/cm3 was only a single lung tissue

occupying m = 1.4% of the human body mass. Between 0.90 g/cm3 and 1.00 g/cm3

were an adipose tissue (33.9%) and medullary cavities containing bone marrow (0.4%).

Between 1.00 g/cm3 and 1.07 g/cm3 were muscle (34.5%), spongiosa (0.3%) and many

other general organ tissues (11.7%). Between 1.07 g/cm3 and 1.101 g/cm3 were
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skin (4.9%), cartilage (0.6%) and spongiosa tissues (0.7%), which are miscellaneously

epithelium, connective and spongy-bone tissues, respectively. Between 1.101 g/cm3 and

1.25 g/cm3 were only spongiosa tissues (5.7%). Above that were a mineral bone (5.7%)

at 1.92 g/cm3 and a tooth (0.1%) at 2.75 g/cm3.

We hypothetically defined a representative tissue for each group (G) of tissues

(t) in these density intervals by volume-weighted mean for the set (~) of densities

~ρ = (ρ, ne/new, S/Sw, ρH, ρC, ρN, ρO, ρP, ρCa, ρres) and by mass-weighted mean for the

residual atomic number,

~ρG =

∑

t∈G ~ρt
mt

ρt
∑

t∈G
mt

ρt

and Z̄resG =

∑

t∈G Z̄restmt
∑

t∈G mt
, (4)

where elemental density ρ{H,C,N,O,P,Ca,res} = ρw{H,C,N,O,P,Ca,res} is the mass density per

element. In addition, we calculated the effective (̃ ) atomic numbers for the photoelectric

effect and for coherent scattering of kV x-ray photons (Jackson and Hawkes 1981) by

Z̃ph =

(

∑

i
wiZi

Ari
Zi

3.62

∑

i
wiZi

Ari

)
1

3.62

and Z̃coh =

(

∑

i
wiZi

Ari
Zi

1.86

∑

i
wiZi

Ari

)
1

1.86

(5)

for the stoichiometric CT-number calibration (Schneider et al 1996) that is used in many

proton RT facilities.

2.3. Tissue segmentation and mixing

Compared to muscle and general organ tissues, adipose and marrow tissues have high

concentrations of fat. Teeth have high concentrations of minerals and connective

tissues have high concentrations of collagen, while bones lie between these two. The

concentrations vary among and within individual tissues and are generally correlated

with density. Therefore, an arbitrary tissue of mass density ρ can be regarded as a binary

mixture of representative tissues 1 and 2 adjacent with higher and lower densities, or

ρ1 ≤ ρ ≤ ρ2. In other words, by assigning the representative tissues to the polyline

points, the mass density of a tissue in the polyline segment can be converted to the

other densities by linear interpolation

~ρ =
ρ2 − ρ

ρ2 − ρ1
~ρ1 +

ρ− ρ1
ρ2 − ρ1

~ρ2 (6)

in a mass-weighting manner (Warren et al 2015). When an ED ρ̃ ∈ {ne/new, S/Sw}

instead of the mass density is externally given to a tissue, the mixing weights in (6) may

be redefined with replacement {ρ, ρ1, ρ2} → {ρ̃, ρ̃1, ρ̃2}.

For air cavities, we added air of the standard atmosphere (ISO 1975) to the

representative tissues. For fatty tissues lighter than the representative adipose/marrow

tissue, we extended the soft-tissue segment down to fat of mass density 0.90 g/cm3 at

37◦C (Fidanza 2003) by adding the fat to the representative tissues. For the composition

of the representative fat, we took 1,3-dioleoyl 2-palmitoyl glycerol (OPO triglyceride)

found in human milk (Jenness 1979). Similarly, we extended the lung segment up

to 0.80 g/cm3, leaving a transition segment between 0.80 g/cm3 and 0.90 g/cm3 to
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avoid discontinuity and to cope with fatty tissues that could accidentally be recognized

as lighter than the representative fat. We also extended the tooth segment up to

hydroxyapatite, the main component of tooth enamel, with a theoretical density of

3.156 g/cm3 (Hench and Best 2013).

2.4. Comparison with preceding formulations

In contrast to our tissue-averaging approach, Schneider et al (2000) directly used air

and seven selected tissues in another compilation (Woodard and White 1986) for CT-

number conversion based on binary mixing of the tissue materials. We derived their

implicit relations between mass and elemental densities, which we refer to as broken-

line functions, each consisting of four disconnected segments. Using all tissues in the

same compilation, Hünemohr et al (2014) formulated a relation between mass and

electron densities consisting of two segments disconnected at 0.93 g/cm3 of “Adipose

3”, which we refer to as a bi-line function. We compared our polyline functions with

those discontinuous functions.

2.5. New procedure for CT-number conversion

For CT-number conversion in the first step, we propose a new procedure of the

stoichiometric calibration (Schneider et al 1996) as a revision of the one currently in

use (Kanematsu et al 2003). The CT number H in Hounsfield unit (HU) is defined to

be linearly related to photon attenuation coefficient µ as

H = 1000
µ− µw

µw − µa

≈ 1001

(

µ

µw

− 1

)

, (7)

where µw and µa ≈ 0.001µw are the µ values in water and in air. Based on the

formulation by Jackson and Hawkes (1981), the photon attenuation coefficient in

composite matter can be estimated (̂ ) by

µ̂ = ne σC

(

κphZ̃
3.62
ph + κcohZ̃

1.86
coh + 1

)

, (8)

where σC is the Compton-scattering cross section and κphZ̃
3.62
ph and κcohZ̃

1.86
coh are the

relative contributions of the photoelectric effect and of coherent scattering (Schneider

et al 2000). The photon attenuation relative to that in water is thus given by

µ̂

µ̂w

=
ne

new

κphZ̃
3.62
ph + κcohZ̃

1.86
coh + 1

κphZ̃
3.62
phw

+ κcohZ̃
1.86
cohw

+ 1
. (9)

To determine the x-ray model parameters κph and κcoh, we followed Kanematsu et

al (2003) to use specific-material samples for calibration. Table 1 shows their properties

calculated with (1), (2) and (5). Measuring their µ/µw values by calibration CT scanning

and substituting them for µ̂/µ̂w in (9), the x-ray model parameters are solved to

κph =
1

Z̃3.62
phw

µK

µw

new

neK

(

1−
Z̃1.86
cohE

Z̃1.86
cohw

)

+ µE

µw

new

neE

(

Z̃1.86
cohK

Z̃1.86
cohw

− 1

)

+
Z̃1.86
cohE

Z̃1.86
cohw

−
Z̃1.86
cohK

Z̃1.86
cohw

µK

µw

new

neK

(

Z̃1.86
cohE

Z̃1.86
cohw

−
Z̃3.62
phE

Z̃3.62
phw

)

+ µE

µw

new

neE

(

Z̃3.62
phK

Z̃3.62
phw

−
Z̃1.86
cohK

Z̃1.86
cohw

)

+
Z̃3.62
phE

Z̃3.62
phw

Z̃1.86
cohK

Z̃1.86
cohw

−
Z̃3.62
phK

Z̃3.62
phw

Z̃1.86
cohE

Z̃1.86
cohw
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Table 1. Material properties of samples for calibration CT scanning: mass density ρ,

relative electron density ne/new, stopping-power ratio S/Sw, mean excitation energy

I and effective atomic numbers Z̃ph for the photoelectric effect and Z̃coh for coherent

scattering.

№ Material ρ/(g/cm3) ne/new S/Sw I/eV Z̃ph Z̃coh

1 Water (H2O) 0.997a 1 1 75.3 7.522 7.115

2 Ethanol (C2H5OH) 0.785a 0.801 0.817 63.1 6.497 5.984

3 40%-K2HPO4 solution 1.402b 1.344 1.300 99.2 12.506 10.555

a,bThe mass densities are at 25◦C (aOIML 1975, bKanematsu et al 2003).

=
1

1487.1

0.20484 µK

µw
+ 1.3514 µE

µw
− 1.3578

0.10139 µK

µw
+ 5.2635 µE

µw
− 3.3392

(10)

and

κcoh =
1

Z̃1.86
cohw

µK

µw

new

neK

(

Z̃3.62
phE

Z̃3.62
phw

− 1

)

+ µE

µw

new

neE

(

1−
Z̃3.62
phK

Z̃3.62
phw

)

+
Z̃3.62
phK

Z̃3.62
phw

−
Z̃3.62
phE

Z̃3.62
phw

µK

µw

new

neK

(

Z̃1.86
cohE

Z̃1.86
cohw

−
Z̃3.62
phE

Z̃3.62
phw

)

+ µE

µw

new

neE

(

Z̃3.62
phK

Z̃3.62
phw

−
Z̃1.86
cohK

Z̃1.86
cohw

)

+
Z̃3.62
phE

Z̃3.62
phw

Z̃1.86
cohK

Z̃1.86
ohw

−
Z̃3.62
phK

Z̃3.62
phw

Z̃1.86
cohE

Z̃1.86
cohw

=
1

38.463

5.7101− 0.30623 µK

µw
− 6.6149 µE

µw

0.10139 µK

µw
+ 5.2635 µE

µw
− 3.3392

, (11)

where subscripts E and K indicate ethanol and 40%-K2HPO4 solution, respectively.

The CT numbers of the representative tissues of known ne, S/Sw, Z̃ph and Z̃coh

will then be estimated by (7) and (9) to define the polyline relation between H and

S/Sw. For CT-based MC simulation of proton or ion RT, the H–S/Sw relation will be

applied to the first-step conversion and the invariant polyline relations between S/Sw

and mass and elemental densities of the representative tissues will be applied in the

second-step conversion. As a whole, the two-step conversion constitutes the function
~̂ρ(H) to estimate the set of densities for a given CT number H .

2.6. Example of two-step conversion

To demonstrate implementation of the two-step conversion, we theoretically emulated

a CT system with hypothetical monochromatic 80-keV photons, which would

effectively represent a kV x-ray spectrum, without realistic beam hardening or scatter

contamination. While their remaining effects generally dominate the error in real CT

imaging (Yang et al 2012), the hypothetical error-free CT may still suffice for this study

dealing with the conversion part. For a material of known composition, the photon

attenuation coefficient is theoretically given by

µ =
∑

i

ρi

(

µ

ρ

)

i

, (12)

where elemental mass attenuation coefficient (µ/ρ)i for 80-keV photons is 0.3091 cm2/g

for H, 0.1610 cm2/g for C, 0.1678 cm2/g for O, 0.2324 cm2/g for P and 0.3251 cm2/g for K



Tissue modeling for Monte Carlo simulation of radiotherapy 7

(Hubbell and Selzer 2004). We used the theoretical calculation of (12) for calibration CT

scanning to measure µE/µw = 0.7839 and µK/µw = 1.612, from which κph = 2.248×10−5

by (10) and κcoh = 8.491× 10−4 by (11) were derived.

The accuracy of the CT-number conversion for tissues may intrinsically be limited

by the accuracy of the model function of (9) calibrated with the samples, which we

examined against the theoretical calculation of (12) with the database (Hubbel and

Selzer 2004). We also compared the resultant H-to- ˆ(S/Sw) conversion function to that

constructed with an old procedure by Kanematsu et al (2003), which was also directly

derived from the same µE/µw and µK/µw values, though based on the tissue compilation

in ICRU Report 46 (ICRU 1992). The polyline of the old procedure consisted of three

segments for CT-number intervals: [−1000,−600] HU for lung tissues, [−150, 100] HU

for soft tissues and [300, 2000] HU for bone tissues and of two transition segments for

[−600,−150] HU and [100, 300] HU. The accuracy of the overall conversion for MC

simulation was examined by comparing the estimated densities ~̂ρ(H) to the original

densities ~ρ for the standard tissues and 24 additional tissues compiled in ICRU Report 44

(ICRU 1988), where CT number H was derived theoretically with (12) to emulate a CT

scan with 80-keV photons. The ICRU-44 tissues were used in the original stoichiometric

calibration (Schneider et al 1996) and have been considered as standard (Yang et al

2012).

3. Results

3.1. Tissue material properties

Table 2 shows the names and the material properties of the representative tissues.

Figure 1 shows the correlation between mass density and relative electron density. The

two fitting functions, the polyline of this study and the bi-line by Hünemohr et al (2014),

were generally consistent with the standard tissues except around the representative fat

at 0.90 g/cm3 and around the representative tooth at 2.75 g/cm3, where the bi-line

function deviated by −1.5% and −1.3%, respectively. The discontinuity in the bi-line

at 0.93 g/cm3 was settled by the polyline.

Table 3 shows the elemental compositions of the representative tissues. Figure 2

shows the correlation between mass density and elemental densities. The polyline

functions and the broken-line functions according to Schneider et al (2000) were both

generally consistent with the standard tissues except between 1.0 g/cm3 and 1.1 g/cm3

for C, O and Ca, which were attributed to the light spongiosa tissues occupying 1%

of the human body mass. Figure 3 shows the distribution of mean residual atomic

number, where the highest and the lowest were 20.6 for the thyroid and 12.0 for the

tooth, respectively. The global mean of 15.95 approximately corresponded to element

S.
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Table 2. Names and material properties of the representative tissues: mass fraction

m, mass density ρ, relative electron density ne/new, stopping-power ratio S/Sw, mean

excitation energy I and effective atomic numbers Z̃ph for the photoelectric effect and

Z̃coh for coherent scattering.

№ Name m/% ρ/(g/cm3) ne/new S/Sw I/eV Z̃ph Z̃coh

1 Air 0.001 0.001 0.001 86.1 7.817 7.446

2 Lung 1.4 0.384 0.380 0.380 75.1 7.689 7.092

3 Extra Lung 0.80 0.793 0.794 75.1 7.689 7.092

4 Fat 0.90 0.906 0.928 61.3 5.952 5.553

5 Adipose/Marrow 34.3 0.950 0.952 0.968 64.9 6.516 6.000

6 Muscle/General 46.5 1.049 1.040 1.041 74.5 7.666 7.030

7 Miscellaneous 6.3 1.090 1.077 1.080 74.1 7.677 6.984

8 Heavy Spongiosa 5.7 1.136 1.115 1.116 75.1 9.600 7.691

9 Mineral Bone 5.7 1.92 1.784 1.705 109.7 13.75 11.59

10 Tooth 0.1 2.75 2.518 2.364 126.8 14.94 13.05

11 Hydroxyapatite 3.156 2.830 2.586 156.2 16.32 14.94

0
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0 1 2 3

Mass density, ρ / (g/cm3)
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el
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1.2

1 1.1 1.2

Figure 1. Relation between mass density and relative electron density for the ICRP-

110 male (+) and female (×) tissues, the polyline function of this study (solid lines),

the bi-line function (dashed lines) and “Adipose 3” (#) by Hünemohr et al (2014) and

viewing areas for embedded subplots (rectangles).

3.2. CT-number conversion

Figure 4 shows the error of model-estimated µ̂/µ̂w with respect to theoretical µ/µw of

80-keV photons. The error was typically as small as −0.003, while it was +0.007 for the

thyroid. That may indicate the inaccuracy of the x-ray model calibrated with ethanol

and 40%-K2HPO4 solution.
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Table 3. Elemental composition of the representative tissues: major-element and

residual weights w{H,C,N,O,P,Ca,res} and mean residual atomic number Z̄res.

№ Name wH/% wC/% wN/% wO/% wP/% wCa/% wres/% Z̄res

1 Air 0.00 0.01 75.52 23.17 0.00 0.00 1.30 18.0

2 Lung 10.3 10.7 3.2 74.6 0.2 0.0 1.0 15.9

3 Extra Lung 10.3 10.7 3.2 74.6 0.2 0.0 1.0 15.9

4 Fat 11.96 76.87 0.00 11.17 0.00 0.00 0.00 —

5 Adipose/Marrow 11.40 58.92 0.74 28.64 0.00 0.00 0.30 14.7

6 Muscle/General 10.25 14.58 3.20 70.87 0.21 0.02 0.87 16.8

7 Miscellaneous 9.94 20.90 3.84 63.73 0.45 0.27 0.87 15.5

8 Heavy Spongiosa 9.30 39.15 2.22 41.71 2.36 4.60 0.66 14.9

9 Mineral Bone 3.6 15.9 4.2 44.8 9.4 21.3 0.8 13.1

10 Tooth 2.2 9.5 2.9 42.1 13.7 28.9 0.7 12.0

11 Hydroxyapatite 0.20 0.00 0.00 41.41 18.50 39.89 0.00 —

Figure 5 shows a comparison between the H-to- ˆ(S/Sw) conversion function of this

study and that according to Kanematsu et al (2003), both of which were generally

consistent with the stoichiometric tissue responses. The maximum deviation between the

two ˆ(S/Sw) functions was 0.015 at 79 HU, which was due to their extended segmentation

for soft tissues. Also, the deviation of ˆ(S/Sw) was typically 0.01 in their transition

segments, where not many standard tissues exist.

Figure 6 shows the CT-number conversion functions for mass and elemental

densities constructed with the two-step procedure for the hypothetical CT. These

functions were generally consistent with the stoichiometric tissue responses except

for the C, O and Ca densities in the CT-number interval of [0, 100] HU, which were

attributed to the light spongiosa tissues.

4. Discussion

The two-step approach for CT-number conversion offers distinct convenience for MC

simulation of RT with multiple CT types and scan modes continually updated over time.

The polyline-fitting approach may offer improved robustness against CT-number error

or voxel averaging in a realistic CT image. The general agreement between the proposed

and preceding formulations indicates their theoretical equivalence and the consistency of

the tissue data, which is reasonable because all the relevant compilations are essentially

based on an older compilation (ICRP 1975). Taking advantage of the publication that

focused on reference adult phantoms rather than on variations in age, physical status,

inter-individual, etc, the resultant concise yet complete set of the representative tissues

may offer average tissue responses in general stoichiometric analysis. Yang et al (2012)

estimated the proton range uncertainty due to deviation of an actual human body from

the standard tissues to be 0.2% for lung, 1.2% for soft tissues and 1.6% for bones. Such

errors in reality may only be assessed by in vivo dosimetric approaches (Mijnheer et al
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Figure 2. Relation between mass density and elemental densities of (a, b) H, (c, d)
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2013, Knopf and Lomax 2013).

For CT-number conversion in the first step, we propose a new procedure with

the same calibration apparatus as that currently used in multiple proton and ion

RT facilities in Japan (Kanematsu et al 2003), where the transition will induce little

impact on the management of planning CT systems. The simplicity and the clarity

with minimum measurement of specific materials and with deterministic derivation of

conversion relations are well maintained in the new procedure while naturally improving

the accuracy with refined tissue segmentation with ten segments increased from five. In

retrospective analysis of an archived treatment plan, the original ED distribution used
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in TP may be readily available without redoing CT-number conversion.

The second-step inter-density conversion will lead to the mass density and elemental

composition to constitute a patient model for subatomic MC simulation, where the

residual mass may be assigned to element S or that consistent with Z̄res for the polyline

segment. For accurate derivation of Z̄res, the interpolation formula (6) should be applied

to density-weighted parameter ρres Z̄res from table 3. Similarly, when material properties

I, Z̃ph and Z̃coh are needed for a given tissue, the interpolation parameters should be

ne ln I, ne Z̃
3.62
ph and ne Z̃

1.86
coh from table 2, with which the tissue receives the respective

interactions. As an issue of MC implementation beyond this study, the conversion

functions may have to be translated into numerical material data tables. In today’s

computing environment, material definition per CT number of a 12-bit integer to handle

up to 4096 materials may sound practical, while Barnes et al (2013) showed that binning

into 127 materials would still balance accuracy and efficiency.

With regard to the poor fitting for the elemental weights in the CT-number interval

of [0,100] HU, the deviating light spongiosa tissues could be resolved by anatomical

identification or by independent quantitative imaging, in which case either an extended

spongiosa/mineral-bone segment or a separate marrow/spongiosa segment shall apply

to the spongiosa tissues. The present estimation may be inaccurate for exceptional

tissues such as thyroid, with its high iodine content, and for nonbiological materials

such as artificial implants, for which specific material assignment is desirable. In recent

years, dual-energy (DE) CT has been investigated for direct electron-density and atomic-

number imaging, with which tissue types could be resolved (Bazalova et al 2008, Landry

et al 2013). Some studies showed improvement with DECT over SECT in the absence of

realistic image noise or artifacts: Yang et al (2010) theoretically showed that the root-

mean-square error in stopping-power ratio remained below 1% with DE, as compared to

4% with SE, for non-standard tissues of perturbed density or composition. Hünemohr

et al (2014) also estimated that range prediction would be improved by 0.1%–2.1% with

DE. Tsukihara et al (2015) verified such improvements for electron-density measurement

in phantoms. Nevertheless, further research and development may be needed to take

advantage of DE in tomographic imaging of patient anatomy in the clinic. In fact,

Landry et al (2013) showed that the advantage of DE in elemental-weight estimation

would be insignificant at a CT dose index lower than 20 mGy or with a systematic

error greater than 5 HU. Hudobivnik et al (2016) also questioned the significance of

present-day DECT in TP for proton RT.

5. Conclusions

We defined 11 representative tissues for the human body as the materials specified by

mass density and elemental composition and compiled their relative electron density,

stopping-power ratio, mean excitation energy and effective atomic numbers for the

photoelectric effect and for coherent scattering. These numerical tissues may be readily

useful for general stoichiometric analysis. On the hypothesis that an arbitrary tissue is
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a binary mixture of the representative tissues adjacent with higher and lower densities,

its mass density, relative electron density and stopping-power ratio can be mutually

converted by polyline interpolation. The elemental composition can be derived similarly

via elemental densities. These relations were consistent with similar formulations in the

literature and fitted to the standard tissues except for the C and O densities of the light

spongiosa tissues occupying 1% of the human body mass.

For CT-based MC simulation of RT, we propose a two-step conversion method, in

which these invariant relations are applied to inter-density conversion in the second step.

For CT-number conversion in the first step, we revised a procedure practiced in multiple

facilities, where the use of the same calibration apparatus will minimize the impact of

the transition on the management of planning CT systems. The revised procedure also

maintains the original simplicity and clarity while improving the accuracy by refined

polyline segmentation. The two-step conversion was demonstrated to be practical using

a theoretically emulated CT system and will facilitate MC simulation for TP and for

retrospective analysis of archived treatment plans.
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