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Zusammenfassung

Diese Arbeit untersucht die Anwendung der passiven Probenahme als neue Monitori-

ng–Technik, die in der Lage ist, Gewässerschadstoffe bei niedrigen Umweltkonzen-

trationen zu bestimmen und direkt zur Risikobewertung genutzt werden kann. Im

Freiwasser und im Sediment eines tropischen Flusses in Kenia kamen zwei Pas-

sivsammler, Polyethersulfon (PES) und Silikongummi (SR), zum Einsatz, um en-

dokrin wirksame Substanzen (EDCs) und hydrophobe organische Verbindungen

(HOCs) zu erfassen. PES wurde dabei erstmalig für die zeitintegrierte Beprobung

eingesetzt und war in der Lage, die Zielsubstanzen in niedrigen Konzentrationen

zu erfassen. Diese unterschieden sich nicht signifikant von den auf Basis der bereits

gut etablierten SR ermittelten Werte, ungeachtet der Differenzen in den Aufnah-

memechanismen der beiden Sammler materialien. SR hat sich als robuster Sammler

erwiesen, dessen in situ Sammelraten man über Referenzsubstanzen (PRCs) ermit-

teln kann. Diese Sammelraten korrelieren linear mit den SR-Wasser- und Oktanol-

Wasser-Verteilungskoeffizienten der Substanzen und sind vergleichbar mit Liter-

atur befunden, die nahelegen, dass die Substanzaufnahme durch die wässrige Gren-

zschicht als geschwindig keits bestimmende Barriere kontrolliert wird. Die vorliegende

Arbeit demonstriert, dass Passivsammler in abgelegenen Gebieten eingesetzt und

bei richtiger Aufbewahrung während Transport und Lagerung auch weit entfer-

nt vom Ausbringungsort sowie zeitlich verzögert analysiert werden können. Die

Aufnahme- und Eliminierungskinetik der Zielsubstanz gruppen sowie wichtige dies-

bezügliche PES-Eigenschaften wurden in Labor-Kalibrierexperimenten untersucht.

Für das poröse PES konnte eine Intrapartikel-Diffusion bestätigt werden, die als

langsamer Prozess, gekoppelt mit der vermuteten hohen Sorptionskapazität des PES,

eine Linearität der Aufnahmekurven bewirkt. Dies lässt wiederum darauf schließen,

dass PES während kürzerer Expositionszeiträume im kinetischen Aufnahmemodus

arbeitet. Die Aufnahme- und Eliminierungskurven der einzelnen Substanzen zeigen

eine Anisotropie, die auf mechanistische Unterschiede bei der Adsorption und Des-
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orption aufgrund der porösen und glasartigen Natur des PES beruhen könnten.

Aus diesem Grund werden PRCs nur ungenügend aus dem PES eliminiert, so dass

man sie anders als beim SR nicht nutzen kann, um in situ Sammelraten zu ermit-

teln. Zur Beurteilung des Sediment-Wasser-Austausches der Zielsubstanzen wurde

ein fugazitätsbasiertes Sedimentmodell eingesetzt. Die berechneten Fugazitätsver-

hältnisse sind jeweils größer als eins, was darauf hinweist, dass die Sedimente eine

Kontaminationsquelle für das Oberflächenwasser darstellen.
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Abstract

This thesis explores the application of passive sampling as a novel monitoring tech-

nique capable of quantifying aquatic pollutants at low environmental concentrations,

and in a form that is directly applicable to risk assessment. Two passive samplers,

namely polyethersulfone (PES) and silicone rubber (SR), were used to monitor some

endocrine disruptors (EDCs) and hydrophobic organic chemicals (HOCs) in fresh-

water and sediments of a tropical river in Kenya. PES was applied for the first time

for time-integrative sampling of these compound classes and was able to quantify

the target coumponds at low concentrations that were not significantly different to

those obtained using the well established SR, despite differences in uptake mech-

anisms with both sampler materials. SR was found to be a robust sampler given

that in situ sampling rates derived using performance reference compounds (PRCs)

yielded linear correlations to both SR-water and octanol-water partition coefficients

that were comparable to those reported in literature, for substance uptake that is

controlled by the water boundary layer as rate-limiting barrier. This study demon-

strated that passive samplers can be applied in remote locations, and with proper

storage, they can be transported and analyzed far afield. Uptake and elimination

kinetics and key properties of PES for the compound classes were also determined in

laboratory calibration experiments. Intraparticle diffusion in the porous PES was

confirmed, and this being a slow process coupled with the possibly high sorption

capacity of PES, resulted in linearity of uptake curves so that PES was concluded

to operate in the kinetic mode within a short-term exposure duration. Uptake and

elimination curves of individual compounds in PES displayed anisotropy attributed

to different mechanistic pathways for adsorption and desorption due to its porous

and glassy nature. For these reasons also, PRCs were not sufficiently dissipated

from PES implying they cannot be used to determine in situ sampling rates, unlike

in SR. Lastly, to assess the sediment–water exchange of target compounds, fugacity

ratios were calculated using a fugacity-based sediment model, where the ratios were
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found to be greater than unity implying that sediments act as a source of pollutants

to surface water.
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Chapter 1

Introduction

1.1 Research scope of this thesis

Several endocrine disruptors (EDCs) and hydrophobic organic chemicals (HOCs)

have been found to adversely affect humans and/or wildlife. EDCs are an emerging

class of compounds that are known or suspected to affect the endocrine system re-

sulting in a wide range of health effects. In reality, the term EDCs is a relatively new

term used for chemicals that are not so new in terms of environmental monitoring.

Consider dichlorodiphenyltrichloroethane (DDT) for instance, a known endocrine

disruptor that has been monitored for more than half a century, given its environ-

mental persistence. Other HOCs that are not generally categorized as EDCs but

are also widely monitored due to their known health effects include the polynuclear

aromatic hydrocarbons (PAHs). It was outside the scope of this thesis to investigate

the health effects of organic compounds. Rather, the focus was on monitoring EDCs

and other hydrophobic organic chemicals (HOCs) in the aquatic environment and

specifically targeting PAHs, polychlorinated biphenyls (PCBs), organochlorine pes-

ticides (OCPs) [DDT and its metabolites, hexachlorobenzene and methoxychlor] and
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three phthalates [butylbenzylphthalate (BBP), di-n-butylphthalate (DBP) and di-

(2-ethylhexyl)phthalate (DEHP)]. These compounds/compound groups were moni-

tored in freshwater and sediments and at concentrations that are relevant for risk as-

sessment, that is, freely dissolved concentrations. In doing so, silicone rubber (SR)–

and polyethersulfone (PES)–based passive sampling techniques were employed. SR–

based passive sampling technologies are already developed and the purpose of this

thesis was to further their applicability to a wider range of compounds and environ-

ments. PES–based passive sampling techniques are still at the development stage,

and this thesis aims to investigate the uptake kinetics of PES in laboratory experi-

ments and then apply it in the field. PES and SR strips were exposed in situ in a

tropical river in Kenya. In addition, sediments were collected and used for ex situ

analysis of total organic carbon (TOC) content, total concentrations of the organic

compounds and also freely dissolved concentrations in porewater. Lastly, the fate of

the organic compounds in the river system, specifically the sediment–water exchange

was modelled using a fugacity–based sediment model.

1.2 Passive sampling: a versatile monitoring tool

Anthropogenic activities have led to pollution of water resources by xenobiotics,

including HOCs like PAHs, PCBs, OCPs and phthalates. Some of these HOCs

are suspected endocrine disruptors. HOCs lower the water quality and negatively

impact on the aquatic ecosystem and dependent human populations either directly

or indirectly. Accordingly, novel monitoring strategies that are capable of sensing

the pollutants at their low environmental concentrations are required.

HOCs are generally hydrophobic and partition preferably to lipids and organic com-

ponents of sediments and particulate matter in air where some HOCs may remain for

long durations due to their environmental persistence [41]. In a river/stream micro–
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environment with minimal point-source pollution, and depending on the weather

and hydrodynamics, physical and chemical processes involving but not limited to

volatilization, deposition, decomposition and upwelling from sediments can cause

exchanges to occur between the solid, lipid and air phases and the water phase.

As such, the HOCs are among commonly detected pollutants in the water phase of

rivers and as a result of their known negative health impacts, concerted efforts have

been made to regulate their use and to regularly monitor inland surface waters [38,

67].

Monitoring of surface water has conventionally been carried out by grab sampling to

yield total concentrations (C total) that are not directly applicable in ecological fate

and risk assessment [47]. This process requires freely dissolved aqueous concentra-

tions (C free) that can effectively be measured directly using passive sampling devices

(PSDs). Besides, this novel monitoring strategy offers several other advantages over

the conventional grab sampling. For instance, PSDs are relatively inexpensive and

easy to deploy and this makes their use particularly attractive in remote locations.

In addition, the time-integrative character and low sensitivity of PSDs gives a ‘big

picture’ about the true field situation that can be both informative and also act

as an early warning system. In this context, a recent report by the United Nations

Environmental Programme (UNEP) highlights the urgency in expanding water mon-

itoring stations in Africa as a means to identifying hot spots that can be used to

set up priorities for data collection, with the overall goal of curbing pollution and

enhancing water security [160]. The use of grab sampling as a monitoring tool in

such regions is operationally difficult given the low fiscal and physical infrastruc-

ture. Passive sampling would therefore offer a more versatile monitoring approach

especially when cheap polymeric materials are used as sorbents.

In this research, PES and SR, were applied in monitoring for PAHs, PCBs, OCPs

and the phthalates: BBP, DBP and DEHP in a tropical river in Kenya. SR is a
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well developed passive sampler, and has been widely applied to monitor HOCs. Its

uptake of HOCs is known to be an absorption process since the flexible polymer

chains accommodate and allow the mobility of solutes within the polymer network.

In addition, experimental partition coefficients (Kpw) for a number of HOCs are also

available. Sampling rates of HOCs can also be determined in situ using performance

reference compounds (PRCs). PES has only recently emerged as a sorbent for

organic chemicals and several data gaps exist regarding, for instance, its Kpw, uptake

kinetics, sampling rates (Rs), and whether PRCs can be applied to determine in

situ Rs. Though it has been found to be a good sorbent [122, 165], rarely has

it been applied in the field [119, 120] and never has it been used as a sorbent

for the compounds like PAHs and PCBs. On the other hand, these compounds

have been well studied using other PSDs including SR [124, 132]. Hence, SR was

deployed as a reference alongside PES. PES was also applied to determine porewater

concentrations.

1.3 Fugacity–based environmental models: sim-

ple yet powerful

In the environment, chemicals are not static but rather move from one compartment

to another depending on environmental conditions and physicochemical properties.

Chemical flows are driven by their fugacity gradients and generally move from re-

gions of high to low fugacities. Actually, the process is much more intricate but

the use of fugacities simplifies the process while generating all the relevant informa-

tion. Thus, fugacity–based models have been widely applied when considering the

transfer of chemicals between environmental compartments [90]. In sediment–water

compartments, understanding chemical fluxes is useful in for instance, assessing the

potential for accumulation or release from the compartment, estimating bioavailabil-

ity and bioconcentration in biota, estimating the residence time or recovery, and in
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planning for or assessing the effectiveness of remediation measures. In this research,

a fugacity–based sediment model was used to assess fluxes of HOCs between sedi-

ments and water.

1.4 Objectives and outline

The overall objective of this research was to assess the occurrence and fate of HOCs

in a tropical river system. This was achieved through a defined set of specific

objectives which were to:

1) determine the sampling rates and partition coefficients of PCBs, PAHs, OCPs,

and phthalates in PES.

2) investigate the uptake and elimination kinetics of HOCs and PRCs so as to assess

the feasibility of using PRCs to measure in situ sampling rates of PES.

3) deploy PES in a tropical river in parallel to SR as sorbents for the HOCs and

compare their performance,

4) collect sediments and determine total organic carbon (TOC) content and total

chemical concentrations (C s)

5) use passive sampling to determine freely dissolved concentrations (Cpw) of HOCs

in sediment porewater, and

6) determine the sediment–water fluxes of the HOCs using a fugacity–based sedi-

ment model

This dissertation organizes the research work in chapters. The definitions and ex-

amples of EDCs are discussed in Chapter 2. Also in this chapter, the environmental

5



occurrence of the target groups of compounds that may or may not be classified as

EDCs and the monitoring strategies used in environmental matrices are highlighted.

Finally, the theoretical basis of passive sampling and the fugacity approach to es-

timate sediment-water exchange of the organic compounds is discussed. Chapter

3 which broadly describes the materials and methods used is organized into four

main sections: 1) the laboratory calibration experiment that was used to deter-

mine key properties of PES, 2) field application of PES and SR, 3) determination

of concentrations in whole sediments and sediment porewater, and 4) the setup and

input data for the fugacity–based sediment model. The research outcome is dis-

cussed in Chapter 4. Experimental Rs for PES from the calibration experiment are

given and are also correlated with compound properties. The sorption mechanism

is explained using uptake and elimination curves, and this is also used to assess the

(un)suitability of PRCs use to determine in situ Rs of PES. The outcome of field

deployment of PES and SR in a tropical river is also discussed. Next, concentrations

of the HOCs in sediments and sediment porewater are explored. Lastly, the applica-

tion of the sediment model is elaborated. Chapter 5 gives a synopsis of the research

by highlighting the key findings and also draws conclusions, outlining considerations

for further research.
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Chapter 2

A review of literature

2.1 Endocrine disrupting chemicals

2.1.1 Definition

The term endocrine disruptor first came up in 1991 at the Wingspread conference.

Endocrine disruptors are also known as hormonally active agents [75] or endocrine

disrupting chemicals (EDCs) [33] and are defined as exogenous substances or re-

spective mixtures that alter the function(s) of the endocrine system and conse-

quently causes adverse health effects in an intact organism, or its progeny, or in

(sub)populations [63].

EDCs comprise a broad, highly heterogeneous group of chemicals, for example some

natural compounds (e.g. phytoestrogens), industrial chemicals and by–products,

pesticides, drugs, metals and some compounds considered as persistent organic pol-

lutants (POPs). In reality, endocrine disruptors is a ‘relatively new’ term applied to

not so new chemicals in the field of environmental monitoring. It is considered new
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in terms of the mechanisms of action elicited in causing health effects. Upon expo-

sure to relevant doses, EDCs can block, mimic, or alter the activity of hormones,

thus disrupting normal growth, development and physiological maintainance.

2.1.2 Examples of EDCs and their endocrine–related effects

Exposure to EDCs has been suspected to be linked to the growing evidence of in-

crease in endocrine–related disorders which include endometriosis, cryptorchidism,

decrease in sperm quality, obesity, thyroid disruption and diabetes [33, 175]. Ini-

tially, EDCs were thought to exert their effects on the endocrine system by influ-

encing the actions of three groups of hormones: estrogens, androgens and thyroid

hormones. These changes could cause alteration in normal hormone levels, inhibi-

tion or stimulation of hormone production and an alteration in body distribution,

thereby affecting the functions that these hormones control [137]. In addition to

the aforementioned mechanisms of action, EDCs can also act through membrane

receptors, non–steroid receptors (e.g. neurotransmitter receptors), orphan receptors

(e.g. aryl hydrocarbon receptor, AhR), transcriptional coactivators, and enzymatic

pathways involved in steroid biosynthesis and/or metabolism [33, 137, 156]. In most

cases however, the causal evidence is by no means universally conclusive and still re-

quires elaborate and standardized inter–laboratory studies. Some published health

effects of EDCs are described below and others summarized in table 2.1.

Polychlorinated biphenyls (PCBs) are chlorinated organic compounds that were once

widely applied in the manufacture of carbonless copy paper and as dielectric and

coolant fluids in electrical apparatus. Despite a worldwide ban in their produc-

tion and use, PCBs are still detected in environmental matrices owing to their high

hydrophobicity and environmental persistence. The ban was occasioned by the

observation of adverse effects in humans and wildlife following exposure, notably

the development and progression of cancer through, for instance, oxidative damage
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to DNA [104]. In addition, PCBs have been implicated in some endocrine–related

disorders, for instance the increased incidences of rheumatic diseases through distur-

bance of metabolism and balance of adipokines [1]. Recent studies have also linked

PCBs to thyroid–related disorders occasioned by a disruption in the distribution

and metabolism of thyroid hormones [20], notably a reduction in serum thyrox-

ine (T4) levels through binding to the AhR or because PCB and its hydroxylated

metabolites act as T4 antagonists by binding to transthyretin [70, 95]. Some studies

indicated that PCBs were associated with reduced thyroid hormone levels and/or

positive associations with thyroid–stimulating hormone (TSH) in pregnant women

[20]. Furthermore, hydroxylated PCBs have been shown to have weak estrogenic

and anti–estrogenic activities by agonizing or antagonizing estrogen receptors (ER)

[76, 157].

Phthalates are a group of chemicals that are commonly used as plasticizers in various

industrial and consumer products. Concern over phthalates stems from associated

health effects and the fact that they are ubiquitous high production volume chemi-

cals which implies that although they are easily metabolized, body burdens do not

decrease due to continued exposure [73, 153]. Phthalate toxicity targets mainly

the reproductive and respiratory systems, but may also be involved in the carcino-

genesis processes and autism [163]. Bis(2-ethylhexyl) phthalate (DEHP) and its

metabolite, mono(2-ethylhexyl)phthalate (MEHP) are the most studied phthalates,

and DEHP is classified a as priority pollutant in water monitoring by environmental

protection agencies [38]. Prenatal exposure to DEHP increased the prevalence of

cryptorchidism and hypospadias which are symptoms of testicular dysgenesis syn-

drome (TDS) and also lead to shortening of the anogenital distance (AGD) in male

rodents due to an induction in abnormal Leydig cells function and a decrease in

testosterone synthesis [143, 155, 163]. DEHP and MEHP have been associated with

suppression of estradiol levels, prolonged estrous cycles and the absence of ovulation

in female rats [94]. Exposure to DEHP from hatching to adulthood accelerated the
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start of spawning and decreased egg production of exposed female marine medaka

while exposure to both DEHP and MEHP resulted in a significant increase in plasma

17β -estradiol (E2) and a decrease in testosterone (T)/E2 ratios in males [181]. Butyl

benzyl phthalate (BBP) was found to elicit anti–androgenic activities in an in vitro

study employing yeast–based assays [148]. Phthalates may activate the AhR that

plays a significant role in cell proliferation and differentiation and in tumorigenesis

[135, 163]. Phthalates have also been associated with the increased risk of asthma

development in children possibly through alterations in DNA methylation [172].

Dichlorodiphenyltrichloroethane (DDT) is a synthetic chemical that was once widely

used as an insecticide until it was banned and its use restricted to vector control,

such as mosquitoes, under the Stockholm convention on persistent organic pollutants

[161]. DDT is classified as a possible human carcinogen and an endocrine disruptor

[161]. DDT and its metabolites have been associated with endocrine-related diseases

such as testicular tumors, type 2 diabetes and endometrial, breast and pancreatic

cancers [44]. For instance, high testicular mass and abnormal histology in male

Sprague-Dawley rats were observed after exposure in utero, during lactation and

directly to DDT [113]. An in vivo study demonstrated the potential of o,p’-DDT as

a xenostrogen by binding to ER and therefore induced vitellogenesis in mature male

tilapia [78]. Recent studies using rats indicated that ancestral exposure to DDT can

promote obesity and associated disease transgenerationally [144].

Polycyclic aromatic hydrocarbons (PAHs) are a group of more than 100 different

chemicals that are released to the environment mainly as a result of incomplete

combustion of fossil fuels but can also emanate naturally from coal tar and crude

oil. Evidence supporting PAHs as endocrine disruptors is rather weak [133]. Nev-

ertheless, a few studies have shown disruptive activities of parent PAHs or their

metabolites. 7,12-Dimethylbenz(a)anthracene was shown in vitro to decrease the

number of membrane dopamine receptors and stimulate prolactin release by direct
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Table 2.1: Some EDCs, their modes of action and health effects

Chemical Mode(s) of action Some health effects References

Methoxychlor estrogenic, antiestrogenic,
antiandrogenic

DNA methylation changes in the
ovary

[74, 80,
105,
182]

4-t-OPa estrogenic, antiandrogenic induces vitellogenin, gonadal alter-
ation

[76, 110,
174]

4-NPb estrogenic induces vitellogenin, endometriosis,
gonadal alteration

[174]

Vinclozolin estrogenic, antiandrogenic disease states or tissue abnormal-
ities (prostate disease, kidney dis-
ease, immune system abnormalities,
testis abnormalities, and tumor de-
velopment) in adult rats from F1-F4
generations

[10, 80]

BPAc estrogenic, antiandrogenic prostate hyperplasia, increased
anogenital distance, early puberty

[110]

PBDEsd estrogenic, antiestrogenic,
thyroid

eggshell thinning [51, 98,
136]

EE2e estrogenic induces vitellogenin [77, 114]
a4-tert-Octylphenol; b4-Nonylphenol; cbisphenol A; dpolybrominated diphenyl ethers; e17α-
Ethinylestradiol.

estrogen-like actions on the anterior pituitary [112]. Using whole-cell ER binding

and E2 metabolism assays, PAHs from environmental samples were found to induce

antiestrogenic responses in metabolically intact human breast cancer cells [12]. PAHs

can also act as EDCs by impacting ER signaling indirectly through interactions with

AhR [141]. PAHs have shown the potential to disrupt the reproductive cycle of fish

living in polluted environments, due to impairment of steroid biosynthesis [100].

The discussions above exemplify health effects resulting from exposure to a single

EDC. However, EDCs rarely occur as single compounds in the environment and

resultant effects may therefore be due to exposure to mixtures of EDCs that may
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act synergistically or antagonistically. For instance, one study demonstrated that

in utero exposure to a mixture of genistein (a phytoestrogen) and DEHP induced

short– and long–term alterations in testicular gene and protein expression different

from individual exposures [68].

It was outside the scope of this thesis to investigate the health effects of EDCs

and other HOCs. However, it was necessary to highlight reported health effects to

demonstrate the need for monitoring these compounds in the environment. This

thesis therefore mainly investigates the occurrence of EDCs and other EDCs in the

environment.

2.1.3 Occurrence of EDCs and HOCs in the environment

EDCs and other HOCs enter the freshwater environment through a variety of ways

that can be broadly classified as point and non–point sources. Point sources include

direct discharge of effluent from wastewater treatment plants. In developed nations,

this type of discharge dominates the sources of EDCs and HOCs in surface wa-

ter. Non–point sources encompass all diffuse sources including overland flow during

snowmelt or a rainfall event, wet and/or dry atmospheric deposition, urban runoff

and spray drifts during pesticide application. Non-point sources dominate the entry

mode of EDCs and HOCs to surface water in developing nations.

Once in the aquatic environment, the compounds can undergo further processes

such as partitioning between the environmental compartments comprising water,

sediments, air and biota and respective subcompartments, degradation and trans-

portation. Phase transfer of a compound largely depends on its physicochemical

properties namely, water solubility and three partition coefficients: air–water (Kaw)

that defines volatility, octanol–water (Kow) that defines hydrophobicity and organic

carbon (Koc) that defines the preference of a compound for the organic phase. Es-
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sentially, Kow and Koc are correlated. As a general rule, hydrophobic compounds

(log Kow > 3.0) partition preferably to lipids and the organic phase in sediments

and suspended matter. Thus, assuming that surface water comprises mainly the

water and sediment phases, measured concentrations of EDCs and HOCs can be

described in three ways: sorbed concentration (C sorbed) for EDCs sorbed to bottom

and suspended sediments, freely dissolved concentrations (C free) for those in aque-

ous phase only without including solid phases and total concentrations (C total) that

include both aqueous and solid phases. EDCs and HOCs have been detected in the

different environmental compartments. Some occurrences of EDCs and HOCs in

water, sediments, biota and air are listed in table 2.2.

DDT and its metabolites are hydrophobic and persistent in the environment, with

half-lifes for microbial degradation ranging from 3 to 20 years [83]. This implies

that DDT and its degradation products are susceptible to long–range transport and

bioaccumulation and may still be detected years after its ban. For instance, dated

sediment/soil cores in the floodplains of river Elbe gave a trend analysis of DDT use

in Germany with peaks in the 1940–1950s [46]. In Kenya, DDTs have been detected

in air, water, soil, sediments and fish lipids (table 2.2). In addition to slow release

from environmental reservoirs, occurrence of DDT in Kenya as a typical example

of many African countries can emanate from continued application during vector

control and release from old stock piles [72, 154]. It is expected that concentration

levels will decrease with the full implementation of the Africa stockpiles programme

that was initiated to clear all obsolete pesticide stocks in Africa [177].

Similar to DDTs, PCBs and PAHs are also ubiquitous in the environment due to a

tendency to bioaccumulate. They are therefore often detected in most environmental

matrices worldwide including sediments/soil [46], biota [150], water [37] and air

[72]. PAHs are often accidental byproducts of combustion processes while PCBs are

intentionally produced. Global PCBs production between 1930 and 1993 was
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estimated at 1325810 tonnes [25]. Despite the ban in 2001 under the Stockholm

convention on persistent organic pollutants (POPs), PCBs are continually released

from environmental reservoirs and undergo long–range transport. In developing

countries, additional sources include leakages from obsolete transformer oil and e–

waste that originate from illegal transboundary movement of electronic material

[43].

Pollution from plastics is a growing worldwide concern. Plastics are major sources

of phthalates, like DEHP, that are usually added to improve flexibility. Worldwide

production of phthalates increased from 2 to 5.5 million tons from the 1980s to 2000

but the trend has now decreased, for instance to 221000 tons of DEHP in 2004

in western Europe [184]. Owing to its extensive usage, DEHP has been detected

worldwide in surface waters (0.013–18.5 mg/L), wastewater (0.716–122 mg/L), land-

fill leachate (88–460 mg/L), sludge (12–1250 mg/kg), soil (2–10 mg/kg) [184].

2.2 Monitoring for EDCs and HOCs in the envi-

ronment

Research into EDCs and other HOCs is growing tremendously due to the existence

of large data and knowledge gaps. Research fields can be categorized as follows: de-

velopment and/or improvement of chemical and bioanalytical methods, development

and application of novel sampling techniques to determine concentrations (C total,

C sorbed, C free) in environmental matrices and modification of treatment/remediation

technologies.

Several treatment/remediation technologies have been developed and applied for the

removal of EDCs and HOCs from water despite inconsistencies in efficiency due to

heterogeneity in properties of matrices and the compounds [28]. Some technolo-
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gies include chlorination, ozonation, supercritical fluid extraction, adsorption using

granular activated carbon and separation using micro–, ultra– and nano–filtration

membranes such as PES.

Bioanalytical methods encompass the use of biosensors or biological assays to pro-

vide qualitative or quantitative information. Biosensors combine biological material

(e.g. cell receptors, enzymes, antibodies) with a physicochemical detector. The de-

tector operates for instance by optical or electrochemical means to transform the

signal resulting from interaction of the analyte with the biological material into

another easily readable and quantifiable signal. An example is an amperometric

biosensor containing antibodies as biorecognition element for the detection of estra-

diol and atrazine [127]. On the other hand, correlation of exposure to EDCs and

resultant health effects in humans and wildlife is still debatable. Attempts at es-

tablishing cause–effect relationships have therefore been made using different types

of biological assays. The mechanisms involved in the biological assays to determine

EDCs include cell proliferation, ligand binding, vitellogenin induction, and antigen–

antibody interactions [28]. Examples of biological assays are whole organism assays

e.g. transgenic zebrafish, cellular bioassays such as luciferase and non–cellular bioas-

says, e.g. the enzyme-linked immunosorbent assays.

Chemical methods relying on mass–based analytical devices, namely mass spectrom-

etry (MS), have widely been used to quantify EDCs and HOCs in environmental

matrices. Depending on the analyte properties, various combinations of instru-

ments can be used such as high performance liquid chromatography coupled with

mass spectrometry (HPLC–MS) and gas or liquid chromatography coupled with

mass spectrometry (LC-MS, GC–MS) or tandem mass spectrometry (LC–MS/MS,

GC–MS/MS).

Although the chemical methods are unequivocal in terms of sensitivity and precision,

16



their performance is heavily dependent on reliable sample extraction and pretreat-

ment given that EDCs and HOCs occur in the environment at low concentrations.

Grab sampling has conventionally been used as a sample preparation technique.

However, the inherent artefacts associated with grab sampling that may lead to

false negatives has led to the development of a novel monitoring technique termed

passive sampling. In this research, passive sampling was applied to monitor EDCs

and HOCs in water and sediments in a tropical river system and also in determin-

ing their fate. The principles of operation and applications of passive sampling are

discussed in the following sections.

2.3 Application of passive sampling in environ-

mental monitoring of EDCs and HOCs

2.3.1 Passive versus grab sampling

Grab sampling involves the capture and removal of an aliquot of water from the

environmental, usually 1 L, for ex situ analysis. This implies that large volumes

of water need to be collected, transported and analyzed. The analysis yields total

concentrations in the aliquot that comprises both freely dissolved and sorbed concen-

trations. The information generated represents that of a single point in time, which

may over-represent true environmental concentrations if the aliquot was captured

during an episodic event and vice versa.

Passive sampling involves the free flow of compounds from the water phase to an

engineered phase as a function of the differences in chemical potential or fugacity

between the two phases. No mechanical work is involved in the movement of the

compound between the phases. Passive samplers pre-concentrate the compounds in

situ by acting as the preferred partitioning phase and generate information about
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freely dissolved concentrations over an extended period. In most cases, low detection

limits are achieved since large volumes of water are sampled.

Environmental quality standards (EQS) are developed from concentrations of whole

water samples as generated by grab sampling [39]. Thus passive sampling cannot

at the moment be used to generate EQS but is recommended by regulatory frame-

works as a complementary monitoring tool [40]. Nevertheless, passive sampling is a

valuable monitoring procedure as it yields information over a longer duration than

grab sampling and can therefore be used as a screening tool to identify pollutants at

low environmental concentrations or when the pollution source is intermittent, or in

trend monitoring where it can serve as an early warning tool [99]. In addition, pas-

sive samplers are attractive for monitoring in remote regions or those with minimal

infrastructure as they are easier to deploy and can be stored for longer durations

prior to analysis as compared to grab samples.

2.3.2 Uptake process during passive sampling

Passive sampling is based on diffusive mass transfer of an organic compound to and

from an ambient fluid (environmental phase) to a passive sampling device (PSD)

(an engineered sampling or receiving phase) that is in contact with it. As such, only

freely dissolved compounds are accumulated by the PSD. The PSD is exposed to the

environmental medium for a user-defined period, and accumulates compounds from

the medium in a non-depletive mode until thermodynamic equilibrium is achieved

or until the PSD is removed. Mass transfer is based on the differences in chemical

potential between two phases. Diffusive mass transfer into the PSD follows Fick’s

law that relates the flux [jx, (ng/d)] in the x–direction of a given phase (i), to the

concentration gradient between the end points of that phase [23]. The flux across the

phase is proportional to the chemical diffusivity, Di (m2/d), and the concentration

gradient, δC/δx, where C (ng/m3) is the concentration, and x (m) is the distance
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