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ABSTRACT 
 

Rotating machinery are critical instruments in the manufacturing sectors that are 

continually operated to fulfill their productivity objective. To reduce the risk of 

catastrophic failure and unwanted breakdown, it is crucial to ensure that these machines 

operate within their quality standards. Waste is undesirable to such sectors that directly 

affect manufacturing price. Maintenance intervention must be efficient, else it is deemed 

as waste. It is estimated that businesses are losing billions of dollars worldwide due to 

inadequate maintenance and poor management. It is, therefore, crucial to carry out effective 

maintenance actions. Since condition-based monitoring method recommends maintenance 

only when necessary, this approach can avoid unnecessary plan maintenance costs. 

Condition-based approach, along with the different faults detecting and correcting 

approach can become handy for the smooth operation of the machine in the industries. Out 

of various approaches, the vibration parameters based condition monitoring approach has 

been proposed in this work. The significance of the proposed method is that it can correctly 

identify and classify the condition of the equipment as normal, misaligned, unbalanced, 

and cracked. Using the information of local harmonic acceleration amplitude, instead of 

harmonic acceleration amplitude, fault detecting, and classifying method is proposed. 

Then, the phase plane diagram-based fault classification technique is also proposed using 

the information of all the accelerometer data. Similarly, the Fuzzy Logic method is also 

used for fault detection and classification purpose. The obtained results signify the 

effectiveness of these proposed methods.
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Chapter I 

1. Introduction 

1.1. Background Information and Motivation 

Rotating machinery have found their application in the field of turbine, generator, and 

gearboxes-based industries. Failure in these critical elements will hinder the productivity 

and effectiveness of the businesses. The factors that could affect the machine performance 

is more likely to be because of the change in shaft relative position and uneven mass 

distribution. Presence of these factors generates undesirable stresses which could cause 

cracking and fatigue in the machine. The factors mentioned above adversely impact critical 

components of the machine, such as bearings, seals, gears and couplings. If the shaft's 

position deviates from its rotation axis, we call it a fault of misalignment. Similarly, if the 

center of mass alignment with the rotational axis is influenced by an uneven distribution 

of mass, it is called an unbalanced fault. These are the most prevalent fault types in the 

industries. So, these faults must be prevented on time by constantly tracking and 

maintaining the system. 

Three maintenance technique are commonly implemented in industrial sectors, namely 

corrective maintenance, preventive maintenance, and predictive maintenance. Machine 

health surveillance is essential in order to prevent catastrophic failure. Several writers have 

suggested various kinds of condition-based surveillance method to track the system online 

in real-time, making system maintenance effective. The machine's condition can be 

monitored effectively using multiple parametric data of the rotating machine such as 
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vibration, temperature, pressure, and acoustics. Despite different techniques of identifying 

faults, difficulties are still prevailing to classify faults in earlier stages. While some of the 

techniques have demonstrated the adequate potential for classification of faults, they are 

complicated and time-consuming. Therefore, a straightforward and economical technique 

that can be readily interpreted and developed is required to save the industry's resources 

and economy. 

The primary objective of this study is to identify various kinds of rotating equipment fault. 

Different characteristics of the fault are investigated and assessed using the vibration signal 

to identify the fault. After the evaluation of the signal, the useful features are obtained and 

used to develop different types of condition monitoring techniques. 

Since time-domain data mostly provides data about instability in vibration amplitude, this 

data provides insight into machine experiencing problems but is not relevant if we need to 

figure out what causes it to function ineffectively. We need frequency data to find out the 

causes of the machine faults and to distinguish the faults. In this study, the phase plane 

method has been developed, which will use the time domain data from the four-

accelerometer to classify different machinery fault. This method proved useful in 

classifying the various fault based on their phase plane diagram, where each type of fault 

showed significant differences in the phase plane shape. Also, using the local maximum 

acceleration-based amplitude of the different faults, K- Nearest Neighbor algorithm was 

developed that could efficiently classify rotating equipment faults. The fuzzy logic method 

was also implemented to check its fault classification capabilities. 
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1.2 Condition Based Monitoring and Its Necessity  

It is desirable to have a minimal level of vibration in the rotating machinery. However, 

improper design and malfunction in the machine amplify vibration level. If the machines 

are adequately designed, the level of vibration produced by them is minimal. As the 

machines are operated continually for more extended periods, they go through wear, 

fatigue, and deformation. Once the machine experiences these impacts, the shaft is likely 

to be misaligned, and the rotor becomes unbalanced. These faulty scenarios than not only 

amplify the vibration level but also supplement the dynamic load on bearings. If the 

machines continue to operate with these impacts, it will gradually begin to deteriorate and 

may fail catastrophically [1]. The catastrophic failure in the machine will not only halt the 

operation of the machine but will also increase the breakdown, decrease productivity, and 

economically impact the industries. Although the catastrophic failure is challenging to 

avoid, we can at least minimize by observing the machine operating condition which can 

be done by observing the machine properties such as vibration, sound, and temperature. 

These processes where the machine conditions are observed based on the machine 

parameters like vibration, sound, and temperature to avoid any catastrophic failure during 

the operation can be termed as condition monitoring [2] [3]. It is crucial to analyze the 

modes when dealing with the rotating machinery because of their ability to increase the 

vibration. The vibration caused by the rotation should also be studied extensively as these 

vibrations tend to amplify without the resonance [4]. 

As previously mentioned, rotating machinery must be closely monitored using condition 

monitoring techniques to warranty its continuous operation. Since condition monitoring 

can be carried out based on various machine parameters, several monitoring methods have 
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been used by the industries. Acoustic emission, vibration-based analysis, and infrared 

thermography-based monitoring techniques are the most popular and commonly used 

condition monitoring techniques in the industry [1]. Maintenance costs are regarded as a 

major expense because of their contribution to the general manufacturing of the products. 

The equipment requires to be correctly maintained for the manufacturing of the goods, 

which includes part replacement, maintenance labor cost and downtime. Overall 

maintenance costs vary from industry to industry depending on the type of industry and the 

percentage of maintenance costs can be between 15 to 60 percent of the cost of 

manufacturing goods. Maintenance requires to be efficiently performed to make it worth 

otherwise, it can be counted as an undesirable waste. It is found that an estimated $60 

billion is lost owing to inadequate maintenance and poor management, which has a 

significant impact on the worldwide competing industries [5]. These reports emphasize the 

significance of efficient strategy and management for maintenance in the industries. This 

makes condition monitoring an essential tool since a failure to detect machine degradation 

has an adverse effect on the monetary side. As the identification of failures and their 

translation have been made easier with the accessibility of art and resources of condition 

monitoring, it has found  for a wide application in the monitoring of machinery [6].  
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1.3 Condition Monitoring Types 

1.3.1 Acoustic Emission Based Monitoring Method 

As previously mentioned, acoustic emission is one of the industry's conventional 

surveillance methods for identifying abnormal behavior of machines. Whenever there is 

displacement in the material internal structure strain energy briskly get discharged, which 

as a result, generates the elastic stress known as acoustic emission (AE) [7]. The AE signal-

based monitoring technique was proposed by Elijah and Erdal to monitor the cutting tool 

as these signals constitute high frequency separating from noise and other unnecessary 

sources. The information from the signal sources relating to chip formation and tool wear, 

chipping and breakage, formed chip is useful in condition monitoring of the cutting tool. 

They used pattern recognition technique and discriminant function for the sources 

mentioned above, utilizing the spectral component to extract the feature and make 

classification [8]. Acoustic emission saw its enormous rise in the manufacturing industries 

for the monitoring of the system because of the sensitivity to the process criterion [9]. If 

we combine both vibration and acoustic technique, the result will get better by saving time 

and number of workforce required [2]. 

1.3.2 Infrared Thermography Based Monitoring Method 

Infrared thermography is a nondestructive technology that is capable of sensing and 

displaying the temperature of machinery components remotely. Using the information of 

temperature distribution, fault related to the machinery can be identified [10]. It was seen 

that IR technology was capable of sensing the temperature of the skin and could be used 

for detecting and diagnosing of the vasospastic disorder. This method was successful in 

validating the detection of rheumatology patients during the 1900’s [11]. This technology 
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has found wider application in the field of monitoring the machinery [12] [13] and 

evaluating the fatigue limit of the materials [14] [15]. The capabilities of the IR method in 

comparison to the vibration monitoring were shown by Lim et al. [16] where the fault 

identification accuracy was found comparable to the one using the vibration monitoring. 

The advancement in the cameras, along with the easy interpretability of the data makes it 

more user-friendly compared to other techniques [2]. 

1.3.3 Lubricant Analysis Based Monitoring Method 

Lubricant analysis is another common monitoring technique where the assessment of 

machine is made based on the lubricant samples used. For this method, samples are 

examined outside of the machine tested mostly in the laboratory. This technique can 

identify the root cause and even detect tiny particles that may influence the future [2]. 

Although the lubricant analysis is one of the common tools for tracking machines, it has 

limitations too. The restriction of this method is on condition monitoring of electrical 

devices as it will not be able to deal with these systems. JS Stecki used Ferrographic oil 

analysis to predict the failure of jet engines. This technique was capable of detecting wear 

particle of all sizes that could provide meaningful information on the characteristics of the 

wear particles present in the sample oil used [17]. Flanagan et al. [18] used the lubricant of 

steam turbine generator to analyze the presence of wear in the system. If lubricant based 

analysis is combined with acoustic emission and vibration analysis technique, the detection 

capabilities get more powerful and efficient [19] 

1.3.4 Statistical Analysis Based Monitoring Method 

Another important condition monitoring tool that addresses a large number of data sets as 

temperature data, vibration data, and acoustic signal data is statistical-based analysis. It is 
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possible to apply a statistical method based on the extracted information to classify the 

machinery's fault and condition. The different statistical methods are used for fault 

detection based on the size of the data set. Poyhonen et al. used Support Vector Machine 

(SVM) to classify the fault after making the comparison between Power Spectrum density 

with Higher Order Spectra (HOS), Cepstrum Analysis and AR modeling [20]. Lachouri et 

al. used Multi-Scale Principal Component Analysis (PCA) so that the cross and auto-

correlation can be selected via PCA and wavelet analysis respectively; the multiscale 

Squared Prediction Error (SPE) was then used to identify the faulty condition of the bearing 

system [21]. Jiang et al. used the phase space to reconstruct the vibration signal, using the 

Phase-PCA based method, the system condition was identified based on the T2 and SPE 

value [22]. Harlişca et al. proposed a cheap and user-friendly method for detecting bearing 

faults at inceptive stage using statistical processing [23]. Hu et al. used the Ensemble 

Empirical Mode Decomposition (EEMD) to decompose the vibration signal into Intrinsic 

Mode Functions IMF in order to extract the first five features from IMF, and once the 

features were extracted, the SVM was used for the classifying the source data acquired 

through the sensor [24]. Li et al. used the Independent Component Analysis (ICA) to 

extract the feature and using the reference as the input they used self-organizing-map 

(SOM) based neural network to not only detect the fault but also identify the extent of the 

fault [25].  

1.3.5 Vibration Analysis Based Monitoring Method 

Analysis of vibration is regarded as one of the most efficient monitoring technology. When 

monitoring the rotating vibration analysis of the equipment, it can be regarded as an optimal 

tool as roughly all machines vibrate during their operation. Since the distinct fault generates 
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distinct power at distinct frequencies, vibration assessment is a robust technique that uses 

spectrum processing to provide this data in detail [2]. This technique can quickly detect 

abrupt changes in the system's conduct. Since it can handle short-term and long-term 

surveillance by periodically or permanently mounting the sensor, they are regarded as a 

flexible surveillance system. The added advantages for these systems are that vibration 

signal can be easily processed using most of the major signal processing methodology 

available these days [26]. Vibration analysis has been used successfully to identify the fault 

and its types. Using the vibration signal different types of fault corresponding to the bearing 

failure, unbalanced caused by mass, misalignment of the shaft, gearbox failure has been 

successfully identified. The condition of the machine can be identified using the vibration 

signal as it could classify and detect the abnormality in the system [27] [28] [29]. In this 

study, Vibration analysis will be used for classifying the fault of rotating machinery 

because of its advantages over the other methods which were discussed earlier. 

1.3.6 Machine Learning-Based Monitoring Method 

The science of machine learning allows the system to understand the program through the 

information sets supplied. Since they tend to be feasible and economical, they are widely 

used in a broad range of areas such as data mining, computer vision, and pattern recognition 

[30]. Recently, several machine-based learning techniques were suggested to identify the 

fault and showed strong capacities to detect the fault. Samanta used Artificial Neural 

Network (ANN) and Support Vector Machine (SVM) to identify bearing failure.  The time- 

domain signal was used for features; the signal was optimized using a genetic algorithm to 

extract the features. ANN and SVM were used as a classifier for detecting the bearing fault 

[31]. Similarly, Jia et al. used the deep learning method for diagnosing the rotating 
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machinery fault where the frequency spectrum was used for training deep learning. Since 

the features used were of the frequency spectrum, this method could work with the system 

that has a periodical vibrational motion [32] 

1.4 Thesis Orientation 

The remainder of the thesis chapter will focus on a different model used for identifying and 

classifying vibration fault. Chapter II outlines how the raw vibration signal extracted from 

the experimental setup is processed for meaningful information. It also provides 

information on how different fault conditions are simulated using Machinery Fault 

Simulator. Chapter 3 focuses on how the technique of phase plane classification and 

detection of vibration failure are implemented. Implementation of fuzzy logic-based fault 

classification is addressed in Chapter 4. In addition, Chapter 5 discusses using the K-

Nearest Neighbor model to use the Local Maximum Acceleration-based fault detection 

model. Finally, the conclusion of the research and future work will be discussed in Chapter 

6. 
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Chapter II 

2. Data Analysis and Methodology 

2.1 Overview 

This chapter focuses on providing a brief outline on how the systems are monitored using 

the raw vibration signal. Since the extracted data contains raw information, they need to be 

processed further using signal processing to get more meaningful information. This chapter 

will provide further information on how an experiment was carried out using the Machinery 

setup. It will also provide an idea of what kind of setup is chosen for acquiring and 

analyzing data. Moreover, the information on the selection of transducer and signal 

processing technique for the experiment is also mentioned. Different methodology that has 

been used for the research is also discussed. 

2.2 Methodology 

 

 

 

Figure 2. 1 Block diagram data analysis. 

As discussed earlier, almost all machines vibrate and these vibrational behaviors tend to be 

different when there is deterioration in the machines. If the signal behavior is understood 

upon studying the vibration of the machinery at different working conditions, then the fault 

classification becomes easier. With the advancement in technology and availability of the 

transducers, the vibration signal can be easily extracted from the machinery. Once the 

vibration signal is extracted, we can analyze their energies at different frequency using the 

System Raw Data Data Processing Analysis 
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spectrum analysis. Since every fault has its own energy for different frequency, the fault 

classification using a vibration signal with signal processing method becomes easier. First 

step would be acquiring the signal for which we need to mount the transducer in the system. 

As there are different types of transducer available in the market, we need to decide the 

transducer based on our application and economy. 

We must mainly consider in selecting proper transducer and ideal signal processing 

methodology based on the application and the system whose parameter is to be measured. 

 

2.2.1 Transducer Selection 

Table 2. 1 Comparison of the readings of the transducers [33] 

Parameter Displacement Velocity Acceleration 

    

Frequency (Hz) 0-30 5-2,000 >50 

 

Due to the wider frequency response spectrum of the accelerometer, it is solid and stable 

over the temperature range. The velocity and displacement data can also be incorporated 

so that the accelerometer was selected as a transducer for the study.  

2.2.2 Signal Processing Techniques 

Signal processing is a widely used tool in the past decades to detect the fault present in 

rotating machinery. The signal intensification method and signal handling methods were 

used to obtain helpful data from the raw vibration signal or fault features. Signal analysis 

using the Fast Fourier Transform is one of the widely used traditional tools to study the 

spectrum and certain frequency elements that are of concern to us in order to extract the 
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characteristic features. These methods are based on the frequency analysis that has some 

limitation on the side. As it assumes the signal being linear and stationary, they are unable 

to deal with the time localized transient events which are of the non-stationary nature. 

Hence, we are unable to get the information of the vibration in time domain, making us 

difficult to find when the machine fault occurs [34] [35]. To overcome these limitations, 

the time – frequency analysis approach got started. The time–frequency analysis techniques 

such as Short-Term Fourier Transform (STFT) [36], Wigner-Ville Distribution (WVD) 

[37] [38] showed the capabilities of the handling the non-stationary signals but they also 

have some limitations as STFT can only deal with the transient signal which dynamics 

changes slowly as they are based on the signal segmentation. WVD which are not based 

on the segmentation do overcome the limitation of the STFT, but they also have a limitation 

as the inference term formed by the transformation makes it harder to understand the 

estimated distribution. The signal based on the Wavelets came into the practice to 

overcome these difficulties known as Wavelet Transform (WT) [39] [40], which depicted 

the signal in time scale rather than time-frequency representation. The development of the 

wavelet Transform has led to the technique of continuous Wavelet Transform (CWT) [41] 

and discrete Wavelet Transform (DWT). These techniques have been successful in dealing 

with the fault detection of non-stationary signals. In this work, FFT and CWT have been 

used for the processing of the vibration data. FFT has been used for the feature extraction 

purpose for the fuzzy logic-based method for classifying unbalanced and misalignment 

condition present in the machinery.  
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2.2.3 Experimental Setup 

Machinery Fault Simulator (MFS) as seen in Figure 2.2, was used for simulating the 

different working condition of the machine. This is a powerful simulating tool capable of 

simulating numerous machinery fault condition. 

 

Figure 2. 2 Machinery fault simulator setup 

 

Figure 2. 3 Accelerometer positioning 

a1 

a2 

a4 

a3 
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The experimental setup consists of the following major components 

A. Hardware 

 3 Phase Induction Motor  

 GS1 AC Drive 

 Accelerometers 

 Sensor Signal Conditioner 

 BNC – 2144 Adapter 

 NI PXIe 1073 DSA 

B. Software 

 NI Sound and Vibration Assistant 

 MATLAB R2016a 

As the study mostly focused on the detection of fault related to unbalanced mass, 

misalignment, and cracked shaft these faults were simulated for this study purpose using 

the experimental setups. The unbalanced mass condition was generated by adding the mass 

in the threaded holes of the rotors. The screw of 10.2 g and inserted it inside one of the 36 

threaded holes of the 6-inch Aluminum rotor as shown in figure 2.4. The mass was added 

to one of the rotors during this study. 

 

Figure 2. 4 Unbalanced and misaligned condition simulation. 

Misalignment generating bolt. Unbalanced Mass 
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Similarly using the Alignment Jack Bolt, the misalignment condition was generated. Using 

the Alignment Jack bolt, the system can be misaligned to the desirable milli-inch (mils) as 

seen in the dial indicator. Using the misalignment generating bolt the angular misalignment 

condition is simulated in the system by 5 mils and 10 mils.  

 

Figure 2. 5 Cracked shaft 

For cracked shaft simulation, a cracked shaft of 5.8 with v notch crack ̎, as shown in Figure 

2.5 was used. Accelerometers placed on the bearing housing are used for extracting the 

analog signal using the Data Acquisition Board and adapter, as shown in Figure 2.6 and 

Figure 2.7. The vibration data are analyzed and processed using the NI Sound and 

Vibration Software and MATLAB software. 

 

 

 

 

 

      

Figure 2. 6 Data acquisition device 
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Figure 2. 7 Adapter 

2.2.4 Methods Used for Classifying the Vibration Fault 

Fuzzy Inference system has been used to classify the fault and its severity in which the 

amplitude and frequencies are taken as the input for developing a fuzzy inference system. 

With the formulation of rule based on the triangular membership function, the model is 

developed which will provide an output on the condition of the machine and severity level 

in the case of fault presence. Further Phase plane diagram-based method is proposed for 

the classification of the fault and its type based on the unique characteristics shown by the 

different faulty condition along with the healthy condition. Here, the vibration response of 

all the 4-accelerometers attached to the bearing housing are plotted against each other and 

their behavior are noted. The flow diagram used for the data analysis is shown in the below 

figure 2.8 
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Figure 2. 8 Process flow diagram for monitoring machine condition. 

First, for the vibration analysis data needs to be acquired using the machinery setup. After 

acquiring data, they are processed using the MATLAB software. The features for different 

condition of the machinery are extracted using the signal processing technique, which will 

be used as baseline for identifying the condition of the machinery. Once the data are 

processed and features are extracted model for detecting and classifying the faults are 

developed. Using the developed model as Fuzzy Logic, Phase plane, and KNN the 

condition of machine is identified. For the Fuzzy Logic, and KNN features can be extracted 

using FFT and CWT while for the Phase plane-based method, the pattern of data is 

observed by plotting the data from each accelerometer against each other.   

 

 

Data Acquisition                      Data Processing                      

Feature Extraction                      

   Model 
Machine 

Condition 
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Chapter III 

3. Phase Plane Diagram Based Method for Fault Classification  

3.1 Overview 

Through this chapter, a novel method for detecting and classifying fault related to 

misalignment, cracked shaft, and unbalanced mass will be presented. This simple and user-

friendly tool using the four-accelerometer data can classify the fault as all these operating 

conditions of the machine shows distinctive characteristic.   

3.2 Phase Plane Diagram  

Phase plane diagram is the simple representation of the vibration signal measured from all 

the accelerometer plotted against each other. Vibration data acquired from the 

accelerometer a1, a2, a3, and a4 located along horizontal and vertical directions are cross- 

compared using this method. For this study purpose the data from these accelerometers 

will be represented as shown in the table 3.1 below. 

Table 3. 1 Position and representation of the accelerometer 

Accelerometer Position Representation 

1 Vertical Left VL 

2 Horizontal Left HL 

3 Horizontal Right HR 

4 Vertical Right VR 

a3 
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3.2.1 Phase Plane Diagram for Healthy and Misaligned Data 

The vibration signal data of all four accelerometers were plotted against each other for 

three different data sets. The operating speed of the machinery was 20 Hz while for the 

misaligned condition the misalignment levels were 5 mils and 10 mils respectively. Once 

they were plotted, they were cross-compared. The plot is illustrated in Figure 3.1 from 

Healthy data set and can be seen that the plane drawn are represented in the Horizontal 

shape for all the six plots.  

 

Figure 3. 1 Healthy dataset phase plane diagram (20 Hz) 

 

Now, it was also interesting to see how the phase plane diagram represents when the system 

is subjected to 5mils (5 milli inch) angular misalignment and operated at 20 Hz. 
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Figure 3. 2 Misaligned dataset phase plane diagram (5 mils, 20Hz) 

 

For better illustration and understanding response of vertical right accelerometer and 

horizontal right accelerometer are plotted for healthy and 5mils misaligned data. As seen 

in Figure 3.3 misaligned response is a bit rotated in comparison to the healthy responses. 

So, it can be said that both machine condition shows characteristic behavior in terms of the 

shape formed when the vibration response of 2 different accelerometers positioned at 

different location is plotted. 
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Figure 3. 3 Healthy vs misaligned (5 mils) comparison 

When the phase plane diagram for the healthy and misaligned data are plotted individually, 

there appears to be a considerable difference in the phase plane shape. The phase plane plot 

of the vertical right and horizontal right from figure 3.3 shows the shift in the phase shape 

from its reference line. There is not a huge difference in the shape of healthy and misaligned 

data but there are considerable differences.  

3.2.2 Phase Plane Diagram for Unbalanced Data 

Similarly, it was checked what difference it makes when the condition of the machine is 

switched to the unbalanced state. Looking at the figure 3.4, it can be noticed that the shape 

of the plane diagram shows differences in the shape formation.   
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Figure 3. 4 Unbalanced dataset phase plane diagram (20 Hz) 

Further, the most significant shape was plotted which is for vertical right vs horizontal right 

to make better illustration that can be seen in Figure 3.5. 

 

Figure 3. 5 Healthy vs unbalanced comparison 
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Whenever there is a presence of the unbalanced mass cross response between the 

accelerometer positioned at the horizontal left, and horizontal right are distinctive in shape. 

The shape rotates on the right side or there is rotational movement. It can be noticed that 

unbalanced condition has a significant effect on the response than the misaligned condition 

this could be because of the misalignment generated at the left end of the machinery. 

3.2.3 Phase Plane Diagram for Cracked Shaft Data 

Further, the phase plane diagram for the condition with cracked shaft is plotted to see the 

behavior or the characteristics of this condition. Like the above-mentioned condition 3, 

data sets of cracked condition machine operating at 20 Hz is plotted. As seen in Figure 3.6 

it can be observed that the shape of the plot for the cracked data set is entirely different 

when the accelerometer data of (HR, HL), (VR, HL) and (HR, VR) are plotted. The shape 

of cracked data is rotated as compared to the healthy data set. The HR accelerometer data 

is plotted against VR data for further illustration and clarity in Figure 3.7. 
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Figure 3. 6 Cracked dataset phase plane diagram (20 Hz) 

 

Figure 3. 7 Healthy vs cracked shaft comparison 

There are considerable differences in the phase plane shape of the healthy and cracked 

shaft. When the vertical right vs horizontal right phase plane is plotted for both healthy and 

cracked shaft, they can be identified using the information of their phase plane shape. There 
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is significant shift in the shape of the vertical right vs horizontal right plot when the system 

has cracked shaft condition. The distribution of data and chaotic behavior of the machine 

under different operating condition makes data distribution and phase plane diagram 

distinctive. 

Chapter Summary 

With the data from all four accelerometers that were recording the horizontal and vertical 

vibration motion of the machinery are analyzed and plotted against each other to see if they 

show any distinctive pattern. The phase plane diagram of these accelerometers when 

plotted showed a distinctive pattern where different fault condition showed different 

behavior. Using the phase plane diagram, we were able to find the fault pattern of the 

different operating condition of the rotating machinery. Healthy, misaligned, unbalanced, 

and cracked shaft condition were distinctive when the accelerometer data of (HR, HL), 

(VR, HL), and (HR, VR) were plotted. These phase plane diagram can be used as a baseline 

for identifying the working condition of the machine. This method is simple and 

economical to be implemented so it can be a great asset to the industry. Further, the reason 

behind the differences in these particular directions of vibration is to be studied and 

analyzed.  
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Chapter IV 

4. Fuzzy Logic-Based Fault Classification Method 

4.1 Introduction 

In this chapter, the effectiveness of fuzzy logic in classifying the vibration fault present in 

the rotating machinery will be discussed. This economical and straightforward tool which 

is easy to develop and interpret was used to classify the unbalanced and misalignment fault 

present in the machinery.  

Traditional logic is based on the Boolean logic that satisfies the principle of bivalence 

where the logic is based on either true or false simply represented as 1 and 0. Fuzzy logic, 

on the other hand, is a multivalued logic based on the degree of multiple truths expressed 

on the closed interval [0, 1] by the values.  

In Fuzzy Logic, the 0 and 1 are associated with traditional False and True Value, 

respectively. Fuzzy logic represents the variation of truth’s degree in terms of the value (0, 

1). There are numerous ways to express the Fuzzy operation but for our easiness, it will be 

discussed in an uncomplicated way. For the given fuzzy values of x and y the following 

operations can be defined [42]. 

(𝒙 𝒂𝒏𝒅 𝒚) = 𝐦𝐢𝐧 (𝒙, 𝒚) (4.1) 
 

(𝒙 𝒐𝒓 𝒚) = 𝐦𝐚𝐱 (𝒙, 𝒚) (4.2) 
 

(𝒏𝒐𝒕 𝒙) = 𝟏 −  𝒙 (4.3)           
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(𝒙 𝒊𝒎𝒑𝒍𝒊𝒆𝒔 𝒚) = 𝐦𝐚𝐱 (𝒙, 𝟏 − 𝒚) (4.4) 
       

If the above definition is considered as traditional logic, then the Truth and False value 

would be expressed as 1 and 0, respectively. If we have to define the Fuzzy set, we try to 

represent it as a universe of discourse where the function S represents the membership 

function of the fuzzy set [42]  

𝝁𝑺:𝑼 → [𝟎, 𝟏] (4.5) 

 

Since the universal set of real numbers R is restricted, so the membership function is 

represented as:  

𝝁𝑺:𝑹 → [𝟎, 𝟏]                                                     (4.6)  

                               

The finite set are then restricted to the fuzzy subsets. The Fuzzy set S operator (∈) can be 

defined as: [42] 

(𝒙 ∈ 𝑺) = 𝝁𝑺(𝒙)                              (4.7)  

        

Hence, the set of fuzzy S returns the true and false value. If the right- hand side is a fuzzy 

set, then the value returned is no longer a Boolean operator. If we have two fuzzy sets T 

and S, we define the membership functions of S ∪ T, S ∩ T and S´ as:  

μ(S∪T)(x)=(μS(x)or μT(x)) =max(μS(x),μT(x))   (4.8) 

 

μ(S∩T)(x)=(μS(x) and μT(x))  =min(μS(x),μT(x)) (4.9) 
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𝝁𝑺′(𝒙) = 𝒏𝒐𝒕 𝝁𝑺(𝒙) = 𝟏 − 𝝁𝑺(𝒙)    (4.10) 

 

𝝁(S implies T)(x)=( μS(x) implies μT(x) (4.11) 

 

𝝁(𝑺 \ 𝑻)(𝒙) = 𝒎𝒂𝒙 (𝟎, 𝝁𝑺(𝒙) − 𝝁𝑻(𝒙)) (4.12) 
 

𝑺 ⊆ 𝑻 𝒊𝒇 𝝁𝑺(𝒙) ≤ 𝝁𝑻(𝒙)𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 ∈ 𝑼  [42] (4.13) 

       

At first, the data for the misalignment, unbalanced, and healthy condition were analyzed 

using the FFT and CWT. They were mainly used for finding the characteristics features of 

each operating condition of the machine. To see the behavior of the machine when 

subjected to healthy, misaligned, and unbalanced condition, the vibration response of the 

machine at the first, second, third, and fourth harmonics were observed. Vibration data of 

the machine operating at 20 Hz when it was healthy, unbalanced, and angularly misaligned 

were taken and graphed using FFT and CWT to see their characteristics. As seen in Figure 

4.1 and 4.2 once can see that they show differences in the first harmonics (20 Hz) or 1x 

rotating speed of the machinery.  
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Figure 4. 1 FFT graph for healthy, misaligned and unbalanced data 

Figure 4. 2 CWT graph for healthy and unbalanced data 
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The triangular membership function is used for mapping the input points to the respective 

membership value (0-1). If X represents the universe of discourse and x represents its 

element, then the fuzzy set A in x can be defined as the ordered pair sets [43]. 

𝑨 = {𝒙, µ𝑨(𝒙)| 𝒙 ∈ 𝑿}       (4.14)          

where µ𝐴(𝑥) is the membership function. 

The triangular membership function used for defining the membership function of the input 

can be defined mathematically as below: 

𝐟(𝐱; 𝐚, 𝐛 𝐜) =

{
 
 

 
 

 𝟎 𝒙 ≤ 𝒂
𝒙−𝒂  

𝒃−𝒂
   𝒂 ≤ 𝒙 ≤ 𝒃

𝒄−𝒙

𝒄−𝒃
  𝒃 ≤  𝒙 ≤ 𝒄 

𝟎 𝒙 ≥ 𝒄

                                    (4.15) 

where a, b, and c are the scalar parameter on which triangular curve is dependent. Once the 

membership function for the input parameters are defined the 9 rule sets are defined based 

upon which the Fuzzy Interface will provide its output. These rules are used to evaluate the 

condition of the machine 

After the vibration data is measured using the accelerometer signal under the normal and 

faulty conditions then the spectrum pattern is obtained by using the FFT. The healthy and 

faulty data sets obtained are then further analyzed to extract the features. These features 

are used as a baseline to classify the faults using the fuzzy System. The fuzzy system takes 

vibration amplitude and frequency as its input variables while the output for the system  
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will be as healthy and faulty. The block diagram for the fuzzy inference system is seen 

below in the Figure 4.3  

 

 

Figure 4. 3 Fuzzy system processing block diagram 

The crisp input is first changed into the fuzzy input using the triangular membership 

function after that the fuzzy rules are developed based on the input variable data set using 

the MATLAB interface. After the fuzzy rules are developed the output is assigned 

membership function which is further fuzzified to provide crisp output. After the fuzzy 

logic-based system is developed, several healthy and unhealthy data sets are tested for the 

effectiveness of the proposed method.  

4.2 Features for Fuzzy Logic Based Fault Detection Model 

The machine operating at 20 Hz (1200 RPM) vibration data obtained from the Machinery 

Fault Simulator (MFS) was used for analyzing the spectrum patterns of normal and faulty 

conditions using the FFT. The features for both the healthy and faulty condition are 

extracted using the frequency and amplitude as an input while output will be the condition 

of machine and severity of the fault. 

The simulated data extracted from MFS were analyzed for extracting the features for Fuzzy 

based fault detection system. As the first harmonics (20Hz) and second harmonics (40 Hz) 

for the faulty condition were distinctive from the healthy condition, they were taken as 

input data for the fuzzy system which were further categorized to low, medium, and high 

 

FUZZY 

INTERFACE Faulty Severity 
 

Frequency 

Healthy 

Faulty 
Amplitude 
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value. The amplitude (g) of the first and second harmonics were extracted from 20 

combining data sets of healthy and faulty data which were then used as the features to 

separate these condition as shown in Tables 4.1 and 4.2 below. 

First, the features were extracted for healthy and unbalanced Data. The features selected 

were the amplitude of the first and second harmonics calculated in terms of g. 
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Table 4. 1 Features of healthy and unbalanced data 

 S.N 1st  

Harmonics 

2nd 

Harmonics 

Machine Status 

1 0.010364 0.006439 Healthy 

2 0.010168 0.006362 Healthy 

3 0.009664 0.005858 Healthy 

4 0.009762 0.008135 Healthy 

5 0.009259 0.005932 Healthy 

6 0.008918 0.006652 Healthy 

7 0.009079 0.007359 Healthy 

8 0.00904 0.008271 Healthy 

9 0.008911 0.006928 Healthy 

10 0.008933 0.00826 Healthy 

11 0.128761 0.003766 Unbalanced 

12 0.127431 0.002573 Unbalanced 

13 0.127759 0.004255 Unbalanced 

14 0.12657 0.001911 Unbalanced 

15 0.125938 0.003444 Unbalanced 

16 0.125597 0.003682 Unbalanced 

17 0.125143 0.002388 Unbalanced 

18 0.124651 0.002035 Unbalanced 

19 0.124536 0.002566 Unbalanced 

20 0.12474 0.00262 Unbalanced 

 

As seen in the above Table 4.2, the features from the 20 data sets are selected and there 

seems to be the significant difference in the 1st and 2nd harmonic amplitudes when the 

operating condition of the machinery is abnormal compared to normal and further, the 1st 

harmonic amplitude for the Unbalanced condition if greater than that of Normal operating 
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condition. Similarly, the system was subjected to the misaligned condition and features of 

the 1st and 2nd harmonics were calculated as shown in the Table 4.2 below 

Table 4. 2 Features of healthy and misaligned data 

S.N 1st 

Harmonics 

2nd 

Harmonics 

Machine Status 

1 0.027 0.0042 Misaligned 

2 0.0269 0.0069 Misaligned 

3 0.0267 0.0063 Misaligned 

4 0.0269 0.0042 Misaligned 

5 0.0268 0.0038 Misaligned 

6 0.0268 0.0057 Misaligned 

7 0.0266 0.0051 Misaligned 

8 0.0265 0.0051 Misaligned 

9 0.0266 0.0057 Misaligned 

10 0.0263 0.0049 Misaligned 

11 0.010364 0.006439 Healthy 

12 0.010168 0.006362 Healthy 

13 0.009664 0.005858 Healthy 

14 0.009762 0.008135 Healthy 

15 0.009259 0.005962 Healthy 

16 0.008918 0.006652 Healthy 

17 0.009079 0.007359 Healthy 

18 0.00904 0.008271 Healthy 

19 0.008911 0.006928 Healthy 

20 0.008933 0.00826 Healthy 

 

After feature extraction, the Fuzzy Logic tool box was used to generate the Fuzzy Interface 

System (FIS) to classify the fault. After developing the fuzzy-based fault detection 
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interface based on the 9 rules, the test data set of both healthy and unbalanced condition 

were tested for its effectiveness. The machine is in faulty or unhealthy condition if the FIS 

value is greater than 0.5 and larger the value of FIS, greater is the severity.  

4.3 Results 

Using the fuzzy logic toolbox of MATLAB (version: R 2016a) fault classification model 

was developed. The acceleration amplitude (g) and the frequency were chosen as input for 

the proposed fuzzy model. Then triangular membership function was used for assigning 

the membership value for the three operating conditions of the machinery. The membership 

value was chosen as low, medium and high based on the acceleration amplitude operating 

conditions. After assigning the membership function, the nine fuzzy rules were used for 

classifying and identifying the severity of the machine operating condition. Based upon the 

membership function and rules, the fuzzy model could give output as Healthy, Unbalanced 

and Misaligned. Also, the FIS value would provide an insight on the severity level of the 

machine operating condition. 

First healthy and unbalanced unknown data set were tested using the proposed fuzzy logic 

model. It could easily classify the normal and misaligned working condition of the 

machinery. As seen in the Table 4.3, healthy and unbalanced condition are classified 

accurately.  
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Table 4. 3 Features of healthy and unbalanced data 

 

S.N 1st 

Harmonics 

2nd 

Harmonics 

Machine 

Status 

FIS Results 

1 0.008197 0.006302 Healthy 0.3667 

2 0.00898 0.007254 Healthy 0.35813 

3 0.008437 0.006239 Healthy 0.36376 

4 0.008695 0.006407 Healthy 0.37254 

5 0.008426 0.00721 Healthy 0.35962 

6 0.008559 0.008009 Healthy 0.33352 

7 0.008612 0.006933 Healthy 0.37363 

8 0.008192 0.008138 Healthy 0.33159 

9 0.008332 0.006184 Healthy 0.36103 

10 0.008084 0.006698 Healthy 0.38629 

11 0.125155 0.001756 Unbalanced 0.6615 

12 0.124891 0.002249 Unbalanced 0.66113 

13 0.124458 0.003556 Unbalanced 0.61689 

14 0.124739 0.002312 Unbalanced 0.66091 

15 0.124596 0.001919 Unbalanced 0.6607 

16 0.124661 0.002661 Unbalanced 0.65448 

17 0.124384 0.001273 Unbalanced 0.65836 

18 0.124487 0.002994 Unbalanced 0.64053 

19 0.124164 0.002527 Unbalanced 0.65907 

20 0.12413 0.002591 Unbalanced 0.65696 

 

Based on the threshold of 0.5, FIS above 0.5 is identified as an unbalanced condition while 

below 0.5 is identified as a normal operating condition. Also, based on the FIS value, the 

severity of the machine can be identified. The greater the FIS value higher the severity of 

the machinery. Since the unbalanced operating condition is more severe compared to 
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healthy operating condition, the FIS value is relatively higher for it. As can be seen from 

Table 4.3, the Fuzzy inference system could distinguish between the unbalanced and 

healthy operating condition of the machine based on the threshold of FIS value. As the 

unbalanced condition is more severe than the healthy operating condition, the severity 

results obtained from the FIS validates the statement. This simple technique can be thus 

utilized to detect the unbalanced fault.   

Similarly, the fuzzy model was tested for the classification capabilities of misalignment 

and healthy operating condition. Twenty unknown data set were tested using the proposed 

fuzzy model. As seen in Table 4.4, the model could classify the normal and misaligned 

operating condition of the machine with distinction. Similar to the proposed model for 

unbalanced condition, it could identify the machine operating condition severity. Based on 

the threshold of 0.5 FIS above 0.5 is identified as a misaligned condition while below 0.5 

is identified as a normal operating condition. The severity can be identified based on the 

FIS value, where greater the FIS value higher the severity. 
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Table 4. 4 Features of healthy and misaligned data 

S.N 1st 

Harmonics 

2nd 

Harmonics 

Machine 

Status 

FIS 

Results 

1 0.0262 0.0049 Misaligned 0.62861 

2 0.0264 0.0066 Misaligned 0.64666 

3 0.0264 0.0046 Misaligned 0.62144 

4 0.0263 0.0072 Misaligned 0.61734 

5 0.0265 0.0052 Misaligned 0.6451 

6 0.0265 0.0048 Misaligned 0.62085 

7 0.0266 0.0054 Misaligned 0.64875 

8 0.0265 0.0065 Misaligned 0.6477 

9 0.0266 0.0046 Misaligned 0.62085 

10 0.0268 0.006 Misaligned 0.65057 

11 0.009 0.0073 Healthy 0.4133 

12 0.0084 0.0062 Healthy 0.36489 

13 0.0087 0.0064 Healthy 0.37211 

14 0.0084 0.0072 Healthy 0.40525 

15 0.0086 0.008 Healthy 0.36824 

16 0.0086 0.0069 Healthy 0.40317 

17 0.0082 0.0081 Healthy 0.35856 

18 0.0082 0.0063 Healthy 0.35869 

19 0.0083 0.0062 Healthy 0.36211 

20 0.0081 0.0067 Healthy 0.37648 

 

 

Using the features of first and second harmonics, the unbalanced and misalignment fault 

can be distinguished with healthy operating machine condition. The proposed method was 

developed separately for classifying healthy condition with the misaligned and unbalanced 
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condition. In the future, these three faults can be incorporate together and classified along 

with their severity level.  

Chapter Summary 

In this chapter, the fault detection method for rotating machinery was purposed. Initially 

the most important features are identified using the FFT or CWT. The FFT is chosen. The 

features selected were the amplitude of the first and second harmonics for the normal and 

abnormal working conditions. After selecting the features, the fuzzy inference system was 

modeled using the MATLAB (version: R 2016a). The triangular membership function was 

chosen for mapping the degree of membership. After developing the Fuzzy system, they 

were tested on the extracted features. The fuzzy logic-based method showed good fault 

detection capabilities. It could not only easily identify healthy, unbalanced, and misaligned 

condition of the machinery, but also the severity of the machine based on the FIS level. As 

this method is easy to interpret and develop, it could be a useful tool in the industry. 
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Chapter V 

5. Local Maximum Acceleration Based Rotating Machinery Fault   

Classification Using KNN 

5.1 Introduction   

Industries such as process, oil, and gas have widely deployed rotating machinery. To operate 

continuously at the optimum level, these industries need rotating machinery. These 

machines overall performance depends largely on the condition of their components such 

as bearings, seals, gearboxes, pumps, compressors, motors, and generators. Absence of a 

practical monitoring approach could cause a machine, and its part to fail catastrophically. 

Industries aim not only to minimize the failure rate of machines but also to optimize their 

maintenance resource. Taking maintenance action only when there is an abnormality in the 

operation of the machinery helps industries to get rid of additional cost incurred due to 

irrelevant schedule maintenance. CBM is considered as one of the most comprehensive 

monitoring and maintenance approaches because of its ability to optimize maintenance 

resources, minimize the risk of catastrophic failure, and improve machine reliability [34]. 

The CBM technique is based on various machine parameters such as temperature, vibration, 

and sound to determine the operating condition of the machine [2]. Vibration parameter 

based monitoring has proven to be a strong tool for identifying and detecting different fault 

such as bearing failure, misalignment, and unbalance in the rotating machinery [44] [45]. 

Since most rotating machines vibrate during their operation and different faults produce 

distinctive energy at a particular frequency, vibration-based monitoring can be considered 
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as an ideal tool for detecting and identifying the machines faults [2]. Usually, the vibration- 

analysis is based on time and frequency domain methods. For analyzing vibration signal in 

time domain amplitude is taken as a function of time while for frequency domain analysis 

amplitude is considered as a function of frequency. The most common vibration fault like 

bearing failure can be predicted and detected using the vibration signal [46]. 

Machine learning (ML) is the science that empowers the intelligence of a machine to learn 

program by using example data and prior understanding [47]. ML is gaining popularity 

these days because of their agility to adapt to unfamiliar scenarios and capability of solving 

the complicated tasks that are difficult to be solved using mathematical modeling [48]. ML 

approaches such as Artificial Neural Network (ANN), Support Vector Machine (SVM), 

Deep Learning, Hidden Markov Model (HMM) has successfully identified faults in 

rotating machinery and their capabilities are still yet to exploit in various rotating 

machinery applications [49] [50] [32]. Pandya et al. used a modified KNN algorithm built 

on asymmetric proximity function (APF) to classify rolling element bearing fault. They 

used acoustic emission data for fault classification of rolling element bearing, and the result 

showed very good accuracy of 96.67% [51]. Lei and Zuo used weighted K-Nearest 

Neighbor to identify the crack level of gears. To detect gear damage and characterize gear 

condition, the time and frequency domain features of gear subjected to different load and 

rotor speed were used. The identification of the crack level of gears using this approach 

was found to be satisfactory [52]. Using the acceleration amplitude of 1x to 6x rotational 

speed as a feature, Nejadpak and Yang proposed a KNN based algorithm. This method 

showed satisfactory fault classification capability with an accuracy of 95% [53]. By 

analyzing the operating frequencies and their harmonics, various machine malfunctions 
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caused by rotor imbalance and shaft misalignment are predicted and detected. It has been 

observed from the earlier literature work that operating frequencies and their harmonics 

have been used primarily to detect, classify, and predict machine faults. At these 

frequencies and their harmonics, preeminent differences are expected to occur. Although 

dominant differences may be observed at one time (1x) operating speed, it may not be 

accurate with other harmonic speed. The study then tried to check whether these dominant 

peaks or dominant acceleration amplitude are exactly located at the operational frequencies 

and their harmonics. So, the acceleration amplitude of harmonic frequencies and local 

maximum acceleration amplitude were determined. Finally, these amplitudes of 

acceleration were compared to test their similarity. It was found that besides a few 

amplitudes of acceleration rest others were not the same. It was evidential that acceleration 

amplitude of the harmonic frequencies and the maximum local acceleration were not 

identical. It could be misleading to use acceleration amplitude features at operating speed 

and its harmonics only, so the maximum local acceleration amplitude and acceleration 

amplitude at operating speed were selected as a vibration feature for the proposed KNN 

classifier. 

5.2 Methodology 

KNN is a simple supervised learning algorithm used for separating the data points into 

different classes. This nonparametric classification algorithm assigns the non-descriptive 

test samples to the particular class based on the measurement of the distance to the nearest 

training samples [54]. Easy interpretability without training requirement makes this method 

straightforward. The effectiveness of the algorithm is based on the suitable selection of the 

nearest neighbors. 
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The training data set can be represented as 𝑇 = {(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)}. Here, 𝑥𝑖 is the n-

dimensional feature vector and 𝑦𝑖 the corresponding class level. The binary classes are 

labeled as 0 or 1. KNN constructs a logical sub-region 𝑅(𝑥) ⊆  ℜ𝑑 from the training set at 

the estimation point x. The region is predicted based on the following criterion [55] 

 

𝑹(𝒙) = {𝒙̂|𝑫(𝒙, 𝒙̂ ) ≤  𝒅(𝒌)} (5.1) 



Where 𝐷(𝑥, 𝑥̂ ) is a distance metric, and 𝑑(𝑘) is the kth order statistic of {𝐷(𝑥, 𝑥̂)}1
𝑛. The 

number of samples in R(x) is denoted by 𝑘 [𝑦]. The posterior probability 𝑝(𝑦  𝑥) of 𝑥 is 

obtained as: 

𝒑(𝒚  𝒙) =
𝒑(𝒙 𝒚)𝒑(𝒚)

𝒑(𝒙)
≅ 

𝒌[𝒚]

𝒌
                                                                                 5.2 

The decision 𝑔(𝑥) is obtained from the highest 𝑘[𝑦] value 

  𝒈(𝒙) = {
𝟏,       𝒌[𝒚 = 𝟏] ≥ 𝒌[𝒚 = 𝟎],

 𝟎,       𝒌[𝒚 = 𝟎] ≥ 𝒌[𝒚 = 𝟏].
                                                                            5.3 

The KNN algorithm allocates a class from the decision with maximum posterior probability. 

The decision rule for binary classification 𝑦𝑖 ∈ {0, 1} can be simplified as 𝒈(𝒙) =

𝒔𝒈𝒏(𝒂𝒗𝒆𝒙𝒊 ⋲𝑹(𝒙)𝒚𝒊) 

The KNN algorithm was used for classifying misalignment, and unbalanced fault as they 

are the most common cause of the rotating machinery failure. The local maximum 

acceleration amplitude and its location were initially identified for healthy, misaligned and 

unbalanced conditions. For the above-mentioned operating conditions, their local maximum 

acceleration amplitude information was extracted. These extracted characteristics were 

chosen as vibration features for the proposed KNN classification. The Euclidean distance 

function was used to calculate the distance of the test sample from a training sample. The 
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number of k was selected as three based on the number of classes and the training set. Since 

the KNN result depends on the selected value of k, Euclidean distance is built in the same 

class to compensate for the error caused by the incorrect selection of k. 

The characteristics of the normal, misaligned and unbalanced condition were analyzed using 

Fast Fourier Transform (FFT) in the MATLAB (version: R2016a) after acquiring the signal 

from the Machinery Fault Simulator (MFS). Also, to extract substantial information, the 

local maxima for the different operating conditions were identified and graphed. Several 

data sets were studied for the comparative study of healthy, misaligned and unbalanced 

condition to gather more information about the most common and dominant local maxima.  

5.3 Experimental Setup 

MFS was used to simulate three different operating conditions of the rotating machinery. 

The setup consisted of the three phase four pole AC driven induction motor. Accelerometers 

placed on the bearing housing were used by BNC–2144 Adapter and NI PXIe 1073 DSA 

Data Acquisition Board to extract the analog vibration signal. The speed controller 

controlled the speed of the engine or shaft. The system further consisted of an amplifier and 

analog to digital converter (ADC). The adjustable alignment jack bolt was used to align the 

shaft while the balanced rotor disk was used to simulate unbalanced machinery condition 

 

Figure 5. 1 Unbalanced fault simulation 
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Figure 5. 2 Misalignment fault simulation 

As illustrated in Figure 5.1 two screws of 10.2-gram were added in the threaded hole of the 

left side rotor for simulating an unbalanced operating condition. Additional mass in the 

form of screws was removed from the rotor disk to simulate normal operating condition. 

Before extracting healthy operating condition data, the shaft was also aligned perfectly. 

The system was set to operate at various motor speeds by changing the frequency to 10 Hz, 

15 Hz, 20 Hz, and 25 Hz successively. The signals were extracted and further processed 

using MATLAB (version: R2016a) and NI Sound and Vibration Assistant Software after 

recording data. Hanning window was selected during data acquisition to minimize the 

leakage in the non-periodic signal. Similarly, as shown in Figure 5.2, the alignment jack 

bolt was used to misalign the shaft angularly to 10 milli inches. 

5.4 Local Maxima Detection Using the Signal Analysis 

As mentioned earlier, different fault conditions of machinery can be detected and predicted 

using the information of energy produced at specific frequencies. Therefore, it is crucial to 

have information related to frequency and energy content to monitor machinery operating 

status. The spectrum acceleration curve was thus designed to study the relationship of 

energy produced by the different frequencies when the system was subjected to different 

working conditions. This acceleration amplitude curve is shown in Figure 5.3.  
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Figure 5. 3 Comparison of the different operating conditions of machinery 

From Figure 5.3 it can be observed that unbalanced and healthy operating conditions are 

comparable at the exact speed of operation (1X, 20Hz). The acceleration amplitude for 

unbalanced, healthy, and misaligned operating conditions is higher and dominant at 1X of 

the rotating frequency condition. 

Initially a spectrum of vibration response under the healthy operating condition as shown 

in Figure 5.4 was generated. 
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Figure 5. 4  Amplitude response for healthy data 

The several dominating peaks are observed from Figure 5.4. However, it is challenging to 

determine the exact locations of these peaks. Then the graph was narrowed down with the 

information about the first 20 harmonic speed for better visualization and analysis. The 

graph contained the data of nX speed where n is the order of harmonic speed ranging from 

1 to 20 while X is the system operating speed (20 Hz). The acceleration amplitude of nX 

harmonic speed was plotted using the MATLAB peak finding functions which can be seen 

as a red star in Figure 5.5. 

It was observed that 1X is the location of the dominant peak. Other peaks appear around 

harmonics of operating speed but not at them exactly. A MATLAB program was developed 

to find all local maximum accelerations around 1 to 20 times operating speed. It also showed 
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that finding peaks or finding acceleration from the exact value of 1 to 20 times operating 

speed can provide misleading information on the selection of functions for KNN analysis. 

 

Figure 5. 5 Acceleration amplitude at the multi times operating speed. 

A healthy operating condition analysis showed that smaller peaks are not always located at 

nX speed. Since it was challenging to track the exact location of smaller peaks using the 

above-discussed MATLAB graph, the program to accurately locate the first 20 local 

maximum amplitude was developed. The optimum speed range had to be selected at first in 

order to include the information of all the maximum local acceleration amplitude. To 

compare the peaks around the harmonic speed, it was decided to select the harmonic speed 

range of ±10 Hz. This program would evaluate the peaks placed between ±10 Hz from nX 

harmonics. For simplicity let's say if we had to find the local maximum amplitude around 

2X (where X is 20) harmonic speed, then the local peaks ranging from harmonic speed 30 
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to 50 will be compared and then the most significant peak would be identified. After 

identifying the first 20 local maximum acceleration amplitudes, they were then paired with 

their corresponding speed. These resulted pairs were then plotted as the blue circle in a 

narrowed vibration response graph as seen in Figure 5.6.  

 

Figure 5. 6  Local maximum acceleration amplitude plot for healthy data 

As seen from the Figure the local maximum peak is taken into the account which are closer 

to the harmonic speed. These local maximum acceleration amplitudes are calculated based 

on the selected ranges of the acceleration between the ±10 around the periphery of the 

harmonic speed. The ranges were selected based on the ability to detect all the local 

maximum amplitude. 

As shown in Figure 5.6 all peak amplitudes were accurately detected. Comparing the 

Figures 5.5 and 5.6, it can be concluded that apart from a few peaks, most of the peaks are 

not precisely at Harmonic speed. 
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Figure 5. 7 Comparison of the acceleration amplitude for Healthy condition 

The graph presented above in Figure 5.7 provides a clear idea on how the local maximum 

acceleration is distinctive to the one corresponding at the harmonic speed. As seen, there 

are greater differences in the acceleration amplitude value of the harmonic speed and the 

corresponding acceleration amplitude of the local speed that are closer to the harmonic 

speed. Thus, the study tried to concentrate on these local acceleration amplitude value 

beside the one with the largest peak for the further analysis and feature selection. 

It was to be seen whether a similar trend is shown by the system when it is not working in 

the normal operating condition. Using the data set of unbalanced and misaligned machine 

condition similar graph described above were generated to see how closely the trend was 

related. From Figures 5.8 and 5.9, it was observed that the trend and behavior was similar 

to the healthy condition. For the visualization, we can have a closer look at the below Figures 

5.8 and 5.9. Besides coinciding of few amplitudes’ majorities of other local maximum 
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amplitude and harmonic amplitudes are distinctively different for the unbalanced and 

misaligned condition. Thus, the focused shifted towards finding the order pattern for the 

dominant local amplitudes and their corresponding speed and use these values and 

information for the KNN algorithm. 

 

Figure 5. 8 Comparison of the local and maximum acceleration amplitude for unbalanced 

condition 
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Figure 5. 9 Comparison of the local and maximum acceleration amplitude for misaligned 

condition 

Further using other data samples, the study tried to find the dominant local maximum 

acceleration amplitude and their corresponding speed. 

 

Figure 5. 10 Comparison of the acceleration amplitude for healthy data sets. 
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It can be seen from the comparison of acceleration amplitude in Figure 5.10 for healthy 

data, that besides a few amplitudes coinciding most of them are occurring at a different 

speed. Using different data set of the healthy operating condition study tried to find out the 

most dominating local acceleration amplitude and their corresponding speed. It was found 

that the local maximum amplitude corresponding to their speed was closer to the following 

harmonic speed in the descending order as 1x,9x,8x,10x,11x,4x,7x,6x ,16x.  

 

Figure 5. 11 Comparison of the acceleration amplitude for unbalanced data sets. 

Similarly, from Figure 5.11 we can see that there are differences in the amplitude 

acceleration and local maximum one besides a few coinciding amplitudes. These 

Unbalanced operating condition data set showed that the maximum amplitude is not always 

occurring at multi times of operating speed. Looking at the pattern, the descending order 
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of the local maximum amplitude closer to the harmonic speed were as 1x, 8x,9x, 10x, 

16x.11x,4x,6x. 

 

Figure 5. 12 Comparison of the acceleration amplitude for misaligned data sets. 

The pattern was like one of Healthy and Unbalanced data set for the misaligned operating 

condition. The dominating local maximum amplitude closer to the harmonic speed were as 

1x,8x,11x,9x,16x,10x,4x.  

        After the analysis first six common dominant order for all three-operating condition 

of the machinery were found as 1x, 8x, 9x, 11x, 16x, and 10x RPM. Therefore, the above 

six dominant orders were selected as six features for KNN algorithm features 

5.5 Results 

The features based on the order of the dominant local maximum acceleration amplitude 

were further studied to see the most significant one. 1x RPM and 16x RPM were found to 

be the most significant features when compared to the 95% confidence interval using 
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Tukey's method. The selected features were then used to generate training data for the 

proposed KNN classifier. Euclidean distance function was used as a distance metric for the 

classifier. Using the training data set the Euclidean distance of the testing data sets were 

calculated. The number of nearest neighbor K was chosen as 3. The classes closer to the 

minimum distance were ranked in ascending order after calculating the Euclidean distance. 

The test data set class label is then classified based on its closest neighbor's majority class. 

The model was tested using the unknown operating condition data set where it 

demonstrated excellent fault classification capabilities. It showed satisfactory accuracy of 

over 96%. Since the proposed method concentrate on identifying the local dominant peaks 

and its corresponding harmonic speed rather than concentrating on just harmonic amplitude 

and its corresponding speed, the identification, and classification of the different operating 

condition becomes more efficient. Tables 5.1 and 5.2 show the result of the classification 

for the proposed KNN method.  
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Table 5. 1 Unknown Testing Data Sets 

Testing 

Dataset 

Feature1 

1x RPM 

Feature2 

8x RPM 

Feature3 

9x RPM 

Feature4 

11x RPM 

Feature5 

10x RPM 

Feature6 

16x RPM 

Situation 

1 0.045027 0.021722 0.01227 0.009155 0.013987 0.009374 Unknown 

2 0.043975 0.008434 0.024332 0.007996 0.010282 0.009226 Unknown 

3 0.044651 0.022586 0.010738 0.01473 0.01525 0.008634 Unknown 

4 0.063556 0.042059 0.020411 0.009278 0.008583 0.00876 Unknown 

5 0.063247 0.028454 0.012991 0.019314 0.012181 0.004144 Unknown 

6 0.063155 0.01924 0.018068 0.011175 0.008922 0.007019 Unknown 

7 0.039874 0.016669 0.011933 0.025645 0.010187 0.009802 Unknown 

8 0.040065 0.01151 0.012123 0.010416 0.008755 0.009174 Unknown 

9 0.040579 0.013342 0.0142 0.01036 0.007299 0.013818 Unknown 
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Table 5. 2 KNN Fault Classification Based on the Local Harmonic Amplitude 

Feature1 

1x RPM 

Feature2 

8x RPM 

Feature3 

9x RPM 

Feature4 

11x RPM 

Feature5 

10x RPM 

Feature6 

16x RPM 

Rank Euclidean  

Distance 

Category 

0.044069 0.019011 0.019337 0.010756 0.014503 0.007936 5 0.004867133 Healthy 

0.046403 0.016859 0.023506 0.008721 0.016715 0.006386 12 0.006984217 Healthy 

0.046179 0.019703 0.018243 0.011807 0.019856 0.006263 11 0.006436746 Healthy 

0.044328 0.026735 0.017797 0.011218 0.018571 0.007009 8 0.005336826 Healthy 

0.043794 0.027905 0.017037 0.01423 0.009442 0.008671 4 0.004168619 Healthy 

0.045027 0.02629 0.0215 0.014755 0.007172 0.006369 10 0.006261113 Healthy 

0.062562 0.04247 0.016599 0.017554 0.020773 0.011169 13 0.014872686 Unbalanced 

0.062815 0.029798 0.018373 0.01336 0.011563 0.00782 14 0.015505756 Unbalanced 

0.063347 0.031236 0.016461 0.00731 0.019909 0.008812 15 0.015654394 Unbalanced 

0.063189 0.039176 0.017107 0.021397 0.010365 0.006347 16 0.016000239 Unbalanced 

0.063668 0.029883 0.019234 0.020621 0.015014 0.004562 18 0.01676255 Unbalanced 

0.063265 0.031205 0.019234 0.016034 0.020179 0.005897 17 0.016197614 Unbalanced 

0.039384 0.019155 0.012509 0.018313 0.007255 0.007836 3 0.004126924 Misaligned 

0.039585 0.027924 0.01551 0.016732 0.007296 0.01142 2 0.001789946 Misaligned 

0.039598 0.020953 0.018866 0.02686 0.011592 0.006948 6 0.004883526 Misaligned 

0.040194 0.015063 0.007774 0.01763 0.007633 0.006339 9 0.005419133 Misaligned 

0.039581 0.006451 0.013812 0.013578 0.006263 0.01396 1 0.000687263 Misaligned 

0.040428 0.018695 0.015676 0.014285 0.006702 0.00593 7 0.005312943 Misaligned 
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Table 5. 3 Testing Data with the unknown operating condition 

Feature1 

1x RPM 

Feature2 

8x RPM 

Feature3 

9x RPM 

Feature4 

11x RPM 

Feature5 

10x RPM 

Feature6 

16x RPM 

0.040579 0.013342 0.0142 0.01036 0.007299 0.013818 

 

Table 5. 4 Result of the KNN testing 

Test Data K=1 K=2 K=3 

1 Misaligned Misaligned Misaligned 

 

Result: Machine is operating in Misaligned condition 

 

As can be seen from the above table, this method showed good fault classification 

capabilities. This method can be used for the classification of the fault in the industries for 

better accuracy and predictability. 

Chapter Summary 

Even though the first order frequency shows peak amplitude it is not always the case with 

the other remaining order to have similar peaks, the other smaller peaks usually does not 

always occur at the multi times operating frequency instead they occur at the frequency 

closer to these frequencies. These maximum peaks were referred as the local maximum. 

By focusing on the local maximum acceleration amplitude rather than amplitude at the 

harmonic speed a KNN based algorithm was developed which could classify the operating 



 

59 
 

status of the rotating machinery correctly using the features of the local maximum 

acceleration around the harmonic speed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

60 
 

Chapter VI 

6. Conclusion and Future Work  

6.1 Conclusion 

Industries deploying rotating machinery aim to operate them smoothly so that their revenue 

generation is not hampered. It can be said that these industries look for safe, reliable and 

cost efficient operation to match their organizational goals. Efficient monitoring of these 

machinery with a reliable diagnostic tool can ensure industries to meet their above 

mentioned desirability. Vibration analysis is one of the most popular conditions monitoring 

approach used in modern day industries, it uses vibration signal to monitor the operating 

condition of the machinery. Since these are signal based monitoring approach, there need 

to be an adequate understanding of the signal for efficient monitoring. One should have a 

better understanding of utilizing the time and frequency related information to detect and 

identify different machine fault. On the other hand, one should have familiarity with the 

complexity of vibration analysis for these industries need an expert or professional analyst 

to carry out vibration analysis. So the industries are looking for the cost-effective, easily 

interpretable and efficient vibration monitoring tool. Most of the time, focus has been laid 

on the time domain signal to detect the fault while frequency domain information is used 

for identifying the fault type. Similarly, the multi times operating speed’s amplitude is 

considered for developing a vibration-based condition monitoring tool. The aim of this 

research project is to develop efficient, economical, and straightforward monitoring tools 

that could utilize time domain signal to identify not only the fault but also classify the fault 

type. Similarly, the local maximum acceleration-based fault detection is proposed further. 
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The vibration signal of the machinery system is extracted by simulating it to different 

operating condition as healthy, misaligned, unbalanced and cracked shaft. Once these data 

are acquired they are processed using the signal processing tool like FFT and CWT for 

understanding the characteristic features of each operating condition, once these are known 

fault classification and detection tool are developed. Phase plane diagram-based tool 

utilizes the signal from all the 4 accelerometers to classify the fault while the KNN method 

based on the local maximum acceleration uses the frequency information for classifying 

the fault. Similarly, fuzzy logic based method is proposed for classifying the fault and 

identifying the severity of machine condition. The proposed method showed greater 

accuracy and efficiency in identifying and classifying the machine condition. So they can 

be implemented in the industries for the monitoring purpose. 

6.2 Future Work 

The proposed methodology can be incorporated with Artificial Intelligence System for not 

only detecting and classifying fault but also diagnosing or correcting it. This work also 

forms a solid basis for stability analysis in rotating machinery using CAD/CAE based 

approach. Thus, it is important to investigate on how stiffness and damping coefficients 

affect rotor systems. Various numerical methods can be used for such analysis and a simple 

fuzzy based system could be developed to validate the results. Furthermore, for the 

reliability of the proposed methods, data will be acquired in real environmental conditions 

from operating machines with larger sample size instead simulating in a laboratory setting.  
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Chapter VII 

7. Appendices 

7.1 Appendix A 

MATLAB program for local and harmonic maximum acceleration amplitude detection  

clc; 
clear all; 
close all; 
%%At first we will be importing the excel file of our accelerometer 

data 
data1=xlsread('20f3','spectrum - PXI1Slot4_ai2','A11:B1009'); 
% data1=xlsread('20t2','Acceleration - PXI1Slot4_ai2','A9:C20008') 
%Now we will be selecting the variables based on the data column   
VarNameM1_1 = data1(:,1); 
VarNameM1_2 = data1(:,2); 
% Now we will be finding the indices(frequency) for the maximum value 

of 
% amplitude for all the six data set, M1max will store data of the maxm 
% val 
[M1max,IDM1] = max(VarNameM1_2) 
for i=1:4; 
% Now we will find all the local maxima around the harmonics 
[M1(i), IDM1_a(i)]= max(VarNameM1_2(i*IDM1-5:i*IDM1+5))  % Here we are 

calulating the local maxima besides the harmonics 
% Find all local maximum accelerations at exact harmonics     
M1_test(i)= max(VarNameM1_2(i*IDM1))  
 % Find difference of local maximum accelerations 
    D1(i) = M1(i)-M1_test(i)    
    % Find exact harmonics 
Frequency1(i) = VarNameM1_1(i*IDM1) 
end 

  
%Print results for Right, Wrong and Difference of acceleration at 

Harmonics 

  
Data1 = [M1;M1_test;D1] 
[M1_New,Order1] = sort(M1,'descend') 

  
%% Plot  
% figure(1) 
% plot(VarNameM1_1(1:90), VarNameM1_2(1:90), Frequency1,M1,'r*') 
% xlabel('Frequency (Hz)') 
% ylabel('Vibration acceleration (g)') 
% title('Misallignment1 Values at Harmonics') 

  
hold on 
plot(VarNameM1_1(1:90), VarNameM1_2(1:90), Frequency1,M1,'r*', 

Frequency1,M1_test,'bo') 



 

63 
 

xlabel('Frequency (Hz)') 
ylabel('Vibration acceleration (g)') 
title('Misallignment1 Values at Harmonics') 
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