

American Scientific Research Journal for Engineering, Technology, and Sciences (ASKJETS)

ISSN (Print) 2313-4410, ISSN (Online) 2313-4402

© Global Society of Scientific Research and Researchers

http://asrjetsjournal.org/

Preparation, Characterization of Mixed-Ligand Complexes for Some Divalent Transition Metal Ions Involving Biologically Important Bidentate Ligands

Kamal Rashid Hsejan Al- Jorani*

Wasit University, College of Science, Department of Chemistry, Al-Sadea, Baghdad, 00964, Iraq Email: Kjorany@yahoo.com

Abstract

This paper describes the synthesis, characterization of mixed ligand complexes. The reaction of benzene-1,2diamine(*o*-phenylenediamine) derivatives with anthranilic acid (Ant) yield 2-(1*H*-benzimidazol-2-yl)aniline derivatives (BIAD) as (primary ligands) in Effective and appropriate solvent, which confirmed by FT-IR, Elemental analyses (C. H. N, O) and ¹H NMR spectral. These ligands coordinated with some transition metal ions (Co^{II},Ni^{II}, Cu^{II}, Zn^{II}) and anthranilic acid as (secondary ligand) at the (1 : 1 : 1) ratio of the components to yielded a mixed-ligand complexes. All complexes have been studied by IR spectra, ¹H NMR, Elemental analyses (C. H. N. O), atomic absorption, molar conductivity and magnetic moment. Ligands produce chelates with (1;1;1) (metal; ligands; ligand) interactive elements. From all results was suggested that octahedral geometry to complexes and have the formulae [M(BIAD)(Ant)(H₂O)₂]²⁻ where M = Co^(II), Ni^(II), Cu^(II) and Zn^(II).

Keywords: Mixed-Ligand; anthranilic acid; BIAD; Benzimidazole.

1. Introduction

Benzimidazole is a moiety which contains benzene ring and a heterocyclic imidazole ring. Benzimidazole derivative are an important category of bioactive molecules in the domain of drugs and pharmaceuticals [1]. 2-Substituted analogs of benzimidazoles have very wide range of biologically active compounds, Anti-inflammatory activity [2,3], anti fungi and bacteria[4], antiviral[5], anti-hypertensive[6], human glucagon receptor antagonistic[7], and anti-infective [8] activities. 4-nitro-*o*- phenylenediamine ligand have a wide used in the synthesis of compounds with biological activities, like Quinoxaline [9], one of the other uses of 4-nitro-*o*-phenylenediamine ligand is in the Determination of Diacetyl in Beer [10].

⁻⁻⁻⁻⁻

^{*} Corresponding author.

Anthranilic acid is one of important compounds that have widely biological activity, as an important precursor of tryptophan. Anthranilic acid is used with some mono oxidation metals to studies the demeanor of potassium in the biological systems [11]. Complexes that anthranilic acid contain ligand have extensive biological activity, anti-inflammatory activities[12], antibacterial[13].

The synthesis of a new mix-ligand complexes was a probably the most significant step in the evolution of metal complexes which offer unique properties and new reactivity. Mixed-ligand complexes (anthranilic acid) can inhibit the DNA interactions, and cytotoxicities[14]. Previously study show that the complexes of Rh with anthranilic acid and N-phenyl anthranilic acid can act as catalysts for hydrogenation [15], Terbium(III) complexes of anthranilic acid can appear the photoluminescence properties[16], a model into a peroxidase inhibitor complex[17]. The complexes of metals ion with tow differences kinds of bioligands, as a heteroaromatic nitrogen bases may be present the importing biochemical interactions in different ways[18]. However, the ligand of anthranilic acid have no anti-inflammatory activity, but it have ability to exhibit activity because of certain binding of $Cu^{(II)}$ ions at inflammatory locations [19]. Anthranilic acid ligand bidentate and bonding to the metals through the ionized carboxyl group and N amine atom [20]. In this work a several of mixed-ligand complexes of $Co^{(II)}$, Ni^(II), Cu^(II) and Zn^(II) containing anthranilic acid (Ant) as secondary ligand and 2-(1*H*-benzimidazol-2-yl)aniline derivatives as primary ligands was synthesized and characterization.

2. Experimental

2.1. Materials and measurements

Metals, anthranilic acid (Ant) and all o-phenylenediamine derivatives are provide from BDH and Sigma Aldrich companies were used without purification. Melting points was registered by using digital Stuart scientific SMP30. Infrared Spectra Measurements was registered by FT-IR-8400S – SHIADZU by using KBr discs. ¹H-NMR spectra was registered on Burker 500MHz device by employing dimethyl solfoxide-d₆ and TMS. TLC were implemented all over ligand reactions by (Gelman sciences LTD. U.K.). (C, H, N, O) analysis data was gained by employing a EA 3000 analysis instrument, (Co^{II}, Ni^{II}, Cu^{II}, Zn^{II}) were determined by atomic absorption technique using Shimadzu AA-6300.

The complexes diagnoses by using Magnetic susceptibilities was specified by Sherwood Scientific's Magnetic Susceptibility Balances. Molar conductance of the Mixed-Ligand Complexes was detected in DMF using conductivity meter Alpha-800 in (25 $^{\circ}$ C, 10⁻³ mol L⁻¹).

2.2. General methods to prepare the 2-(1H-benzimidazol-2-yl)aniline derivatives (BIAD) ligands

Mixture of (0.03 mole, 6.27g) anthranilic acid, (0.03 mole) *o*-phenylenediamine derivatives, 50 ml dioxane were reflex for 1 hour in water bath.

The concentration ammonia solution was graduated addition to mixture. The precipitate collected and recrystallized with C_2H_5OH to produce crystals. The Physical features of ligands are recorded in (table 1).

Comp.	<i>o</i> -ph.diam. derivatives	Mol. formula	Mol. Wt.	M.P.	% yield	colour
1a	NH ₂ NH ₂	C ₁₃ H ₁₁ N ₃	209.24	85–87	72.68	gray
1b	CI NH ₂	C ₁₃ H ₁₀ ClN ₃	243.69	106- 108	76.30	Pale Yellow
1c	CI NH ₂ CI	C ₁₃ H ₉ Cl ₂ N ₃	278.13	218- 220	84.00	yellow
1d	Br NH ₂ NH ₂	C ₁₃ H ₁₀ BrN ₃	288.14	225- 227	76.84	Dark brown
1e	NH ₂	C ₁₄ H ₁₃ N ₃ O	239.27	231- 233	55.5	gray
1f	H ₃ C NH ₂	C ₁₄ H ₁₃ N ₃	223.27	166- 169	53.76	Orang
1g	H ₃ C O NH ₂ NH ₂	C ₁₅ H ₁₅ N ₃ O	253.29	204- 206	52.12	Colorless

Table 1: Physiochemical properties of ligands (BIAD) (1a-g).

2.3. preparing of 2-(1H-benzimidazol-2-yl)aniline (1a)

Were prepared from anthranilic acid and o- phenylenediamine; (¹H-NMR) : 12.49 (s, 1H, H-N), 5.0 (s, 2H, NH2), 6.49–6.50 (dd, Phen-H), 6.34–6.38 (dd, Phen-H), 7.84–7.83 (d 1H, Phen-H), 7.12–7.14 (d, 1H, Phen-H), 7.39–7.41 (m, 2H, Phen-H), 7.59–7.63 (d, 1H, Phen-H). IR (v, cm-1): 3420-3427 (-NH2), 3358 (-NH), 1618 (C=N). (Calcd.). Found, to C13H11N3 (209.25): C (73.61) H (6.29) N (21.10)%. Found: C 73.79; H 6.44; N 21.89%.

2.4. Synthesis of 2-(6-chloro-1H-benzimidazol-2-yl)aniline (1b)

Was Synthesis from anthranilic acid and 4-chlorobenzene-1,2-diamine; (¹H-NMR): 11.97 (s, 1H, H-N), 5.82 (s,

2H, NH2), 7.36 (s, 1H, Phen-H), 8.51 (d, 1H, Phen-H), 7.14 (d, 1H, Phen-H), 6.99 (d, 1H, Phen-H), 7.62 (d, 1H, Phen-H), 7.28 (t, 1H, Phen-H), 6.96 (d, 1H, Phen-H). IR (ν , cm⁻¹): 3420 - 3418 (- NH₂), 3410 (-NH), 1630 (C=N) 1046 (Ar-Cl). (Calcd.). Found, to C₁₃H₁₀ClN₃ (243.69): C (65.10) H (5.14) N (18.25) Found: C 65.11; H 5.18; N 18.23 %.

2.5. Synthesis of 2-(4,6-dichloro-1H-benzimidazol-2-yl)aniline (1c)

Was prepared from anthranilic acid and 3,5-dichlorobenzene-1,2-diamine; (¹H-NMR): 11.97(s, 1H, H-N), 5.78 (s, 2H, NH₂), 8.24 (s, 1H, Benzi-H), 8.28 (s, 1H, Benzi-H), 7.01 (d, 1H, Phen-H), 7.62 (d, 1H, Phen-H), 7.28 (t, 1H, Phen-H), 6.96 (t, 1H, Phen-H). IR (ν , cm⁻¹): 3420 - 3418 (-NH₂), 3412 (-NH), 1630 (C=N) 1110 (Ar-Cl). (Calcd.). Found, to C₁₃H₉Cl₂N₃ (278.13) : C(57.15) H(4.26) N(14.12) % Found: C, 57.12 ; H, 4.26; N, 14.13%.

2.6. Synthesis of 2-(6-bromo-1H-benzimidazol-2-yl)aniline (1d)

Was synthesis from anthranilic acid and 4-bromobenzene-1,2-diamine; (¹H-NMR): 12.10 (s, 1H, -HN), 5.79 (s, 2H, NH₂), 7.87 (s, 1H, Benzi-H), 8.46 (d, 1H, Benzi-H), 8.10 (d, 1H, Benzi-H), 6.99 (m, 1H, Phen-H), 7.62 (d, 1H, Phen-H), 7.28 (m, 1H, Phen-H), 6.96 (m,1H, Phen-H). IR (ν , cm⁻¹): 3419 - 3417 (- NH2), 3410 (-NH), 1631 (C=N), 1030 (Ar-Br). (Calcd.). Found, to C₁₃H₁₀BrN₃ (288.14) : C(55.20) H(4.50) N(13.51) % Found: C, 55.21 ; H, 4.52; N, 13.59 %.

2.7. Synthesis of 2-(6-methoxy-1H-benzimidazol-2-yl)aniline (1e)

Was prepared from anthranilic acid and 4-methoxybenzene-1,2-diamine ; (1 H-NMR): 12.55 (s, 1H, H-N), 5.78 (s, 2H, NH₂), 7.12 (s, 1H, Benz-H), 8.56 (d, 1H, Benz-H), 6.93 (d, 1H, Benz-H), 6.99 (m, 1H, Phen-H), 7.62 (d, 1H, Phen-H), 7.28 (m, 1H, Phen-H), 6.96 (m,1H, Phen-H), 3.87(s, 3H, methyl). IR (ν , cm⁻¹): 3420 - 3417 (-NH₂), 3408 (-NH), 1635 (C=N), 2844-2926 (C-H aliphatic). (Calcd.). Found, to C₁₄H₁₃N₃O (239.27) : C(71.28) H(4.98) N(16.56) O(6.69) % Found: C, 71.30 ; H, 4.94; N, 16.60 ; O, 6.67%.

2.8. Synthesis of 2-(6-methyl-1H-benzimidazol-2-yl)aniline (1f)

Was synthesis from anthranilic acid and 4-methylbenzene-1,2-diamine ; (¹H-NMR): 12.56 (s, 1H, H-N), 5.79 (s, 2H, NH₂), 7.43 (s, 1H, Benz-H), 8.12 (d, 1H, Benz-H), 7.00 (d, 1H, Benz-H), 7.62 (m, 1H, Phen-H), 7.54 (d, 1H, Benz-H), 7.28 (m, 1H, Phen-H), 6.96 (m,1H, Phen-H), 2.42(s, 3H, methyl). IR (ν , cm⁻¹): 3421 - 3418 (-NH₂), 3411 (-NH), 1633 (C=N) 2840-2931 (C-H aliphatic). (Calcd). Found, to C₁₄H₁₃N₃ (239.27) : C(74.33) H(5.87) N(17.82) % Found: C, 74.36 ; H, 5.89; N, 17.80 %.

2.9. Synthesis of 2-(6-ethoxy-1H-benzimidazol-2-yl)aniline (1g)

Was synthesis from anthranilic acid and 4-ethoxybenzene-1,2-diamine ; (1 H-NMR): 12.11 (s, 1H, -HN), 5.79 (s, 2H, NH₂), 8.08 (d, 1H, Benz-H), 6.99 (d, 1H, Phen-H), 8.62 (d, 1H, Phen-H), 8.28 (m, 1H, Phen-H), 6.96 (m, 1H, Phen-H), 4.04 (s, 2H, methylene), 1.34 (s,3H, methyl). IR (ν , cm⁻¹): 3421 - 3415 (- NH₂), 3404 (-NH), 1622 (C=N), 2835-2939 (C-H aliphatic). (Calcd). Found, for C₁₄H₁₃N₃O (253.29) : C(72.13) H(6.91%) N(15.19)

O(7.32) % Found: C 72.14 ; H 6.96 ; N 15.58 ; O 7.33%.

2.10. Preparation of the complexes

An absolute EtOH solution (10 ml) containing 5 mmol of anthranilic acid plus 5 mmol of suitable metal ions, $CoCl_2.6H_2O$, $NiCl_2.6H_2O$, $CuCl_2.2H_2O$ and $ZnCl_2$. Was added slowly to another absolute EtOH solution (10 ml) containing 5mmol 2-(1*H*-benzimidazol-2-yl)aniline derivatives. The acidity of the mixture was regulating to (PH~ 8) by addition of a little drops of KOH. Mixture of reaction refluxed for 3h, the solvent vaporized by heating to half of volume and Keep it cooled. The precipitate were filtered and washed with cooled distilled water and re-crystallization with EtOH, isolated complexes was dried at 50 ^{0}C overnight.

3. Results and Discussion

The synthesis of the ligands is illustrative in (Figure 2). The prepared ligands offer satisfactory analysis for the suggested structures, which was specified depends on spectral and elemental analysis [FT-IR, ¹H NMR and (C, H, N, O)] data. Several complexes ions Cobalt, Nickel, Copper, Zinc with mix ligands, was prepared by the reaction of 1:1:1 ratio of Metal with primary, secondary ligands in ethanol are represented in (Figure 4).

Figure 2: Preparation of ligands.

The suggested mechanism for formation of 2-(1H-benzimidazol-2-yl)aniline derivatives (BIAD) showing in (Figure 3).

Figure 3: The suggested mechanism for formation of (BIAD).

Figure 4: Reaction of (Cu-, Ni-, Zn- and Co-) with primary, secondary ligands.

Complexes are colored solids, non-hygroscopic, stable, excellent yields, insoluble in water, ethanol, partially in methanol and soluble in DMF and DMSO. DMF solvent were applied after appropriate dilution for metal analysis. Elemental analyses (C, H, N, O) and atomic absorption technique were Elements and metal contents of the complexes was measured (Table 3). The elemental analysis (molar conductivity, magnetic moments) data of complexes (Table 2) indicate that all complexes are of the nature electrolyte (1 : 3 electrolyte type) in DMF (10⁻³ M) [21,22].

Table 2: Analytical data and some physical properties of complexes.

number	complexes	Chemical	F.W(g·mol ⁻	colour	М.	Yield	Meff	Conductivity
		Formula	¹)		Point(°C)	(%)	(B.M.)	Cohm ⁻¹ .
								cm ² .mol ⁻¹
1	$[Co(1a)(Ant)(H_2O)_2]$	$C_{13}H_{12}N_3O_2Co$	438.3	Pale	178-180	73	3.89	221
				green				
2	$[Ni(1a)(Ant)(H_2O)_2]$	$C_{13}H_{12}N_3O_2Ni$	438.08	Gray	>300	79	3.1	213
3	$[Cu(1a)(Ant)(H_2O)_2]$	$C_{13}H_{12}N_3O_2Cu$	442.9	Deep	195-197	77	1.9	211
				orange				
4	$[Zn(1a)(Ant)(H_2O)_2]$	$C_{13}H_{12}N_3O_2Zn$	444.8	yellow	156-159	68	0	232
5	$[Co(1b)(Ant)(H_2O)_2]$	C ₁₃ H ₁₁ ClN ₃ O ₂ Co	472.7	Dark	217-220	89	4.1	237
				brown				
6	$[Ni(1b)(Ant)(H_2O)_2]$	C ₁₃ H ₁₁ ClN ₃ O ₂ Ni	472.5	Pale	>300	83	3.1	203
				green				
7	$[Cu(1b)(Ant)(H_2O)_2]$	$C_{13}H_{11}ClN_3O_2Cu$	477.3	blue	>300	85	1.8	207

0			470.0	11	000 1	70		0.40
8	$[Zn(1b)(Ant)(H_2O)_2]$	$C_{13}H_{11}CIN_3O_2Zn$	479.2	yellow	220 de	73	0	240
9	$[Co(1c)(Ant)(H_2O)_2]$	$C_{13}H_{10}Cl_2N_3O_2C$	507.2	pale	221-223	79	3.9	226
		0		brown				
10	$[Ni(1c)(Ant)(H_2O)_2]$	$C_{13}H_{10}Cl_2N_3O_2N$	506.9	green	177-180	69	2.88	218
		i						
11	$[Cu(1c)(Ant)(H_2O)_2]$	$C_{13}H_{10}Cl_2N_3O_2C$	511.8	Violet	233-236	83	1.76	235
		u						
12	$[Zn(1c)(Ant)(H_2O)_2]$	$C_{13}H_{10}Cl_2N_3O_2Z$	513.7	Gray	>300	85	0	231
		n						
13	$[Co(1d)(Ant)(H_2O)_2]$	C ₁₃ H ₁₁ BrN ₃ O ₂ Co	517.2	pale	187-200	66	4.3	234
				brown				
14	$[Ni(1d)(Ant)(H_{2}O)_{2}]$	C. H. BrN. O.Ni	517.0	green	213-216	91	3.4	203
14			517.0	green	215-210		5.4	203
15	$[Cu(1d)(Ant)(H_2O)_2]$	$C_{13}H_{11}BrN_3O_2Cu$	521.8	Deep	230-233	74	1.9	223
		15 11 5 2		violet				
16	$[\mathbf{Z}_{n}(1d)(\Lambda_{nt})(\mathbf{H}_{n}\mathbf{O})]$	C. H. BrN. O. 7n	5237	Gray	214 217	70	0	214
10			525.1	Glay	214-217		U	214
17	$[Co(1e)(Ant)(H_2O)_2]$	$C_{14}H_{14}N_3O_3Co$	468.3	pale	>300	85	4.5	235
				brown				
18	$[Ni(1e)(Ant)(H_2O)_2]$	C ₁₄ H ₁₄ N ₃ O ₃ Ni	468.1	green	>300	71	3.3	225
19	$[Cu(1e)(Ant)(H_2O)_2]$	$C_{14}H_{14}N_3O_3Cu$	478.0	Deep	>300	91	1.78	229
				brown				
20	$[Zn(1e)(Ant)(H_2O)_2]$	$C_{14}H_{14}N_3O_3Zn$	474.8	gray	>300	80	0	231
21	$[Co(1f)(Ant)(H_2O)_2]$	$C_{14}H_{14}N_3O_2Co$	452.3	pale	143-146	75	4.7	205
				brown				
22	[Ni(1f)(Ant)(H ₂ O) ₂]	C ₁₄ H ₁₄ N ₃ O ₂ Ni	452.1	yellow	184-188	78	3.4	232
23	$[Cu(1f)(Ant)(H_2O)_2]$	$C_{14}H_{14}N_{3}O_{2}Cu$	457.0	Deep	122-125	83	2.0	214
				violet				
24	$[Zn(1f)(Ant)(H_2O)_2]$	C_1 H_1 N_2 O_2 Zn	458.8	Grav	200-203	90	0	238
25			402.2	- I	200 205		4.0	
25	$[Co(1g)(Ant)(H_2O)_2]$	$C_{15}H_{16}N_3O_3Co$	482.3	pale	>300	82	4.8	236
				brown				
26	$[Ni(1g)(Ant)(\overline{H_2O})_2]$	$C_{15}H_{16}N_3O_3Ni$	482.1	blue	269-272	76	2.87	210
27	$[Cu(1g)(Ant)(H_2O)_2]$	$C_{15}H_{16}N_3O_3Cu$	487.0	Violet	280-283	69	1.9	219
28	$[Zn(1g)(Ant)(H_2O)_2]$	$C_{15}H_{16}N_3O_3Zn$	488.8	Gray	240-242	64	0	207

Elemental analysis exhibit in the (table-3-) show that all mixed-ligand Complexes have (1:1:1) stoichiometry with estimate (Metal: BIAD : Ant.), all of them have a dark colored amorphous substances.

Complexes	% C	% H	% N	%O	%M
	(Calcd).Found	(Calcd).Found	(Calcd).Found	(Calcd).Found	(Calcd).Found
[Co(1a)(Ant)(H ₂ O) ₂]	(54.80) 54.78	(4.37) 4.35	(12.78) 12.68	(14.60) 14.68	(13.45) 13.51
[Ni(1a)(Ant)(H ₂ O) ₂]	(54.83) 54.81	(4.37) 4.35	(12.79) 12.75	(14.61) 14.59	(13.40) 13.44
$[Cu(1a)(Ant)(H_2O)_2]$	(54.23) 54.78	(4.32) 4.30	(12.65) 12.63	(14.45) 14.41	(14.35) 14.39
$[Zn(1a)(Ant)(H_2O)_2]$	(54.01) 54.04	(4.31) 4.29	(12.60) 12.65	(14.39) 14.36	(14.71) 14.84
[Co(1b)(Ant)(H ₂ O) ₂]	(50.81) 50.83	(3.84) 3.81	(11.85) 11.82	(13.54) 13.52	(12.47) 12.32
[Ni(1b)(Ant)(H ₂ O) ₂]	(50.84) 50.82	(3.84) 3.84	(11.86) 11.84	(13.54) 13.51	(12.42) 12.37
$[Cu(1b)(Ant)(H_2O)_2]$	(50.32) 50.35	(3.80) 3.78	(11.74) 11.71	(13.41) 13.38	(13.31) 13.43
$[Zn(1b)(Ant)(H_2O)_2]$	(50.12) 50.09	(3.79) 3.76	(11.69) 11.65	(13.35)13.32	(13.65) 13.75
$[Co(1c)(Ant)(H_2O)_2]$	(47.36) 47.34	(3.38) 3.36	(11.05) 11.11	(12.62) 12.58	(11.62) 11.58
$[Ni(1c)(Ant)(H_2O)_2]$	(47.38) 47.36	(3.38) 3.35	(11.05) 11.12	(12.62)12.59	(11.58) 11.56
$[Cu(1c)(Ant)(H_2O)_2]$	(46.93) 46.91	(3.35) 3.33	(10.95) 10.93	(12.50) 12.47	(12.42) 12.39
$[Zn(1c)(Ant)(H_2O)_2]$	(46.76) 46.74	(3.34) 3.32	(10.91) 10.88	(12.46) 12.43	(12.73) 12.70
[Co(1d)(Ant)(H ₂ O) ₂]	(46.44) 46.41	(3.51) 3.49	(10.83) 10.80	(12.37) 12.35	(11.39) 11.36
[Ni(1d)(Ant)(H ₂ O) ₂]	(46.46) 46.44	(3.51) 3.47	(10.84) 10.87	(12.83) 12.80	(11.35) 11.32
[Cu(1d)(Ant)(H ₂ O) ₂]	(44.85) 44.89	(3.37) 3.34	(11.01) 11.05	(12.58) 12.56	(12.49) 12.47
$[Zn(1d)(Ant)(H_2O)_2]$	(45.87) 45.93	(3.46) 3.44	(10.70) 10.68	(12.22) 12.20	(12.49) 12.47
$[Co(1e)(Ant)(H_2O)_2]$	(53.85) 53.82	(4.52) 4.49	(11.96) 11.94	(17.08) 17.11	(12.58) 12.55
$[Ni(1e)(Ant)(H_2O)_2]$	(53.88) 53.82	(4.52) 4.49	(11.97) 11.95	(17.09) 17.06	(12.54) 12.51
$[Cu(1e)(Ant)(H_2O)_2]$	(53.33) 53.42	(4.48) 4.47	(11.85) 11.82	(16.91) 16.95	(13.44) 13.41
$[Zn(1e)(Ant)(H_2O)_2]$	(53.12) 53.18	(4.46) 4.43	(11.80) 11.76	(16.85) 16.89	(13.78) 13.75
$[Co(1f)(Ant)(H_2O)_2]$	(55.76) 55.83	(4.68) 4.66	(12.39) 12.36	(14.15) 14.12	(13.03) 13.01
$[Ni(1f)(Ant)(H_2O)_2]$	(55.79) 55.85	(4.68) 4.63	(12.39) 12.37	(14.16) 14.13	(12.98) 12.95
$[Cu(1f)(Ant)(H_2O)_2]$	(55.20) 55.24	(4.63) 4.60	(12.26) 12.24	(14.01) 14.06	(13.91) 13.88
$[Zn(1f)(Ant)(H_2O)_2]$	(54.97) 54.93	(4.61) 4.57	(12.21) 12.18	(13.95) 13.91	(14.26) 14.23
$[Co(1g)(Ant)(H_2O)_2]$	(54.78) 54.74	(4.81) 4.78	(11.61) 11.59	(16.58) 16.55	(12.22) 12.19
$[Ni(1g)(Ant)(H_2O)_2]$	(54.81) 54.77	(4.81) 4.77	(11.62) 11.58	(16.59) 16.57	(12.17) 12.15
$[Cu(1g)(Ant)(H_2O)_2]$	(54.26) 54.23	(4.76) 4.73	(11.50) 11.57	(16.43) 16.41	(13.05) 13.02
$[Zn(1g)(Ant)(H_2O)_2]$	(54.05) 54.10	(4.74) 4.71	(11.46) 11.43	(16.36) 16.34	(13.38) 13.35

Table 3: Analytical data of complexes.(M = Co, Ni, Cu, Zn)

3.1. Infrared spectra

The FT-IR of ligands show perfect value of peaks which conform the structure, the spectra of complexes Showed disappear some of active group peaks and appear the new peaks (Table 4). In complexes spectra υ (-NH₂) frequency of sharp absorption bands (~3415-3422 cm⁻¹) of 2-(1*H*-benzimidazol-2-yl)aniline derivatives (BIAD) disappearance, also disappear the band at (3592 cm⁻¹),(3394-3542 cm⁻¹ symmetric and asymmetric) corresponding to (O–H), (NH₂) stretching respectively in anthranilic acid [23], that conclusive evidence of coordinate metal ions both by nitrogen of NH₂ group (in BIAD, Ant.) and oxygen atoms of the carboxylic group. This was also confirmed by outcrop of a new band at (~420 , ~535 cm⁻¹) due to the υ (M-O, M-N) respectively (Table 4). The clear, new interesting bands can be observed at (~3745 cm⁻¹) which related to H₂O molecules [24,25] , and that good evidence of Participate the H₂O molecules in inner coordination sphere of complexes. The bands shifts of active group (C=O) in complexes can be observed in comparison with free anthranilic acid bands.

complexes	υ	υ	υ	υ	υ	υ	υ	υ	υ	υ	υ
-											
	O-	N-	N-H ₂	N-H	(C-H)	Ar-Cl	Ar-	C=O	H_2O	(M-	(M-
	ц	п			Alinh		Dr	Ant		NI)	(0)
	п	п ₂			Апрп		DI	Ant.		IN)	0)
			BIAD	BIAD							
		Ant									
		Ant.									
$[Co(1a)(Ant)(H_2O)_2]$				3404				1712	3732	521	437
$[Ni(1a)(Ant)(H_2O)_2]$				3411				1710	3711	523	430
				2400				1717	27.40	501	450
$[Cu(1a)(Ant)(H_2O)_2]$				3409				1/1/	3/49	521	452
$[\mathbf{Zn}(1a)(\mathbf{Ant})(\mathbf{H}_{2}\mathbf{O})_{2}]$				3403				1724	3718	554	412
				5105				1721	5/10	551	112
$[Co(1b)(Ant)(H_2O)_2]$				3389		1045		1694	3743	513	423
$[Ni(1b)(Ant)(H_2O)_2]$				3393				1697	3708	523	411
$[C_{\rm H}(1{\rm h})(\Lambda {\rm pt})({\rm H} {\rm O})]$				2279				1695	2774	544	404
$[Cu(10)(Allt)(H_2O)_2]$				33/8				1005	5/14	544	404

Table 4: FT-IR spectral data in cm⁻¹ to the complexes.

$[Zn(1b)(Ant)(H_2O)_2]$	 	 3421	 		1701	3714	560	409
$[Co(1c)(Ant)(H_2O)_2]$	 	 3417	 109		1705	3775	545	423
			4					
$[Ni(1c)(Ant)(H_2O)_2]$	 	 3411	 		1707	3753	543	452
$[Cu(1c)(Ant)(H_2O)_2]$	 	 3407	 		1715	3747	526	428
$[Zn(1c)(Ant)(H_2O)_2]$	 	 3414	 		1711	3742	513	416
$[Co(1d)(Ant)(H_2O)_2]$	 	 3406	 	105	1709	3735	527	411

				5				
[Ni(1d)(Ant)(H ₂ O) ₂]	 	 3402		 	1718	3738	543	458
$[Cu(1d)(Ant)(H_2O)_2]$	 	 3397		 	1712	3726	536	437
$[Zn(1d)(Ant)(H_2O)_2]$	 	 3393		 	1710	3731	524	417
$[Co(1e)(Ant)(H_2O)_2]$	 	 3410	286	 	1713	3718	513	435
			1-					
			298					
			7					
$[Ni(1e)(Ant)(H_2O)_2]$	 	 3413		 	1709	3720	540	418
$[Cu(1e)(Ant)(H_2O)_2]$	 	 3396		 	1707	3729	544	454
$[Zn(1e)(Ant)(H_2O)_2]$	 	 3391		 	1716	3737	550	436
[Co(1f)(Ant)(H ₂ O) ₂]	 	 3418	284	 	1712	3742	547	412
			5-					
			298					
			9					
$[Ni(1f)(Ant)(H_2O)_2]$	 	 3405		 	1711	3740	551	445
$[Cu(1f)(Ant)(H_2O)_2]$	 	 3412		 	1709	3710	537	426
$[Zn(1f)(Ant)(H_2O)_2]$	 	 3406		 	1702	3716	548	415
$[Co(1g)(Ant)(H_2O)_2]$	 	 3409	282	 	1716	3726	536	421
			1-					
			297					
			6					
$[Ni(1g)(Ant)(H_2O)_2]$	 	 3417		 	1713	3729	529	431
$[Cu(1g)(Ant)(H_2O)_2]$	 	 3399		 	1709	3716	556	416
$[Zn(1g)(Ant)(H_2O)_2]$	 	 3392		 	1711	3715	531	440

3.2. ¹H NMR spectra of the compounds

¹H NMR spectra data of the complexes was gained at d_6 - DMSO in (R.T.) utilize TMS as an internal standard (Table 5).

Chemical shift of the NH_2 protons in the ligands (~5.7 ppm for BIAD),(8.4 ppm for Ant.) was not noted in all the complexes. This conforms the bind of nitrogen and oxygen to the metal ions (N-M, O-M). The similarly result was proven by the FT-IR spectra.

The singlet signal at δ 4.2–4.1 ppm appear due to the H₂O atoms from the coordinated water molecule. All other absorption bands for the aromatic, aliphatic and (NH benzimidazole) protons in the ligands are in the same chemical shift and not affected by coordination.

complexes	ОН	NH ₂	New NH	OH ₂
[Co(1a)(Ant)(H ₂ O) ₂]			4.3	4.2
$[Ni(1a)(Ant)(H_2O)_2]$			4.3	4.2
[Cu(1a)(Ant)(H ₂ O) ₂]			4.3	4.1
$[Zn(1a)(Ant)(H_2O)_2]$			4.3	4.2
[Co(1b)(Ant)(H ₂ O) ₂]			4.3	4.1
[Ni(1b)(Ant)(H ₂ O) ₂]			4.3	4.1
$[Cu(1b)(Ant)(H_2O)_2]$			4.3	4.2
$[Zn(1b)(Ant)(H_2O)_2]$			4.3	4.2
$[Co(1c)(Ant)(H_2O)_2]$			4.4	4.1
$[Ni(1c)(Ant)(H_2O)_2]$			4.4	4.2
[Cu(1c)(Ant)(H ₂ O) ₂]			4.4	4.2
$[Zn(1c)(Ant)(H_2O)_2]$			4.4	4.1
[Co(1d)(Ant)(H ₂ O) ₂]			4.4	4.2
[Ni(1d)(Ant)(H ₂ O) ₂]			4.4	4.2
$[Cu(1d)(Ant)(H_2O)_2]$			4.4	4.2
$[Zn(1d)(Ant)(H_2O)_2]$			4.4	4.2
$[Co(1e)(Ant)(H_2O)_2]$			4.4	4.1
$[Ni(1e)(Ant)(H_2O)_2]$			4.4	4.1
$[Cu(1e)(Ant)(H_2O)_2]$			4.4	4.2
$[Zn(1e)(Ant)(H_2O)_2]$			4.4	4.2
$[Co(1f)(Ant)(H_2O)_2]$			4.4	4.2
[Ni(1f)(Ant)(H ₂ O) ₂]			4.4	41
$[Cu(1f)(Ant)(H_2O)_2]$			4.4	41
$[Zn(1f)(Ant)(H_2O)_2]$			4.4	4.1
$[Co(1g)(Ant)(H_2O)_2]$			4.4	4.2
[Ni(1g)(Ant)(H ₂ O) ₂]			4.4	4.1
$[Cu(1g)(Ant)(H_2O)_2]$			4.4	4.2
$[Zn(1g)(Ant)(H_2O)_2]$			4.4	4.2

Table 5: ¹H NMR spectra of the complexes in d_6 -DMSO (δ ppm).

4. Conclusion

In summary, we have synthesized and characterized ligands of (BIAD), prepared in this work through condensation of anthranilic acid and *o*-phenylenediamine derivatives in suitable solvent (dioxin). Twenty-eight complexes of mixed ligand with (Co^{II} , Ni^{II} , Cu^{II} , Zn^{II}) ions were prepared and characterized through {FT-IR,

¹H NMR, (C, H, N, O) analysis, atomic absorption, Magnetic susceptibilities, Molar conductance}. Data of all Previous Techniques support octahedral geometry for all metal complexes. Depends on the spectral and physical data of ligands and complexes which discussed previously, one can suppose that the metal ions are bind to the ligands through the carboxylic oxygen and amino nitrogen as clarify in Figure 1.

Figure 1: The suggested geometry of complexes. $M = Co^{II}$, Ni^{II} , Cu^{II} , Zn^{II} .

Reference

- [1]. Gravatt GL Baguley, Bc Wilson. "Synthesis and antitumor activity of DNA minor groove-targeted aniline mustard analogues of pibenzimol". J.Med.Chem 1994; 37: 4338. http://dx.doi.org/10.1021/jm00051a010
- [2]. M. Gabaa, P. Gabaa, D. Uppala, N. Dhingrac, M. S. Bahiad, O. Silakarid, C. Mohan, "Benzimidazole derivatives": search for GI-friendly anti-inflammatory analgesic agents, Acta. Pharm. Sin B. 5 (2015) 337-342.
- [3]. S. A. H. El-Feky, Z. K. A. El-Samii, N. A. Osman, J. Lashine, M. A. Kamel, H. K. Thabet, "Synthesis, molecular docking and anti-inflammatory screening of novel quinoline incorporated pyrazole derivatives using the Pfitzinger reaction II", Bioorg. Chem. 58 (2015)104-116.
- [4]. R. S. Kankate a, P. S. Gide, D. P. Belsare, "Design, synthesis and antifungal evaluation of novel benzimidazole tertiary amine type of fluconazole analogues", Arabian J. Chem. (2015) http://dx.doi.org/10.1016/j.arabjc.2015.02.002.
- [5]. C. W. Evans, C. Atkins, A. Pathak, B. E. Gilbert, J. W. Noah, "Benzimidazole analogs inhibit respiratory syncytial virus G protein function", Antiviral. Res. 121 (2015) 31-38.
- [6]. M. C. Sharma, S. Sharma, N. K. Sahu, D. V. Kohli, "3D QSAR kNN-MFA studies on 6-substituted benzimidazoles derivatives as nonpeptide angiotensin II receptor antagonists": A rational approach to Anti-hypertensive agents, J. Saudi. Chem. Soc. 17 (2013) 167-176.
- [7]. C. G. Opez, F. V. Albores, V. G. Prieto, M. Ruocco, M. Lorito, "Changes in Trichoderma asperellum enzyme expression during parasitism of the cotton root rot pathogen Phymatotrichopsis omnivore", Fungal. Biol. 119 (2015) 264-273.
- [8]. Z. Zhang, K. K. Ojo, S. M. Johnson, E. T. Larson, P. H. J. A. Geiger, A. C. Gonzalez, A. C.White, M. Parsons, E. A. Merritt, D. J. Maly, C. L. M. J. Verlinde, W. C. V. Voorhis, E. Fan, "Benzoylbenzimidazole based selective inhibitors targeting cryptosporidium parvum and toxoplasma gondii calcium-dependent protein kinase-1", Bioorg. Med. Chem. Lett. 22 (2012) 5264-5267.

- [9]. K. S INDALKAR, C. K KHATRI and G. U CHATURBHUJ, "Rapid, efficient and eco-friendly procedure for the synthesis of quinoxalines under solvent-free conditions using sulfated polyborate as a recyclable catalyst", J. Chem. Sci. Vol. 129, No. 2, February 2017, pp. 141–148.
- [10]. P. Li, Y. Zhu, S. He, J.Fan, Q. Hu, and Y. Cao, "Development and Validation of a High-Performance Liquid Chromatography Method for the Determination of Diacetyl in Beer Using 4-Nitro-ophenylenediamine as the Derivatization Reagent". dx.doi.org/10.1021/jf3007163 | J. Agric. Food Chem. 2012, 60, 3013–3019.
- [11]. Poonia NS, Truter MR, J Chem Soc Dalton Trans 16: 1791, (1972).
- [12]. T. Narsinghani, R. Sharma, "Synthesis, anti-inflammatory activities and docking studies of amide derivatives of meclofenamic acid". Chem. Pap. (2016).
- [13]. R. S. Azarudeen, A. R. Burkanudeen, "Synthesis, Spectral, Morphology, Thermal Degradation Kinetics and Antibacterial Studies of Terpolymer Metal Complexes". J Inorg Organomet Polym (2012) 22:791– 806.
- [14]. J. Lu, J. Guo, W. Sang, H. Guo, "Mixed-ligand oxovanadium complexes incorporating Schiff base ligands: synthesis, DNA interactions, and cytotoxicities". Transition Met Chem (2013) 38:481–488
- [15]. T.G. Ros, M.K. van der Lee, A.J. van Dillen, J.W. Geus, D.C. Koningsberger. "Rhodium complexes with N-phenyl anthranilic acid ligands as catalysts for hydrogenation". Journal of Molecular Catalysis A: Chemical 186 (2002) 13–24
- [16]. P. C.R. Soares-Santos, R. A. S. Ferreira, T. Trindade, L. D. Carlos, H. I.S. Nogueira. "Terbium(III) complexes of 2-aminonicotinic, thiosalicylic and anthranilic acids: synthesis and photoluminescence properties". Journal of Alloys and Compounds 451 (2008) 575–577
- [17]. E. C. Brien, E. Farkas, M. J. Gil, D. Fitzgerald, A. Castineras, K. B. Nolan. "Metal complexes of salicylhydroxamic acid (H₂Sha), anthranilic hydroxamic acid and benzohydroxamic acid. Crystal and molecular structure of [Cu(phen)₂(Cl)]ClPH₂Sha, a model for a peroxidaseinhibitor Complex". Journal of Inorganic Biochemistry 79 (2000) 47–51
- [18]. A. García-Raso, J. J. Fiol, B. Adrover, P. Tauler, A Pons, I. Mata, "E. Espinosa and E. Molins", Polyhedron, 22, 3255 (2003).
- [19]. S. Gaubert, M. Bouchaut, V. Brumas, and G. Berthon, "Copper--ligand interactions and the physiological free radical processes. Part 3. Influence of histidine, salicylic acid and anthranilic acid on copper-driven Fenton chemistry in vitro.". Free Radic Res., 2000 May;32(5):451-61.
- [20]. M. k. Hassan. "Dioxouranium(VI) mixed ligand complexes containing o-substituted benzoic zcid and α-amino acids". Transition Met. Chem, 16, 618-621 (1991).
- [21]. D.A.Skooge; "Fundamentals of Analytical Chem." 5thEd., New-York, 87, p:24411, 1988.)
- [22]. F. Kratz, B. Nuber, J. Weib and B.K. "Keppler. Synth. Inorg. Met". Org. Chem. 21, 1601-1613 (1991).
- [23]. Cathrine A. Southern[†] and Donald H. Levy. "Electronic and Infrared Spectroscopy of Anthranilic Acid in a Supersonic Jet". J. Phys. Chem. A 2003, 107, 4032-4040
- [24]. W. brzyska, Z. rzaczynska "Complexes of Heavy Lanthanides With o-Aminobenzoic Acid" Monatshefte fur Chemie 119, 147-156 (1988).
- [25]. M. Rrichenbacher and J. Popp. "challenges in molecular structure determination", P.108-109, 2012.