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Abstract 

There is no doubt that semiconductors changed the world beyond anything that could have been imagined 

before them. Although people have probably always needed to communicate and process data, it is thanks to the 

semiconductors that these two important tasks have become easy and take up infinitely less time than, e.g., at 

the time of vacuum tubes. Semiconductor materials are the building blocks of the entire electronics and 

computer industry. Small, lightweight, high speed, and low power consumption devices would not be possible 

without integrated circuits (chips), which consist of semiconductor materials. This paper provides a general 

discussion of semiconductor materials, their history, classification and the temperature effects in 

semiconductors. In this section we provide details about the impact of temperature on the MOSFET energy band 

gap, carrier density, mobility, carrier diffusion, velocity saturation, current density, threshold voltage, leakage 

current and interconnect resistance. We also provide the applications of semiconductor materials in different 

sectors of modern electronics and communications.  

Keywords: Semiconductor; History of Semiconductor; Temperature effects in semiconductors; Applications of 

Semiconductors  

1.  Introduction 

There are certain substances that are neither good conductors (metals) nor insulators (glass). A substance which 

has crystalline structure and contains very few free electrons at room temperature is called semiconductors. At 

room temperature, it behaves like an insulator. Its resistivity lies between that of conductor and insulator. If 

suitable impurities are added to the semiconductors, controlled conductivity can be provided. Some examples of 

semiconductors are silicon, germanium, carbon etc. Semiconductors are the basic building block of modern 

electronics, including transistors, solar cells, light-emitting diodes (LEDs), and digital and analog integrated 

circuits. The modern understanding of the properties of a semiconductor lies on quantum physics to explain the 

movement of electrons and holes inside a crystal structure and also in a lattice. An increased knowledge of 

semiconductor materials and fabrication processes has made possible continuing increases in the complexity and 
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speed of microprocessors. The electrical conductivity of a semiconductor material increases with increasing 

temperature, which is behavior opposite to that of a metal. Semiconductor devices can display a range of useful 

properties such as passing current more easily in one direction than the other, showing variable resistance, and 

sensitivity to light or heat. Because the electrical properties of a semiconductor material can be modified by 

controlled addition of impurities or by the application of electrical fields or light, devices made from 

semiconductors can be used for amplification, switching, and energy conversion. Current conduction in a 

semiconductor occurs through the movement of free electrons and "holes", collectively known as charge 

carriers. Adding impurity atoms to a semiconducting material, known as "doping", greatly increases the number 

of charge carriers within it. When a doped semiconductor contains mostly free holes it is called "p-type", and 

when it contains mostly free electrons it is known as "n-type". The semiconductor materials used in electronic 

devices are doped under precise conditions to control the location and concentration of p- and n-type dopants. A 

single semiconductor crystal can have many p- and n-type regions; the p–n junctions between these regions are 

responsible for the useful electronic behavior. Some of the properties of semiconductor materials were observed 

throughout the mid 19th and first decades of the 20th century. Development of quantum physics in turn allowed 

the development of the transistor in 1948. Although some pure elements and many compounds display 

semiconductor properties, silicon, germanium, and compounds of gallium are the most widely used in electronic 

devices. A large number of elements and compounds have semiconducting properties, including [1]; certain 

pure elements are found in Group XIV of the periodic table; the most commercially important of these elements 

are silicon and germanium. Silicon and germanium are used here effectively because they have 4 valence 

electrons in their outermost shell which gives them the ability to gain or lose electrons equally at the same time. 

Binary compounds, particularly between elements in groups III and V, such as gallium arsenide, groups II and 

VI, groups IV and VI, and between different group IV elements, e.g. silicon carbide. Certain ternary 

compounds, oxides and alloys. Organic semiconductors, made of organic compounds. Most common 

semiconducting materials are crystalline solids, but amorphous and liquid semiconductors are also known. 

These include hydrogenated amorphous silicon and mixtures of arsenic, selenium and tellurium in a variety of 

proportions. These compounds share with better known semiconductors the properties of intermediate 

conductivity and a rapid variation of conductivity with temperature, as well as occasional negative resistance. 

Such disordered materials lack the rigid crystalline structure of conventional semiconductors such as silicon. 

They are generally used in thin film structures, which do not require material of higher electronic quality, being 

relatively insensitive to impurities and radiation damage. Now-a-days semiconductor materials are used in every 

sector of modern technology. In technical purpose the high temperature materials are used widely. Therefore it 

is needed to increase the temperature of semiconducting materials. For this reasons the different properties of 

these materials varied with temperature. In this paper we review the classification of semiconductors, early 

history of semiconductors and temperature effects in semiconductors.  The rest of the paper is organized as 

follows: in Sec. 2, history of semiconductor is given; Sec. 3 classification of semiconductor is given; Sec.4 

temperature effects in semiconductors are given. Finally, the conclusion is given in Sec.5. 

2. Early history of semiconductors 

The history of the understanding of semiconductors begins with experiments on the electrical properties of 

materials. The properties of negative temperature coefficient of resistance, rectification, and light-sensitivity 
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were observed starting in the early 19th century. In 1833, Michael Faraday reported that the resistance of 

specimens of silver sulfide decreases when they are heated. This is contrary to the behavior of metallic 

substances such as copper. In 1839, A. E. Becquerel reported observation of a voltage between a solid and a 

liquid electrolyte when struck by light, the photovoltaic effect. In 1873 Willoughby Smith observed that 

selenium resistors exhibit decreasing resistance when light falls on them. In 1874 Karl Ferdinand Braun 

observed conduction and rectification in metallic sulphides, and Arthur Schuster found that a copper oxide layer 

on wires has rectification properties that ceases when the wires are cleaned. Adams and Day observed the 

photovoltaic effect in selenium in 1876[2]. A unified explanation of these phenomena required a theory of solid-

state physics which developed greatly in the first half of the 20th Century. In 1878 Edwin Herbert Hall 

demonstrated the deflection of flowing charge carriers by an applied magnetic field, the Hall Effect. The 

discovery of the electron by J.J. Thomson in 1897 prompted theories of electron-based conduction in solids. 

Karl Baedeker, by observing a Hall Effect with the reverse sign to that in metals, theorized that copper iodide 

had positive charge carriers. Johan Koenigsberger classified solid materials as metals, insulators and "variable 

conductors" in 1914. Felix Bloch published a theory of the movement of electrons through atomic lattices in 

1928. In 1930, B. Gudden stated that conductivity in semiconductors was due to minor concentrations of 

impurities. By 1931, the band theory of conduction had been established by Alan Herries Wilson and the 

concept of band gaps had been developed. Walter H. Schottky and Nevill Francis Mott developed models of the 

potential barrier and of the characteristics of a metal-semiconductor junction. By 1938, Boris Davydov had 

developed a theory of the copper-oxide rectifer, identifying the effect of the p–n junction and the importance of 

minority carriers and surface states [3]. Agreement between theoretical predictions (based on developing 

quantum mechanics) and experimental results was sometimes poor. This was later explained by John Bardeen as 

due to the extreme "structure sensitive" behavior of semiconductors, whose properties change dramatically 

based on tiny amounts of impurities [3] .Commercially pure materials of the 1920s containing varying 

proportions of trace contaminants produced differing experimental results. This spurred the development of 

improved material refining techniques, culminating in modern semiconductor refineries producing materials 

with parts-per-trillion purity. Devices using semiconductors were at first constructed based on empirical 

knowledge, before semiconductor theory provided a guide to construction of more capable and reliable devices. 

Alexander Graham Bell used the light-sensitive property of selenium to transmit sound over a beam of light in 

1880. A working solar cell, of low efficiency, was constructed by Charles Fritts in 1883 using a metal plate 

coated with selenium and a thin layer of gold; the device became commercially useful in photographic light 

meters in the 1930s [3]. Point-contact microwave detector rectifiers made of lead sulfide were used by Jagadish 

Chandra Bose in 1904; the cat's-whisker detector using natural galena or other materials became a common 

device in the development of radio. However, it was somewhat unpredictable in operation and required manual 

adjustment for best performance. In 1906 H.J. Round observed light emission when electric current passed 

through silicon carbide crystals, the principle behind the light emitting diode. Oleg Losev observed similar light 

emission in 1922 but at the time the effect had no practical use. Power rectifiers, using copper oxide and 

selenium, were developed in the 1920s and became commercially important as an alternative to vacuum tube 

rectifiers [2, 3]. In the years preceding World War II, infra-red detection and communications devices prompted 

research into lead-sulfide and lead-selenide materials. These devices were used for detecting ships and aircraft, 

for infrared rangefinders, and for voice communication systems. The point-contact crystal detector became vital 
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for microwave radio systems, since available vacuum tube devices could not serve as detectors above about 

4000 MHz; advanced radar systems relied on the fast response of crystal detectors. Considerable research and 

development of silicon materials occurred during the war to develop detectors of consistent quality [3]. Detector 

and power rectifiers could not amplify a signal. Many efforts were made to develop a solid-state amplifier, but 

these were unsuccessful because of limited theoretical understanding of semiconductor materials [3]. In 1922 

Oleg Losev developed two-terminal, negative resistance amplifiers for radio; however, he perished in the Siege 

of Leningrad. In 1926 Julius Edgard Lilenfeld patented a device resembling a modern field-effect transistor, but 

it was not practical. R. Hilsch and R. W. Pohl in 1938 demonstrated a solid-state amplifier using a structure 

resembling the control grid of a vacuum tube; although the device displayed power gain, it had a cut-off 

frequency of one cycle per second, too low for any practical applications, but an effective application of the 

available theory [3]. At Bell Labs, William Shockley and A. Holden started investigating solid-state amplifiers 

in 1938. The first p–n junction in silicon was observed by Russell Ohl about 1941, when a specimen was found 

to be light-sensitive, with a sharp boundary between p-type impurity at one end and n-type at the other. A slice 

cut from the specimen at the p–n boundary developed a voltage when exposed to light. In France, during the 

war, Herbert Mataré had observed amplification between adjacent point contacts on a germanium base. After the 

war, Mataré's group announced their "Transistron" amplifier only shortly after Bell Labs announced the 

"transistor". 

3. Classification of Semiconductors 

Semiconductors may be classified broadly as 

I. Intrinsic semiconductor 

II. Extrinsic semiconductor 

I. Intrinsic semiconductor: 

There are two ways to define an intrinsic semiconductor. In simple words, an intrinsic semiconductor is one 

which is made up of a very pure semiconductor material. In more technical terminology it can stated that an 

intrinsic semiconductor is one where the number of holes is equal to the number of electrons in the conduction 

band. The forbidden energy gap in case of such semiconductors is very minute and even the energy available at 

room temperature is sufficient for the valence electrons to jump across to the conduction band. Another 

characteristic feature of an intrinsic semiconductor is that the Fermi level of such materials lies somewhere in 

between the valence band and the conduction band. This can be proved mathematically which is beyond the 

scope of discussion in this article. In case you are not familiar with the term Fermi level, it refers to that level of 

energy where the probability of finding an electron is 0.5 or half (remember probability is measured on a scale 

of 0 to 1). If a potential difference is applied across an intrinsic semiconductor, electrons will move towards 

positive terminal while holes will drift towards negative terminal. The total current inside the semiconductor is 

the sum of the current due to free electrons and holes. If the temperature of the semiconductor increases, the 

number of hole-electron pairs increases and current through the semiconductor increases. If temperature falls, 

the reverse happens. 
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     Figure 1. Intrinsic semiconductor                                             Figure 2. Extrinsic semiconductor 

 

II. Extrinsic semiconductor 

These are semiconductors in which the pure state of the semiconductor material is deliberately diluted by adding 

very minute quantities of impurities. To be more specific, the impurities are known as dopants or doping agents. 

It must be kept in mind that the addition of such impurities is really very minuscule and a typical dopant could 

have a concentration of the order of 1 part in a hundred million parts or it is equivalent to 0.01 ppm. The 

materials chosen for doping are deliberately chosen in such a manner that either they have 5 electrons in their 

valence band, or they have just 3 electrons in their valence band. Accordingly such dopants are known as 

pentavalent or trivalent dopants respectively. The type of dopant also gives rise to two types of extrinsic 

semiconductors namely P-type and N-type semiconductors. A pentavalent dopant such as Antimony are known 

as donor impurities since they donate an extra electron in the crystal structure which is not required for covalent 

bonding purposes and is readily available to be shifted to the conduction band. This electron does not give rise 

to a corresponding hole in the valence band because it is already excess, therefore upon doping with such a 

material, the base material such as Germanium contains more electrons than holes, hence the nomenclature N-

type intrinsic semiconductors. On the other hand when a trivalent dopant such as Boron is added to Germanium 

additional or extra holes get formed due to the exactly reverse process of what was described in the upper 

section. Hence this dopant which is also known as acceptor creates a P-type semiconductor. Hence electrons are 

the majority carriers (of current) in N-type while holes are minority carriers. The reverse is true of P-type 

semiconductors. Another difference is that whereas the Fermi level of intrinsic semiconductors is somewhere 

midway between the valence band and the conduction band, it shifts upwards in case of N-type while it drifts 

downward in case of P-type due to obvious reasons. P-type semiconductor is shown in (figure 2.1) and N-type 

semiconductor is shown in (figure 2.2). 

4. Semiconductor Materials  

Semiconductors materials can be able to conduct electric current, can be easily regulated, and can act as both 
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insulators and conductors. These qualities have made semiconductors useful in the electronics field since its 

inception. The conductivity of the semiconductor is generally sensitive to temperature, illumination, magnetic 

field, and minute amount of impurity atoms. This sensitivity in conductivity makes the semiconductor one of the 

most important materials for electronic applications. Table 1 shows a portion of the periodic table related to 

semiconductors. Table 2 shows a list of some of the element and compound semiconductors. 

 

 

 

 

 

figure 2.1. P- type semiconductor                                                    figure 2.2.  N- type Semiconductor 

 

Table 1. Portion of the periodic table related to semiconductors 

 

 

Table 2.  Some the element and compound semiconductors 
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5. Temperature Effects in Semiconductors  

In this section we provide details about the impact of temperature on the MOSFET energy band gap, carrier 

density, mobility, carrier diffusion, velocity saturation, current density, threshold voltage, leakage current and 

interconnect resistance. 

5.1 Energy Band Gap 

Temperature affects the properties of electronic systems in a number of fundamental ways. The most 

fundamental of properties is the energy band gap, Eg, which is affected by temperature according to 

The Varshni equation [4]. 

                                                     (1) 

    

Where Eg (0) is the band gap energy at absolute zero on the Kelvin scale in the given material, and  αE and βE 

are material-specific constants. Table 3 [2] provides these constants for three material structures.  

Table 3. Varshni equation constants for GaAs, Si and Ge 

 

 

 

Table 1 and (1) are used to generate Figure 3, which shows how the band gaps of the three materials decrease as 

temperature increases (the labeled points are the band gap of each material at room temperature). 

 

 

 

 

 

 

Figure 3. Energy band gap temperature dependence of GaAs, Si, and Ge. 
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5.2 Semiconductor Conductivity  

The conductivity of a semiconductor is given by: 

σ = q (μn n + μP p)                                                                                                                         (2) 

where μn and μP refer to the mobilities of the electrons and holes, and n and p refer to the density of electrons 

and holes, respectively. Recall that in a doped semiconductor, majority carriers greatly outnumber minority 

carriers, so the Equation 2 can be reduced to a single term involving the majority carrier. Remember that 

Equation (2) showed that conductivity depends on both carrier concentration and mobility, so there are a variety 

of possible temperature dependencies for conductivity. For instance, at fairly low temperature (less than 200 K), 

the dominant scattering mechanism might be impurity scattering (μ α T 3 / 2) while the carrier concentration is 

determined by extrinsic doping (n = ND
+), therefore, conductivity would be seen to increase with temperature (σ 

α T 3/2). Other possibilities, depending on the material, doping, and temperature will show different temperature 

dependence of conductivity. One particularly interesting case occurs at high temperatures (above 400k or 

higher) when carrier concentration is intrinsic and mobility is dominated by lattice scattering (μ lattice α T −3 / 2). 

In such cases, the conductivity can easily be shown to vary with temperature as: 

 

                                                                                                                                              (3) 

 

In this case, conductivity depends only on the semiconductor band gap and the temperature. In this temperature 

range, measured conductivity data can be used to determine the semiconductor band gap energy, Eg. 

5.3 Carrier Density 

Carrier densities affect electrical and thermal conductivity, and are a function of the effective density of states in 

the appropriate band (conduction for n-type, valence for p-type), the Fermi energy level in the material (which is 

a function of temperature and dopant concentrations), and the temperature as given by the following equations: 

                                                                                                                                   

                                                                                                                                                               (4)  

 

     (5) 

where n is the electron density, p is the hole density, NC is the density of states in the conduction band, NV is the 

density of states in the valence band, EC is the conduction band energy level, EV is the valence band energy 

level, EF is the Fermi energy level, k = 1.38.10-23 J/K is the Boltzmann constant, and T is temperature. The 
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temperature dependence of carrier density is shown in Figure 4 for a doped material. In the ionization region, 

there is only enough latent energy in the material to push a few of the dopant carriers into the conduction band. 

In the extrinsic region, which is the desired region of operation, the carrier concentration is flat over a wide 

range of temperatures; in this region, all of the dopant carriers have been energized into the conduction band 

(i.e. n = ND) and there is very little thermal generation of additional carriers. As the temperature increases, the 

extrinsic region turns into the intrinsic region, and the number of thermally generated carriers exceeds the 

number of donor carriers. The intrinsic carrier concentration in a material ni is generally much smaller than the 

dopant carrier concentration at room temperature, but ni = (n·p) has a very strong temperature dependence [5] 

 

    (6) 

where Eg0 is the energy band gap at T = 0 K. Depending upon the dopant concentration, the number of thermally 

generated carriers can exceed the number of dopant-generated carriers, increasing the potential for thermal 

variation problems. 

 

 

 

 

                       

 

Figure 4. Temperature dependence of n in a doped semiconductor 

5.4 Mobility 

We pay particular attention to the temperature and electric field dependence of mobility, as mobility is one of 

the two main factors (the other is threshold voltage) resulting in the MOSFET temperature behavior shown later 

in this chapter. The carrier mobility, μ (cm2/V.s), describes the drift velocity of a particle in an applied electric 

field. Under small to moderate electric fields, μ= νd/ξ where νd is the drift velocity, and ξ is the electric field. 

MOSFET mobility has very complex temperature dependence, defined by the interplay of the following four 

scattering parameters: phonon scattering μph, surface roughness scattering μsr, bulk charge Coulombic scattering 

μcb, and interface charge Coulombic scattering mint [6]. Each of these scattering parameters is related to the 

temperature of the material, T, and the effective transverse electric field in the channel, ξeff, which is 

approximated as [7, 8]  
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                              (7) 

 

where η is a constant (η ≈ 0.4 in PMOS devices and η ≈ 0.5 in NMOS devices), Qinv is the inversion layer 

charge density, Qb is the substrate depletion charge density, and εSi = 11.7 is the relative permittivity of Silicon. 

This approximation is not very convenient for circuit analysis, so ξeff is also approximated in terms of the gate-

source voltage Vgs, the threshold voltage VT, and gate oxide thickness Tox. The Berkeley Short-Channel IGFET 

Model (BSIM), one of the most widely used simulation models, combines these four scattering parameters into 

an effective mobility, μeff [6] using Matthiessen’s rule 

 

(8)                                                                                                                                                                                 

 

Phonon scattering refers to the potential for an electron to be scattered by a lattice vibration. As temperature 

increases, lattice vibrations increase and the probability of an electron being scattered by the lattice increases; 

thus, high temperature mobilities are limited by phonon scattering (μph∞ T-3/2), causing mobility to decrease as 

temperature increases as shown in Figure 5a. Surface roughness scattering becomes dominant when high electric 

fields pull electrons closer to the Si/SiO2 surface (μsr ∞ ξeff -2.1). 

At low temperatures, electrons move more slowly, and lattice vibrations are small as well; thus, the ion impurity 

forces which have little impact on high-energy particles become the dominant limit to mobility. In this regime, 

decreasing temperature extends the amount of time electrons spend passing an impurity ion, causing mobility to 

decrease as temperature decreases (μcb ∞T). This effect is emphasized in the high dopant concentration curves 

shown in Figure 4a, where mobility decreases with decreasing temperature (e.g. the μn = 1.3·1017 dopant 

concentration line below ~30 K). The electric field dependence of mobility is shown in Figure 5b. In bulk 

Coulombic scattering, increasing ξeff increases the charge density in the channel; the associated charge screening 

reduces the impact of μcb (∞ ξeff 2). At low temperatures, the interface charges have two conflicting dependences. 

Reduced temperature reduces the carriers’ thermal velocity, which increases the impact of interface charges; 

however, the reduced thermal velocity also reduces the screening effect [9], and this reduction in screening 

dominates the temperature dependence (μint ∞T-1). The electric field screening effect is also weakened by the 

reduced thermal velocity (μint / ξeff, not ξeff 2 as in the μcb limit). In this paper, we consider devices operating in 

the phonon scattering limit, with temperatures >200 K; thus, mobility will decrease as temperature increases. 

The temperature dependence of mobility plays a major role in temperature-aware system design. In room 

temperature Si, the electron mobility, μn, is nearly three times as large as the hole mobility, μp, with μn = 1,350 

cm2/V.s and μp = 480 cm2/V.s. 
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Figure 5.  (a) Temperature dependence of electron and hole mobilities in Si for different dopant concentrations 

[5], (b) Field dependence of mobility [10] 

5.5 Carrier Diffusion 

Diffusion is the movement of particles from a region of high concentration to a region of low concentration. 

Carrier diffusion coefficients Dn and Dp (for electrons and holes, respectively) are related to mobility by the 

Einstein relationship 

                                                                        D
µ

= kT
q

                                                                                (9) 

Here, q is the charge on an electron (1.6.10 -19 C), and kT/q is an important value known as the thermal voltage, 

ϕT. At room temperature (300 K), ϕT  =0.0259 V. Dn and Dp in room temperature silicon are 36 and 12 cm2/s, 

respectively. 

5.6 Velocity Saturation 

Although saturation velocity has been recently found to be a dominant temperature dependent parameter, 

notable work had been performed in this area as far back as 1970 [11] using device lengths of 10 mm. In the 

BSIM4 device model, the impact of temperature on velocity saturation νsat is modeled by [12] 

 

            (10) 
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where νsat0 is the saturation velocity at nominal temperature (T0) and ανsat is the saturation velocity temperature 

coefficient. Qualitatively, velocity saturation is the point at which increases in energy no longer cause carrier 

velocity to increase; instead, the additional energy is lost to phonon generation through lattice interactions. The 

devices operate in the velocity saturation regime; thus, the impact of temperature on saturation velocity 

(increasing temperature decreases vsat) is one of the most important criteria affecting the overall impact of 

temperature on device current. 

5.7 Current Density 

The temperature dependence of the carrier concentrations, mobilities and diffusion coefficients affect the 

temperature behavior of the carrier current densities, with the carrier densities defined by the following formulas 

[13]: 

                                                                 (11) 

  

where JN and JP are the electron and hole current densities, respectively. The first term in each equation is the 

drift component of the total current, with μn and μp corresponding to the electron and hole mobilities, 

respectively; ξ is the electric field. The second term in each equation is the diffusion component of the total 

current, with ∇n and ∇p corresponding to the electron and hole concentration gradients (if there is no 

concentration gradient, there is no diffusion). The temperature dependent parameter in the second term is the 

diffusion coefficient. Increased temperature increases particle kinetic energy, increasing the diffusion 

component of total current. The drift component of the total current has two temperature dependent parameters, 

the mobility and the carrier density. The mobility term was shown in Figure 4 to decrease as temperature 

increases (in the lattice vibration-limited case) while the carrier density remains nearly fixed with temperature 

over the extrinsic range (our intended range of operation), as indicated by Figure 3. Thus, we determine that the 

drift component of the total current decreases as temperature increases. The drift and diffusion currents have 

opposing temperature dependencies, which causes the net current change to depend on the applied electric field. 

In the high-field (drift-dominated) case, current decreases as temperature increases; in the low-field (diffusion-

dominated) case, current increases as temperature increases. However, if the system in question is a multi-

voltage system, and the system has both drift- and diffusion-dominated components, the impact of temperature 

variation may become less well-defined. The difference between a drift-dominated system and a diffusion-

dominated system is defined by the threshold voltage, VT. 

5.8 Threshold Voltage 

The MOSFET threshold voltage is given by [5] 

    (12) 
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where VFB = ϕgs-(Qss/Cox) is the flat band voltage, with the gate-substrate contact potential ϕgs = ϕT.ln 

(NANG/ni
2), NA and NG are the substrate and gate doping concentrations, respectively, Qss the surface charge 

density, and Cox the oxide capacitance; γ = Cox(2qεSiNA)0.5 is a body effect parameter, with εSi the relative 

permittivity of Si; ϕF = ϕT ·ln(NA/ni) is the Fermi energy with the thermal voltage ϕT = kT/q, and ni the intrinsic 

carrier concentration of Si. Of the parameters in (12), ϕgs and ϕF vary with temperature (each contains ϕT and ni 

terms). The threshold voltage temperature dependence ∂VT/∂T may thus be written as [14] 

 

                             (13) 

where the temperature dependencies of ϕgs and ϕF are [14] 

 

                                                                                                                                                               (14) 

 

Filanovsky [14] used empirical parameters from a 0.35 μm CMOS technology to determine that the three terms 

in (13) are -3.1, 2.7, and -0.43 mV/K, resulting in a net threshold temperature coefficient of -0.83 mV/K. The 

threshold voltage in a MOSFET is commonly modeled to decrease linearly with increasing temperature; the 

parameter is plotted in Figure 6 over a range of oxide thicknesses d and dopant concentrations NA. 

5.9 Leakage Current  

Subthreshold leakage current Isub is exponentially dependent on temperature, as shown in Figure 7; a common 

rule of thumb is that leakage current doubles for every 10οC increase in temperature [15]. When VGS = 0, Isub 

may be represented by the Shockley diode model 

 

                                                                                                                                                          (15) 

            

                                                                                                                                                          (16) 

                                                                                                                                                                                                                             

where I0 is the reverse saturation current [15], A is a constant, and VDS is the drain source voltage. Recalling that 

ϕT = kT/q, we see that I0 is responsible for the exponential temperature dependence shown in Figure 7. The 

temperature dependence of gate leakage current has been shown to be very minor compared to that of sub-

62 
 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2014) Volume 7, No  1, pp 50-70 

 

threshold leakage current [16]. 

 

  

 

 

 

Figure 6. Change in threshold voltage temperature dependence at room temperature vs. dopant concentration, 

with oxide thickness d [5]. 

 

 

 

 

 

 

Figure 7. Temperature dependence of sub- threshold leakage current (VGS = 0 V) [17]. 

5.10 Interconnect Resistance 

The interconnect resistance R is related to temperature by 

                                                                                                                                                            (17) 

 

where T is the temperature, R0 is the resistance at nominal temperature T0, and αR is an empirical term named 

the temperature coefficient of resistance. Al and Cu interconnects have similar values of αR —0.004308 and 

0.00401, respectively. Over the military-specified temperature range, Al wire resistances can change by up to 

77.5% while Cu wire resistances can change by up to 72.2%. Interconnect resistance increases with increasing 

temperature, complicating evaluation of the impact of temperature on interconnect links—in these applications, 

the MOSFET currents may either increase or decrease in temperature (as explored in the next subsection), which 

means that the impact of temperature on interconnect resistance can either add to the system temperature 
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dependence or reduce the temperature dependence, depending on the operating conditions. 

6. Applications of Semiconductors  

6.1 Applications of Semiconductors in Electronic Devices  

Semiconductors are the materials that conduct electric current, can be easily regulated, and can act as both 

insulators and conductors. These qualities have made semiconductors useful in the field of electronics. 

Semiconductor devices are all around us. They can be found in just about every commercial product we contact, 

from the family car to the pocket calculator. Today semiconductor devices are omnipresent in a wide range of 

industries, including computers, communications, aerospace, manufacturing, agriculture, and healthcare. 

Semiconductors have made electronic devices – such as MP3 players, HDTVs / TVs, CD players, computers, 

and cell phones –smaller, cheaper, faster, and more reliable.  

Science and industry also depend heavily on semiconductor devices. Research laboratories use these devices in 

all sorts of electronic instruments to perform tests, measurements, and numerous other experimental tasks. 

Industrial control systems (such as those used to manufacture automobiles) and automatic telephone exchanges 

also use semiconductors. Even today heavy-duty versions of the solid-state rectifier diode are being use to 

convert large amounts of power for electric railroads. Of the many different applications for solid-state devices, 

space systems, computers, and data processing equipment are some of the largest consumers. 

In the following section we will explore the most important applications: 

1- Flat panel displays: Computers, television, mobile handheld devices 

2- High brightness LEDs: olid state lighting, large display panels, automotive applications, LCD 

backlighting. 

3- Imaging array sensors: Digital cameras. 

4- Diode lasers. 

5- Optical storage, mice. 

6- Robotics. 

7-  Medical Electronics. 

8- Industrial Electronics. 

9- Telecommunications. 

10-  Wireless Communication. 

11- Global Positioning By Satellite (GPS).  

12- Smart Cards. 

13- Memories. 

6.2 Applications of Semiconductors in Solar Cells 

Now-a-days most of the solar cells the absorption of photons, as a  results of the generation of the charge 

carriers, and the subsequent separation of the photo-generated charge carriers take place in semiconductor 
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materials. Therefore, the semiconductor layers are the most important parts of a solar cell and they form the 

central part of the solar cell. There are a number of different semiconductor materials that are suitable for the 

conversion of photons energy into electrical energy. The crystalline silicon (c-Si) solar cell, which dominates the 

PV market at present, has a simple structure, and provides a superior example of a typical solar cell structure. 

Figure 8 shows the essential features of c-Si solar cells. An absorber material is typically a moderately doped p-

type square wafer having thickness around 300 μm and an area of 10 × 10 cm2 or 12.5 × 12.5 cm2. On both sides 

of the c-Si wafer a highly doped layer is formed, n+-type on the top side and p+-type on the back side, 

respectively. These highly doped layers help to separate the photo-generated charge carriers from the bulk of the 

c-Si wafer. The trend in the photovoltaic industry is to reduce the thickness of wafers up to 250 μm and to 

increase the area to 20 × 20 cm2. 

 

 

 

    

 

 

 

Figure 8. A typical structure of a c-Si solar cell. 

In addition to semiconductor layers, solar cells consist of a top and bottom metallic grid or another electrical 

contact that collects the separated charge carriers and connects the cell to a load. Usually, a thin layer that serves 

as an antireflective coating covers the topside of the cell in order to decrease the reflection of light from the cell. 

In order to protect the cell against the effects of outer environment during its operation, a glass sheet or other 

type of transparent encapsulant is attached to both sides of the cell. In case of thin-film solar cells, layers that 

constitute the cell are deposited on a substrate carrier. When the processing temperature during the deposition of 

the layers is low, a wide range of low-cost substrates such as glass sheet, metal or polymer foil can be used. The 

first successful solar cell was made from c-Si and c-Si is still the most widely used PV material. Therefore we 

can use c-Si as an example to explain semiconductor properties that are relevant to solar cell operation. This 

gives us a basic understanding of how solar cells based on other semiconductor materials work. The central 

semiconductor parameters that determine the design and performance of a solar cell are: 

i) Concentrations of doping atoms, which can be of two different types; donor atoms which donate free 

electrons, ND, or acceptor atoms, which accept electrons, NA. The concentrations determine the width of a 

space-charge region of a junction. 
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ii) Mobility, μ, and diffusion coefficient, D, of charge carriers that characterize carriers transport due to drift and 

diffusion, respectively. 

iii) Lifetime, τ, and diffusion length, L, of the excess carriers that characterize the recombination-generation 

processes. 

iv) Band gap energy, Eg, absorption coefficient, α, and refractive index, n, that characterize the ability of a 

semiconductor to absorb visible and other radiation. 

6.3 Applications of Semiconductors in Telecommunications 

The telecommunications industry is growing larger than ever mainly due to the demand for faster information 

transfer. Fiber optic communication is rapidly becoming the backbone for voice, video, and internet data 

transfer. As this industry matures, the components for broadband fiber networking undergo continuous research 

and development. These components include VCSEL and edge-emitting lasers, thin-film DWDM filters and 

waveguides for multiplexing/demultiplexing, EDFA and Raman amplifiers, photodiode detectors, and more. 

Thin films are critical to the performance of these devices. Spectroscopic ellipsometry (SE) is uniquely suited to 

measure both film thickness and refractive index at telecom wavelengths in the infrared. 

Transmitters and Receivers 

Optical communication literally begins and ends with a transmitter and receiver. In the transmitter, lasers 

produce light to travel down the fiber encoded with information. In the end, the receiver converts this light to an 

electronic signal via a photodiode detector. Thin alloy semiconductor films play an important role in both 

components. 

A. Laser Sources 

Semiconductor lasers are designed to operate in the near infrared at 1310 nm or 1550 nm for fiber-optic 

communication. Another important wavelength is 980nm used for pump lasers. Semiconductor lasers create 

light via optical transitions between energy levels in a direct band gap semiconducting film. Ternary and 

quaternary alloy semiconductors offer the flexibility to tune the desired emission wavelength by changing the 

composition of the materials, as the band gap is dependent on the ratio of materials in the alloy. For instance, the 

quaternary material InxGa1-xAsyP1-y can provide laser emission in the 1.1μm < λ < 1.6μm range depending on 

alloy ratio (x and y). Similarly, the ternary material AlxGa1-xAs can be varied for use in pump lasers. 

B. Photodiode Detectors 

The same energy levels that produce laser light will absorb light to excite electrons to an elevated state. 

Absorption frees electrons from their atoms to create a measurable electric current which is directly related to 

the intensity of light shining on the detector. The energy levels adjust with alloy concentration, resulting in 

varying amount of absorption at different wavelengths. This variation in optical properties is described by the 
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material optical constants, commonly known as n and k or ε1 and ε2. The optical constant shape corresponds to 

the material’s electronic transitions. Thus, the optical constants become a “fingerprint” for the semiconductor. 

For example, in AlxGa1-xAs, the direct bandgap shifts toward shorter wavelengths with increasing aluminum 

concentration, x. This is seen in Figure 8 as an absorption edge shift toward shorter wavelengths, along with 

similar shifts in each high-energy transition [19-22]. 

 

Figure 8. Changes in AlxGa1-xAs with alloy ratio, x. 

 

 

Figure 9. Data and fits for bi-layer compound semiconductor 

 

Spectroscopic Ellipsometry 

Spectroscopic ellipsometry takes advantage of the changing optical constants in a semiconductor to determine 

alloy ratio. Accurate alloy ratio measurements require a database of the optical constants for different 
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compositions. Fortunately, the energy bands shift systematically with changing composition. Thus, a series of 

five to ten samples that cover the full range of compositions will provide enough information to setup an alloy 

model. The alloy model creates the correct optical constants for any specified alloy ratio, x. If an alloy ratio is 

specified between two of the original database values, an appropriate interpolation is performed. This is 

enhanced by using the alloyshifting model developed by Snyder. In practice, the optical constants can be 

properly described by simply selecting the correct alloy ratio. In Figure 9, we show the ellipsometric 

measurement from a bi-layer semiconductor stack. Five fit parameters were used to match this data: three layer 

thicknesses (including the surface oxide) and two alloy compositions. The AlGaAs material has a larger 

bandgap than used for source lasers. However, it is acceptable for pump laser wavelengths. The pump laser is 

used to supply energy to EDFA and Raman amplifiers. For example, a pump laser at 980nm can excite Erbium 

to a higher energy state that emits light near 1550nm. 

6.4 Applications of Semiconductors in wireless communications 

The market for the semiconductors that power wireless communications is undergoing dramatic changes. Based 

on the data from strategy Analytics, the estimated overall industry growth rate will average 6 percent from 2011 

to 2015. A large share of that growth will be attributable to two categories: smartphones and connected devices 

such as iPads. Today, mobile application processors operate at 5 to 10 percent of a typical laptop’s computing 

power, yet than gap is rapidly narrowing as smartphones run applications from mobile video to mobile games 

and their energy consumption is lower than laptop’s by a factor of 10 to 30 times.   

Now-a-days semiconductor materials are used at large amount in smartphones and tablet devices and these 

devices are continue to progress toward higher functionality and performance. Toshiba contributes to the 

evolution of the mobile system-involving very high speed files and data transfer with TransferJet™, High 

Efficient and quick Charger with WPC wireless charger and USB charger solution, High quality voice and 

sound with Audio CODECs and Amplifiers for Smart Phone, Tablet PCs and Smart accessories. 

6.5 Applications of Semiconductors in Computers 

Semiconductors are one of the most important enabling technologies for digital computers. They are the 

foundation of all modern electronic devices which use circuitry. These materials were first introduced to 

computing to solve issues related to vacuum tubes used in analog computers. The tubes would often leak, and 

the metals used to transmit electrons within them would frequently burn out. Semiconductors did not suffer 

these issues. Semiconductor materials conduct electrons in an entirely different manner than metals, causing 

them to avoid burn out. Unlike vacuum tubes, semiconductors did not need to warm up over long periods of 

time prior to use. Additionally, they required far less space than a series of vacuum tubes. The first 

semiconductor based transistor was made in 1947. The first integrated circuit based on                         

semiconductor technology followed shortly after, in 1959. All the semiconductor materials are not used in 

computers. The material which has become the standard semiconductor for circuitry is silicon. Silicon is the 

most abundant element in the earth's crust, and is accessible from almost anywhere on earth. This makes silicon 

inexpensive, driving down the cost of computers and other technological devices. Some computers use other 
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semiconductor materials to achieve faster electron conduction speeds. An example is germanium with a small 

concentration of arsenic impurities. While this material achieves faster conduction rates, its cost is significantly 

higher than silicon. 

 7. Conclusion  

Silicon may be considered as the information carrier of our times. In the history of information there were two 

revolutions (approximately 500 years apart). The first was that of Johan Gutenberg who made information 

available to many, the other is the invention of the transistor. Currently the global amount of information 

doubles every year. Many things we are taking for granted (such as, e.g., computers, Internet and mobile 

phones) would not be possible without silicon microelectronics. Electronic circuits are also present in cars, 

home appliances, machinery, etc. Optoelectronic devices are equally important in everyday life, e.g., fiber optic 

communications for data transfer, data storage (CD and DVD recorders), digital cameras, etc. Since the 

beginning of semiconductor electronics the number of transistors in an integrated circuit has been increasing 

exponentially with time. In summary we have presented the outline of semiconductors, their early history and 

classification. We have also studied the temperature effects in semiconductors. The energy band gap, mobility, 

threshold voltage and saturation velocity are decrease with increasing temperature. On the other hand the 

conductivity, carrier density, leakage current and interconnect resistant increase with increasing temperature. 

We have also studied the applications of semiconductors in basic electronic devices, telecommunication and 

wireless systems and finally in solar system. 
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