

POLITECNICO DI TORINO Repository ISTITUZIONALE

Evaluation of shell theory performances via neural networks

Original

Evaluation of shell theory performances via neural networks / Petrolo, M.. - ELETTRONICO. - (2019). ((Intervento presentato al convegno Second International Conference on Mechanics of Advanced Materials and Structures - ICMAMS 2019 tenutosi a Nanjing, China nel 19-22 October 2019.

Availability:

This version is available at: 11583/2763032 since: 2019-10-23T11:37:24Z

Publisher: Erasmo Carrera, Weiqiu Chen, Cun-Fa Gao, J.N. Reddy

Published DOI:10.5281/zenodo.3516599

Terms of use: openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

EVALUATION OF SHELL THEORY PERFORMANCES VIA NEURAL NETWORKS

M. Petrolo

MUL² Group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Italy.

Keywords: Structural Mechanics, Composite Materials, Computational Mechanics

This paper presents a methodology to evaluate the performances of shell theories concerning the accuracy and computational cost. The approach has three components, i.e., the Carrera Unified Formulation (CUF), Axiomatic/Asymptotic Method (AMM), and Artificial Neural Networks (NN). CUF provides governing equations, e.g., for dynamic cases,

$$\mathbf{u}(x,y,z) = F_{\tau}N_{i}(z)\mathbf{u}_{\tau i}(x,y) =>$$

$$\int_{\Omega_{k}A_{k}} \int (\boldsymbol{\delta}\boldsymbol{\epsilon}^{k^{T}}\boldsymbol{\sigma}^{k} + \boldsymbol{\rho}^{k}\boldsymbol{\delta}\boldsymbol{u}^{k^{T}}\ddot{\boldsymbol{u}}^{k})H_{\alpha}^{k}H_{\beta}^{k}d\Omega_{k}dz = 0 => \boldsymbol{m}_{\tau isj}^{k}\ddot{\boldsymbol{u}}_{\tau i}^{k} + \boldsymbol{k}_{\tau sij}^{k}\boldsymbol{u}_{\tau i}^{k} = 0$$
(1)

The AAM leads to the Best Theory Diagram (BTD) by measuring the relevance of generalized displacement variables, see 1. On the BTD, a structural theory is identified by its degrees of freedom (DOF) and the error concerning a given output, e.g., natural frequencies, the transverse displacement, and stress values. The BTD theories provide the best accuracy for a given number of DOF and the minimum computational cost for a given accuracy. The performance of any other structural theory can be evaluated against the BTD. The computation of the BTD can be cumbersome as thousands of static or dynamic

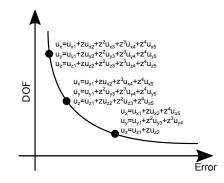


Figure 1: Best Theory Diagram.

analyses are necessary. This paper overcomes this problem by using NN. The NN training makes use of the data from CUF-AAM. The inputs of the NN are combinations of the fifteen generalized displacement variables of a fourth-order model and the thickness ratio,

$$u_{x} = u_{x_{1}} + zu_{x_{2}} + z^{4}u_{x_{5}}$$

$$u_{y} = u_{y_{1}} + zu_{y_{2}} + z^{3}u_{y_{4}}, \quad h/a = 0.1, \quad => \quad [1111110010101000.1] \quad (2)$$

$$u_{z} = u_{z_{1}} + zu_{z_{2}} + z^{2}u_{z_{3}}$$

Where '1' indicates an active variable and '0' a deactivated one, the targets for the NN training are the errors over the first natural frequencies or static responses. The use of NN leads to the BTD with some 10% of the analyses required by the full run case.