

POLITECNICO DI TORINO Repository ISTITUZIONALE

Nanoparticles Transport in Glioblastoma from Intracranially-Administered Thermosensitive Hydrogels

Original Nanoparticles Transport in Glioblastoma from Intracranially-Administered Thermosensitive Hydrogels / Brachi, Giulia; Ciardelli, Gianluca; Rostomily, Robert; Mikheev, Andrei; Mattu, Clara; Ferrari, Mauro ELETTRONICO (2019). ((Intervento presentato al convegno Delivering Therapeutics Across Biological Barriers tenutosi a Dublin (IR) nel May 6- 9,2019.
<i>Availability:</i> This version is available at: 11583/2760993 since: 2019-10-17T11:57:59Z
Publisher: Keystone Symposia
Published DOI:
Terms of use: openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

Nanoparticles transport in Glioblastoma from intracranially-administered thermosensitive hydrogels

Giulia Brachi^{1,2}, Gianluca Ciardelli², Robert Rostomily³, Andrei Mikheev³, Clara Mattu^{1,2}, Mauro Ferrari^{1,4}

- 1. Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- 2. Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, ITALY
- 3. Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- 4. Department of Medicine, Weill Cornell Medical College, New York, NY, USA

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults¹. Intracranial (IC) drug delivery is a promising strategy to treat GBM, because of the potential to bypass the blood-brain barrier (BBB), reduce systemic side effects and enhance drug concentration at the tumor site^{2,3}.

However, high interstitial fluid pressure in GBM results in rapid elimination of IC-administered treatments from the tumor bulk, thus requiring new strategies to increment treatment retention. In this work, thermosensitive hydrogels loaded with multifunctional polymer nanoparticles (HG-NPs) were designed and characterized for IC drug delivery in GBM.

HG-NPs and free NPs were IC administered in tumor free mice and in a highly infiltrative GBM model⁴ (18 days after tumor inoculation) and their transport kinetics were investigated using complementary 2D/3D In vivo imaging (IVIS) system and ex vivo fluorescence imaging.

HG-NPs resulted in reduced treatment clearance after injection, high tissue penetration ability, enhanced tumor coverage and significant increase in long-term retention inside the brain, thus warranting further investigation as novel approach for GBM treatment.

References:

- (1) Nam, J.Y.; J. Oncol. Pract. 2017, 13 (10): 629–638.
- (2) Sarkaria, J. N.; *Neuro. Oncol.* 2018, 20 (2):184-191.
- (3) Bastiancich, C.; *J Control Release*. 2016, 225:283-93.
- (4) Wakimoto, H.; *Cancer Res.* 2010, 69 (8): 3472–3481.