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A method for astral microtubule tracking in fluorescence
images of cells doped with taxol and nocodazole

MarilenaVarrecchia, Joshua Levine, Gabriella Olmo, Marco
Grangetto, Marta Gai and Ferdinando Di Cunto

Abstract—In this paper we describe an algorithm that performs
automatic detection and tracking of astral microtubules in fluorescence
confocal images. This sub-population of microtubules only exists during
and immediately before mitosis and aids in the spindle orientation by
connecting it to the cell cortex. Anomalies in their dynamic behaviour
play a causal role in many diseases, such as development disorders and
cancer.

The main novelty of the proposed algorithm lies in the fact it provides a
fully automated estimation of parameters related to microtubule dynamic
instability (growth velocity, track length and track lifetime), and helps in
understanding the effects of intermediate drug concentrations. Its per-
formance has been objectively assessed using publicly available synthetic
data and largely employed metrics. Moreover, we present experiments
addressing cell cultures doped with different concentrations of taxol
and nocodazole. Such drugs are known to suppress the microtubule
dynamic instability, but their effects at intermediate concentrations are
not completely assessed. The algorithm been compared with other state-
of-the-art approaches, tested on consistent real datasets. The results are
encouraging in terms of performance, robustness and simplicity of use,
and the algorithm is now routinely employed in our Department of
Molecular Biotechnology.

Index Terms—Medical diagnostic imaging, fluorescence confocal mi-
croscopy, image segmentation, microtubules

I. INTRODUCTION

This paper is focused on the estimation of dynamic instability of
astral microtubules (MT) in in vivo fluorescence microscopy images.
MTs are highly dynamic cytoskeleton polymers playing a pivotal
regulatory role in several biological functions: intracellular trafficking
in interphase cells, formation of the mitotic spindle, establishment and
maintenance of cell morphology and motility [1].

The structural elements of MTs are heterodimers composed of two
kinds of globular polypeptides, α- and β-tubulin. Dimers polymerize
into linear proto-filaments; 13 of them, arranged around a hollow
core into head-to-tail arrays, make up the MT.

The intracellular pool of heterodimer subunits and the MT poly-
mers are in a complex, dynamic equilibrium. Polymerization (or
growing) occurs by a nucleation-elongation mechanism; free het-
erodimers are incorporated at the ends of a MT nucleus, thanks to
non-covalent bonds enabled by the GTP (Guanosine-5’-triphosphate)
hydrolysis. On the other hand, the polymerized structure releases
heterodimers into the soluble tubulin pool (shrinking). As MTs are
polarized elements, a plus-end and a minus-end can be recognized.
The plus-end is characterized by a faster growth speed, hence the
MT growth mainly happen at plus-ends.

Two main processes describe the MT dynamics: treadmilling, i.e.
simultaneous growth at one MT end and shortening at the opposite
end, and dynamic instability. This latter represents the spontaneous
switching between sustained growth and rapid shortening (catastro-
phe). In a third possible state, the pause, the MT stops growing but
does not depolymerize; the factors that regulate this state are still not
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fully clear. The MT dynamic behaviour is regulated by the concen-
tration of free tubulin and chemical mediators such as calcium and
magnesium ions. Moreover, microtubule-associated proteins (MAPs)
play a regulatory role, as well as different tubulin isotypes (e.g. γ-
tubulin [2]), post-translational modifications, and tubulin mutations,
responsible of several disorders.

Three types of MTs are recognized [1]. Kinetochore MTs contribute
to the mitotic spindle assembly by linking to the chromosomes via
a particular protein, the kinetochore. Astral MTs interface with the
cellular cortex and are involved in several functions, including the
spindle orientation. They exists during mitosis and in interphase
cells about to enter mitosis. Their MT minus-end is linked to the
cell centrosome (also defined Microtubule Organizing Center), a
membranous structure located near the nucleus in interphase cells,
while the plus-ends extend towards the cell cortex. Non-kinetochore
MTs provide stability to the spindle.

The frequency of catastrophe events and the MT growth rate
affect the effectiveness of the spindle assembly [1]. When the mitotic
spindle is not correctly oriented, abnormal chromosome segregation
can occur, and pathologies can arise, such as the human primary
microcephaly [3], a disorder of the neuro-development in which the
patients are affected by a reduced head circumference with different
degrees of intellectual disability.

MTs represent the target for many cancer chemotherapy drugs, the
Microtubule Targeting Agents (MTA). In 1990s, paclitaxel (taxol) was
a first-line drug for the treatment of many cancers, even though its
application was hampered by heavy toxicity and resistance phenom-
ena. Since then, several other MTAs, characterized by better toxicity
profiles, were introduced in the clinical practice.

The general MTA mechanism is to perturb MT dynamics, so
interfering with the mitotic spindle formation, arresting the cell cycle
in mitosis, and possibly promoting apoptosis. They can be broadly
grouped in MT stabilizing and destabilizing agents. Generally
speaking, both these actions lead to a reduction of the MT dynamics.
However, recent in vitro experiments have shown that, in the presence
of given End-Binding (EB) proteins, low doses of MTAs can
increase the MT dynamic instability instead. In any case, the MTA
effects are highly concentration-dependent. In [4], a mathematical
model describing MT dynamics is proposed, and applied to estimate
the catastrophe frequencies in the presence of several molecules.
The model shows that MTAs and EBs are likely to interact in
modifying the MT dynamic instability; however, the MT response
to intermediate MTA concentrations is not completely clarified.

Subcellular components such as MTs, as well as their dynamic
behaviour, can be analyzed in vivo using confocal laser scanning
microscopy (CLSM). Thanks to a point illumination source and a
pinhole in an optically conjugate plane in front of the detector,
it is able to suppress the out-of-focus signal, achieving an optical
resolution much better than in wide-field microscopy. This comes at
the expenses of a decreased image intensity, as a large percentage
of light is blocked at the pinhole; actually, long exposure times
are often required. As CLSM focuses a narrow light beam at a
specific depth level, it achieves an extremely precise depth of focus.
Multiple images at different depths in a sample can be captured, so
enabling the reconstruction of three-dimensional structures (optical
sectioning). The focal plane thickness is directly proportional to the
light wavelength, and inversely proportional to the numerical aperture
of the objective lens, but also depends on the optical properties of
the specimen.

A major step forward in CLSM is related to the discovery of
a naturally fluorescent protein in living organisms, the green fluo-
rescent protein (GFP) [5]. Numerous other markers, with different
spectral properties, have been engineered for labelling various types
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of proteins and cellular structures. Moreover, transgenic techniques
can create organisms that produce their own fluorescent chimeric
molecules, allowing biologists to detect specific genes, evaluate their
kinetic parameters, and quantify the interactions among molecules
[6].

Nevertheless, CLSM it is affected by limitations due to both
instrumentation and samples [5]. The resolution of the system is
limited to about 100 nm, even though it can be improved using
an immersion layer (e.g. oil) between the lens and the sample [5].
Other phenomena that degrade images, namely low signal-to-noise
ratio, variability of the biological samples, photo-bleaching, auto-
fluorescence and photo-toxicity, will be discussed in Sect. III.

MT dynamic features are usually studied in time-lapse images
employing tracers built up with tubulin covalently linked to fluo-
rophores: the fluorescently-tagged End Binding Proteins (EB-EGFP)
[7]. In many experiments, the type 1 and type 3 EGFP (EB1-EGFP
and EB3-EGFP) are employed. Since the available binding sites for
free tubulin heterodimers decrease exponentially along the MT, the
fluorescence profile appears in the images as a comet-shaped object
[8]. The cell cultures addressed in this paper are treated with EB3-
tdTomato, a microtubule plus-end tracking protein (+TIPs) selective
for the MTs plus-ends in the assembly phase. Such a marker allows
one to visualize only the growing MT phase. Other phenomena such
as shrinkages and pauses cannot be directly observed but only be
inferred.

Although, in the last years, several tools have been proposed for
MT tracking, due to the variability in the experimental conditions [5]
the biologists still review the samples manually in many cases. Since
the number of particles to be detected can be as large as several
hundreds, such a manual analysis is extremely time-consuming,
hardly reproducible, strongly affected by inter- and intra-observer
variability.

The objective of our method is to achieve a fully automated
characterization of the dynamic behaviour of astral MTs, taking as
input fluorescence confocal microscopy image stacks, in terms of
MT growth velocity, track length and track lifetime. A major novelty
aspect is that the algorithm is conceived to be an easy-to-use, practical
tool to be employed in the daily activities of a biotechnology lab,
yielding a reliability comparable to that of manual stack analysis,
and requiring little or no intervention by the end-user. Moreover, we
want to assess the effects of different concentrations of MTAs on
cell cultures. In the experiments presented in this paper, we address
two specific MTAs, namely taxol and nocodazole. The goal of this
selection is twofold. From one hand, it allows to assess the algorithm
performance, as the effects of taxol and nocodazole are well known
at high concentrations. On the other hand, the results obtained at
intermediate drug concentrations can help in the interpretation of the
biological effects of such drugs. The effects of other MTAs can be
similarly assessed.

This paper is organized as follows. In Section II an overview of
the available approaches for detecting and tracking MTs in time-lapse
images is discussed. In Section III the dataset used in this work is
presented. Section IV describes the developed algorithm. In Section
V the obtained results are presented, and in Section VI conclusions
are drawn.

II. MTS DETECTION AND TRACKING: STATE OF THE ART

The detection and tracking of different kinds of particles (including
MT) in time-lapse fluorescence image sequences have been addressed
in many studies. Nevertheless, at present there is no standard protocol
to follow [9], [10]. The main reasons can be found in the extreme
variability of the biological processes and the equipment used to
acquire the image sequences. Moreover, even though many proposals

aim at achieving flexibility as for the kind of particles to be tracked
(e.g., MTs, vesicles, viruses), the extremely different nature of both
the particles themselves and the motion they are expected to exhibit,
makes this task even more challenging.
Most proposed algorithms are divided into four steps [6]:

1) Image data pre-processing, mainly devoted to noise reduction.
2) Particle detection, which consists in recognizing and sealing

off the objects of interest from the background on a frame-by-
frame basis.

3) Particle linkage for time-tracking of the previously identified
objects.

4) Post-processing of the results, in order to provide quantitative
information about the biological phenomenon at hand.

Regardless of the adopted solution, the performance of any algo-
rithm in terms of accuracy, robustness and precision gets dramatically
impaired when the signal to noise ratio (SNR) drops at very low levels
[9], [10]. Moreover, the dominant noise that corrupts images is not
additive. Other problems to tackle are the low contrast of the images,
the auto-fluorescent background [11], and the fact that objects might
exit the focal plane during the experiments.

Some methods exploit a Bayesian approach by designing a filter
aiming to predict the particle positions from a series of measurements.
The filter design embeds both the dynamic (representing the spatial-
temporal particle behaviour) and the actual measurement model. The
Kalman filter is addressed [11], which is the optimal estimator of the
state of a linear system when the noise and the error affecting the
models are zero-mean, normally distributed, statistically independent
random variables. However, it achieves good performance even if
these conditions are not exactly fulfilled. The piecewise-stationary
motion model smoother (PMMS) algorithm [12] aims at tracking
several kinds of molecules subject to rapid motion changes in high
density scenarios. A stochastic smoothing stage detects the particles
of interest on a frame-by-frame basis using an iterative approach, and
assuming a Gaussian intensity model. As for tracking and trajectory
reconstruction, an update of the publicly available u-track software
[12] is addressed, including further motion models besides the linear
and Brownian one. PMMS is suitable for the detection of objects
characterized by heterogeneous or jerky motion, in images acquired
with a reduced frame rate. However, the MT dynamic behaviour is
well described as a linear motion, and embedding such information
in a tracking algorithm seems more efficient.

In [13] an automatic tracker employing a Bayesian probabilistic
framework is proposed and evaluated using simulated sequences, for
which ground truth was available. However, its usefulness in practical
situations cannot be assessed.

In [14] a non-parametric regression method for denoising fluores-
cence microscopy image sequences corrupted by Poisson-Gaussian
noise is proposed. A global energy functional is minimized, involving
spatial-temporal image characteristics. The algorithm performance,
evaluated on both synthetic and real image sequences, is heavily
dependent on a number of design parameters.

Other authors choose to locate particles through enhancing tech-
niques, and reconstruct trajectories by means of a nearest-neighbour
criterion [11], [15]. Most approaches implement a search strategy
exploiting peak intensities [16].

Balzarini et al. [15] use thresholding to detect particle positions,
using little a priori knowledge of the motion regime; this makes
the procedure less expensive from a computational standpoint. As
the approach is affected by a large false positive rate, a position
refinement strategy is implemented. Once the particles positions are
estimated, they are linked to build up the trajectories with a nearest-
neighbour criterion. Let us assume that p is a particle belonging to
the i-th frame of a stack, and q a particle belonging to the successive
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j-th frame of the stack, with j = i+ 1. Let (xp, yp) and (xq, yq) be
the spatial coordinates of particles p and q. The linking of particles
through two consecutive frames is based on the minimization of a
cost functional that takes into account both spatial displacement and
intensity information:

Φ = (xp − xq)2 + (yp − yq)2+ (1)

+[m0(p)−m0(q)]2 + [m2(p)−m2(q)]2

where m0(·) and m2(·) represent the moments of zero-th and second
order respectively of intensity of pixel p and q (see [15] for further
details on the employed cost function and its rationale). This method
provides good results and is quite efficient from the computational
point of view. This is the reason why it has been taken as a starting
point in several works, such as [17] and also in this paper. However,
its performance is suboptimal when the images exhibit low quality
and high particle density.

Mahemuti et al. [18] investigate the MT dynamics using morpho-
logical information for detection and a probabilistic data association
(PDA) filter for tracking. Moreover, the authors perform an object
decomposition in order to detect single particles making up com-
pound structures. Once the MT positions are estimated, the tracks
are identified via a probabilistic approach. Elements into consecutive
frames are considered as belonging to the same MT if the measured
and estimated positions are similar in direction and movement.
Again, the PDA algorithm is based on the Kalman filter for data
association and track updating. The technique exhibits good accuracy
in environments with low density of particles, indeed the performance
impairs in high density video.

In [19] a multiple stage algorithm is described, whose main feature
is the use of morphological transformations in the detection step in
order to limit the effects of noise on the subsequent segmentation.
This technique has been compared with a preliminary version of our
algorithm, using the same set of real data. The two algorithms yielded
comparable results as for mean velocity and track length, but [19] is
subject to a larger number of false positives.

Recently, and specifically for the MT scenario, some authors have
addressed the issue of very low SNR. In [20] an approach based on
a Gaussian Process Regression (GPR) is addressed to perform an
estimation of MT dynamic parameters (namely, speed, track length,
lifetime). The GPR model heavily relies on prior knowledge on the
MT motion model, so trading precision with generality. The method
has been tested on both synthetic and real data.

In [21] a robust MT tracking method is proposed, whose main
feature is that the particle coordinates over the frames are treated
jointly and not as independent items. This reduces the likelihood
that tracks showing an unexpected jagged pattern are selected. The
task is performed implementing an adaptive hierarchical energy-based
trajectory smoothing approach.

In [22] an improved robust MT detection method is presented,
based on few assumptions at the object-level. As MTs appear as
filaments in microscopy fluorescence images, the authors model each
particle with three connected points standing for the two spindle pole
bodies and the plus-end. Moreover, they focus on the effects of photo-
bleaching, and provide a model incorporated into a particle filter
employed to track spots.

As a general comment, we point out that, even though several
methods have been proposed, they have often been validated on
different dataset, and/or using different metrics. As a consequence, it
is difficult to objectively compare their performance. This is the ratio-
nale behind the International Competition described in [9], where a
common (publicly available) dataset was provided to the participants.
Attendees proposed their own algorithm to detect and track different

kinds of particles (including MTs) in a number of simulated scenarios.
Performance were evaluated using commonly defined metrics. The
competition confirmed that a single best method for multi-particle
tracking does not exist, as each algorithm has crucial parameters to
be tuned specifically on the available dataset [9], [16], [23]. It is worth
noticing that the complexity of real experimental data is so high that
simulated images cannot be assumed to be fully representative; hence,
the algorithm ranking obtained with such data cannot be expected to
be exactly reproducible in a real experimental set up. Nevertheless,
the data employed in the International Competition still remain the
best ground truth to compare with, in order to assess any algorithm
performance.

Finally, we briefly discuss machine learning-based approaches.
Machine learning is a powerful tool that requires little or no a priori
knowledge on the particles to analyze. Nevertheless, an efficient
method for MT detection and tracking has not been validated yet.
The main reason can be found in the fact that getting an appropriate
(real-data) training set is difficult, because of the diverse nature of the
objects of interest [23]. Cellular imaging is affected by many aspects
that are difficult to finely control (e.g. temperature), so that each
experiment exhibits features that are difficult to generalize. Moreover,
a ground truth to use for the training stage is seldom available in
case of real data. On the other hand, in order to build a simulated
data set representative of real experiments, a comprehensive study
of the physical and motion model of the particles at hand would
be needed, using detailed information about the experiment, with
high cost and little generalization potential (see also [24], [25]).
This explains why, despite the huge potential of machine learning,
at present approaches that exploit available a priori information are
still adopted in most cases. Nevertheless, some authors have recently
proposed deep learning-based approaches. In [23] a convolutional
neural network is used to detect sub-micro-scale particles, in order to
optimize tracking procedures. The method is based on a predefined
tuned parameters and was tested on both synthetic and real data.
Unfortunately, the approach is not suitable for the detection of
filaments, such as MTs. Yao et al. [26] aimed at improving the
accuracy of the tracking phase via a proper tuning of the initial
algorithm parameters. Their approach is based on a recurrent neural
network that learns and models the object behaviour, given a training
set. However, this network has been validated on synthetic data only,
and the performance in real scenarios cannot be assessed.

As a conclusion, despite the large number of proposals, at present
there is no detection and tracking algorithm whose performance fits
every scenario, in terms of particle class and density, noise levels
and types. From these considerations stems the novel approach of
this present proposal, i.e. to abandon any claim of generality and
to focus on a very sensible method, making use of all the available
a priori pieces of information on MT dynamics, and set up on real
experimental data acquired with the instrumentation available in loco.

III. DATASET DESCRIPTION

In our experiments, a dataset of 40 time-lapse sequences has been
produced. The images have been acquired with a Leica TCS SP5-
AOBS 5-channel confocal system, equipped with a 561 nm DPSS
laser.

A HeLa-K (HeLa Kyoto) cell line expressing EB3-td Tomato, was
chosen to carry out the experiments. This cell line is largely employed
in the scientific research, and is the first human cancer cell line
immortalized in tissue culture. It is named after Henrietta Lacks,
a woman to which the scientific community owes a lot, as cells
were extracted with a biopsy of the adenocarcinoma of the cervix
she was affected by [27]. The cell culture has been maintained in
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Table 1: Main characteristics of employed image stacks.

Description Value
Frame size 256× 256 pixels
Frame rate 2 fps

Number of frames per stack 120
Pixel resolution 64 nm

Bit depth 8

DMEM-GlutaMAX (Invitrogen) medium supplemented with 10% fe-
tal bovine serum, 100 U ml−1 penicillin, 100 µg ml−1 streptomycin,
200 µg ml−1 geneticin (Sigma) and 0.5 µg ml−1 puromycin.

Our experiments were included in a larger study involving astral
MTs, and aiming at clarifying their role in the mitotic spindle orienta-
tion. Hence, we have addressed interphase cells, treated with different
concentrations of nocodazole and taxol: 0 nM (control), 0.1 nM (taxol
only), 1 nM (nocodazole only), 10 nM and 100 nM. Nocodazole is
a MT destabilizer, whereas taxol acts as a MT stabilizer. Despite
their actions are opposite, at high concentrations the neat effect of
both drugs is an inhibition of MT dynamic instability. Hence, in these
scenarios, we expect to detect a drastic suppression of MT dynamics,
and this can be exploited to validate the effectiveness of our tool. On
the other hand, these experiments may help getting some insight on
the drug effects at intermediate concentrations, and replicated using
different MTAs.

After one-hour incubation, videos of astral MTs were acquired
using the already mentioned Leica TCS SP5-AOBS confocal system.
During the acquisition, cells were stored in the microscope incubator
at 37◦C with CO2 5% . For each dosage, in both cases, five
stacks have been acquired and saved in TIFF format. The main
characteristics of the image stacks are summarized in Table 1.

A. Noise characterization

Fluorescence confocal microscopy images are affected by nu-
merous noise sources. First of all, photon shot noise, caused by
the random emission of photons [5], becomes relevant when the
number of photons is so small that the uncertainty related to the
Poisson distribution cannot longer be neglected [28]. In the case of
fluorescence images, the source intensity has to be kept very low for
several reasons. First of all, excessive light intensity can affect the
living cell behaviour (if not the life itself). Then, photo-bleaching
must be avoided, i.e. the fact that markers lose their capability to
fluoresce over time to an extent related to light intensity and exposure
time [5]. Finally, the achieved spatial resolution is related to the
pinhole detector as follows [6]:

ε =
σ√
N

where σ is the standard deviation of the instrument point spread
function and N is the average number of photons detected in the
exposure time [28]. Hence, it could be improved by choosing a small
pinhole diameter detector, but this further limits the signal intensity
and impairs the shot noise. Unfortunately, photon shot noise can be
limited only augmenting the light intensity, hence it is unavoidable
in practical applications on living cells.

Speckle noise is a multiplicative noise process that degrades images
making them look grainy. It becomes relevant when coherent imaging
systems are employed, such as laser in confocal microscopy, and is
caused by random interferences between the coherent returns. The
effect on grayscale images is an increase of mean intensity in a
local area [28]. Other noise sources are autofluorescence, i.e. the
property of some molecules to naturally fluoresce at wavelengths
in the range of visible spectrum, overlapping with the fluorophore;

background noise, caused by the ambient radiations; dark current,
due to the thermal agitation of particles at high temperature inside the
detector, which leads to spontaneous emissions; quantization noise of
the digital output; scattering of light, which occurs when the object
dimensions are comparable with wavelength size [5].

It is generally agreed that, if the SNR (defined as in [10]) drops
below 4 dB, the performance of virtually any algorithm is drastically
impaired [9], [10]. Table 2 reports SNR values evaluated for the
image stacks considered in this paper. It can been noticed that, even
though the datasets exhibit some variability, most stacks are affected
by noise levels below or very close to this critical threshold. Hence,
it is crucial to implement an effective denoising, focusing on those
noise sources (e.g. speckle) that can be effectively faced.

Table 2: SNR values (dB) of the stacks belonging to the addressed
dataset.

Nocodazole Taxol
Dose Stack ID SNR Dose Stack ID SNR
0 nM 1 4.47 0 nM 1 2.46

2 3.80 2 3.58
3 6.90 3 3.52
4 6.23 4 3.94
5 4.31 5 3.36

1 nM 1 1.14 0.1 nM 1 2.28
2 3.52 2 4.07
3 5.31 3 3.58
4 4.76 4 5.29
5 4.76 5 6.48

10 nM 1 5.31 10 nM 1 6.47
2 4.62 2 1.67
3 1.55 3 3.16
4 3.22 4 3.60
5 1.96 5 1.37

100 nM 1 2.58 100 nM 1 2.30
2 4.01 2 1.88
3 3.96 3 3.01
4 2.01 4 1.24
5 5.31 5 0.49

IV. AMICRO: THE PROPOSED ALGORITHM

In this section, we describe our algorithm for MT detection and
tracking, which will be labelled AMicro in the following. The main
objective is to achieve reliable estimates of a few parameters of
interest, namely average and standard deviation of:

• MT growth velocity.
• MT track length.
• MT track lifetime.

These are the same parameters that the expert biologists evaluate
manually. In the control stacks analyzed to monitor astral MTs,
they are able to effectively identify some dozens of tracks, used
to work out the average metrics of interest. As a consequence, we
have set up our algorithm so as to achieve a number of tracked
MTs comparable with that of manual analysis. We trade a possibly
higher False Negative Rate (FNR) with a lower False Positive Rate
(FPR). In fact, as we are interested to measure average parameters,
we want the selected tracks to be very reliable, even at the expenses
of disregarding a number of true tracks.

With respect to state-of-the art methods, we have devoted particular
attention to the following aspects.

• Robustness. The experimental conditions yield very noisy im-
ages. Hence, we focus on effective denoising, taking into account
the statistical properties of the main noise sources, and focusing
on those that can be more effectively limited.
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• Ease of use. As it is designed to be routinely used by the biol-
ogists, we have privileged a solution with few or no parameter
to be manually set.

• Computational efficiency. The method is expected to manage
huge amounts of data every day. Hence, the computational
complexity should not be excessive.

These features have been traded off with generality. In fact, our
algorithm is only suitable for astral MT detection and is not efficient
in tracking other types of particles. We have exploited all the possible
a priori information of MT dynamic behaviour. Also, in order to
enable a simple and efficient use of the tool, we have selected
parameters to match typical experimental conditions, i.e.: detection
of MTs in interphase cells, and medium MT density (about 100 MTs
per field).

The main feature that differentiates between our algorithm and the
previously proposed ones, is the fact that it is tuned on a specific
application, conceived for easy everyday use by biologists, aiming
at achieving performance comparable with those obtained by manual
analysis.

AMicro has been developed in Matlab 2017a, and, following a
typical approach, is divided into three main steps: enhancement,
detection and tracking.

A. Enhancement

Our experimental data are affected by high levels of Poisson and
speckle noise. As discussed, Poisson noise can only be limited by
augmenting the light intensity, which is not feasible in in vivo exper-
iments. In order to reduce the speckle noise, we have devised a simple
heuristic procedure called the LOG-Wiener Transform. First, we apply
a logarithmic operator to the image in order to map multiplicative
noise into additive one. Then, we process frames with a Wiener filter
with a neighbourhood 3x3 wide, based on the working assumptions
that noise and signal are not correlated, and the noise process is
additive in the transformed domain. Finally, the filtered image is
subject to inverse logarithmic transform. This process is very effective
to limit speckle noise and has proven to provide smooth background,
making the subsequent particle identification easier. However, we
stress the fact that the selection of this procedure is driven by heuristic
considerations, and the assumption of additive Gaussian noise in the
transformed domain is not theoretically guaranteed.

B. Detection

This step is devoted to the detection of comets in single images of
the stack.

Calibration. In order to limit the FPR, and to automatically match
proper parameters with the image stack at hand, the algorithm
encompasses a calibration phase. We know that astral MTs stem
from the centrosome towards the cell cortex. Hence, it is relatively
easy to select a portion of a sample frame not containing MTs,
representative of the background, and a portion centred around the
centrosome, hence representative of the signal-containing area. In
the calibration phase, for each stack, the user is asked to select two
regions of a sample image, respectively including and not including
the centrosome. Then, the algorithm estimates the sample distribution
of pixel intensities in this area, and, in particular:

• the mean value Ib and the standard deviation σb of the back-
ground;

• the mean value Io and the standard deviation of the intensity of
the objects of interest (i.e., the astral MT plus-ends).

It is worth noticing that the same information is used to work out
the SNR [10]:

SNR = 10 log
Io − Ib
σb

(2)

Once these parameters are estimated, we set a threshold Th on
the amplitude of an object to be considered a MT plus-end. It must
exceed the average amplitude level by a factor that depends on the
object standard deviation. From an experimental evaluation on several
images (not reported for brevity), the sample distribution of comet
plus-end amplitudes exhibits a rather small standard deviation. Hence,
we have set Th = Io. Variations of the threshold with respect to this
value provide different trade-off between FPR and FNR.

We assume that the parameters estimated on a sample image of
the stack (typically the first one) hold valid for the whole stack at
hand. This is not exactly true, due to photo-bleaching. However, this
choice is dictated by simplicity issues, and has proven to be rather
robust.

Comet detection. Once the threshold Th is defined, the actual
detection of comets is based on a local maxima search over the
frame. The search is carried out locally, employing a squared scrolling
window whose side is about 400 nm (after [17]) applied to the
enhanced image. Within the k-th window in the t-th frame, a local
maximum Mk,t at spatial coordinates (x, y) is considered as a comet
plus-end if and only if its intensity exceeds Th:

Mk,t(x, y) > Th (3)

The comet positions are then refined as in [17], by centering the
squared window on the local maxima previously detected, and
recalculating the peak intensity exploring the newly selected neigh-
bourhood; this limits the problem of recognizing as split two objects
actually belonging to the same MT.

A visual representation of the detection results is shown in Figure
1.

(a) Frame 2 (b) Frame 6

(c) Frame 10 (d) Frame 14

Figure 1: Cumulative MTs detected at increasing time instants,
corresponding to different frames of the same stack.

C. Tracking

Tracking is based on the assumption that MTs exhibit a uniform
linear motion during their growth phase (i.e., the only one directly
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detectable). First, the coordinates of the particles identified in the
previous step are linked in order to build up partial trajectories.
To this purpose, plus-end positions are connected frame-by-frame
minimizing a simple cost functional, where only the contribution due
to particle displacement has been kept (as the intensity contributions
have revealed to be little significant in our experiments due to the
narrow distribution of the comet intensity):

Φ = (xp − xq)2 + (yp − yq)2 (4)

The maximum displacement allowed between two particles in order
to link them is determined as follows. Let us assume that F is the
frame rate (in frames/s) and Vmax is the maximum expected velocity
of growing plus-ends (in nm/s). Hence, the maximum displacement
(in nm) that can be expected from a growing plus-end between two
subsequent frames is

Smax =
Vmax
F

(5)

In our experiments, we have F = 2 frames/s. From studies in
literature and thanks to the expertise of the expert biologists, we
set Vmax = 55µm/min (this value has also been validated a
posteriori - see Sect. V). Hence, we have worked out an upper bound
Smax ≈ 450 nm/frame, corresponding to a window 7×7 pixel- wide
in the present experiments.

This step yields partial tracks, because a track may be temporarily
lost due to the MT entering a pause state. Hence, as a common
practice, once the partial tracks are available, the algorithm provides
for their linking. Two partial tracks Tn, Tm are connected if and only
if:

d(Tn, Tm) ≤ Smax (6a)

t(Tn, Tm) ≤ Tmax (6b)

where d(·, ·) is an operator that measures the spatial displacement
between the last pixel of Tn and the first pixel of Tm, and t(·, ·) is
an operator measuring the time displacement (in seconds) between
the two partial tracks. According to Eq. 6a, the linking occurs if and
only if the end of the first track and the beginning of the second one
have a maximum displacement of Smax as evaluated in Eq. 5. The
rationale behind this choice is that, in case a MT has entered a pause
and then it recovers, it is reasonable to search for its plus-end within
a window dictated by the maximum expected displacement between
adjacent frames. This choice does not take into account the case of
the track being fragmented because its plus-end has temporarily got
out of the focus plane. However, the expert biologists deem the pause
far more likely than this latter event. As for the parameter Tmax in
Eq. 6b, it has been set to 2.5 s, as this is considered representative
of typical pause events in the experiments at hand.

As a refinement, tracks are fitted with a second-degree polynomial.
Finally, in accordance with biologists, we have decided to discard
tracks shorter than 2.5 s. This allows one to remove non-reliable
tracks exhibiting Brownian motion, which does not meet the assumed
linear motion model.

V. RESULTS

In this section, we present the results achieved by AMicro. First
of all, we provide an assessment of its performance, referring to
synthetic, publicly available data used for the International Compe-
tition described in [9]. Then, we test our method on real data, and
evaluate the mean MT velocity vm, track length λm, track lifetime
τm, and their standard deviations σv , σλ, στ , for both taxol- and
nocodazole-doped cell cultures. The achieved results are compared
with those yielded by similar algorithms. In case the related software
is released, we have run it on the same data stacks. Otherwise, we

refer to published results, worked out on data comparable to that
addressed in our experiments. Finally, AMicro has been compared
with the results achieved by the manual processing performed by the
biologists.

A. Algorithm assessment with standard synthetic data

In order to objectively assess the AMicro performance, we have
run the algorithm on the same synthetic data and employing the
same metrics as in the International Competition [9]. As the tool
is not devised for tracking miscellaneous particles (e.g. also viruses,
vesicles), its validation has been carried out on data related to the
microtubule scenario. We have considered four increasing SNR levels
(1, 2, 4, 7 dB) and the mid-density case. The synthetic data for this
scenario foresee about 500 tracks per video, hence can be considered
as rather demanding for AMicro, which has been designed to manage
about a hundred tracks per video.

The performance have been expressed in terms of the average α
and β measures and Jaccard similarity coefficient JSC. These metrics
evaluate the closeness between the selected tracks and the ground
truth (i.e., the tracks actually simulated); the reader is referred to
[9] for more details. The obtained results are reported in Figure 2;
the average values are reported to enable comparison with different
algorithms. The performance of AMicro turns out to be comparable
with other state-of-art algorithms [9].

We stress that our tool, by construction, is heavily dependent on
some assumptions specific of the experimental conditions at hand:

• Astral MT detection in interphase cells, hence linear motion of
MT stemming from the centrosome and directed towards the
cell cortex.

• Moderate MT concentration.
• Presence of speckle noise, besides Poisson and additive Gaussian

one.
The simulated data are not fully representative of these assumptions,
as both the motion model and the multiplicative noise are sub-
optimally represented in these data.

It is worth also discussing our technique performance related to
false-positive and false-negative rates. The performance of virtually
any algorithm in terms of α, β and JSC are known to be more
sensitive to FNR than FPR [16]. On the other hand, by construction,
we have privileged low FPR, even at the expenses of a higher FNR,
in order to measure parameters related to very reliable tracks. When
tested on the simulated data, AMicro achieves an average FPR of
about 15% and FNR in excess of 22%. These values, considered
jointly with the α, β and JSC metrics reported in Figure 2, allow
us to conclude that the performance of our algorithm is in line with
other state-of-the-art methods (refer to [16] for more details).

B. Results: nocodazole-doped cells

In a first set of experiments, AMicro has been tested on cell
cultures doped with nocodazole 0, 1, 10, 100 nM. In this prelim-
inary validation phase, a limited number of drug concentrations has
been considered, although spamming a large range, due to limited
resources. The average and standard deviations of growth velocity
(µm/min), track length (µm) and duration (s) of the detected astral
MT tracks are reported in Table 3. Zero values denote that no track
matching the linear motion model has been identified in the stack
at hand, due to the suppression of MT dynamics. Actually, as the
drug concentration increases, fewer and fewer tracks are detected:
from an average of about 100 in controls to a dozen at 100 nM.
At concentration as high as 100 nM, in most movies all MTs are
disassembled.
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Figure 2: Performance of AMicro in terms of average α, β and Jaccard similarity coefficient.

Table 3: Nocodazole-doped cells: results.

NOCODAZOLE
Dose Stack vm σv λm σλ τm στ
0 nM 1 12.24 6.18 1.25 0.70 5.71 2.59

2 15.36 7.75 1.02 0.69 4.33 2.00
3 15.84 8.91 1.03 0.57 4.03 1.14
4 14.98 6.80 1.33 0.74 5.09 2.62
5 16.58 9.77 1.87 1.11 5.43 2.76

Mean 15.00 7.88 1.30 0.76 4.91 2.22
1 nM 1 13.34 0.35 1.17 0.05 5.25 0.35

2 14.00 8.04 1.25 0.59 4.57 2.01
3 16.92 9.12 1.21 0.55 3.96 1.88
4 17.26 8.74 1.19 0.42 4.03 1.65
5 11.97 8.73 1.00 0.46 3.75 0.82

Mean 14.70 6.99 1.20 0.41 4.31 1.34
10 nM 1 18.65 8.18 1.47 0.79 4.76 2.09

2 0 0 0 0 0 0
3 17.87 7.30 0.96 0.39 4.22 0.91
4 0 0 0 0 0 0
5 15.59 7.52 1.10 0.68 3.88 1.09

Mean 17.37 7.67 1.17 0.62 4.28 1.36
100 nM 1 0 0 0 0 0 0

2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 12.82 7.46 1.07 0.57 4.61 1.54

Mean 12.82 7.46 1.07 0.57 4.61 1.54

The average growth velocity increases significantly at 10 nM, and
then decreases again, reaching its minimum at 100 nM concentration.
This behaviour represents an interesting outcome of our work. A
finer analysis of the velocity trend in cell cultures doped with more
nocodazole concentrations is left to future developments. For the sake
of clarity, the growth velocity boxplots are displayed in Figure 3.

Due to the decision to discard particles not matching the uniform
linear motion model, most tracks are longer than 1 µm. Mean
lifetime exhibits a trend similar to length, namely it decreases at
1 nM, although a small increase occurs at 100 nM. However, at that
concentration only one stack is evaluated, hence this result is not
statistically sound.

Figure 4 reports the sample distributions of velocity, length
and lifetime in control stacks (similar results can be obtained for

other drug concentrations). The sample distribution of velocity is
approximatively normal, whereas both length and lifetime exhibit
an exponential decay. The mean and median values exhibit little
difference, meaning that outliers have not a significant impact on
the algorithm performance. It can be noticed that the velocity values
are well below Vmax = 55µm/min addressed in Eq. 5.

C. Results: taxol-doped cells

Taxol is a MTs stabilizer, so it increases the polymer mass and
suppresses MT dynamic instability. In Table 4 the average and
standard deviation of growth velocity (µm/min), track length (µm)
and duration (s) of the detected astral MT tracks are reported.

The number of detected tracks ranges from about 100 (control
stacks) to 19 at the highest drug concentration addressed. Comparing
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Table 4: Taxol-doped cells: results.

TAXOL
Dose Stack vm σv λm σλ τm στ
0 nM 1 21.32 9.05 1.65 1.06 4.19 1.39

2 22.61 10.49 1.42 0.72 4.14 1.63
3 19.01 10.55 1.24 0.79 4.32 1.54
4 21.14 9.07 1.11 0.71 3.77 0.96
5 19.76 11.42 1.36 0.84 3.81 1.35

Mean 20.77 10.12 1.36 0.82 4.05 1.37
0.1 nM 1 15.42 8.08 1.47 0.90 4.54 2.11

2 13.55 7.30 1.16 0.66 4.60 1.83
3 15.47 9.03 1.59 1.66 5.01 3.14
4 15.71 8.13 1.48 0.90 4.35 1.64
5 17.34 8.64 1.51 0.73 4.47 1.68

Mean 15.91 8.34 1.44 0.96 4.63 2.08
10 nM 1 13.26 5.67 1.33 0.70 5.52 2.56

2 13.27 7.08 0.86 0.48 3.75 0.50
3 12.09 5.77 1.38 0.81 5.19 2.83
5 14.24 6.98 1.46 0.76 4.85 1.84

Mean 13.46 6.17 1.14 0.61 4.59 1.74
100 nM 1 13.61 5.78 0.92 0.55 4.27 1.41

2 14.44 3.52 1.54 0.60 6.31 1.93
3 21.51 0.00 1.08 0.00 3.00 0.00
4 11.51 6.18 0.99 0.56 5.25 2.62
5 7.68 0.00 0.38 0.00 3.00 0.00

Mean 13.75 3.10 0.98 0.34 4.36 1.19

Figure 3: Boxplots of growth velocity at different nocodazole con-
centrations.

the nocodazole and taxol results in control stacks (where actually no
drug is employed), we can notice that in the second case molecules
exhibit higher mean velocity. This cannot be explained in terms of
drug effects, since cells have not been doped in either case. This
points into evidence the extreme variability and complexity of the
problem, since cell functions are altered not only by drugs, but also
by environmental factors (e.g. temperature) very difficult to finely
control.

Velocity mean values exhibit a uniformly decreasing trend; this
is coherent with the theoretical knowledge of the taxol effect on
MT dynamic behaviour. The growth velocity boxplots are reported
in Figure 5.

Figure 6 shows the sample distributions of speed, length and
lifetime for a taxol concentration of 0.1 nM. Considerations similar
to those related to Figure 4 still hold true in this case.

D. Statistical data analysis

In order to assess the statistical reliability of the obtained results,
the standard error of the mean (SEM) has been worked out for

velocity, length and lifetime. SEM is an indicator of the value
variability among different experiments, and it is defined as:

SEM =
σ√
M

where σ is the standard deviation of the distribution of the parameter
at hand, and M is the sample size. In this work, for each drug
concentration, the sample standard deviation has been employed,
whereas M is the cumulative number of tracks detected in each
stack. Table 5 reports the SEM for the three parameters taken into
account for both taxol and nocodazole-doped cells. The SEM values
are reasonably low, hence we can conclude that the obtained values
at each concentration, are sound from the statistical point of view.

Table 5: Standard error of the mean (SEM) for MT velocity, speed
and lifetime.

NOCODAZOLE
Dose SEMv SEMλ SEMτ

0 nM 0.28 0.03 0.08
1 nM 0.42 0.03 0.08
10 nM 0.48 0.04 0.09

100 nM 0.64 0.05 0.13
TAXOL

Dose SEMv SEMλ SEMτ

0 nM 0.56 0.05 0.08
0.1 nM 0.22 0.02 0.05
10 nM 0.34 0.03 0.10

100 nM 0.31 0.03 0.12

Finally, even though the three features of interest, namely velocity,
length and lifetime, have been estimated independently, their mean
values are clearly correlated. In the following, we assume that two
variables (velocity and lifetime) are independently estimated, and we
work out the third one (length) from the mean values of the others:

λc =
vm · τm

k

where v represents the mean velocity (µm/min), τ the mean lifetime
(s), and k is a conversion factor. In Table 6 such computed length
values λc are compared with those estimated by the algorithm, λm.
It is clear that the estimated length values do not significantly differ
from those computed from velocity and lifetime mean values.
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(a) (b) (c)

Figure 4: Nocodazole-doped cells: sample distributions of velocity, speed and lifetime. Median and mean values numerically evaluated on
the sample distribution.

Figure 5: Boxplots of growth velocity at different taxol concentra-
tions.

Table 6: Estimated vs. computed MT track length.

NOCODAZOLE
Dose λm λc
0 nM 1.30 1.23
1 nM 1.20 1.16

10 nM 1.17 1.24
100 nM 1.07 0.99

TAXOL
Dose λm λc
0 nM 1.36 1.40

0.1 nM 1.44 1.23
10 nM 1.14 1.03
100 nM 0.98 1.00

E. Performance comparisons on true test data

As previously discussed, the algorithm assessment based on sim-
ulated data, even though significant, should be completed with
comparisons of competing algorithms tested on the same real data.
Obviously, in this case a ground truth is not available, hence metrics
such as α, β or Jaccard similarity coefficient cannot be worked
out. Nevertheless, in literature other algorithms are described, that
estimate average MT parameters in cell cultures comparable to those
addressed in this paper, and/or whose software implementation is
publicly available. Hence, we have compared the average velocity
and length and the respective standard deviations yielded by AMicro
with:

• Algorithm 2 (plusTipTracker) described in [29]. The software,
publicly available, has been run on a subset of the same stacks
of the present work.

• Algorithm 3 described in [17]. As the software is not available,
we replicate the results reported by the authors, obtained on
a HeLa Kyoto cell line stably expressing EB3-EGFP, and
doped with 0, 80 nM nocodazole and 0, 20, 100 nM taxol
concentrations.

• Algorithm 4 described in [19]. This algorithm has been directly
tested on a subset of the same stacks of the present paper.

The results are reported in Table 7 for both nocodazole and taxol-
doped cell cultures. If data are not available for a given stack, the
table reports NA.

It can be noticed that Algorithm 2 generally yields higher mean
velocity if compared to AMicro, whereas Algorithms 3 exhibit similar
values in control stacks and at 100 nM drug concentrations. Moreover,
Algorithm 3 yields very low standard deviation, due to an algorithmic
choice that suppresses variability to a large extent. As for length,
AMicro and Algorithm 3 yield nearly the same average values;
instead, Algorithm 2 is able to detect much shorter tracks. This can be
justified by the removal of shorter tracks carried out by both AMicro
and Algorithm 2, but not by Algorithm 3.

If we focus on the comparison between AMicro and Algorithm 4,
we can appreciate that they yield coherent trends as for mean velocity
and length, with AMicro generally providing slightly lower values,
due to the fact that [19] is tuned so as to yield a larger number
of detected tracks. We point out the significant difference in average
length at 100 nM concentration of both taxol and nocodazole. This is
due to the screening process implemented in AMicro, which removes
all short tracks not matching the uniform linear motion assumption.

The velocity and length yielded by the algorithms, in the case of
nocodazole-doped cell cultures, are reported in Figure 7. We point
out the fact that, whereas AMicro and Algorithm 4, at intermediate
concentrations (i.e. 10 nM), shows an increase of MTs dynamicity
in terms of velocity, this behaviour is not revealed by Algorithms 2
and 3, which yield a monotonic decreasing velocity curve.

Finally, the results of AMicro have been compared with those com-
puted by hand by expert biologists of the Department of Molecular
Biotechnology and Health Sciences of the University of Turin. For
the sake of brevity, this has been done on a small subset of the same
data stacks, referring to nocodazole-doped cell cultures, and only
mean velocity values have been taken into account. The available
comparisons are listed in Table 8.

Paired t-test has been evaluated, which has turned out to be at the
limits of statistical significance (p=0.052). The Pearson correlation
coefficient, adjusted in order to keep into account the small sample
size [30], turned out to be 0.89, so denoting strong correlation
between the two sample measures.
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(a) (b) (c)

Figure 6: Taxol-doped cells: sample distributions of velocity, speed and lifetime.

Table 7: Comparison among different algorithms. ∗ concentration 80 nM. ∗∗ concentration 20 nM.

NOCODAZOLE TAXOL
Dose Algo vm σv λm σλ Dose Algo vm σv λm σλ
0 nM AMicro 15.00 7.88 1.30 0.76 0 nM AMicro 20.77 10.12 1.36 0.82

2 20.57 13.00 0.63 0.52 2 20.44 11.10 0.67 0.58
3 16.00 0.75 1.45 0.30 3 15.50 1.40 1.60 0.23
4 16.23 13.43 1.00 1.41 4 22.67 17.92 1.20 1.70

1 nM AMicro 14.70 6.99 1.20 0.41 0.1 nM AMicro 15.91 8.34 1.44 0.96
2 NA NA NA NA 2 NA NA NA NA
3 NA NA NA NA 3 NA NA NA NA
4 NA NA NA NA 4 NA NA NA NA

10 nM AMicro 17.37 7.67 1.17 0.62 10 nM AMicro 13.46 6.17 1.14 0.61
2 18.56 10.20 0.61 0.53 2 15.25 11.60 0.40 0.32
3 NA NA NA NA 3∗∗ 9.00 1.40 0.95 0.15
4 19.92 15.53 1.12 1.49 4 11.06 9.34 0.45 0.55

100 nM AMicro 12.82 7.46 1.07 0.57 100 nM AMicro 13.75 3.10 0.98 0.34
2 17.33 11.60 0.44 0.32 2 NA NA NA NA

3∗ 13.10 2.25 1.00 0.24 3 7.00 1.00 0.40 0.15
4 11.20 10.51 0.34 0.40 4 8.66 8.86 0.29 0.34

Table 8: Average growth velocity: comparison between AMicro and
manually scored data.

NOCODAZOLE
Dose Stack ID Manual AMicro
0 nM 1 12.03 12.24

2 16.86 15.36
3 16.77 15.84

1 nM 1 14.02 13.34
2 13.53 14.00
3 16.60 16.92

VI. CONCLUSIONS

We have presented AMicro, an automatic tool for tracking and
analyzing astral MTs in fluorescence confocal microscopy images.
The algorithm has been validated using data and metrics provided
by the International Competition [9]; then, it has been run on real
experimental data. Despite the lack of a ground truth, the validation
process has provided encouraging results, which are also well-
substantiated by the expected drug effects at high concentrations. An
important aspect is related to computational time; indeed the time
spent on analyzing samples is almost negligible if compared to the
manual labour (several hours compared to few minutes). Moreover,
the automatic software is not affected by human errors, due to
tiredness or attention deficit, and can provide a valid support for
biological experiment evaluation.

The main achievement of our method is that it is extremely easy
to use, and all parameters are automatically set up without requiring
the user intervention. At present, it is being routinely employed by
the biologists of the Department of Molecular Biotechnology and
Health Sciences of University of Turin; other experiments, different

from those employed in this work, are being carried on. As for
future developments, the preliminary results related to the impact
on the velocity trend of intermediate concentrations of nocodazole
will be refined using cell cultures doped with more nocodazole
concentrations (as well as other MTAs). AMicro will be tested also
on mitotic cell cultures. Finally, to ensure a better portability, it is
planned to leave the MathWorks environment developing an ImageJ
plug-in.
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