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ABSTRACT  

Machine-assisted design of integrated photonic devices (e.g. through optimization and inverse design methods) is 
opening the possibility of exploring very large design spaces, novel functionalities and non-intuitive geometries. These 
methods are generally used to optimize performance figures-of-merit. On the other hand, the effect of manufacturing 
variability remains a fundamental challenge since small fabrication errors can have a significant impact on light 
propagation, especially in high-index-contrast platforms. Brute-force analysis of these variabilities during the main 
optimization process can become prohibitive, since a large number of simulations would be required. To this purpose, 
efficient stochastic techniques integrated in the design cycle allow to quickly assess the performance robustness and the 
expected fabrication yield of each tentative device generated by the optimization. In this invited talk we present an 
overview of the recent advances in the implementation of stochastic techniques in photonics, focusing in particular on 
stochastic spectral methods that have been regarded as a promising alternative to the classical Monte Carlo method. 
Polynomial chaos expansion techniques generate so called surrogate models by means of an orthogonal set of 
polynomials to efficiently represent the dependence of a function to statistical variabilities. They achieve a considerable 
reduction of the simulation time compared to Monte Carlo, at least for mid-scale problems, making feasible the 
incorporation of tolerance analysis and yield optimization within the photonic design flow. 
 
Keywords: photonic devices, silicon photonics, probability theory, stochastic processes, machine learning, pattern 
recognition, principal component analysis, uncertainty analysis 

1. INTRODUCTION  

Integrated photonic components are steadily making their way into modern communication networks and also have 
growing applications in computing, automation, sensing and life sciences. At the same time, novel photonic devices that 
employ increasingly complex geometries and metamaterials are continuously proposed [1,2]. In these scenarios, the 
number of design parameters vastly increase and manual device design is often impractical. Machine-assisted design 
exploiting tools such as the genetic algorithm, particle swarm, and gradient-based optimization are increasingly used to 
search more efficiently for high-performance designs [3]. Inverse design methods have been proposed to tackle this 
challenges, demonstrating highly compact devices employing non-intuitive structures [4]. Supervised machine learning 
methods such as the artificial neural network have been used to speed up the search and optimization process [5]. 
Recently, we have proposed the use of a suite of machine learning tools, including global optimization, supervised 
learning and unsupervised machine learning pattern recognition, to create a global map of a multi-parameter design 
spaces while using a tractable amount of time and computational resources [6]. 
 
Despite this rapid evolution in the design methodology, the analysis of the impact of manufacturing variability remains a 
major challenge [7]. Uncertainty due to fabrication often limits the sustainable complexity and poses major problems in 



 
 

 
 

achieving high production yield [8]. This is particularly true for high-index-contrast technologies where small fabrication 
deviations in the waveguide geometry and circuit topology have significant impacts on light propagation.  

The possibility to exploit the information on variability within machine-assisted design approaches would allow both 
predicting its effects on the final designs and also optimizing layouts to maximize stochastic quantities such as 
fabrication yield. Unfortunately, classical methods for stochastic analysis such as Monte Carlo require a very large 
number of simulations to obtain reliable results, hampering their application into large-scale multi-parameter designs. 
Stochastic spectral methods have been regarded as a promising and efficient alternative to Monte Carlo for statistical 
analysis also in photonics [9,10]. Polynomial chaos expansion (PCE) techniques allow to build a surrogate model of an 
unknown random function by representing its dependence on stochastic variables by means of an orthogonal set of 
polynomials. Accurate and efficient variability representation has been demonstrated for several photonic devices, also 
in the case of correlated random variables [11,12]. Models based on generalized polynomial chaos expansion have been 
recently exploited for circuit design optimization under fabrication uncertainty [13,14]. These techniques can provide a 
viable way to introduce uncertainty information at into machine-assisted design flows. 

In this invited talk we report on the application of polynomial chaos expansion for the stochastic analysis of photonics 
devices and circuits. We first present the analysis of a compact (15 μm) vertically emitting grating coupler with a single 
random variable using both classical PCE and a combination of PCE and frequency-domain macromodeling (vector 
fitting). The latter enables a very efficient investigation of the stochastic properties of frequency-dependent transfer 
functions. We then show how PCE can be used to handle also the case of multiple correlated random variables. We 
perform the analysis of a 4.5-mm-long second-order unbalanced Mach-Zehnder filter with five random variables 
exploiting the Karhunen-Loeve (KL) transform. 

2. SURROGATE MODELS WITH POLYNOMIAL CHAOS EXPANSION 

In order to investigate the effect of uncertainty, we define the transfer function of a photonic device or circuit as Y(f, 𝛏⃗𝛏). 
Y depends in general on frequency f and on a vector of N independent random variables 𝛏⃗𝛏 = [ξ1, ξ2, …,ξN]. Commonly Y 
is not available in an analytical form and its computation can be lengthy, making the repeated simulations required by 
Monte-Carlo-type analyses to estimate stochastic moments (e.g. mean, variance, probability density function…) 
impractical. This problem can be particularly emphasized when the computation of the moments is required as part of an 
optimization routine because thousands of simulations would be required at each step of the optimization that could 
require itself several thousands of iterations [14].  

A possible way to overcome this limitation is defining an analytical surrogate model describing the dependence of Y on 
𝛏⃗𝛏 [15]. If the computation of this approximate model is done efficiently, the availability of an analytical expression for Y 
could then make the computation of its stochastic moments inexpensive. To this purpose, within the polynomial chaos 
expansion (PCE) formalism, the dependence of Y on 𝛏⃗𝛏 is described as a summation of basis functions φi(𝛏⃗𝛏) with 
suitable coefficients yi(f) as [15] 

 
Y�f, 𝛏⃗𝛏� =  � yi(f)φi�𝛏⃗𝛏�.

∞

i=0

 (1) 

 

In this expression, the coefficient yi depends in general on frequency and φi are orthonormal polynomials with respect to 
the probability measure W(ξ⃗) 

 〈φi�𝛏⃗𝛏�,φj(𝛏⃗𝛏)〉 =  �φi�𝛏⃗𝛏�φj�𝛏⃗𝛏�W�ξ⃗�dξ⃗ = δij, (2) 

 

where δij is the Kronecker delta. If the random variables 𝛏⃗𝛏 are independent, the corresponding basis functions φi�ξ⃗� can 
be computed as the product of the orthogonal polynomials corresponding to each individual random variable ξi. For 
common probability density functions (i.e., Gaussian, Uniform…), the basis functions are readily available and 
described by the Wiener-Askey scheme [15]. For example for Gaussian distributed variables the basis functions are the 
Hermite polynomials.  



 
 

 
 

For computational purposes the PCE model (1), involving an infinite series, must be truncated. The truncation is done 
considering all N-dimensional polynomials up to the order P (that is chosen depending on the problem), with a total 
number of elements (basis functions) M  defined as 
 
 

M + 1 =
(N + P)!

N! P!
. (3) 

 
The last step is the computation of the coefficients yi. In this work this is done generating a small pool of K realizations 
for the random variables 𝛏⃗𝛏, indicated as �𝛏⃗𝛏𝐣𝐣�1

K
. For each realization, the transfer function Y is simulated and used to build 

the linear system   
 

                   𝚿𝚿𝚿𝚿 = 𝐑𝐑  (4) 

 
where y is the vector of the M coefficients yi, the jth row of the [KxM] matrix 𝚿𝚿 contains the multivariate polynomial 
basis evaluated at 𝛏⃗𝛏𝐣𝐣 and the vector 𝐑𝐑 contains the results of the K simulations. The (normally undetermined) system (4) 
is eventually inverted to compute the coefficients yi. When this is done using a least-square solver, K=2M commonly 
ensures both a reliable solution and a number of initial simulations K orders of magnitude smaller than that required by 
Monte-Carlo approach. K can be reduced even more exploiting compressed sensing techniques [13]. 

Since in general the coefficients yi depends on frequency, this process must be repeated for each frequency point. 
Alternatively, PCE can be combined with frequency-domain macromodeling such as the vector-fitting technique to 
further improve its efficiency [16]. In this case the vector-fitting algorithm is first applied individually to the K initial 
simulations, obtaining a set of frequency-independent matrices that depend only on the random variables 𝛏⃗𝛏. PCE is then 
applied on these matrices once and finally the frequency-dependent coefficients yi are retrieved through the vector-fitting 
model. 

Once available, model (1) efficiently represents the system response to variability and allows computing the stochastic 
moments of Y with minimal resources and time. Mean µ and standard deviation  σ2 can be analytically computed as  
 
 µ =  y0, (5) 
 

σ2 =  � yi2
M

1

〈φi�𝛏⃗𝛏�,φi(𝛏⃗𝛏)〉. (6) 

 

The probability density function (PDF) and the cumulative density function (CDF) can be computed inexpensively for 
example applying Monte Carlo sampling on the analytical PCE approximation (1).  

3. MACHINE-ASSISTED DESIGN AND STOCHASTIC ANALYSIS OF PHOTONIC DEVICES 

As a design study case we consider here a vertically-emitting grating coupler in silicon-on insulator technology [17]. As 
shown in Fig. 1(a) the grating period consists of a pillar of 220 nm in height and an L-shaped section partially etched to 
110 nm. The blazing effect generated by the former section ensures that light is primarily diffracted upwards. The 
structure dimensions L1 - L5 define the five-dimensional design parameter space. The optimization objective is the 
coupling efficiency CE of the diffracted TE-polarized light to a standard single mode optical fiber (SMF-28) placed 
vertically on top of the grating. 

Recently, we have proposed a novel machine-learning-based design methodology that instead of resulting in a single 
optimized final device allows to generate a global map of the multi-parameter design space, providing the designer 
insights on behavioral patterns and enabling informed decisions based on different figures-of-merits [6]. Global 
optimization combined with a Fourier-type 2-D eigenmode expansion simulator [18] is first used to search for a small set 
of designs with state-of-the-art fiber coupling efficiency, resulting in a pool of 45 good grating designs with CE > 0.74. 
Principal component analysis (PCA) is then used to search for patterns within this pool in the form of linear 
approximations to the dataset. Two principal components are found to be sufficient to accurately represent 



 
 

 
 

the entire pool. That is, all good designs approximately lie on a 2-D hyperplane – the reduced parameter space – and the 
rest of the design space can be excluded from further investigation. Since the number of parameters has been reduced 
from the original five (L1-L5) to the two coefficients of the principal components (α and β), the exhaustive exploration of 
the design space is now feasible. Figure 1(b) report a global mapping of the coupling efficiency within this design space 
for λ = 1550 nm. Each point (α,β) represents a specific set L1-L5. Figure 1(c) shows the mapping for the back-

 
 

Figure 1: (a) Schematic of the vertical grating coupler. The design involves five parameters (the length of each section L1-L5). 
Using a combination of machine learning techniques, including pattern recognition, the 5-D design space can be efficiently 

explored, identifying a 2-D sub-space (hyperplane) containing a large number of designs with state-of-the-art coupling efficiency 
(b) and back-reflection (c). Only devices with coupling efficiency larger than 0.7 are shown. 

 

Table 1. Properties of the three grating designs shown in Fig. 1. Despite different design parameters, the three designs 
have all coupling efficiency above 74 % and back-reflection smaller than -20 dB at λ = 1550 nm. 

Design L1 L2 L3 L4 L5 Period 
[nm] CE R [dB] 

1 77 84 115 249 171 696 0.77 -21 

2 102 80 117 330 98 727 0.78 -44 

3 81 85 109 276 149 700 0.75 -24 

 



 
 

 
 

reflections generated by the grating in the waveguide at λ = 1550 nm. Back-reflections were not included in the design 
procedure but are evaluated as an additional performance metric only for the designs included in the reduced parameter 
space. As an example three possible designs are identified on the maps. For each design, Tab. 1 reports the length of 
each section, the period, the coupling efficiency CE and back-reflections R. All designs are about 15-μm long. Despite 
the different parameter selection all the three designs show a coupling efficiency larger than 0.75 and back-reflections 
smaller than -20 dB. 

While coupling efficiency and back-reflections have been threated so far as deterministic quantities, they are 
unavoidably subject to some uncertainty in real devices due to fabrication tolerance. The investigation of their stochastic 
properties is therefore fundamental. On the other hand, even limiting the investigation only to the reduced parameter 
space, the analysis of the stochastic behavior for each possible alternative design with a classical Monte Carlo approach 
would be unfeasible, requiring at least hundreds of thousands of electromagnetic simulations. As described in Sec. 2 we 
can tackle the problem computing a surrogate model for the quantities of interest (coupling efficiency and back-
reflection in this example) exploiting a polynomial chaos expansion technique. As a first analysis we consider coupling 
efficiency CE and back-reflections R at λ = 1550 nm and PCE coefficients are then frequency-independent. We assume 
for both shallow and deeply etched sections in the grating the same random width deviation δ, normally distributed with 
zero mean and a standard deviation of 5 nm. For the coupling efficiency, an order P = 3 is enough to provide a good fit. 
Since we have only one random variable (N = 1), K = 8 values for δ are sampled according to its distribution and 

 
 

Figure 2: Probability density function of the coupling efficiency (a)-(c) and back-reflection at λ=1550 nm for the three designs 
described in Fig. 1 and Table 1. Average values are marked with dotted lines. Green areas highlight specification requirements: 

coupling efficiency larger than 0.7 and back-reflection smaller than -20 dB. 
 



 
 

 
 

the corresponding designs are simulated with 2D-FDTD. The 8 simulations (vector R in Eq. (4)) are finally used to 
estimate the coefficients of the Hermite the four polynomial coefficients with a compressed sensing technique solving a 
basis pursuit denoise problem with the freely available spgl1 solver [13]. The computational time required to build the 
surrogate model (1) is negligible compared to simulation time. For the surrogate model of back-reflections, fifteenth-
order Hermite polynomials are needed, with 30 initial simulations. The entire analysis is performed with a number of 
simulations orders of magnitude smaller than Monte Carlo, making possible its application to the large number of 
designs shown in Fig. 1(b,c). 

Figure 2 shows as an example the probability density functions of coupling efficiency and back-reflections for designs 1, 
2, and 3. The probability density functions are obtained by sampling the surrogate models 5000 times (which only takes 
few seconds) and using a Gaussian kernel density estimator. Mean values are compute using Eq. (5). During the 
analysis, possible criteria to evaluate fabrication yield are also set requiring either CE > 0.7 or R < -20 dB. The number 
of devices respecting the criteria (yield) are computed integrating the corresponding section of the probability density 
function. The probability density functions of coupling efficiency (Fig. 2 (a,c)) are right-bounded by the value obtained 
without considering uncertainty (see Tab. 1) . Design 1 shows a longer tail towards lower values of CE compared to 
design 2, reducing the probability to obtain a high coupling efficiency and consequently the yield (64% instead of 78%). 
Design 3 has the lowest ideal and mean coupling efficiency (0.75 and 0.68, respectively) and the lowest yield (60 %). 
Probability density functions for back-reflections are remarkably different for the three designs. Without uncertainty 
design 2 has substantially smaller back-reflections compared to designs 1 and 3 (Tab. 1) but they quickly grow when 
width variations are introduced (longer tail of the function). In contrast, the minimum back-reflection achievable by 
design 1 and 3 is much higher but its variability is considerably smaller, as demonstrated by the narrower probability 
density functions. For designs 1 and 2 back-reflections do not exceed -10 dB with the considered uncertainty. The worst-
case scenario for design 3 shows higher back-reflections (about -7 dB) but a slightly lower average (-19 dB). With the 
chosen criteria design 3 has also the largest expected yield (46%). 

As described in Sec. 2, PCE can be combined with frequency-domain macromodeling (vector fitting) to efficiently build 
stochastic surrogate models of frequency-dependent quantities. We consider here the same uncertainty described in the 
previous paragraph and analyze its effect on the entire coupling efficiency spectrum, computed on 24 wavelength points 
from 1520 nm to 1580 nm. The quantity of interest CE(λ, δ) depends now on wavelength and on one stochastic variable 
(width deviation). For each of the K = 40 initial simulations we model CE dependence on wavelength through vector 

 
 

Figure 3: (a) Coupling efficiency spectrum for design 3. The shaded area is spanned by 40 Monte Carlo simulations. Combining 
vector-fitting and PCE the frequency-dependent surrogate model can be built for each of the 24 wavelength points used in the 

simulations. Crosses show the average coupling efficiency analytically derived from the model. Taking advantage of the vector-
fitting capabilities the wavelength resolution can be increased without any new simulation. The probability density function of 
the coupling efficiency can be calculated at any wavelength sampling the surrogate model. Blue and red dashed line mark two 
wavelength at the extreme of the considered bandwidth (1521 nm and 1576 nm, respectively). The corresponding probability 

density functions are quite different and are shown in (b).  
 



 
 

 
 

fitting with 6 poles and then apply PCE on the resulting matrices using polynomial order P = 6 to obtain the final PCE-
VF surrogate model. Results for design 3 are shown in Fig. 3(a). The 40 simulations used to build the model are included 
in the shaded area. A much larger variability can be seen at the edges of the spectrum compared to the grating central 
wavelength 1550 nm. Crosses mark the average coupling efficiency at each of the 24 wavelength points calculated with 
Eq. (5). Besides making PCE more efficient, the use of vector fitting to model the wavelength dependence of CE allows 
to improve wavelength resolution without performing additional simulations, computing stochastic moments at any 
wavelength within the considered range. As an example, the solid black line in Fig. 3(a) shows the average value of CE 
computed on 250 points while Fig. 3(b) shows the CE probability density function at λ = 1521 nm (blue curve) and λ = 
1576 nm (red curve). The two functions well highlight how the behavior of coupling efficiency under width variability 
strongly changes with wavelength. 

4. ANALYSIS OF PHOTONIC CIRCUITS WITH CORRELATED VARIABLES 

While for compact photonic devices the assumption of perfectly correlated variables can be a rather accurate description 
of the real variability (in the previous section we consider the same width deviation δ for the entire grating coupler) this 
condition might not be completely fulfilled when large circuits are considered. A finite correlation between uncertain 
parameters basically means that devices placed adjacent to one another on a chip tend to exhibit less mismatch variation 
than devices that are separated by a large distance. In literature, some techniques are available for statistical analysis in 
photonics including correlation that are based on either layout-dependent Monte Carlo [7] or arbitrary polynomial chaos 
[10,11]. The latter requires calculating basis functions to build the model (1) using complex algorithms. In this section, 
we will instead demonstrate the use of polynomial chaos expansion with correlated samples, for which Karhunen-Loeve 
(KL) transform is introduced.  

As an example we analyze a second-order unbalanced Mach-Zehnder filter. Circuit performance is evaluated in presence 
of correlated manufacturing uncertainties in the design parameters that are the widths of the waveguides and the 
couplers’ gaps. The accuracy of the results is compared against Monte Carlo. The considered Mach-Zehnder filter has a 
nominal 3-dB bandwidth of BW0 = 378 GHz, and the corresponding coupling coefficients for the three directional 
couplers are K1 = K3 = 0.865 and K2 = 0.532, with in-band isolation larger than 20 dB. For the directional coupler 
building block, the considered nominal gap is gi = 0.3 µm, leading to coupling lengths of Lc1 = Lc3 = 23.45 µm, and 
Lc3 = 16.09 µm. For the waveguide building blocks, the nominal waveguide width is Wi = 408 nm and its thickness is 
220 nm, corresponding to an effective index and group index of about 2.23 and 4.402, respectively. Both have the same 
unbalance lengths of 68 µm, corresponding to a free spectral range of FSR = 1 THz. The starting point to introduce 
correlation between building blocks is to obtain the value of the correlation coefficient for each circuit’s component. 
This can be done using the correlated surface function, which is given as [4] 
 

𝑔𝑔(𝑥𝑥,𝑦𝑦) = 𝑒𝑒−
(𝑥𝑥2+𝑦𝑦2)
2𝑙𝑙2 , 

 
where 𝑙𝑙 is the correlation length, and 𝑥𝑥 and 𝑦𝑦 are the coordinate of the circuit’s component on x-y layout plane. The 
layout of the second-order unbalanced Mach-Zehnder filter is shown in Fig. 4(a). The vertical dashed line represents the 

 
 

Figure 4: (a) Schematic of the second-order Mach-Zehnder filter. (b) Variation of the correlation function along the x-axis. Each 
cross mark represents the value of correlation of the respective building block of the circuit. 

 

(a) (b)



 
 

 
 

distance between the building blocks (i.e., directional coupler and waveguide) used to build the circuit. Based on the 
layout of the Mach-Zehnder filter, the correlation function is obtained considering a correlation length of 4.5 mm [19], as 
shown in Fig. 4(b). Without loss of generality, we assume that all building blocks are aligned in the x-axis, and therefore 
the value of y is fixed. Using the above approach, a correlation matrix of size N ×N is generated, where N is the number 
of building blocks. For each building block, we consider one uncertain parameter and therefore the total number of 
uncertain parameters is N = 5. Once the number of uncertain parameters and the correlation matrix are known, the 
correlated samples are generated from uncorrelated samples using KL transform, which is based on the spectral 
decomposition of the correlation matrix. For the stochastic analysis, the width of the coupler’s gap and the waveguide 
width of the stages are considered as normally distributed random variables with standard deviation σW = 1 nm.  The 
PCE of the circuit transfer function is built using the same procedure described in Sec. 2. Instead of using the correlated 
samples (generated by means of KL transform) for the linear regression, we use the uncorrelated ones (before 
transformation) to exploit the orthogonality of the polynomial basis (Hermite polynomial) with respect to the distribution 
of the uncorrelated parameters. Using correlated samples for the linear regression would instead imply the calculation of 
a suitable set of new orthogonal polynomial basis functions [10,11]. It should be noted that more general and viable 
approaches were recently proposed to handle non-Gaussian correlated uncertain parameters [12,20]. Nevertheless, using 
the described procedure to build the PCE approximation works well for correlated Gaussian parameters. After obtaining 
the PCE model, the circuit’s statistical behavior is inexpensively computed as described in the previous sections. Figure 
5 shows as an example the probability density function of the amplitude of the filter transmission at the bar and cross 
ports and the distribution of the filter bandwidth. 

5. CONCLUSIONS 

In this work we have shown how polynomial chaos expansion can be fruitfully exploited to efficiently investigate the 
stochastic properties of photonic devices and circuits subject to fabrication uncertainty. The methodology was applied to 
both a problem with a single random variable and to a problem with multiple correlated variables. In both cases a rich 
description of the stochastic properties of the devices was retrieved using a very limited amount of time expensive 
simulations. This makes the approach attractive for the investigation of large multi-parameter design space and machine-
assisted design approaches requiring the analysis of a large number of possible alternative design solutions. 

 
 

Figure 4: (a) MC analysis of circuit. PDF of the intensity transfer function at the (b) bar (black) and (c) cross (red) ports of the 
filter at the central wavelength, respectively. (d) PDF of the 3-dB bandwidth at the bar port of the filter. Full lines and circles are 

the PDFs computed using MC and gPC techniques, respectively. For both methods, 104 samples are used. 
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