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Abstract—This work presents a self biased current reference
circuit based on the MOSFET Zero Temperature Coefficient
(ZTC) condition. To achieve lower supply voltage (VDD) oper-
ation, the proposed circuit employs forward body biasing tech-
nique to decrease the MOSFET ZTC biasing point. In addition,
a body-driven pseudo differential Operational Transconductance
Amplifier (OTA) is used to further reduce the minimum supply
voltage. From transitor-level simulations, the current reference is
predicted to have an Effective Temperature Coefficient (TCeff ) of
65 ppm/oC from -55 to 125 oC and a fabrication sensitivity of σ/µ
= 6.5 %, including process and mismatch variability. The power
supply sensitivity is around 0.75 %/V for this new reference.

I. INTRODUCTION

Being an essential building block for analog designs, current
references work as a biasing reference for many other circuits.
To suit the recent nanoscale CMOS technology low voltage
supply (VDD) constraints [1] and/or the requirements of low
power applications [2]–[4], several current references have
been proposed [5]–[8]. Among them, it can readily be seen
that the usage of the MOSFET Zero Temperature Coefficient
(ZTC) condition has been showing itself as good approach
mainly due to its programability [9]–[12] and its availability
in advanced MOSFETs technologies, such as UTBB SOI and
FinFET devices [13].

As a new alternative, this work presents a novel ZTC based
current reference circuit which uses forward body biasing tech-
nique to decrease the MOSFET ZTC bias point. In addition, to
further improve the circuit performance in low VDD operation,
a bulk-driven Operational Transconductance Amplifier (OTA)
[14], [15] within proposed current reference is used.

The paper has the following structure. In Section II, the
forward body biasing technique applied in the ZTC operating
point is described. In Section III, the self-biased CMOS
current reference is analysed and designed. The transistor level
simulation results are presented in section IV, followed by
comparisons to other references proposed in the literature.
Finally, in section V, the concluding remarks are drawn.

II. MOSFET FORWARD-BODY-BIASED ZTC CONDITION

The ZTC condition comes from the mutual cancellation
of the mobility and threshold voltage dependencies on tem-
perature [5]. Fig. 1 shows the drain current w.r.t. the gate-
source voltage (VGS) of a saturated long-channel 10 µm width
by 10 µm length 180nm process NMOS transistor, simulated
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Fig. 1: NMOSFET ZTC condition in diode configuration: (a)
Gate connected and (b) Forward-Body-Biased connected

under −40oC, 27oC and 85oC temperatures, for both the gate
and forward-body-biased diode-connected configurations. The
ZTC operation points can be seen around VGB ≈ 570mV and
VGB ≈ 450mV for the gate and forward-body-biased diode-
connected configurations, respectively. In these bias points, the
currents are tolerant to temperature variation.

In [5], MOSFET ZTC and its vicinity conditions have been
modeled and expressed by (1) and (2). Which explain the
lower voltages for the ZTC behavior in the the forward-body-
biased configuration (negative VSB).

VGS(T ) ≈ VGZ −
αVT0

∆if
2ifz

T (1)

where

VGZ = VT0(T0) + (n− 1)VSB − αVT0
T0 (2)

VGS is the gate-source voltage, VGZ is the ZTC gate-source
voltage, βz is the ZTC slope, ∆if indicates how far the
transistor is biased from the ZTC operating point, if is the
forward inversion level, ifz is the ZTC forward inversion
level, T is the temperature, VT0(T0) is the threshold voltage at
room temperature,n is the slope factor, VSB is the source-bulk
voltage and αVT0 is the thermal coefficient of the threshold
voltage.
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Fig. 2: Self-biased CMOS current reference concept based on
the forward-body-biased ZTC operation condition [5].

III. PROPOSED SELF BIASED CURRENT REFERENCE

Figure 2 shows a self-biased current reference based on the
MOSFET ZTC operation condition, as presented in [5]. The
MOSFET device MZTC , while in diode configuration (in this
case, forward-body-biased connected), if biased properly with
a specific VGS gate-source voltage, outputs a drain current
tolerant to temperature variations. The main idea of this current
reference topology is to use ZTC vicinity of a MOSFET
transistor to compensate the thermal drift of a polysilicon
reference resistor RREF , resulting on an equilibrium bias
point with small temperature dependence. The Eqs. (3) and (4)
describe how to size RREF and MZTC aspect ratio properly
[5].

RREF ≈
VGZ

IREF (1− α1T0)

=
VT0(T0) + (n− 1)VSB − αVT0

T0

IREF (1− α1T0)

(3)

(W/L)ZTC =
2n

(
−2α1

αVT0
RREF + 1

IREF

)−1

µn(T0)T 2
0C
′
oxα

2
VT0

(4)

where α1 is poly resistor thermal dependence, C ′ox is the
gate capacitance per unit of area and IREF is the output
reference current.

The minimum supply voltage required by this topology
is limited either by the MZTC biasing voltage or by the
OTA. Figure 3a shows a version of the previous circuit using
conventional OTA. This OTA is composed of three stacked
transistors which must be in the saturation region in order the
circuit functions properly.

The circuit shown in Figure 3b uses a body input OTA,
which is composed by two stacked transistors and can possibly
function with a lower supply voltage. However, the use of
the body terminal as input has its drawbacks. The forward
biased body-source junction works as a forward biased diode
and draws current from the input source. More importantly,
the input impedance varies greatly with temperature, which
can interfere in the reference transistor MZTC biasing point.
As the reference transistor MZTC gate and body terminals
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Fig. 3: Current reference circuits with OTA variations

are shorted in order to lower its ZTC biasing point, VD is
then lowered and the current drawn by the differential pair
parasitic diode is decreased, as can be seen in Fig. 1. The
same technique is used in the current mirror composed of
the transistors M1A−D to decrease their inversion levels and,
consequently, their saturation voltages.

Also, the body-drain small signal transconductance gmb is
a fraction of the gate-drain transconductance gmg so that the
OTA has a reduced voltage gain compared to the conventional
gate input OTAs. To mitigate this, the transistors M1A−D and
M2A−B are replaced by composite transistors [16], which can
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Fig. 4: Current reference comparison: (a) Output current
reference power supply sensitivity, (b) Normalized current
reference temperature sensitivity, (c) Power Supply Rejection
and (d) Start-Up Time

be made equivalent to single transistors with larger output
impedance.

IV. SIMULATION RESULTS

To validate the proposed current reference, three versions
have been designed using the same forward-biased ZTC tran-
sistor and polyresistor with the Silterra IoT 0.18 µm PDK. All
simulation results herein presented are at transistor level using
Cadence Virtuoso TMsoftware and BSim4.5 MOSFET models.
The three versions differ only by the OTA, as shown in Figure
3, and the transistor sizes are shown in Table I.

k ×m×W/L
Gate Input OTA

M1A−F 16× 4× 700 nm / 360 nm
M2A−B 16× 4× 700 nm / 360 nm
M3A−D 16× 4× 700 nm / 360 nm

Body Input OTA
M1A−D 16× 1× 700 nm / 2.82µm
M1A−B 16× 1× 700 nm / 2.82µm

Enhanced Body Input OTA
M1A−D 16× 1× 700 nm / 2.82µm
M1E−H 16× 4× 700 nm / 360 nm
M1A−B 16× 4× 700 nm / 360 nm
M1C−D 16× 1× 700 nm / 2.82µm
MZTC 1× 1× 10.0µm / 10.0µm
RREF (535 kΩ) 24 × 450 nm / 7.75 µm
CM (1 pF) 1 × 20 µm / 50 µm

TABLE I: Transistor dimensions

Figure 4 shows how each circuit version compares to each
other in several performance aspects. Figure 4a shows the
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Fig. 5: Monte Carlo simulation including process and mis-
match: (a) Output current reference mismatch and (b) Tem-
perature coefficient mismatch

reference current IREF versus power supply. All circuits
were designed at the same biasing point and output a 690
nA reference current, but they differ at the power supply
sensitivity and minimum operational supply voltage. The gate
input OTA, body input OTA and enhanced body input OTA
versions have a minimum operational voltage of approximately
0.7 V, 0.6 V and 0.6 V, and 0.02 %/V, 3.00 %/V and 0.75 %/V
supply voltage sensitivity respectively.

Figure 4b depicts IREF temperature sensitivity. The gate
input OTA has Effective Temperature Coefficient (TCeff ) of
approximately 80 ppm/◦C, over a temperature range from -40
to 85◦C. On the other hand, the body input OTA versions have
an TCeff of approximately 65 ppm/◦C over the temperature
range from -55 to 125◦C. It is worthwhile to mention that the
body input versions were optimized for temperature range and
the same biasing point was used for the gate bias version so
that they would output the same reference at typical conditions.

Figure 4c depicts IREF power supply rejection ratio of each
circuit version at a 700 mV supply voltage operation. As can
be noticed, the enhanced body input OTA version exhibits
a better DC PSRR than simple bulk input OTA version, but
they exhibit almost the same behavior at higher frequencies.
The gate OTA version has a similar DC PSRR at this supply
voltage operation point, yet it has a better performance at
higher frequencies, due to transistor gate-drain transconctances
being considerably higher than body transconductances.

Figure 4d shows a transient simulation depicting the start-
up time and circuit stability with a 1 µs rise time 700 mV
supply voltage pulse signal. All circuits use a compensation
capacitor CM to ensure stability, but only the OTA version
needs a start-up circuit, as shown in Figure 2.

Figure 5 shows the enhanced body input current reference
version IREF and TCeff spread from 1000 monte carlo runs,
including process variation and mismatch. Fig. 5a shows the
reference current spread with a σ/µ = 6.5%. While Fig.
5b presents a TCeff spread with 99 % of samples below
the 300 ppm/◦C. In order to correct the process variability
undesired effects, a calibration scheme, such as digitally
trimmed reference resistors [18] could be used.

Table II presents a summary of our topologies and com-



This Work** [5]** [6]* [7]** [17]*
(a) (b) (c)

Technology 0.18 0.18 0.18 0.18 0.18 0.18 0.18
Temperature range (◦ C) -55 to 100 -55 to 125 -55 to 125 -40 to 85 -70 to 100 -25 to 125 0 to 100

Minimum Power Supply (V) 0.7 0.6 0.6 1.4 1.0 0.65 1.0
IREF (µA) 0.690 0.690 0.690 5.0 0.042 0.01 144

Total current (µA) 4.14 2.76 2.76 196 - 0.09
Power (µW) 2.90 1.65 1.65 342 - 0.07 227

Power Supply Sensitivity (%/V) 0.02 3.00 0.75 2.5 0.2 0.01
Temperature coefficient (ppm/◦ C) 80 65 65 15 3000 350 185

PSRR (dB) 45.8 36.8 48.5 - - - -
Start-Up Time (µs) 2.0 2.0 3.0 - - 5500 -

Area mm2 - - 0.008 0.010 0.010 0.025 -

TABLE II: Comparison of CMOS current references
* Measured results ** Simulated results
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CM
RREFMZTC
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Fig. 6: Enhanced Bulk Driven OTA version self biased current
reference layout

parison of published current references in similar process
technologies. The main advantage of the presented solution
is its low supply voltage requirement.

V. CONCLUSION

Forward body biasing lowers the MOSFET ZTC condition
and this technique can be used to decrease the minimum
supply voltage, as it has been demonstrated in the proposed
self-biased current reference. A body input OTA has also
been used to further reduce the minimum supply voltage and
composite transistors were implemented to improve the OTA
voltage gain. Transitor-level simulation results have shown
TCeff of 65 ppm/oC from -55 to 125 oC and a fabrication
sensitivity of σ/µ = 6.5 %, with 0.75 %/V of power supply
sensitivity.
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