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Comprehending complexity:
Data-rate constraints in large-scale networks

Alexey S. Matveev, Anton V. Proskurnikov, Alexander Pogromsky, Emilia Fridman

Abstract—The paper is concerned with the rate at which a
discrete-time, deterministic, and possibly large network of non-
linear systems generates information, and so with the minimum
rate of data transfer under which the addressee can maintain the
level of awareness about the current state of the network. While
being aimed at development of tractable techniques for estimation
of this rate, the paper advocates benefits from directly treating
the dynamical system as a set of interacting subsystems. To this
end, a novel estimation method is elaborated that is alike in flavor
to the small gain theorem on input-to-output stability. The utility
of this approach is demonstrated by rigorously justifying an
experimentally discovered phenomenon: The topological entropy
of nonlinear time-delay systems stays bounded as the delay grows
without limits. This is extended on the studied observability rates
and appended by constructive upper bounds independent of the
delay. It is shown that these bounds are asymptotically tight for
a time-delay analog of the bouncing ball dynamics.

Index Terms—Observability, Nonlinear systems, Entropy, Sec-
ond Lyapunov method, Data rate estimates

I. INTRODUCTION

A fundamental issue in the area of control of networked
systems is about constraints on communication among the
network agents. Some key aspects of such constraints are
captured in the concept of communication channel with a
limited data transmission bit-rate, and lead to inquiry about
the minimal rate needed to attain a specific control objective.
Recent extensive studies of this issue (see e.g., [1]–[6] and
the literature therein) have shown that this data-rate threshold
is alike in spirit to the topological entropy (TE) [7] of the
system at hand, but is not always identical, and various
relevant analogs of TE were introduced [2], [4], [8]–[17]. In
effect, these thresholds evaluate the complexity of the system’s
temporal behavior by assessing the rate at which the system
generates new information and so the minimum rate at which
an observer must be supplied with data in order that its level
of awareness about the network state can be maintained.
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Feasible computation or fine estimation of those thresholds
is an intricate matter even for low dimensional nonlinear
systems [18]–[20]. This intricacy rises fast at increase of the
system’s dimension, which typically makes that matter highly
complex for even medium-scale nonlinear networks. Mean-
while, the thresholds proposed in [13], [14] were computed in
closed form for several classic nonlinear chaotic systems (the
bouncing ball system, Hénon, logistic, and Lozy maps [13],
[21], among others) via the techniques elaborated in [13], [22].
They turn off the classic road of the first Lyapunov approach
in study of TE and the likes towards his second method.

The goal of this paper is to develop the approach of [13],
[14] into tractable techniques of handling networks of inter-
connected nonlinear dynamic agents with inputs and outputs.
This focus is partly motivated by ubiquity of such interconnec-
tions, which are therefore a classic subject of study in control
theory. The stated goal is to be approached by following the
lines of the famous small-gain theorem on the input-to-output
stability of a nonlinear plant (for generalizations concerned
with networks, see, e.g., [23], [24]). To this end, we disclose
individual input-to-output characteristics of the agents and
relations among them that enable feasibly estimating the rate at
which the entire network generates information. In this respect,
the paper generalizes our preliminary results from [25].

To illustrate the utility of these developments, we use
them to rigorously prove the fact previously discovered via
numerical studies of a few particular chaotic delayed systems:
their TE remains bounded as the delay grows without limits
[26], [27]. We show that this phenomenon is common and
extends on the studied observability rate thresholds. We also
offer explicit upper bounds on them that are independent of
the delay, and show that these bounds are asymptotically tight
for a time-delay analog of the bouncing ball dynamics.

The paper is organized as follows. Section II presents
background information. The problem setup and the main
result are given in Sect. III. Section IV deals with time-delay
systems, its findings are illustrated in Sect. V via an example.

The following notations are used throughout the paper:

‚ rk1 : k2s denotes set of integers j P rk1, k2s;
‚
J stands for transposition;

‚ Im is identity mˆm-matrix;
‚ } ¨ } denotes the Euclidean norm of a vector v P Rl

and the operator norm of a matrix M P Rmˆl, i.e.,
}M} :“ maxvPRl:}v}“1 }Mv} “ maxvPRl:v‰0 }Mv}{}v}
is the square root of the maximal eigenvalue of MJM ;

‚ stackppiq P Rr1`¨¨¨`rN is the result of stacking vectors
pi P Rri , i P r1 : N s on top of one another.
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II. OBSERVATION VIA BIT-RATE LIMITED CHANNELS

In this section, we introduce general concepts that are
concerned with observation via finite capacity communication
channels and will be employed in our main results.

A. Observation Problem Setup and Topological Entropy

This paper is concerned with building, in real time, an
effective estimate of the current state xptq P Rn of a discrete-
time invariant nonlinear system

xpt` 1q “ φrxptqs, t “ 0, 1, . . . , xp0q P K Ă Rn. (1)

The compact set K of feasible initial states and the continuous
map φ : Rn Ñ Rn are known to the designer of an estimator.
Data on (perfect) measurements of the state can reach the es-
timator only through a finite capacity communication channel.
Per unit time, it can transmit only a finite part of the infinity
of bits embodying the full knowledge of the current state. So
at the estimator, the information about the state is inevitably
inexact. Our main interest is in the case where due to unstable
dynamics of the plant, this inaccuracy tends to grow as time
passes, unless extra data arrive in course of time and are used
to compensate for this growth. Success of such a compensation
depends on the content of the messages and the transmission
rate, with the latter being the main subject of our interest.

Thus, only a finite-bit message eptq can be sent via the
channel at time t. So there is a need in a coder that converts
sensor readings xptq into such messages. Based on prior
messages, a decoder at time t produces an estimate pxptq P Rn
of the state xptq. The coder and decoder form an observer and
are described by the following respective equations:

eptq “ Crt, xp0q, . . . , xptq|pxp0q, δs, t ě 0,

pxptq “ D rt, ep0q, . . . , ept´ 1q|pxp0q, δs , t ě 1. (2)

It is assumed here that both coder and decoder have access to
a common initial estimate pxp0q and its accuracy δ

}xp0q ´ pxp0q} ă δ. (3)

We borrow the concept of channel capacity from [6, Sect. 3.4]
by assuming that no less/more than b´prq{b`prq bits of data
can be transferred across the channel within any time interval
of duration r, and that the respective averaged rates are close
to a common value c (channel capacity) for r « 8:

r´1b´prq Ñ c and r´1b`prq Ñ c as r Ñ8. (4)

As discussed in [6, Sect. 3.4], this model admits unsteady
instant rates, transmission delays, and dropouts.

Definition 2.1 ( [13]): The system (1) is said to be obser-
vable via a given communication channel if for any ε ą 0,
there exists δpε,Kq ą 0 and an observer (2) that operates via
the channel at hand and ensures }xptq ´ pxptq} ď ε @t ě 0
whenever (3) holds with δ :“ δpε,Kq, xp0q, pxp0q P K.

The associated demand to the channel capacity is related to
the topological entropy (TE) [7], [28] of the system (1) on K

Hpφ,Kq :“ lim
εÑ0

lim
kÑ8

1

k ` 1
log2 qpk, εq. (5)

Here qpk, εq is the minimal number of elements in a set Q Ă
Rpk`1qn that fits to approximate, with accuracy ε and for k
steps, any trajectory xpt, aq of (1) outgoing from a P K:

min
pxŹ

0,...,x
Ź
kqPQ

max
t“0,...,k

}xpt, aq ´ xŹ
t } ă ε @a P K. (6)

Specifically, the following claim holds.
Theorem 2.2 ( [13]): For observability via a communication

channel, it is necessary that its capacity c ě Hpφ,Kq. Con-
versely, if K is positively invariant, the system is observable
via any channel with capacity c ą Hpφ,Kq.

B. Regular and Fine Observability

Definition 2.1 allows critical regress of the estimation ac-
curacy over time: ε " δpε,Kq. This is excepted by the next
definition: The accuracy stays proportional to its initial value.

Definition 2.3 ( [13]): The observer (2) is said to regularly
observe the system (1) if there exist δ˚ and G ą 0 such that
the estimation accuracy }xptq ´ pxptq} ď Gδ @t ě 0 whenever
xp0q, pxp0q P K and in (3), δ is small enough δ ă δ˚.

A stronger property is that the initial accuracy is eventually
restored and then exponentially improved.

Definition 2.4 ( [13]): The observer (2) is said to finely
observe the plant (1) if there are δ˚, G ą 0, g P p0, 1q such
that }xptq ´ pxptq} ď Gδgt @t ě 0 if xp0q, pxp0q P K, δ ă δ˚.

Definition 2.5 ( [13]): The system (1) is said to be regu-
larly/finely observable via a given communication channel if
there exists an observer (2) that regularly/finely observes the
system (1) and operates via the channel at hand.

What channel capacity c is needed for every kind of
observability? Since the larger the capacity the better [13],
this question in fact addresses the infimum Rpφ,Kq of the
needed c’s. Here R is equipped with the index o, ro, fo in the
cases from Definitions 2.1, 2.3, 2.4, respectively, is called the
observability rate, and is fully determined by the system (1).

Lemma 2.6 ( [13]): For any positively invariant φpKq Ă K
compact set K, the following relations hold:

Hpφ,Kq “ Ropφ,Kq ď Rropφ,Kq “ Rfopφ,Kq. (7)

The results of, e.g., [6, Sect. 3.5] imply that for any linear
xpt` 1q “ Axptq system (1) and K with nonempty interior,

Ropφ,Kq “ Rropφ,Kq “ Rfopφ,Kq

“ HpAq :“
n
ÿ

i“1

log2 maxt|λi|; 1u, (8)

where λ1, . . . , λn are the eigenvalues of A. In nonlinear case,
computation or even fine estimation of the TE is an intricate
matter [18]–[20] so that its exact value is unknown even for
many prototypical low-dimensional chaotic systems, like the
Hénon map, Dufing oscillator, or bouncing ball system.

Whereas positivity of TE is classically associated with
chaotic behavior, there is not enough evidence that the posi-
tivity of the regular and fine observability rates can serve as
an onset of chaos in general. Meanwhile, Lemma 2.6 shows
that these rates give an upper bound on TE.
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(a) (b) (c)

Fig. 1. Examples of networks of interconnected dynamical systems Σi.

C. Comprehending complexity of network temporal behavior

This paper is focused on systems (1) that represent net-
works of interconnected subsystems. Because of multiplicity
and heterogeneity of aspects and factors that contribute to
complexity, there exists a whole variety of notions of network
complexity; see, e.g., [29]. We are concerned with complexity
of the temporal behavior, which is understood in terms of
predictability, chaoticity, and the likes. Then the values of
either TE, or observability rates, or their upper estimates can
serve as measures of complexity since they characterize the
rate at which the network generates a new information.

Meanwhile, large dimensionality of networked systems car-
ries a good potential to hamper direct application of available
techniques for evaluation of these measures. A way to cope
with this trouble is to disintegrate analysis into tractable
portions in accordance with the network structure.

We focus on the techniques from [13], [22], [30]–[32],
whose efficacy in the non-networked case has been proved by
closed-form computation of the regular and fine observability
rates for a number of prototypical nonlinear chaotic systems,
e.g., the bouncing ball system, logistic map and, under certain
circumstances, Hénon system [13], Lozy and Lorenz maps
[33]. To acquire a tractable method of dealing with networked
setting, we carry out the above disintegrated analysis along
the avenue of [13], [22], [30]–[32] via the following steps:

1) The plant is directly treated as an interconnection of
subsystems with inputs and outputs;

2) The individual input-to-output properties of the linearized
subsystems are characterized via inequalities on quadratic
“storage-” and “supply-” like functions in a fashion
portrayed in, e.g., [34], [35];

3) The final data-rate estimate is built on an argument in the
spirit of the celebrated small gain theorem.

III. TOPOLOGICAL ENTROPY AND OBSERVABILITY RATES
OF A NONLINEAR NETWORKED SYSTEM

A. Problem statement

From now on, we consider a network of interconnected
discrete time invariant nonlinear systems Σi, labeled 1 through
N ; see Fig. 1. The ith system is described by the equations:

xipt` 1q “ φirxiptq, uiptqs, yiptq “ hirxiptqs. (9)

Here xi P Rni is the state, ui P Rmi is the system’s input,
and yi P Rki is the output. The interconnection is given by

uiptq “
N
ÿ

j“1

Vijyjptq, (10)

where the given mi ˆ kj-matrix Vij quantifies the impact of
jth subsystem on the ith one; Vij “ 0 in the case of no impact.

The above model admits “master” systems without an input

xipt` 1q “ φirxiptqs, yiptq “ hirxiptqs, (11)

which influence the peers, being unaffected by them, as well
as “slave” systems without an output

xipt` 1q “ φirxiptq, uiptqs, (12)

which are influenced by the peers with no backward effect on
them. To embed these cases into (9), it suffices to endow the
“master” (11) with a “void” input uiptq P R with no effect
on the dynamics of Σi and put Vij “ 0@j to set uiptq ” 0
for the sake of definiteness. Similarly, it suffices to endow the
“slave” (12) with the “void” output map hipxq ” 0 P R.

The network at hand can be written in the form (1) with

x :“ stackpxiq P Rn, φpxq “ stack
`

φi
“

xì
i pxq

‰˘

,

where xì
i pxq :“

«

xi,
N
ÿ

j“1

Vijhjpxjq

ff

and n :“
N
ÿ

i“1

ni. (13)

We still consider only the trajectories that start in a given
compact set K Ă Rn. So the material of Sect. II-A and II-B is
fully applicable to this network, which is attributed to the just
introduced φ and K from now on. Our goal is to constructively
estimate Rro/fopφ,Kq in this case.

B. Basic constructions and assumptions

These assumptions are distributed into three groups.
Assumptions about the interactions are motivated by the

fact that direct use of the coupling matrices Vij , which exhaus-
tively describe the topology and strengths of interactions, may
be troublesome. The reasons combine high dimensionality of
the data represented by the totality of all Vij’s with problems
of their practical acquisition. So we admit that Vij’s may be
unavailable and only a less problematic upper estimate of the
summary “strength” of actions on every subsystem is known.

Assumption 3.1: For any i, a bound Mi is known such that

}Vi˚}
2 ďMi. (14)

Here the block matrix Vi˚ :“ rVi1 Vi2 . . . ViN s of dimension
mi ˆ pk1 ` . . .` kN q sets up actions of the peers on Σi.

There is a way to reduce the dimensions of the matrices
whose operator norm } ¨ } should be computed: it suffices to
verify the inequality

řN
j“1 }Vij}

2 ďMi, which clearly implies
(14). Certainly, this injects more conservatism in general.

Section III-E will discuss replacement of Assumption 3.1
by a less conservative though more involved requirement.

Assumptions about every subsystem Σi.
Assumption 3.2: In (9), the maps φi : Rni ˆ Rmi Ñ Rni

and hi : Rni Ñ Rki are continuously differentiable for any i.
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In order to proceed, we denote by xpt, aq the trajectory of
the system (9), (10) that starts with xp0q “ a P Rn, and put

Xptq :“ tx “ xpt, aq : a P Ku, X8 :“
8
ď

t“0

Xptq. (15)

Definition 3.3: A function fpxq mapping Rn to an Euclidean
space is said to be uniformly continuous near a subset X˚ Ă
Rn if for any ε ą 0, there exists δ ą 0 providing the following:

}fpxq´fpx q} ă ε @x P X˚, x P Rn, such that }x´x } ă δ.

As is well known, any continuous function is uniformly
continuous near any compact set.

Assumption 3.4: For any subsystem Σi, the following func-
tions (which are defined by using xì

i pxq from (13))

Bφi
Bxi

“

xì
i pxq

‰

,
Bφi
Bui

“

xì
i pxq

‰

,
Bhi
Bxi
rxis

are bounded on X8 and uniformly continuous near this set.
This does hold if the set X8 is bounded, in particular, if the

given compact set K of initial states is positively invariant.
Any trajectory of the networked system is associated with a

particular process in every subsystem i, which is described
by the time sequences xiptq, uiptq, yiptq, t “ 0, 1, . . .. The
further analysis will be much concerned with the first order
approximation of every subsystem near a particular trajectory

zipt` 1q “ Aiptqziptq `Biptqwiptq,

ζiptq “ Ciptqziptq. (16)

Here zi, wi, and ζi stand for the “increments” of xi, ui, and
yi, respectively, and

Aiptq “
Bφi
Bxi

rxiptq, uiptqs, Biptq “
Bφi
Bui

rxiptq, uiptqs,

Ciptq “
Bhi
Bxi
rxiptqs. (17)

A productive approach to characterization of input-to-output
properties of linear systems is by using dissipation inequalities
on certain quadratic “storage” and “supply” functions [34].
We follow these lines and associate the i-th subsystem with
a “storage” zJi Pizi function and take the function giving the
“supply” rate in the form zJi rQi ´Piszi ´

1
γi
}ζi}

2 ` γi}wi}
2.

Description of the input-to-output properties addresses the
incremental values of the input and output of the linearized
system (16), and is stated in the following.

Assumption 3.5: There exist niˆni matrices Pi “ PJi ą 0,
Qi “ QJi ě 0 and a number γi ą 0 such that the following
inequality is true along all solutions of the networked system
(9), (10) starting in the given compact set K:

rAiptqzi `Biptqwis
JPirAiptqzi `Biptqwis ď zJi Qizi

´
1

γi
}ζi}

2 ` γi}wi}
2, ζi “ Ciptqzi @zi, wi, t. (18)

If Qi ď Pi, this implies that γi upper bounds the l2-gain of
the system (16) from the input wi to output ζi: for zp0q “ 0,

ÿ

t

}ζiptq}
2 ď γ2i

ÿ

t

}wiptq}
2.

In this case, Assumption 3.5 gives upper bounds γi on the
incremental l2-gains of subsystems (9).

For the system (11) (which has no input), (18) shapes into

Aiptq
JPiAiptq ` γ

´1
i Ciptq

JCiptq ď Qi @t.

For the system (12) (which has no output), (18) takes the form

rAiptqzi `Biptqwis
JPirAiptqzi `Biptqwis ď

ď zJi Qizi ` γi}wi}
2 @zi, wi, t.

Assumption on the balance between the strengths of in-
teractions and the input-to-output gains of the subsystems.
Whereas these strengths are assessed by the constants Mi from
Assumption 3.1, the concerned “gains” are characterized by γi
from Assumption 3.5. It is worth noting that the “gains” γi
from this assumption are not uniquely determined like classical
input-output gains: indeed, selecting a larger Qi one can, in
turn, choose a smaller γi. Our last assumption may be viewed
as an analog of the classical “small gain” inequality.

Assumption 3.6: For any i, the following inequality holds:

γi
ÿ

j:Vji‰0

γjMj ď 1. (19)

It assumes knowledge of the interaction graph illustrated in
Fig. 1c. If this graph is unknown, the following stronger con-
dition can be verified since it surely implies Assumption 3.6:

γi

N
ÿ

j“1

γjMj ď 1 @i. (20)

In turns, this holds whenever γi ď pM1 ` ¨ ¨ ¨ `MN q
´1{2 @i.

C. The main result

Let P “ PJ ą 0 and Q “ QJ ě 0 be square matrices of a
common size. The roots of the algebraic equation

detpQ´ λP q “ 0 (21)

are nonnegative (since λ “ xJQx
xJPx , where x ‰ 0 is any solution

of the singular linear equation pQ´ λP qx “ 0) and equal to
the eigenvalues of each of the matrices QP´1 and P´1Q. Let
us enumerate these roots in descending order, repeating any
of them in accordance with its algebraic multiplicity. Partly
inspired by (8), we introduce the following quantity

HLpP,Qq “
1

2

ÿ

j

maxt0, log2 λju, (22)

where the sum is over all j’s and log2 0 “ ´8.
Now we are in a position to state the main result.
Theorem 3.7: Suppose that Assumptions 3.1—3.6 hold.

Then the observability rates of the networked system (9), (10)
obey the following inequalities

Hpφ,Kq ď Rropφ,Kq ď Rfopφ,Kq ď
N
ÿ

j“1

HLpPj , Qjq, (23)

where the matrices Pi, Qi are taken from Assumption 3.5.
The proof of this theorem is given in Appendix A.
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(a) Ring-like connection (b) All-to-all connection

Fig. 2. Examples of networks of interconnected dynamical systems Σi.

D. Examples: networks with special topologies

For networks with special topologies, we now specify
Assumption 3.6, which is among the key conditions that imply
the conclusion (23) of Theorem 3.7.

1) Feedback connection of two systems: is shown in Fig. 1a.
In this case, u1 “ ζ2 P Rk2 , u2 “ ζ1 P Rk1 and V12 “
Ik2 , V21 “ Ik1 , V11 “ 0, V22 “ 0. Thus M1 “ M2 “ 1 in
(14), and Asm 3.6 shapes into γ1γ2 ď 1. This is close to the
key condition γ1γ2 ă 1 from the classic small-gain theorem.

2) Feedback connection of N systems: is shown in Fig. 1b.
In this case, m1 “ k2 ` . . .` kN ,m2 “ . . . “ mN “ k1,

u1 “ stackpy2, . . . , yN q, ui “ y1 @i ě 2,

V1˚ “ diagr0, Ik2 , . . . , IkN s, Vi˚ “ rIk1 0 . . . 0s @i ě 2.

So M1 “ . . . “MN “ 1 in (14) and (19) ô γ1
řN
j“2 γj ď 1.

3) Ring-like connection: is illustrated in Fig. 2a. In this
case, m2 “ k1, V21 “ Ik1 ,m3 “ k2, V32 “ Ik2 , . . .mN “

kN´1, VN,N´1 “ IkN´1
,m1 “ kN , V1N “ IkN , all other Vij’s

are zero, M1 “M2 “ . . . “MN “ 1 in (14). So (19) means
that γ1γN ď 1 and γjγj`1 ď 1 whenever 1 ď j ď N ´ 1.

4) All-to-all connection via broadcasting communication:
is illustrated in Fig. 2b. Every subsystem i affects its peers
via broadcasting a signal yiptq. Any subsystem Σj averages
the incoming signals via the classic nearest neighbors rule
N´1

ř

i yiptq to form the input to the controller that drives
Σj . So mi “ ki “: p @i, Vij “ N´1Ip @i, j, and hence

Vi˚ “ N´1rIp Ip . . . Ips, Mi “ }Vi˚}
2 “ N´1 @i;

(20) ô γipγ1 ` ¨ ¨ ¨ ` γN q ď N @i. (24)

E. Relaxation of Assumptions 3.1 and 3.6

Theorem 3.7 remains true if a weaker assumption is put in
place of the above two ones. The utility of this is somewhat
subverted by more involved verification insomuch as the op-
erator norm of a potentially much larger matrix is concerned.

To define it, we arrange Vij from (10) into m ˆ k-matrix
V “ pVijq, where m :“ m1`. . .`mN and k :“ k1`. . .`kN ,
and introduce the following block-diagonal matrices

Γw “ diagp
?
γ1Im1 , . . . ,

?
γNImN q,

Γζ “ diagp
?
γ1Ik1 , . . . ,

?
γNIkN q. (25)

Assumption 3.8: The following inequality holds

}ΓwV Γζ} ď 1. (26)

Lemma 3.9: Theorem 3.7 remains true if Assumptions 3.1
and 3.6 are replaced with Assumption 3.8.

The proofs of this and next remark and the following lemma
are given in Appendix A. This lemma shows that Lemma 3.9
does relax the assumptions of Theorem 3.7.

Lemma 3.10: Assumptions 3.1, 3.6 imply Assumption 3.8.
Meanwhile, the converse is not true in general. For example,

in the case from Subsect. III-D-4,

Γw “ Γζ “ diag r
?
γ1Ip,

?
γ2Ip, . . . ,

?
γNIps

V “
1

N

¨

˝

Ip Ip ... Ip
Ip Ip ... Ip

...
...

...
...

Ip Ip ... Ip

˛

‚

ΓwV Γζ “
1

N

¨

˚

˝

?
γ1γ1Ip

?
γ1γ2Ip ...

?
γ1γNIp

?
γ2γ1Ip

?
γ2γ2Ip ...

?
γ2γNIp

...
...

...
...?

γNγ1Ip
?
γNγ2Ip ...

?
γNγNIp

˛

‹

‚

;

}ΓwV Γζζ}
2 “

1

N2

›

›

›

›

›

N
ÿ

j“1

?
γjζj

›

›

›

›

›

2 N
ÿ

j“1

γj ,

}ΓwV Γζ}
2 “

1

N2

N
ÿ

j“1

γj max
ζj :

ř

j }ζj}
2“1

›

›

›

›

›

N
ÿ

j“1

?
γjζj

›

›

›

›

›

2

“
1

N2

«

N
ÿ

j“1

γj

ff2

.

So Assumption 3.8 takes the form 1
N

řN
j“1 γj ď 1 and is

much weaker than the set of inequalities (24) that embodies
Assumptions 3.1 and 3.6 in the case at hand.

IV. ENTROPY OF SYSTEMS WITH DELAYS

Now we turn to delayed discrete-time systems of the form

xpt` 1q “ f rxptq, Cxpt´ τqs, t “ 0, 1, . . . . (27)

Here τ ą 0 is an integer delay, xptq P Rn, the smooth function
fpx, rq P Rn of x P Rn, r P Rd is given, and the dˆn-matrix
C typically “cuts out” a certain part of the state x. The initial
states are restricted by a given compact set K Ă Rn as follows

xp0q P K, xp´1q P K, . . . , xp´τq P K. (28)

The standard state augmentation

xptq :“ rxptq, xpt´ 1q, . . . , xpt´ τqs (29)

shapes this system into (1) with

φpxq “ rfpx0, Cx´τ q, x0, . . . , x´τ`1s @x “ rx0, . . . , x´τ s

and K :“ tx : xj P K @ju. So all concepts from Section II
are fully applicable to (27), (28).

We study the behavior of the TE Hpτq and the observability
rates Rro/fopτq of the system (27), (28) as τ Ñ8. A stimulus
for this is given by the numerical studies in [26], [27], which
have shown that limτÑ8Hpτq ă 8 for particular chaotic
systems. Now we rigorously prove that this phenomenon is
common and extends on Rro/fopτq, and offer explicit upper
bounds on Rro/fopτq, Hpτq that are uniform over τ .

We impose the following analog of Assumption 3.4.
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Assumption 4.1: There is K˚ Ă Rn such that the following
statements hold:

i) Irrespective of the delay, any solution of (27) satisfying
(28) lies in K˚, i.e., xptq P K˚ @t ě 0;

ii) The first derivatives of fp¨, ¨q are bounded on K˚ˆCK˚
and are uniformly continuous near this set.

This is true with K˚ :“ K if the compact set K is positively
invariant for any τ , and with K˚ :“ Rn if the derivatives are
bounded and uniformly continuous on the entire Rn ˆ Rd.

For any $ “ px, rq, x P Rn, r P Rd, we put

Ap$q :“
Bf

Bx
p$q, Bp$q :“

Bf

Br
p$q.

The next assumption is inspired by (18) with γi :“ 1.
Assumption 4.2: There are symmetric nˆ n-matrices P ą

0, Q ě 0 such that for any $ P K˚ ˆ CK˚,

rAp$qz `Bp$qwsJP rAp$qz `Bp$qws ď zJQz

´ ζJζ ` wJw, ζ “ Cz, @z P Rn, w P Rd. (30)

Thanks to ii) in Assumption 4.1, such matrices do exist: it
suffices to pick P and Q small and large enough, respectively,
although a more refined choice may be also possible.

Theorem 4.3: Let Assumptions 4.1 and 4.2 hold. Then

Hpτq ď Rropτq ď Rfopτq ď HLpP,Qq @τ.

Proof: We represent the system (27) as the interconnec-
tion (10) of the following two subsystems with uiptq P Rd

Σ1 :

"

x1pt` 1q “ f rx1ptq, u1ptqs P Rn,
y1ptq “ Cx1ptq P Rd,

Σ2 :

"

x2pt` 1q “ Ax2ptq `Bu2ptq P Rdτ ,
y2ptq “ Cx2ptq P Rd.

Here the second subsystem is a τ -step delay line:

A “

¨

˚

˚

˚

˚

˚

˝

0 0 ¨ ¨ ¨ 0 0
Id 0 ¨ ¨ ¨ 0 0
0 Id ¨ ¨ ¨ 0 0
...

...
. . . 0 0

0 0 ¨ ¨ ¨ Id 0

˛

‹

‹

‹

‹

‹

‚

,B “

¨

˚

˚

˚

˚

˚

˝

Id
0
0
...
0

˛

‹

‹

‹

‹

‹

‚

,

C “
`

0 0 ¨ ¨ ¨ 0 Id
˘

.

For Σ1, Asm 3.5 holds with P1 :“ P,Q1 :“ Q, γ1 :“ 1 by i)
in Asm 4.1 and Asm 4.2. For Σ2, we have

x2pt`1qJx2pt`1q “ x2ptq
Jx2ptq`u2ptq

Ju2ptq´y2ptq
Jy2ptq;

so Asm 3.5 is true with P2 “ Q2 “ Idτ , γ2 “ 1. Thus Asm 3.6
holds; Asm 4.1 implies Asm 3.4. The proof is completed by
Theorem 3.7 since HLpP2, Q2q “ 0.

The last equation is an epitome of the fact that the delay
line Σ2 does not produce uncertainty. An easily visible sign
of this is that the knowledge X Ź “ rxŹ

t0 , . . . , x
Ź
t0´τ s of the

state X pt0q :“ rxpt0q, . . . , xpt0 ´ τqs of Σ2 (with u2ptq ” 0
for simplicity) up to the δ-uncertainty maxt“t0´τ,...,t0 }xptq´
xŹ
t } ă δ enables one to predict the subsequent states with the

same accuracy δ (e.g., by running Σ2 from X Ź). Meanwhile,
the delay line is able to affect uncertainty production in a
feedback interconnection so that the entropy of the overall
system becomes dependent on the delay [26], [27].

V. EXAMPLE

We consider an integer delay τ ą 0 and the τ -delayed
analog of the “bouncing-ball dynamics” [13] (which is among
the classic examples of low-dimensional chaotic behavior):

ypt` 1q “ p1` αqyptq ´ β cos yptq ´ αypt´ τq P R. (31)

Here α and β ą 0 are parameters. Since (31) is invariant to the
change y ÞÑ y˘2π, this equation defines not only a dynamical
system in R (R-system) but also a system in the unit circle S1

0

(S1
0 -system). By [13, Remark 5], the concepts from Section II

are fully applicable to the S1
0 -system.

Proposition 5.1: For the S1
0 -system (31) with any delay τ ,

Hpτq ď Rropτq ď Rfopτq ď L :“ log2p1` 2α` βq. (32)

Proof: The R-system (31) has the form (27), (28) with

x “ y P R, C “ 1, fpx1, x2q “ p1` αqx1 ´ β cosx1 ´ αx2

in (27) and K :“ r´π, πs in (28). Then Assumption 4.1 holds
with K˚ :“ R. To check Assumption 4.2, we note that in (30),

Ap$qz`Bp$qw “ p1`α` β sin yqz´αw @$ “ py, y1q.

Now P “ p P p0,8q, Q “ q P r0,8q and zJPz “

pz2, zJQz “ qz2. So the left-hand side L of (30)

L “ p|p1 ` α ` β sin yqz ´ αw|2 ď prγ|z| ` α|w|s2,

where γ :“ 1` α` β. Hence (30) does hold whenever

L1 :“ pq ´ 1q|z|2 ` |w|2 ´ prγ|z| ` α|w|s2 ě 0.

By treating L1 as a quadratic form in |z|, |w| and applying
Sylvester’s criterion, we see that (30) is true whenever

1´ pα2 ą 0 and 0 ď

ˇ

ˇ

ˇ

ˇ

q ´ 1´ pγ2 ´pγα
´pγα 1´ pα2

ˇ

ˇ

ˇ

ˇ

“ qp1´ pα2q ´ r1` ppγ2 ´ α2qs.

Thus (30) holds with p P
`

0, α´2
˘

, q :“ 1`ppγ2
´α2

q

1´pα2 . We take
the point p “ 1

αpγ`αq P p0, α
´2q, where the root λ “ q{p of

(21) attains its maximum pα`γq2. Via elementary computation
of (22), Theorem 4.3 implies (32) for the R-system.

By (29), its phase space XR is Rτ`1; such space of the S1
0 -

system is the multidimensional torus XS1
0
“ trs0, . . . , s´τ s :

s´j P S
1
0 @ju. The covering projection of rx0, . . . , x´τ s P XR

into reıx0 , . . . , eıx´τ s P XS1
0

clearly maps the next state of the
R-system into the state of the S1

0 -system that is next to the
projection of the current state of the R-system. It remains to
note that the change of the R-system to S1

0 -system does not
increase the data rates in (32) by [13, Lemma 13].

For τ “ 0, Theorem 15 from [13] offers an exact formula
for Rro/fop0q and displays a gap in (32): Rrop0q “ Rfop0q ă
L. For τ ą 0, computation of Rro/fopτq is not easy. So we
analyze that gap in the limit as τ Ñ8 via lower estimating the
associated limit of Rropτq. To this end, we need the following.

Lemma 5.2: Whenever α ą 0 and a ą 1` α, the equation

χnpλq “ λn ´ aλn´1 ` α “ 0 (33)

has a root λ P papn´ 1q{n; aq if the integer n is large enough.
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Proof: It suffices to note that χnpaq “ α ą 0, whereas

χn rapn´ 1q{ns “ α´
an

n´ 1

“

1´ n´1
‰n nÑ8
ÝÝÝÑ ´8.

It is easy to see that the eigenvalues of the Jacobian matrix
of (31) at the equilibrium π{2 are the roots of (33) with a :“
1`α`β, n :“ τ ` 1. One of them converges to a as τ Ñ8

by Lemma 5.2, whereas the others do not lie on S1
0 (since

|λ| “ 1 ñ |λn´1pa´ λq| ě a´ 1 ą α). So the equilibrium is
hyperbolic. Then Theorem 9 in [13] entails the following.

Corollary 5.3: The following holds for any α, β ą 0:

lim inf
τÑ8

Rropτq ě log2p1` α` βq. (34)

Thus for α ! β, the estimates (32) become tight as τ Ñ8.
The smaller the ratio α{pβ`1q, the narrower the gap between
the upper (32) and lower (34) bounds on Rro/fo.

VI. CONCLUSIONS AND FUTURE WORK

For a discrete-time deterministic network of interacting
nonlinear systems, an upper bound on the bit-rate at which
the network generates information was given. This bound is
based on separate estimates of the individual contributions of
the subsystems and their integration in line with the network
topology. The obtained results were used to show that the
topological entropy of nonlinear delayed systems, as well as
the above rate, stays bounded as the delay grows without
limits. A delay-independent upper estimate of these quantities
was provided; this estimate is shown to be asymptotically tight
for a time-delay analog of the bouncing ball dynamics.

Future work includes study of decentralized observation
schemes and systems with disturbances.
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APPENDIX A
PROOFS OF THE RESULTS FROM SECTION III.

These proofs use Theorem 12 from [13], which is repro-
duced here for the convenience of the reader.

Theorem A.1 ( [13]): Suppose that for the system (1), the
Jacobian matrix Apxq :“ φ1pxq is bounded on the set X8

given by (15) and is uniformly continuous near this set. Let
there exist continuous and bounded on X8 functions vd :
Rn Ñ R, constants Λd ě 0, d P r1 : ns, and a positive
definite nˆ n-matrix P “ PJ such that for any d P r1 : ns,

vdrφpxqs ´ vdrxs `
d
ÿ

i“1

log2 λipxq ď Λd @x P X8. (A.1)

Here λ1pxq ě ¨ ¨ ¨ ě λnpxq ě 0 are the roots of the algebraic
equation

det rApxqJPApxq ´ λP s “ 0 (A.2)

are repeated in accordance with their multiplicities. Then

Rfopφ,Kq ď Λ‹ :“ 2´1 max
d

Λd. (A.3)

We also need the following
Lemma A.2: If P ą 0, Q1, Q2 are symmetric nˆn-matrices,

then HLpP,Q1q ď HLpP,Q2q whenever 0 ď Q1 ď Q2.
Proof: We put S :“ P´1{2, where P 1{2 is the positively

definite square root of P , and note that (21) means that λ is
an eigenvalue detpSQS ´ λIq “ 0 of the symmetric matrix
SQS. Meanwhile, xJSQiSx “ pSxqJQipSxq and so 0 ď
SQ1S ď SQ2S. The proof is completed by Weyl’s inequality
for eigenvalues of symmetric matrices [36, Cor. 4.3.3].

Proof of Lemma 3.10: It is easy to see that

}ui}
2 (10)
“ }Vi˚y}

2
(14)
ď Mi}y}

2 “Mi

N
ÿ

j“1

}yj}
2, (A.4)

where u :“ stackpuiq, y :“ stackpyiq. Putting yj :“ 0
whenever Vij “ 0 keeps (10) and so (A.4) true. Hence

}ui}
2

(A.4)
ď Mi

ÿ

j:Vij‰0

}yj}
2

ˆγi
“““ñ

N
ÿ

i“1

γi}ui}
2 ď

N
ÿ

i“1

γiMi

ÿ

j:Vij‰0

}yj}
2

“
ÿ

i,jPr1:Ns:Vij‰0

γiMi}yj}
2 ď

N
ÿ

j“1

}yj}
2

ÿ

i:Vij‰0

γiMi.

Now we put yj :“ γ
1{2
j ζj here, denote wi :“ γ

1{2
i ui and

invoke (19) to see that
N
ÿ

i“1

}wi}
2 ď

N
ÿ

j“1

}ζj}
2 γj

ÿ

i:Vij‰0

γiMi

looooooomooooooon

ď1 due to (19)

ď

N
ÿ

j“1

}ζj}
2.

If w P Rm, ζ P Rk and w “ ΓwV Γζζ, the vectors u “ Γ´1
w w

and y “ Γζζ are related by u “ V y, which is equivalent
to (10). So }ΓwV Γζζ}

2 ď }ζ}2 @ζ P Rk ñ (26).
Proof of Theorem 3.7 and Lemma 3.9: The first two

inequalities in (23) are borrowed from Theorem 8 in [13] and
formula (7) in [13]. So it remains to prove the third inequality.
In view of Lemma 3.10, it suffices to prove Lemma 3.9.

Assumption 3.4 and (13) guarantee that Apxq :“ φ1pxq is
bounded on X8 from (15) and is uniformly continuous near
this set, as is required by Theorem A.1. Also, (13) yields that

Apxqz “ stack rAipxqzi `Bipxqwis @z :“ stack pziq ,

where wi “
N
ÿ

j“1

Vijζj , ζj “ Cjpxqzj , and (A.5)

Aipxq :“
Bφi
Bxi

rxì
i pxqs, Bipxq :“

Bφi
Bui

rxì
i pxqs,

Cipxq “
Bhi
Bxi
rxis.
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Now we introduce the following positively and non-negatively
definite block-diagonal nˆ n-matrices, respectively

P “ diagpP1, . . . , PN q, Q “ diagpQ1, . . . , QN q. (A.6)

For any x P X8, the vector xì
i pxq has the form rxiptq, uiptqs

for some t ě 0 and some trajectory of the networked system
that starts in K. Hence, Aipxq, Bipxq, Cipxq coincide with
matrices (17) that satisfy inequality (18), and so

zJApxqJPApxqz

“

N
ÿ

j“1

rAiptqzi `Biptqwis
JPirAiptqzi `Biptqwis

(18)
ď

N
ÿ

j“1

„

zJi Qizi ´
1

γi
}ζi}

2 ` γi}wi}
2



(25)
“ zJQz ´

›

›Γ´1
ζ ζ

›

›

2
` }Γww}

2
.

Here ζ :“ stackpζiq and w :“ stackpwiq are related by
w “ V ζ due to the first relation in (A.5). Whence

zJApxqJPApxqz ď zJQz ´
›

›Γ´1
ζ ζ

›

›

2
`

›

›

›
ΓwV ΓζΓ

´1
ζ ζ

›

›

›

2

ď zJQz ´
“

1´ }ΓwV Γζ}
2
‰
›

›Γ´1
ζ ζ

›

›

2 Ass. 3.8
ď zJQz @z.

So by Lemma A.2, HLrPApxq
JPApxqs ď HLpP,Qq @x P

X8. So (A.1) holds with vdp¨q ” 0 and Λd :“ 2HLpP,Qq @d,
whence Rfopφ,Kq ď HLpP,Qq by Theorem A.1. Meanwhile,
(A.6) implies that the roots of equation (21) are formed via
the union of the sets of the roots of all equations detpQj ´

λPjq, j P r1 : N s. So HLpP,Qq “
řN
j“1HLpPj , Qjq by (22),

which completes the proof of the third inequality in (23).
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