
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Mobile Testing: New Challenges and Perceived Difficulties from Developers of the Italian Industry / Coppola, Riccardo;
Ardito, Luca; Torchiano, Marco; Morisio, Maurizio. - In: IT PROFESSIONAL. - ISSN 1520-9202. - (In corso di stampa).

Original

Mobile Testing: New Challenges and Perceived Difficulties from Developers of the Italian Industry

ieee

Publisher:

Published
DOI:

Terms of use:
openAccess

Publisher copyright

copyright 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating .

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2754814 since: 2019-09-25T11:42:03Z

IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234931022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

Mobile Testing: New Challenges and Perceived

Difficulties from Developers of the Italian

Industry

Riccardo Coppola, Luca Ardito, Maurizio Morisio, Marco Torchiano

Department of Computer and Automation Engineering

Politecnico di Torino

Turin, Italy

Email: first.last@polito.it

Abstract

Automated GUI testing is a fundamental part of the Verification and Validation process of every

software, but it is often linked to notable maintenance costs, especially for mobile applications. The

literature reports a general lack of automated testing adoption among mobile developers in the industry.

In this paper we present the outcome of seven interviews centered on how companies automate the

testing process of mobile applications. The interviews confirmed that automated testing is still not

widely adopted and rarely formalized by industry, with manual testing being still the primary form of

testing. Test fragility and evolution of the user interface are seen as a relevant issue by developers, with

a cost of around 30% of the overall maintenance performed on test suites. Some clear shared needs

emerged during our interviews, that can be considered hints for the added research effort from academia

in meeting the needs of industry.

Index Terms

GUI-testing; Android Testing; Automated Testing

I. BACKGROUND

Mobile devices have overtaken desktop computers in terms of shipped units, with the Android

operating system becoming the favorite among mobile users. Current mobile Apps have reached a

very high complexity and provide a wide range of features, from infotainment to security-critical



2

operations. Apps are relatively easy to deploy, thanks to the availability of marketplaces where

they can be sold or released for free. In such a highly competitive scenario, a thorough Verification

and Validation phase could be fundamental to ensure reliability and guarantee conformity to the

users’ needs. Testing the application GUIs (i.e., Graphical User Interfaces) is a key task, since

they vehicle most of the interaction with the final user. The GUI is particularly involved when

testing the flow of an App end-to-end (E2E).

Many approaches to testing mobile applications are available, ranging from the execution of

manual test cases to the adoption of complex automated testing frameworks. Test automation is

a preferable alternative, since it can create more dependable and adaptable test suites. Automated

testing tools can be categorized according to the way the elements of the interface are recognized

and interacted [1]. Android widget-based testing techniques, like Robotium, Appium, Espresso

and UiAutomator, are based on the tester’s knowledge of the structure of the app GUI. Fuzzy

or Random testing tools, like Monkey, inspect interfaces through sequences of aleatory inputs;

the definition of the inputs can also be refined using models of the user interface. ACRT by

Chien et al. [11] and RERAN by Gomez et al. [7] are examples of mobile C&R testing tools,

which entail manually executing test cases that are then translated into repeatable test scripts.

Amalfitano et al. propose MobiGUITAR [2], a specialization for Android of the general purpose

GUITAR [12], which extracts models of the GUI through a process called GUI Ripping and

then systematically traverse them for testing purposes.

However, automated GUI test cases require significant maintenance and are brittle, i.e., they

may fail due to minor GUI modifications, even without any functional change in the app. The

impact of fragility is significant especially when Non-Regression Testing is performed, with test

cases that ought be adapted to the changes in the GUI appearance and definition. A number of

studies in the literature, like the one by Kropp et al. [9], highlight the unreliability of manual

testing techniques for mobile applications. However, as underlined by Kaur et al. [3], several

characteristics of mobile devices increase the costs to perform V&V activities. Kochar et al., in

an empirical study about the test automation performed by mobile developers, also emphasize a

lack in test automation culture of Android open source developers, and a common lack of proper

documentation for automated testing tools [8]. Leotta et al. explored the problem of fragility

in the field of web applications [10]. In our previous work we quantified the issue of fragility

among open source Android applications [5], and provided a taxonomy of maintenance reasons

for Android test suites [4].



3

This work aims to provide insights into the testing procedures operated by developers working

in the Italian industry, and to understand the principal difficulties faced in mobile application

testing, the differences perceived with respect to testing web or desktop applications, and the

desired directions for academia to move towards. To do so, we conducted – in seven different

companies – a set of semi-structured interviews covering the topics described above.

II. RESEARCH APPROACH

A. Research Questions

Our goal is gathering insights into the kind of testing performed and the most used automated

testing techniques, for understanding the practices adopted by mobile developers. Thus we ask:

How and to what extent are mobile apps tested?

We want to understand which aspects of mobile applications are considered of primary

importance for testers, and – on the other hand – which ones are a deterrent for the adoption of

testing techniques. Hence, our second research question is:

What are the peculiarities in mobile application testing? What aspects discourage testing

mobile apps?

Finally, we wanted to characterize the interest of mobile developers from the industry about

testing techniques that are currently emerging in academic literature. We also aimed at summa-

rizing the most burdensome challenges in mobile application testing, and the amount of human

labour needed for setting up and maintain mobile test suites. Therefore it would be useful to

know:

What are the main challenges in mobile application testing and the directions research should

take?

Each research question was developed in a separate part of the interview, that is detailed in

the following subsection.



4

B. Interviews

We conducted a series of structured interviews in Italy with representatives from medium and

large-sized enterprises. Information about the interviewees is reported in Table 1. The interviewer

asked a set of questions arranged in three sections, each pertaining to one of the Research

Questions. The interview sessions lasted around 30 minutes each. A transcript was obtained at

the end of every session, and the findings were catalogued and organized to answer the individual

Research Questions. All the questions were open ended, and are available online1.

Each interview focused on an individual company, with one or more representatives from it. We

selected enterprises based on our location. All the interviewed representatives were involved in

development and testing of mobile applications that were part of the portfolio of their enterprises.

In each interview we stated the motivation of our study, and provided the definition of testing

fragility for mobile applications formulated in our previous works. To avoid biases, we did not

state hypotheses during the interviews.

C. Threats to Validity

The results of this study are based on the interpretation of qualitative data gathered from the

transcripts of the interviews. The researcher bias of the study is however limited, since at the

time of this writing none of the authors was involved in the development of testing tools or

has interests in defending any specific thesis. The reported results are also consistent with other

experience reports available in the literature.

We also recognize, as a threat to the external validity, that our findings are based on a

small sample of companies working on a limited set of application domains, and hence their

generalizability to all mobile developers is not assured.

III. FINDINGS

Table II reports a summary of the main findings that could be extracted from the interviews

we conducted, regarding the tool usage in the companies, and the developers’ perception about

the value of E2E testing for mobile apps and its most critical aspects. A coding of the answers

was performed by the authors of the present paper, after an inspection of the transcripts taken

during the interview sessions.

1https://figshare.com/articles/Automated mobile testing Interview to

Developers/9821381



5

TABLE I

INTERVIEWED DEVELOPERS FROM THE INDUSTRY

Interview ID No. of representatives Company and project

A 1 Distributor of testing tools for various typologies of applications.

B 2 Test factory for third party applications and test consulting.

C 1 Insurance company: web and mobile apps for insurers and customers.

D 2 Insurance company: platform for insurance management.

E 1 Test factory for third party applications and test consulting.

F 1 Full-stack development of mobile applications for multiple platforms.

G 2 Test factory for consulting of test and test management for banking applications.

A. Adoption of mobile testing techniques

Adopted testing techniques. Our respondents were developing both web and mobile appli-

cations, and all of them highlighted a priority in testing web applications over mobile ones.

Among our respondents, mobile testing is executed mostly at system and acceptance level. A

certain amount of unit and integration testing is performed with automated techniques by all

respondents, except companies B and E that, being test factories, leave low level testing to the

developers.

For what concerns non-functional testing, the main focus of the respondents is on usability

and performance.

In general, manual testing is always performed on mobile applications, with purposes that may

vary: all of the respondents performed manually system and acceptance testing, in compliance

with test cases written by the business department of the company. Manual testing was also used

by respondent B to verify non-regression between consecutive releases.

Capture&Replay (C&R) and Scripted testing techniques were adopted by more than half of

the respondents. Respondent C adopted C&R for data-driven test cases.

All except respondent F tested actual devices and not emulators. Respondent F was also the

only one fully leveraging techniques of random/monkey testing.

Company B adopted techniques of Mobile APM (i.e., Application Performance Management),

capable of evaluating the compliance to non-functional requirements on the application after its

release, monitoring the usage of the application running on the users’ devices; company G



6

TABLE II

SUMMARY OF THE FINDINGS OF THE INTERVIEWS.

A B C D E F G

Uses random-monkey testing – – – – – X –

Uses manual testing X X X X X – X

Uses Capture&Replay X X X – X – X

Uses scripted testing – X X X X X –

Uses model-based testing – X – – – – –

Mobile E2E testing is an activity with an high ROI 1 3 2 2 4 4 5

Automation provides significant benefits to mobile E2E testing 4 5 2 2 3 2 1

Device diversity is a critical aspect to test for mobile apps 1 5 1 5 5 1 3

Performance and UX is a critical aspect to test for mobile apps 1 1 5 4 5 4 5

Energy consumption is a critical aspect to test for mobile apps 1 4 4 1 1 1 4

Fragility is a significant issue for the maintenance of test cases 2 5 5 4 5 1 3

More advanced testing techniques w.r.t. current ones are nec-

essary

2 1 1 2 5 4 2

In the coded answers the following legend is used:

1 ) strongly disagree; 2 ) disagree; 3 ) neutral; 4 ) agree; 5 ) strongly agree.

adopted techniques for static source code analysis and reporting instruments.

What emerged from our interviews is that the rapid development lifecycle of mobile appli-

cations, and the frequent addition of new features, is seen as a deterrent for the adoption of

structured and well-documented test suites. This also suggests that mobile testing methodologies

are not well integrated in the Continuous Integration workflow of mobile development. An easier

interface of mobile testing techniques with existing CI techniques should provide significant

benefits in having structured test suites at lower levels than Acceptance and System testing.

Adopted tools. Selenium is the most widely used tool for test scripts of web-based and hybrid

mobile applications; Selenium IDE is also used for the creation of C&R scripts.

Some commercial tools were cited by the interviewed developers: four respondents cited

HP UFT, used for web-based applications; two cited Silk Mobile, used for tests on native

applications; three cited PerfectoMobile, used for cloud-based functional tests on real devices,

using scripts created by C&R.

Other test frameworks, like those that are part of the Android Instrumentation Framework



7

(e.g., Espresso, UIAutomator, Monkey and MonkeyRunner), were cited by some respondents.

Only one respondent used advanced AI-based and model-based testing techniques, adopting two

tools named Qualitia and AppliTools.

B. Peculiarities of mobile application testing

Several differences have been highlighted by the interviewed developers when testing mobile

applications, with respect to testing desktop and web applications.

Apps may be divided into three different categories: Native, if they are engineered for a

particular OS/platform; Web-based, that are typical web applications loaded inside browsers;

Hybrid, if they have a native part that loads dynamically web pages. As respondent B pointed

out, the testing procedures for the three categories of apps vary significantly in terms of adopted

instruments as well as test case definition.

For mobile applications, the complexity of the testing procedure has increased dramatically

mainly because of device diversity. Mobile applications must ensure compatibility with a set of

different devices, pixel densities, resolutions, screen orientations. If the applications are multi-

platform, they must also be tested on the main OSs. Finally, apps must comply to the design

guidelines and features of new releases of the OSs while guaranteeing backward compatibility

with past versions. As respondent B told us, ”device diversity is a relevant enabler for test

automation, because it is impossible to execute manual tests on many devices; we pick the

devices that are sold the most in the market, and the ones that are used the most by the final

users according to geographic statistics.”; respondent F also pointed out that ”device diversity

and form factor are the fundamental variables to take into account, much more than for web

application testing, for which it is sufficient to test the main browsers.” Albeit being an important

push towards automation, the extreme device diversity of the Android world (counting more than

24 thousand different devices, built by more than 12 hundred vendors2) is an insurmountable

impediment for testers to test all possible renderings of their apps.

Other non-functional properties are peculiar of mobile applications and require specialized

testing procedures. The topic of Green Energy is another very perceived issue: ensuring a battery

consumption that is adequate to the typology of the app is fundamental for the users’ satisfaction.

Finally, being mobile applications strongly GUI-based, the rendition of the graphics on the

2https://www.hongkiat.com/blog/android-fragmentation/



8

device screens, and an evaluation of the provided user experience (UX), is a crucial element of

acceptance testing. However, the usage of previously defined and tested mockups may relieve

the developers from extensively testing the final appearance of the app once it is deployed.

C. Challenges and desires of mobile app testers

Factors limiting mobile application testing. Several problems hampering the practice of mobile

application testing emerged from our interviews. For commercial applications, the companies

often want a fixed time-to-market, and compromises are necessary to find an optimal balance

between cost and quality. Respondent B considered that ”clients want the application to be

published anyhow, and often the quality aspect is sacrificed, offering limited features. The quality

of the app then grows with time, in parallel with the number of the users that use them, and

thanks to their feedback.” Respondent E added that ”rarely projects have a test strategy which is

carefully defined, validated and approved, with a reasonable time to perform it; testing typically

suffers from delays in the previous phases of the development.”

Many of the interviewees underlined that the culture of testing mobile applications is still

limited. Respondent A highlighted that, in large companies producing software, the testing

department is often managed by members of the business department, who have a different

perception of testing with respect to ICT people. Therefore, manual testing is often preferred

and, in general, it is difficult to go particularly far beyond C&R techniques. Still according to

respondent A, ”the mobile device, from the business point of view, is mainly seen as a proxy to

access services that are located on the web.” Respondent D confirmed that the focus is often

kept on the backend, without particular interest towards app testing. Respondent B pointed out

that ”mobile application testing is still not treated with sufficient maturity, and clients are just

beginning to see the return of investment that test automation can guarantee; only companies

creating apps that manage sensitive and economically critical data tend to adopt automated

testing”.

We can conclude that a constant issue that emerged from the interviews is a scarce dissemi-

nation and documentation of automated testing tools. The problem appears to be amplified for

open-source tools, that are henceforth rarely adopted by companies.

Maintenance and fragility. Test fragility was deemed as the main cause for maintenance of

existing test suites.



9

Respondent A, who used C&R techniques, had to completely re-register test cases when the

interface was modified between a version of the application and the subsequent one. Respondent

C underlined a scarce adaptability of Selenium, estimating the modification of existing scripts

as 30% of total testing effort.

Respondent B experienced fragilities in the regression testing of its applications, with an

estimation of 20-30% of the total testing effort for maintaining test scripts. This respondent

pointed out that ”changes in the user interface significantly limit the adoption of test automation,

and the issue is amplified when it is not the same company performing developing and testing”.

Respondent D defined fragility as a ”problem that is perceived and that has to be fought

on a daily basis: test suites must be maintained daily”. For projects, fragility is identified as a

critical problem, especially for possible shortages of time: it is often not possible to do complete

maintenance of test cases that fail even though they should not. This developer identified the

effort for maintenance of test suites as 10% of total testing effort.

The estimated cost of fragility was even higher for respondent E, that identified the cost of

maintenance of already present test scripts as 60% of total maintenance cost. The developer

pointed out that ”the impact of fragility is higher for mobile applications, because mobile

interfaces and features evolve more rapidly than traditional applications. The investment for

test case maintenance is mandatory and grows with time, even though the changes in the user

interfaces are limited.”

The information gathered from the interviews was in line – if not higher – with our previous

measurements of maintenance on open-source Android code, where we quantified the amount

of testing effort dedicated to maintenance as around 20% of testers’ effort. Even if a certain

amount of fragility is inevitable, since test code must always co-evolve with application code,

we believe that the absence of reliable ways to automatically fix and refactor test cases is an

hindrance for mobile testing as serious as the device diversity issue.

Requests to academia. All the respondents told us that a solution, possibly automated, to the

problem of fragilities of automated tests, especially GUI-related ones, should come in handy to

companies testing both web and mobile applications.

Respondent C expressed a desire for a more direct link between incidents in tests, or in running

applications, to the defects in the source/system.

Respondent B highlighted the problem of test prioritization, to take into account changes to



10

production code and maximize the coverage of the modified source only.mSuch tools are seen

as useful when resources and time for testing are limited, because it theoretically maximizes the

portion of useful testing.

Respondent D identified the need for a finer way to calculate the code coverage for web/mobile

test suites, with fine-grained metrics able to represent the actual economic value of the testing

procedure.

Automation in test case development (and not only in the execution) was a need expressed by

respondent F, who pointed out that ”an algorithmic creation of test cases during the definition of

the application logic to an even limited coverage of features to be tested, would be very happily

welcomed by developers, who still see writing test cases as an overhead.”

Model-based testing is not felt as a primary need, or something that can be useful at least in the

near future. Only respondent A showed enthusiasm towards the possibility of adopting model-

based testing, expressing the need for a ”trustable mobile ripper, capable of semantically interpret

wgat happens during the exploration of an interface, and proposing test cases.” Respondent B

highlighted that model-based testing is indeed an interesting topic for academia, but at a first

approach the techniques that have emerged are too complex and require too much knowledge

to be actually adopted by companies. Respondent E was the only one performing a sort of

modeling of apps for the definition of test cases, and pointed out that an extended modularity

of tests should be encouraged by research.

IV. CONCLUSION

We conducted seven interviews with relevant players of the Italian software industry, who

develop mobile applications along web and desktop ones; all of them reported experience with

both manual and automated testing.

Even though all of the respondents adopted some automated testing tools, to some extent they

considered manual testing as the first option to test their apps. According to their responses, the

need for automated mobile testing is still not perceived as it is for other kinds of applications;

the practice is also hampered by the inexperience of the members of testing departments, by the

difficulty of using automated testing tools (which often come with insufficient documentation,

especially if they are open-source), and by the very rapid time-to-market of mobile apps. In

general, a limited amount of C&R tests and an even smaller amount of scripted tests are devel-

oped. It is evident from the responses that the adaptability to different devices and performance



11

are important concerns for mobile apps testing, higher than it happens for desktop application

testing.

For those developing scripted tests, the amount of maintenance estimated, due to fragility, is

around 30%, with a peak estimation of 60% reported by one of the respondents. These estimates

are actually even higher than the ones that we found in open-source projects within a previous

study [6], using automated analysis of modifications performed on source code using diff files.

This means that fragility is a very important issue even for industrial developers, and not only

for open-source developers and researchers.

Almost all respondents expressed a desire for better ways to manage fragility and to reduce

the amount of maintenance needed for test suite evolution. Little enthusiasm, on the other hand,

has been shown towards new paradigms of testing, like model-based testing or visual recognition

testing. Skepticism has been shown towards the adoption of techniques that are more complex

than C&R or basic scripting with tools like Selenium, or similar.

We may put forward a few recommendations to practitioners:

• the more critical your app the more important automated tests are;

• be prepared to pay significant effort to maintain tests;

• to reduce such effort try to keep test and development teams as close as possible: make app

changes as little disruptive to tests as possible.

What finally emerged by some of our interviews is that test automation is seen as an additional

difficulty rather than an enabler for better testing procedures. This finding makes us suppose that

the dissemination of automated testing is still scarce, and that developers of testing tools should

focus on making them better documented, easier to use, and more dependable than those currently

available, to foster adoption from the industry.

Riccardo Coppola is a Post-Doctoral Research Fellow at Dept. of Control and Computer

Engineering at Politecnico di Torino, where he received his MSc and PhD degree in Computer

Engineering. He is currently a member of the Software Engineering research group, and his

research interests include automated GUI testing for web and mobile applications, and the

evaluation of non-functional properties of testware.

Luca Ardito is an Assistant Professor at Dept. of Control and Computer Engineering at

Politecnico di Torino where he works in the Software Engineering research group. He received



12

BSc, MSc, and PhD in Computer Engineering from Politecnico di Torino. His current research

interests are: mobile development and testing, green software and empirical software engineering

methodologies.

Maurizio Morisio received the Ph.D. degree in software engineering from Politecnico di

Torino, Turin, Italy. He is currently a Professor of computer science with Politecnico di Torino,

where he leads the software engineering research group (http://softeng.polito.it). His research in-

terests include software engineering for safety-critical systems, software and system engineering

for sociotechnical systems, and smart cities and green ecosystems.

Marco Torchiano is an associate professor at the Control and Computer Engineering Dept. of

Politecnico di Torino, Italy; he has been post-doctoral research fellow at Norwegian University

of Science and Technology (NTNU), Norway. He received an MSc and a PhD in Computer

Engineering from Politecnico di Torino. He is Senior Member of the IEEE and member of

the software engineering committee of UNINFO (part of ISO/IEC JTC 1). He is author or co-

author of over 140 research papers published in international journals and conferences, of the

book “Software Development—Case studies in Java” from Addison-Wesley, and co-editor of the

book “Developing Services for the Wireless Internet” from Springer. He recently was a visiting

professor at Polytechnique Montréal studying software energy consumption. His current research

interests are: green software, UI testing methods, open-data quality, and software modeling

notations. The methodological approach he adopts is that of empirical software engineering.

REFERENCES

[1] Alégroth, Emil, Robert Feldt, and Pirjo Kolström. ”Maintenance of automated test suites in industry: An empirical study

on Visual GUI Testing.” Information and Software Technology 73 (2016): 66-80.

[2] Amalfitano, Domenico, et al. ”MobiGUITAR: Automated model-based testing of mobile apps.” IEEE Software 32.5 (2015):

53-59.

[3] Anureet Kaur. 2015. Review of Mobile Applications Testing with Automated Techniques. interface 4, 10 (2015).

[4] Coppola, Riccardo, Morisio, Maurizio, and Torchiano, Marco. ”Maintenance of Android Widget-based GUI Testing: A

Taxonomy of test case modification causes.” 2018 IEEE International Conference on Software Testing, Verification and

Validation Workshops (ICSTW). IEEE, 2018.

[5] Coppola, Riccardo., Morisio, Maurizio, and Torchiano, Marco. (2018). Mobile GUI Testing Fragility: A Study on Open-

Source Android Applications. IEEE Transactions on Reliability.



13

[6] Coppola, Riccardo, Morisio, Maurizio, and Torchiano, Marco. ”Scripted UI Testing of Android Apps: A Study on Diffusion,

Evolution and Fragility.” Proceedings of the 13th International Conference on Predictive Models and Data Analytics in

Software Engineering. ACM, 2017.

[7] Gomez, Lorenzo, et al. ”Reran: Timing-and touch-sensitive record and replay for android.” Software Engineering (ICSE),

2013 35th International Conference on. IEEE, 2013.

[8] Kochhar, Pavneet Singh, et al. ”Understanding the test automation culture of app developers.” Software Testing, Verification

and Validation (ICST), 2015 IEEE 8th International Conference on. IEEE, 2015.

[9] Kropp, M., & Morales, P. (2010). Automated GUI testing on the Android platform. Testing Software and Systems, 67.

[10] Leotta, Maurizio, et al. ”Visual vs. DOM-based web locators: An empirical study.” International Conference on Web

Engineering. Springer, Cham, 2014.

[11] Liu, Chien-Hung, et al. ”Capture-replay testing for android applications.” Computer, Consumer and Control (IS3C), 2014

International Symposium on. IEEE, 2014.

[12] Nguyen, Bao N., et al. ”GUITAR: an innovative tool for automated testing of GUI-driven software.” Automated Software

Engineering 21.1 (2014): 65-105. APA


