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Summary  

The reliability analysis of reinforced concrete structures requires 

methodologies able to fulfill the safety requirements expected by the society. These 

requirements, as defined by international codes, are represented by limits on the 

likelihood that structural collapse may occur in a given reference period. These 

limits are dependent from the typology, the destination of use and the lifetime for 

which a structure should carry out its serviceability. 

In this context, approaches and methodologies aimed to the design and the 

assessment of reinforced concrete structures in compliance to "target" reliability 

levels are provided. In this way, engineers and designers can handle efficient tools, 

which, however, are affected by uncertainties of both aleatory and epistemic nature. 

The dissertation for obtaining the title of Ph.D. in Civil and Environmental 

Engineering is part of the described above context. 

In the first part, the general framework for the probabilistic calibration of 

empirical or semi-empirical resistance models has been proposed. This 

methodology has been applied to the probabilistic calibration of the semi-empirical 

resistance model reported by the fib Model Code 2010 for the evaluation of laps and 

anchorages tensile strength in reinforced concrete structures. 

In the second part, the topic related to the use of non-linear finite element 

analysis for design and assessment purposes has been analyzed. In the details, 



 
 

international codes allow to use advanced tools for non-linear analysis within the 

design and assessment processes.  

In order to account for the different sources of uncertainty, several safety 

formats for non-linear analysis of reinforced concrete structures has been proposed 

by the literature and codes. After a detailed comparison of the mentioned above 

safety formats, two advances are proposed: the reliability-based calibration of 

partial safety factor related to resistance model uncertainties using plane stress non-

linear finite element analysis; a methodology to account for the influence of failure 

mode variation within the predictions obtained by different safety formats. 

Finally, a code format framework based on the levels of approximation 

approach for structural design and assessment of reinforced concrete structures by 

means of non-linear finite elements analysis is proposed and discussed. 
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Preface 

The present dissertation concerns the reliability analysis of new and existing 
reinforced concrete structures. As for other fields of engineering and physics, the 
influence of uncertainties is relevant and strongly affects the procedures for design 
and assessment. In particular, scientific literature and codes provides refined 
methodologies able to account for uncertainties (both aleatory and epistemic) in 
case of high levels probabilistic analyses and for the activity of practitioners. 
However, advances in reliability methods are needed for different fields, as for the 
emergent use of non-linear finite elements software for design and assessment of 
reinforced concrete structures.  

 
The Chapter 1 deals with the basic notions related to structural reliability 

analysis. The limit states approach and measure of the structural reliability are 
described together to the main sources of uncertainty. Then, the basic assumptions 
for probabilistic modelling of reinforced concrete structures are proposed and the 
methodology to assess resistance model uncertainty is reported. Successively, the 
fundamentals of Level III, Level II, Level I and Level 0 methods for reliability 
analysis of structural components and systems are described. The target reliability 
for new and existing reinforced concrete structures are commented accounting for 
the reliability differentiation. The levels of approximation approach introduced by 
fib Model Code 2010 for structural design and assessment is described and the most 
common safety formats implemented in structural codes are outlined. 

 
The Chapter 2 concerns the non-linear finite elements analysis (NLFEA) of 

reinforced concrete structures. The main applications of NLFEA to design and 
assessment of new and existing reinforced concrete structures are listed and 
commented. After that, the most common modelling hypotheses adopted in order 
to perform non-linear analysis of reinforced concrete structures are reported 
focusing mainly on plane stress models. Finally, different safety formats proposed 
by scientific literature for assessment of the structural safety by means NLFEA are 
described. 

 
In Chapter 3 the methodology for probabilistic calibration of empirical and 

semi-empirical resistance models is proposed. The framework, which is based on 
the Monte Carlo’s method, allows to take into account both aleatory and epistemic 
sources of uncertainty. The methodology has been applied to the probabilistic 
calibration of the semi-empirical model for laps and anchorages tensile strength 
evaluation proposed by fib Model Code 2010. After the description of fundamentals 
of bond behaviour in reinforced concrete members, the reliability-based 
expressions for laps and anchorages tensile strength are derived distinguishing 
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between new and existing structures. Subsequently, the reliability-based expression 
for ultimate average bond strength along the lap or anchorage length has been 
derived according to equilibrium hypothesis. Finally, the possible implications for 
design and assessment are commented and the derived equations validated. 

 
Chapter 4, deals with advances related to the use of NLFEA for design and 

assessment of reinforced concrete structures.  
The first part concerns the evaluation of the model uncertainty safety factor for 

global analysis related to plane stress non-linear finite element models. Several 
structural members tested in laboratory with outcomes known from the literature 
are considered. Different non-linear structural models are defined for each 
experimental test to investigate the influence of model uncertainty on the 2D 
NLFEAs of reinforced concrete structures in terms of global resistance, considering 
different modelling hypotheses to describe the mechanical behaviour of reinforced 
concrete members (i.e. epistemic uncertainties). Subsequently, the numerical results 
are compared to the experimental outcomes. Then, a consistent treatment of the 
resistance model uncertainties is proposed following a Bayesian approach. Then, 
the probabilistic distribution, the mean value and the coefficient of variation 
characterizing the resistance model uncertainty random variable are identified. 
Finally, in agreement with the safety formats for NLFEAs of reinforced concrete 
structures, the partial safety factor for global analysis related to the resistance model 
uncertainties is evaluated. 

The second part, relates to the comparison of different safety formats within the 
approach of the global resistance format for the estimation of the design strength of 
different reinforced concrete structures. Specifically, non-linear finite element 
models are properly defined to reproduce different experimental tests. Successively, 
several non-linear finite element analyses have been carried out in compliance to 
the different safety formats for each one of the reinforced concrete structures 
experimentally tested.  The results are critically discussed and compared in terms 
of resistance and failure mode. Then, a methodology based on a specific 
preliminary evaluation, composed of two non-linear finite element analyses, is 
proposed to verify the applicability of the different simplified safety formats 
depending on the possible modifications that can occur to the failure mode. 
Contextually, a new safety factor denoted as “failure mode-based safety factor” 
accounting for inherent simplification within the definition of different safety 
formats is defined. Finally, a comprehensive code format framework based on the 
levels of approximation approach is proposed.  

 
The Chapter 5 summarize the main conclusions about the different topics 

highlighting the possible future developments. 
 
 
 
 
 



 

3 
 

 
The achievements reported in the present dissertation leaded to the following 

scientific publications on international technical journals and conferences: 

- Journal papers: 

1. G. Mancini, V.I. Carbone, G. Bertagnoli, D. Gino (2018): Reliability-based 
evaluation of bond strength for tensed lapped joints and anchorages in new 
and existing reinforced concrete structures, Structural Concrete 19, 904-917, 
2018  https://doi.org/10.1002/suco.201700082. 

2. P. Castaldo, D. Gino, V.I. Carbone, G. Mancini (2018): Framework for 
definition of design formulations from empirical and semi-empirical resistance 
models, Structural Concrete, 19(4), 980-987, 2018. 
https://doi.org/10.1002/suco.201800083. 

 
3. P. Castaldo, D. Gino, G. Bertagnoli, G. Mancini (2018): Partial safety factor 

for resistance model uncertainties in 2D non-linear analysis of reinforced 
concrete structures, Engineering Structures, 176, 746-762. 
https://doi.org/10.1016/j.engstruct.2018.09.041 

 
4. P. Castaldo, D. Gino, G. Mancini (2019): Safety formats for non-linear analysis 

of reinforced concrete structures: discussion, comparison and proposals 
Engineering Structures, 193, 136-153, 
https://doi.org/10.1016/j.engstruct.2018.09.041 

 
- Conference papers: 
 

1. P. Castaldo, D. Gino, D. La Mazza, G. Bertagnoli, V.I. Carbone, G. Mancini 
(2018): Assessment of the partial safety factor related to resisting model 
uncertainties in 2D NLFEA of R.C. structures, Il calcestruzzo strutturale oggi, 
Italian Concrete Days 2018, 13-15 Giugno, Milano-Lecco, Italy, 2018. 

 
2. D. Gino, P. Castaldo, G. Bertagnoli, G. Mancini (2018): Probabilistic 

assessment of laps and anchorages strength in reinforced concrete structures, 
Proceedings of WMCAUS 2018, June 18-22, Prague, Czech Republic. 

 
3. D. Gino, P. Castaldo, G. Bertagnoli, G. Mancini (2018): Design equations 

from empirical and semi-empirical resisting models: a reliability-based 
approach, Proceedings of 12th International fib Symposium in Civil 
Engineering, August 28-31, Prague, Czech Republic. 

 
4. P. Castaldo, D. Gino, G. Bertagnoli, G. Mancini (2018): Toward fib Model 

Code 2020: partial safety factor for resistance model uncertainties in plane 
stress NLFE analyses of R.C. systems, Proceedings of 5th International fib 
Congress, October 07-11, Melbourne, Australia. 

 

https://doi.org/10.1002/suco.201700082
https://doi.org/10.1002/suco.201800083
https://doi.org/10.1016/j.engstruct.2018.09.041
https://doi.org/10.1016/j.engstruct.2018.09.041


 

4 
 

Chapter 1 

Basics of reliability methods  

1.1 Introduction 

The physical phenomena in nature (and then, also in structural engineering) 
contains, inevitably, a certain amount of uncertainty. It means that these 
phenomena, in principle, cannon be predicted with complete certainty.  It is possible 
to consider the following simple example: several "identical" specimens of concrete 
cubes are loaded in laboratory until they reach failure. The failure load in 
compression would be different for each one of the specimens. Hence, the 
compressive resistance of these concrete cubes is a random quantity (i.e. random 
variable). In general, in structural engineering, all the parameters of interest for 
design and assessment of new and existing structures can be considered as uncertain 
and then, assumed to be random variables. Dealing with uncertainties, the term 
reliability is often used very vaguely and deserves some clarifications. The 
fundamental concept of reliability is commonly perceived as an absolute property 
of the structure. Then, if the structure can be considered as reliable it never fails 
and, conversely, if the structure results to be not reliable its failure is certain. 
Moreover, for most of the people, the positive statement “the structure is reliable” 
is understood in the sense that “a failure of the structure will never occur”. This 
interpretation is unfortunately a strong and un-correct simplification. Although it 
may be unpleasant (or unacceptable) for “non-expert” people, the hypothetical 
“absolute reliability” for structures simply does not exist. In general, any structure 
may fail (although with a small probability) even when it is declared as “reliable”. 
The correct statement to be adopted and that should be disclosed also to “non-
expert” people is the following: “failures of structures are accepted as they are part 
of the real world and the probability or frequency of failures occurrence is 
quantified and limited by means of economic, human safety and structural 
considerations”. Inevitably, in structural engineering it is necessary to admit a 
certain small probability that failure may occur within the intended service life of 
the structure. Otherwise, the design of new civil structures (and infrastructures) and 
assessment of existing ones simply would not be possible.  

In the present Chapter, the basic notions of structural reliability according to 
the limit states approach are outlined, highlighting the different sources of 
uncertainty. The distinction between the design of new structures and the 
assessment of existing ones is defined. Moreover, the fundamental methodologies 
for the evaluation of structural reliability are described differentiating between 
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Level III, II, I, 0 methods. Finally, the most used safety formats adopted from 
current structural codes and standards are described and commented.  

1.2 Limit states design, basic principles and uncertainties 

The basic principles of structural reliability are reported by the international 
codes as ISO 2394, EN 1990 and fib Model Code 2010. 

According to the mentioned above codes, the fundamental performance 
requirements for structures should be related to reliability and economy concepts. 
In particular, a structure should be designed and executed to sustain all the actions 
that may occur during its working life maintaining its functionality. These 
requirements should be fulfilled with appropriate levels of reliability and economic 
sustainability. 

The structural reliability can be defined as the ability of the structure to comply 
with given requirements under specific loading conditions during its service life. 
Quantitatively, the term reliability may be considered as the complement to one of 
the probability of structural failure. The service life (i.e., design working life for 
new structures, residual service life for existing structures) is intended as the interval 
for which the structure should accomplish its functionality. The main performance 
requirements for structural design are represented by safety (i.e. structural 
resistance and ductility), serviceability, durability and robustness.  

In order to verify these requirements related to specific design situations, the 
so-called limit states are identified. In literature and structural codes (e.g. EN 1990; 
fib Model Code 2010) the generic limit state is defined as: “the condition beyond 
which the structure, or a part of it, does no longer satisfy one of its performance 
requirements”. 

Related to the mentioned above performance requirements, several limit states 
can be distinguished between: 

- ultimate limit states (ULS), that refers directly to the structural safety, the 
safety of people and/or protection of the content of a structure. Beyond 
ultimate limit state the bearing or deformation capacity of the structure is 
overpassed and the overall structure or part of it fails inevitably. 
Commonly, different ULS can be defined as, for example: loss of static 
equilibrium of the structural system or part of it; arising of mechanisms of 
a structural system or part of it (i.e. structural collapse); fracture or 
excessive deformation in crucial sections of the structural system or within 
connections; fatigue and time dependent phenomena; instability, 
divergence of equilibrium (e.g. buckling, lateral buckling, aero-elastic 
instability). 
 

- serviceability limit states (SLS), that refers to the functionality, comfort and 
visual aspect of the structure during the normal use. The requirements 
related to serviceability of the structures can be related to deformations, 
vibrations and damages that may influence durability. In general, SLS can 
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be distinguished in irreversible SLS and reversible SLS. The former can be 
identified within the cases where the critical value of limit state indicator 
remains permanently crossed also after removal of the load caused the first 
passage (e.g. permanent deflection). The latter can represent the cases 
where the critical value of the limit state indicator is no longer crossed after 
removal of the load that caused the first passage (e.g. excessive vibrations, 
temporary deflections, cracking in prestressed concrete members).  

 
These limit states should be addressed for different structures according to 

different levels of reliability depending from the intended service life. 
In order to deal with the limit states approach and to perform reliability 

analysis, the following distinction (not merely terminological) between new and 
existing structures should be outlined. In fact, according to fib Model Code 2010 
and fib Bulletin 80, the design process can be recognized as a series of activities 
devoted to warranty the structural reliability in the design service life of the new 
structural realization, whereas, the assessment process represents the set of 
activities performed in order to verify the actual reliability of an existing structural 
system or component accounting for its residual service life. 

Then, in the following, assessment and design will be maintained as separate 
aspects belonging to the field of structural reliability analysis. 

1.2.1 Uncertainties and their classification 

The process aimed to the evaluation of the structural reliability of new or 
existing structures should account for several sources of uncertainties. These 
uncertainties may be of different nature and, mainly, can be represented by: 

- randomness (or inherent variability): it represents the natural variability 
that can be considered as intrinsic to physical process or property (e.g. 
material property and external actions). The randomness can not be affected 
or reduced by external (i.e. human) intervention as it is an intrinsic 
characteristic of the physical process or property itself; 
 

- model uncertainty: it is the uncertainty related to the idealization of 
mathematical models adopted in order to describe and make predictions 
related to the physical process or property. Then, the model uncertainty is 
related to ignorance, inherent simplifications and choices performed in the 
definition of the mathematical models devoted to describe the real word. It 
can be reduced by increasing the knowledge and improving the quality of 
the models; 
 

- statistical uncertainty: this type of uncertainty is related to the process that 
leads to the estimation of the randomness of a physical process or property. 
It is due to the limited size of sample of observations for statistical analysis 
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and it can be reduced by increasing the data from experience (e.g. 
experimental results); 

 
- measurement error: is the error performed measuring or observing the data 

for estimating the randomness (and for statistical analysis) of a physical 
process or property. Measurements errors may be reduced improving the 
measurements or observation systems; 

 
- human errors: are errors related to the design or assessment process 

performed by human beings. This kind of uncertainty is one of the hardest 
to be analysed and can be reduced increasing controls on the whole process. 

 
All the different sources of uncertainty affect, at different levels, the reliability 

analysis of a structural system. 
It can be observed that if the randomness (i.e. inherent variability) of a physical 

process or property can be considered as not reducible, the other sources of 
uncertainty may be reduced by improving, for example, testing, measurements 
procedures and predictive models. Commonly, in the scientific literature, this 
observation leads to perform the distinction between two different macro-families 
of uncertainty: aleatory and epistemic. 

Specifically, concerning structural reliability analysis, the aleatory 
uncertainties concerns the intrinsic randomness of the variables that governs a 
specific structural problem, whereas the epistemic uncertainties are mainly related 
to the “lack of knowledge” in the definition of the structural model and may be also 
represented by auxiliary non-physical variables or choices. For example, in order 
to simulate the response of a structural system, different models or modelling 
hypotheses may be adopted. These choices, inevitably, influences the global level 
of uncertainty within reliability analysis. However, it does not mean that simplified 
models are necessarily more uncertain if compared to refined ones. Specifically, it 
may happen that very refined and complex non-linear structural models leads to 
higher levels of epistemic uncertainty if compared to simplified ones. In fact, the 
availability of several plausible modelling hypothesis may lead to diverse solutions 
for the same problem. This, sometimes, makes simplified models more efficient, 
even if they are often conservative. 

One can deserve that all the sources of uncertainty can be considered as 
epistemic in a predetermined model universe. In fact, Der Kiureghian and 
Dietlevsen, 2009 makes a very clever example of this way of thinking: concerning 
the mentioned above distinction between new and existing structures, the concrete 
compressive strength may be considered as aleatory in the former case and as 
epistemic in the latter case. In fact, focusing the problem of a new structure, the 
concrete compressive strength is affected by an aleatory uncertainty, as there is not 
the possibility to perform measurements on something that still does not exist at the 
design stage. Conversely, in an existing structure, concrete has been already casted 
and its compressive strength is the actual realization of a random variable. In this 
case, the problem is just related to perform an adequate number of tests and 
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inspections in order to increase the knowledge about the structure. Nevertheless, by 
definition, this is an epistemic type of uncertainty.  Another example can be related 
to the definition of model uncertainty. In fact, inherent simplifications can be 
related also to the fact that some variables may not be included in the definition of 
a specific model. It implies that their possible random variability (i.e. aleatory) can 
affect the level of model uncertainty. However, in the most of applications, the 
model uncertainty is classified as epistemic. These simple examples clarify that the 
distinction between aleatory and epistemic uncertainties is just a classification of 
convenience for practical applications, since a delineated distinction can not be 
made. 

Then, in the present dissertation the inherent variability of material properties 
and actions are considered as aleatory sources of uncertainty while, the 
measurement errors, the statistical uncertainty, the human errors and model 
uncertainty are considered as the epistemic ones.  

The evaluation of the aleatory uncertainties for resistance models 

The inherent randomness of material properties, geometrical parameters and 
environmental actions are well described by common methods. In fact, codes as EN 
1990 and JCSS Probabilistic Model Code, 2001 and scientific literature provides 
efficient methodologies and information in order to define probabilistic models for 
these variables in reinforced concrete structures. However, in particular when the 
assessment of existing structures should be performed, the lack of data may cause 
significant problems in order to define the probabilistic model for basic random 
variables. 

In the following, the most common (and simplified) assumptions adopted for 
probabilistic modelling of main aleatory uncertainties affecting resistance models 
in reinforced concrete structures are reported. Nevertheless, more refined 
probabilistic models accounting for correlation between dependent variables may 
be acknowledged by JCSS Probabilistic Model Code, 2001. 

a) Probabilistic model for concrete properties 

In general, according to JCSS Probabilistic Model Code 2001, EN 1990 and fib 
Model Code 2010 the cylinder concrete compressive strength random variable fc 
may be represented by a lognormal distribution having: 

- expected value equal to the mean value fcm obtained by testing results or by 
codes prescription (e.g. EN 1992-1-1, fib Model Code 2010); 
 

- coefficient of variation Vc equal to 0.15; this result shows to be very 
conservative, in particular, in presence of growing magnitude of the 
concrete compressive strength (JCSS Probabilistic Model Code 2001). 
However, it can be considered as a safe assumption if experimental or 
inspection results are not available. 
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The other parameters as concrete tensile strength fct, Young modulus Ec, 
fracture energy Gf, peak strain at concrete compressive strength and ultimate 
deformation may be evaluated depending from cylinder concrete compressive 
strength according to expressions reported by EN1992-1-1 and fib Model Code 
2010 or probabilistically modelled according to JCSS Probabilistic Model Code, 
2001. 

b) Probabilistic model for reinforcement properties 
 

According to JCSS Probabilistic Model Code 2001, EN 1990 and fib Model 
Code 2010 the probabilistic model for the yielding strength of ordinary 
reinforcements may be defined adopting a lognormal distribution with the 
following parameters: 
 

- expected value equal to the mean value fym obtained by testing results or by 
codes prescription (e.g. EN 1992-1-1; fib Model Code 2010); 

 
- coefficient of variation Vy equal to 0.05 in absence of test results (JCSS 

Probabilistic Model Code 2001; fib Model Code 2010).  

Other properties as ultimate strain and elastic modulus may be assumed 
according to fib Model Code 2010 or probabilistically modelled according to JCSS 
Probabilistic Model Code 2001 accounting for correlation between the different 
properties.  

In particular, the elastic modulus Es can be modelled as a lognormal distribution 
having mean value equal to 210000 MPa and coefficient of variation equal to 0.03.  

 
 

 

Figure 1.1: Probabilistic modelling of concrete compressive strength (a) and reinforcement 
yielding strength (b). 

The evaluation of the resistance model uncertainty (epistemic) 

The evaluation of the resistance of reinforced concrete structural members is 
performed adopting appropriate assumptions regarding physical-mechanical 
properties of materials and geometrical parameters. As already discussed, these 
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variables are usually well known and assessed, but they are not enough to provide 
a comprehensive evaluation of the actual resistance of a structural component.  

In fact, the latter is usually evaluated by means of a model (i.e. reality 
simplification), which allows to make predictions more or less accurate and 
realistic. Such physical, semi-empirical or empirical models show an intrinsic 
uncertainty due to simplified assumptions in their definition and because they 
disregard some parameters that may have influence on the resistance mechanism. 
Therefore, a good description of resistance model uncertainty (i.e. epistemic 
uncertainty) is significant as an accurate assessment of the aleatory variability of 
material properties. 

A methodology useful to quantify model uncertainties related to resistance 
models is proposed by JCSS Probabilistic Model Code, 2001. A clear and 
comprehensive treatment of the main issues related to resistance model 
uncertainties identification is discussed by Holický et al., 2016. 

 
The following aspects have to be considered in order to quantify resistance 

model uncertainty: 
 
- the database of experimental observations should provide all the parameters 

for the reproduction of the tests and the calculation of the resistance using the model 
under consideration; 

 
- the range of parameters that composes the set of experimental results 

defines the limits of applicability of the analysis and, consequently, the limits of the 
resistance model after model uncertainty incorporation; 
 

-  statistical inference for the observed sample of the model uncertainty needs 
to be carried out in order to define the most likely probabilistic distribution and its 
parameters.  
 

In general, the model uncertainty may be estimated by means of an additive or 
a multiplicative relationship. In this dissertation, the latter is adopted.  

Defining ϑ as the model uncertainty random variable due to factors affecting 
test and model results, the following expression may be written: 

( ) ( ), ModelR X Y R Xϑ≈ ⋅  (1.1) 

 
Where: 
- R(X,Y)  is the actual response of a structure in general (e.g. the experimental     

one); 
- RModel(X) is the response (or the resistance) estimated by the model;  
- X is a vector of basic variables included into the resistance model;  
- Y is a vector of variables that may affect the resistance mechanism but are 

neglected in the definition of the model (e.g. variables for which their influence is 
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still not completely clear or widely assessed). The unknown effect of Y variables, if 
present, is then covered indirectly by the variable ϑ. 

 
Specifically, the assessment of the model uncertainty random variable can be 

performed identifying a vector RExperimental,j of observations and an associated vector 
of estimated response RModel,i. Then, the ratio: 

 
( )

( )Model, j

,j
j

R X Y
R X

ϑ =  (1.2) 

 
represents the ith outcome of the model uncertainty random variable estimated 

from the selected experimental database. Finally, by means of inferential analysis, 
the parameters of the most likely probabilistic distribution able to represent the 
model uncertainty random variable ϑ can be identified. According to JCSS 
Probabilistic Model Code, 2001, in general, the most appropriate probabilistic 
distribution able to represents the model uncertainty random variable ϑ is the 
lognormal one. 
 

1.2.3 General formulation of the structural reliability problem 

The procedure to estimate the reliability of a structural system requires to 
define the “measure” able to quantify the available level of reliability and to provide 
the mathematical idealization of the limit states conditions. In this Sub-section these 
two aspects are clarified. 

The measure of structural reliability 

In reliability analysis, the structural behaviour can be described by means of a 
set of N basic random variables Xi  : 

 
( )1 2, ,..., ,..., 1, 2,...,i i NX X X X X i N= =  (1.3) 

where the variable Xi may be represented by material properties, actions 
(loads), geometrical properties and model uncertainties (both for actions and 
resistances). Concerning all basic variables, an appropriate probabilistic model 
should be adopted (JCSS Probabilistic Model Code, 2001). The most common 
measure of the structural reliability is represented by the probability of failure Pf. 
An alternative measure of the structural reliability is represented by the reliability 
index β, which formally can be defined as the negative value of the inverse of the 
standard normal variable corresponding to the probability of failure Pf : 

 
( ) 1

fP
−

= −Φβ  (1.4) 
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Figure 1.2: Relationship between the probability of failure Pf and reliability index β. 

where the Φ represents the cumulative standard normal distribution. The 
reliability index β is used very often by international codes (ISO 2394; EN 1990; 
fib Model Code 2010) in order to quantify structural reliability. The bigger is the 
reliability index β, the more reliable is the structure (i.e. lower Pf). 

The numerical correspondence between reliability index β and probability of 
failure Pf  is reported in Figure 1.2. The meaning of probability of failure Pf can be 
associated to the probability of exceed a specified limit state (i.e. ULS, SLS). 

The limit state function 

The limit state for a structure or a part of it (i.e. ULS, SLS) can be outlined by 
the limit state function Z (also denoted as performance function) which, in general, 
is defined in the following form as a function of main random variables Xi: 

 
(X ) 0iZ g= =  (1.5) 

The limit state function Z is defined, according to Figure 1.3, so that: 
 

0
0

Z safe region
Z failure region

≥ →
 < →

 (1.6) 

 

 

Figure 1.3: General representation of the limit state domain with 2 random variables X1 and X2. 
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Then, the limit state function Z is defined in such a way that for a favourable 
configuration (i.e. safe region) of the structure the function is positive Z ≥ 0, and 
for an unfavourable configuration (i.e. failure region) the function is negative                   
Z < 0. Based to this definition, the probability of failure Pf  can be calculated as: 

 
[ 0]fP P Z= <  (1.7) 

In the details, defining as fXi(xi) the N-dimensional probability density function 
of the N basic variables Xi , the probability of failure Pf  can be expressed in the 
following integral form: 
 

0

( ) 1, 2,...,
if X i i

Z

P f x dx i N
<

= =∫  (1.8) 

Conversely, the probability of survival (i.e. structural reliability) Ps can be 
valuated as: 

1s fP P= −  (1.9) 

The probability of failure Pf  have to be estimated considering a specific 
reference period tref  that commonly, but not necessarily, corresponds to the design 
or residual service life. 

1.3 Reliability methods and theory background 

The quantification of the structural reliability can be performed by means the 
refined estimation of the probability of failure Pf or by means of simplified 
approaches. The latter are devoted to reduce the computational effort and to 
enhance the applicability of reliability concepts in engineering practice. 

 In general, the reliability methods can be classified in four different levels: 

- level III methods (probabilistic); 
- level II methods (probabilistic);  
- level I methods (semi-probabilistic); 
- level 0 methods (deterministic). 

Progressively, starting from the level III methods to the level 0 methods the 
level of implementation of probability theory and the computational effort for 
estimation of the structural reliability decreases significantly.  

1.3.1 Level III methods 

The adoption of level III methods for the evaluation of structural reliability 
implies the exact calculation of the probability of failure Pf (or reliability index β) 
by using the integral expression reported by Eq.(1.8). 

In order to solve the problem, analytical solutions, numerical integration and 
Monte Carlo’s simulation may be adopted. 
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The use of analytical solutions is possible in a limited number of simple cases 
and the numerical integration results to be convenient only when a small number of 
variables are involved in the reliability analysis. Then, for complex systems, 
simulations techniques as the Monte Carlo’s method are very efficient tools in order 
to solve the integral expressed by Eq.(1.8). 

In the following, a simple reliability problem is described as a basic example 
able to be solved by means analytical solutions. Subsequently, the Monte Carlo’s 
method is described together some reduced sampling techniques (i.e. importance 
sampling and Latin Hypercube sampling). 

Reliability analysis with two independent random variables and 
linear limit state function 

In the present simple example, the case of two random independent random 
variables R ( i.e. resistance, having density function fR(r)) and E (i.e. action, having 
density function fE(e)) with linear limit state function is considered. The limit state 
function may be expressed as: 

 
( ),Z g R E R E= = −  (1.9) 

 
Then, the probability of failure Pf is defined as: 

 

,
0 0

( , ) ( ) ( )f R E R E
Z Z

P f r e drde f r f e drde
< <

= = ⋅∫ ∫  (1.10) 

 
In order to solve the Eq.(1.10), two different ways can be followed: 
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f
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+∞

−∞
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 (1.11a) 

 

( ) ( )

( ) ( )1

f

R E
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f r F r dr

+∞

−∞

+∞

−∞

= ≤ ≤ + > =  

= ⋅ − =  

∫
∫


 (1.11b) 

 
In general, both R and E can be function of other random variables, so that 

R=gR(R1, R2,...,RN) and E=gE(E1, E2,…, EM). Then, the simple integrals expressed 
by Eq.(1.11a-b) becomes multiple integrals difficult, if not impossible, to be solved 
analytically and requires the adoption of numerical integration or Monte Carlo’s 
techniques. 

The analytical solution may be found easily if both the random variable R and 
E are normally or lognormally distributed.  



 

15 
 

In fact, if R and E are normally distributed with mean values μR, μE and variance 
σ2

R, σ2
E, respectively, the variable Z (Eq.1.9) is normally distributed too with mean 

value  Z R Eµ µ µ= −  and variance 2 2 2
Z R Eσ σ σ= + . 

Then, the probability of failure Pf can be expressed according to: 
 

[ ] [ ]0 Z
f

Z

P P Z µ
β

σ
 

= < = Φ − = Φ − 
 

 (1.12) 

 
where Φ is the cumulative standard normal distribution and β is the reliability 

index. In case R and E are lognormally distributed the solution is similar, having 
care to take into account that the variables R’=lnR and E’=lnE are normally 
distributed.  

 
However, in most part of the cases, the simulations techniques as Monte Carlo’s 

method are necessary in order to perform reliability analysis.  

The Monte Carlo’s method and sampling techniques 

The Monte Carlo method ((Haldar and Mahadevan, 2000) is a simulation 
technique used to directly estimate the probability of failure Pf  of a structural 
system or component by its application for the evaluation of the integral proposed 
by Eq.(1.8).  

This probability can be written as: 

( )
( ) 0

( ) ( ) 1, 2,...,
i i

i

f X i i i X i i
g X

P f x dx I g X f x dx i N
+∞

−∞
<

= = =  ∫ ∫  (1.13) 

Where I[g(Xi)] is the indicator function is defined as: 
 

( ) ( )
( )

0 0
1,2,...,

1 0
i

i
i

if g X
I g X i N

if g X
≥ =    <

 (1.14) 

The Monte Carlo’s simulation is based on the generation of a large number of 
samples of the random variables Xi and on the evaluation of the limit state function 
to check if the single realization belongs to the safe, to the failure region or to the 
limit state bound. The relative number of samples that gives structural failure (i.e. 
g(Xi)<0) are considered as an estimation of the probability of failure. 

The estimated probability of failure Pf  with n samples can be written as: 

( )
1

1 1,2,..., ; 1, 2,...,
n

n
f f i

j
P P I g X i N j n

n =

≈ = = =  ∑  (1.15) 

where nsim is the total number of simulations. 
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The accuracy of the probabilities estimated by Monte Carlo’s technique may 
be assessed by defining the coefficient of variation of the solution in function of the 
number of samples. 

The coefficient of variation of Pf  may be estimated by assuming each 
simulation cycle to constitute a “Bernoulli trial”, and the number of failures in nsim 
trials can be considered to follow a binomial distribution. Then the coefficient of 
variation of Pf  at the jth sample may be calculated as: 

 

(1 )

1,2,...,
f

j j
f f

j
P j

f

P P
j

V j n
P

−

= =  (1.16) 

The number of samples to be used for the simulation is proportional to the 
inverse of the target probability of failure to be estimated. Consequently, the 
number of simulations required for the reliability analysis is extremely high 
(commonly around 105 – 106 simulations). It implies that the computational effort 
may be demanding, in particular when complex non-linear resistance models have 
to be adopted. 
 

In order to reduce the number of simulations and then the computational effort, 
several sampling techniques has been developed and reported by scientific 
literature. The following methods are herein described: 

 
- the importance sampling method; 

 
- the latin hypercube sampling method (i.e. LHS). 

 

a) Importance sampling method 

This variance reduction method uses prior information about the region of the 
domain of basic variables that have contribution to the probability integral in order 
to concentrate the sampling in the area of the standard normal space U which has 
the largest contribution to the probability of failure Pf . 

The probability of failure can be written as: 
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( )

( )
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( )

i

i

i

i
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U i
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f u

+∞
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= =  

= =  

∫

∫
 (1.17) 

Where fUi(ui) the jointed probability density function expressed in the standard 
normal space; fZi(ui) is the sampling density function.  

In order to reduce the error in prediction of the probability of failure, and then 
reduce the required numbers of sampling, is necessary to select properly the 
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sampling density function. The best choice that it possible to do is to adopt a 
sampling density function fZi(ui) proportional to the jointed probability density 
function fUi(ui) expressed the standard normal space: fZi(ui) α |fUi(ui)|. 

The following procedure can be adopted: 
 
1) generate a vector zi’ of random numbers having standard normal 

distribution; 
 

2) define the design point ui* as the point on the limit state surface into the 
standard normal space that have the lower distance from the origin, is 
possible to write: ui=ui*+Σij . In general, Σij is represented by the unit matrix. 

 
3) calculate fUi(ui) and  fZi(ui) according to: 

 

( )
( ) 2

1 1exp 1,2,...,
22

i

T
U i i inf u u u i N

π

 = − ⋅ =  
 (1.18) 

    

( )
( )

( ) ( )* 1 *

2

1 1exp 1,2,...,
22 det

i

T

Z i i i ij i in

ij

f u u u u u i N
π

− = − − ⋅Σ ⋅ − =  ⋅ Σ
 (1.19) 

 
4) Transform  in the original space of basic variables and evaluate the limit 

state function for the correspondent realization xi in order to determine the 
value of I[g(ui)]. 

 

Finally, the estimation of probability of failure Pf  with n samples can be written 
as: 

 

( ) ( )
( )1

1 1,2,..., ; 1, 2,...,i

i

n
U in

f f i sim
j Z i

f u
P P I g U i N j n

n f u=

≈ = = =  ∑  (1.20) 

 
b) Latin hypercube sampling (LHS) 

The latin  hypercube  sampling– LHS – (Mckey, 1979), is a stratified sampling 
method able to reduce the computational effort required for Monte Carlo’s 
simulation. The basic concept behind LHS method is the following: the variables 
are sampled by their probabilistic distribution and, successively, randomly 
combined. The sampling algorithm ensures that each distribution function is 
sampled uniformly between the interval of probabilities (0,1). The Figure 1.4 reports 
the difference between theoretical cumulative distribution for the generic variable 
Xi and the stratified sampling of a lognormal distribution. 

 



Xi 

Xi 
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1.3.2 Level II methods 

The Level II methods allows to perform reliability analysis by using moments 
of basic variables only. Specifically, the first and the second order moments (i.e. 
covariance matrix) are adopted in most of the cases.  

Furthermore, the limit state function Z=g(Xi) is linearized (i.e. first order 
approximation) around predefined points represented, commonly, by the mean 
value (Cornell, 1969) of the joint probabilistic distribution of basic variables and 
by the design point (Hasofer and Lindt, 1974). Because of these two 
approximations, the mentioned above methods are called “First Order Second 
Moment – FOSM” or “First Order Reliability Methods – FORM”. 

Within Level II methods, the measure of structural reliability is performed by 
means the reliability index β that, according to (Cornell, 1969) can be defined as:  

 

Z

Z

µ
β

σ
=  (1.21) 

  
where μZ and σZ are the mean value and the standard deviation, respectively, of 

the limit state function Z. The relationship between reliability index β and the 
probability of failure Pf  is defined in Sub-section 1.2.3 .  Then, the reliability index 
β is defined as the distance between the mean value μZ from the failure condition 
(i.e. Z=0) expressed in number of standard deviation of the limit state function σZ 

(Figure 1.5). 
 

 

Figure 1.5: Definition of reliability index β according to (Cornell, 1969). 

 
A more general and geometric definition of reliability index β as been defined 

by Hasofer and Lindt, 1974. Specifically, the reliability index β is defined as the 
closest distance between the mean value of the joint probabilistic distribution of 
basic variables in the standard normal space and the multidimensional limit state 
surface. The explanation is reported in Figure 1.6 in the case of two random variable 
R and E with linear limit state function. 
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Figure 1.6: Definition of design point and reliability index (Hasofer and Lindt, 1974). 

 
In verification of structural reliability any point of the failure surface Z=R-E=0 

(i.e. limit state function) can be considered as a critical structural configuration. 
However, it has been proved by Konig and Hosser, 1982 that the best solution with 
level II methods is achieved performing the linearization of the limit state function 
in the so called “design point”. The design point represents the point pertaining to 
the limit state surface having the highest probability density. In the details, is the 
point having coordinates (Rd, Ed) closest to the mean point of coordinates (μR, μE). 
In literature is denoted also as the “most probable failure point”. Accepting the 
present hypothesis, the coordinates of the design point may be written in function 
of the reliability index β as: 

 
d R R RR µ α βσ= −  (1.22a) 

 
d E E EE µ α βσ= −  (1.22b) 

 
where αR and αS denotes the First Order Reliability Method - FORM – 

sensitivity factors of the random variables R and E. From the Figure 1.5 that the 
sensitivity factors αR and αS may be evaluated as the direction cosines of the 
design point: 

2 2

R
R

E R

σ
α

σ σ
=

+
 (1.23b) 

 

2 2

E
E

E R

σ
α

σ σ
= −

+
 (1.23b) 

with: 
 

2 2 1E Rα α+ =  (1.24) 
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In the EN 1990 and fib Model Code 2010, an approximation of these values 

according to Konig and Hosser, 1982 is performed. Specifically, the value of αR is 
set equal to 0.8 and the value of αS is set equal to -0.7. The validity on this 
approximation is bounded by the following limits of validity: 0.16< σR,/σE <7.6.  

Since these approximations are extremely on the safe side, the condition 
expresses by Eq.(1.24) is not satisfied. When limits of validity (i.e. 0.16< σR,/σE 

<7.6) are not fulfilled, the values of αR and αS can be set equal to +1 and -1, 
respectively.  

The mentioned above values for αR and αS are defined for dominant random 
variables. In case of accompanying or non-dominant random variables (as, 
according to fib Model Code 2010, is the case of model uncertainty) the value of 
FORM sensitivity factors ca be pre-multiplied for 0.4. 

In the case R and E are normal distributed random variables, the design point 
coordinates can be evaluated according to the following probabilities (in case of 
dominant random variables): 
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 (1.25b) 

 
Similarly, in case of R and E are lognormal distributed random variables the 

mentioned above equations become: 
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 (1.26a) 
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 (1.26b) 

 
The level II methods, are the base for calibration of Levels I methods 

according to the semi-probabilistic approach. 
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1.3.3 Level I methods 

The Level I method allows to take into accounts the probabilistic distribution 
of basic variables with a simplified approach. In fact, the basic variables are 
represented by their characteristic value, that corresponds to a low quantile in case 
of strength distributions or to a high quantile in case of distributions related to 
actions. Furthermore, partial safety factors are introduced with values that are based 
on Level II calculations. 

The basic verification format, introduced by EN 1990, consist of verifying 
whether the limit state is not exceeded when all basic variables in the limit state 
equation are replaced by so called design values (identified by “d”). In case of a 
simple limit state function, as the case of Eq.(1.9), one has to verify whether the 
design resistance Rd is at least equal to the design value of the load effect Ed: 

 
d dR E≥  (1.27) 

 

( ),1 ,1 ,1 ,2 ,1 ,1, ,...; , ,...; ,d d d d d d dE E F F a a ϑ ϑ=  (1.28) 

 

( ),1 ,1 ,1 ,2 ,1 ,1, ,...; , ,...; ,d d d d d d dR R X X a a ϑ ϑ=  (1.29) 

 
Where F represents an external action; X represents a material property; a is a 

geometrical property; ϑ is the model uncertainty. 
The partial safety factors for material properties (i.e. γm) and actions (i.e. γf), in 

general, are derived from their characteristic values according to: 
 

k
m

d

R
for resistances

R
γ =  (1.30) 

 
d

f
k

E
for load effects

E
γ =  (1.31) 

 
The design values Rd and Ed may be evaluated according to Eq.(1.25a-b) or 

Eq.(1.26a-b) deriving from Level II methods. In general, the characteristic value is 
considered as be the 5% quantile of the probabilistic distribution of the resistances, 
the 50% quantile of the probabilistic distribution of permanent actions and the 95-
98% quantile in case of variable actions. 

The semi-probabilistic limit states approach proposed by EN1990 and fib 
Model Code 2010 are based on a Level I methodology, accounting for 
deterministically the geometrical parameters. These methods are the used in 
practice for design and assessment of structures. 
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1.3.4 Level 0 methods 

The Level 0 methods are conceived as pure determinist methods. In general, 
the deterministic or nominal values of variables are used accounting for one global 
safety factor (having empirical nature). The basic verification is performed basing 
of the following equation: 

 

Nom NomR Eγ≥  (1.32) 
 

These method does not allow to quantify the level of reliability within 
assessment or design and may leads to underestimate the structural safety without 
any control about it.  

The introduction of probability-based methods made obsolete these 
deterministic methods that, in current structural codes, are no longer implemented.  

1.3.5 Reliability of structural systems 

In general, real structures are realised collecting a large number of structural 
components (e.g. beams and columns) and may be considered as structural systems. 
The reliability of the system depends from the reliability of each component. 
Moreover, structural components may be interested by different failure modes (e.g. 
bending and shear) described, each one, by a specific limit state function according 
to previous Sections. 

Furthermore, different failure modes may result to be brittle, ductile or brittle 
with residual strength. In particular, concerning reinforced concrete structures, the 
clear distinction between ductile or brittle failure modes is not always possible in 
cases of particularly complex geometries and reinforcements arrangements. Then, 
the exact analysis of reliability of complex structural systems is almost impossible 
for most of cases and some simplifications are required.  

Generally, two systems of structural components can be identified: 

- series systems; 
 

- parallel systems. 
 

In the following, the general approaches to the calculation of the probability of 
failure of structural systems are outlined in their fundamentals. 
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Structural system with series components 

Let consider a structure represented by n components collected in series. 
Denoting with Fi the failure event of the ith component that occur with probability 
P[Fi], the probability of failure of the series structural system Pf

,
,S can be expressed 

by the following general summation law: 
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 (1.33) 

The simple case of three structural components leads to the following expression: 
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 (1.34) 

 
The Eq.(1.33) may be elaborated by applying the following law related to 

conditional probabilities: 
 

[ ] [ ]1 2 1 2 1 1 2 1... ... ...n n nP F F F P F P F F P F F F F −= ⋅   ⋅ ⋅            (1.35) 

 
Then, for the case of three components: 
 

[ ] [ ]1 2 3 1 2 1 3 1 2P F F F P F P F F P F F F= ⋅   ⋅         (1.36) 

 
The probability of failure of the series structural system Pf

,
,S may be estimated 

according to upper and lower bound. 
In fact, in case of mutually exclusive failure events Fi, Eq.(1.33) become: 

 

[ ],S
1

n

f i
i

P P F
=

= ∑  (1.37) 

 
Let consider now the case with three structural components with perfectly 

correlated failure vents. The following hypothesis is performed:                                     
P[F1] ≥ P[F2 ]≥ P[F3]. 

According to Eq.(1.34) and Eq.(1.36): 
 

[ ] [ ] [ ] [ ]
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 (1.38) 
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The Eq.(1.37) and Eq.(1.38) represents the expression of upper and lower 
bound for the failure probability of the series system.  The general expression for 
boundaries of failure probability for series structural systems has been provided by 
Cornell,1967: 

[ ]{ } [ ],
1

max
n

i f S i
i

P F P P F
=

≤ ≤ ∑  (1.39) 

Successively, narrower upper and lower bound has been proposed by 
Ditlevsen, 1979: 
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∑ ∑ ∑  (1.40) 

 
In the case the failure probability P[Fi] are strongly different (i.e. P[F1]>> 

P[F2]>> P[F3]>>…), the lower and the upper bounds are converging toward the 
highest component failure probability represented by P[F1]. 

Structural system with parallel components 

Let now consider a structure represented by n components collected in parallel. 
Denoting with Fi the failure event of the ith component that occur with probability 
P[Fi], the probability of failure of the parallel structural system Pf

,
,P can be 

expressed by the intersection of the failure events of each component: 
 

[ ],P 1 2 ...f nP P F F F=     (1.41) 
 

Also for parallel structural systems, bounds for the failure probability Pf
,
,P can 

be derived. In fact, in case of mutually exclusive failure events Fi: 
 

[ ],P
1

n

f i
i

P P F
=

= ∏  (1.42) 

 
Then, the following upper and lower bounds can be derived: 

 
[ ]{ },P0 minf iP P F≤ ≤  (1.43) 

 
Concerning both series and parallel structural systems the following 

observations can be outlined: 

- increasing the level of correlation between the failure events Fi, the failure 
probability decreases for series systems and increases for parallel 
systems; 
 

- increasing the number n of structural components, the failure probability 
increases for series systems and decreases for parallel systems.  
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Combined structural systems 

Concerning the series and parallel combined structural systems, the probability of 
failure can be expresses as: 

 

,P
1 1

k l

f ir
i r

P P F
= =

  
=   

  
   (1.44) 

 
for the case of k parallel sub-systems and: 
 

,P
1 1

s t

f ir
i i

P P F
= =

  
=   

  
   (1.45) 

 
for the case of s series sub-systems. 
 

In general, real structures are combined systems with structural members 
collected in series and in parallel. Several design and assessment strategies are 
based on the theory of systems. For example, redundancy and robustness principles 
are based on creating parallel system (if an element fails, the others elements 
connected in parallel have to carry the extra load), while, capacity seismic design 
is based on concepts related to series systems (some elements are connected in 
series in order to fail before the others).  

1.3.6 Target reliability and reliability differentiation for new and 
existing structures 

Notices about the target reliability levels are reported by codes as EN 1990, fib 
Model Code 2010, ISO 2394 and scientific literature as fib Bulletin 80. 

The definition of the target levels of reliability have to take into account the 
possible consequences of structural failure in terms of human casualties or injuries 
and the potential direct and indirect economic implications. Moreover, the selection 
of level of reliability also have to consider the expenses required for safety measures 
able to reduce the probability of structural failure. 

Concerning the limit states approach, the maximum acceptable failure 
probability depends on the type of the limit state (i.e. serviceability of ultimate), 
considered consequences of structural failure, relative costs for safety measures and 
reference period (that may be different from the service life). 

The reliability analysis of existing structures differs from new structures in 
several aspects: 
 

-  increased target reliability levels implicate greater increment of costs for 
existing structures than for new structures; 
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- the remaining service life of existing structures is often smaller than the 
design service life of 50-100 years assumed for new structures; 

 
- information on actual structural conditions should be available for the 

assessment of an existing structure (i.e. inspection reports, tests, 
measurements). 

In general, for both evaluating target reliability for new and existing structures 
the following aspect should be analyzed: 

- human safety; 
 

- economical implication. 
 

In an extremely simplified model, the total costs Ctot of a structure during its 
working life can be expressed as: 

 
tot i fC C P D= +  (1.45) 

 
Where Ci are the initial costs for build the new structure (Cbuild) or for up-grade 

the existing one (Cupgrade) and Pf D is the expected failure costs related to the 
working life (which is intended as the design service life for new structures and the 
residual service life for existing structures). The optimum target reliability index 
can be identified as the one that meet the principle of minimizing the total cost Ctot 

without be lower to the minimum requirements for human safety. In Figure 1.7 this 
procedure for both new and existing structures is represented. 

 

 

Figure 1.7: Differences in cost optimization for the design of new structures versus upgrading 
of existing structures (fib Bulletin 80). 

 
Basing on the mentioned above criteria, the target levels of reliability should 

be differentiated between new and existing structures. In fact, the cost for upgrading 
of the existing structure are higher than the cost for build the new structure with 
appropriate safety measures. As a result, optimum target reliability indexes for 
existing structures have to be lower if compared to the ones for new structures. 
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Moreover, target reliability of existing structures should be based on their residual 
service life, that is a case dependent property. The methodology to derive target 
reliability indexes accounting for these aspects related to existing structures is 
outlined in fib Bulletin 80. 

In Table 1.1, the target reliability indexes for new and existing structures 
proposed by fib Model Code 2010 are reported. However, concerning existing 
structures, the state of the art for determination of target reliability indexes is 
represented by fib Bulletin 80. 

 
Table 1.1: Suggested range of target reliability from fib Model Code 2010 for new and 

existing structures. 

Limit states Target reliability index  
β 

Reference period 

New structures 
 (fib Model Code 2010) 

Serviceability (SLE)   

reversible 0.0 Service life 

irreversible 1.5 50 years 

irreversible 3.0 1 year 

Ultimate (SLU)   

Low consequences of failure 3.1 50 years 

 4.1 1 year 

Medium consequences of failure 3.8 50 years 

 4.7 1 year 

High consequences of failure 4.3 50 years 

 5.1 1 year 

Existing structures 
(fib Model Code 2010) 

Serviceability (SLE) 1.5 Residual service life 

Ultimate (SLU)   

 3.1 – 3.8* 50 years 

 3.4 – 4.1* 15 years 

 4.1 – 4.7* 1 year 

*depending from costs for safety measures and upgrading of the structure; more detailed information can be derived 
from fib Bulletin 80. 

 
 

According to fib Model Code 2010, the reliability of each component of the 
structural system should depend on the system characteristics itself. The target 
reliability indexes given in Table 1.1 are related to the structural systems, to the 
dominant failure mode of the single component or to the structural component that 
dominate the failure of whole system. Then, if the structure is in presence of 
multiple equally important failure modes, it should be designed for a higher level 
of reliability.  
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The mentioned above target reliability indexes are also intended for structures for 
which failure is preceded by a certain level of warning (e.g. ductile failure modes). 
In this way, preventive measures can be adopted in order to limit the possible 
consequences of structural failure (at least in term of human casualties). 

The failure modes that are not warned by the structure (e.g. brittle failure 
modes), should be avoided by means design procedure and correct detailing. In 
general, the brittle failure must not occur. If a structural component or system would 
fail with brittle failure mode, it should be designed accounting for a higher target 
reliability. 

1.4 Safety formats for design and assessment of 
reinforced concrete structures 

In this Section the basic principles of safety formats reported by codes as 
EN1990, fib Model Code 2010 and fib Bulletin 80 are described. The safety format 
can be identified as a series of rules and methods defined in order to perform design 
or assessment of new and existing structures according to pre-determined target 
reliability levels. 

Next, the methodology introduced for the first time by fib Model Code 2010 
denoted as “levels of approximation approach” is described. Then, the different 
safety formats are commented. 

1.4.1 The levels of approximation approach 

The structural analysis grounds on representative models that are only an 
approximation of the reality. Each model, from the simplest to the most refined one, 
it may represent the reality with different degrees of accuracy. 

The fib Model Code 2010 and Muttoni and Ruiz, 2012 has introduced the 
design and assessment methodology denoted as “levels of approximation 
approach” (LoAs). Specifically, a “level of approximation” (LoA) is a design or 
assessment methodology where the accuracy on the estimate of the response of a 
structural member or system can be refined by improving the knowledge about the 
involved physical parameters and the complexity of the mathematical model. 
In general, four LoAs are suggested with growing level of refinement and time 
devoted to perform the structural analysis form the first one to the last one: 
 

- level of approximation I (LoA I): has to provide simple and safe hypotheses 
for evaluating the physical parameters related to the resistance model. It 
leads to safe predictions of the structural response of the structural member 
or systems. This LoA requires low time-consuming and is usually sufficient 
for preliminary design or assessment purposes. The estimate of LoA I may 
be refined in successive LoAs by devoting more time to the estimate of the 
physical parameters and adopting more complex analytical or numerical 
procedures; 

 



 

30 
 

- level of approximation II and III (LoA II, III): in these LoAs the physical 
parameters and the resistance models are still evaluated through analytical 
methods accounting for the equilibrium and mechanical parameters. Again, 
these LoAs are low time-consuming and are usually sufficient to cover most 
design and assessment cases; 
 

- level of approximation IV (LoA IV): numerical procedures allow typically 
obtaining the best estimates of the structural response. They are commonly 
adopted as the the highest LoA. The use of this level of refinement can be 
very time consuming and is suggested for design of very complex structures 
or for the assessment of critical existing structures. This LoA is justified in 
cases where a more accurate estimate of the structural response can lead to 
significant economical savings. 

 

 

Figure 1.8: Levels of approximation approach as defined by Muttoni and Ruiz, 2012 and fib 
Model Code 2010. 

 
The choice of a suitable LoA is left to designer and practitioners. It depends on 

the type of analysis performed, on the stage of the design or assessment process 
(preliminary or executive) and on the potential savings that can be provided if a 
higher LoAs is adopted. In Figure 1.8 the schematization representing the concept 
of the LoAs is reported. 

Once selected the LoA related to the representative model of structural 
response, the reliability concepts should be introduced by appropriate safety 
formats.  

 
As discussed later in the present dissertation, the basic concept of the LoAs can 

be extended also to the choice of a specific safety format when refined non-linear 
analyses are adopted.  

 
Next, the basic principles of safety formats based on the limit states approach 

proposed by codes (EN 1990, fib Model Code 2010) are commented. 
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1.4.2 Probabilistic safety format 

The fib Model Code 2010 allows to perform full probabilistic analysis in 
according to the methodologies outlined by the Level III and Level II methods.  The 
probabilistic safety format is suitable also for the assessment of existing structures. 

The verification of a structure, according to particular limit state is carried out 
by means the estimation of the probability of failure Pf  in a specified reference 
period (i.e. service life for new structures or residual service life for existing 
structures).  

According to Section 1.3.1, the equation for safety verification can be 
expressed in terms of probability of failure Pf  as: 
 

[ ] ,( ) 0 1,2,...,f i f TP P g X P i N= ≤ ≤ =  (1.46) 
 

where Pf,T are the target probability of failure according to target reliability 
indexes reported in Section 1.3.6. The relation between the reliability index β and 
the probability of failure is reported in Subsection 1.2.3. The methodologies 
described in Subsection 1.3 can be adopted in order to evaluate Pf and define the 
probabilistic model for basic variables Xi. 

1.4.3 Partial factor format 

The partial factor format is defined according to the Level I methodology and 
it is implemented by fib Model Code 2010 and EN 1990. The safety measures are 
applied partially to loads and material resistances by means of partial safety factors.  

The partial safety factors can be distinguished as: 

- partial safety factors for material properties: 

1 2M Rd Rd mγ γ γ γ= ⋅ ⋅  (1.47) 
 

where γRd1 is the model uncertainty partial safety factor set equal to 1.05 and 
1.025 for concrete and reinforcement, respectively; γRd2 is the partial factor 
accounting for geometrical uncertainties set equal to 1.05; γm is the partial factor for 
material uncertainty evaluated according to Eq.(1.30). Assuming normal 
distribution for material uncertainties, the value of γM is equal to 1.5 for concrete 
cylinder compressive strength assuming a coefficient of variation equal to 0.15 and 
is equal to 1.15 for bar reinforcements accounting for a coefficient of variation equal 
to 0.05; the related target of reliability is define by β=3.8 according to Table 1.1. 
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- partial safety factors for permanent actions (G) and variable actions (Q): 
 

,Q ,G Sd g qγ γ γ= ⋅  (1.48) 
 

where γSd is the model uncertainty partial safety factor set equal to 1.05; γG,Q is the 
partial safety factor for permanent (G) and variable loads (Q) accounting for 
aleatory variability and reference service life according to Eq.(1.31). 

The actions are properly combined for ULS and SLS accounting for appropriate 
combination coefficients in order to maximize and minimize their effect of the 
structural response. Specific values for partial safety factors for actions can be 
acknowledged by fib Model Code 2010 and EN 1990. 

Partial factor formats for existing structures  

The mentioned above partial factor format has been conceived for the 
realization of new structures. 

As discussed in Subsection 1.3.6, the assessment existing structures 
significantly differ from the design of new ones. For instance, two methodologies 
for the updating of partial factors for the assessment of existing structures has been 
proposed by fib Bulletin 80 accounting for:  

 
- possible knowledge about the existing structure deriving from testing; 

 
- modified target of reliability accounting for residual service life and costs 

for upgrading of the existing structure.  
 
Specifically, two methodologies has been defined: 

- the “Design Value Method” (DVM), which allow to recalculate the partial 
factors γX from the actual distribution of the variable X under consideration 
(based on prior information, or results of tests or the combination of both). 
This method is more refined and it is suggested for structures of particular 
relevance and may leads to results discordant to ones obtained by EN1990 
and fib Model Code 2010; 

 
- the “Adjusted Partial Factor Method” (APFM), which allow to correct 

partial factors γX,New for new structures proposed by EN1990 by means to 
adjustment factors ωX as follows: 

 
,X X X Newγ ω γ= ⋅  (1.49) 

 
The method is fully consistent with EN1990 provisions and it is considered 
as a simplification if compared to the DVM. 
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1.4.4 Global resistance format 

The global resistance format (i.e. GRF) treats the uncertainties associated to 
structural behavior according to the limit state approach (Section 1.2.3) at the level 
of overall structural resistance (i.e. global resistance). The sources of uncertainties 
are integrated in a design global resistance Rd and can be accounted for by means 
global safety factors. The global safety factors reflect the uncertainty in the 
determination of the overall structural response depending from aleatory variability 
of basic variables and epistemic uncertainties.  

The GRF has been introduced in order to allow structural design and 
assessment by means of non-linear analysis. In fact, refined mechanical and 
geometrical non-linear models are generally based on a global structural level, and 
the GRF represents an efficient format to perform safety verifications.  However, it 
can be applied also to single members or specific cross sections. 

The “global” and the “local” approach for structural design and 
assessment 

In common practice and in Codes the design/assessment of new/existing 
structures is performed by means of cross-sectional analysis comparing the design 
agent (Ed) and resisting (Rd) internal actions (e.g., bending moment, shear and axial 
forces) according to the inequality Ed<Rd. In general, the limit states approach in 
compliance with the partial factor method is adopted. In this framework, the 
internal actions Ed are evaluated by means of linear elastic analysis combining the 
effects of the external loads (with linear superimposition), while, the sectional 
internal resistance Rd is evaluated according to the limit analysis. This approach to 
assess the structural safety is defined as “local”, as it involves only sectional 
verifications of the structural members disregarding from the global actual behavior 
and progressive redistribution of internal forces within the reinforced concrete 
structure.  

            
 

Figure 1.9: Comparison between local structural analysis and global structural analysis. 

 



 

34 
 

The local analysis is very efficient when low LoAs are used by performing 
simplified assumptions for the definition of the structural model, constitutive laws 
and resistance mechanisms. On the contrary, as introduced in Subsection 1.4.1, 
when the assessment of structural safety is performed by means of higher LoAs 
with refined non-linear analysis (e.g., NLFEAs), the global capability of the 
reinforced concrete structures to redistribute internal forces under a specific loading 
condition can not be neglected. In this context, the use of non-linear structural 
models implies the adoption of a “global” approach for the structural assessment, 
comparing the global external action under a specific loading combination and the 
global structural resistance. Then, the progressive damaging of the structure and 
internal forces redistribution are accounted for within the global verification 
justifying also the adoption of such complex non-linear models. The differences 
between the two approaches are explained in Figure 1.8. 

Definition of the design global resistance 

According to the GRF, the representative variable for the global resistance is 
the structural resistance R. The following representative values of resistance can be 
derived: 
 

- Rm, mean value of global structural resistance; 
 

- Rk, 5% characteristic value of the global structural resistance; 
 

- Rd, design value of the global structural resistance according to specified 
target reliability index β. 
 

The safety condition is represented by the following equations: 

, m
d d d

R Rd

R
F R R

γ γ
≤ =

⋅
 (1.50) 

 
where Fd is the design external action defined according to the partial factor 

format; γR is denoted as the global resistance safety factor, which account for 
material aleatory uncertainties; γRd represents the resistance model uncertainty 
safety factor, which account for the resistance model uncertainty (i.e. epistemic). 

The values for the mentioned above safety factors are evaluated depending 
from the type of the resistance model and from the global structural behaviour. A 
deeper discussion about their evaluation is reported in following Chapters.  

Global safety factors differ from the well-known partial safety factors adopted 
within local analysis by partial factor format. In fact, global safety factors refer to 
the global structural response evaluated by means mean values of material 
properties, instead, partial safety factors refer just to each material property (i.e. 
concrete compressive strength, reinforcement yielding strength) evaluated with its 
characteristic value for local verification of structural members.  
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However, as the term “partial safety factor” descend from Level I methods 

where safety is applied partially to actions and to material resistances, very often 
global safety factors are denoted also as “partial safety factors for global response”. 
In the present dissertation, the term global safety factor is adopted, however, the 
term partial safety factor can be associated also to global safety factors within GRF 
without running into any terminological mistake. 
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Chapter 2 

Non-linear finite elements analysis 
of reinforced concrete structures 

2.1 Introduction 

In common practice, assessment and design of reinforced concrete structures 
can be performed efficiently by means linear elastic analysis. In fact, for structures 
as beams, plates, shells and walls the linear finite element analysis (i.e. LFEA) is 
sufficient in order to get results able to estimate demands (e.g. internal actions, 
elastic distribution of stresses) and to determine the reinforcement arrangements. 
To perform assessment and design adopting linear analysis, in general, provides 
safe solutions within the limit states approach.  

However, for some cases, the use of linear analysis may not be sufficient in 
order to fulfil the safety requirements and deeper investigations may be required, in 
particular, for economic reasons.  

In the last decades, non-linear finite element analyses (NLFEAs) have 
increasingly become the most common and practical tool able to simulate the actual 
mechanical behavior of structural systems, such as reinforced concrete members, in 
any loading condition (i.e., serviceability limit state (SLS) and ultimate limit state 
(ULS)). In this context, several guidelines for NLFEAs, as fib Bulletin 45, have 
been defined in order to provide efficient methodologies devoted to calibrate NLFE 
models. However, the results from such complex calculations needs to be properly 
processed in order to satisfy the reliability targets as discussed in Chapter 1.  

 
In the present Chapter, after a short discussion about usefulness of NLFEA for 

assessment and design purposes, the basic principles about the non-linear finite 
elements (i.e. NLFE) method and the modelling of non-linear behaviour of 
materials are outlined. Finally, the methodologies able to introduce reliability 
concepts within safety verifications by using NLFEA are described (i.e. safety 
formats for NLFEA). 
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2.1.1 Practical applications of NLFEAs  

The NLFE method turns out to be an efficient tool when is necessary to perform 
assessment/design of reinforced concrete structures having complex geometry, 
poorly detailed or locally damaged structural members (e.g. localized cracking or 
local damaging due to impacts). 

In the following, the most common cases where NLFEA may be very efficient 
are listed and shortly commented: 

 

a) Estimation of the reliability of reinforced concrete members having 
complex geometry or detailing: in case of particularly complex geometries 
and reinforcement arrangements (e.g. beams with openings), the structural 
codes may not provide sufficient information in order to estimate efficiently 
the structural resistance. In general, the “struts and ties” method is the most 
common approach adopted for complex problems, however, it leads to 
different solutions that may be more or less efficient as they are just based 
on equilibrium verification. In the mentioned above cases, the NLFEA can 
be very useful in order to get to solution that satisfies both equilibrium and 
kinematic compatibility. Moreover, the NLFE models may be adopted in 
order to simulate and to predict the progressive cracking development by 
increasing the load level up to failure of the reinforced concrete member.  
 

b) Assessment of the reliability of existing structures: the choice to upgrade (or 
not) an existing reinforced concrete structure is a crucial decision within the 
assessment process. In existing structures are often built base on old design 
standards and reinforcements arrangements not consistent with current 
specifications. In cases where costs for upgrading of the structure are very 
significant, the NLFEA may be useful in order to estimate the actual safety 
margin against the failure and, possibly, to avoid expensive interventions. 

 
c) Seismic assessment by means push-over analysis: many design codes 

allows to perform the seismic assessment by means push-over analysis and, 
it means that NLFE models can be adopted in order to estimate the 
structural capacity.  

 
d) Analysis of the “D-regions”: the regions affected by localized stress and 

deformation fields (as zones affected by prestressing introduction devices) 
may be efficiently simulated by means NLFEA.  

 
e) Explanation of observed crack patterns and local damaging: in particular 

cases, the observed crack patterns and/or local damaging of reinforced 
concrete members may be due unknown causes (e.g. forensic engineering). 
Then, the possible causes can be identified by means back analysis starting 
from in-situ observations.  



 

38 
 

 
f) Estimation of second order effects: the use of NLFEA allows to take into 

account geometrical non-linearity in presence of progressive cracking (i.e. 
decreasing of stiffness) and can be an efficient tool for assessment of very 
slender concrete members.  

 
g) Evaluation of safety in presence of accidental loading situations and for 

robustness assessment: the evaluation of safety in case accidental loading 
situations as explosions, terroristic attacks and extreme earthquakes can 
benefit by the use of NLFEA. In particular, the evaluation of structural 
robustness by means removal of one of more structural elements can be 
performed also accounting for the dynamic effects. 

 
h) Evaluation of fire resistance: the effects on complex structures of exposure 

to high temperature may be investigated by means NLFEA accounting for 
mechanical non-linearities, progressive damaging and thermal expansion. 

 
The mentioned above applications are just a few of the possible ones. However, 

the use of such NLFE models for design and assessment should be always 
performed by engineers and designers confident with the approach and after an 
accurate calibration and validation procedure. In fact, the user can be misled from 
the apparent precise results obtained by the NLFEA simulations.  

Firstly, the calibration of a structural model should be performed analysing the 
sensitivity of results in case the analysis parameter and mesh size are modified.  

Secondly, the results of the NLFE simulation should be validated on the base 
of physical assumptions and observations (as for example from similar benchmark 
tests) in order to be sure that structural model is able to reflect the actual structural 
behaviour. Finally, reliability concepts should be properly addressed in order to get 
results suitable for design or assessment purposes. 
 

Next, a short description of common modelling hypothesis adopted for NLFEA 
is proposed. 
 

2.2 Modelling hypotheses for NLFEA 

In the present Section, the most common and herein adopted hypotheses 
adopted for NLFE modelling are reported. The term modelling hypothesis concerns 
all the choices performed related to: 

- the definition of constitutive laws for basic materials; 
 

- the fulfillment of equilibrium and kinematic compatibility requirements, 
including solution methods and choice of the type of finite element, 
respectively.  
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Subsequently, basic notes about solution methods and modelling of non-linear 
material properties are reported. 

2.2.1 Solution methods 

The general structural problem can be solved by means the following system 
of equilibrium equations: 
 

( ) 0p f qλ − =  (2.1a) 
 

K( ) ( ) 0q q f q− =  (2.1b) 

where: 

- q is the vector of nodal displacements; 
- p is the vector of external loads; 
- λ is the multiplier of the vector of external loads; 
- K(q) is the stiffness matrix of the system, in general as a function of the 

vector q; 
- f(q) is the vector of internal forces as a function of the nodal displacements. 

The Eq.(2.1a-b) describes the equilibrium of the discretized structure. The 
solution of the linear system: 

 
K 0q f− =  (2.2) 

 
can be directly estimated, whereas, the non-linear system of equations 

expressed by Eq.(2.2b) is possible to be solved only by numerical calculation. 
In the following, two common methods adopted by common NLFE software in 

order to solve Eq.(2.1b) are described: the Newton-Raphson and the Modified 
Newton Raphson methods. However, other methods are proposed by literature as, 
for example, the arch-length method (Riks, 1972 and 1979). 

Finally, a short discussion about the convergence criteria is proposed. 

Newton-Raphson method 

The Newton-Raphson method is an iterative approach able to solve non-linear 
systems of equations by means progressive linear approximations. It is one of the 
most used techniques by NLFE software.  

Defining the set (q0, λp) as the current trial displacement condition and the loads 
vector, respectively, the solution may be iteratively calculated by adding the change 
in displacements δqi to the current displacement state evaluated as: 
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( ) ( )1i
i T iq K r q

−
∂ =  (2.3) 

 
where Ki

T is the tangent stiffness matrix determined for the current state and 
r(qi) is the vector of out of balance forces. The explanation of the Newton-Raphson 
method is depicted in Figure 2.1. 

 
 

 

Figure 2.1: Scheme representing the Newton-Rapson method. 

 
In this method, within every iteration step the current stiffness matrix is defined 

and the linearized equations are solved considering the increment δqi. For this 
reason, the method results to be very efficient, even though may require more 
computational time.  

 

Modified Newton-Raphson method 

As previously described, the Newton-Raphson method requires to re-calculate the 
tangent stiffness matrix for each iteration and may be more time consuming.  

In order to overcome to this problem, the approximation to maintain the tangent 
stiffness matrix constant between the iterations may be performed assuming:                  
Ki

T = K0
T. 

 Then, the Eq.(2.3) becomes: 
 

( ) ( )10
i T iq K r q

−
∂ =  (2.4) 
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In this way, the solution for each iteration may be very fast, however, more 
iterations are needed in order to meet the convergence criteria. 

The schematization of the Modified Newton-Raphson method is reported in 
Figure 2.2. 

 

 
Figure 2.2 

Figure 2.2: Scheme representing the Modified Newton-Rapson method. 

 

The choice between Newton-Raphson and Modified Newton-Raphson 
methods depends from the size and from the complexity of structural problem. If 
the problem is computationally demanding, the Newton-Raphson method is 
preferable even if may requires more time.  

 

Convergence criteria 

The solution of a structural problem by means of NLFEA leads to solutions 
which are necessarily an approximation of the exact one. Precisely, the exact 
solution is the one that corresponds to an out of balance force equal to zero: r(qi)=0. 

Then, the solutions obtained by NLFEA are always in presence of a certain 
amount of out of balance force. For this reason, is necessary to define criteria (i.e. 
convergence criteria) able to discern if the iterative solution process has reached the 
required level of accuracy.  

In general, the monitored quantities in order to check the progressive 
convergence of the solution procedure are the differences between two consecutive 
iterations of: the out of balance force, the displacements and the strain energy.  

The generic ith load step may be considered as concluded when: 
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max 1,2,...,i j with j iψ ε ψ< ⋅ =  (2.5) 

 
where for displacement-based convergence criteria: 
 

i T
i iq qψ = ∂ ⋅∂  (2.6) 

 
and for force-based convergence criteria:  
 

( ) ( )i T
i ir q r qψ = ⋅  (2.7) 

 
Concerning reinforced concrete structures, the displacement-based 

convergence criteria is commonly adopted.  
 

2.2.2 Non-linear modelling of concrete 

In the present Subsection, the hypotheses for non-linear modelling of concrete 
adopted in the present dissertation are outlined in their fundamentals. Specifically, 
the most common modelling hypotheses for plane stress models are reported. 
Deeper information may be acknowledged by literature and original references. 

Finite element formulation 

The simpler and most common finite element formulation for plane stress 
NLFEA of reinforced concrete structures is the quadrilateral iso‐parametric plane 
stress elements. It is adopted to represent the concrete bodies with constant or 
variable thickness. This element is implemented by all the main software of 
common use for NLFEA or reinforced concrete structures. 

The nodal displacements are interpolated by means linear model as shown in 
Eq.(2.8) and 2x2 Gauss integration scheme is used. 

 
( ) 0 1 2 3,u r s a a r a s a r s= + ⋅ + ⋅ + ⋅ ⋅  (2.8) 

 
The schematization of the mentioned above finite element is reported in Figure 

2.3. 
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Figure 2.3: Quadrilateral iso-parametric finite element (plane stress). 

 
The mesh refinement should be calibrated case by case limiting the dependence 

of results from the mesh size. 

Behaviour of concrete in compression 

In the following, three common models for mono-axial compressive 
constitutive behavior of concrete are described: 
 

- the EN1992-1-1 constitutive model; 
 

- the fib Model Code 1990 constitutive model; 
 

- the Thorenfeldt et al, 1987 constitutive model 
 

 
- EN1992-1-1 constitutive model 

 
The non-linear constitutive law of concrete in compression defined by 

EN1992-1-1 is written in Eq.(2.9) and represented in Figure 2.4.  
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c u c

f f
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= = =  (2.12) 

 
where E0 is the zero-stress tangent Young Modulus; Es secant Young modulus 

of concrete corresponding to peak strength; Eu is the secant Young modulus of 
concrete corresponding to ultimate strength; ε is the concrete strain; εu is the 
ultimate concrete strain; σ is the stress within concrete; fc is the peak concrete 
strength; fu is the ultimate concrete strength; p is the ration between ultimate and 
peak strain. 
 

 
 

Figure 2.4: Mono-axial constitutive model for concrete in compression by EN1992-1-1. 

 
 
- fib Model Code 1990 constitutive model 
 

The constitutive law of concrete in compression defined by fib Model Code 
1990, is described by Eq.(2.13) and represented by Figure 2.5. 
 

( )
2

1 2c

kx x
f k x
σ −

=
+ −

 (2.13) 

 
0;

c c

E
x k

E
ε
ε

= =  (2.14) 

 
where σ is the stress within concrete; fc is the peak concrete strength; x non-

dimensional strain; ε is the concrete strain; εc is the peak concrete strain; k is the 
shape parameter; E0 is the zero-stress tangent Young Modulus; Ec is the secant 
Young modulus of concrete corresponding to peak strength. 
 

After the peak strength, the constitutive law linearly decreases and can be 
described by a model based on the energy dissipated or through a model based on 
the ultimate strain εu.  
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Figure 2.5: Mono-axial constitutive model for concrete in compression by fib Model Code 

1990. 

 
 

- Thorenfeldt et al., 1987 constitutive model 
 
The constitutive law of concrete in compression defined by Thorenfeldt et al., 

1987, is described by Eq.(2.15). 
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where σ is the stress within concrete; fc is the peak concrete strength; ε is the 

concrete strain; εc is the peak concrete strain; Rc is the mono-axial cubic 
compressive strength; n and k model parameters. 

 
The input parameters for constitutive models may be derived according to fib 

Model Code 2010, EN1992-1-1 suggestions or from experimental results when 
available. 

Behaviour of concrete in tension 

The tensile behaviour of concrete can be modelled by means elastic-softening 
laws accounting for fracture energy Gf and influence of “tension stiffening effect” 
due to interaction of cracked concrete and reinforcement. 

Typically, a linear tension softening (i.e. LTS) law can be adopted to simulate 
concrete tensile behaviour. The value of maximum strain εmax can be defined 
according to experimental results, from literature results or as a percentage of the 
elastic peak strain εct (e.g. 10-15% concerning normal strength concrete). The linear 
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tension softening law for tensile concrete behaviour modelling is reported in Figure 
2.6. 
 

 
Figure 2.6: Linear tension softening model for concrete tensile behavior. 

Biaxial failure domain 

The biaxial failure domain ca be modelled by means the Kupfer and Gerstle, 
1973 domain.  The equation that define the domain in the regions compression-
compression, tension-compression and tension-tension are reported subsequently. 
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Where fc

ef is the compressive strength under biaxial state of stress; σc1 and σc2 

are the principal stresses; fc is the mono-axial cylinder compressive strength; rec is 
the reduction factor for compressive strength variable within the interval 0.9-1.0; 
ret reduction factor for tensile strength variable within the interval 0.9-1.0. 

The representation of the bi-axial failure domain is reported in Figure 2.6. 
 

 
Figure 2.7: Bi-axial failure domain proposed by Kupfer and Gerstle, 1973. 
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Smeared cracking models 

In plane stress modelling of reinforced concrete, the following two methods 
based on smeared crack modelling (De Borst and P. Nauta, 1985; Riggs and 
Powell, 1986) are widely adopted: 

 
- fixed crack direction model (Cervenka, 1985, Darwin, 1974); 

 
- rotated crack direction model (Vecchio, 1986, Crisfield, 1989).  

 
In the smeared fixed crack direction model the crack direction is defined at first 
cracking and does not change during the following load steps. Shear stresses can be 
present on the crack surface by means of reduction of shear stiffness after cracking 
denoted as shear retention factor β (often set equal to 0.2). The directions of 
principal stresses and principal strains coincide in uncracked field. After cracking 
the material becomes orthotropic with a strong axis m2 parallel to the cracks and a 
weak axis m1 orthogonal to them. In such condition the directions of principal 
strains ε1 and ε2 do not coincide any more with the orthotropy axis m1 and m2 
because of shear friction present on cracks as shown in Figure 2.8(a). 
 

a) 

  

b) 

 
 

 
Figure 2.8: Fixed smeared crack model (a) and rotated smeared crack model (b). 

 
In the smeared rotated crack direction model the direction of the principal 

stress coincides with the direction of the principal strain. No shear strain occurs on 
the crack plane and only two normal stress components must be defined, as shown 
in Figure 2.8 (b). If the principal strain axes rotate during the loading the direction 
of the cracks rotate, too. Then, the normal direction to the crack is always assumed 
to be aligned to the principal strain ε1. 
 

2.2.3 Non-linear modelling of reinforcements 

The non-linear influence of reinforcement within concrete matrix may be 
accounted for with two methodologies: 
 

- by discrete reinforcement model, where appropriate trusses elements are 
connected to mesh nodes and rigid conditions are created between trusses 
nodes and plane stress concrete element; 
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- by smeared reinforcement model, where the stiffness of the bars is 
smeared homogeneously on a chosen set of plane stress elements and 
incorporated within stiffness matrix. 

 
The constitutive law can be defined according to elastic with post-yielding 

hardening law according to material characteristics as shown in Figure 2.9.  
 

 
Figure 2.9: Constitutive model for reinforcement. 

 
However, advanced non-linear model can be also adopted to model non-linear 

behavior of reinforcements, also accounting for hysteretic energy dissipation. 
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2.3 Safety formats for non-linear analysis of reinforced 
concrete structures 

As discussed in Section 1.4.4 the safety verifications by means of non-linear 
finite element analysis can be performed according to the Global Resistance Format 
(GRF). In fact, the GRF result to be an efficient tool in order to evaluate structural 
reliability by using non-linear models, as the case of NLFEA. 

In scientific literature and codes, different safety formats based on GRF has 
been proposed. In the present dissertation, the following safety formats are 
considered: 

 
1. Partial Factor Method (PFM) (fib Model Code 2010); 
 
2. Global Resistance Methods (GRMs) 

 
- Method of estimating the coefficient of variation of the structural resistance 

(ECOV) (fib Model Code 2010); 
 

- Global Resistance Factor (GRF) (fib Model Code 2010);  
 

- Global Safety Format (GSF) (Allaix et. Al, 2013); 
 
 

3. Probabilistic Method (PM) (fib Model Code 2010). 
 

In the following, a short description of each one of the abovementioned safety 
formats is reported. 

 
2.3.1 Partial Factor Method (PFM) 

 
With reference to the partial factor method (PFM) proposed by fib Model Code 

2010, the design resistance Rd is obtained by means of a single NLFEA, which is 
performed using the design values (evaluated according to the partial factor format 
proposed by fib Model Code 2010, EN 1990 and fib Bulletin 80) of the material 
resistances fd: 

( )NLFEA d
d

Rd

R fR
γ

=   (2.22) 

 
where RNLFEA(fd) represents the global load bearing capacity of the structure 

(i.e., the global structural resistance) estimated by means of a non-linear analysis; 
γRd is the NLFE resistance model uncertainty safety factor.  
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2.3.2 Global Resistance Methods (GRMs) 

 
The Global Resistance Methods (GRMs) - fib Model Code 2010 - are safety 

formats based on the evaluation of the design global resistance by means global 
resistance safety factors according to the Global Resistance Format (GRF). 

 
Global resistance factor method (GRF) 

 
As for the global resistance factor (GRF)” method, according to fib Model 

Code 2010 and EN1992-2, the global resistance is defined as follows: 
 

( , )NLFEA cmd ym
d

GL

R f f
R

γ
=   (2.23) 

 
adopting a value of the global safety factor γGL set equal to 1.27 and equal to 

the global resistance factor γR assuming an unitary value for γRd. To estimate the 
representative value of the global resistance, the mean value of the yield stress fym 
has to be considered for the reinforcing steel: 

 
1.1ym ykf f=  (2.24) 

 
where fyk is the characteristic yield stress. In addition, a reduced value fcmd for 

the concrete compressive strength has to be used to equalize the partial factor for 
both steel and concrete failure, as follows: 

 
0.85cmd ckf f=    (2.25) 

 
where fck denotes the characteristic value of the concrete compressive strength. 
 

Estimation of coefficient of variation method (ECOV) 
 
Concerning the estimation of the coefficient of variation (ECOV) method, as 

suggested by fib Model Code 2010, the design global resistance is obtained as: 
 

( )NLFEA m
d

R Rd

R fR
γ γ

=
⋅

  (2.26) 

 
where Rd is the design value of the structural resistance; RNLFEA(fm) denotes the 

structural resistance predicted by a NLFEA performed introducing the mean values 
of the material properties in the structural model; γR is the global resistance safety 
factor accounting for the uncertainties related to the material properties; γRd is the 
NLFE resistance model uncertainty safety factor.  
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Assuming a lognormal distribution for the global load bearing capacity of the 
structure, the global resistance factor γR can be written as: 

 
exp( )R R RVγ α β= ⋅ ⋅  (2.27) 

 
where VR is the coefficient of variation of the distribution of the global 

structural resistance. In the ECOV method, the value of VR can be estimated, with 
a simplified approach, using a lognormal distribution for represent the variability 
of global structural resistance: 

 
( )
( )

1 ln
1.65

NLFEA m
R

NLFEA k

R f
V

R f
 

=   
 

 (2.28) 

 
where RNLFEA(fk) is the structural resistance predicted by a NLFEA performed 

using the characteristic values of the material properties to define the structural 
model.  

 
2.3.4 Global safety format (GSF) 
 

The global safety format (GSF) according to Allaix et al, 2013 allows to define 
the design global resistance as: 

 
( )NLFEA m

d
R Rd

R fR
γ γ

=
⋅

 (2.29) 

 
where Rd is the design value of the structural resistance; Rm denotes the 

structural resistance predicted by a NLFEA performed introducing the mean values 
of the material properties in the structural model; γR is the global resistance safety 
factor accounting for the uncertainties related to the material properties; γRd is the 
NLFE resistance model uncertainty safety factor. 

The GSF differs from the ECOV method in assessing the coefficient of 
variation of the global structural resistance VR=σR/μR in the hypothesis of lognormal 
distribution (with σR and μR the standard deviation and the mean value of the 
structural resistance, respectively). Specifically, statistical parameters are estimated 
by means of a reduced Monte Carlo simulation adopting the Latin Hypercube 
Sampling method with a reduced number of samples.  

The probabilistic model for the random randomness of material properties can 
be assumed according to JCSS Probabilistic Model Code or in simplified manner 
according to Section 1.2. Finally, the γR can be calculated according to Eq.(2.27). 
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2.3.5 Probabilistic method (PM) 
 
Finally, with reference to the probabilistic method (PM) according to fib Model 

Code 2010, the approach consists of running several NLFEAs adopting a sampling 
technique such as Monte Carlo or Latin Hypercube to define the input data. The 
numerical results are fitted by an appropriate probabilistic model (that may differ 
from the lognormal one) estimating the statistical parameters (i.e., mean and 
dispersion). In addition, from the probabilistic distribution it is possible to directly 
assess the quantile associated to the design value of the global structural resistance 
corresponding to a specific reliability index β  

 
( )1

R R
d

Rd

F
R

α β
γ

− Φ  =  (2.30) 

 
The PM is different from GSF method because this latter, assuming a lognormal 

probabilistic model, is based on mean values of material properties performing a 
first order approximation of the Taylor expansion function of the ultimate global 
resistance (Allaix at al., 2013), whereas, the PM directly refers to a quartile of the 
appropriate probabilistic distribution (Eq.(2.30)). 

Assuming a lognormal model for global structural resistance also for the PM, 
the design global resistance can be expressed as: 

 
R

d
R Rd

R µ
γ γ

=
⋅

 (2.31) 

 
where μR is the mean value of the global structural resistance and γR can be 

calculated according to Eq.(2.27) once defined the coefficient of variation VR=σR/μR. 
 
The safety formats herein introduced with their basic formulation will be 

compared and discussed in Chapter 4.  
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Chapter 3 

Probabilistic calibration of 
empirical and semi-empirical 
resistance models 

3.1 Introduction 

The resistance models based on physical laws, semi-empirical and empirical 
formulations are widely employed in structural engineering in order to 
design/assess new/existing structures. 

According to the semi-probabilistic design approach (EN 1990), the target 
safety requirements are fulfilled by means of partial safety factors accounting for 
material properties, geometrical and model uncertainties. Concerning the resistance 
models based on physical assumptions (e.g., equilibrium of forces and kinematic 
compatibility), the direct application of partial factors to materials strength leads to 
design expressions almost consistent with the prescribed levels of reliability. On 
the contrary, considering empirical or semi-empirical resistance models (e.g. 
Muttoni and Ruiz 2018, Bertagnoli and Mancini 2009), the direct application of 
partial safety factors within the formulation does not lead to the same conclusion.  

In fact, empirical and semi-empirical resistance models are calibrated basing 
on the experimental evidences and by means of empirical coefficients involved 
within the formulation. Such kind of coefficients are calibrated in order to achieve 
the best agreement between the model predictions and the experimental outcomes. 
Furthermore, empirical coefficients are calibrated basing on the realization of 
material properties which are observed during the experiments and that can be 
likely assumed as be the expected ones (i.e. mean values). Then, empirical 
coefficients have significance only when mean values of material properties are 
considered within the formulation. Furthermore, this kind of resistance models are 
often non-linear in function of the main involved variables. It implies that the direct 
application of partial safety factors to materials properties, without a 
straightforward probabilistic calibration of the resistance model accounting for both 
aleatory and epistemic uncertainties, does not allow to meet the required safety 
levels. A general methodology devoted to calibrate empirical or semi-empirical 
formulations in relation to a specific level of reliability is still not available and 
needs for a clear definition. 

In the present Chapter, a framework based on the Monte Carlo method for 
calibration of empirical and semi-empirical resistance models is proposed. The 
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procedure is able to account for both stochastic variability of material and 
geometrical properties (i.e., aleatory uncertainties) and the influence of the 
resistance model uncertainties (i.e., epistemic uncertainties). After the detailed 
description of the methodology, its application to the calibration of the semi-
empirical model for laps and anchorages tensile strength evaluation suggested by 
Model Code 2010, 2012 and fib Bulletin 72, 2015 is described. First of all, statistical 
calibration of model uncertainties is performed on an extensive experimental 
database (fib TG 4.5 bond tests database, 2005) differentiating between new and 
existing structures. Secondly, the reliability-based expressions are derived and 
discussed in terms of implication in the design and the assessment of new and 
existing structures. Finally, the results of the general framework are compared to 
the ones obtained by means of the analytical procedure proposed by Taerwe, 1993. 

3.2 Proposed general framework  

In the present Section the general framework for the probabilistic calibration of 
empirical and semi-empirical resistance models is defined and described. The 
proposed framework, which is based on the Monte Carlo’s method, consist of four 
main steps: 

 
1) the characterization of the empirical or semi-empirical resistance model; 

 
2) the selection of the probabilistic model for the relevant random variables; 

 
3) the assessment of the resistance and the auxiliary random variables; 

 
4) the definition of the quantiles of the auxiliary random variable and the 

evaluation of the final reliability-based expressions. 

3.2.1 Characterization of the empirical or semi-empirical 
resistance model 

As introduced in the previous Section, the resistance models herein considered 
for the probabilistic calibration are the ones derived from the experimental 
evidences: empirical or semi-empirical. 

Specifically, empirical resistance models are completely derived in order to 
best fit the experimental results without relying on, even just simplistic, physical 
and mechanical assumptions. Differently, the semi-empirical resistance models are 
based on basic physical and mechanical hypotheses and are improved and calibrated 
in order to agree with the experimental evidences.  

 
Therefore, concerning both empirical and semi-empirical resistance models, it 

is essential to collect a sufficiently extensive experimental database.  
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The experimental database should present tests with material properties and 
geometrical configurations that ranges as much as possible within the interval 
usually adopted in practice. In particular, this is in order to get to a final formulation 
with scope and applicability within the limits defined by the Codes.  

Once the resistance model has been defined from the experimental results, the 
parameters involved within the formulation should be distinguished between: 

 
- relevant random variables: parameters that may strongly affect the 

resistance mechanism with their aleatory variability (e.g. material 
properties); 
 

- deterministic parameters: parameters that may be considered as constant 
values, for example, as their limited variability does not affect significantly 
the resistance mechanism (e.g. geometrical properties): 

 
The experience related to practice and experimental observations joined to a 

preliminary sensitivity analysis can be useful to perform this kind of selection.  
Finally, the estimated value of the resistance by means of an empirical or semi-

empirical model RModel can be generally expressed as: 
 

( )d ,exp ; ;C 1,2,..., ; 1, 2,..., ; 1, 2,...,Mo el i j lR f x a i N j M l K= = = =  (3.1) 

where the generic function f depends on: xi,exp,  vector containing an experimental 
realization of a set of N relevant random variables which plays a significant role in 
the resistance model; aj is a vector containing all the other M parameters that can 
be assumed as deterministic in the resistance model; Cl is a vector containing the K 
best fitting empirical coefficient(s) calibrated on the experimental database. 

3.2.2 Selection of the probabilistic model 

Once the resistance model has been characterised, the probabilistic model for 
the main involved random variables should be defined.  

The probabilistic calibration can be performed accounting for the distinction 
between aleatory and epistemic uncertainties. 

Concerning to the aleatory uncertainties, they are represented by the relevant 
random variables identified according to Sub-section 3.2.1, and can be collected in 
the random vector Xi: 

 
( )1 2, ,..., ,..., 1, 2,...,i i NX X X X X i N= =  (3.2) 

These random variables can be related to: 

- material properties;  
- geometrical parameters. 
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Details for the probabilistic modelling of the relevant random variables may be 
acknowledged from the scientific literature as, for example, from the JCSS 
Probabilistic Model Code, 2001 (Section 1.3.1).  

 
Relating to the epistemic uncertainties their inclusion in the probabilistic 

calibration can be performed by means of the assessment of the model uncertainty 
random variable ϑ . The model uncertainty random variable θ can be assessed, as 
described in Section 1.3.1 and according to JCSS Probabilistic Model Code, 
2001,by means of statistical inferential analysis of the ratio between experimental 
results and resistance model predictions (Eq.(1.2)). 

The source of experimental result for the assessment of the model uncertainty 
random variable θ can derive from the database by which the empirical or semi-
empirical resistance model has been defined (i.e. in absence of additional 
experimental tests), from other studies collecting different experimental databanks 
or from both. At this stage, the range of variation of the involved parameters 
collected within the experimental database (i.e. material properties, geometrical 
configurations and test conditions) should be defined according to the limits of 
applicability expected for the final reliability-based formulation (i.e. required 
specifications and Code limitations). Concerning the case of biased resistance 
models with non-constant bias, the assessment of the model uncertainty random 
variable θ can be performed in sub-intervals of the required range of variation of 
parameters. These sub-intervals should be defined so that the value of the bias can 
be assumed, reasonably, as a constant value within them.  

The results of probabilistic calibration are valid only for values of main 
parameters pertaining to the range of variation adopted for the assessment of the 
model uncertainty random variable θ. 

The statistical uncertainties related to the finite size of sample of θ for 
assessment of model uncertainty can be reduced by enlarging the number of 
experimental tests collected within the experimental database and adopting efficient 
statistical inferential techniques (e.g. maximum likelihood estimators - MLE -  and 
Bayesian inference). Moreover, if prior knowledge about the model uncertainty 
random variable θ related to the specific resistance model are available, Bayesian 
updating techniques can be also adopted (Gelman, 2014). 

Table 3.1: Definition of the probabilistic model. 
Type of 

uncertainty Symbol Variables Probabilistic modelling 

Aleatory Xi  (i=1,..,N) 
Relevant random variables: 
materials and geometrical 
properties 

JCSS Probabilistic Model 
Code, 2006; fib Model 
Code 2010 

Epistemic ϑ  Model uncertainty random 
variable 

JCSS Probabilistic Model 
Code, 2006; statistical 
inferential analysis; prior 
information 
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The experimental uncertainties should be carefully evaluated collecting the 
experimental database, as for example excluding particularly uncertain test cases. 
For this reason, a deep knowledge of the original scientific references related to 
each test reported in the experimental database is essential. 

In conclusion, both random variables Xi and θ have to be modelled by the 
appropriate probabilistic distribution (i.e., PDFs and/or CDFs). The summary of the 
hypotheses that have to be performed for probabilistic modelling is reported in 
Table 3.1.  

3.2.3 Definition of the resistance and the auxiliary random 
variables 

In order to perform the probabilistic calibration of an empirical or semi-
empirical resistance model it is necessary to define two new random variables. 

The first one can be denoted as resistance random variable R and can be 
evaluated as a function of the random vector Xi and model uncertainty θ.  

According to the definition of model uncertainty random variable(JCSS 
Probabilistic Model Code, 2006) reported in Eq.(1.1), the generic outcome of the 
resistance random variable R(Xi, θ) can be expressed as the product of the model 
uncertainty random variable θ and the function f representing the resistance model 
expressed depending from the relevant random variables Xi, the deterministic 
parameters aj and the empirical coefficients Cl: 

 
( )( , ) ; ; 1, 2,..., ; 1, 2,..., ; 1, 2,...,i i j lR X f X a C i N j M l Kϑ ϑ= ⋅ = = =  (3.4) 

Eq.(3.4) is able to represent the random variability of the resistance accounting 
for aleatory and model uncertainties. 

The second random variable that have to be defined depends from resistance 
random variable R and can be denoted as auxiliary random variable Z. 

  In order to define a general procedure the following ratio can be addressed:  
 

( ),
,

( , )( , ; ) 1, 2,..., ; 1, 2,..., ; 1, 2,...,
; ;C
i

i i rep
i rep j l

R XZ X x i N j M l K
f x a

ϑϑ = = = =  (3.5) 

where Z(Xi,ϑ ;xi,rep) is the auxiliary random variable and xi,rep is a vector 
containing the representative values selected to represent the random variables Xi 
in the final design formulation (e.g., design or 5% characteristic or mean value). 
Commonly, the resisting models proposed by the structural Codes are based on the 
characteristic values of the involved variables. Then, the definition of the auxiliary 
random variable Z allows, at the end of the probabilistic calibration, to define 
reliability-based equations expressed as a function of the selected representative 
value for the main involved variables according to Structural Codes (Table 3.2). 
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Table 3.2: Some possible choices of the representative values of relevant random variables 
within the final reliability-based equation. 

Auxiliary random 
variable 

Representative values of relevant random variables  
xi,rep 

Z(Xi,ϑ ;xi,rep) 
xi,m 

mean  
values 

xi,k 
characteristic 

values 

xi,d 
design  
values 

 
The probabilistic characterisation of the auxiliary random variable                 

Z(Xi,ϑ ;xi,rep) can be performed by means of the Monte Carlo sampling method 
from the probabilistic distributions of the random variables involved by Eq.(3.5). 
Also reduced Monte Carlo’s techniques may be adopted as, for example, the Latin 
Hypercube Sampling (see Chapter 1). Once a significant number of samples of the 
population of the random variable Z(Xi,θ;xi,rep) is available, the most appropriate 
probabilistic distribution able to describe Z can be identified by means of statistical 
inferential technique.  

3.2.4 Definition of the reliability-based expressions 

The evaluation of the expressions devoted to design and assessment purposes 
(i.e. complying with a specific reliability level) can be performed defining quintiles 
of the auxiliary random variable Z. Therefore, the following probabilities can be 
defined: 

 

, ,[ ( ; ) ( )] 1,2,...,pi i rep i repP Z X , x x p i Nϑ ζ≤ = =  (3.6) 

where ζp(xi,rep) represents the quantile related to a specific probability to not be 
exceeded of the auxiliary random variable Z(Xi,θ;xi,rep) accounting for the 
hypothesis for representative values within the final expression xi,rep ; p represents 
the probability of under-exceedance related to the quantile ζp(xi,rep). 

In engineering practice and according to international codes (ISO 2394, 2015; 
fib Model Code 2010; EN 1990; EN 1992) the following quantiles of Z(Xi,θ;xi,rep) 
can be s estimated: 

- 50% fractile ζm(xi,rep), setting p = 0.5; 
- 5% characteristic value ζk(xi,rep), setting p = 0.05; 
- design value ζd(xi,rep), setting p = Φ(-αR·β). 

 

with β denoting the reliability index, αR the first order reliability method 
(FORM) sensitivity factor (assumed equal to 0.8 for dominant resistance variables) 
and Φ(∙) the cumulative standard normal distribution. 
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Estimated the probabilistic coefficient ζp(xi,rep), the general formulation for the 
selected quantile of the resistance random variable Rp can be expressed as follows: 

 
( ), ,( ) ; ;C 1,2,..., ; 1, 2,..., ; 1, 2,...,p p i rep i rep j lR x f x a i N j M l Kζ= ⋅ = = =  (3.7) 

In Table 3.3 and 3.4 are reported the possible alternative solutions for the 
probabilistic coefficients ζp(xi,rep) and for the expressions representing the quantile 
of the resistance random variable R having probability of under-exceedance equal 
to p. 
 

Table 3.3: Values of the probabilistic coefficients. 

Quantile of 
Z 

Auxiliary random variable 

Z(Xi,ϑ ;xi,m) Z(Xi,ϑ ;xi,k) Z(Xi,ϑ ;xi,d) 

Probabilistic coefficients ζp(xi,rep) 

p=0.5 ζm(xi,m) ζm(xi,k) ζm(xi,d) 

p=0.05 ζk(xi,m) ζk(xi,k) ζk(xi,d) 

p=Φ(-αR·β) ζd(xi,m) ζd(xi,k) ζd(xi,d) 

 
 

Table 3.4: Reliability-based expressions according to probability of under-exceedance equal 
to p. 

Quantile of 
R 

Auxiliary random variable 

Z(Xi,ϑ ;xi,m) Z(Xi,ϑ ;xi,k) Z(Xi,ϑ ;xi,k) 

Reliability -based expressions 
      ( ), ,( ) ; ; Cp p i rep i rep j lR x f x aζ= ⋅  

Rm            
p=0.5 ( ), ,( ) ; ; Cm i m i m j lx f x aζ ⋅  ( ), ,( ) ; ; Cm i k i k j lx f x aζ ⋅  ( ), ,( ) ; ; Cm i d i d j lx f x aζ ⋅  

Rk 
p=0.05 ( ), ,( ) ; ; Ci m i m j lk x f x aζ ⋅  ( ), ,( ) ; ; Ci k i k j lk x f x aζ ⋅  ( ), ,( ) ; ; Ci d i d j lk x f x aζ ⋅  

Rd        
p=Φ(-αR∙β) ( ), ,( ) ; ; Cd i m i m j lx f x aζ ⋅  ( ), ,( ) ; ; Cd i k i k j lx f x aζ ⋅  ( ), ,( ) ; ; Cd i d i d j lx f x aζ ⋅  

 
In conclusion, the summary of the four main steps for the probabilistic calibration 
of empirical and semi-empirical models is reported in Figure 3.1. 
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Figure 3.1: Summary of the framework for probabilistic calibration of empirical and semi-
empirical models. 
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3.3 Probabilistic calibration of fib Model Code 2010             
semi-empirical model for laps and anchorages strength 
evaluation 

The present Section proposes the calibration of the semi-empirical model for 
ultimate tensile strength fst (i.e. maximum tensile stress transferable inside 
reinforcing bar before lap or anchorage failure) for tensed lapped joints and 
anchorages reported by fib Bulletin N°72 and fib Model Code 2010.  

3.3.1 General aspects concerning bond of embedded 
reinforcements 

The term “bond” is commonly used to denote the mechanism by which forces 
are transferred between bars reinforcement and concrete matrix within reinforced 
concrete members.  

The bond stress between bars and concrete is conventionally described as the 
force within the reinforcement bar divided by the area of bar surface over the lap 
or anchorage length. This simple model is described by the equilibrium equation 
reported in Eq.(3.8). 

 
s s

s s b b b
b

A
A f l f Average bond stress

l
σ

σ π
π

⋅
⋅ = ⋅ ⋅Φ ⋅ → =

⋅Φ ⋅
 (3.8) 

 
where As = longitudinal reinforcement area ; lb lap or anchorage length (also 

denoted as bond length); σs = tensile stress into the re-bar; Φ = nominal bar diameter 
; fb = average bond stress exchanged between reinforcing bar and concrete over the 
lap or anchorage length lb. 

 

 
Figure 3.2: Actual bond stress developing and average bond stress idealization (a); actual 

force within the lap or anchorage length compared to the one reached in the hypothesis of constant 
bon stress idealization (b). 

However, the actual mechanism is more complex: the bond stress is not 
constant along the lap or anchorage length and to assume an average value for bond 
stress is a strong simplification (Figure 3.2). 
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Hence, although the Eq.(3.8) seems to be very simple, the bond strength of laps 
and anchorages is extremely complex to be investigated. In general, there is 
agreement concerning the parameters that influence bond resistance. However, the 
quantification of the magnitude of each one contribution is still debated and 
investigated. 

Recent achievements reported in scientific literature (as fib Bulletin 10, fib 
Bulletin 72) had let to agree that bond is not a fundamental property of the bar but 
is a quantity influenced by bars and concrete section geometries, materials 
characteristics and stress field.  

In fact, a wide number of parameters may influence the bond behavior, as: 
- bar geometry (e.g. ribs geometry, relative rib area); 
- structural member geometry (e.g. concrete cover); 
- stress state within surrounding concrete (e.g. confinement pressure); 
- strength and quality of concrete; 
- technological aspects related both to reinforcements and concrete (e.g. bar 

diameter, lap or anchorage length, aggregate size); 
- environmental aspects (e.g. initial bar rusting, steel corrosion, high-

temperature bond decay, low-temperature bond improvement); 
 
Depending from the degree of interaction between bar reinforcement and 

concrete, two different failure modes related to bond behavior can be recognized: 
 

- the pull-out failure mode, where the bond failure is related to the shearing-
off of the concrete keys located between two ribs. In general, it is considered 
as a local failure because it is related mainly related to the interface collapse; 

 
- the splitting failure mode, where bond failure is due to the longitudinal 

splitting of the concrete surrounding the bars. Differently from pull-out 
failure, splitting failure is considered as a structural failure, as it involves 
parameters that related to the structural configuration (e.g. concrete cover) 
and not only related to the nature of the interface.  

The bond mechanism 

In order to activate the bond mechanism, it is necessary that relative 
displacements (i.e. slip) between reinforcement and concrete takes place. The bond 
interaction is developed by means of mechanical interlocking between 
reinforcement ribs and concrete matrix. Progressively, the ribs start to penetrate into 
the mortar matrix by increasing the level of slip between bar and concrete. Then, 
compressive stresses arise in the concrete and induces perpendicular tensile 
stresses. This leads to the formation of inclined bond cracks that starts from ribs 
denoted in literature as Goto-cracks (Goto, 1971). The compression struts that arise 
in concrete are balanced by circumferential tensile stresses in surrounding concrete. 
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In the case these tensile stresses overpass the tensile strength of the concrete 
matrix, longitudinal cracks take place along the re-bars direction as described by 
Tepfers, 1973. 

In condition of low degree of confinement (mainly related to the concrete cover 
and/or presence of transverse reinforcements), the longitudinal splitting cracks may 
reach the external surface of the structural member. Under this circumstance, the 
bond strength drops dramatically and the splitting failure occur.  

On the contrary, if sufficient confinement is provided (minimum concrete 
cover requirements and high transversal reinforcement amount), the uncontrolled 
developing of splitting crack may be avoided without immediate loss of bond 
strength. By increasing the slip between concrete and bars, the pull-out failure 
occurs when concrete between ribs is completely shared-off. Figures 3.3 and 3.4 
represents the bond mechanism and the different failure modes according to 
literature results (Jakubovsks and Juknys, 2016; Lemnitzer et al, 2009). 

These two types of bond failures can be studied separately in laboratory tests 
(e.g. four points bending test) that, however, does not reflect the actual condition of 
structures during their service life. In fact, actual laps and anchorages are in general 
considered as “long” (i.e. lb/Φ>10-20) and presents mixed failure modes that can 
strongly depend from the structural configuration. In particular, in case of high level 
of transversal confinement (e.g. provided by shear links and stirrups) and/or large 
concrete cover the pull-out failure with very limited concrete splitting (not visible 
on external surface) is observed. In case of moderate confinement pressure and/or 
limited concrete cover, the pull-out failure occurs with visible splitting cracks on 
outer surface. Finally, in case of absence or limited confinement pressure and very 
small concrete cover, the splitting failure with spalling-off of cover is recognized.  
 

 
Figure 3.3: The bond mechanism in reinforced concrete elements (representation by 

Jakubovsks and Juknys, 2016). 
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Figure 3.4: Differentiation between failure modes (representation by Lemnitzer et al, 2009). 

 
In conclusion, the pull-out failure mode allows a sort of internal redistribution 

of forces during the progressive sharing-off of concrete between ribs and allow to 
reach higher levels of laps and anchorages strength if compared to splitting failure 
mode. 

In fact, splitting failure is the weaker failure mode as it happens, generally, in 
brittle manner due to the quick propagation of longitudinal splitting cracks toward 
the external surface of the structural member. Very often, this failure mode controls 
the strength in lapped joints and may control it in some anchorage situations. 

Therefore, the design methodologies are developed in order to avoid splitting 
failure as it is the weakest failure mode (e.g. by means the requirement of minimum 
concrete cover and of minimum amount of transversal reinforcements). 

Influence of bond on structural behavior 

The tensile forces within concrete are carried by the reinforcement and 
transferred by bond action. It implies that cracks widths and cracks spacing are 
significantly influenced by the bond behavior. Then, in the regions of structural 
members where laps and anchorages are located, the stiffness and the deformation 
response are directly affected by the bond stresses development.  

Based on these observations, an efficient bond between concrete and 
reinforcements it is necessary in order to achieve adequate levels of safety, to 
control the structural behavior and also provide adequate level of ductility avoiding 
brittle failure modes (i.e. splitting failure). Then, bond behavior influences the 
performance of reinforced concrete structures both for the serviceability and 
ultimate limit states. 

 Concerning the serviceability limit states (SLS), bond influences width and 
spacing of transverse cracks, tension stiffening and curvature. 

 Referring to ultimate limit states (ULS), bond behavior is the responsible for 
resistance of end anchorages and laps of reinforcement. Bond behavior has also 
influence on rotation capacity within regions of formation of plastic hinges. 
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3.3.2 Estimation of laps and anchorages tensile strength according 
to fib Bulletin N°72 and fib Model Code 2010 

In the scientific literature, many empirical or semi-empirical formulations that 
can provide appropriate predictions on the strength of laps and anchorages, like 
Canbay and Frosch, 2005 and Lettow, 2006, are available. 

In the present work, the semi-empirical model proposed in fib Model Code 
2010 and fib Bulletin 72 will be subjected to a probabilistic calibration.  

Physical assumptions 

As discussed Sub-section 3.3.1 bond failure can occur both due to splitting or 
pull-out failure mechanisms. The splitting failure is the weaker and, in general, is 
considered for the development of design approaches.  

The resistance models for splitting failure mode can be evaluated assuming that 
the radial tensile stresses generated by bond interaction does not exceed the splitting 
resistance provided by the surrounding concrete.  

The anchored force Fb is equilibrated by means the arising of compression 
struts inclined of an angle β generated by bond interaction. The system is balanced 
in direction orthogonal to the reinforcement by radial tensile forces that should not 
overpass the overall splitting resistance (Figure 3.5).  

 

Figure 3.5: Equilibrium of forces in splitting failure mode modelling (fib Bulletin 72). 

 
Then, the following equilibrium equation may be written: 
 

, , ,tan ,b sp c sp tr sp p b s sF F F F with F Aβ σ⋅ ≤ + + = ⋅  (3.9) 
 

where σs is the tensile stress developed within the reinforcement; As is the 
transversal area of the reinforcement; β is the angle of inclination of compression 
struts; Fsp,c is the contribution to splitting resistance provided by concrete cover; 
Fsp,tr is the contribution to splitting resistance to provided by transverse 
reinforcements which crossing the splitting surface; Fsp,p is the contribution to 
splitting resistance provided by transverse confinement pressure. 



 

66 
 

The three contributes to splitting resistance has been determined by means 
experimental observations by Canbay and Frosch, 2005 leading to the semi-
empirical resistance model that will be discussed next. The entire derivation 
procedure is not herein reported because is out of purposes of the present 
dissertation. Deeper information can be acknowledged by fib Bulletin N° 72.  

The semi-empirical resistance model 

According to Canbay and Frosch, 2005 the fib Model Code 2010 and fib 
Bulletin N°72 expresses the mean strength of a tensed lapped joint or anchorage fstm 
as follows:  

 
0.10.25 0.55 0.250.2

maxmin

min

2554
25

cm b
stm m tr

f l ccmmf MPa k K
MPa c

          = ⋅ +       Φ Φ Φ          

  

  (3.10) 
 
where fcm is the mean concrete compressive strength; lb is the lap or anchorage 

length (or bond length); Φ is the bar diameter; the concrete covers cmin, cmax and 
effectiveness coefficient km are evaluated according to Figure 3.6(a-b). The 
coefficient Ktr accounts for the effect of confinement provided by shear links and/or 
stirrups located along the lap or anchorage, and it can be evaluated as follows: 

 

 
( )

=
Φ

l g sv
tr

b b

n n A
K

l n
  (3.11) 

 
where nl is the number of legs of a link and/or stirrup; ng is the number of groups 

of links and/or stirrups; Asv is the transverse area of each leg of a link and/or stirrup; 
nb is the number of individual anchored bars or pairs of lapped bars. All the units 
are expressed in MPa and mm. 

 
a) 

                 

b)  

  
Figure 3.6: Definition of concrete cover in Eq.(3.10) (a) and of the effectiveness of shear 

links related to Eq.(3.11) (b). 

The expression reported by Eq.(3.10) has been derived and calibrated and 
validated based on an extensive experimental database related to laps and 
anchorages containing more than 800 tests coming from American (ACI) and 
European investigations and represents a modification of the resistance model 
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proposed by Lettow, 2006 based on Canbay and Frosch, 2005; Burkhardt, 2000 
and Eligehausen, 1979. 

The fib Bulletin N°72 sets the following limits for Eq.(3.10) being them also 
the limits for the parameters involved within the tests reported by the database: 

- 15 MPa ≤ fcm ≤ 110 MPa; 
- Ktr ≤ 0.05; 
- 0.5 ≤ cmin/Φ ≤ 3.5 and cmax/cmin ≤ 5; 
- lb ≥ 10∙ Φ; 
- 25/ Φ ≥ 2. 

The Eq.(3.10) represents the semi-empirical resistance model expressed in 
function of the relevant parameters that can affect laps and anchorages resistance. 
The expression takes into account the non-linear influence on lap strength fstm of the 
involved parameters, as the ratio lb/Φ and the concrete cylinder compressive 
strength fcm. From now on, according to fib Bulletin N°72, the term lap will be 
adopted also to represents the term anchorage. 

3.3.3  Estimation of the resistance model uncertainty 

The first step required in order to perform the probabilistic calibration is the 
assessment of the uncertainty related to the definition of the resistance model (i.e. 
resistance model uncertainties). 
As described in Section 1.3 and according to Eq.(1.1), the assessment of resistance 
model uncertainty random variable requires the identification of two different sets 
of data: 

- a vector RExperimental,h of observations of laps strength; 
- a vector of estimated strength RModel,h.  

Specifically, RExperimental,h is the maximum tensile stress measured within the 
reinforcement bar during the experimental test before bond failure, while RModel,h 

represents the lap strength fstm estimated by Eq. (3.10) assuming as input parameters 
the experimental ones.  

In the present study case, the X vector includes all the material and geometrical 
parameters explicitly considered into the model described by Eq. (3.10), while the 
Y vector collect other parameters that can have influence on lap strength as the 
relative rib area of the reinforcement bars, the shape of the ribs and other size effects 
(e.g. beam dimensions). The effect of parameters involved by Y are indirectly 
accounted for in the probabilistic calibration by the assessment of the resistance 
model uncertainty random variable.  

The experimental database 

In the present study, the experimental data adopted for the estimation of 
resistance model uncertainty derives from the work of fib Task Group 4.5. The fib 
TG 4.5 database on lap splices and anchorages collect the results of an extensive 
series of laboratory tests on laps and anchorages collected mainly by ACI 408 
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(bottom casted beams only – good bond condition), and it is enriched by additional 
data from European and a few Asian investigations.  

 
Table 3.5: Detail of the literature references collecting the experimental database on lap 

splices and anchorages. 

Source Year Authors N° Tests 

ACI 

1955 Chinn, Ferguson, and Thompson 32 (32) [0] 
1958 Chamberlin 6 (6) [0] 
1956 Chamberlin 11 (11) [0] 
1965 Ferguson and Breen 35 (26) [9] 

1975 Thompson, Jirsa, Breen, and 
Meinheit 15 (11) [4] 

1965 Ferguson and Thompson 4 (4) [0] 
1961 Mathey and Watstein 14 (0) [14] 

1991, 1993 Hester, Salamizavaregh, Darwin, 
and McCabe 17 (7) [10] 

1990, 1991 Choi, Hadje-Ghaffari, Darwin    
and  McCabe 8 (8) [0] 

1991 Rezansoff, Konkankar and Fu 34 (0) [34] 

1981 Zekany, Neumann, Jirsa, and 
Breen 12 (2) [10] 

1991 DeVries, Moehle, and Hester 10 (0) [10] 
1993 Rezansoff, Akanni, and Sparling 15 (4) [11] 
1996 Hasan, Cleary, and Ramirez 2 (0) [2] 
1996 Darwin, Tholen, Idun, and Zuo 73 (13) [60] 

1998, 2000 Zuo and Darwin 91 (28) [63] 
1994 Kadoriku 34 (0) [34] 
1998 Hamad and Itani 8 (8) [0] 

1999 Azizinamini, Pavel, Hatfield and 
Ghosh 57 (32) [25] 

1993 Azizinamini, Stark, Roller and 
Ghosh 18 (18) [0] 

European 
and Asian 

1995 Azizinamini, Chisala, Ghosh 7 (0) [7] 
1980 Betzle  5 (0) [5] 
1979 Eligehausen 8 (8) [0] 
1996 Hamad, Mansour 17 (17) [0] 
1998 Hegger, Burkhardt 9 (4) [5] 
1994 Hwang, Lee, Lee 8 (4) [4] 
1996 Hwang, Leu, Hwang 10 (2) [8] 
1990 Olsen 21 (0) [21] 
1977 Rehm, Eligehausen 20 (0) [20] 
1977 Stöckl, Menne, Kupfer 25 (0) [25] 
1973 Tepfers 181 (155) [26] 

Total results 807 (400) [407] 
 
The overall number of tests collected is 807 and, in majority, laps splices with 

a few number of anchorages tests are present. In Table 3.5 the literature references 
herein adopted, related to fib TG 4.5 database on lap splices and anchorages, are 
reported. 
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The mentioned above experimental database collects, for each test, the 

parameters required for evaluation of lap tensile strength with Eq.(3.10) (i.e. vector 
X). Other information related to relative rib area are reported but not exhaustively 
for all test cases. 

The detail of the experimental results RExperimental and of the model prediction 
by Eq.(3.10) RModel is reported in Figure 3.7. 
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Figure 3.7: Detail of results of Eq.(3.10) for the fib TG 4.5 bond database 

According to Eq.(3.3), Figure 3.8 reports the variation of model uncertainties 
ϑ in function of the main parameters involved in Eq. (3.10) considering the whole 
experimental database. It can be observed that no significant trends of variation may 
be noted.  

According to the provisions of EN 1992, 2004 and related limits prescribed for 
concrete cylinder compressive strength and minimum concrete covers, the 
estimation of resistance model uncertainties for Eq.(3.10) may be performed 
distinguishing between new and existing structures by appropriately filtering the 
experimental database.  
In the details, the mentioned above provisions in terms of concrete strength and 
minimum concrete cover are defined concerning structure of new realization. 
Concerning the case of existing structures, very often the minimum provisions of 
current codes (as EN 1992, 2004 ) may not be complied. 

Therefore, defining rules in order to appropriately filter the experimental 
database, a wider range of parameters should be considered for existing structures. 
This is in order to cover as much as possible the actual variability that can be found 
in structures built before the application of current codes. 
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Figure 3.8: Trend of variation of model uncertainty in function of main parameters involved 

by Eq.(3.10) related to the experimental sets reported by fib TG 4.5 bond database. 

According to these observations, the ranges for parameter defined in order to filter 
the experimental database are set distinguishing between new and existing 
structures as reported in Table 3.6. 
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Table 3.6: Filters applied to the experimental database differentiating between new and 
existing structures. 

Database filters 
fcm 

[MPa] 
cmin/Φ 

[-] 
lb/ Φ 
[-] 

cmax/ cmin 
[-] 

Ktr 
[-] 

New structures ≥ 20 
≤ 110 

≥ 0.95 
≤ 3.5 ≥ 15 ≤ 5 ≤ 0.05 

Existing structures ≥ 10 
≤ 110 

≥ 0.5 
≤ 3.5 ≥ 10 ≤ 5 ≤ 0.05 

 
The range of variation of the ratio between concrete cover and bar diameter is 

extended to a minimum of 0.5 for existing structures (since this is the minimum 
value available in the database). This takes into account the influence of higher 
variability of concrete cover that may be found in existing structures built before 
the drafting of current structural codes.  
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Figure 3.9: Detail of results of Eq.(3.10) for the filtered database related to new structures. 
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Figure 3.10: Detail of results of Eq.(3.10) for the filtered database related to existing structures. 
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Figure 3.11: Trend of variation of model uncertainty in function of main parameters involved 

by Eq.(3.10) related to the filtered database concerning new structures. 

The Figure 3.9 reports the detail of the experimental results RExperimental and of 
the model prediction by Eq.(3.10) RModel concerning the experimental database 
related to new structures. As for the case of the entire database, Figure 3.11(a-f) 
shows the variation of the model uncertainties with respect the main involved 
variables. It can be observed that restricting the number of observed experimental 
results no trends of variation of ϑ are recognized depending from the main variables. 
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Figure 3.12: Variation of model uncertainty in function of main parameters involved by 

Eq.(3.10) related to the filtered database concerning existing structures. 

Similarly, the Figure 3.10 represents the detail of the experimental results 
RExperimental and of the model prediction by Eq.(3.10) RModel concerning the 
experimental database related to existing structures. 

A larger number of experimental results are considered with respect to the case 
of new structures, however, Figure 3.12(a-f) shows that also in this case no trends 
of variation of ϑ are recognized depending from the main variables. 
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Table 3.7: Verification of null hypothesis H0 for normality in the case on new/existing 
structures consider the random variable ϑ and lnϑ. Comparison between p-value and the 

significance level α=0.05. 

  
Variable 

 [-] 
p-value 

[-] 
Sgnificance level 

[-] 
Null hypothesis 

H0 

New 
 structures 

ϑi 0.54 
≥0.05 

Accepted 

lnϑi 0.86 Accepted 

Existing  
structures 

ϑi 0.02 
≥0.05 

Rejected 

lnϑi 0.14 Accepted 

 
The results in terms of mean value μϑ , variance σϑ

2 and coefficient of variation 
Vϑ= σϑ / μϑ for the resistance model uncertainty random variable related to Eq. (3.10) 
are reported in Table 3.8. 

 

Table 3.8: Probabilistic distribution and parameters estimated for resistance model 
uncertainty random variable ϑ both for new and existing structures. 

  
n*1 
[-] 

μϑ 

[-] 

σϑ2 

[-] 
Vϑ 

[-] 

Type of 
distribution 

New  
structures 454 0.98 0.016 0.13 Lognormal 

Existing  
structures 677 1.02 0.030 0.17 Lognormal 

*1 number of samples after full database filtering according to Table 3.6  
 

Then, the resistance model uncertainty random variable ϑ may be represented 
by a lognormal distribution having mean value equal to 0.98 and coefficient of 
variation 0.13 and mean value equal to 1.02 and coefficient of variation 0.17 for 
new and existing structures, respectively. 

3.3.4 Probabilistic calibration  

In this Section the probabilistic calibration of the model proposed by Eq.(3.10) 
is performed adopting the framework proposed in Section 3.2 and summarized in 
Figure 3.1. 

Probabilistic model 

A set of relevant random variables has to be defined and characterized by its 
appropriate probabilistic distribution. These random variables have to represent the 
parameters that are explicitly considered within the expression of the resistance 
model.  

In this case, the concrete compressive strength can be assumed as the relevant 
random variable because it strongly affects the resistance mechanism due to its 
aleatory uncertainty. Nevertheless, JCSS Probabilistic Model Code, 2001 provides 
information for the probabilistic modelling of concrete cover, in agreement with EN 
1990 geometrical parameters are used for with their nominal value with a given 
tolerance.  
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Then, concrete cover will be considered as deterministic parameter in the 
following. In any case, as showed in Section 3.3.3 the extent of concrete cover 
affects the resistance model uncertainty. In fact, the differences of the mean and the 
variance of resistance model uncertainty concerning new and existing structures is 
mainly due to the range of variation assumed by the ratio cmin/Φ applying the two 
different filters to the experimental database (see Section 3.3.3). As a consequence, 
the lower values of cmin/Φ, considered for existing structures, lead to higher 
coefficient of variation for the resistance model uncertainty random variable ϑ     
(Vϑ = 0.17 rather than Vϑ = 0.13).  

Table 3.9: Probabilistic model for the random variables. 

  Ref. Mean value C.o.V 
Type of 

distribution 
Concrete 
compressive 
strength fc [MPa] 

(fib Model Code 2010; 
JCSS Probabilistic Model 

Code, 2001) 
fcm 0.15 lognormal 

Resistance model 
uncertainty ϑ [-] Section 3.3.3 

New 
structures 

0.98 0.13 lognormal 

Existing 
structures 

1.02 0.17 lognormal 

 
At the purpose the present calibration, all the other parameters involved by 

Eq.(3.10) can be assumed as deterministic. Therefore, in the present application 
only the concrete compressive strength X1=fc (i=N=1) will represent the main 
random variable, according to Eq.(3.4). 

As previously discussed, also the resistance model uncertainty random variable 
ϑ  have to be accurately addressed and included into the probabilistic model. 

According to Table 3.9 the probabilistic model with the following hypotheses 
is assumed: 

- fc: is the cylinder compressive strength random variable. According to fib 
Model Code 2010, the random variability of fc can be described by means 
of a lognormal distribution with coefficient of variation equal to 0.15 and 
mean value equal to fcm depending by the concrete strength class. 
 

- ϑ: is the resistance model uncertainty random variable. It can be described 
by means of a lognormal distribution with mean value and coefficient of 
variation as described in Section 3.3.3. 

 
All the other parameters involved by Eq.(3.10) are assumed as deterministic 

and can be grouped in the vector aj, which in this example will contain: cmin, cmax, 
lb, Φ, km and Ktr (j=1,2…,M=6). 

In this calibration example, only one best fitting empirical coefficient C=C1 
(l=K=1) is present and is set equal to 54. 
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Resistance and auxiliary random variables 

The semi-empirical expression of Eq.(3.10) can be rewritten according to 
Eq.(3.4) as follows: 

 
0.25

,Model 54 ( )st Model cm jf R MPa f g a= = ⋅ ⋅  (3.12) 

where: 
0.10.25 0.55 0.2 0.25

b maxmin
m tr

min

l c1 25 c( ) k K
25 cj

MPa mmg a
MPa

          = +       Φ Φ Φ          
 (3.12) 

 
The resistance random variable R, in this case, is represented by the tensile 

strength of laps or anchorages fst predicted by Eq.(3.10) and can be rewritten as a 
function of the main random variable fc and the resistance model uncertainty ϑ  in 
compliance with to Eq.(3.4), as follows: 

 
0.25( , ) ( )c c jR f C f g aϑ ϑ= ⋅ ⋅ ⋅  (3.14) 

where g(aj) is the function of the deterministic parameters and C is the empirical 
coefficient set equal to 54 MPa. 

 In the following, as expressed by Eq.(3.5) of Section 3.1, the auxiliary random 
variable Z can be defined selecting as representative value x1,rep (i=N=1) the 5% 
characteristic (fck) or the mean (fcm) or the design cylinder concrete compressive 
strength fcd (calculated as fck/γc, with γc=1.5 according to EN 1992-1-1), 
respectively.  

 

Therefore, different auxiliary random variables Z can be defined as: 
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0.25 0.25
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By means of Monte Carlo technique, it is possible to generate three large 

samples of the populations of the auxiliary random variables Z(fc,ϑ ;fcm),                      
Z(fc,ϑ ;fck) and Z(fc,ϑ ;fcd).  
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Figure 3.15: Relative frequency histogram for the Monte Carlo simulation of then random 
variable Z(fc,ϑ ;fck) in the hypothesis of 104, 106 and 108 samples. The case is relative to new 

structures. 

 
First of all number of samples N equal to 104, 106 and 108 has been generated 

adopting the direct Monte Carlo sampling from the probabilistic distributions of the 
basic variables listed in Table 3.9. The associated relative frequency histogram is 
reported in Figure 3.15 concerning the variable Z(fc,ϑ ;fck) assuming the hypothesis 
of new structures. 

As the resistance random variable R is a function of two lognormally 
distributed random variables (i.e. fc and ϑ), it is expected that ζ(X) is lognormally 
distributed too. As shown by Figure 3.15, the results obtained adopting 104, 106 and 
108 samples give not appreciable difference in the estimation of the distribution 
parameters for the auxiliary random variable Z. Being the total number of samples 
required for the Monte Carlo simulation inversely proportional to the probability of 
failure to be estimated, a number of samples set N=106 can be considered sufficient 
for the present investigation (as, in the following, the minimum estimated 
probability is around 10-4, which corresponds to the fractile of the distribution of Z 
associated to the value of the product αR·β with β =4.3 and αR=0.8). 

However, in the case of the estimation of smaller probability of failure, a larger 
number of samples is recommended in order to represent, within the sample, also 
lower extreme values of the involved random variables. 

Finally, concerning the population with 106 samples of the auxiliary random 
variable Z, the Chi-square goodness of fit test with 5% level of significance testing 
the hypothesis of normality of the sample of ln(Z) have been performed confirming 
the hypothesis of lognormality of the variable Z. The frequency histograms 
concerning the three hypotheses for auxiliary random variable described by 
Eq.(3.15 a-b-c)  are reported in Figure 3.16(a-b) differentiating between new and 
existing structures. 
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Figure 3.16: Relative frequency histogram for the Monte Carlo simulation of the auxiliary 

random variables Z(fc,ϴ;fcm), Z(fc,ϴ;fck) and Z(fc,ϴ;fcd)  in the hypothesis of 106 samples; New 
structures (a); Existing structures (b). 

 
Hence, the auxiliary random variables Z(fc,ϑ ;fcm), Z(fc,ϑ ;fck) and Z(fc,ϑ ;fcd) 

can be described by means of lognormal distributions having: mean value equal to 
0.98, 1.04 and 1.15 and  coefficient of variation equal to 0.13, 0.14 and 0.15, 
respectively (Figure 3.17(a-b)), concerning new structures; mean value equal to 
1.02, 1.08, 1.20 and coefficient of variation equal to 0.17, respectively (Figure 
3.18(a-b)), concerning existing structures . 
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Figure 3.17: Lognormal distribution (PDF (a) and CDF (b)) for the auxiliary random 

variables Z: Z(fc,ϑ;fcm), Z(fc,ϑ;fck) and Z(fc,ϑ;fcd) concerning new structures. 

Note that the higher coefficient of variation for resistance model uncertainties 
(i.e. Vϑ = 0.17) associated to existing structures have a strong influence on the 
coefficient of variation of the auxiliary random variable. In fact, as shown in Figure 
3.18, all the hypotheses performed within Eq.(3.15 a-b-c) leads to obtain the same 
coefficient of variation equal to 0.17 between all the three cases, differently from 
the case of new structures. In fact, in the latter case (i.e. Vϑ = 0.13), the aleatory 
variability of concrete compressive strength still has influence the variability of the 
auxiliary random variable Z. 
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Figure 3.18: Lognormal distribution (PDF (a) and CDF (b)) for the auxiliary random variables 
Z: Z(fc,ϑ;fcm), Z(fc,ϑ;fck) and Z(fc,ϑ;fcd) concerning existing structures. 

Finally, the choice of the representative value for concrete compressive strength 
(i.e. fcm, fck or fcd) affects the magnitude of the mean value of the auxiliary random 
variable Z (i.e. bias). 

Reliability-based expressions 

Once characterized the probabilistic distribution for the auxiliary random 
variables Z(fc,ϑ ;fcm), Z(fc,ϑ ;fck) and  Z(fc,ϑ ;fcd), it is possible to calculate their 
quantiles as described by Eq.(3.6). The quantiles ζm, ζk and ζd of the random 
variables Z(fc,ϑ ;fcm), Z(fc,ϑ ;fck) and Z(fc,ϑ ;fcd) with p=0.5, 0.05, Φ(-αR∙β) to not 
be exceeded, respectively, are reported in Table 3.10 and Table 3.11 differentiating 
between new and existing structures.  

Note that the described above framework can be easily applied also in the case 
of probabilistic distributions for main random variables different from the 
lognormal one.  
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Table 3.10: Values of the probabilistic coefficients ζp(fc,rep)in the function of representative 
value selected for concrete compressive strength for the case of new structures. 

Quantile of 
Z 

Auxiliary random variable 

Z(fc,ϑ;fcm) Z(fc,ϑ;fck) Z(fc,ϑ;fcd) 

Probabilistic coefficients ζp(fc,rep) 

ζp(fcm) 
[-] 

ζp(fck) 
[-] 

ζp(fcd) 
[-] 

p=0.5 (m) 0.98 1.03 1.14 

p=0.05 (k) 0.78 0.83 0.92 

p=Φ(-αR·β);         
αR=0.8, β=3.8 (d) 0.65 0.69 0.77 

p=Φ(-αR·β); 
αR=0.8, β=3.8 (d) 0.62 0.65 0.72 

 

Table 3.11:Values of the probabilistic coefficients ζp(fc,rep)in the function of representative 
value selected for concrete compressive strength for the case of existing structures. 

Quantile of 
Z 

Auxiliary random variable 

Z(fc,ϑ;fcm) Z(fc,ϑ;fck) Z(fc,ϑ;fcd) 

Probabilistic coefficients ζp(fc,rep) 

ζp(fcm) 
[-] 

ζp(fck) 
[-] 

ζp(fcd) 
[-] 

p=0.5 (m) 1.00 1.07 1.18 

p=0.05 (k) 0.75 0.80 0.89 

p=Φ(-αR·β);         
αR=0.8, β=3.8 (d) 0.59 0.63 0.67 

p=Φ(-αR·β); 
αR=0.8, β=3.8 (d) 0.55 0.59 0.65 

 
As shown by Figure 3.19, the design probabilistic coefficient ζd(fc,rep) decreases 
when the reliability index β grows. 

Then, the calibration of the reliability-based design expressions related to the 
original semi-empirical model (Eq.(3.10)) can be performed specifically as a 
function of the target reliability level. 
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Figure 3.19: Variation of the design probabilistic coefficients ζd(fc,rep) and associated curve 

fitting differentiating between new and existing structures in function of the reliability index β 
(αR=0.8). 

 
In Figure 3.19 is also showed the result of curve fitting for design probabilistic 

coefficients ζd(fc,rep)  for the different choices of the representative value for 
concrete compressive strength fc,rep (i.e. fcm, fck and fcd) and for the differentiation 
between new and existing structures. The best fitting has been obtained with an 
exponential model with R-square equal to 0.99 for all the curves. This result 
descends clearly from the hypothesis of lognormality for all the main involved 
variables. The closed-form expressions for the different design probabilistic 
coefficient ζd(fc,rep)are reported in the following Eqs.(3.16a-b-c) and Eqs.(3.17a-b-
c): 

- New structures: 

( ) 2( ) 0.98 exp 0.106 0.99d cmf Rζ β= ⋅ − ⋅ =  (3.16a) 

 
( ) 2( ) 1.03 exp 0.106 0.99d ckf Rζ β= ⋅ − ⋅ =  (3.16b) 

 
( ) 2( ) 1.14 exp 0.106 0.99d cdf Rζ β= ⋅ − ⋅ =  (3.16c) 

 

- Existing structures: 

( ) 2( ) 1.00 exp 0.139 0.99d cmf Rζ β= ⋅ − ⋅ =  (3.17a) 

 
( ) 2( ) 1.07 exp 0.140 0.99d ckf Rζ β= ⋅ − ⋅ =  (3.17b) 

 
( ) 2( ) 1.18 exp 0.139 0.99d cdf Rζ β= ⋅ − ⋅ =  (3.17c) 
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The 50% quantile fst,m, the 5% characteristic fst,k and the reliability-based design 
fst,d expressions for the semi-empirical model proposed by fib Model Code 2010 and 
fib Bulletin 72 for tensile strength estimation of laps and anchorages can be 
evaluated according to Eq.(3.18a-b-c) in MPa and to the quantiles values listed in 
Tables 3.10 and 3.11, considering: 
 

0.10.25 0.55 0.250.2
maxmin

,
min

25( ) 54
25

[ ] , ,

cm b
st p p cm m tr

f l ccmmf f MPa k K
MPa c

MPa p m k d

ζ
          = ⋅ ⋅ +       Φ Φ Φ          

=

(3.18a) 
 

0.10.25 0.55 0.250.2
maxmin

,
min

25( ) 54
25

[ ] , ,

ck b
st p p ck m tr

f l ccmmf f MPa k K
MPa c

MPa p m k d

ζ
          = ⋅ ⋅ +       Φ Φ Φ          
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(3.18b) 
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,
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25( ) 54
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[ ] , ,

cd b
st p p cd m tr

f l ccmmf f MPa k K
MPa c

MPa p m k d

ζ
          = ⋅ ⋅ +       Φ Φ Φ          

=

  

(3.18c) 
 
In Table 3.12, an example of calculation using Eqs.(3.18a-b-c) is performed 

adopting lb=50Φ, Φ=12 mm, cmin= Φ, cmin= cmax, Ktr=0 (no shear links) as geometric 
parameters and the following different resistance values: 

 
- fck=30 MPa; 
 
- fcm= fck ·exp(1.645·Vf)= 38.4 MPa (according to the hypothesis of lognormal 
distribution for the cylinder concrete compressive strength with a coefficient 
of variation Vf=0.15); 
 
- fcd= fck/γC=20 MPa (γC=1.5). 

Table 3.12: Example of calculation - new structures. 

Quantile 

Representative values for 
concrete compressive strength  

Eq.(3.18a) Eq.(3.18b) Eq.(3.18c) 
fcm fck fcd 

fst,m [MPa] 582.0 581.6 582.0 
fst,k [MPa] 467.8 468.0 467.1 
fst,d [MPa] 
(αR=0.8; β=3.8) 

388.0 388.8 388.0 
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As Eqs.(3.18a-b-c) are defined dependently from the choice for the 
representative values of concrete compressive strength, referring to the same 
probability p of underexceedance, the values of fst,m, fst,k and fst,d are almost identical 
along the rows of Table 3.12 (i.e., the small differences between values are due to 
unavoidable numerical approximations in the definition of the multiplicative 
coefficients).  

Then, the design relationships expressed by means Eqs.(3.18a-b-c) can be used 
indifferently for design purposes, as they comply with the target reliability level 
required by the codes. 

 
In next Subsection, the proposal for an average bond strength expression is 

derived in order to design laps and anchorages length.   

3.3.5 Expression for ultimate bond strength  

In this Subection, the reliability-based expression for basic average bond 
strength fb,0 is derived starting from the results of Section 3.3.4.  
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Figure 3.20: Comparison in terms of laps strength fst between experimental results and 

Eq.(3.10) predictions in function of the ratio between lap length lb and bar diameter Φ (entire 
database) (a); comparison in terms of bond strength fb between experimental results and Eq.(3.10) 
predictions in function of the ratio between lap length lb and bar diameter Φ (entire database) (b). 
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The Figure 3.20(a-b) is obtained on the base of the experimental database 
collecting all the results (Section 3.3.3). Figure 3.20(a) shows that the lap strength 
fst versus lap length on bar diameter lb/Φ increases less than proportionally. It also 
shows that Eq. (3.10) fits well all the experimental results. F 

It is therefore clear that a linear increase of the bar stress σs to be transferred at 
ULS leads to a more than proportional increase of the design lap or anchorage 
length. In fact, evaluating ultimate bond strength fb by means equilibrium equation 
(Eq.(3.8)) for both experimental results and predictions by means Eq.(3.10), Figure 
3.20(b) shows a non-linear decrease of bond strength fb for an increase of the ratio 
lb/Φ. As a consequence, a model for basic average bond strength fb,0 devoted to 
design laps and anchorages length should consider this relevant non-linearity, 
contrary to what happens in EN 1992-1-1 and fib Model Code 2010. 

In the following the estimation of the reliability-based basic average bond 
strength fb,p,0 is performed assuming as representative value for concrete 
compressive strength (fc,rep ) the 5% characteristic one (fck). However, the same 
procedure can be applied considering the expressions with different representative 
values fc,rep (i.e. mean value fcm or design value fcd). 

 
First of all, the reliability-based basic lap strength fst,p,0 in absence of shear 

reinforcements or effective links and with minimum cover as required in codes           
(cmin = Φ and cmin = cmax) can be expressed (consistently with Eq.(3.10)) both for 
new and existing structures as: 

 

( )
0.25 0.55 0.2

, ,0
2554 [MPa]

25
ck b

st p p ck
f l mmf f MPa
MPa

ζ
     = ⋅ ⋅    Φ Φ   

 (3.19) 

The contribution of cover and shear links to bond strength can be easily re-
accounted for after the probabilistic calibration. 

The Eq. (3.19) can be rearranged in order to determine the basic bond length 
lb/Φ in function of the maximum bar stress transferable by the lap according to 
probability p of under-exceedance fst,p,0: 

 

( )

1.82 0.45 0.36
, ,0 25 [ ]
54 25

st pb ck

p p ck

fl f mm
f MPa MPaζ

− −      = −        Φ ⋅ Φ     
 (3.20) 

 

Reasonably, the lap strength fst,p,0 should be assumed equal to the bar stress σs 

that the lap needs to transfer with probability of under-exceedance p:  

, ,0st p sf σ=  (3.21) 

The introduction of Eq.(3.21) in Eq.(3.20) yields to: 

 

( )

1.82 0.45 0.3625 [ ]
54 25
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σ
ζ
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 (3.22) 
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In principle, the Eq.(3.22) may be adopted directly for laps and anchorage 
design purposes (involving also missing terms related to concrete cover and shear 
links confinement). In fact, the concept of average bond strength has very limited 
physical meaning facing to the complexity of the actual bond mechanism. However, 
in common practice the concept of average bond strength is still strongly ingrained 
and its derivation procedure is also proposed in the present dissertation. 

The basic average bond strength fb,p,0  related to a bar stress σs may be expressed 
by imposing the equilibrium of each lapped bar and assuming the simplification of 
uniform distribution of bond stresses along the lap (see Sub-section 3.3.1): 

 
2
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s
s

b p
bb
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f MPa
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π σ σ
π

⋅Φ
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 (3.23) 

Then, substituting Eq.(3.21) into Eq.(3.23): 
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(3.24) 

and calling: 

( )

( )

1.82
1 [ ]
14

54

p ck

p ck

MPaC f MPa
MPa

f MPaζ

=
 

⋅  ⋅ 

 (3.25) 

The Eq.(3.23) may be rewritten as 

( )
0.82 0.45 0.36

, ,0
1 25 [ ]

25
ck

b p p ck
s

fMPa mmf C f MPa
MPaσ

     = ⋅     Φ   
 (3.26) 

with p = m,k,d .  
 
The probabilistic coefficients Cp(fck) for average bond strength are consistent 

with the probabilistic model and the influence of resistance model uncertainty on 
laps and anchorages tensile strength evaluation. The coefficient Cp(fck) depends 
from the coefficient ζp(fck) and relevant values are reported in Table 3.13. Assuming 
bond strength as a property dependent from the level of stress to be transferred 
(complying to experimental evidence), from a physical point of view, the 
coefficients Cp(fck) expressed in [MPa] represents the basic average bond strength 
evaluated in order to transfer 1 MPa with concrete having fck set equal to 25 MPa 
and reinforcement bar with diameter equal to 25 mm according to a level of 
reliability identified by the probability of under-exceedance p. 
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Table 3.13: Values of the probabilistic coefficients Cp(fck) in the function of representative value 
selected for concrete compressive strength for the case of new and existing structures. 

Quantile 

Probabilistic coefficient for  
average bond strength 

Cp(fck) 
[MPa] 

New structures Existing structures 

p=0.5 (m) 378 400 

p=0.05 (k) 254 239 

p=Φ(-αR·β);          
αR=0.8, β=3.8 (d) 182 154 

p=Φ(-αR·β); 
αR=0.8, β=3.8 (d) 165 135 
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Figure 3.21: Variation of the design probabilistic coefficients Cd(fck) for average bond 
strength and associated curve fitting differentiating between new and existing structures in 

function of the reliability index β (αR=0.8). 

The trend of variation of the design probabilistic coefficient for ultimate 
average bond strength Cd(fck) in the function of the reliability index β is reported in 
Figure 3.21. As for coefficient ζp(fck), the curve fitting leads to an exponential model 
for probabilistic coefficient for average bond strength Cd(fck) with R-square equal 
to 0.99. The expression for the exponential regression are reported by Eq.(3.27) and 
Eq.(3.28). 

 
- New structures: 

( ) 2( ) 378 exp 0.193 0.99; [ ]d ckC f R MPaβ= ⋅ − ⋅ =  (3.27) 

 

- Existing structures: 

( ) 2( ) 404 exp 0.254 0.99; [ ]d ckC f R MPaβ= ⋅ − ⋅ =  (3.28) 
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Finally, according to fib Bulletin 72, the basic formulation for fb,d,0 may be 
completed considering also the effect of confinement due concrete cover different 
from the minimum and presence of shear links along the lap or anchorage. Then the 
average design bond strength fb,d can be calculated as follows: 

( ), , ,0 2 3b d b df f α α= ⋅ +  (3.29) 

With: 

- α2 = [(cmin/Φ)0.25·(cmax/cmin)0.1]1.82  is the coefficient for concrete cover 
confinement effect (equal to unit in the case of minimum cover);  

- α3=kd·Ktr  is the coefficient for links confinement effect with kd = 
20,10,0  instead of km =12,6,0  evaluated as shown in Figure 3.6 
following fib Bulletin 72 and fib Model Code 2010.  

Comparison with current codes 

In the present section, the comparison between the provisions of EN 1992-1-1, 
fib Model Code 2010 and the proposed model for calculation of the basic average 
bond strength fb,d,0 and the required anchorage length lb,req is reported. The 
comparison is proposed according to the hypotheses of minimum requirement in 
terms of concrete cover (i.e., cmin=cmax, cmin=Φ) and absence of shear 
reinforcements (i.e., Ktr=0).  

First of all, according to the latter hypotheses and Table 3.13  , Eq.(3.29) can 
be rewritten as follows: 

- new structures (β=3.8, 50 years of service life, moderate 
consequences of failure): 

0.82 0.45 0.36

, ,0
1 25182 [ ]

25
ck

b d
s

fMPa mmf MPa MPa
MPaσ

     = ⋅     Φ   
 (3.31) 

- existing structures (β=3.8, 50 years of service life, moderate 
consequences of failure): 

0.82 0.45 0.36

, ,0
1 25154 [ ]
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ck
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s

fMPa mmf MPa MPa
MPaσ

     = ⋅     Φ   
 (3.32) 

According to the EN 1992-1-1 and fib Model Code 2010, fb,d,0 can be calculated as 
reported in Table 3.14. 

The required anchorage length lb,req can be evaluated according to the 
following equation: 

,

, ,04
b req sd

b d

l
f

σ
=

Φ ⋅
 (3.33) 
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Table 3.14: Evaluation of bond strength according to EN 1992-1-1 and fib Model Code 2010. 

Code Bond strength  fbd 
[MPa] 

Other 
parameters 

EN 
1992-

1-1  
, ,0 1 22.25b d ctdf fη η= ⋅ ⋅ ⋅  

( )2/30.7 0.3
50 / 60

1.5
ck

ctd
C

f
f C

γ
⋅ ⋅

= ≤
=

 

1 1 ( )good bondη =  

2 1 ( 32 )mmη = Φ ≤  

fib 
Model 
Code 
2010 

 

0.5

1 2 3 4

, ,0
25

1.5

ck

b d
C

f

f
η η η η

γ

 ⋅ ⋅ ⋅ ⋅ 
 =

=
 

1 1.75 ( )ribbed barsη =  

2 1 ( )good bondη =  

3 1 ( 25 )mmη = Φ ≤  

4 1 ( 500)steel gradeη =  

The comparison mentioned above is proposed in Figure 4 in function of the stress 
σsd according to the expressions reported in Table 3, assuming Φ=16 mm, fck=25 
MPa and steel Grade 500. 

Firstly, it can be noted that according to Eqs.(3.31-3.32) the required anchorage 
length lb,req/Φ increases more than proportionally in function of the design stress σsd 
to be transferred at ULS.  

In fact, the experimental evidence deriving from laboratory tests on laps and 
anchorages shows that the increment of the lap or anchorage length gives origin to 
an increment of the lap/anchorage strength that is less than proportional (Figure 
3.20(a-b)). This non-linear behaviour is not accounted for by the models proposed 
by EN 1992-1-1 and fib Model Code 2010. In fact, the latter proposes a constant 
value of bond strength fbd which, according to Eq.(3.33), originates a linear 
variation as a function of σsd. Secondly, EN1992-1-1 seems to be unsafe when high 
level of stresses should be transferred at ULS (i.e., σsd≥250-300 MPa). This result 
is in agreement with the observations performed by Cairns, 2014. Conversely, fib 
Model Code 2010 tends to be too conservative, especially when low level of stress 
should be carried at ULS. 

 Finally, concerning the required laps and anchorages length calculated in 
compliance with EN1992-1-1 and fib Model Code 2010, the level of reliability and 
the associated probability of structural failure are unknown, differently from what 
happens using Eqs.(3.31-3.32).  

The Figures 3.22 and 3.23 reports the comparison of the mentioned above 
models for bond strength and laps/anchorage length evaluation in case of different 
combination of the involved parameters. 
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Figure 3.22: Bond strength fb,d,0 evaluated according to EN1992-1-1, fib Model Code 2010  

and proposed models. Φ=12mm (a), Φ=16 mm (b), Φ=20 mm (c),  fck=25 MPa and steel Grade 
500. 
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Figure 3.23: Required anchorage length lb,req/Φ evaluated according to EN1992-1-1, fib 

Model Code 2010 and proposed models. Φ=12mm (a), Φ=16 mm (b), Φ=20 mm (c), fck=25 MPa 
and steel Grade 500. 
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3.3.6 Validation of the proposed framework and final comments 

In this Subsection two different validation of the general framework applied in 
Subsection 3.3.4 are reported. First of all the mean and the characteristic 
expressions are compared and validated on the base of the experimental results for 
both new and existing structures.  

Subsequently, the results of Subsection 3.3.4 are compared to the ones derived 
from a theoretical approach proposed by Taerwe, 1993 valid just for lognormal 
probabilistic models. 

Experimental validation 

The validation of the results obtained by the probabilistic calibration proposed 
in Subsection 3.3.4 can be performed by means of comparison with the sample of 
experimental outcomes. The validation should be performed with the same samples 
adopted for the statistical analysis and then differentiating between new and existing 
structures. 

First of all, the following ratio should be addressed: 
 

,

,

st Experimental
m

st m

f
f

ϑ =
 (3.29) 

,

,

st Experimental
k

st k

f
f

ϑ =
 (3.30) 

where fst,Experimental is the experimental outcome for lap or anchorage tensile 
strength from the experimental database (filtered according to the hypothesis of new 
or existing structures); fst,m is the associated mean value of ultimate lap or anchorage 
strength (i.e. Eq.(3.18a-b-c) with p=0.5 (m) ); fst,k is the associated characteristic 
value of ultimate lap or anchorage strength (i.e. Eq.(3.18a-b-c) with p=0.05 (k) ). 

The reliability-based expressions proposed by Eq.(3.18a-b-c) can be 
considered as validated (i.e. consistent with the associated probability of under-
exceedance) if the following conditional probabilities are fulfilled (differentiating 
between new and existing structures): 

 
0 /[ ] 0.5m new existing structuresP ϑ ≤ ≈  (3.31) 

0 /[ ] 0.05k new existing structuresP ϑ ≤ ≈  (3.32) 

Concerning the case of new structures, Figure 3.24 shows that the Eq.(3.31) and 
Eq.(3.32) are fulfilled with good rate of accuracy.  

In fact, the expression for mean value fst,m  of laps and anchorage strength 
returns unsafe outcomes of the ratio ϑm in the 50.7% of the cases, whereas the 
expression for characteristic value fst,k  returns unsafe results in the 4.6% of the 
cases. 
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Figure 3.24: Experimental validation of the mean (p=0.5 (m)) (a) and of the characteristic 

((p=0.05 (k)) (b) expressions reported by Eq.(3.18a-b-c) concerning the sample for new structures. 

 
Relating to the case of existing structures, Figure 3.25 leads to similar 

conclusions. In details, the expression for mean value fst,m  of laps and anchorage 
strength returns unsafe outcomes of the ratio ϑm in the 50.4% of the cases, whereas 
the expression for characteristic value fst,k  returns unsafe results in the 5.2% of the 
cases. 

In Table 3.14 are summarized the data necessary for the estimation of the 
conditional probabilities expressed by Eq.(3.31) and Eq.(3.32). 

The number of samples collected in the filtered databases for new and existing 
structures are sufficient in order to validate the mean and the characteristic 
expressions. In fact, in order to estimate the probability of under-exceedance related 
to the characteristic value (i.e. 0.05) around 200 samples are sufficient.  

On the contrary, the number of experimental results does not allow to validate 
the design expressions. In fact, to this purpose, a much higher number of 
experimental results is required (more than 1000, at minimum). 
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Table 3.14: Experimental samples and validation of the calibrated equations. 

 
New  

structures 
Existing 

 structures 
N° results 454 677 
N° results with ϑm ≤ 0 230 341 
N° results with ϑk ≤ 0 21 35 
P[ϑm ≤ 0]   [-] 0.507 0.504 
P[ϑk ≤ 0]   [-] 0.046 0.052 
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Figure 3.25: Experimental validation of the mean (p=0.5 (m)) (a) and of the characteristic 

((p=0.05 (k)) (b) expressions reported by Eq.(3.18a-b-c) concerning the sample for existing 
structures. 

Than the experimental validation can be considered satisfied for Eq.(3.18a-b-
c) for both the samples related to new and existing structures. 
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Comparison with theoretical approach 

In the following, the comparison of the framework proposed in Section 3.2 with 
the calculation methodology proposed by Taerwe, 1993 and furtherly applied by 
Köenig and Fischer, 1995 is proposed. It maintains its validity both for new and 
existing structures.  

According to the probabilistic model described in Subsection 3.3.4, the 
resistance R turns out to be a lognormal random variable as ϑ and fc are lognormally 
distributed random variables too.  

Then, the application to Eq.(3.10) of the procedure reported Taerwe, 1993 leads 
to the estimation of  the quantiles of the resistance random variable R as follow 

 

( )
( )

lnR

0.25 2 2

exp

( ) exp ln( 1) 0.0625 ln(V 1)

p R p

cm j p f

R h

f g a h Vϑ ϑ

µ σ

µ

= ⋅ − ⋅ =

= ⋅ ⋅ ⋅ − ⋅ + + ⋅ +
  

(3.33) 
 

where j = m, k, d with m = mean value; k = characteristic value (i.e. quantile 
5%); d = design value in function of a certain reliability index β; μϑ mean value and 
coefficient of variation Vϑ of the resistance model uncertainty; g(aj) defined 
according to Eq.(3.13); σlnR  standard deviation of the logarithm of the variable R. 

The coefficients hp defines the quantile of the variable R as: hm = 0 for mean 
value; hk = 1.645 for characteristic value; hd = αR·β for design value, where the 
coefficient αR is the FORM correction factor assumed equal to 0.8 for dominant 
resistance variables (JCSS Probabilistic Model Code, 2001) and β is the reliability 
index.  

The global coefficient of variation VR of lap strength taking into account the 
random variability of model uncertainties and concrete compressive strength may 
be evaluated with the following expression: 

 
2 2 0.0625( 1) ( 1) 1

cR fV V Vθ= + ⋅ + −  (3.34) 

 
The quantile Rp is given in Eq.(3.33) in function of the mean value of concrete 

compressive strength fcm, but codes provisions are usually expressed in function of 
the characteristic value fck. In compliance to the procedure proposed in previous 
sections and to structural codes, the introduction of fck in Eq.(3.33) should be done 
consistently with the hypothesis of lognormal distribution for cylinder concrete 
compressive strength as follows: 

 

( )2exp ln( 1)
cck cm k ff f h V= ⋅ − ⋅ +  (3.35) 
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then: 
 

( )2exp ln( 1)
ccm ck k ff f h V= ⋅ ⋅ +  (3.36) 

 
Next, the theoretical approach is proposed accounting for as representative 

value of concrete compressive strength the 5% characteristic one (fck). However, 
according to Taerwe, 1993, the derivation procedure can be easily extended to other 
representative values evaluating different quantiles of the lognormal distribution for 
concrete compressive strength from Eq.(3.35). 

The general formulation of a quantile of R, in function of the concrete 
characteristic compressive strength fck, can be calculated substituting Eq.(3.36) in 
Eq.(3.33): 

 

( )0.25
1 2,( ) expp ck j pR f g a a aθµ= ⋅ ⋅ ⋅ −  (3.37) 

 
with: 
 

2
1 0.25 1.645 ln( 1)

cf
a V= ⋅ ⋅ +  (3.38) 

 
and: 
 

2 2
2, ln( 1) 0.0625 ln(V 1)

cp p fa h Vθ= ⋅ + + ⋅ +  (3.39 

 
Finally, it is possible to define the probabilistic coefficient for lap strength 

ζp(fck) as follows: 
 

( )1 2,( ) expp ck pf a aϑζ µ= ⋅ −  (3.40) 

 
The exponential formulation reported by Eq.(3.40) is fully consistent with the 

result obtained by the results and the curve fitting proposed in Subsection 3.3.4, 
confirming the validity of the general framework proposed in Section 3.2 (that 
differently is valid also for probabilistic model different from the lognormal one). 

Finally, according to Eq.(3.18b) the quantiles Rp of the resistance random 
variable R become: 

0.10.25 0.55 0.250.2
maxmin

,
min

25( ) 54
25

ck b
p st p p ck m tr

f l ccmmR f f MPa k K
MPa c

ζ
          = = ⋅ ⋅ +       Φ Φ Φ          

 (3.41) 
 
with p= m, k, d  for mean, 5% characteristic and design. 
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In Table 3.15 the comparison between the results of Eq.(3.40) and the ones 
obtained with Eq.(3.16b) and Eq.(3.17b) is proposed. The results of the general 
framework are consistent with the results of the theoretical approach (Taerwe, 
1993). 
 

Table 3.15: Comparison between the values of the probabilistic coefficients ζp(fck) for the 
general framework of Sub-section 3.3.4 and the methodology of Taerwe, 1993 for the case of new 
and existing structures. 

Quantile 

Probabilistic coefficient 
ζp(fck) 

[-] 

General framework  
(Subsection 3.3.4) 

Taerwe, 1993 
Eq.(3.40) 

New 
structures 
Eq.(3.16b) 

Existing 
 Structures 
Eq.(3.17b) 

New 
structures 

Existing  
structures 

p=0.5 (m) 1.03 1.07 1.04 1.07 

p=0.05 (k) 0.83 0.80 0.83 0.80 

p=Φ(-αR·β);         
αR=0.8, β=3.8 (d) 0.69 0.63 0.69 0.63 

p=Φ(-αR·β); 
αR=0.8, β=3.8 (d) 0.65 0.59 0.66 0.59 

 
The coefficient of variation of the resistance random variable R derived by 

Eq.(3.34) is also compared to the one of the auxiliary random variable Z(fc,ϑ;fcm) 
obtained with Eq.(3.15a) within Table 3.16. Again, the results are in agreement 
between the two approaches. 

 
Table 3.16: Comparison between the coefficient of variation for resistance random variable R 

with general framework of Sub-section 3.3.4 and the methodology of Taerwe, 1993 for the case of 
new and existing structures. 

 

General framework 
(Subsection 3.3.4 – 

Z(fc,ϑ;fcm)) 

Taerwe, 1993 
Eq.(3.34) 

New 
structures 

Existing 
Structures 

New 
structures 

Existing 
structures 

Coefficient of variation of resistance 
random variable R 
VR  [-] 

0.13 0.17 0.13 0.18 
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Laps and anchorages design: what level of reliability? 

The choice of the level of reliability for design is one of the key choices drafting 
structural codes. In particular, the selection of the level of reliability to be adopted 
for laps and anchorages design for ordinary reinforced concrete structures is still 
strongly debated by researchers and practitioners. As discussed in Chapter 1, the 
target reliability levels that should be adopted in structural design of new and 
existing concrete structures are suggested in ISO 2394, 2015, fib Model Code 2010, 
fib Bulletin 80 and EN 1990. Concerning ordinary structures with 50 years of 
service life, the accepted target reliability level is represented by β = 3.8, or β = 4.3, 
respectively in case of moderate or high consequences of structural failure.  

Laboratory tests on lap splices and anchorages are commonly performed on 
four points bending tests with all bars lapped at the same section. Moreover, laps 
and anchorages are located in a constant bending moment region, therefore the 
positive effect of shear on lap strength (i.e. bending moment variability along the 
lap as described in Souza, 2016) is neglected. These common configuration leads, 
in general, to the worst case of splitting failure mode (see Subsection 3.3.1).  

The conditions proposed in laboratory tests rarely occur in actual structures as 
the laps are almost never placed in the zones of maximum bending moment, not all 
the bars are, generally, lapped in the same section, concrete cover and shear 
reinforcements or links are sufficiently provided. Therefore, it is very difficult to 
find in literature (Cairns and Eligehausen, 2014) cases of structural collapse due to 
splitting bond failure, which may occur mainly because of wrong detailing and 
design.  

Laps and anchorages are generally designed to transfer the design tensile stress 
σsd of the bar at ultimate limit state, but, if it is necessary to provide a certain level 
of ductility (e.g. non-redundant structural elements, such as the case of cantilever 
structures - as earth retaining walls), they should be designed to transfer the yielding 
strength fyd of the bar, but not with a level of reliability higher than the one related  
to the whole structure (commonly designed according to β = 3.8 - moderate 
consequences of failure – in case of new structures with 50 years of service life).   
Then, structural redundancy and “good” construction practice and detailing (as laps 
staggering - Cairns, 2014 -, their positioning in lowly stressed regions and 
minimum concrete cover requirements) suggest that, according to ISO 2394, 2015, 
fib Model Code 2010, fib Bulletin 80 and EN 1990, a reliability index β = 3.8 should 
be considered for laps and anchorages design in the case of ordinary reinforced 
concrete structures with 50 years of service life and moderate consequences of 
failure. 
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Chapter 4 

Advances in safety formats for 
NLFEAs of reinforced concrete 
structures 

4.1  Introduction 

The present Chapter deals with two important aspects concerning the 
application if NLFEA to design and assessment of reinforced concrete structures 
according to Section 2.3. 

First of all, the model uncertainty safety factor γRd for NLFEAs or reinforced 
concrete structures has been investigated. Various experimental tests concerning 
different typologies of structures with different behaviours and failure modes, i.e., 
walls, deep beams, panels, are simulated by means of appropriate two-dimensional 
finite elements structural models (i.e., plane stress configuration). Several NLFE 
structural models are defined to investigate the model uncertainty influence on the 
2D NLFEAs of reinforced concrete structures in terms of global resistance, 
considering different modelling hypotheses (i.e., epistemic uncertainties). Then, a 
consistent treatment of the resistance model uncertainties is proposed following a 
Bayesian approach. After that, the mean value and the coefficient of variation 
characterizing the resistance model uncertainties are identified. Finally, the model 
uncertainty safety factor γRd is evaluated according to the reliability differentiation 
defined by fib Model Code 2010 (Section 1.3). 

Secondly, the comparison of the different safety formats described in Section 
2.3 for the estimation of the design strength of different reinforced concrete 
structures is performed. Specifically, non-linear finite element models are properly 
defined to reproduce different experimental tests. Successively, several non-linear 
finite element analyses are carried out in compliance with the different safety 
formats experimentally tested member in order to compare and discuss the results 
in terms of resistance and failure mode. In fact, the different safety formats are 
investigated to demonstrate if they are able to estimate the corresponding design 
global resistance capacities and to capture possible modifications in the failure 
mode for each structure. In order to apply non-probabilistic safety formats also in 
the critical cases due to their reduced computational effort, updated values of the 
aleatory uncertainty partial safety factor are proposed for the assessment of the 
design global resistance. Finally, a code format framework based on the levels of 
approximation approach LoAs is defined and commented. 
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4.2 Reliability-based evaluation of the resistance model 
uncertainty safety factor for NLFEAs 

In general, the uncertainties related to the material properties (i.e. aleatory 
uncertainties) are well known and assessed is structural reliability and, specifically, 
within the methodologies proposed by the different safety formats for NLFEA.  

Conversely, the level of uncertainty related to the definition of the resistance 
model (i.e.  model uncertainty) adopting NLFE models turns out to be complex to 
be estimated and it is still object of discussion. 

 The numerical models commonly used for NLFEAS as well as the predicted 
response are merely estimations and approximations of the actual structural 
behavior of a structural member. In fact, the prediction of the actual structural 
response through NLFEAs is denoted by a certain level of uncertainty because any 
model that aims to describe the actual structural response of structural systems 
neglect, inevitably, some more or less important aspects as discussed in Section 1.2  

In general, the definition of a structural model grounds on the basic principles 
of mechanics as equilibrium of forces, displacements compatibility and constitutive 
laws. Specifically, focusing on NLFEAs, the mentioned above basic principles are 
met by means iterative solution methods (e.g. Newton-Raphson algorithm, Arch-
length algorithm) that leads, inevitably, to an approximation of the exact solution 
for the structural response. Furthermore, the different assumptions related to the 
equilibrium, kinematic compatibility and constitutive equations always leads to 
diverse solutions for the specific structural problem. Then, the multiplicity of 
choices that may be performed defining a NLFE model leads to a further degree of 
uncertainty having epistemic nature.  

 It implies that, consistently with the methodologies proposed by the safety 
formats for NLFEAs, the reliability-based calibration of the partial safety factor γRd 
for the resistance modelling uncertainties (i.e. model uncertainty safety factor) is an 
important topic for future codes implementation.  

4.2.1 Literature review related to resistance model uncertainties 
for NLFEA 

The aspects related to the quantification of model uncertainties related to 
numerical resistance models has been faced by several literature references.  

Shlune et al., 2016 numerically reproduced by means NLFEA different 
structural members which presented various failure modes:  compression or 
bending failure (with under- and over-reinforced cross sections) and shear failure. 
The ratios between the resistances measured during experimental tests and the 
NLFE simulations showed a coefficient of variation within the range of 0.05 (in the 
case of flexural failure with under-reinforced cross-section) to 0.40 (in the case of 
shear failure due to crushing of concrete).  
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In compliance with JCSS Probabilistic Model Code, 2001 concerning well 
validated numerical models, the hypothesis to have mean value and coefficient of 
variation equal to 1.00 and to 0.1, respectively, can be considered trustworthy in 
order to account for resistance model uncertainties in reliability analysis adopting 
NLFEA. The model uncertainty random variable is suggested to be modelled by 
means of a lognormal distribution. 

Another important issue related to reinforced concrete structures is the 
validation of the NLFE model with respect to the actual failure mode. Always the 
JCSS Probabilistic Model Code, 2001 proposes mean values and coefficients of 
variation for the resistance model uncertainty of 1.2 and 0.15 for bending failure 
modes and 1.4 and 0.25 concerning shear failure modes. 

 Nevertheless, the bending and shear failure modes are representative of 
ultimate behavior of beams and, considering more complex structural members, are 
not always discernible. 

 Kadlec and Červenka, 2016, proposed an efficient methodology for the 
assessment of model uncertainties in structural analysis by means NLFE models. 
The discussion focused on the dependence un modelling uncertainties from the 
failure mode with the proposal of a specific value for mean value and coefficient of 
variation for model uncertainties concerning the specific problem of punching in 
RC slabs.  

Engen et al., 2017 reported the characterization of resistance model 
uncertainties for NLFEA performing the distinction between ductile and brittle 
failure modes. This has been carried out by reproducing with NLFE models the 
experimental outcomes reported in a benchmark database composed of 38 tests 
derived from several literature references. The results showed that the modelling 
uncertainty may be represented as a lognormal random variable with a mean value 
of 1.10 and a standard deviation of 0.12. However, in order to get to a 
comprehensive estimation of resistance model uncertainties for NLFEA of RC 
structures, a huge number of modelling hypotheses ad structural members should 
be investigated. 

Concerning the value of the partial safety factor for the resistance model 
uncertainties γRd limited information are given in literature.  The EN 1992 proposes 
to assume a value of γRd equal to 1.06. However, to this value has been given an 
importance beyond the field in which it was introduced. In fact, this value has been 
suggested within the framework of non-linear analyses of reinforced concrete 
bridges and not generally for other structural members or systems (e.g. massive 
structures, walls, beams with variable geometry, panels etc.). Successively, the fib 
Model Code 2010 proposed different values of γRd depending on the level of 
validation of the structural model. The γRd equal to 1 may be adopted for models 
without epistemic uncertainties (i.e. in case of presence of evidences of model 
validation in the actual design conditions). If low or a high level of epistemic 
uncertainties related to definition of the structural model are present (i.e., 
difficulties in the definition of actual structural conditions due to unknown design 
situations) the values, set equal to 1.06 and 1.1, are suggested. However all the 
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mentioned above values are not based on a straightforward calibration procedure 
and are not compliance with a predetermined level of reliability. 

Therefore, an in-depth probabilistic characterization of the resistance model 
uncertainty random variable and of the related partial safety factor γRd needs to be 
addressed in relation to the following aspects: 

- the multiplicity of modelling hypotheses available to practitioners 
and engineers; 

- the reliability differentiation between new and existing structures; 
- the prescribed reliability level. 

 
Next, the methodology for the derivation of the partial safety factor for 

resistance model uncertainties related to NLFEAs of RC structures is presented and 
discussed.  

4.2.2 Proposed methodology for calibration of the model 
uncertainty safety factor γRd 

The quantification of the resistance model uncertainties, as already discussed 
in Section 1.3.1 should be performed in agreement with several aspects. In 
particular, concerning the specific topic of NLFE resistance models, these aspects 
should concern:   

- the database of the experimental data, where should be provided all the 
parameters necessary for the numerical reproduction of the tests and for the 
definition of NLFE structural models; 
 

- the variety of the failure modes and of the typology of structural members 
investigated;  

 
- the probabilistic analysis of the observed sample of resistance model 

uncertainties that should be carried out in order to define the most likely 
probabilistic distribution with the associated parameters. 

 
Very often, some information necessary for the definition on the NLFE model 

may be missing. The typical example is represented by material properties as the 
fracture energy of concrete or concrete tensile strength, that, in the practice, should 
be derived from the available experimental data (i.e. concrete compressive strength) 
adopting assumptions according to proven methodologies proposed by scientific 
literature and codes (e.g. EN 1992 and fib Model Code 2010). 

According to Section 1.3.1 , the resistance model uncertainty, denoted as θ, can 
be expressed by a multiplicative law.  
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This latter relates the i-th actual global resistance (response) estimated from an 
experimental test Ri(X,Y) to the i-th global resistance (or response) estimated by a 
NLFEA RNLFEA,i(X) and, may be expressed as follows: 

 
( ) ( )NLFEA,,i i iR X Y R Xϑ≈  (4.1) 

 
where X is the vector of basic variables included into the resistance model, Y is 

a vector of variables that may affect the resisting mechanism but are neglected in 
the model. As already stated in Section 1.3.1 the unknown effects of Y variables, if 
present, are indirectly incorporated and covered by the resistance model uncertainty 
random variable.  
In order to perform the calibration of the resistance model uncertainty safety factor 
γRd the following steps has been followed: 
 

1) Selection of the benchmark experimental tests: the selection of the 
benchmark set of experimental results having different nature and 
different failure modes has been performed; 

 
2) Differentiation between modelling hypotheses: the plausible modelling 

hypotheses able simulate specific reinforced concrete structure by 
means of NLFEAs should be involved in the calibration procedure. In 
fact, a comprehensive quantification of the resistance model 
uncertainties for NLFEAs requires to account for the different modelling 
hypotheses which may be selected by engineers.  

 
3) Probabilistic calibration (Bayesian approach): accounting for the 

differentiation between modelling hypotheses, it is necessary to define a 
probabilistic model able to characterise the resistance model uncertainty 
random variable ϑ  estimating the mean value ϑµ  and the variance 2

ϑσ

. JCSS Probabilistic Model Code, 2001, suggests that the realizations of 
the random variable ϑ  typically fits a lognormal probabilistic 
distribution. The treatment of the resistance model uncertainties can be 
developed following a Bayesian approach. Specifically, the mono-
variate and unimodal lognormal prior distributions of the resistance 
model uncertainties related to the different modelling hypotheses can be 
evaluated. Then, each one of the prior distributions is updated on the 
basis of the data obtained from the other models in order to evaluate the 
posterior distributions. After that, the average statistical parameters of 
the posterior distributions related to the different structural models can 
be evaluated.  
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4) Evaluation of the resistance model uncertainty safety factor γRd: grounds 
on the log-normality hypothesis, the partial safety factor representative 
of the resistance model uncertainties γRd can be determined as follows: 

( )
1

expRd
R Vϑ ϑ

γ
µ α β

=
−

 (4.2) 

 
where μϑ is the mean value of the resistance model uncertainty random            

variable; Vϑ is the coefficient of variation of the resistance model uncertainty 
random variable calculated as σϑ/μϑ; αR is the first-order-reliability-method (FORM) 
sensitivity factor, assumed equal to 0.8 and 0.32 as suggested by EN 1992-2 and fib 
Model Code 2010 for dominant and non-dominant resistance variables, 
respectively; β is the reliability index.  
 

The study proposed in next Sections is devoted to the calibration of the model 
uncertainty safety factor γRd related to plane stress (2D) NLFEAs of reinforced 
concrete structures subjected to static incremental loading. 

Specifically, several experimental tests (performed under static incremental 
loading process). related to different structural systems that showed different failure 
modes, are considered and reproduced through plane stress (2D) NLFEAs. These 
simulations are performed considering different modelling hypotheses in order to 
estimate the resistance model uncertainties and calibrate the corresponding values 
of the partial safety factor in compliance with the described above approach. 

4.2.3 Benchmark experimental tests 

The benchmark experimental results presented in the scientific literature by 
Filho,1995; Foster and Gilbert, 1998; Lefas and Kotsovos, 1990; Leonhardt and 
Walter, 1966; Vecchio and Collins, 1982; Pang and Hsu, 1995 are assumed. A total 
number of 25 structural members are selected for the investigation. 

All the experimental tests, developed respectively on nine shear panels, on five 
deep beams and on eleven walls, have been performed through a monotonic 
incremental loading process up to failure as discussed by the original references. 
The structural members have been realized in laboratory and supported by statically 
determined configurations. 

Subsequently, the short description of the different structural members is 
reported. However, more details may be acknowledged by the original references. 

Filho,1995 

The experimental tests described by Filho,1995 concerns five reinforced 
concrete walls denoted respectively as MB11AA, MB11AE, MB1EE, MB1EE1 
and MB4EE, with the following geometrical properties: 1.35 m high, 1 m wide, 
0.12 m thick and stiffened by a 0.2 m thick and 0.5 m high lower beam.  
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a) MB11AA 
Filho, 1995 

 

 

b) MB11AE 
Filho, 1995 

 

 

c) MB1EE 
Filho, 1995 
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d) MB1EE1 
Filho, 1995 

 

 

e) MB4EE 
Filho, 1995 

 
Figure 4.1: Detail of the walls tested by Filho,1999 (a-e). 

 
The structures are characterized by a 0.4 m wide square opening, fully 

restrained at the base and loaded by a horizontal force at the top. The concrete 
compressive strength ranges from 39 to 42 MPa in the different tests, while the 
reinforcement amount varies significantly from one structure to the others, although 
keeping the general layout of the main reinforcements unchanged. The arrangement 
of the reinforcements and the main dimensions of the specimens are reported in 
Figure 4.1(a-e). 

Foster and Gilbert, 1995 

The experimental results of Foster and Gilbert, 1995 are related to five 0.7 m 
deep and 0.125 m thick reinforced concrete beams denoted respectively as B2.0-1, 
B2.0-3, B3.0-1, B2.0A-4 and B3.0A-4, simply supported at the edges. The beams 
B2.0-1, B2.0-3 and B3.0-1 (Figure 4.2(a) - Scheme a) differ from the beams B2.0A-
4 and B3.0A-4 (Figure 4.2(b) - Scheme b) concerning the load arrangement. The 
main tensile reinforcement consists of six φ20 longitudinal bars. The web 
reinforcement is made up of φ6.3/75mm in the transverse direction and 
φ6.3/135mm in the longitudinal direction. The concrete compressive strength varies 
in the range 78 - 88 MPa in the different tests. 
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Lefas and Kotsovos, 1990 

The experimental test discussed by Lefas and Kotsovos, 1990 focused on a 
reinforced concrete wall SW11 that is 1.2 m high, 0.75 m wide, 0.07 m thick and 
stiffened by 0.2 m thick upper and lower beams. The structural member is fully 
restrained at the base and loaded by a horizontal force at the top. The concrete 
compressive strength is 43 MPa, while the reinforcement consists of two 
φ6.25/80mm horizontal bars and two φ8/60mm vertical bars. The arrangement of 
the reinforcements and the main dimensions of the specimens are reported in Figure 
4.3. 

 
 

    

a) B2.01, B2.03, B3.01 
Foster and Gilbert, 1998 
(Scheme a) 
 
 

 
    
 

 

b) B2.0A-4, B3.0A-4 
Foster and Gilbert, 1998 (Scheme b) 

 
Figure 4.2: Detail of the deep beams tested by Foster and Gilbert,1998 (a-b). 
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 SW11 
Lefas and Kotsovos, 1990 
 
 

 
Figure 4. 3: Detail of the wall tested by Lefas and Kotsovos, 1990. 

 

Leonhardt and Walther, 1966 

The experimental results achieved by Leonhardt and Walther, 1966, analysed 
five deep beams denoted respectively as WT2, WT3, WT4, WT6 and WT7, which 
are 1.6 m wide and high. The beams present a uniform thickness of 0.1 m and have 
a simply supported static scheme. The reinforcement consists of horizontal and 
vertical stirrups and of additional bars in the bottom part of the structural elements. 
The concrete compressive strength varies between 26.7 and 28.7 MPa in the 
different tests, while the mechanical properties of the reinforcement depend on the 
diameter of the bars. The walls WT2, WT3, WT4 are loaded from the top and they 
differ in the amount of reinforcement in the bottom part of the structure (Figure 
4.4(a-b) – Scheme a). The horizontal and vertical stirrups have diameter of 5 mm 
and spacing of 26 mm. The structures WT6 and WT7, differing for the distribution 
of the applied loads and for the reinforcement (Figure 4.4(c-d) – Scheme b), are 
loaded from the bottom. 

 

   

a) 
WT2 
Leonhardt and 
Walter,1966 
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b)  
WT2 
Leonhardt and 
Walter,1966 
(Scheme a) 

 
 

     

c)  
WT7 
Leonhardt and 
Walter,1966 
(Scheme b) 

 
 

     

d)  
WT6 
Leonhardt and 
Walter,1966 
(Scheme b) 

 
 

Figure 4. 4:  Detail of the walls tested by Leonhardt and Walter,1966 (a-d). 

Vecchio and Collins, 1982 and Pang and Hsu, 1995 

The experimental tests carried out by Vecchio and Collins, 1982 and Pang and 
Hsu, 1995 are considered.  

Particularly, four shear panels PV10, PV19, PV21 and PV22 were tested by 
Vecchio and Collins, 1982 under monotonically increasing edge loads. The 
dimensions of each panel are 890 x 890 x 70 mm (Figure 4.5(a)). The actual 
concrete cylinder compressive strength varies between 14.6 and 19.6 MPa for the 
different tests. The reinforcement consists of a welded wire grid with the wires 
parallel to the edges of the panel. The reinforcement ratio in x and y directions 
varies from 1% to 1.79%.  Pang and Hsu, 1995 analyzed other five shear panels 
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A2, A4, B2, B5 and B6 loaded by compressive forces in the vertical direction and 
tensile forces in the horizontal direction. The dimensions of each panel are 1397 x 
1397 x 178 mm (Figure 4.5(b)). The concrete compressive strength is about 42 MPa 
and the reinforcement grid is inclined at 45° with respect to the edges of the panels. 
The percentage of reinforcement along the inclined directions varies from 1.19% to 
2.98%. 

 

   

a) 

PV10, PV19, PV21, PV22 
Vecchio and Collins, 1982 

 

   

b) 

A2, A4, B2, B5, B6 
Pang and Hsu, 1995 

 
Figure 4.5: Detail of the panels tested by Vecchio and Collins, 1982 (a) and by Pang and Hsu, 

1995 (b). 
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4.2.4 NLFEAs: modelling hypotheses and results 

In the present Section, the detail of the plane stress (2D) NLFEAs performed 
in order to reproduce the experimental outcomes describe in Section 4.1.3 is 
reported.  

First of all, the modelling hypotheses herein adopted are outlined and 
explained. Subsequently the results of the 2D NLFEAs are commented and 
compared to the experimental ones. 

Note that, according to Section 2.1, all the numerical simulations have been 
performed after a sensitivity/calibration analysis. In fact, this is a crucial 
requirement for the proposal drawn by the results of the present investigation 
because leads to a reduction of the epistemic uncertainties. In other words, the 
designers/analysts involved in NLFEAs for the structural design or assessment 
process, should be confident with this approach.  

Differentiation between modelling hypotheses 

Several modelling hypotheses are available to perform plane stress (2D) 
NLFEAs of reinforced concrete structures. One modelling hypothesis can be 
identified by the series of assumption and methodologies adopted in order to fulfill 
equilibrium, kinematic compatibility and constitutive requirements. It implies that 
also the choice of a specific commercial NLFE software platform affects the 
characterization of certain modelling hypothesis. 

In this investigation, three different types of software Cervenka Consulting 
ATENA 2D, ADINA, TNO DIANA, identified anonymously by Software A, Software 
B and Software C in order to avoid advertising for the different codes, are adopted 
with the aim to reproduce the outcomes of the set of experimental tests.  

Furthermore, for each software, several choices about the hypotheses related to 
equilibrium, compatibility and constitutive laws can be performed.  

In the details, in each software four-node quadrilateral iso-parametric plane 
stress finite elements, based on linear polynomial interpolation and 2x2 Gauss 
point’s integration scheme, are used for the numerical simulations.  The FE meshes 
has been properly defined after a mesh-sensitivity analysis. The non-linear system 
of equations is solved by means of the standard Newton-Raphson iterative 
procedure based on the hypothesis of linear approximation.  

Concerning the constitutive models devoted to reproduce the actual non-linear 
materials behavior, for each software the following main characteristics for the FE 
models are also assumed: 

 
- Concrete: the non-linear response of concrete in compression including 

softening with a reduction of the compression strength and shear stiffness 
(shear retention factor equal to 0.2) after cracking has been adopted 
(Section…., Bertagnoli et al., 2015). In detail, the mono-axial constitutive 
model for concrete proposed by EN 1992-1-1, the constitutive model 
described by CEB-FIP Model Code 1990 and the constitutive model 



 

114 
 

described by Thorenfeldt et al., 1987 have been selected in order to fit as 
much as possible the experimental results with each software (Software A, 
Software B and Software C). The smeared cracking with fixed crack 
direction model has been selected in order to reproduce the damaging of 
concrete;  

- Reinforcement: a tri-linear σ−ε curve for the reinforcement steel has been 
adopted (Bertagnoli et al., 2015). The discrete and smeared models of the 
reinforcement, assuming a perfect bond between the reinforcement and the 
surrounding concrete, are considered; 

All the material properties have been assumed according to the experimental 
ones. As usual, concerning missing information, as the concrete Young’s modulus 
and the tensile concrete strength, they are derived as a function of the experimental 
available data (e.g. concrete compressive strength), according to EN1991-1-1. 

 
Table 4.1: Assumptions related to the basic modelling hypotheses devoted to the definition of 

the non-linear FE numerical models. 

  Software A Software B Software C 

Equilibrium 

 

- Standard Newton-Raphson based on the hypothesis of linear 
approximation;  
- Convergence criteria based on strain energy; 
- Load step sizes defined in compliance with the experimental 
procedure. 

 

Compatibility 

 

Finite Elements 
- Iso-parametric plane stress 4 
nodes (2x2 Gauss points 
integration scheme with 
linear interpolation); 
- Discrete reinforcements; 
- Element size defined by 
means of an iterative process 
of numerical accuracy. 

 

Finite Elements 
- Iso-parametric plane stress 4 nodes 
(2x2 Gauss points integration scheme 
with linear interpolation); 
- Smeared reinforcements/discrete 
reinforcements; 
- Element size defined following an 
iterative process of numerical 
accuracy. 

Constitutive 
models  

 

CONCRETE 
- Fixed crack model, smeared cracking, constant shear retention factor 
set equal to 0.2; 
- Mono-dimensional model extended to biaxial stress state; 
- Compression: non-linear with post peak linear softening branch; 
- Tension (differentiating between 3 modelling hypotheses): 

1) Elastic - Brittle (BRITTLE); 
      2) Elastic with post peak linear tension softening (LTS); 

             3) Elastic - perfectly plastic (PLASTIC). 
 

REINFORCEMENT STEEL 
- Tri-linear elastic – plastic. 
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The summary of the main hypotheses assumed in the definition of the 
simulations for 2D NLFEAs, adopting Software A, B and C, is listed in Table 4.1.  

In addition to the differences inherent to the three types of software, another 
important differentiation in the definition of non-linear FE models has been 
considered related to the concrete tensile mechanical behavior. In fact, the local 
interaction between reinforcement and concrete between cracks gives rise to the 
“tension stiffening effect”. In numerical simulations, this effect may be taken into 
account through a modification of the constitutive tensile behavior of the concrete 
matrix (Massicotte et al., 1990). This modification refers to the definition of a 
tension softening law in the post peak concrete tensile behavior.  

In the present investigation, three different constitutive laws for concrete in 
tension are considered in order to cover different hypotheses accounting for the 
tension stiffening effect: elastic-brittle, elastic-plastic and a linear tension softening 
as shown in Figure 4.6.  

 

 

Figure 4.6: Different constitutive laws for concrete tensile behaviour. 

 
These hypotheses has been adopted in order to cover the possible choices performed 
by engineers/analysts in order to model the influence of the “tension stiffening 
effect” on the structural behaviour. 

The elastic-brittle and elastic-plastic constitutive laws are conceived as upper 
and lower limit (i.e. non-physical modelling hypotheses) approaches.  

The constitutive law having a linear tension softening for the concrete tensile 
behavior represents the physical modelling hypothesis and has been calibrated by 
means of an iterative process for each software and each structural member with 
the aim to best fit each experimental result. Specifically, the slope of the softening 
branch has been modified in order to obtain the related numerical results in 
agreement (as much as possible) with the experimental response in terms of force-
displacement or stress-strain. In this way, the fracture energy has been considered 
in absence of specific experimental tests and efficient provisions able to capture the 
large heterogeneity of the concrete properties of the different benchmark structural 
members. The iterative process devote to calibrate the linear tension softening 
model has been performed by setting the ultimate deformation in tension of concrete 
(i.e., εct,LTS in Figure 4.6) as a function of the deformation at the tensile elastic limit 
(i.e., εct in Figure 4.6). The explored range was between 2εct to 2εct,LTS without 
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evidences of significant dependence from the software and from the compressive 
strength. 

Finally, each modelling hypothesis will be represented by the choice of a 
specific software (i.e. 3 software) and of behaviour of concrete in tension (i.e. 3 
hypotheses). These modelling hypotheses belongs to the group of the epistemic 
uncertainties because each specific choice can lead to a reduction or increasing of 
the level of uncertainty (Der Kiureghian and Ditlevsen, 2009). 

Altogether, 9 different modelling hypotheses (i.e Model 1-9) can be defined 
combining the different types of software with the different concrete tensile 
behaviours. A representation of the modelling hypotheses herein adopted are 
summarized in Figure 4.7.  

 

 
 

Figure 4.7: Distinction between the 9 modelling hypotheses (Mo.1-9) adopted for the 
resistance model uncertainty investigation and summary of the benchmark NLFEAs. 

 
Finally, the quantification of the resistance model uncertainties can be 

performed for the different experimental tests of the 25 RC members, leading to a 
total number of benchmark NLFEAs equal to 225, as shown in Figure 4.7. 
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Results from NLFEAs of benchmark experimental tests 

In the present section, the experimental results presented by the scientific 
references Filho,1995; Foster and Gilbert, 1998; Lefas and Kotsovos, 1990; 
Leonhardt and Walter, 1966; Vecchio and Collins, 1982; Pang and Hsu, 1995 and 
the selected 25 different typologies of structural members are considered and 
assumed as benchmark test set for 2D NLFEAs. 

The numerical models has been realized in according to the modelling 
hypotheses previously described and in compliance to the experimental tests 
configuration. 

The experimental results, in terms of load vs displacement (Filho,1995; Foster 
and Gilbert, 1998; Lefas and Kotsovos, 1990; Leonhardt and Walter, 1966) or shear 
stress vs angular distortion diagrams (Vecchio and Collins, 1982; Pang and Hsu, 
1995), are compared to the outcomes from the different 225 2D NLFEAs. 

 Note that experimental systematic errors (e.g., modifications in the geometry 
or in the constraints) can affect the experimental results and represent another 
source of uncertainties, as furtherly discussed comparing the results of the 
simulations. 

 Moreover, as specified by Holický, 2016 , the test uncertainty can be ignored 
if the coefficient of variation of the test uncertainty is equal or lower than 0.05 
(which is a common value for tests of non-deteriorated reinforced concrete 
members without experimental errors) and the coefficient of variation of NLFEA 
resistance model uncertainties is equal or higher than 0.10. As will be demonstrated 
in the next Section, the present investigation falls under this circumstance. 

In the following the results of the NLFEAs having different modelling 
hypotheses are commented for each one of the benchmark experimental test sets. 

 
- FILHO,1995 

First of all, the results of the simulations performed on the walls MB11AA, 
MB11AE, MB1EE, MB1EE1 and MB4EE realized by Filho, 1995 are discussed. 
The schematization of the non-linear FE model and the monitored points according 
to the experimental arrangement are illustrated in Figure 4.8(f). The numerical 
results in terms of global structural resistance of the simulations are listed in Table 
4.2. The results from NLFEAs, plotted in Figure 4.8(a)-(e), adequately reproduce 
the experimental curve in terms of stiffness and resistance. The lowest results in 
terms of maximum load are achieved when the brittle constitutive law (models 1, 
4, 7) is adopted for concrete tensile behavior, while the plastic constitutive law 
(models 3, 6, 9) always leads to an overestimation of the maximum load.  

In general, all the simulations overestimate the ultimate displacement and then 
the structural ductility. The resisting mechanism occurs with the formation of a 
diagonal strut flowing from the loading device to the right side of the opening. The 
strut is equilibrated by the tensile steel reinforcements on the left side of the wall as 
shown in Figure 4.8(g). The failure mode occurs with the progressive yielding of 
the tensile reinforcements and concrete crushing in the column on the right side of 
the square opening, as illustrated in Figure 4.8(h). This failure is in compliance with 
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h) 

Concrete  
crushing Steel re-bars 

yielding 

MB11AA 
 

    

 Principal strain 
ε2 

 
Figure 4.8: Load vs displacement diagrams from experimental tests of Filho, 1995 and 

NLFEA results (a-e); numerical model schematization (f); crack patterns and σ2 principal stress 
flow at first yielding (g) and principal strain ε2 at failure (h) for MB11AA. 

 
Table 4. 2: Results in terms of resistance from the experimental tests REXP,i (Filho, 1995) and 

NLFEAs RNLFEA,i for the different structural models. 
Exp. 
 test 

REXP,i  
[kN] 

RNLFEA,i [kN] 

Mo. 1 Mo. 2 Mo. 3 Mo. 4 Mo. 5 Mo. 6 Mo. 7 Mo. 8 Mo. 9 

MB1AA 350 336 353 353 420 420 420 350 350 384 
MB1AE 407 382 425 389 440 440 480 384 400 450 
MB1EE1 413 396 387 414 450 400 500 432 450 500 
MB1EE1 416 432 432 432 450 450 500 459 450 450 
MB4EE 400 384 372 408 455 420 455 400 400 450 

 
 
- FOSTER AND GILBERT, 1998 

The experimental results of Foster and Gilbert, 1998 are related to five deep 
beams: B2.0-1, B2.0-3, B3.0-1, B2.0A-4 and B3.0A-4. The schematization of the 
non-linear FE model and the monitored points according to the experimental 
arrangement are illustrated in Figure 4.9(f). The numerical results in terms of global 
structural resistance of the simulations are listed in Table 4.3. Figures 4.9(a)-(e) 
show that models 3, 6, 8 related to elastic-plastic constitutive law for the concrete 
tensile behavior, always lead to an overestimation of the resistance. Models 1, 4, 7 
(elastic-brittle in tension) do not always represent the lower bound, as in the case 
of the sample B3.0A-4. Concerning the beams having the Scheme a arrangement, 
the failure mode occurs with the progressive yielding of the tensile bottom 
reinforcements and concrete crushing at the top chord close to the column where 
the load is applied (Figure 4.9(g)). Whereas, the beams realized according to the 
Scheme b, have shown a progressive yielding of the bottom reinforcements with 
concrete crushing in the top chord between the loading devices, as plotted in Figure 
4.9(h). All the simulations are able to reproduce the actual failure mode observed 
during the laboratory tests, exception for models 9 and 7 that showed a more ductile 
behavior (in particular for B2.01, B3.01 and B3.02 beams). 
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h) 
Concrete  
crushing 

Steel re-bars 
yielding 

B2.0A-4 (Scheme b) 
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ε2 

 
Figure 4.9: Load vs displacement diagrams from experimental tests of Foster and Gilbert, 

1998 and NLFEA results (a-e); numerical model schematization (f); crack patterns and principal 
strain ε2 at failure for B3.01/ B2.0A-4 (g-h). 

 
Table 4.3. Results in terms of resistance from the experimental tests Foster and Gilbert, 1998 

and NLFEAs RNLFEA,i for the different structural models. 
Exp. 
 test 

REXP,i  
 [kN] 

RNLFEA,i [kN] 
Mo.1 Mo.2 Mo.3 Mo.4 Mo.5 Mo.6 Mo.7 Mo.8 Mo.9 

B2.0A-4 1800 2000 1980 1980 2300 2300 2400 1710 1800 1980 
B3.0A-4 1400 1463 1463 1406 1800 1680 1800 1276 1276 1465 
B2.0-1 1590 1547 1500 1453 1600 1700 1900 1500 1375 1375 
B3.0-1 1000 1078 1031 1094 1200 1200 1300 950 1000 1100 
B2.0-3 1400 1547 1547 1578 1600 1700 1900 1400 1500 1500 

 
 
- LEFAS AND KOTSOVOS, 1990 

The result by Lefas and Kotsovos, 1990 considered for the investigation is the 
wall SW11. The schematization of the non-linear FE model as well as the monitored 
points according to the experimental arrangement are illustrated in Figure 4.10(b). 
The numerical results in terms of global structural resistance of the simulations are 
listed in Table 4.4. The NLFEA results, plotted in Figure 4.10(a), demonstrate that 
Models 7, 8 and 9 significantly underestimate the ultimate failure load 
demonstrating the intrinsic dependence of the results on the software code selection 
(i.e., Software C), whereas Models 3, 6, 9 overestimate the ductility of the structural 
member due to the choice of the plastic tensile behavior of the concrete in the 
inelastic phase.  

Table 4.4: Results in terms of resistance from the experimental tests REXP,i of Lefas and 
Kotsovos, 1990 and NLFEAs RNLFEA,i for the different structural models. 

Exp. 
 test 

REXP,i  
 [kN] 

RNLFEA,i [kN] 
Mo. 1 Mo. 2 Mo. 3 Mo. 4 Mo. 5 Mo. 6 Mo. 7 Mo. 8 Mo. 9 

SW11 253 231 221 250 255 255 270 203 225 225 
 

The actual failure mode is adequately reproduced by all the models, as shown 
in Figure 4.10(d) for SW11. Increasing the horizontal load applied to the top beam, 
a diagonal strut balanced by vertical external reinforcement develops inside the wall 
as illustrated in Figure 4.10(c). Progressively, the external reinforcements yield and 
the structural failure happens with concrete crushing in the right corner of the wall 
at the connection with the stiff foundation, as can be observed in Figure 4.10(d). 



-





-
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following within the probabilistic treatment for the proposal of the partial safety 
factor. 

 
The results deriving from the mentioned above 225 non-linear FE simulations 

are adopted in the following in order assess the resistance model uncertainties in 
2D NLFEAs of reinforced concrete structures characterised by different failure 
modes. These results have also demonstrated the several difficulties, which 
commonly occur considering different types of software and constitutive laws, in 
reproducing the actual failure behaviour of structural members highlighting the 
need to calibrate appropriate values of the partial safety factor for the resistance 
model uncertainties.  

4.2.5 Evaluation of the resistance model uncertainty safety factor 
for 2D NLFEAs of reinforced concrete structures 

In the present section the statistic and probabilistic treatment of the outcomes 
reported in Section 4.1.4 is proposed in order to assess the resistance model 
uncertainty safety factor γRd related to 2D NLFEAs of reinforced concrete 
structures. As already discussed, the numerical results differ significantly from one 
commercial software (i.e. Software A, B and C) to the others confirming that the 
choice of the software also induces a degree of uncertainty on the determination of 
the global structural response.  

Next, after the quantification and probabilistic characterization of the 
resistance model uncertainty, the partial safety factor γRd is estimated in compliance 
to a predetermined level of reliability. 

Quantification of the resistance model uncertainty 

The resistance model uncertainty ϑi can be assesses according to Section 1.3.1 
investigating the ratio between experimental and numerical results. This can be 
performed without distinguishing between the failure modes related to 
reinforcement yielding and/or to concrete crushing, as the aim of the study is to 
propose a partial safety factor for the global analysis and reliability evaluation of 
reinforced concrete structures.  

In Table 4.7 the results in terms of ϑi are reported for each structural member 
and for each modelling hypothesis. The results in Table 4.7 shows that the elastic-
brittle and elastic-plastic behaviour of concrete in tension do not necessarily bound 
the experimental failure load. The results also demonstrate the effectiveness of the 
different assumptions on the behaviour of concrete in tension during the inelastic 
global response of the structural member to capture its actual failure mode. In fact, 
in the case the numerical model provides wrong predictions related to the failure 
mode, values of ϑi much different from unity are recognised.  
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Table 4.7: Results of the investigation: ratios ϑi= REXP,i/RNLFEA,i for the different modelling 
hypotheses (Mo.1-9). 

Ref. [*] Exp. 
 test 

Model Uncertainty iϑ  [-] 
Mo. 

1 
Mo. 

2 
Mo. 

3 
Mo. 

4 
Mo. 

5 
Mo. 

6 
Mo. 

7 
Mo. 

8 
Mo. 

9 

Fihlo, 1995 

MB1AA 0.90 0.91 0.91 0.78 0.78 0.75 1.05 1.00 0.91 

MB1AE 0.96 0.96 1.00 0.78 0.83 0.78 1.10 1.10 0.96 
MB1EE

1 1.03 1.06 1.09 0.99 0.94 0.84 1.06 1.16 1.16 

MB1EE
1 0.93 0.97 0.91 0.83 0.83 0.77 1.05 1.00 0.91 

MB4EE 0.90 0.90 0.89 0.88 0.82 0.74 1.00 0.93 0.93 

Fosters ad Gilbert, 1998 

B2.0A-4 1.04 0.99 0.99 0.83 0.83 0.83 1.00 1.00 0.91 

B3.0A-4 1.07 0.96 1.05 0.93 0.93 0.85 1.06 1.02 0.90 

B2.0-1 1.04 1.07 1.00 0.92 1.03 0.83 0.96 0.92 0.83 

B3.0-1 0.96 0.96 0.96 0.92 0.92 0.83 0.91 0.92 0.92 

B2.0-3 1.04 1.08 0.98 0.88 0.95 0.88 1.00 1.00 0.89 

Lefas and Kotsovos, 1990 SW11 1.10 1.14 1.01 0.99 0.99 0.94 1.25 1.12 1.12 

Leonhardt and Walther, 
1966 

WT2 1.13 1.10 1.12 1.03 1.03 0.97 1.23 1.19 1.13 

WT3 0.97 0.97 0.97 0.89 0.89 0.84 1.03 0.97 0.97 

WT4 1.06 1.06 1.05 0.88 0.88 0.88 1.34 1.25 0.95 

WT6 0.81 0.79 0.79 0.85 0.85 0.79 0.99 0.99 0.83 

WT7 0.86 0.83 0.92 0.86 0.86 0.86 1.00 1.00 0.89 

Vecchio and Collins, 1982 

PV10 0.95 0.99 0.90 1.04 0.99 0.93 1.06 1.06 0.99 

PV19 0.76 0.66 0.66 0.81 0.81 0.76 1.05 1.05 1.05 

PV21 0.73 0.73 0.73 0.82 0.82 0.81 1.09 1.09 1.06 

PV22 0.73 0.75 0.75 0.90 0.90 0.90 1.28 1.28 1.28 

Pang and Hsu, 2000 

A2 0.52 0.52 0.52 0.77 0.74 0.71 1.03 1.03 1.01 

A4 0.57 0.57 0.57 0.80 0.80 0.70 1.03 1.03 0.98 

B2 0.54 0.54 0.54 0.89 0.86 0.89 0.92 0.92 0.89 

B5 0.47 0.47 0.47 1.01 0.99 0.87 0.78 0.78 0.78 

B6 0.46 0.51 0.51 0.99 0.96 0.73 0.92 0.92 0.89 

 
It is also possible to observe that the difference detected between the actual 

and the predicted failure loads may be significantly high. Specifically, unsafe ratios 
ϑi up to 0.46 with the highest dispersion values are achieved in the case of the shear 
panels tested by Pang and Hsu, 2000, as previously highlighted. It means that the 
NLFE numerical models have not always been able to describe the actual structural 
response.  Moreover, modelling hypotheses herein adopted generally overestimate 
the failure resistances of the structures under investigation. Therefore, the predicted 
values of the failure load, in general, are not on the safe side. This aspect is crucial 
with respect to the safety verification with the consequence that a particular care is 
necessary to the calibration of the resistance model uncertainties partial safety factor 
for NLFEAs of reinforced concrete structures.  

The very low values of ϑi for the shear panels of Pang and Hsu, 2000 are 
possibly due to the experimental difficulties to realize a perfect iso-static scheme 
during the experimental test leading to additive uncertainties (i.e. experimental 
uncertainties) related to the actual mechanical behaviour, as previously 





-

-
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data; 
- for each structural model Mj, assessment of the statistical parameters, that 

are assumed deterministic and summarized into the vector z, of the 
distribution function FMj(ϑ|z) averaging the statistical parameters of the other 
models; in this way, nine FMj(ϑ|z), j=1,…,9, are estimated and each one 
represents the new information, deriving from the results of the other eight 
models, for the structural model Mj; 

- assessment of the posterior distribution functions F(ϑ | Mj, z) for each 
structural model Mj, which represent the posterior data; 

- assessment of the average posterior distribution function F(ϑ |Z) with the 
estimation of the distribution parameters, which are assumed deterministic 
and summarized into the vector Z, averaging the statistical parameters of the 
posterior distributions of the different structural models. 

 

 
Figure 4.15: Framework for the Bayesian updating and assessment of the partial safety factor 

for resistance model uncertainty in 2D NLFEAs of reinforced concrete structures; in the present 
investigation m=9 and n=20-25. 
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As demonstrated in previous subsection and according to JCSS Probabilistic 
Model Code, 2001, the resistance model uncertainties for reinforced concrete 
structures are modelled by unimodal lognormal distributions F(ϑ|Mj). As a result of 
the Bayesian procedure, the mean value and coefficient of variation of the posterior 
density functions F(ϑ|Mj, z) are reported in Tables 4.8 and 4.9 together with the 
statistical parameters of the prior distributions F(ϑ|Mj) and of the distributions 
representing the new information FMj(ϑ|z). The statistical parameters of the 
lognormal distributions in Tables 4.8 and 4.9 have been evaluated by means of the 
maximum likelihood technique (i.e. maximum likelihood estimators – MLE). It 
should be noticed that, considering all the results, the coefficient of variation of the 
posterior distributions F(ϑ|Mj,z) on the resistance model uncertainties for each 
structural model is not negligible and it ranges from 0.11 to 0.17 (Table 4.8).  
 

 

      0.5 1 1.5
0

1

2

3

4

5

6

7

 

a) 

PD
F 

[-
] 

( )jf Mϑ  

( | , )jf M zϑ  
( | )Mjf zϑ  

( | )f Zϑ  

iϑ  [-] 
 

 
    

0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

 

b) 

CD
F 

[-
] 

iϑ  [-] 
 

( )jF Mϑ  

( | , )jF M zϑ  
( | )MjF zϑ  

( | )F Zϑ  

 
Figure 4.16: Prior and posterior and new information PDFs (a) and CDFs (b); (all results). 

 
Table 4.8: Mean values and coefficients of variation of the prior/posterior and new 
information distribution functions (all results) with the statistical uncertainty. 

Structural 
Model 

Prior 
distributions 
(Lognormal) 

( )jF Mϑ  

Statistical 
uncertainty 

New 
information 
(Lognormal) 

( | )MjF zϑ  

Statistical 
uncertainty 

Posterior 
distributions 
(Lognormal) 

( | , z)jF Mϑ  

ϑµ   

[-] 
Vϑ  
 [-] C(1,1) C(2,2) 

ϑµ   

[-] 
Vϑ  
 [-] C(1,1) C(2,2) 

ϑµ   

[-] 
Vϑ  
 [-] 

1 0.83 0.34 0.0031 0.0017 0.91 0.20 0.0002 0.00008 1.02 0.15 
2 0.83 0.33 0.0030 0.0016 0.91 0.20 0.0002 0.00008 1.02 0.15 
3 0.82 0.32 0.0029 0.0015 0.91 0.20 0.0002 0.00009 1.02 0.15 
4 0.89 0.10 0.0003 0.0002 0.90 0.23 0.0002 0.0001 0.96 0.17 
5 0.89 0.10 0.0003 0.0002 0.91 0.20 0.0002 0.00006 0.96 0.16 
6 0.82 0.11 0.0003 0.0002 0.91 0.20 0.0002 0.00006 0.95 0.17 
7 1.04 0.11 0.0005 0.0003 0.88 0.22 0.0002 0.0001 1.09 0.11 
8 1.02 0.11 0.0005 0.0002 0.88 0.23 0.0002 0.0001 1.07 0.12 
9 0.96 0.12 0.0005 0.0003 0.89 0.23 0.0002 0.0001 1.02 0.14 
  

Average statistical parameters 

Posterior 
distribution 
(Lognormal)

( | )F Zϑ  
  

ϑµ [-] Vϑ
 [-] 

  1.01 0.15 
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Instead, excluding the experimental results of Pang and Hsu, 2000, the 
coefficient of variation of the posterior distributions drops to values ranging from 
0.10 to 0.15 (Table 4.9).  
In addition, the statistical uncertainty associated with the estimates of the 
distribution parameters for the prior distributions and for each distribution 
representative of the new information can be expressed by the covariance matrices 
C for the parameters estimates and may be determined through the inverse of the 
Fischer information matrices (Faber, 2012).  
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Figure 4.17: Prior and posterior and new information PDFs (a) and CDFs (b); (excluding 

Pang and Hsu, 2000 results. 
 

Table 4.9: Mean values and coefficients of variation of the prior/posterior and new 
information distribution functions (excluding Pang and Hsu, 2000 results) with the inherent 

statistical uncertainty. 

Structural 
Model 

Prior 
distributions 
(Lognormal) 

( )jF Mϑ  

Statistical 
uncertainty 

New 
information 
(Lognormal) 

( | )MjF zϑ  

Statistical 
uncertainty 

Posterior 
distributions 
(Lognormal) 

( | , z)jF Mϑ  

ϑµ   

[-] 
Vϑ

  

[-] C(1,1) C(2,2) 
ϑµ   

[-] 
Vϑ

  

[-] C(1,1) C(2,2) 
ϑµ   

[-] 
Vϑ

  

[-] 

1 0.94 0.14 0.0009 0.0005 0.94 0.14 0.0001 0.00005 1.02 0.12 
2 0.93 0.16 0.0011 0.0006 0.94 0.14 0.0001 0.00005 1.02 0.13 
3 0.93 0.15 0.0010 0.0005 0.94 0.14 0.0001 0.00005 1.01 0.13 
4 0.89 0.10 0.0004 0.0002 0.95 0.14 0.0001 0.00006 0.97 0.14 
5 0.89 0.09 0.0003 0.0002 0.94 0.14 0.0001 0.00005 0.96 0.14 

6 0.84 0.09 0.0003 0.0002 0.94 0.14 0.0001 0.00006 0.95 0.15 
7 1.07 0.09 0.0006 0.0003 0.93 0.14 0.0001 0.00005 1.10 0.10 
8 1.05 0.09 0.0004 0.0002 0.93 0.14 0.0001 0.00005 1.08 0.10 

9 0.97 0.12 0.0007 0.0004 0.94 0.14 0.0001 0.00006 1.03 0.12 
  

Average statistical parameters 

Posterior 
distribution 
(Lognormal)

( | )F Zϑ  
  

ϑµ  [-] Vϑ   [-] 
  1.01 0.12 
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In Tables 4.8 and 4.9, the terms of the main diagonal of the abovementioned 

Fischer information matrices (i.e., C(1,1) and C(2,2) representative of the variance 
of the parameters μϑ and σϑ, respectively) are also reported for each prior 
distribution and for each distribution representative of the new information, 
respectively, related to each structural model.  

The mean values of the posterior distributions are slightly higher than the 
corresponding prior values due to the distributions related to the new information 
FMj(ϑ| z). Regardless of the software selected for the analysis, after the Bayesian 
updating, Models 3, 6, 9 (plastic behavior for concrete in tension) have shown the 
largest coefficient of variation. This is due to the fact that they have always 
presented the lowest mean value μϑ (i.e. unsafe bias corresponding to an 
overestimation of the actual strength) and the highest coefficient of variation for the 
model uncertainties. 

The prior and posterior probability density and cumulative distribution 
functions (i.e. PDFs-CDFs) of the resistance model uncertainty together with the 
distributions related to the new information are plotted respectively in Figure 4.16(a) 
- 4.16(b) considering all the results and in Figure 4.17(a) - 4.17(b) excluding the 
results of Pang and Hsu, 2000. The mean value and the coefficient of variation of 
the resistance model uncertainties are respectively equal to 1.01 and 0.15 as listed 
in Table 4.8 considering all the results, and to 1.01 and 0.12 as reported in Table 
4.9 excluding Pang and Hsu, 2000 results. 

As the Pang and Hsu, 2000 results leaded to higher level of epistemic 
uncertainty related, mainly, to uncertain experimental tests, the calibration of the 
partial safety factor is performed considering only the set of results derived 
excluding such experimental outcomes. 

Resistance model uncertainty safety factor γRd 

The results of the statistical and probabilistic analysis proposed in previous 
subsections allow to perform the calibration of the partial factor γRd related to the 
resistance model uncertainties for 2D NLFEAs of reinforced concrete structures. The 
resistance model uncertainty safety factor γRd can be derived as a function of the 
required reliability level taking into account the reliability differentiation proposed 
by structural Codes (e.g. fib Model Code 2010; EN1990). The target levels of 
reliability for the ULS design and assessment of new and existing reinforce d concrete 
structures are suggested, respectively, by fib Model Code 2010; EN1990; ISO 2394, 
2015; fib Bulletin 80, 2016.  

fib Model Code 2010 differentiates the target values of the reliability index β as 
a function of the consequences of failure and of the reference service life of the 
structure. Concerning new structures with 50 years of service life, the value of β may 
be assumed equal to 3.1, 3.8 and 4.3 respectively for low, moderate and high 
consequences of structural failure. As for existing structures, the level of reliability is 
identified as a function of the residual service life as well as a range of β is suggested 
depending on the costs necessary for the safety measures. For a residual service life 
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of 50 years, the value of β may be adopted in the range 3.1-3.8; for residual service 
life of 15 years, β can be selected in the range 3.4-4.1; for residual service life of 1 
year, the values of β are suggested varying in the range of 4.1-4.7. In the hypothesis 
of lognormal distributions for the resistance model uncertainties ϑ and adopting the 
statistical parameters reported in Table 4.9 (i.e., μϑ =1.01, Vϑ =0.12 excluding Pang 
and Hsu, 2000 results), the partial safety factor γRd can be calculated in compliance 
with Eq.(4.2) for the different levels of reliability suggested by fib Model Code 2010, 
as listed in Tables 4.10 and 4.11.  

 
Table 4.10: Values of the partial safety factor γRd for the model uncertainties in 2D NLFEAs 

of reinforced concrete structures according to fib Model Code 2010 (hypothesis of non-dominant 
resistance variable). 

New  
structures 

Service 
life 

Consequences  
of failure 

Reliability 
index  

β 

FORM 
factor  

αR 

Partial safety 
factor  

 γRd  
Excluding results 

Pang and Hsu,2000 
[Years] [-] [-] [-] [-] 

50 Low 3.1 Non-
dominant 

0.32 

1.12 
50 Moderate 3.8 1.15 
50 High 4.3 1.17 

Existing  
structures 

Residual service life 
Reliability 

index  
β 

FORM 
factor 

 αR 

Partial safety 
factor  

 γRd  
Excluding results 

Pang and Hsu,2000 
[Years] [-] [-] [-] 

50 3.1 - 3.8 Non-
dominant 

0.32 

1.12- 1.15 
15 3.4 - 4.1 1.13- 1.16 
1 4.1 - 4.7 1.16 - 1.19 

 
Table 4.11: Values of the partial safety factor γRd for the model uncertainties in 2D NLFEAs of 
reinforced concrete structures according to fib Model Code 2010 (hypothesis of dominant 

resistance variable). 

New  
structures 

Service 
life 

Consequences  
of failure 

Reliability 
index 

 β 

FORM 
factor  

αR 

Partial safety factor  
 γRd  

Excluding results 
Pang and Hsu,2000 

[Years] [-] [-] [-] [-] 
50 Low 3.1 

Dominant  
0.8 

1.34 
50 Moderate 3.8 1.44 
50 High 4.3 1.52 

Existing  
structures 

Residual service life 
Reliability 

index  
β 

FORM 
factor 

 αR 

Partial safety factor  
 γRd  

Excluding results 
Pang and Hsu,2000 

[Years] [-] [-] [-] 
50 3.1 - 3.8 

Dominant  
0.8 

1.34 - 1.44 
15 3.4 - 4.1 1.39 - 1.49 
1 4.1 - 4.7 1.49 - 1.58 

 



•
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4.3 Comparison between safety formats for NLFEAs 

The present Section aims to compare the different safety formats introduced in 
Section 2.3 (i.e. Partial Factor Method (PFM), Global Resistance Methods (GRMs) 
and Probabilistic Method (PM)) in order to estimate the global design strength of 
different reinforced concrete members by means NLFEAs. 

Specifically, non-linear finite element models are properly defined to 
reproduce different experimental tests. Successively, several non-linear finite 
element analyses are carried out in compliance with the different safety formats for 
each reinforced concrete structure experimentally tested in order to compare and 
critically discuss the results in terms of resistance and failure mode.  

As introduced in Chapter 1 the fib Model Code 2010 define the Levels of 
Approximation approach (i.e LoAs) as methodological approach for multi-level 
evaluation of the structural safety. According to this principle, lower LoAs imply 
the use of simplified, and almost safer, resistance models with lower time spending 
required to assess the structural safety. Conversely, the highest levels of 
approximation suggested by makes it possible to adopt refined numerical methods 
(such as the non-linear finite element method (NLFE)) in order to assess the 
structural reliability. Nevertheless, facing the draft on new fib Model Codes, the 
possibility to apply the LoAs in order to classify the different safety formats is 
seriously analyzed by responsible scientific committees. 

For this reason, in the present, the different safety formats are investigated and 
compared to demonstrate if they are able to estimate the corresponding global 
design resistance capacities and to capture any possible modification in the failure 
mode for each structure (and then perform “safe” predictions). In the details, the 
term failure mode will represent: “global structural collapse due to a specific 
material failure occurred in a specific location within the structural member”. 
Moreover, the suitability of the safety formats to be classified according to LoAs 
approach is also discussed. 
The following safety formats, described in Section 2.3, has been compared and 
discussed: 

1. Partial Factor Method (PFM) (fib Model Code 2010); 
 
2. Global Resistance Methods (GRMs) 
- Method of estimating the coefficient of variation of the structural resistance 

(ECOV) (fib Model Code 2010); 
- Global Resistance Factor (GRF) (fib Model Code 2010); 
- Global Safety Format (GSF) (Allaix et. Al, 2013); 

 
3. Probabilistic Method (PM) (fib Model Code 2010). 

 
The detailed description of the methodologies is proposed in Section 2.3. In the 

following, the study cases adopted in order to compare the different safety formats 
are described.   
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4.3.1 Case studies and NLFE modelling 

The following reference RC structures have been assumed: four simply 
supported beams with web openings having experimental results known from the 
literature (Aykac et al., 2013) and one simply supported “T” beam designed 
according to EN 1992-1-1 and checked also with fib Model Code 2010.  

In the first subsection, the description of the structural members with the 
loading configuration is reported and, subsequently, the NLFE models are 
calibrated according to the experimental evidences. In this process of definition and 
calibration of the NLFE models, the actual values of the material properties coming 
from the experimental measurements are considered as mean values.  

Description of the structural members and of the actual structural 
behavior 

Firstly, the beams with web openings realized and tested by Aykac et al., 2013 
are described. Four beams with a 150 x 400 mm rectangular section and with a span 
length of 3900 mm have been selected from the original experimental campaign. 
The first three beams are characterized by n°12 200x200 mm square openings and 
are casted with growing reinforcement ratios (e.g., SL, SM, SH where S=square 
openings, L=low reinforcement ratio, M=medium reinforcement ratio, H=high 
reinforcement ratio). The fourth beam has n°12 circular openings with a diameter 
of 200 mm and crossing diagonal reinforcements between the openings. The 
characteristics of the beams from Aykac et al., 2013 selected for the present 
investigation are reported in Tables 4.12 and 4.13 with the mechanical properties 
of the materials.  

 

Table 4.12: Beams selected with the geometric details of longitudinal reinforcements and 
with properties of concrete. 

Ref. Beam Opening 

Tensile 
reinforcement Compression 

reinf. 
Diagonal 

reinf. 
fc 

Amount Ratio 
[-] [-] [-] [-] [MPa] 

Aykac 
et al, 
2013 

SL Square 
2Φ8 and 

2Φ10 
0.0045 2Φ8 - 22 

SM Square 
2Φ8 and 

4Φ10 
0.0070 2Φ8 - 20 

SH Square 
2Φ8 and 

7Φ10 
0.0111 2Φ8 - 21 

CLX Circular 
2Φ8 and 

7Φ10 
0.0045 2Φ8 2Φ10 22 

- 
T-

Beam 
No 

openings 
3Φ24 0.0123 4Φ14 - 28 
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Table 4. 13: Properties of the reinforcements. 

Ref. 
Diameter 

[mm] 
fy 

[MPa] 
Es 

[MPa] 

Aykac et 
al, 2013 

Φ8 - Φ10 - Φ12 480 200000 

Φ4 - Φ6 520 200000 

T-Beam Φ8 - Φ14 - Φ24 495 200000 

 
The geometric scheme with the reinforcement arrangement for each beam from 

Aykac et al., 2013 is depicted in Figure 4.18(a)-(d). The experimental tests were 
conducted by means of a 200 kN capacity steel frame.  

 

  

 

 

 
Figure 4.18: Reinforcements arrangement for beams with square openings SL, SM, SH (a) 

and CLX (c); representation of the tests set and loading configuration (b) and (d) (modified from 
Aykac et al., 2013). (Dimensions in [mm]). 
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Figure 4.19: Reinforcements arrangement for the T-Beam (a) and representation of the static 

scheme and loading configuration (b). (Dimensions in [mm]). 

 
Specimens were simply supported and symmetrically loaded at four points with 

the loading points located at 0.3 m and 1.2 m on either side of the midspan. The 
load from a hydraulic cylinder was equally distributed to the four loading points by 
means of a main and of two secondary steel spreading beams. Six-point bending 
condition (two support and four loading points) was adopted (Figure 4.18(b) and 
(d)). 

The last beam considered for the investigation has been designed from the 
authors according to EN 1992-1-1 in order to fail in bending for a total design load 
of 335 kN. The structural verifications, performed also in compliance with fib 
Model Code 2010, are fully satisfied. The beam has a “T” shaped cross section with 
total height of 500 mm, top flange width of 500 mm and web width of 150 mm. The 
top flange thickness is 100 mm. The details of reinforcements and of material 
properties are, respectively, reported in Tables 4.12 and 4.13 and represented in 
Figure 4.19(a). The beam is supposed to be loaded with a six point bending scheme 
(Figure 4.19(b)). 

Definition, calibration and validation of the NLFE models  

The finite element models of the Beams SL, SM, SH, CLX and of the T-Beam 
have been performed adopting the software ATENA 2D, using four-node 
quadrilateral iso-parametric plane stress finite elements, which are based on a linear 
polynomial interpolation and 2x2 Gauss point’s integration scheme. The FE meshes 
have properly been defined after an appropriate sensitivity analysis. The non-linear 
system of equations is solved by means of the standard Newton-Raphson iterative 
procedure based on the hypothesis of a linear approximation.  

Concerning the material models, non-linear behavior of concrete in 
compression has been modelled with the SBeta Model available in the ATENA 2D 
platform. This model allows to consider compression softening behavior with a 
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reduction of the compression strength and shear stiffness (shear retention factor 
equal to 0.2) after cracking. 

The tensile concrete behavior has been modelled with a linear tension softening 
law to take into account the “tension stiffening effect”, as widely discussed in 
Section 2.2 and 4.2. Concerning the beams of Aykac et al., 2013, the inclination of 
the softening branch has been modified by means of an iterative process to best fit 
the experimental response in terms of force-displacement or stress-strain as also 
carried out in Section 4.2. Whereas, for the T-Beam designed according to EN1992-
1-1 the ultimate strain in tension has been assumed as ten times the elastic strain at 
the peak tensile strength. In this way, the fracture energy has been again accounted 
for, in absence of specific experimental tests and provisions. 

The two-dimensional failure criteria defined by Kupfer and Gerstle, 1973 has 
been adopted in order to model the plane-stress failure mode of concrete matrix and 
the cracking process has been reproduced using the smeared cracking with fixed 
crack direction model. 

Concerning the reinforcement steel, the bi-linear constitutive law in tension and 
in compression (assuming a hardening behavior with an increase of strength at the 
ultimate deformation of 7% equal to 15% of the yielding strength) has been 
adopted. The reinforcement has been modelled with discrete bar elements assuming 
a perfect bond with the surrounding concrete. 

The finite element models have been defined considering half beam due to the 
perfect symmetry. In agreement with the experiments performed by Aykac et al., 
2013 and with the loading configuration selected for T-Beam, the following loading 
history has been considered to perform the NLFEAs: 

- Dead weight; 
 

- Incremental loading applied according to the test set configuration up to 
failure. 

 
The Young modulus of the materials and the concrete tensile strength have been 

calculated starting from the actual values of the parameters given from the 
experiments (i.e., assumed as mean values) in compliance with JCSS Probabilistic 
Model Code 2001 and fib Model Code 2010. Table 4.14 describes and summarizes 
the modelling hypotheses performed concerning the equilibrium, the compatibility 
and constitutive law within the definition of the NLFE models. 

In the following, for all the RC beams, the structural resistance is represented 
in terms of the ultimate global loads reached during the incremental loading 
processes according to the experimental tests as reported in Table 4.15 with a 
description of the failure modes, also shown in Figure 4.20. 

As introduced before, the failure mode identifies a specific resisting mechanism 
developed with the crisis of a specific material in a certain region of the structural 
member.  
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Table 4.14: Basic modelling hypotheses assumed in the definition of NLFE numerical models. 

  Software: ATENA 2D  

Equilibrium 

 
- Standard Newton-Raphson based on the hypothesis of linear 

approximation  
- Convergence criteria based on strain energy 

- Load step sizes defined in compliance with the experimental 
procedure 

 

Compatibility 

 
FINITE ELEMENTS 

- Iso-parametric plane stress 4 nodes (2x2 Gauss points 
integration scheme with linear interpolation) 

- Discrete reinforcements 
- Element size defined by means of an iterative process of 

numerical accuracy  
  

Constitutive 
laws  

 
CONCRETE 

- Fixed crack model, smeared cracking, constant shear retention 
factor = 0.2 

- Mono-dimensional model extended to biaxial stress state 
- Compression: Non-linear with post peak linear softening branch 
- Tension: Elastic with post peak linear tension softening (LTS) 

 
REINFORCEMENT STEEL 

- bi-linear constitutive law for the reinforcement in tension and in 
compression  

 
 

Table 4.15: Comparison between the NLFEAs results and the experimental outcomes. 

Ref. Beam 

Experimental 
ultimate load 

RExp 

[kN] 

Actual 
failure 
mode 

Material 
properties 
used for 
NLFEA 

Ultimate 
load from 
NLFEA      

Rm 
[kN] 

NLFEA 
failure 
mode 

Aykac et al, 2013 

SL 92.2 Bending Mean 85.1 Bending 
SM 117.0 Vierendeel Mean 100.7 Vierendeel 
SH 123.0 Vierendeel Mean 109.9 Vierendeel 

CLX 116.0 Bending Mean 94.2 Bending 
- T-Beam 435.4  Bending Mean 458.6 Bending 

 
The beams with square opening present ultimate loads that increase as the 

reinforcement ratio increases (i.e., SL, SM and SH) with different failure modes. In 
fact, the beam with a low reinforcement ratio is characterised by a bending failure 
mode as illustrated in Figure 4.20 (a), whereas Beams SM and SH present a 
Vierendeel failure mode as shown in Figure 4.20(c-e), respectively. The failure 
mode of the Beam CLX is a bending mechanism (Figure 4.20(g)).  
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Figure 4.20: Failure modes recognised from NLFEAs with numerical and experimental load-

displacement curves. 
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Finally, the T-Beam is characterised by a bending failure mode according to 
the design purposes EN1992-1-1 (Figure 4.20(i)). Table 4.15 reports in place of the 
experimental ultimate load the ultimate load evaluated according to EN1992-1-1 
using mean values of material properties.  

Note that the failure modes of the beams with openings are in agreement with 
the experimental evidences. In Figures 4.13(b),(d),(f),(h),(l), the load-displacement 
curves for each RC beam are shown and compared to the experimental outcomes 
regarding the beams with openings. In addition, the differences in terms of the 
global resistance between the numerical results and the experimental ones are 
mainly due to the modelling uncertainties of these complex structures and this lack 
of knowledge, in practice and for a comprehensive evaluation of structural 
reliability, is covered by the corresponding resistance model uncertainty safety 
factor γRd  as discussed in Section 4.1. 

4.3.2 Results from NLFEAs 

The results of NLFEAs required for the application of the different safety 
formats are reported and commented separately for PFM and global resistance 
methods, ECOV, GRF and methods that requires probabilistic modelling as PM and 
GSF. 

NLFEAs results according to PFM, ECOV and GRF 

Next, the comparison between the following safety formats is reported, 
considering each one of the five RC beams:  

 
- Partial factor method (PFM) (fib Model Code 2010): is based on using the 

design values of the material resistances; 
 
- Estimation of the coefficient of variation (ECOV) (fib Model Code 2010): is 

based on using the mean values and the characteristic values of the material 
properties; 

 
- Global resistance factor (GRF) (fib Model Code 2010, EN1992-2): is based 

on using the fcmd value for concrete and the fym value (set equal to the experimental 
value) for reinforcement.  
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Beam SL 
Aykac et al, 2013 
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Figure 4.21: Beam SL Aykac et al, 2013: Failure mode recognised for simulations performed 

with NLFEAs (a); results in terms of ultimate global resistance R for the NLFE simulations in 
agreement with the PFM, ECOV and GRF methods (b). 

 
Figures 4.21 - 4.25 illustrates the load-displacement curves evaluated with the 

characteristic, design and mean values together with the the load-displacement 
curve defined using fcmd and fym in compliance with the three safety formats for the 
five reinforced concrete beams, respectively. In addition, a description of the 
corresponding failure mode is also indicated. As obvious, the numerical curves 
present the peak resistance values when the mean values of the material properties 
are considered. With reference to the failure mode, for each RC beam the resistance 
mechanism is the same identified in the previous section. Specifically, Beam SL, 
Beam CLX and T-Beam present bending failure modes, whereas Beam SM and 
Beam SH are characterised by a Viereendel failure mode, herein identified as 
“Viereendel - A” mechanism, equal to the one shown in Figures 4.20(c) and (e).  

It is worthy to observe that the resistance, estimated using the fcmd and fym 

values, tends to the resistance achieved with the mean values if the bending failure 
mode occurs due to the relevant contribution of the steel re-bars. Instead, the curve 
tends to the resistance achieved with the characteristic values if the Viereendel 
failure mode occurs due to the dominant role of the concrete.  
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Figure 4. 22: Beam SM Aykac et al, 2013: Failure mode recognised for simulations performed 
with NLFEAs (a); results in terms of ultimate global resistance R for the NLFE simulations in 

agreement with the PFM, ECOV and GRF methods (b). 
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Beam SH 
Aykac et al, 2013 
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Figure 4.23: Beam SH Aykac et al, 2013: Failure mode recognised for simulations performed 
with NLFEAs (a); results in terms of ultimate global resistance R for the NLFE simulations in 

agreement with the PFM, ECOV and GRF methods (b). 
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Figure 4.24: Beam CLX Aykac et al, 2013: Failure mode recognised for simulations 
performed with NLFEAs (a); results in terms of ultimate global resistance R for the NLFE 

simulations in agreement with the PFM, ECOV and GRF methods (b). 
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Figure 4.25: T-Beam: Failure mode recognised for simulations performed with NLFEAs (a); 

results in terms of ultimate global resistance R for the NLFE simulations in agreement with the 
PFM, ECOV and GRF methods (b). 
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Specifically, the structural properties assumed as independent random variables 

relevant to the problem with the corresponding probabilistic distributions are 
reported in Table 4.16. 

If other aleatory uncertainties (e.g., geometrical properties) are relevant to the 
problem, they can be considered following the similar approach according to the 
LHS technique. 

The concrete tensile strength fct as well as the concrete Young modulus Ec have 
been assumed as random variables dependent on the concrete compressive strength 
fc random variable according to JCSS Probabilistic Model Code, 2001. Moreover, 
note that regarding the reinforced concrete beams tested by Aykac et al., 2013, the 
mechanical properties of the various reinforcements are different (Table 4.12), so 
the number of random independent variables to consider increases 

In fact, with reference to Beam SL, as example, Figure 4.26 shows the sampled 
values of each one of the five independent random variables employed to define the 
30 NLFE models. In fact, for each sample, it is possible to read the five sampled 
values of the five random variables combined by the ones of the LHS method. 
Similar process has been followed to define the 30 NLFE models of the other four 
reinforced concrete beams. 

Table 4. 16: Probabilistic models (JCSS Probabilistic Model Code, 2001) for the main 
independent random variables affecting the structural behaviour. 

Random variable 
Probabilistic 
distribution 

Mean 
value* 

Coefficient of 
variation 

Concrete cylinder compressive strength fc 
[MPa] log-normal fcm 0.15 

Reinforcement steel yielding strength fy  
[MPa] log-normal fym 0.05 

Reinforcement steel Young modulus Es  
[MPa] log-normal 200000 0.03 

*Mean value = experimental value for reference Aykac et al., 2013[21] 

 
 

The results from the 30 NLFEAs carried out for each reinforced concrete beam 
are, respectively, depicted in Figures 4.27 - 4.31, illustrating all the failure modes 
that occur as well as the results in terms of the global structural resistance (Figure 
4.27(b), Figure4.28(c), Figure 4.29(b), Figure 4.30(b), Figure 4.31(c)).  

These figures also illustrate the lognormal probability density functions (PDFs) 
with the mean value, the coefficient of variation (CoV), estimated by means of the 
maximum likelihood technique (i.e., ML), and the p-value after Anderson-Darling 
test confirm the log-normality assumption (Figure 4.27(c), Figure 4.28(d), Figure 
4.29(c), Figure 4.30(c), Figure 4.31(d)).  
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Figure 4.27: Beam SL (Aykac et al., 2013): Failure mode recognised for simulations 
performed with NLFEAs (a); results in terms of ultimate global resistance R for the NLFE 

simulations coming from n=30 LHS samples (b); lognormal probabilistic distribution for the 
global resistance R (c). 
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Figure 4.28: Beam SM (Aykac et al., 2013): Failure modes recognised for simulations 
performed with NLFEAs (a)-(b); results in terms of ultimate global resistance R for the NLFE 
simulations coming from n=30 LHS samples (c); lognormal probabilistic distribution for the 

global resistance R (d). 
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Figure 4.29: Beam SH (Aykac et al., 2013): Failure mode recognised for simulations 

performed with NLFEAs (a); results in terms of ultimate global resistance R for the NLFE 
simulations coming from n=30 LHS samples (b); lognormal probabilistic distribution for the 

global resistance R (c). 

 
From the observation of the all 30 numerical results related to each RC 

structure, it derives that:  
 
- Beam SL is always characterized by only one failure mode having a bending 

mechanism with concrete crushing and yielding of the steel re-bars (Figure 4.27(a)-
(b));  

 
- Beam SM presents two failure modes with a Viereendel mechanism 

characterized by local failures in different structural regions (Viereendel-A; 
Viereendel-B) (Figure 4.28(a)-(c));  
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Figure 4.30: Beam CLX (Aykac et al., 2013): Failure mode recognised for simulations 

performed with NLFEAs (a); results in terms of ultimate global resistance R for the NLFE 
simulations coming from n=30 LHS samples (b); lognormal probabilistic distribution for the 

global resistance R (c). 

 
- Beam SH is always characterized by only one failure mode having a 

Viereendel-A mechanism (Figure 4.29(a)-(b));  
 
- Beam CLX is always characterized by only one failure mode having a bending 

mechanism with concrete crushing and yielding of the steel re-bars (Figure 4.30(a)-
(b));  

- T-Beam presents two failure modes having, respectively, a bending 
mechanism with concrete crushing and yielding of the steel re-bars and a shear 
mechanism with concrete crushing (Figure 4.31(a)-(b)). 
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Figure 4.31: Beam designed according to fib Model Code 2010 and to EC2 (T-Beam): Failure 

modes recognised for simulations performed with NLFEAs (a)-(b); results in terms of ultimate 
global resistance R for the NLFE simulations coming from n=30 LHS samples (c); lognormal 

probabilistic distribution for the global resistance R (d). 
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Table 4.17: Results from the LH sampling and ML estimates of the parameters. 

Ref. Beam 

N° of 
LH 

samples 
[-] 

Probabilistic 
distribution 

[-] 

ML estimates 

μR 

[kN] 

σR 

[kN] 
VR 
[-] 

Aykac et 
al, 2013 

SL 

30 lognormal 

80.7 4.4 0.054 
SM 97.8 10.4 0.107 
SH 103.0 10.5 0.102 

CLX 92.8 4.8 0.052 
- T-Beam 413.7 35.6 0.086 

 
These results, summarized in Table 4.17, demonstrate that the failure mode 

strongly depends from the values of the material properties assumed in order to 
perform the NLFEM simulations for the assessment of the structural reliability. 

4.3.3 Comparison between outcomes of safety formats  

In this section, the global structural resistances in terms of design ultimate load 
of the five RC beams are evaluated in compliance with each safety format, 
according to Section 2.3 . 

As previously explained, the design ultimate loads have been computed 
assuming a value of the resistance model uncertainty factor γRd equal to 1.00 as 
well as a reliability index β equal to 3.8 for ordinary structures with moderate 
consequences in the case of failure with a lifetime of 50 years. In addition, the 
FORM sensitivity factor αR is considered equal to 0.8 in the hypothesis of dominant 
resistance variable. 

In Table 4.18, all the main results for each beam and safety format are reported: 
the ultimate loads achieved from the NLFEAs, the failure modes, the statistical 
parameters if necessary and, finally, the design ultimate loads.  

In Figure 4.32 in semi-logarithmic scale, for the reinforced concrete beams, the 
cumulative distribution functions (CDFs) evaluated according to the results related 
to PM safety format in the previous section, are shown and are assumed as reference 
probability functions since they account for the effect of the possible modifications 
of the failure mode. On these reference CDFs all the design ultimate loads of the 
different safety formats are reported and compared. On the vertical axis on the right 
side of each figure, the corresponding values of the reliability index β are also 
reported. Note that the reliability levels shown in Figure 4.32 do not represent the 
actual safety level of the different reinforced concrete members because they are 
evaluated in absence of the model uncertainty random variable, according to the 
hypothesis of use a unitary value for γRd. 

Analyzing the results, it is possible to state that for the Beam SL, Beam SH and 
Beam CLX the failure mode does not present any modification and the GRF and 
PFM safety formats always provide design ultimate loads lower the one evaluated 
with the PM (Figure 4.25(a),(c),(d)). 
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Table 4.18: Results in terms of design ultimate load from different safety formats. 

Safety 
format 

Ultimate 
load 

R 
 [kN] 

Failure mode VR γR 

Design 
ultimate 

load 
Rd  

[kN] 
Beam SL (Aykac et al., 2013) 

PFM 65.1 Bending - - 65.1 
ECOV* 85.1 -  77.1 Bending 0.060 1.20 70.9 
GRF 79.9 Bending - 1.27 62.8 
GSF 30 results Bending 0.054 1.18 72.2 
PM 30 results Bending 0.054 1.24 68.5 

Beam SM (Aykac et al., 2013) 
PFM 73.1 Vierendeel - A - - 73.1 
ECOV* 100.7 -  85.5 Vierendeel - A 0.099 1.35 74.5 
GRF 84.3 Vierendeel - A - 1.27 66.4 
GSF 30 results Vierendeel - A and B 0.107 1.38 72.8 
PM 30 results Vierendeel - A and B 0.107 1.42 70.7 

Beam SH (Aykac et al., 2013) 
PFM 69.1 Vierendeel - A - - 69.1 
ECOV* 109.9 -  91.9 Vierendeel - A 0.108 1.39 79.0 
GRF 89.5 Vierendeel - A - 1.27 70.5 
GSF 30 results Vierendeel - A 0.102 1.37 80.5 
PM 30 results Vierendeel - A 0.102 1.46 75.4 

Beam CLX (Aykac et al., 2013) 
PFM 72.0 Bending - - 72.0 
ECOV* 94.2 -  85.6 Bending 0.058 1.19 79.0 
GRF 90.0 Bending - 1.27 70.9 
GSF 30 results Bending 0.052 1.17 80.5 
PM 30 results Bending 0.052 1.19 79.1 

T-Beam 
PFM 349.4 Bending - - 349.4 
ECOV* 458.6 -  411.8 Bending 0.065 1.22 376.1 
GRF 443.0 Bending - 1.27 348.9 
GSF 30 results Bending; Shear 0.086 1.30 352.9 
PM 30 results Bending; Shear 0.086 1.44 318.3 

*For ECOV method, the two values of the ultimate load correspond, respectively, to 
R(fm) and R(fk) 

 
 

Moreover, for the Beam CLX, the ECOV safety format also provides a design 
ultimate load lower than the estimation of the PM (Figure 4.32(d)). 
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Figure 4.32: Probability plot of the design ultimate loads related to the different safety fomats: 

Beam SL(a); Beam SM(b); Beam SH(c); Bema CLX(d); T-Beam (e). (γRd =1.00; β= 3.8; αR = 0.8). 

 
Instead, for the Beam SM and T-Beam the failure modes are characterized by 

modifications, especially regarding the T-Beam. In fact, for the Beam SM, only the 
GRF safety format provides a design ultimate load lower the one of the PM (Figure 
4.32(b)); for the T-Beam all the PFM and GRMs (i.e ECOV, GRF and GSF)  safety 
formats estimate design ultimate loads higher than the one of the PM with lower 
reliability levels because they are not able to capture the modifications of the failure 
mode as shown in Figure 4.32(e).  

The differences in design ultimate loads of the different safety formats in the 
T-Beam are so large because the modifications in the failure modes affect both the 
materials and the location where failure occurs: the bending mechanism involve the 
both materials at the midspan, whereas the shear mechanism involves only the 
concrete near to the restrain. Regarding the Beam SM the modifications in the 
failure modes are due to the differences in the locations of the local mechanisms.  

 
This analysis implies that when the design ultimate resistance is estimated by 

means of a safety format, which does not take into account the actual probabilistic 
distribution of the structural resistance as a function of the possible failure modes, 
the predetermined safety level is not adequately guaranteed. 

 In fact, although the ECOV and GSF safety formats take into account a 
statistical parameter within the design resistance assessment, they do not actually 
account for the modification of the failure mode due to the following reasons: the 
coefficient of variation in the ECOV safety format is evaluated by means of a 
simplified approach which, obviously, does not consider any possible modification 
in the failure mode; whereas, the GSF safety format fails due to the assumption to 
assess the mean value of the distribution of the global structural resistance equal to 
the value achieved from a NLFEA by employing the mean values of the material 
properties. 
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4.3.4 Discussion and proposals  

The results reported in Section 4.2.3 indicates that a methodology able to 
capture the mechanical behavior of the structure depending on the values assumed 
for material properties is necessary (i.e., failure mode sensitivity). At the same time, 
the methodology should be easy and with limited required computational effort. For 
this reason, the first subsection proposes a framework based on two preliminary 
NLFEAs to discern the applicability, or not, of the PFM and GRMs (i.e. non-
probabilistic safety formats) in comparison with the PM. If PFM and GRMs can 
not be applied, a new safety factor is proposed in the second subsection to cover the 
effects of the aleatory uncertainty and inherent simplification of non-probabilistic 
safety formats on the prediction of global structural response. In the third 
subsection, a further safety format based on a safe “a priori” hypothesis related to 
the coefficient of variation of global resistance is proposed according to the results 
of Section 4.2.3. Finally, the possible implementation of a methodology based on 
the levels of approximation approach (LoAs) is discussed. 

Preliminary NLFEM simulations 

The present subsection proposes a proposal for a preliminary evaluation of the 
failure mode sensitivity by means of two preliminary NLFEAs in order to verify the 
applicability of the PFM and GRMs (i.e. ECOV, GRF and GSF) in comparison with 
the PM. The two preliminary analyses consist of: 

1) one NLFE simulation using the mean values for the concrete properties and 
the design values for the reinforcement properties; 
 

2) one NLFE simulation using the design values for the concrete properties 
and the mean values for the reinforcement properties. 

A simplified graphical representation of the meaning of the two preliminary 
analyses is reported in Figure 4.33. 

 

 

Figure 4.33: Graphical representation of the two preliminary NLFE analyses assuming as 
variables the reinforcement yielding strength fy and the concrete compressive strength fc. 
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Figure 4.34: Beam SM (Aykac et al., 2013): failure modes recognised for the two preliminary 

simulations (a)-(b); load-displacement curves (c). 

 
If the failure modes from these two preliminary analyses are the same, it 

follows that one between PFM and the GRMs (specifically GRF, ECOV, GSF 
methods) as well as the PM can be adopted to estimate the design ultimate load, 
whereas if the failure modes are different, an in-depth discussion for the selection 
the safety format to be used for the safety verification is required.  

 
With reference to all the reinforced concrete beams considered in the previous 

sections, the results of the preliminary analyses are reported in Table 4.19 and 
confirm that, for both Beam SM and T-Beam, the failure mode changes when a 
material (i.e., concrete/steel) is assumed stronger or weaker than the other one. In 
Figures 4.34 and 4.35, the failure modes recognized for the two preliminary NLFE 
simulations related to Beam SL and to T-Beam are illustrated as well as the 
corresponding load-displacement curves. 
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Figure 4.35: Beam designed according to fib Model Code 2010 and to EN 1992-1-1                 

(T-Beam): failure modes recognised for the two preliminary simulations (a)-(b); load-
displacement curves (c). 

 
The Figure 4.34 confirms that the failure mode does not change and a more 

ductile response when the design value is adopted for the reinforcement steel. The 
Figure 4.35 clearly highlights the difference in the two failure modes for the T-
Beam: ductile and brittle failure modes. 

As discussed in Subsection 4.2.3, with reference to Beam SL, all the design 
ultimate loads reported in Table 4.18 are valid; regarding the T-Beam, only the 
design ultimate load achieved by the PM is acceptable (Figure 4.32(e)). 

 
However, for practical applications and facing to the LoAs approach, the PM 

requires an high computational effort and in the next section a new proposal is 
described in order to apply the PFM and GRMs (without performing probabilistic 
analyses) also in the case the modification of the failure mode occur.  
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Table 4.19: Results from the preliminary analyses. 

Preliminary 
NLFEAs 

Material properties 
Ultimate load 

R [kN] 
Failure mode Concrete fc 

[MPa] 
Reinforcement fy 

[MPa] 
SL (Aykac et al., 2013) 

1 Mean Design 72.3 
Bending 

2 Design Mean 77.1 
SM (Aykac et al., 2013) 

1 Mean Design 92.7 Vierendeel - B 
2 Design Mean 71.2 Vierendeel - A 

SH (Aykac et al., 2013) 
1 Mean Design 89.5 

Vierendeel - A 
2 Design Mean 80.6 

CLX (Aykac et al., 2013) 
1 Mean Design 85.6 

Bending 
2 Design Mean 82.8 

T-Beam 
1 Mean Design 358.8 Bending 
2 Design Mean 286.2 Shear 

 

Failure-mode based safety factor γFM 

In order to apply PFM and GRMs due to their reduced computational effort 
also in the critical cases, updated values of the aleatory uncertainty global safety 
factor are herein proposed for the assessment of the design global resistance. In 
Table 4.20 are reported the values of the global resistance factors γR for the different 
safety formats according to the literature (Allaix et al, 2013; fib Model Code 2010). 
On the base of the results of the present work, an additional failure mode-based 
safety factor denoted as γFM  is proposed (Table 4.20). The γFM safety factor is 
defined in order to cover the uncertainties related to the inherent simplifications 
performed within the definition of the PFM and GRMs (i.e. non-probabilistic 
methods) and their influence on the prediction of the actual failure mode due to the 
failure mode sensitivity of the structure induced by aleatory uncertainties.  

In agreement with Table 4.20, the assessment of the design global resistance Rd 

can be performed, according to the selected safety format, as follows: 
 

                                            
γ γ γ

=
⋅ ⋅

rep
d

R FM Rd

R
R                                           (4.3) 

 
The failure mode-based safety format factor γFM has been calibrated in order to 

get the results, in terms of design global resistance Rd evaluated with the PFM and 
GRMs (i.e. GSF, ECOV, GRF) reported in Table 4.18, in compliance with the 
design global resistance Rd estimated with the probabilistic method (PM).  

                         
 



 

162 
 

Table 4.20: Summary of the global resistance factors γR, of the failure mode factors γFM and of 
the model uncertainty factor γRd for the different safety formats. 

Safety 
format 

Results from 
preliminary simulations Model 

uncertainty 
safety 
factor 

γRd  
[-] 

Same failure 
modes 

Different failure 
modes 

Global 
resistance safety 

factor γR  
[-] 

Global 
resistance safety 

factor γR  
[-] 

Failure mode-
based safety 
factor γFM  

[-] 
PM   

exp(αR∙β∙VR) 
 

exp(αR∙β∙VR) 
1.00 

1.15 
See Section 

4.1 

GSF  
 

1.15 
 

ECOV  
GRF 1.27 1.27 
PFM 1.00 1.00 

 
This assessment leads to values of γFM varying in the range about 1.00-1.18. 

Therefore, the value of γFM set equal to 1.15 is herein suggested. In Table 4.20, in 
sake of completeness, is also reported the suggested value for the resistance model 
uncertainty safety factor γRd set equal to 1.15 according to Section 4.1.  

The herein proposed general framework for the use of NLFEAs to assess the 
design global structural resistance (for the design/assessment of new/existing 
structures) according to the different safety formats is depicted in Figure 4.36. 

 

 
Figure 4. 36: Flowchart of the proposed methodology for the assessment of design global 

resistance Rd by means of NLFEAs. 
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New simplified safety format and applicability of the levels of 
approximation approach 

In this last subsection, the proposal for a new simplified safety format 
pertaining to the GRMs is discussed together to the possibility of application of the 
principles of the LoAs approach to the safety formats for NLFEAs. 

First of all, the results reported in Table 4.18 shows that the coefficient of 
variation VR of the global structural resistance vary between 0.054 and 0.107 
concerning reinforced concrete members having different failure modes. This result 
highlight that even if the global collapse is due to failure of concrete (supposed to 
have a coefficient of variation for compressive strength equal to 0.15 according to 
fib Model Code 2010), the coefficient of variation VR of the global resistance is still 
influenced by the coefficient of variation of the reinforcement yielding strength 
(supposed to be 0.05 according to fib Model Code 2010).  

In fact, Figure 4.37 shows that the coefficient of variation of the five structural 
members investigated in previous subsections are bounded by the coefficient of 
variation of concrete compressive strength equal to 0.15 (failure mode characterized 
by pure concrete failure) and the coefficient of variation of the reinforcement 
yielding strength set equal to 0.05 (failure mode characterized by pure yielding of 
reinforcements). 
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Figure 4.37: Bounds for coefficient of variation showed by global resistance. 

 
These results suggest that to assume the coefficient of variation of the global 

structural response set equal to the one commonly adopted for concrete compressive 
strength (i.e. VR = 0.15) is a safe hypothesis. Then the safety verification may be 
performed, in extremely simplified manner, only adopting one NLFE simulation 
defined using mean values of material properties (i.e. R(fm)) and setting the global 
resistance factor γR equal to: 

exp( 0.15)R Rγ α β= ⋅ ⋅  (4.4) 
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according to the assumption of lognormality for the probabilistic distribution 
of global structural resistance.  

Then, in case of ordinary structures of new construction having 50 years of 
service life with moderate consequences of failure (i.e. β = 3.8 with αR = 0.8, fib 
Model Code 2010), the global resistance factor γR can be set equal to 1.58. 

Finally, the safety verification can be performed according to: 

( )
γ γ γ

=
⋅ ⋅

NLFEA m
d

R FM Rd

R fR  (4.5) 

This approach can be denoted as “Simplified Mean Value Method” (SMVM) 
as it is based on mean values of material properties and on an “a priori” simplified 
assumption about the coefficient of variation of the global structural resistance. 
Furthermore, the failure mode-based safety factor γFM can always be assumed as 
equal to 1.00 without perform any preliminary simulation, as the high coefficient 
of variation assumed for global structural response already cover the uncertainties 
related failure mode sensitivity and presence of brittle failure modes. 
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Figure 4.38: Ratio between the design resistances obtained with the different safety formats 

(i.e. PFM, ECOV, GRF, GSF and SMVM)) and the PM for the beams SL (Aykac et al., 2013) and           
T-Beam. 

 
In Figure 4.38(a-b) are shown the ratio between the design resistance obtained 

by means the different safety formats PFM, ECOV, GRF, GSF and SMVM and the 
PM. Specifically, in Figure 4.38(a) are reported the ratio for the SL beam of Aykac 
et al., 2013 the failed in bending for both the preliminary simulations. In this case 
the prediction of the different safety formats are closer or safer respect to the 
solution obtained with the PM and justifies the assumption of failure mode-based 
safety factor γFM  set equal to 1.00, as discussed in previous subsection.   

Figure 4.38(b) reports the ratio for the T-Beam that presented bending and 
shear failure modes within the two preliminary simulations. In this case, the PFM, 
ECOV, GRF and GSF all overestimate the global design resistance with respect to 
the PM solution without considering the failure mode-based safety factor γFM set 
equal to 1.15. The application of the γFM = 1.15 leads to global design resistances in 
agreement with the one obtained with PM. It should be noticed that, also in the case 
of the T-Beam, the result obtained with the SMVM methodology does not require 



 

165 
 

the γFM  correction as the associated design global resistance is already safer than 
the one obtained with PM. 
 

Finally, the results of the present dissertation indicate that the LoAs approach 
may be applied also to safety verifications by means of NLFEAs. In fact, the global 
structural response may be determined with different levels of accuracy and with 
different time spending in order to perform simulations and to apply the different 
safety formats. 

In next Section, the possible implementation of the LoAs approach is proposed 
in the light of the observations and the results obtained in Section 4.2 and 4.3. 
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4.4 Levels of approximation format for design and 
assessments of reinforced concrete structures by means 
NLFEA 

 
According to the levels of approximation approach (LoAs) defined by fib 

Model Code 2010, a framework suitable for implementation in future codes (as by 
fib Model Code 2020) can be defined according to the results of the present 
dissertation.  In the details, three LoAs can be defined complying to the following 
fundamental criteria: 

 
- definition of a general notation able to include parameters representing the 

global structural behavior that may differ from the global resistance referred to a 
specified external load, as for example displacements, accelerations, imposed 
deformations, etc… ;  

 
- all the levels of approximation (LoAs) should be referred to a specific level of 

reliability identified by the target reliability index β; 
 
- LoA I, requires limited number of NLFE simulations with “a priori” 

assumptions related to the coefficient of variation of global structural response; 
 
- LoA II, requires limited number of NLFE simulations with a simplified 

method for the estimation of the coefficient of variation of global structural 
response; 

 
- LoA III, requires the definition of simplified or full probabilistic models in 

order to perform the reliability analysis. 
 

4.4.1  General  

In compliance with the limit states design approach, the basic requirement can 
be considered as satisfied if the following inequality is met: 
 

d dGECP GEDP≥  (4.6) 
 
where GECPd is the design Global Engineering Capacity Parameter, which 

may be represented by the ultimate value, in a specific loading situation, of external 
loads, displacements, accelerations, internal forces, imposed displacements and all 
the other possible parameters able to reflect the global structural response; GEDPd 
is the design Global Engineering Demand Parameter defined according to the 
GECPd in compliance to codes provisions for the actions related to the specific limit 
state.  
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The methods for structural verification and assessment (i.e. safety formats) 

according to a predefined level of reliability can be classified complying to the 
levels of approximation approach as: 
 

- LoA I :  
i. Partial Factor Method (PFM) 
ii. Simplified Mean Value Method (SMVM) 

- LoA II :  
i. Method of estimation of coefficient of variation (ECOV) 

- LoA III :  
i. Simplified Probabilistic Method (SPM) 
ii. Full Probabilistic Method (FPM) 

 
All the safety formats are based on the basic principles characterizing the 

global resistance format (GRF). The levels of approximation LoA I (only for PFM) 
and LoA II requires to perform two preliminary simulations crossing material 
properties of concrete and reinforcement (i.e. mean/design and vice-versa) in order 
to be applied properly. The LoA III requires the definition of appropriate 
probabilistic models for the main involved variables (i.e. resistances and actions). 

In the mentioned above safety formats three different safety factors are adopted 
with the following meaning: 

- γR, global engineering capacity safety factor which accounts for the 
aleatory uncertainty related to the basic variables that may influence 
the structural behaviour (e.g. materials properties); 

 
- γRd, resistance model uncertainty safety factor which accounts for the 

epistemic uncertainty related to the non-linear model definition; 
 

- γFM, failure mode-based safety factor which accounts for the 
additional uncertainty related to the simplifications performed in the 
definition of the safety format and their influence on the prediction of 
the actual failure mode at the design level.  

 
In Table 4.21 are reported the mentioned above safety factors suggested for 

ordinary reinforced concrete structures of new construction having moderate 
consequences of failure and 50 years of service life. 
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Table 4.21: Partial factors involved by the different safety formats according to ordinary 
structures of new construction having moderate consequences of failure with 50 years of service 

life (i.e. β = 3.8, αR = 0.8). 

Level of 
approximation 

Safety 
format 

Global 
engineering 

capacity safety 
factor γR 

[-] 

Model 
uncertainty 
safety factor 

γRd 

[-] 

Failure mode-based 
safety format factor 

γFM 

[-] 
Result from preliminary 

simulations 
Same 
failure 
modes 

Different 
failure 
modes 

LoA I SMVM 1.58 

1.15 

1.00 
PFM 1.00 1.00 1.15 LoA II ECOV see Sec. 4.4.3 

LoA III SPM see Sec. 4.4.4 - FPM - 
 

4.4.2  Level of approximation I (LoA I)  

The level of approximation I methods related to the reliability-based structural 
verification and assessment of reinforced concrete structures by means non-linear 
analysis are identified by: 

 
- the Simplified Mean Value Method (SMVM); 
- the Partial Factor Method (PFM). 

Simplified Mean Value Method (SMVM) 

The evaluation of design Global Engineering Capacity Parameter - GECPd -
can be performed by means non-linear analysis according to: 

 
(x )

γ γ γ
=

⋅ ⋅
m

d
R FM Rd

GECPGECP  (4.7) 

where xm is the vector of basic variables identified by their mean values (or 
measured values concerning existing structures).  

The global engineering capacity safety factor γR can be set equal to 1.58 
concerning ordinary structures of new construction having 50 years of service life. 
This value is derived according to the hypothesis of lognormal distribution of the 
GECP, assuming a coefficient of variation VGECP equal to 0.15 as commonly done 
for the concrete compressive strength and setting the reliability index β = 3.8 with 
αR = 0.8 (i.e. dominant variable). Values related to different levels of reliability (i.e. 
β and αR ) and can be derived from Eq.(4.8): 

exp( 0.15)R Rγ α β= ⋅ ⋅  (4.8) 

The model uncertainty safety factor γRd can be set equal to 1.15 concerning 
ordinary structures of new construction having 50 years of service life.  
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Values related to different levels of reliability (i.e. β and αR ) can be derived 
from Eq.(4.9): 

1 exp( 0.12)
1.01Rd Rγ α β= ⋅ ⋅  (4.9) 

where 1.01 and 0.12 are, respectively, the mean value and the coefficient of 
variation of resistance model uncertainty. 

The failure-mode based safety factor γFM  can be set equal to 1.00 without any 
preliminary simulation. In fact, the choice of a fixed value of coefficient of variation 
VGECP equal to the coefficient of variation usually adopted for concrete compressive 
strength (i.e. 0.15) already cover the possibility of a brittle failure mode. 

Partial Factor Method (PFM) 

The evaluation of design Global Engineering Capacity Parameter - GECPd - 
can be performed according to: 

 
(x )

γ γ
=

⋅
d

d
FM Rd

GECPGECP  (4.10) 

 
where xd is the vector of basic variables identified by their design values 

according to codes provisions for different levels of reliability (i.e. fib Model Code 
2010, EN 1990, fib Bulletin 80). 

The model uncertainty safety factor γRd can be set equal to 1.15 concerning 
ordinary structures of new construction having 50 years of service life. Values 
related to different levels of reliability (i.e. β and αR ) can be derived from Eq.(4.11): 

 
1 exp( 0.12)

1.01Rd Rγ α β= ⋅ ⋅  (4.11) 

where 1.01 and 0.12 are, respectively, the mean value and the coefficient of 
variation of resistance model uncertainty. 

The failure-mode based safety factor γFM can be defined base on the results of 
the two preliminary analyses. The γFM=1.15 should be adopted if different failure 
modes are recognized within the preliminary analyses or if the preliminary analyses 
are not performed, while, the γFM = 1.00 can be adopted if the same failure mode is 
evidenced.  
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4.4.3  Level of approximation II (LoA II)  

The level of approximation II method related to the reliability-based structural 
verification and assessment of reinforced concrete structures by means non-linear 
analysis is identified by: 

 
- Method of estimation of coefficient of variation (ECOV) 

Method of estimation of coefficient of variation (ECOV) 

The evaluation of design Global Engineering Capacity Parameter - GECPd - 
can be performed by means non-linear analysis according to: 

 
(x )

γ γ γ
=

⋅ ⋅
m

d
R FM Rd

GECPGECP  (4.12) 

where xm is the vector of basic variables identified by their mean values (or 
measured values concerning existing structures).The GECP is assumed as a 
lognormal distributed variable.  

The global engineering capacity safety factor γR can be evaluated as: 

exp( )R R GECPV= ⋅ ⋅γ α β  (4.13) 

where αR and β are the FORM sensitivity factor and the target reliability index, 
respectively. The value of αR can be assumed as be equal to 0.8 in the hypothesis of 
dominant variable and the value of β can be set equal to 3.8 in case of ordinary 
structures with 50 years of service life. 

According to the lognormality hypothesis, the coefficient of variation of the 
global engineering capacity parameter VGECP can be estimated as: 

( )
( )

1 ln
1.65

m
GECP

k

GECP x
V

GECP x
 

= ⋅   
 

 (4.14) 

where GECP(xm) and GECP(xk) are the results of non-linear analyses 
performed with mean values xm and characteristic values xk of main involved 
variables. 

The model uncertainty safety factor γRd can be set equal to 1.15 concerning 
ordinary structures of new construction having 50 years of service life. Values 
related to different levels of reliability (i.e. β and αR ) can be derived from Eq.(4.15): 

 
1 exp( 0.12)

1.01Rd Rγ α β= ⋅ ⋅  (4.15) 

where 1.01 and 0.12 are, respectively, the mean value and the coefficient of 
variation of resistance model uncertainty. 

The failure-mode based safety factor γFM  can be defined base on the results of 
the two preliminary analyses. The γFM = 1.15 should be adopted if different failure 
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modes are recognized within the preliminary analyses or if the preliminary analyses 
are not performed, while, the γFM = 1.00 can be adopted if the same failure mode is 
evidenced.  

 
4.4.4  Level of approximation III (LoA III)  

The level of approximation III methods related to the reliability-based 
structural verification and assessment of reinforced concrete structures by means 
non-linear analysis are identified by: 

 
- Simplified Probabilistic Method (SPM); 
- Full Probabilistic Method (FPM). 

Simplified Probabilistic Method (SPM) 

The evaluation of design Global Engineering Capacity Parameter - GECPd -
can be performed according to: 

 
m

d
R Rd

GECPGECP =
⋅γ γ

 (4.16) 

 
where GECPm is the mean value of the probabilistic distribution of global 

engineering capacity parameter GECP.  

The global engineering capacity safety factor γR can be defined as: 

exp( )R R GECPV= ⋅ ⋅γ α β  (4.17) 
 

where αR and β are the FORM sensitivity factor and the target reliability index, 
respectively. The value of αR can be assumed as be equal to 0.8 in the hypothesis of 
dominant variable and the value of β can be set equal to 3.8 in case of ordinary 
structures with 50 years of service life. 

The mean value GECPm and coefficient of variation VGECP of the global 
engineering capacity parameter GECP can be evaluated performing non-linear 
analyses adopting a simplified probabilistic model for concrete and reinforcements 
properties according to Table 4.22. 

 
Table 4.22: Simplified probabilistic model for SPM. 

 Distribution Mean value Coefficient of 
variation 

Concrete cylinder compressive 
strength  lognormal fcm 0.15 

Reinforcement yielding 
strength lognormal fym=1.1fyk 0.05 

 
A reduced Monte Carlo simulation by means Latin Hypercube Sampling LHS 

with at least 30 samples should be accomplished. The GECP variable is modelled 
by means of a lognormal distribution. 
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All the other properties related to the definition of the non-linear model should 

be derived starting from concrete cylinder compressive strength and reinforcement 
yielding strength according to current specifications (e.g. EN 1992, 2004 and fib 
Model Code 2010). 

The model uncertainty safety factor γRd can be set equal to 1.15 concerning 
ordinary structures of new construction having 50 years of service life. Values 
related to different levels of reliability (i.e. β and αR ) can be derived from Eq.(4.18): 

 
1 exp( 0.12)

1.01Rd Rγ α β= ⋅ ⋅  (4.18) 

where 1.01 and 0.12 are, respectively, the mean value and the coefficient of 
variation of resistance model uncertainty. 

Full Probabilistic Method (FPM) 

The assessment of the structural reliability is performed in the performance 
domain estimating the probability of failure under the relevant design situation and 
comparing the result with the target probability. The full probabilistic method 
requires the definition of a complete probabilistic model related both to material 
resistances, geometry, actions and related model uncertainties. 

Then, the following inequality should be met: 
 

(X ) ( ) 0R i A j TP GECP GEDP Y p ⋅ − ⋅ ≤ ≤ ϑ ϑ  (4.19) 

 
where GECP(Xi) is the global engineering capacity parameter evaluated in 

function of the main random variables Xi characterizing the structural behavior (e.g. 
resistances, geometry); GEDP(Yi) is the global engineering demand parameter 
evaluated in function of the main random variables Yi representing the external 
actions; ϑR and ϑA are the model uncertainty random variables related to non-linear 
analysis and actions, respectively; pT is the target probability. 
 

Information related to probabilistic modelling or material resistances, 
geometry and actions with associated model uncertainties can be derived from 
literature (e.g. JCSS Probabilistic Model Code 2001).  

The model uncertainty ϑR related to the characterization of the global 
engineering capacity parameter by means of non-linear analysis can be identified 
by means of a lognormal distribution having mean value set equal to 1.01 and 
coefficient of variation set equal to 0.12. 
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Figure 4.39: Summary of the proposed code format based on the levels of approximation 

approach. 

 
 

The Figure 4.39 summarize the proposed framework based on the LoAs 
approach for design and assessment of reinforced concrete structures by means of 
NLFEAs. The time devoted to perform the safety verification increase passing from 
LoA I to LoA III also with the complexity of implementation of the probability 
theory.  
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Chapter 5 

Conclusions 

The present dissertation report advances concerning structural reliability 
analysis related to two important topics: 

 
- the probabilistic calibration of empirical and semi-empirical 

resistance models; 
 

- the use of non-linear finite elements software for design and 
assessment of new and existing reinforced concrete structures. 

 
Specifically, a framework based on the Monte Carlo method for the derivation of 
design equations from empirical or semi-empirical resistance models has been 
proposed. The procedure allows to account for of the influence of both aleatory and 
resistance model uncertainties (i.e. epistemic) in the reliability-based calibration of 
the mentioned above resistance models. 

This result can be obtained by means of the definition of multiplicative 
probabilistic coefficients ζp, which are related to a specific probability of under-
exceedance p. The design coefficient ζd is directly related to a certain value of the 
reliability index β (i.e. probability of failure). Then, the final design equation can 
be derived as a function of the level of reliability required by the codes for new and 
existing structures. The proposed procedure is very general as it is independent from 
the probabilistic model defined for the main random variables. Furtherly, it is 
suitable for the calibration of design formulations corresponding to both 
serviceability (SLE) and ultimate limit states (ULS). 

The methodology herein developed has been applied to the probabilistic 
calibration of the semi-empirical model proposed by fib Model Code 2010 for laps 
and anchorages tensile strength evaluation. The calibration of model uncertainty for 
the mentioned above semi-empirical model has been performed on the basis of an 
extended experimental database distinguishing between new and existing 
structures. Then, the semi-empirical model for tensed lapped joints and anchorages 
strength calculation probabilistically calibrated. The reliability-based design 
expression for laps and anchorage strength has been defined depending on the 
selected level of reliability according to codes prescriptions. The derived 
formulation has been adopted in order to define the expression for ultimate bond 
strength suitable for laps and anchorage design. 

Finally, the outcomes of the procedure has been validated according to 
experimental results and to a simplified analytic procedure. 



 

175 
 

 
The second part of the dissertation focused on the use of NLFEAs for structural 
design and assessment. 

First of all, the model uncertainty safety factor γRd (i.e., epistemic uncertainties) 
concerning the global structural resistance for 2D non-linear finite element method 
analyses of reinforced concrete structures has been defined. Several experimental 
tests concerning different typologies of structures with different behaviours and 
failure modes (i.e., walls, deep beams, panels), have been numerically simulated by 
means of appropriate 225 NLFEAs considering different software and three 
different constitutive laws for the behaviour of concrete in tension. From the 
comparison with the experimental outcomes, the FE results have demonstrated the 
many difficulties, which commonly occur employing different types of software 
and constitutive laws, in reproducing the actual failure behaviour and the actual 
failure load of the structural members herein considered. The resistance model 
uncertainty have been computed and characterised by appropriate lognormal 
distributions. Subsequently, a consistent treatment has been proposed following a 
Bayesian approach to define the mean value and the coefficient of variation 
characterizing the distribution functions of the resistance model uncertainties. 
Specifically, the mean value and the coefficient of variation of the resistance model 
uncertainties are respectively equal to 1.01 and 0.15 considering all the results, and 
to 1.01 and 0.12 excluding the tests affected by another source of uncertainties 
related to the experimental static configurations. Successively, in agreement with 
safety formats for NLFEAs, the values of the model uncertainty safety factor γRd 
have been evaluated and proposed as a function of the target reliability levels 
corresponding to new or existing structures, of the failure consequences and of the 
hypothesis of dominant or non-dominant resistance variable. Specifically, 
excluding the results assumed as tests affected by uncertainties on the experimental 
static configurations, the model uncertainty safety factor γRd presents a range of 
variation for new or existing structures between around 1.3 and 1.6 in the hypothesis 
of dominant resistance variable and between around 1.1 and 1.2 in the hypothesis 
of non-dominant resistance variable. Instead, accounting for all the results, the 
partial safety factors related to the resistance model uncertainties are slightly higher 
(about 5%).Finally, for both new and existing ordinary structures, in the hypotheses 
of non-dominant resistance variable, of moderate consequences of structural failure 
and for a service life of 50 years, a model uncertainty safety factor γRd for 2D 
NLFEAs of reinforced concrete structures equal to 1.15 is suggested. 

 
Secondly, the comparison between different safety formats within the Global 

Resistance Format (GRF) for the estimation of the global design strength of 
different reinforced concrete structures has been proposed. Specifically, NLFE 
models are properly defined to reproduce the experimental tests and, successively, 
to perform several NLFEAs in compliance with the different safety formats for each 
reinforced concrete beam. The different safety formats are investigated to 
demonstrate if they are able to estimate the corresponding design global resistance 
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capacities capturing any modification in the failure mode of the reinforced concrete 
structure. The PM is obviously assumed as the reference safety format. 

From the analysis of the results, it is possible to state that for some beams (i.e., 
Beam SL, Beam SH and Beam CLX) the failure mode does not present any 
modification and the GRF and PFM safety formats always provide design ultimate 
loads lower the one evaluated with the PM. Moreover, for the Beam CLX, the 
ECOV safety format also provides a design ultimate load lower than the estimation 
of the PM. Instead, for the other beams (i.e., Beam SM and T-Beam) the failure 
modes are characterized by some modifications. In fact, for the Beam SM, only the 
GRF safety format provides a design ultimate load lower the one of the PM; for the 
T-Beam, the PFM and all the GRMs safety formats (i.e. ECOV, GRF and GSF) 
estimate design ultimate loads higher than the one of the PM with lower reliability 
levels because they are not able to capture the modifications in the failure mode. 
This analysis highlights that when the design ultimate resistance is estimated by a 
safety format, which does not take into account the actual distribution of the 
structural resistance as a function of the possible modifications in the failure mode, 
the safety level is not adequately guaranteed. The structural safety assessment 
should be always based on the assessment of the mechanical response of a structure. 
It follows that the capability to capture any possible modification in the failure 
mode for the different safety formats is a fundamental safety requirement.  

According to the outcomes of the mentioned above comparison, a preliminary 
evaluation, composed of two preliminary NLFEAs under the hypothesis of one 
material (i.e., concrete/steel) stronger than the other one and vice versa, is proposed 
to verify the applicability of the simplified safety formats. In fact, if the failure mode 
does not change in the two preliminary analyses it follows that PFM and GRMs 
(specifically GRF, ECOV, GSF methods) can be adopted to estimate the design 
ultimate load, whereas if the resistance mechanism are different, the PM is 
suggested as the unique safety format able to perform a reliable estimation of the 
design ultimate load within the reliability assessment. In order to apply simplified 
safety formats also in the critical cases due to their reduced computational effort, a 
failure mode-based safety factor γFM related to the inherent simplifications of non-
probabilistic safety formats is proposed for the assessment of the design global 
resistance in case the structure is sensitive to change its failure mode. The suggested 
value for the failure mode-based safety factor γFM results to be 1.15. However 
deeper investigations are necessary. 

Finally, the applicability of the Levels of Approximation approach (LoAs) to 
safety formats for NLFEAs of reinforced concrete structures has been discussed. A 
LoA I safety format denoted as “Simplified Mean Value Method” (SMVM) has been 
proposed and validated according to the hypothesis of coefficient of variation of 
global resistance equal to 0.15, which is generally assumed to model the variability 
of concrete compressive resistance. Then, a comprehensive code format framework 
based on three Levels of Approximation approach (LoAs) has been defined. 
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