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Abstract—We propose an algorithm for the identification of
guaranteed stable parameterized macromodels from sampled fre-
quency responses. The proposed scheme is based on the standard
Sanathanan-Koerner iteration in its parameterized form, which is
regularized by adding a set of inequality constraints for enforcing
the positiveness of the model denominator at suitable discrete
points. We show that an ad hoc aggregation of such constraints
is able to stabilize the iterative scheme by significantly improving
its convergence properties, while guaranteeing uniformly stable
model poles as the parameter(s) change within their design range.

I. INTRODUCTION

Signal and power integrity assessment through numerical
simulation heavily relies on efficient and accurate models
of all system parts that have an influence on the quality
of signals. In particular, electrical interconnects and their
parasitics pose significant challenges due to their complexity,
both in terms of geometry, material characteristics, as well as
resulting frequency responses. For this reason, macromodeling
algorithms [1] have gained tremendous popularity due to their
ability to produce accurate and reliable simulation models,
which run very efficiently on legacy circuit solvers.

This paper focuses on a particular algorithm [2], [3] for pro-
ducing linear macromodels from sampled frequency responses,
while also embedding in a closed form the dependence on
one or more additional parameters related to geometry or
material properties. The resulting macromodels can be used
to perform sensitivity, what-if, statistical, and optimization
studies in a pre-layout design phase. With respect to traditional
(univariate) macromodeling, the multivariate (parameterized)
macromodeling schemes pose additional challenges for what
concerns stability and passivity, which must be guaranteed
uniformly throughout the space where the external parameters
are defined.

Several approaches that are able to enforce stability and
passivity by construction exist [4], [5]. Almost invariably,
these methods achieve parameterization by post-processing
through dedicated interpolation schemes a possibly large set
of non-parameterized macromodels computed for fixed param-
eter configurations. Both the interpolation schemes and the
coordinate system in which such interpolation is performed
can indeed be optimized and targeted to preserve stability and
passivity [6].

We address a different class of algorithms, which do not
require such two-step procedure. A parameterized model is
constructed in a single step by processing an entire set of fre-
quency responses avaiable, e.g., from a field solver parameteric
sweep [2]. However, if no special countermeasures are taken,

uniform stability (and passivity) are not enforced and the
resulting model might be unusable. In this work, we propose
a regularized iterative scheme based on the Parameterized
Sanathanan-Koerner (PSK) iteration [3], [7]. In addition to
provably guaranteed uniform stability, this algorithm demon-
strates significantly improved convergence properties, thanks
to a set of accumulated inequality constraits that are adaptively
formulated and aggregated at each iteration. The performance
of proposed approach is illustrated on one simple antenna
structure.

II. BACKGROUND AND MOTIVATION

We consider a P -port electrical/electromagnetic structure
parameterized by ρ independent parameters ϑ1, . . . , ϑρ col-
lected in vector ϑ ∈ Θ ⊂ Rρ. All parameters are nor-
malized so that Θ is a ρ-dimensional hypercube. We aim
at the construction of a reduced-order model whose P × P
scattering responses H(s;ϑ) approximate the true system
response H̆k,m = H̆(sk;ϑm) assumed to be available from
some measurement or field solver at k̄ discrete frequencies
sk = jωk and m̄ parameter samples ϑm.

The model is constructed by enforcing

H(jωk;ϑm) ≈ H̆k,m, k = 1, . . . , k̄, m = 1, . . . , m̄, (1)

based on the standard rational model structure

H(s;ϑ) =
N(s,ϑ)

D(s,ϑ)
=

∑n̄
n=0 Rn(ϑ)ϕn(s)∑n̄
n=0 rn(ϑ)ϕn(s)

, (2)

where ϕn(s) = (s− qn)−1 is the partial fraction basis related
to the n-th ”basis” pole qn. Numerator and denominator
coefficients Rn(ϑ) and rn(ϑ) depend on the parameter ϑ
through suitable multivariate basis function expansions (see [2]
for details), e.g. through orthogonal or trigonometric polyno-
mials. Model identification is carried out through the so-called
Parameterized Sanathanan-Koerner (PSK) iteration [8]

min

∥∥∥∥∥Nµ(jωk,ϑm)− Dµ(jωk,ϑm) H̆k,m

Dµ−1(jωk,ϑm)

∥∥∥∥∥
2

F

(3)

where the denominator D0 is initialized at 1 and µ = 1, 2, . . .
is the iteration index. This scheme is a simple iteratively re-
weighted least squares fit, which stops when the estimates of
the denominator coefficients stabilize.

In its simplest form, the PSK iteration is not able to enforce
model stability. In fact, even though the initial basis poles qn
are stable, the parameterization of denominator coefficients
rn(ϑ) may lead the poles of H(s;ϑ) (the zeros of D(s,ϑ)) to



have positive real part. In [3], [7] it has been demonstrated that
model stability for all ϑ ∈ Θ can be guaranteed by ensuring
the denominator D(s,ϑ) to be a passive immittance function
satisfying the following Positive-Realness (PR) condition

<{D(jω,ϑ)} > 0, ∀ω, ∀ϑ ∈ Θ (4)

where operator <{·} extracts the real part. This property
motivated the introduction of a stability-preserving PSK al-
gorithm presented in [3], [7], which enforces (4) at discrete
frequency/parameter points by embedding a set of linear
inequality constraints

<{Dµ(jω,ϑ)} > 0, ∀(jω,ϑ) ∈ Vµ−1 (5)

when solving (3) at each iteration µ, where the set

Vµ−1 = {(jωµ−1
r ,ϑµ−1

r ), r = 1, . . . , r̄µ−1} (6)

collects the location of all negative local minima of
Dµ−1(jω,ϑ) in (ω,ϑ) ∈ [0,+∞)×Θ. These are extracted in
a pre-processing phase by applying a parameterized passivity
check [9] to the denominator function Dµ−1(s,ϑ) available
from previous iteration µ − 1. The constraints (5) facilitate
the enforcement of uniform PR conditions through the PSK
iterations, by constraining the new denominator estimate being
computed to be PR at these points. The effectiveness of this
approach was illustrated by the several test cases documented
in [3], [7].

The main problem of the above stabilized PSK iteration is
the possible lack of convergence. The constraints (5) are effec-
tive only at their precise location (jωµ−1

r ,ϑµ−1
r ), but nothing

prevents the denominator to become negative at completely
different locations at the next iteration. Moreover, it may be
the case that the denominator coefficients do not stabilize, with
undesired erratic behaviors through iterations. We would like
each coefficient update to vanish as iterations progress,

dµn(ϑ) =
∣∣rµn(ϑ)− rµ−1

n (ϑ)
∣∣ µ→∞−−−−→ 0 ∀n, ∀ϑ. (7)

However, as pointed out in [10], there is no guarantee that such
convergence condition occurs. The left panels of Fig. 1 illus-
trate this problem on an H-shaped antenna test case (see below
for details on this structure). The top-left panel confirms that
the denominator coefficients never stabilize through iterations.
Although the model responses are very accurate (middle-left
panel), the lack of uniform PR-ness of the model denominator
is not able to constrain the poles to have a negative real part
(bottom-left panel).

We remark that this problem is well-known even in non-
parameterized passive macromodeling, for which application
of non-convex formulations of the passivity constraints may
lead to non-converging passivity enforcement schemes [1].

III. ROBUST ITERATIONS

A solution to the above-described convergence issues is
available through the so-called “robust iterations”, which were
introduced in [11] for non-parameterized passivity enforce-
ment (see [1] for a complete treatment). In this work, we apply

a similar but more efficient procedure to the parameterized
setting, with the objective of enforcing uniform model stability.
The same strategy can of course be applied to the enforcement
of uniform passivity [9], which is not of interest in this work.

The main idea of [11] is as follows. Let us consider again
the PR denominator violation points Vµ−1 used to define the
PR constraints for iteration µ, as defined in (5) and (6). Let us
assume that the µ-th iteration is performed, that the PR-ness of
the denominator is checked again, and that the corresponding
new PR violations are collected in set Vµ. If we aggregate
all constraints in a cumulative set Vµ−1 ∪ Vµ and we use
the latter instead of Vµ−1 to repeat (5), we see that this
iteration µ will include constraints both where the denominator
is detected to be real negative, and also where the denominator
will become real negative. This strategy has thus a predictive
or look-ahead property. The main disatvantage is however an
increased (approximately threefold) computational cost, since
each iteration is repeated three times.

In this work, we propose a similar strategy that aggregates
constraints using a look-behind strategy. In essence, each
iteration µ enforces PR constraints through

<{Dµ(jω,ϑ)} > 0, ∀(jω,ϑ) ∈ ∪µ−1
i=0 V

i, (8)

implying that constraints are placed at the PR violations of
the denominator at current and all previous iterations. This
strategy avoids by construction oscillating behaviors, where a
violation that is eliminated at some iteration reappears every
two or more iterations.

The left column of Fig. 2 shows stability violation locations
on the parameter space for three successive fitting iterations
for the same antenna example of Fig. 1, where a red to black
relative color scale is used to represent the extent of each
local violation (in terms of minimum real part of the model
denominator). It can be noted that, despite the constraints (5)
enforced at each of the highlighted points, new violations
reappear at the same locations at subsequent iterations, thus
impairing convergence. Conversely, the right column of Fig. 2
depicts the accumulated constraints in case of proposed robust
implementation, where each panel represents constraints from
previous iterations using transparent dots. The resulting set can
be interpreted as an iterative refinement of the parameter space,
which zooms in the regions characterized by the stability
violations that are not eliminated in one step. This provides
a clear illustration that the aggregation of all constraints is
equivalent to narrowing the feasible set of the optimization
problem, which is obtained as the intersection of all feasible
sets at all previous iterations.

IV. RESULTS

We demonstrate the performance of the look-behind robust
iterations on an H-shaped antenna (number of ports P = 1),
already used above to illustrate convergence issues of the
standard PSK method. The structure, whose geometry is
described in full details in [12], is parameterized by its length
L, which varies in the range L = [7, 10] mm, and the aperture
width W ∈ [1.5, 1.8] mm. Through repeated EM simulations,



Fig. 1: Macromodeling results using standard PSK iteration (left panels) and proposed look-behind robust iterations (right
panels) applied to an H-shaped antenna. Top panels: evolution of coefficient updates through iterations. Middle panels: selected
model responses for few parameter configurations, compared with raw data. Bottom panels: parameterized model poles.

we gather a set of m̄ = 16 scattering responses, within
the frequency band [0, 5.5] GHz, for different parameter
values uniformly distributed on a structured bi-dimensional
grid. The model is synthesized with n̄ = 10 poles and
Chebychev polynomials as parameter basis functions with
orders {3, 3} and {2, 2} for numerator and denominator
expansions, respectively.

The results of proposed robust implementation are depicted
in the right panels of Fig. 1. The top-right panel shows that
the coefficient updates at each subsequent iteration become
smaller and smaller, as a clear evidence of convergence. In

contrast with the results from the standard implementation
(top-left panel), where denominator coefficients change signif-
icantly as µ increases, the new robust algorithm successfully
converges after 11 iterations. Thanks to the aggregate PR
constraints (8) the model results uniformly stable, as the
bottom-right panel confirms by showing a sweep of the model
poles in the parameter space. Model accuracy is not com-
promised, as depicted in the middle-right panel. The worst-
case relative error of the stable model obtained by proposed
approach is 3.6 ·10−4, whereas the corresponding error for the
unconstrained identification is 1.6 · 10−4.
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Fig. 2: Location in the parameter space Θ of stability con-
straints for three successive fitting iterations. Left column:
standard approach of [7] with independent stability constraints
at each iteration. Right column: proposed robust approach,
with constraints accumulation through iterations (violation
extent is represented with a red-to-black color scale, with
transparent dots representing the constraints at previous itera-
tions).

V. CONCLUSION

In this paper, we presented a robust, stability preserving,
implementation of the well known Parameterized Sanathanan-
Koerner iteration, which brings major improvements in terms
of convergence capabilities with respect to previous works [3],
[7]. The presented strategy aims at avoiding that the model
coefficients undergo oscillatory behaviors as the fitting itera-
tions proceed, undermining the overall convergence. This is
achieved by stacking stability constraints as the number of
iterations grows through a look-behind strategy. The propsed
approach is illustrated on a relevant antenna test-case.
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