
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Machine Learning and other Computational-Intelligence Techniques for Security Applications / Marcelli, Andrea. - (2019
Sep 11), pp. 1-113.

Original

Machine Learning and other Computational-Intelligence Techniques for Security Applications

Publisher:

Published
DOI:

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2751497 since: 2019-09-13T08:17:31Z

Politecnico di Torino

Doctoral Dissertation

Doctoral Program in Control and Computer Engineering (31thcycle)

Machine Learning and other
Computational-Intelligence

Techniques for Security Applications

By

Andrea Marcelli

Supervisor(s):
Prof. Giovanni Squillero

Doctoral Examination Committee:
Prof. Leonardo Vanneschi, Universidade Nova de Lisboa
Prof. Christine Zarges, Aberystwyth University

Politecnico di Torino

2019

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Andrea Marcelli
2019

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

I would like to dedicate this thesis to my parents and my sister.

Acknowledgements

I would like thank my supervisor, Prof. Giovanni Squillero, for guiding me during
these years. He has been a mentor, a friend, and a source of inspiration. I thank
him for the interesting discussions, the hours spent coding together and for the
unconventional ideas.

I would like to thank Alberto Tonda, Prof. Corno, and Prof. Quer, for being
always there, for their support and precious advices.

Thanks to all the Hispasec Team, who firstly believed in me and invited me in the
beautiful Malaga. A big thanks to Antonio, Carlos, Daniel, Fernado D., Fernando R.,
Francisco, José, Miguel, Paco, Roman, and all the others employees. You have been
my family for several months, offering such an incredible experience.

It is my privilege to thank Dario, Mariano, and Shock for the precious advice.

I am extremely thankful to my friends and colleagues Teo, Sebastiano, Lorenzo,
Masoud, and Jetmir for helping me to survive these years and not letting me give up.

I profusely thank my friends Angelo, Luca and Chiara for the time spent together,
and for the continuous support offered.

Most importantly, none of this would have been possible without the love and
patience of my family that has been a constant source of support and strength all
these years.

In full gratitude, I would like to acknowledge all the people that I did not
mentioned earlier, but who likewise encouraged, inspired, and supported me.

Abstract

Machine learning and evolutionary computation are powerful tools that achieved
incredible results in the most variegate fields. While the techniques are quite known,
their application requires a deep knowledge in the field of usage. This thesis explores
the application of computational intelligence methodologies to open problems in
computer security, mainly in the field of malware families detection.

Malware is a big business. With hundreds of thousands of malware delivered
every day, manual analysis in not an option. Malicious samples are commonly
detected using a combination of techniques, ranging from machine learning to hash-
based content. However, the industry mostly relies on signatures, which are patterns
extracted from the code or behavior of selected samples. Generating effective
signatures, with 0-false positives, and low false negatives rates, is a task that requires
a considerable amount of time and resources from skilled experts, while automatically
generating them is an open problem.

In this thesis, we propose a semi-supervised methodology for the automatic
identification of malware families, used to safely extend experts knowledge on new
malicious samples, and to reduce the amount of applications to manually analyze.
Then, newly discovered samples are submitted to an automatic signature generation
procedure, which produces a formal rule which has a limited risk of detecting false
positives in the future, yet it is general enough to catch future threats.

The effectiveness of the approach is assessed running experiments on 1.5 million
Android applications, the largest dataset ever used in a public research on Android
malware. The procedure has been implemented in two frameworks which have been
publicly released: YaYaGen for Android applications, and YaYaGenPE for Windows.
Furthermore, since January 2018, part of the proposed approach is in use in Koodous,
a collaborative analysis platform for Android, developed by Hispasec.

Astratto

Machine learning e algoritmi evolutivi sono potenti strumenti matematici che hanno
permesso di raggiungere incredibili risultati nei campi più disparati. Nonostante
le tecniche siano note da decadi, un utilizzo efficace richiede un’approfondita
conoscenza del campo di applicazione. In questa tesi vengono esplorate alcune
applicazioni di Computational Intelligence a problemi aperti di sicurezza informat-
ica, soprattutto incentrati sul riconoscimento delle famiglie di malware.

Con un flusso di centinaia di migliaia di nuove applicazioni rilasciate ogni
giorno, negli anni sono stati sviluppati diversi metodi in grado di automatizzare
l’identificazione di malware, basati su una varietà di tecniche, che spaziano dal
machine learning, al calcolo dell’hash di porzioni di codice. Lo standard industriale
è bastato sull’utilizzo delle signature: regole contenti pattern unici estratti dal codice
o dall’analisi di un’applicazione. Tuttavia, scrivere signature efficaci, con un basso
numero di falsi positivi e negativi, richiede tempo e risorse.

In questa tesi, viene proposta una metodologia semi-supervised per identificare
automaticamente le famiglie di malware, utilizzata sia per individuare nuovi esem-
plari, che per ridurre il numero di file da analizzare manualmente. In seguito, i
campioni selezionati sono sottoposti ad un processo di generazione automatica della
signature, che produce una regola abbastanza specifica da non generale falsi positivi,
ma al contempo generica da individuare varianti future.

L’efficacia dell’approccio è stata verificata sperimentalmente, utilizzando 1.5
milioni di applicazioni Android, il più grande dataset mai utilizzato in una ricerca
sul malware Android. Inoltre sono stati rilasciati due framework YaYaGen e YaYa-
GenPE, per la generazione automatica di signature rispettivamente per Android e
Windows. Infine, a partire da Gennaio 2018, parte dell’approccio proposto è stato in-
tegrato in Koodous, una piattaforma di analisi collaborativa per applicazioni Android,
sviluppata da Hispasec.

Contents

List of Figures x

List of Tables xii

1 Introduction 1

2 Background 3

2.1 Android Malware . 3

2.1.1 Koodous . 4

2.2 Clustering . 5

2.2.1 Clustering Evaluation . 8

2.2.2 Clustering applied to malware analysis 10

2.3 Evolutionary Strategies . 13

2.3.1 Selfish Gene . 13

2.4 Signature . 14

2.4.1 YARA . 15

2.5 Automatic Signature Generation 16

2.5.1 Tools . 17

3 Proposed approach 20

3.1 Problem Statement . 20

viii Contents

3.2 Clustering . 23

3.2.1 Iterative clustering . 23

3.2.2 Extending Malware Detection 27

3.3 Automatic Signature Generation 30

3.3.1 A dynamic greedy algorithm 33

3.3.2 Rule quality . 37

3.3.3 The optimization phase . 38

3.3.4 YaYaGen . 42

3.4 Extension to Windows Malware 43

3.4.1 YaYaGenPE . 43

3.5 Limitations . 49

4 Experimental Results 52

4.1 Android applications . 52

4.1.1 Android dataset . 52

4.1.2 Clustering . 52

4.1.3 Android signatures . 60

4.1.4 Signature optimization . 62

4.2 Windows malware . 63

4.2.1 Windows dataset . 63

4.2.2 PE signatures . 66

5 Case of Study: Android Banking Trojans 76

5.1 Introduction . 76

5.2 History . 77

5.3 Modus Operandi . 79

6 Conclusions 89

Contents ix

References 91

List of Figures

2.1 Monthly trend of applications submitted and detected in Koodous
from October 2014 until March 2017. 5

3.1 The figure illustrates the subdivision of the applications in database
and the seven type of families (i.e., clusters) that can be automatically
inferred by the proposed approach. The database is divided in three
macro areas according to the type of detection: applications detected
by signatures, by triage only, and undetected. Each point in the figure
represents an application, and each numbered group represents one
of the seven cases identified by the proposed approach. 28

3.2 Visual representation of the features from two sample applications
Sample1 and Sample2. The rightmost block is one of possible result-
ing signature. 31

3.3 Visual representations of different types of features from an input
cluster of samples. 32

3.4 A possible solution for the signature generation problem from the
previous example. 32

3.5 Schema of the process of generation of a YARA rule. In the first
phase a signature Y = r is defined for malware ma and mb. In the
second phase Y is checked against a dataset of goodware (ga and gb).
Finally, in the third phase, a new signatures Y ∗ = (r∧ ra)∨ (r∧ rb)

is created to avoid the false positive detection of ga and gb. 34

3.6 Work flow of a YARA rule generation in the YaYaGenPE framework. 44

List of Figures xi

3.7 Example of a binary tree constructed by the UDT clustering algo-
rithm. Each path highlights the boolean value of the selected features. 47

3.8 Example of path from the root the leaf of binary tree created by the
UDT clustering algorithm. The path will be translated into a boolean
expression and will be integrated into the rule of the selected cluster. 48

4.1 Number of total applications, and newly automatically inferred de-
tections, for each type of malware family (Type 2...6). Results refer
to the iterative clustering approach, using chunk size N = 100k, over
a dataset of 1 million applications. 55

4.2 Distribution of malware families with more than 10 samples from
the VirusTotal dataset. 65

5.1 Overlay attack on the Google Play Store. Picture on the left shows
the original user interface, while the one on the right shows the
fraudulent pop-up displayed during an overlay attack. In this case
the attackers were able to replicate the same look and feel of the
original application. 84

5.2 Comparison between the original Skype log-in page (on the left), and
the one prompted during an overlay attack (on the right). Pictures
are generated using the android-overlay-malware-example1. 86

List of Tables

3.1 List of the 35 statistical properties extracted from the analysis result
of each APK file. Features are grouped according to the type of anal-
ysis. Static features are extracted using Androguard both parsing the
Manifest file and looking for interesting API calls in the decompiled
source code. Dynamic features are extracted using DroidBox and
CuckooDroid from the dynamic analysis of the application. 26

3.2 Details about the number of rules, clauses, and unique clauses ana-
lyzed to find the optimal score for each literal. 38

3.3 Weights assigned to each type of literal as a result of the simplex
method optimization. Weights are used by the automatic procedure
to generate new YARA rulesets. 39

3.4 Comparison of state-of-the-art automatic signature generation ap-
proaches for Windows binaries. 44

4.1 Comparison of Homogeneity (Hom.) and Completeness (Comp.)
index values between the families inferred by the clustering process
(using both the iterative clustering with different chunk sizes N, and
the non-iterative version), and the families labels extracted from
Koodous and VirusTotal. 53

4.2 Number of families automatically inferred by the clustering algo-
rithm (using both the iterative clustering with different chunk sizes
N, and the non-iterative version), using dataset of 1 million applica-
tions. Results are gathered for each type of malware family (Type
2...6). 55

List of Tables xiii

4.3 Comparison of the detection results between VirusTotal and two
datasets of 50,000 applications, respectively undetected (und.) and
detected (det.) by Koodous. Columns indicate the number of ap-
plications unknown (unk.), undetected (und.), detected by at least
one AV (det.), and detected by more than three AVs, as reported by
VirusTotal. 57

4.4 Evaluation of the accuracy of the clustering system to automatically
identify groups of malicious applications, by comparing the detection
of the new applications with VirusTotal. Columns Correct and
Incorrect respectively reports the number of applications correctly
or wrongly classified, while Min and Error illustrate the minimum
precision and the maxim error of the proposed approach. Results
are reported using both the iterative clustering with different chunk
sizes N, and the non-iterative version. 57

4.5 Example of a Type 4 malware family. As the first two samples are
already detected in Koodous by the YARA rule Xynyin.Trojan, the
system identifies other applications within the cluster as potentially
malicious too. The comparison with VirusTotal (the number of
detection is reported) and a manual analysis confirm the accuracy of
the system. 59

4.6 Comparison of the clustering results using using both the iterative
version with different chunk sizes N, and the non-iterative one. Col-
umn Time indicates the time (in seconds) required by the clustering
process, while column "Outliers" reports the number of outliers
found at the end of the iterations. 59

4.7 Indexes comparison of the clustering label inferred by the itera-
tive approach (with different chunk sizes N) using the assignment
produced by the non-iterative version as a reference. 60

4.8 Comparison of detection performances of human authored YARA
rules (Original) with automated generated ones (Auto). Last column
reports the improvement (in percentage) for the newly generated
rules. Detections are tested on a dataset of 1.5 million applications. . 62

xiv List of Tables

4.9 Comparison of the number of literals, score and time (in seconds)
required to generate each YARA rule. 62

4.10 Comparison of the scores of the signatures in the three cases of no
optimization, hill climber (HC) and evolutionary optimization (SGX). 63

4.11 Comparison of the scores of the signatures in the three cases of no
optimization, hill climber (HC) and evolutionary optimization (SGX). 64

4.12 Number of matching samples for each packer rule. 66

4.13 Comparison of number of rules generated, false positives and true
positives for the Cryptowall malware family. 68

4.14 Comparison of number of rules generated, false positives and true
positives for the Cerber malware family. 68

4.15 Comparison of number of rules generated, false positives and true
positives for the Teslacrypt malware family. 69

4.16 Comparison of the false positives test for automatic generated rules
for several malware families. 69

4.17 Test on false positives detection of packed samples. As the table
shows, none of the rule matches any goodware packed sample. . . . 70

4.18 Number of rules, average number of literals, and time necessary to
cover the 3 malware families Fareit, Zerber, and Teslacrypt 70

4.19 Detailed comparison of the execution time for each algorithm con-
figuration of the proposed approach. 71

4.20 Comparison of false positives, true positives and number of rules for
several algorithm configurations, using the unsupervised decision
tree (UDT) algorithm to cluster the Cryptowall malware family. . . . 71

4.21 Comparison of false positives, true positives and number of rules for
several algorithm configurations, using HDBSCAN to cluster the
Cryptowall malware family. 72

4.22 Comparison of false positives, true positives and number of rules
for several algorithm configurations, using the yarGen approach to
create signature coverage for the Cryptowall malware family. 72

List of Tables xv

4.23 Comparison of false positives, true positives and number of rules for
several algorithm configurations, using the YaBin approach to create
signature coverage for the Cryptowall malware family. 72

4.24 Comparison of false positives, true positives and number of rules for
several algorithm configurations, using the unsupervised decision
tree (UDT) algorithm to cluster the Cerber malware family. 73

4.25 Comparison of false positives, true positives and number of rules for
several algorithm configurations, using HDBSCAN to cluster the
Cerber malware family. 73

4.26 Comparison of false positives, true positives and number of rules
for several algorithm configurations, using the yarGen approach to
create signature coverage for the Cerber malware family. 73

4.27 Comparison of false positives, true positives and number of rules for
several algorithm configurations, using the YaBin approach to create
signature coverage for the Cerber malware family. 74

4.28 Comparison of false positives, true positives and number of rules for
several algorithm configurations, using the unsupervised decision
tree (UDT) algorithm to cluster the Teslacrypt malware family. . . . 74

4.29 Comparison of false positives, true positives and number of rules for
several algorithm configurations, using HDBSCAN to cluster the
Teslacrypt malware family. 74

4.30 Comparison of false positives, true positives and number of rules
for several algorithm configurations, using the yarGen approach to
create signature coverage for the Teslacrypt malware family. 75

4.31 Comparison of false positives, true positives and number of rules for
several algorithm configurations, using the YaBin approach to create
signature coverage for the Teslacrypt malware family. 75

Chapter 1

Introduction

Malware is a long-standing well-known problem. Since the first computer virus, Elk
Cloner, in 1982 the malicious-software scenario completely changed. Originally
malicious programs were mostly developed for fun, where the complexity of the
program was a showcase of the skill set of the author, and they even explicitly showed
a message to inform about the computer infection.

As the computer and network infrastructure evolved, malware did too. Today’s
malware is more focused, either designed for the ultimate profitability, or as a
pernicious spying tool supported by the state-sponsored attacks. Being able to
promptly identify a malicious behavior is a well-studied, but still an open problem
for researchers from both the academia and the industry world.

With the coming of mobile operating systems, iOS and Android above all, new
opportunities arise for malware developers. A fully-connected device, in constant
proximity of the user, with almost unlimited access to personal data is an extremely
valuable target for an attacker. Although mobile OS development did benefit from
decades of computer security experience of traditional operating systems, and they
introduced strict security measures (such as sandboxing the applications execution,
or asking before granting sensible permissions) the attack surface is so vast that
the combination of technical vulnerabilities with social engineering attacks is still a
powerful, yet effective, attack. Moreover, in the Android ecosystem, the situation is
made worse by the open market model, where the fast availability of applications is
a priority over the strict security check of the application behavior.

2 Introduction

Malware authors exploit executable packing [1] and other code obfuscation tech-
niques [2] to generate a large number of variants of the same malicious application.
As a consequence antivirus (AV) software are struggling to keep their signature
database up-to-date, and AV scanners suffer from a considerable quantity of false
negatives. However, while malware variants can be generated at a high pace, they
are likely to perform similar malicious activities when executed. One possible solu-
tion would be to automatically cluster such applications in families and focus the
manual analysis on few archetypal samples, with the underlying assumption that
malware bearing significant similarities are likely to derive from the same code base.
Eventually, if a large number of malware belonging to the same family is identified,
it may become possible to define a generic behavioral signature able to detect future
variants with reduced false positives and false negatives.

In this thesis we tackle two well-known, but yet unsolved, problems in the
malware research domain: the clustering of vast dataset of applications and the
automatic signature generation of a malware family.

Firstly, we introduce a scalable semi-supervised system for the analysis of mas-
sive malware datasets based on careful feature engineering, and a standard density-
based clustering algorithm. Then, starting from a cluster of malicious samples, we
propose an algorithm that automatically generates a family signature. Thanks to
exact and heuristic evaluations, such rules are intelligible and appear reasonable to
human experts. Moreover, the algorithm guarantees zero false positives in the exist-
ing dataset, and limits the possibility of false positives in the future. The procedure
includes an evolutionary-based approach, based on the Selfish Gene algorithm, to
optimize automatically generated signatures in order to further decrease the number
of false negatives, and detect future malware variants. The proposed algorithms are
implemented in two frameworks, called YaYaGen and YaYaGenPE, to automatically
generate signatures for Android and Windows binaries.

Finally, the thesis includes a study on one the most prominent threat in the
Android ecosystem: the Android Banking Trojans, that is applications written with
the specific purpose of stealing confidential information from victims bank accounts
and on-line payment services.

Chapter 2

Background

2.1 Android Malware

Since August 2010, when the first Android malware FakePlayer was released, the
number of new malicious samples steadily increased [3]. After eight years, malware
programs are hundreds of times bigger than the old FakePlayer, hide their presence,
use sophisticate anti-analysis tricks, and they can even secretly communicate through
complex anonymous networks.

Differently from the iOS Apple Store, Android offers an open market model,
where millions of applications are downloaded every day. Although applications
undergo a mandatory review process before being published in the official Play
Store, in order to confirm their compliance with Google policies [4], other third-party
markets do not. Hence, a typical pattern among malware developers is to repack
popular applications from Google Play Store, add malicious features, and finally
distribute them to third-party app-stores with loose security checks, leveraging apps
popularity to accelerate malware propagation. Moreover, automatic checks used by
Google Play Store can be bypassed too, as shown by the malware campaign found
by Check Point in 2017, where 41 malware apps from Google Play infected millions
of devices [5].

In the personal-computer ecosystem, malware developers commonly exploit
executable packing and other code obfuscation techniques to generate a large number
of polymorphic variants of the same malicious application [1, 6]. As a consequence
antivirus (AV) software are struggling to keep their signature database up-to-date,

4 Background

and AV scanners suffer from a considerable quantity of false negatives [7]. Malware
developers commonly reuse and customize the code to fit different needs. For
example, a developer may reuse the rootkit installation code, while replacing the
modules that provide network connectivity to a Command-and-Control server [8].

By the end of 2010s, the Android ecosystem is facing a similar scenario, although
the situation is made worse by the simplicity of malicious repackaging [9]. This
is an alteration of the original application installation package (i.e., the APK file),
where legitimate applications are reverse engineered, modified to include malicious
code, signed one more time, and eventually distributed in open markets. Since
applications mainly consist of bytecode, reversing the original application and adding
new portions of code is relatively easy to implement, and ad-hoc tools exist to assist
the procedure [10, 11].

2.1.1 Koodous

Koodous is an open platform for the analysis of Android applications which combines
several state-of-the-art tools with the social interactions among analysts. Started
in 2014, in 4 years it became the largest open repository of Android applications:
its databases contain more than 40 millions of applications, among which more
than 7 millions have already been identified as malicious. Fig. 2.1 illustrates the
applications submission and detection trend from October 2014, until March 2017.

Koodous provides both analysis service and end-point protection: upon submis-
sion, each application is analyzed both statically and dynamically, and the final report
is accessible through a web interface specifically designed to help analysts detect
new malware threats. Analysis tools include a custom version of Androguard [12],
CuckooDroid1 and DroidBox [13].

Instead of relying on a closed group of expert malware analysts, Koodous takes
advantage of an open community to identify malicious applications. Furthermore, in
order to guarantee high quality results, manual detections are subject to reputation-
based checking. The endpoint protection is guaranteed through an Android applica-
tion, which backs to the cloud platform to detect most recent threats2.

1https://github.com/idanr1986/cuckoo-droid
2https://play.google.com/store/apps/details?id=com.koodous.android

https://github.com/idanr1986/cuckoo-droid
https://play.google.com/store/apps/details?id=com.koodous.android

2.2 Clustering 5

Fig. 2.1 Monthly trend of applications submitted and detected in Koodous from October
2014 until March 2017.

Koodous uses YARA (Section 2.4.1) to describe patterns for detecting malware
application: since the creation of high-quality YARA rules requires a considerable
effort, the platform also offer the possibility to identify malware through a simpler
voting mechanism — an operation referred to as “triage”. As of July 1, 2018, more
than 2.5 millions applications are detected by triage3.

Thanks to the collaboration with Hispasec, in this thesis Koodous has been used
as a testbed to evaluate the proposed methodology. Moreover, since January 2018,
part of the proposed framework has been integrated into the platform.

2.2 Clustering

Clustering is the technique to subdivide objects into groups according to the similarity
in their feature set: objects within the same group are more similar to each other
than those assigned to different groups. A feature set is used to describe data as

3For the up-to-date figure, visit https://koodous.com/apks?search=rating:%3C-1%20%
26%20detected:1.

https://koodous.com/apks?search=rating:%3C-1%20%26%20detected:1
https://koodous.com/apks?search=rating:%3C-1%20%26%20detected:1

6 Background

efficiently as possible, and it bridges the semantic gap between individual data
objects and partitions with a higher-level of understanding. Similarity is the notion
of closeness between two elements, and it is commonly measured through a distance
function [14].

Typical cluster models include hierarchical-, centroid- and density-based method-
ologies. Hierarchical- and density-based approaches are following described: the
former historically represents the most popular choice for malware analysis, while
the latter is at the base of the proposed methodologies.

Hierarchical clustering

Hierarchical clustering takes a matrix of pairwise distances among objects as input,
and produces a dendrogram as output, a tree-like data structure where leaves represent
original objects, and the length of the edges the distance between clusters [15].
Hierarchical clustering is able to find clusters of arbitrary shapes, and can work on
arbitrary metric spaces (i.e., it is not limited to distance in the Euclidean space) [16].
Differently from other, well-known clustering algorithms, such as k-means and
DBSCAN, that only provide the clustering output, the resulting dendrogram shows a
representation of how clustering evolved.

Two types of hierarchical clustering algorithms exist: divisive (top-down) and
agglomerative (bottom-up). Divisive algorithms initially consider all elements in the
same cluster and then proceed by splitting points into groups. On the other hand,
agglomerative algorithms initially treat each element as a singleton cluster and then
proceed by merging them.

Hierarchical agglomerative clustering (HAC) techniques use various criteria to
decide locally, at each step, which clusters should be merged (or split for divisive
approaches): the definition of cluster proximity differentiates the various agglom-
erative hierarchical approaches. Single and complete linkage, group average and
Normalized Compression Distance (NCD) represent a few commonly used tech-
niques to measure cluster proximity. Single linkage defines the distance between two
clusters as the minimum distance between any two members of the cluster, while
complete linkage is the exact opposite, characterizing the similarity between two
clusters as the similarity between the two furthest elements inside each cluster. Both
linkage typologies are local merge criteria, as they define similarity between two

2.2 Clustering 7

clusters by only considering a single element from each cluster: consequently, they
can both lead to undesirable clusters. On the other hand, NCD uses the ability of
compression functions (e.g., bzip2, gzip) to find similarities between two objects to
define a distance between them [6].

Finally, to retrieve a flat clustering from a dendrogram, it is needed to decide at
which level stop the merging of the clusters. Multiple general-purpose methods are
described in the literature, such as cutting at a predefined constant depth, cutting
links that are larger than a certain threshold, and cutting links that are considerably
larger than their siblings [17].

Hierarchical algorithms are typically used whenever the underlying application,
e.g., the creation of a taxonomy, requires a hierarchy. However, agglomerative hierar-
chical clustering algorithms are computationally and storage expensive, respectively
O(n2 logn) and O(n2) [18], while divisive clustering with an exhaustive search are
computationally even worse O(2n).

Density-based clustering

Density-based approaches locate regions of high density, surrounded by regions
of low density, with Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [19] being the most well-known technique of this kind. Density is
evaluated on user-specified parameters ε and min points. A dense region in the data
space is a n-dimensional sphere with radius ε and at least min points objects inside.
DBSCAN iterates over data objects in the collection by analyzing their neighborhood
and classifies objects as being (i) inside a dense region (a core point), (ii) on the edge
of a dense region (a border point), or (iii) in a sparsely occupied region (a noisy or
outlier point). Any two core points that are close enough (within a distance ε of
one another) are associated to the same cluster. Any border point close enough to a
core point is put in the same cluster as the core point. Finally, outliers are those far
from any core point. Since outliers are isolated, the algorithm does not produce a
complete clustering.

Differently from other clustering methods, density-based algorithms can effec-
tively discover clusters of arbitrary shape and filter out outliers, increasing cluster
homogeneity. Additionally, the number of expected clusters to be found in the
data is not required; in many practical cases, such as the automatic discovery of

8 Background

malware families, the number of clusters is hard to guess a priori, as the goal is
to discover groups of similar applications without any prior knowledge about their
composition. In low-dimensional spaces, the time complexity of DBSCAN can be
as low as O(n logn), while its space requirement is O(n), making it applicable to
large datasets.

In 2013, Campello et al. [20] proposed a new density-based algorithm that
converts the original DBSCAN into a hierarchical clustering algorithm. For its speed
and robustness, Hierarchical Density-Based Spatial Clustering of Applications with
Noise (HDBSCAN) is ideal for exploratory data analysis [21]. Matter-of-factly, this
technique performs DBSCAN over several values of ε , and integrates the results to
find a clustering that provides the best stability over ε . This allows HDBSCAN to find
clusters of varying densities, and be more robust to parameter selection. Moreover,
HDBSCAN also supports the Global-Local Outlier Score from Hierarchies (GLOSH)
outlier detection algorithm: during the fitting phase, each data point is associated to
a score that represents its likelihood of being an outlier; at the end of the process,
outliers are selected via upper quantiles [22].

2.2.1 Clustering Evaluation

As clustering is an unsupervised learning task, analyzing the validity of its results is
intrinsically hard due the difficulty of establishing a ground truth. Indeed, clustering
itself is inherently ill-posed, in the sense that there is no single criterion that measures
how well a clustering of the data corresponds to the real world [23]. Cluster validity
analysis often involves the use of subjective criteria of optimality specific to a
particular application. Therefore, no commonly accepted standard of validating the
output of a clustering procedure exists [24].

In real-world applications, it is often completely infeasible to manually inves-
tigate the results of a clustering, making necessary the definition of automatic
measures [14]. Helpful metrics to determine the quality of a clustering process are
commonly classified in internal and external indexes.

Internal indexes evaluate both cluster cohesion (e.g., compactness and tightness),
which determine how closely related the objects in a cluster are, and cluster sepa-
ration (e.g., isolation), which determine how distinct or well-separated a cluster is

2.2 Clustering 9

from others. Internal indexes are often called unsupervised measures, since they only
use information derived from the data set.

On the other hand, external indexes, known as supervised measures, use a refer-
ence set as a means of quality control for the setup of the clustering algorithm [14].

For instance, the Adjusted Rand Index (ARI) computes a similarity measure
which consider all pair of samples, counting pairs that are assigned in the same
or different clusters in the predicted and true clusterings. The Homogeneity index
measures if each cluster contains only member of a single class, while Completeness
if members of a given class are assigned to the same cluster. Finally the V-measure
is the harmonic mean between homogeneity and completeness. All of them are
bounded score between 0.0 and 1.0, where 1.0 stands for a perfect and complete
labeling.

Malware clustering validation

In the field of malware analysis, clustering validation is made further complex by the
intrinsic difficulty of establishing a reliable ground truth. Firstly, malware analysis
is challenging and it gets more difficult when anti-analysis, triggering sequences
and dynamic code loading techniques are in place. Secondly, not even a manual
categorization would provide a reliable partition, since most of the malware could
not be unequivocally assigned in categories; not to mention the unrealistically high
amount of time it would require.

As a reference set is not available, one possibility is to take advantage of labels
assigned to each malware sample by several antivirus scanner. The availability of
services that specifically provide these results, e.g. VirusTotal4, eases the procedure.
However, there is an intrinsic complexity in defining a unique labeling schema,
since most of the malware result in being marked as belonging to one malicious
category only. As a matter of fact, Bailey et. al. [25] showed that antivirus labeling
fails in satisfying three fundamental criteria: consistency among different products,
completeness in malware tagging, and conciseness in label semantics. One possible
explanation is that signatures used in the malware-matching algorithms mostly
evaluate static properties of the binary, in contrast to behavioral properties: the result
is that the families found using static features might be quite different from the

4https://virustotal.com/

https://virustotal.com/

10 Background

ones established using behavioral features. Moreover, different AV products apply
different criteria and granularity to rule generation, resulting in inconsistent results.

Despite the complexity and intrinsic challenges of the procedure, given the im-
portance of automatically building a malware reference dataset to evaluate clustering
results, the problem was directly tackled in different researchers, such as VAMO
[26] and AVclass [27].

In the literature of malware clustering, several techniques have been proposed. In
[28] and [29], precision and recall have been used as a way of determining the quality
of the proposed feature set by conducting analysis on an already labeled dataset.
However, in practice this approach requires to define a manual mapping between la-
bels assigned by different AVs. Nevertheless, as the dataset size increase this method
becomes hardly sustainable and quite costly. In the same way, ClusTheDroid [14]
used a reference set developed through manual analysis [30].

On the other hand, Apel et al. [6] choose to take into consideration the amount
of “shared behavior” that can be found among different analysis traces within the
same cluster of applications. In practice, each system call is modeled as a single
character, and the evaluation is computed in linear time finding all substrings in a
generalized suffix tree, using the algorithm described in [31]. The main limitation of
this technique is related to the choice of the reference dataset, since Apel et al. use
an artificial dataset starting from three real-world malware traces, then divided into
blocks of system calls and randomly permuted.

Differently, Perdisci et al. [16] tackle the problem of analyzing the validity of
malware clustering results without exploiting any manual mapping of AV labels.
Their approach is based on a measure of cohesion and separation of each cluster,
in terms of agreement between labels assigned to the malware samples by cluster
analysis and those assigned by multiple AV scanners. However, since AV labels have
been shown to be inconsistent [25], the measures of cluster cohesion and separation
only give an indication of the validity of the clustering results.

2.2.2 Clustering applied to malware analysis

The first attempt to automatically group computer malware based on their behavior
dates back to Lee and Mody [32], who use a sequence of runtime events (e.g.,
registry and file system modifications) to cluster similar programs. As a similarity

2.2 Clustering 11

measure, they choose a variant of the edit distance, resulting demanding in term
of computational resources, since it has a computational complexity O(n2) in the
number n of features.

Later, Bailey et al. [25] propose a system for automated malware classification
and analysis as a remedy for the inconsistent and incomplete labeling that commonly
affect traditional antivirus. By applying single-linkage Hierarchical agglomerative
clustering (HAC) with Normalized Compression Distance (NCD) and using inconsis-
tency measure as a cutting criteria, Bailey et al. are able to automatically categorize
malware profiles into groups that reflect similar classes of behaviors in terms of sys-
tem state changes. While results are generally affected by the restriction of dynamic
analysis, for the first time they introduce the idea of “detection through clustering”,
exploited in our proposed framework.

In their work, Apel et al. [6] study which combination of metrics (i.e., Edit
Distance, Approximated Edit Distance with Blockwise Hashing, NCD and Manhattan
Distance) and n-gram features are mostly appropriate for determining relations
between malware samples. They define three different criteria to support their
evaluation (i.e., appropriateness, computable efficiency and local sensitiveness),
using single-linkage HAC as clustering algorithm. Experimental results show that
Manhattan Distance along with 3-grams deliver the best results, while NCD and Edit
Distance generally perform poorly.

Neither Lee and Mody [32], nor Bailey et al. [25] have any specific solution to
large-scale clustering. On the other hand, Bayer et al. [28], Rieck et al. [33], and
Jang et al. [29] directly address the problem of managing large datasets, developing
methods to scale the clustering process.

Bayer et al. [28] propose a scalable malware clustering approach using a com-
bination of approximate and hierarchical clustering with Local Sensitive Hashing
(LSH) [34] to significantly reduce the number of distance computations. By extend-
ing Anubis [35], they are able to extract detailed behavioral-reports based on taint
tracking results and network captures from malware execution. In particular, the
taint engine allows them to map low-level operations (e.g., system calls) to operating
system objects (e.g., registry keys and files). By deploying LSH, Bayer et al. are
capable of clustering 75,000 samples in less than 3 hours. By contrast, Rieck et
al. [33, 36] proposes an incremental approach, where they alternate a prototype-

12 Background

based clustering algorithm with a classification step, eventually reducing the runtime
complexity by performing clustering only on representative samples.

Jang et al. [29] develop BitShred as remedy to the problem of clustering large
data sets with high-dimensional feature sets. They propose to use feature hashing
to reduce the dimensionality of high-scale feature sets, while reducing the compu-
tational cost of the calculation of the Jaccard index using an approximated version
that exploits bit-vector arithmetic. However, since BitShred simply relies on a static
analysis approach, results are susceptible to binary level obfuscation.

In 2010, Perdisci et al. [16] propose a network-based version of a behavioral
malware clustering system, relying on a three-step clustering refinement process,
starting from the analysis of malicious HTTP traces. The first phase consists in a
coarse-grained clustering where malware samples are grouped together according to
simple statistical similarities; subsequently, a fine-grained clustering further splits
samples considering structural properties of HTTP queries. In the final step, fine-
grained clusters whose centroids are close to each other are merged together. The
system is tested on HTTP traces generated from 25,000 applications using single-
linkage HAC and the Davies-Bouldin (DB) validity index [37] as cutting criteria.
While the underlying idea of a multi-step clustering refinement process is quite
interesting, this practically results in the biggest limitation to the scalability of their
work. Moreover, Perdisci et al. limit behavioral analysis to HTTP-based malware
only, which in practice can be easily bypassed by using an encrypted protocol (e.g.,
HTTPS).

In 2013 Hu et. al [38] present MutantX-S, focusing on malware comparison
and triage on a large scale. Their system falls into the static-analysis category,
since it relies on features extracted from the malware instructions. MutantX-S can
efficiently cluster a large number of samples into families based on program static
features, by extracting N-gram features directly from the x86 opcode sequences
and exploiting a feature hashing technique to reduce features dimensionality, thus
significantly lowering the memory requirement and computation costs. MutantX-S
adopts the same prototype-based algorithm of [36] because of its efficiency and
explicit expression of malware features.

In the Android context, ClusTheDroid [14] is the first research to combine
behavioral analysis and clustering to specifically target Android malware. The goal
is both to develop a tool, and to evaluate clustering alternatives. Finally they focused

2.3 Evolutionary Strategies 13

on single and complete linkage HAC, using a feature set composed of 38 numerical
quantities extracted from the CopperDroid [39] report, and weighted according to a
three-level interpretation of malware behaviors.

2.3 Evolutionary Strategies

Evolutionary algorithms are based on the idea that given a population of individuals
within some environment that has limited resources, competition for those resources
causes natural selection, known as survival of the fittest, which also generates a
raise in the fitness of the population. The fitness is the result of a quality function
applied to an individual of the population (i.e., candidate solution) to evaluate it. On
the basis of these fitness values, some of the best candidates are chosen to seed the
next generation by applying recombination and/or mutation. Recombination is an
operator that is applied to two or more selected candidates (the so-called parents),
producing one or more new candidates, the children. On the other hand, mutation is
applied to one candidate individual and results in a new one. This process can be
iterated until a candidate solution with sufficient quality is found or a previously set
computational limit is reached.

There are two main forces that form the basis of evolutionary systems: variation
operators, that create the necessary diversity within the population, and selection,
that acts as a force increasing the mean quality of solutions in the population. The
combined application of variation and selection generally leads to improving fitness
values in consecutive populations [40].

2.3.1 Selfish Gene

In canonical evolutionary algorithms (EAs) [41], an individual encodes a candidate
solution and the set of all individuals that have a role in the evolutionary process
is called population. In estimation of distribution algorithms (EDAs) [42], on the
contrary, candidate solutions are not explicitly stored, but the population contains
the distributions, and possibly the relationships, of the variables.

The Selfish Gene algorithm (SG) is an EDA proposed more than two decades
ago [43], it was inspired by a tough experiment suggested by Richard Dawkins in

14 Background

his celebrated book [44]. It exploits an univariate discrete probabilistic model—a
vector that stores the marginal probabilities of allele values for each gene position,
independently of other gene positions—and is akin to other algorithms, such as
the equilibrium genetic algorithm (EGA) [45], the population-based incremental
learning (PBIL) [46], the univariate marginal distribution algorithm (UMDA) [47],
and remarkably similar to the compact genetic algorithm (cGA) published the same
year [48].

Like the cGA, the SG algorithm iteratively samples two solutions at a time and
conducts a competition between them. It then updates the probabilistic model by
rewarding the allele values contained in the winner and penalizing the allele values
contained in the loser of the competition. The strength of the reward/penalty for
each gene position i is determined by a parameter εi, which usually depends on the
number of different alleles that can occupy the i-th locus.

The original SG was quite simple to implement and efficient in finding optima,
yet far more robust than pure hill climbing. It was exploited by practitioners in
some real-world applications, such as CAD problems [49], by scholars for various
test benches [50], and few new approaches derived from it [51]. In 1999 it was
enhanced to tackle highly deceptive functions at the expense of a significant loss in
performance [52].

2.4 Signature

Early AV products used the hash value of an application to detect malicious software.
However, every modification in the source code, as tiny as one byte, results in a
detection evasion. Today’s signatures are pattern-matching rules commonly defined
on static or dynamic properties of applications under analysis and, even though they
are assisted by heuristic and AI-based solutions, still represent the most reliable (i.e.,
with the lowest false positives) antivirus technology.

Today’s there are two main standard languages used: ClamAV 5 and YARA 6.
In this thesis we will focus on YARA, as it is more flexible and easy to adapt to
different platforms and analysis through custom modules.

5https://www.clamav.net/
6https://github.com/VirusTotal/yara

https://www.clamav.net/
https://github.com/VirusTotal/yara

2.4 Signature 15

2.4.1 YARA

YARA is a pattern matching tool, designed to provide a fast matching between
signatures (i.e., YARA rules) and multi-platform binaries. YARA has been described
to be the equivalent for binaries of what is SNORT to network traffic. The software
has been originally developed by Víctor M. Álvarez [53], and it is now owned by
VirusTotal.

The name YARA indicates both the signatures, also known as YARA rules, and
the name of the tool to match a signature with a binary. The tool internally compiles
the rule, and implements an efficient pattern matching mechanism using a custom
stack-based virtual machine. The output is the list of the rules names that matched a
particular binary.

One of the biggest advantages provided by YARA is the flexibility to extend
core functionalities through custom modules written in C 7. YARA already includes
modules to correctly parse and process the PE, ELF, MACHO and .NET file formats,
but custom ones can be used to enrich the semantic of the detection, introducing
platform-specific matching attributes. For instance, the PE module has been designed
to parse the PE header of an executable or DLL for Windows, and it provides specific
attributes to match corresponding fields of the executable header.

YARA rules are language-specific signatures, and are composed of three main
section. The first one, meta is where additional information is added. This section is
skipped during the rule evaluation, and it is commonly used only to enrich the rule
with a description of the desired behavior and detected samples. The strings section
is where hexadecimal or strings pattern are placed. Each pattern is associated to a
variable, which is then used in the last section, condition, to express the matching
logic. In case custom modules are used, this section is used to specify the usage of
those attributes. An example of YARA rule with the PE module is presented below.

One major limitation of YARA is that rules are applied to the binary as it is,
without any prior transformation. This limits the rule detection effectiveness in case
of packed samples, and any obfuscation techniques.

Interestingly, YARA rules have several applications other than malware identi-
fication: among the others, rules can be used to identify indicators of compromise,

7https://yara.readthedocs.io/en/v3.10.0/writingmodules.html

https://yara.readthedocs.io/en/v3.10.0/writingmodules.html

16 Background

shellcode, compilers, and packer software. Moreover, open and public repositories
of YARA rules exist, and are daily updated.

import " pe "

r u l e s i l e n t _ b a n k e r : ba nk e r
{

meta :
d e s c r i p t i o n = " Th i s i s j u s t an example "
t h r e a d _ l e v e l = 3
i n _ t h e _ w i l d = t r u e

s t r i n g s :
$a = {6A 40 68 00 30 00 00 6A 14 8D 91}
$b = {8D 4D B0 2B C1 83 C0 27 99 6A 4E 59 F7 F9}
$c = "UVODFRYSIHLNWPEJXQZAKCBGMT"

c o n d i t i o n :
($a or $b or $c) and pe . n u m b e r _ o f _ s e c t i o n s == 1

}

2.5 Automatic Signature Generation

A number of prior works propose systems to automatically generate different types
of network signatures to identify malicious traffic.

Honeycomb [54], Autograph [55], and EarlyBird [56] propose the generation of
signatures comprising a single contiguous string (i.e., token). Later on, PAYL [57],
Nemean [58], Hamsa [59] and Botzilla [60] introduce more complex methods based
on the token subsequence signatures.

Other researchers like ProVex [61], AutoRE [62], ShieldGen [63], and [64] also
tackle the problem of automatically generating network signatures, although their
applicability is specific to the network traffic detection.

In 2005, Newsome et. al. introduces Polygraph [65], a system which exploits
the Token-Subsequence algorithm to automatically obtain IDS signatures to match
polymorphic worms. Polygraph is tested against three real-world exploits and is able
to successfully generate HTTP and DNS signatures with a low false positive rate.

2.5 Automatic Signature Generation 17

Perdisci et al. [16] also tackles the problem of automatically generate network
signatures for cluster centroids, with the aim of deploying them into an IDS at
the edge of a network in order to detect malicious HTTP traffic. Since malware
samples may contact legitimate websites for malicious purposes, instead of pre-
filtering HTTP traffic against legitimate websites, authors apply a pruning process by
testing the signature set against a large dataset of legitimate traffic, while discarding
signatures that generate false positives, although such an approach is as effective as
it is the legitimate traffic available.

In the Android context, Faruki et al. [66] propose AndroSimilar, a statistical
signature-based solution that generates variable-length signatures for the application
under test and identifies malware on the basis of a similarity percentage with a dataset
of known malicious samples.

Another approach is presented in DroidAnalytics [67], a signature-based analytic
system, which extracts and analyzes applications at opcode level. Firstly, a three-
level signature (i.e., methods, classes, application) is generated by combining the
API call traces, then the malware is associated to a family according to its malicious
content.

While [66] shows robustness against control-flow obfuscation, junk method
insertion and string encryption, [67] could fail in the detection of repackaged malware.
On the the other hand, both solutions are affected by a high false-positive rate due
to the wrong choice of signature patterns available in both malicious and benign
applications.

2.5.1 Tools

Along with the proposed approaches in the literature, several tools have been de-
veloped to automate the process of generating the signatures, balancing the need of
generality to catch future samples, with the requirement of avoiding false positives de-
tections. Given that YARA is the de-facto standard language used to write signature,
several tools directly tackle the signature generation into the YARA format.

18 Background

YaraGenerator

In 2013, Chris Clark develops YaraGenerator8, a Python program which automati-
cally generates YARA rules by sampling a small subset of common strings between
malware, while blacklisting goodware ones. Although the tool is designed to work
with any type of malicious file, in order to increase the efficacy of the results, specific
dataset of goodware strings are available for several file formats (e.g., Windows
executable, PDF, email and office document).

YarGen

YarGen9 is a Python tool developed by Florian Roth to automatically generate YARA
rules by combining the topmost malware strings, while removing those that also
appear in goodware files. By using fuzzy regular expressions, each malware string is
assigned a score proportionally to the inverse of its frequency, and the “Gibberish
Detector” allows to select real language over character chains without any meaning.
The tool also exploits a naive-bayes-classifier to classify candidate strings, avoiding
compression or encryption garbage in favor of more generic strings. Finally, each
rule is created by combining the 20 strings with the highest score. The result of
the generation process may be a single rule, specific to one sample, or a super rule,
catching malware variants and groups.

YaBin

YaBin10 is a tool developed by Christopher Doman, from AlienVault antivirus com-
pany. The signatures are directly generated using the YARA syntax using a simple
combination of function prologues extracted from a lightweight static analysis of the
executable code.

The function extraction is based on the assumption that different compilers use
different unique pattern to define the function prologue, hence using a simple set
of regular expression, it is possible to get the binary functions without the need of
disassembling the entire binary. Then, the efficacy of the tool relies on the availability

8https://github.com/Xen0ph0n/YaraGenerator
9https://github.com/Neo23x0/yarGen

10https://github.com/AlienVault-OTX/yabin

https://github.com/Xen0ph0n/YaraGenerator
https://github.com/Neo23x0/yarGen
https://github.com/AlienVault-OTX/yabin

2.5 Automatic Signature Generation 19

of a huge whitelist of about 5 millions function prologues extracted from goodware
binaries.

YaBin does not perform any optimization of the rule, hence if the samples slightly
differ, one rule for each sample is usually generated. Finally, As the author declares,
the tools is designed to work on unpacked binary samples, otherwise the signature
generated could lead to false positives as it could match the packed code.

BASS

BASS [68] is a tool developed by Cisco Talos to generate ClamAV logic signatures.
Although the ClamAV syntax differs from YARA, signatures can be usually converted
in the two formats.

BASS uses a very detailed approach to find shared portion of code among
samples, exploiting a clustering phase through binary-diffing technique and the
Longest-Common-Subsequences (LCS) algorithm to generate the final signature.

The complexity of the algorithms involved in the procedure is the main downside
of the proposed approach, which finally limits to few tens the number of samples that
can be processed together. Indeed, the clustering phase, which is based on a divisive
hierarchical approach, requires to compute the similarity among all the pairs of
binaries. Then, the LCS algorithm finds the sequence of not necessarily contiguous
characters that appear in the same relative order in both binary sequences.

Generated signatures are checked against an internal database of goodware, and
in case of a false positive, the entire process is repeated, but excluding the unwanted
matching.

Chapter 3

Proposed approach

Part of the work described in this chapter has been previously published in "Counter-
ing Android Malware: A Scalable Semi-Supervised Approach for Family-Signature
Generation", IEEE Access, 2018 [69].

3.1 Problem Statement

The growth of malware created a major challenge for AV vendors to efficiently
handle new samples and accurately label them. Due to the practical impossibility
of manually analyzing thousands of suspicious samples received every day, a large
fraction of them is left unlabeled, delaying the signature generation.

While malware variants can be generated at a high pace, they are likely to
perform similar malicious activities when executed. Hence, one possible solution is
to automatically cluster the applications into families and focus the manual analysis
on few archetypal samples, with the underlying assumption that malware bearing
significant similarities are likely to derive from the same code base [38]. Furthermore,
new samples that belong to a known family can be automatically labeled, and existing
signatures and other mitigation techniques could be easily extended to cover the new
threats too.

Eventually, if a large number of malware belonging to the same family is identi-
fied, it may become possible to define a generic behavioral signature able to detect
future variants with reduced false positives and false negatives [16]. Therefore, a

3.1 Problem Statement 21

precise and robust clustering is crucial to help AV companies categorizing the large
amount of samples, avoiding duplicate work, and allowing analysts to prioritize their
limited resources on novel and representative samples [29, 28].

In this chapter, we describe a semi-supervised system for the analysis of massive
datasets of malicious applications. We introduce a platform that is able to suggest new
families of applications to human experts, and which also generates an intelligible
signature, in the form of a YARA rule [70], to identify family members with high
precision. The proposed methodology explicitly minimizes false positives, a business
hazard and a reputation blow for AV vendors. Finally, the approach aims to alleviate
human experts from the burden of manually inspecting thousands of malware, while
letting the system take critical decisions.

The main contributions of the proposed approach can be summarized as:

• We introduce a scalable system for the analysis of massive malware datasets
based on careful feature engineering, and a standard clustering algorithm. The
mechanism is demonstrated to be robust and able to overcome the well-known
limitations of traditional signature-matching mechanisms.

• We propose an algorithm that, starting from a cluster of samples, generates its
family signature as a YARA rule. Thanks to exact and heuristic evaluations,
such rules are intelligible and appear reasonable to human experts. Moreover,
the algorithm guarantees zero false positives in the existing dataset, and limits
the possibility of false positives in the future.

• We present an evolutionary-based approach to optimize automatically gener-
ated signatures in order to further decrease the number of false negatives, and
detect future malware variants.

• We have implemented the proposed algorithms in two frameworks, called
YaYaGen and YaYaGenPE, to automatically generate signatures for Android
and Windows binaries.

Since the 2000s, researchers from the academia proposed several approaches
based on machine learning aiming at completely replacing humans in the malware
analysis process. In most of the cases, such proposals fell back into mere classifi-
cation, also known as supervised machine learning. The drawbacks included the

22 Proposed approach

need of large amount of accurately labeled, i.e., already analyzed, data, and hard to
control false positives, a major cause of concern for all the AV vendors. As a result,
AV companies developed systems mostly based on the reliable signature-detection
mechanism. Even though signatures suffer from the so-called “specificity” problem,
and new ones need to be frequently generated, they have been demonstrated effective,
scalable, and almost unaffected by false positives.

The proposed framework is semi-supervised and introduces essential improve-
ments in the identification of similar applications and the generation of family
signatures. It combines the scalability of fully automatic techniques for clustering
and the optimization of new family signatures, while it exploits manual analysis,
inherently more flexible and accurate, in few crucial steps, such as the validation of
newly discovered malware families.

Traditionally, the effort of automatically classifying and analyzing malware
focuses on content-based signatures that specify binary sequences. Indeed, content-
based signatures are inherently vulnerable to malware obfuscation: even if all
variants of a malicious application share the same functionalities and exhibit the same
behavior, they can have tiny different syntactic representations. As a consequence, a
huge number of signatures needs to be created and distributed by AV companies.

On the other hand, a rule that automatically identifies the behavior of a family
of samples would be the first step towards the creation of true family signatures.
Such a signature would match all samples of a family, and would significantly help
to reduce the number of signatures required to cover it. Moreover, as new samples
could be mapped to a family behavior already known, the time and effort required to
analyze and reverse engineer new samples would be reduced.

Differently from the previous approaches, the proposed system generates effec-
tive, precise and descriptive rules using the properties directly extracted from both
static and dynamic analyses. While aiming at reducing false positives and false
negatives, it also exploits a heuristic measure to emulate how expert analysts write
existing signatures.

3.2 Clustering 23

3.2 Clustering

3.2.1 Iterative clustering

Clustering provides a mechanism to automatically categorize applications into groups
that reflect their similarity, both in source code and runtime behavior. Ideally, the
clustering algorithm to use should meet the following requirements:

• The algorithm should be able to find clusters of any shape and it should be
able to identify outliers, because real data has outliers.

• The number of clusters should not be defined a priori, because the composition
of the data is not known a priori and there is not preprocessing step that gives
any hint on the number of different families.

• The algorithm should be able to scale in order to meet the necessity of process-
ing millions data points in input. As a matter of fact, AV vendors are currently
required to process about 1 million new application every day to find new
malware samples, and existing malware dataset consist of several millions of
samples.

HDBSCAN, a density-based algorithm, was chosen as it fits most of previous
requirements.

Density-based clustering algorithms locate region of high-density in the feature
space, moreover they can effectively discover clusters of arbitrary shape and filter
out outliers, eventually increasing cluster homogeneity. Additionally, the number
of expected clusters to be found in the data is not required: our aim is to discover
groups of similar applications without any prior knowledge about their composition,
otherwise the number of clusters is hard to guess a priori.

Differently from most of the previous works [25, 6, 28, 16, 14] that rely on the
HAC algorithm (which is both computationally and storage expensive, respectively
O(n2 logn) and O(n2) [18]), in low-dimensional spaces HDBSCAN has an average
complexity of approximately O(n logn), while its space requirement is O(n), making
it applicable to moderately large datasets [71]. Furthermore, differently from [36],
we devise an iterative clustering approach where HDBSCAN is iteratively applied

24 Proposed approach

over the entire dataset, without the needed of alternate any classification step, finally
discovering precise families of applications with a shared behavior.

As the number of samples in malware datasets is in the tens of millions, through
the iterative process the original dataset D (Formula 3.2) is divided into m chunks
(Formula 3.1) di of fixed size N. The methodology used to divide the original data
into the m chunks does not influence the results.

m =

⌈
|D|
N

⌉
(3.1)

D =
m−1⋃
i=0

di (3.2)

The parameter N balances the quality of the results with the time required for the
analysis, and can be set experimentally according to the available resources.

HDBSCAN is applied to each chunk of data di finding, at each step, a set of
clusters ci and a set of outliers oi. Finally, all the outliers O (Formula 3.3) are
processed together through another clustering iteration in order to find even those
small groups of applications whose samples are spread through several chunks of
data. In the end, m+1 total iterations are required to complete the process.

O =
m−1⋃
i=0

oi (3.3)

Since the clustering on the first m chunks of data can be executed in parallel, the
benefit of the iterative approach is the huge reduction in the analysis time. On the
other hand, few applications could be misclassified as outliers and the same group of
similar applications could be found multiple times, although, as shown in section
3.2.2, those corner cases do not limit the framework efficacy.

The following description refers to to the clustering of Android applications,
although the proposed approach is generic, and it can be applied also to other datasets.

3.2 Clustering 25

Features selection

An accurate features selection is a crucial step in every machine learning approach.
As suggested in [16], we exploit aggregate information: from the analysis result of
each application, we extract a subset of “statistical” properties, meant as quantitative
measure of a malware behavior. Indeed, we experimentally found that exploiting
statistical similarities among applications, rather than “structural" properties which
exactly describe the malicious behavior, does not effectively alter the results, while
at the same time, significantly reduces the amount of data to process.

Starting from a set of n analysis reports provided by Koodous 2.1.1, each report ri

is translated into a feature vector vi = (f0, . . . , f34) containing 35 statistical properties
extracted from the results of the static and dynamic analysis. These properties are
summarized in Table 3.1 and represent the standard type of information extracted in
the field of malware analysis.

In more detail, the static analysis performed by Androguard extracts the features
from the Manifest file (i.e., number of activities, permissions, receivers, filters), and
the source code analysis. The former allows to unveil similarities among applications
based on the software architecture used to develop the application, while the latter
models each application extracting portions of code related to suspicious API call
(e.g., number of calls to SMS API, or IMEI, or other network related methods). On
the other hand, the dynamic analysis extracts features that model the application
interaction with the surrounding operating system both at file system and network
level extracted by DroidBox (e.g., files written, usage of cryptography, SMS sent),
and the network information extracted by CuckooDroid (e.g., number of DNS
resolved, HTTP requests).

Because the range of each feature is quite different, the dataset is firstly normal-
ized so that the features have mean equal to zero and variance equal to one. Since
the choice of the distance to use during cluster analysis is tied to the type and the
dimension of selected features, we experimentally found that the combination with
the Euclidean distance delivered the best performances.

26 Proposed approach

Table 3.1 List of the 35 statistical properties extracted from the analysis result of each APK
file. Features are grouped according to the type of analysis. Static features are extracted
using Androguard both parsing the Manifest file and looking for interesting API calls in the
decompiled source code. Dynamic features are extracted using DroidBox and CuckooDroid
from the dynamic analysis of the application.

Analysis method Sofware Statistical property

Parsing Manifest file Androguard

Filters
Activities
Receivers
Services
Permissions

Statically from APK Androguard

Accounts
Advertisement
Browser history
Camera
Crypto functions
Dynamic broadcast receiver
Installed applications
Run binary
MCC
ICCID
IMEI
IMSI
SMS
MMS
Phone call
Phone number
Sensor
Serial number
Socket
SSL

Dynamically

DroidBox

Files written
Crypto usage
Files read
Send SMS
Send network
Recv Network

CuckooDroid
HTTP request
Hosts
Domains
DNS

3.2 Clustering 27

3.2.2 Extending Malware Detection

Starting from millions of samples, the iterative clustering (Section 3.2.1) identifies
clusters of strongly related applications. The concept of malware family is not
uniquely defined, and it may vary according to the properties used to identify it: a
malware family can coincide with a single cluster, or it could include among multiple
clusters. In the following we identify a malware family as a group of applications
that share similar static properties, the same features used in the clustering process.
The terms malware families and clusters are used interchangeably.

In some cases, by combining this result with the information already available
in the database of an antivirus, like Koodous, the families may be automatically
labeled, as they extend either known threats or legitimate software. In the other
cases, experts are required to manually evaluate the family, but they need to analyze
only few representative samples of the group and not all applications, therefore
drastically reducing the time required by the analysis. This process exploits the
clustering assumption of the semi-supervised learning algorithms, which states that
two points which are in the same cluster, that is which are linked by a high density
path, are likely to share the same label. In such a way, the partial information of few
labels extracted from each cluster can be used to increase the knowledge of all the
applications within the same group.

The set of all applications in the Koodous dataset K may be partitioned into three
subsets K = {S∪T∪U} corresponding to the applications detected by signatures
(S), detected by triage only (T), and undetected (U); applications detected both by
signatures and in the triage phase belong to the S set. Such a partition does not reflect
a peculiarity of the Koodous dataset. Indeed, the usage of a staging area T, where
suspicious samples which are pointed out in the triage by several techniques (e.g.,
heuristics, clone detector, suspicious libraries or network traffic) are waiting further
analysis, is common in AV laboratories.

As shown in Figure 3.1 It is possible to classify a family according to the
different subsets its applications belong to. The resulting seven different types of
family correspond to the power set P(K), excluding the empty set: { {S}, {T}, {U},
{S,T}, {S,U}, {T,U}, {S,T,U} }

• Type 1 {∀s ∈ F(1) | s ∈ S}. The family is composed of applications that have
been already detected by YARA signatures. No further action is required,

28 Proposed approach

Fig. 3.1 The figure illustrates the subdivision of the applications in database and the seven
type of families (i.e., clusters) that can be automatically inferred by the proposed approach.
The database is divided in three macro areas according to the type of detection: applications
detected by signatures, by triage only, and undetected. Each point in the figure represents an
application, and each numbered group represents one of the seven cases identified by the
proposed approach.

although the generated family rule may still be effective to generalize the
detection.

• Type 2 {∀s ∈ F(2) | s ∈ S∪T}. The family includes applications already
identified as malicious either by YARA, or during the triage process. The
correctness of the detection is either guaranteed by the existing signatures,
or by the triage process (i.e., the community votes); thus a new YARA rule
matching all the applications in the family can be automatically generated and
added to the detection system without further manual check.

• Type 3 {∀s ∈ F(3) | s ∈ T}. The family is composed of applications that have
been detected through the triage process only. The correctness of the detection
is guaranteed by the triage process, and as in the previous case, a new YARA
rule can be automatically generated and added to the detection system without
manual intervention.

• Type 4 {∀s ∈ F(4) | s ∈ S∪U}. The family combines applications detected
by existing signatures with undetected ones. In order to avoid false positives,

3.2 Clustering 29

the correctness of the family must be manually validated before generating a
family signature.

• Type 5 {∀s∈ F(5) | s∈ S∪T∪U}. The family combines applications detected
both by signatures and by triage only, with undetected ones. As in the previous
case, in order to guarantee complete correctness the family must be manually
validated before generating a signature.

• Type 6 {∀s ∈ F(6) | s ∈ T∪U}. The family combines applications either
detected by the triage process only with undetected ones. As in the two
previous cases, the family must be manually validated before generating a
family signature.

• Type 7 {∀s∈F(7) | s∈U}. The family is composed of undetected applications,
hence no classification can be automatically inferred. However, as all the
applications within the cluster show strong similarities, the analysis of few
representative samples shall be sufficient to classify the whole cluster as
malware or goodware.

Such an approach offers apparent benefits: the need for human intervention is
often limited to the simple validation of the discovered family, while the need for full
analysis is reduced to few representative samples. The identification of families with
only partially detected applications, either by signature or during the triage process,
allows to discover false negative and new 0-day malware.

In Koodous, the triage process makes it possible to quickly identify threats
without the burden of creating signatures, although it has the drawback of potentially
leaving others similar applications undetected. Our frameworks may automatically
convert all the knowledge about single, unrelated threats into more reliable signature,
potentially able to discover newer variants as well.

Finally, among Type 7 families, the system is able to identify groups of legitimate
software, for example finding applications written by the same developer or using
the same framework. This result was proved to be of practical importance to limit
and correct false positive detections.

30 Proposed approach

3.3 Automatic Signature Generation

We developed an automatic procedure that, starting from each family of applications
identified as malicious, eventually produces a family signature (i.e., a YARA rule) to
precisely match them. The program has no requirements on the origin of the set: it
could be the result of automatic clustering or manual selection, although the more
the applications in the set are related, the more the rule will be able to catch new
variants. The system could generate family signatures for legitimate applications as
well, but they would be of no use.

The proposed system has been designed in accordance to the following guide-
lines:

• The algorithm should be scalable, and it should be able to generate a signature
to cover hundreds to thousands of samples in input.

• The process to generate a signature should be fast, taking less than five minutes
for 100 samples (running on a single core).

• The signature should limit, as much as possible, false positives (i.e., the
matching of goodware application).

• The efficacy of avoiding false positives should not be related to the number of
samples in input.

• The signature should be able to generalize and catch other malware variants
from the same family too.

Authoring an effective signature requires a considerable effort and experience.
Good signatures are compact, and they have the ability to generalize, that is, to
identify all known variants of the malware and even possible new ones. Moreover,
they do not yield false-positive results by detecting non-family members, and finally,
they appear intelligible to human experts and are almost self-explanatory.

Traditionally, a signature is defined on unique strings or binary patterns found in
malware but not present in legitimate programs. Moreover, approaches like yarGen
(Section 2.5.1) or YaBin (Section 2.5.1) strongly rely on the completeness of a
database of white-listed strings or patterns. Quite differently, we generate precise,
descriptive rules using the structural properties extracted from the static and dynamic

3.3 Automatic Signature Generation 31

analysis of the applications. Indeed, our system identifies an optimal set of clauses
that match all the target applications, while yielding to no false positive in the current
database. Furthermore, thanks to some heuristics (discussed in Section 3.3.3), the
rule has a good ability to generalize, a low risk of detecting false positives in the
future, and it appears reasonable to the eye of the human experts.

The set covering problem

The idea behind the signature generation is as simple as find the intersection of to set.
Starting from two applications, Sample1 and Sample2, each can be represented as
a grid of blocks, as illustrated in Figure 3.2, where each block is one of the feature
extracted during the application analysis. For the sake of simplicity, the number
of blocks in the figure is the same, but this is not a requirement of the procedure.
Feature from the same type (e.g., green and orange ones) that are shared among the
two samples represent one simple solution to the signature generation problem, as
represented in the rightmost features block in the figure.

Fig. 3.2 Visual representation of the features from two sample applications Sample1 and
Sample2. The rightmost block is one of possible resulting signature.

However, as illustrated in Figure 3.3, real scenarios are much more complex,
since several types of features are involved, and no single pattern can be easily
extracted from the pool of input samples. One possible solution is presented in
Figure 3.4 where five combination of patterns are extracted, and they represent one
of the valid solution of the signature generation problem.

More in general, the problem of generating a signature, that cover a set of input
samples, can be reduced to a variant of the well-known set cover problem[72].
Differently from the original problem, rules may overlap, hence a samples can be
covered by multiple rules. The ultimate goal is to find the minimal set of rules that

32 Proposed approach

Fig. 3.3 Visual representations of different types of features from an input cluster of samples.

Fig. 3.4 A possible solution for the signature generation problem from the previous example.

cover all the samples, without producing false positives (i.e., rules should not match
any sample within the goodware set), but limiting false negatives too.

Formal notation

A signature S can be defined as the d disjunction of n clauses.

S =
n∨

i=0

ci (3.4)

A clause ci is a finite conjunction of mi literals.

ci =
mi∧

k=0

lki (3.5)

3.3 Automatic Signature Generation 33

In the present context, a literal lki is a single feature resulting from the analysis
of the application.

An example of literal is "android permission.INTERNET", that is the Android
permission to access Internet, while an example of clause defined by the conjunction
of three Android permissions is shown below:

" a n d r o i d . p e r m i s s i o n . INTERNET" and
" a n d r o i d . p e r m i s s i o n . READ_EXTERNAL_STORAGE" and
" a n d r o i d . p e r m i s s i o n . SEND_SMS"

Introducing the automatic process

The process of automatically generating a signature consists of three steps: a reason-
able signature composed of a small number of clauses is generated; the signature is
checked against the full database of applications, and false positives are identified;
in case of unwanted detections, the generation procedure is run again, but explicitly
taking into consideration the false positives discovered in the second step.

Figure 3.5 exemplifies the idea of the process of generation of a signature for two
malware ma and mb, and two legitimate applications ga and gb. In the first phase,
the algorithm defines a signature Y = r, where r is a single clause composed by the
common features between the two malware: r = ma∩mb. Indeed, a rule Y detects
an application m only if Y is a subset of m: Y ⊆ m.

During the second phase, the rule Y is checked against the complete database,
where it generates two false positives matching two legitimate applications ga and
gb. The clause r is therefore too generic to be used as a signature.

As it is not possible to find features common to malware that do not matches
legitimate applications (ma∩mb) \ ga = ∅ and (ma∩mb) \ gb = ∅, the third step
generates a signature with the disjunction of two clauses Y ∗ = (r∧ ra)∨ (r∧ rb).

3.3.1 A dynamic greedy algorithm

The pseudo code of the algorithm responsible for the signature generation is reported
in Algorithm 1: at first it determines a suitable set of clauses (function Clauses), then
picks a subset of them of variable size to build an optimal family signature (function

34 Proposed approach

Fig. 3.5 Schema of the process of generation of a YARA rule. In the first phase a signature
Y = r is defined for malware ma and mb. In the second phase Y is checked against a dataset
of goodware (ga and gb). Finally, in the third phase, a new signatures Y ∗ = (r∧ ra)∨ (r∧ rb)
is created to avoid the false positive detection of ga and gb.

Clot). Lines 2 and 3 correspond to the first phase of Figure 3.5; line 4, to the second;
lines 5 and 6, to the third.

Algorithms 2 and 3 add more details about the procedure: the function Clauses
extracts the clauses that can be used to build the signature, and it is based on
a heuristic algorithm. First, each malware application ri in the target set R is
transformed into a single clause yi able to detect it using all available literals. Such
clauses are not directly usable, but are the starting point of the interactive procedure
for building the set of optimal clauses H: in each step, the least generic yi is selected
and compared against all clauses in H calculating the common features zi; the least
generic of these zi is eventually considered for inclusion in H.

3.3 Automatic Signature Generation 35

Algorithm 1 Automatic YARA rule generation
1: procedure GENERATESIGNATURE(R)
2: C← Clauses(R,∅)
3: Y← Clot(R,C)
4: G← GetFalsePositives(Y)
5: C∗← Clauses(R,G)
6: Y∗← Clot(R,C∗)
7: DumpAsYARARule(Y∗)

Algorithm 2 Clauses extraction
1: function CLAUSES(R,G)
2: Y←{Features(r) ∀r ∈ R}
3: for all r ∈ R do
4: Y← Y∪ SelectedClauses(r)
5: H←{Features(r) ∀r ∈ R}
6: while |H|> 0 do
7: h← LeastGeneric(H)
8: Z←{CommonFeatures(h,y) ∀y ∈ Y}
9: z← LeastGeneric(Z)

10: F = {r ∈ G | Det(z,r) = True}
11: if F =∅ and z /∈ Y and Quality(z)> Tq then
12: H← H∪{z}
13: Y← Y∪{z}
14: H← H\{h}
15: return Y

The rationale is to build Y by adding clauses progressively less specific (i.e.,
checking fewer features), but still usable in signatures. Line 10 computes the set F of
application from G detected by the candidate clause; as G is the set of all potential
false positives, if F is not null the clause is too generic to be usable. Additionally,
the function Quality(·) performs a heuristic evaluation of the clause: if the quality
is below a certain threshold Tq, the rule is so generic that it is likely to create false
positives in a near future — see 3.3.2 for more details. For each application, few
not-too-generic, heuristically selected clauses are also included (i.e., ra and rb in the
example shown in 3.5).

The function Clot (Algorithm 3) implements a dynamic greedy algorithm for
building the signature as a disjunction of clauses. It iteratively adds one clause to Y
from a set C until all applications in R are detected by at least on clause in Y.

36 Proposed approach

Algorithm 3 Clauses selection
1: procedure CLOT(R,C)
2: Y←∅
3: D←∅
4: while R ̸=C do
5: if ∃r ∈ R\D : Critical(r) = True then
6: r̄← GetCritical(R\D)
7: Z = {z ∈ C | Det(z, r̄) = True}
8: else
9: Z = {z ∈ C | ∃r ∈ R\D : Det(z,r) = True}

10: Y← Y∪{MostUseful(Z)}
11: D←{r ∈ R | ∄y ∈ Y : Det(y,r) = True}
12: return Y

In an iterative way, Clot first picks out all clauses that detect at least an application
not yet detected by any rule, with the only exception that, if an application can be
detected by only one clause, that clause is the only one picked. Then the algorithm
selects among this group the clause that is able to detect more applications in the
original target set R.

An example of an automatically generated YARA rule for the Syringe Android
malware family is shown below1. It may be noted that the statistical features
exploited during clustering (Section 3.2.1) are usually not used in the in the rule, as
they would result in over-complicated rules hardly understandable by humans.

r u l e YaYaSyringe {
c o n d i t i o n :

a n d r o g u a r d . f i l t e r (" a c t i o n .BATTERYCHECK")
and a n d r o g u a r d . p e r m i s s i o n ("SYSTEM_ALERT_WINDOW")
and a n d r o g u a r d . u r l (" h t t p : / / s . a d s l i n k u p . com / v2 ")
. . .

}

1The complete version of the rules is available on Koodous at https://koodous.com/rulesets/
3243

https://koodous.com/rulesets/3243
https://koodous.com/rulesets/3243

3.3 Automatic Signature Generation 37

3.3.2 Rule quality

A heuristic evaluation is used to reduce the risk of false positives in the future and to
increase the perceived quality of the rule. We defined a heuristic score S (·) for a
rule, inversely related to its generality. More formally, let associate each literal l to a
score S ∗(l) that measures how specific the literal is. The score of a clause ci is the
sum of the scores of the ni literals composing it: S (ci) = ∑

ni
k=0 S ∗(lik). The sore of

a rule r is the minimum among the scores of its clauses: S (r) = min∀i S (ci).

The higher the score, the more a rule is specific and less susceptible to generate
false positives. On the other hand, the lower the score, the more a rule will be able
to generalize, while being more prone to generate false positive in the future. High
quality signatures require an optimal balance between generality and specificity, and
this is one of the main challenges in automatic signature generation. We use two
threshold Tmin and Tmax, where the lowest is the minimum score that a rule needs to
be valid, and the highest is used in the optimization process to avoid overly-specific
rulesets.

All the clauses in YARA rules created by expert analysts are valid, that is, the
score assigned to literals must guarantee that ∀r ∈ Rexpert : Tmin ≤ S (r) ≤ Tmax.
We consider invalid the rules containing a clause mentioning only Android official
permissions and intent filters, or containing a clause composed of a single literal,
with the exception of accessing an URL that have been detected as malicious by
VirusTotal or similar services. Then, we exploit the simplex method as a mean to
automatically define S ∗(·) starting from the existing ruleset.

The simplex method is a linear programming technique, which refers to the
problem of optimizing a linear objective function ζ of m variables xi subject to a
set of n linear inequality constraints. In standard form, the problem of finding an
optimal set of weights for m literals can be expressed as:

minζ = cT×x (3.6)

s.t −A×x≥−b, x≥ 0 (3.7)

where ci = 1, ∀i = 1 . . .m, since the objective function ζ minimize the number
of literals in each clause, x ∈ Rm is a vector of m unknown weights, and bi = Tmin,

38 Proposed approach

Table 3.2 Details about the number of rules, clauses, and unique clauses analyzed to find the
optimal score for each literal.

Num. of YARA rules
Num. of DNF clauses

Total Unique

Koodous
public rules 348 788 104

Yara-Rules
on GitHub 348 697 48

∀i = 1 . . .n, as we want each existing literal combination to satisfy the minimum
score of all existing rulesets.

Finally A is a n×m matrix that put into relation each clause with their own
literals:

A =


l11 l12 l13 . . . l1m

l21 l22 l23 . . . l2m

.

ln1 ln2 ln3 . . . lnm


where lnm = 1 if lnm is a literal of the clause cn, otherwise lnm = 0. In order to get the
list of all the n existing clauses ci, we firstly reduced all the available YARA ruleset
in the Disjunctive normal form (DNF).

We arbitrarily set the values Tmin = 400 and Tmax = 700 for the two thresholds.
Table 3.2 reports the details about the rules, clauses, and unique clauses that have
been analyzed, using the YARA rules from both Koodous2 and the Yara-Rules
repository on GitHub3. Table 3.3 show the final result, where each literal is assigned
a distinct weight.

3.3.3 The optimization phase

Part of the work described in this section has been previously published in "Evolu-
tionary Antivirus Signature Optimization", Congress on Evolutionary Computation,
2019 [73].

2https://koodous.com/rulesets
3https://github.com/Yara-Rules/rules/tree/master/Mobile_Malware

https://koodous.com/rulesets
https://github.com/Yara-Rules/rules/tree/master/Mobile_Malware

3.3 Automatic Signature Generation 39

Table 3.3 Weights assigned to each type of literal as a result of the simplex method optimiza-
tion. Weights are used by the automatic procedure to generate new YARA rulesets.

Module Name Literal type S ∗(·)

Androguard

App name 100
Package Name 100
Certificate SHA1 150
Certificate Subject 100
Certificate Issuer 100
Main Activity 50
Activity 150
Service 150
Broadcast Receiver 100
Intent Filter 150
Content Provider 80
Functionality 15
URL 400
Permission Normal 7
Permission Dangerous 80
Permission Not third party 50
Permission System 80
Permission with Typos 150
Permission non standard 50

Cuckoo
DNS lookup 400
HTTP request 400

Valid rules have a score between Tmin and Tmax, which are defined to avoid too
generic or too specific signatures. However, thousands of different combinations
of literals can lead to a valid score. The goal of the optimization phase is to find,
among the valid configurations, the most successful one that minimize the number
of false positives (FP) and false negatives (FN). The proposed optimization approach
is based on an estimation of distribution evolutionary algorithm, which has been
presented in Section 2.3.1.

The evolutionary optimization phase

The technique to optimize a signature relies on the Selfish Gene (SG) evolutionary
algorithm, with an unorthodox fitness function given by unsystematic human expert

40 Proposed approach

knowledge coded as a set of heuristic rules4. In the current application, the genome
is the signature to optimize and the loci are the literals of the signatures. Each locus
may contain two alleles (true and false) specifying whether the attribute is used or
not in the final signature.

The metrics we used to compare two candidate solutions are the following, listed
in order of priority:

1. the number of malware correctly detected by the candidate solution among the
ones used to generate the candidate signature, with the aim of achieving 100%
coverage;

2. a set of manually-defined heuristic rules, gathered from human experts;

3. the score of the candidate optimized signature;

4. the number of attributes contained inside the candidate signature.

The first value is to be maximized while the third and forth minimized.

The algorithm starts considering two candidate solutions and comparing the
number of malware they correctly detect. The signature that matches more malware
than the other one (and so, probably even more than the original one) will be
considered the most powerful. Otherwise, if the number of matches is equal the
algorithm proceeds further in the comparison using the heuristic rules. If the number
of malware and the heuristic rules are still not sufficient to establish which signature
is better, then the algorithm also evaluates the score and the number of attributes,
finally choosing the candidate signature with the lower values.

Since the score of the signatures must be between the two thresholds (Tmin <

Sσ < Tmax), a penalty is assigned to signatures that are outside these limits. A
candidate solution receives a huge penalty if the signature becomes too general
going under Tmin, and a smaller penalty if the signature becomes too specific going
beyond Tmax. Penalties are different because, for the endpoint malware detection,
it is preferable to have too specific signatures and miss some samples rather than
detect false positives.

The heuristic rules mentioned in the comparison metrics have been obtained with
the help of experts if the field of Android malware: analysts from Koodous have been

4Note that the word rule in this context does not refer to signature.

3.3 Automatic Signature Generation 41

interviewed and a set of rules of thumb was created to determine which signature is
best between two. We used the following list of rules, although the approach is note
limited to these only:

• having URLs is better than not having them;

• not having embedded piece of codes related to TLS code (i.e., secure network
communication) is better than having it;

• the more features categories the better;

• the more code features the better;

To make the empirical rules even more similar to the decision-making process
of a human we decided to apply a tolerance on the comparisons implemented by
the last two rules. For example, signature A is assumed better than signature B if
A has at least 3 feature categories more than B. In some cases it is not possible to
establish which signature is better, this happens for example when both the candidate
solutions are composed only by URLs or both only have the TLS code.

This set of heuristic rules is able to simulate the human process of choosing
between two signatures, but cannot perform like a traditional fitness function where
individuals can be ordered through the evaluation process. That is, if an individual ia
is preferable to the individual ib, and ib is preferable to ic, this does not imply that ia
is preferable to ic:

(ia ≥ ib)∧ (ib ≥ ic) ̸⇒ ia ≥ ic

As an example, if we assume that the tolerance on the code features rule is 3 and
the tolerance on the feature categories rule is 10. If S1, S2, S3 are three signatures
with the following characteristics:

S1 = 5 f eature categories;

S2 = T LS+10 f eature categories+2 code f eatures;

S3 = T LS+15 f eature categories+4 code f eatures;

we obtain:
S1 > S2; S2 = S3; S1 < S3.

42 Proposed approach

Due to this peculiarity a problem arises in the management of the candidate
solution archive.

Candidate solution Archive In traditional EDA, when two candidate solutions
are generated and compared, they have to compete with a set of solutions that are
considered equally good. This pool of individuals is called archive [74]. All the
individuals contained inside the archive are candidates to be returned as the final
solution. If the fitness value of a candidate is greater or equal to all the solutions
included in the archive, that candidate solution becomes part of the archive. This
mechanism requires an absolute order among the solutions.

By contrast, in the proposed approach, due to the introduction of the heuristic
rules, the transitive property is lost, so is the absolute order. The way in which the
optimizer selects the individuals to keep in the archive is based on a tournament-
based approach. After each comparison, each individual inside the archive receives a
score. In particular, it gets:

• 3 points, if it is better than the other one;

• 0 points, if it is worse than the other one;

• 1 point, if it is not possible to establish which individual is better between the
two.

This mechanism is executed in a round-trip way, so that each pair of individuals
is compared twice. At the end, the individual that is stored in the archive is the one
with the highest score. If there is more than one individual with the highest score,
then all of them are kept in the archive.

3.3.4 YaYaGen

The approach presented in 3.3.1 has been implemented in a framework called YaYa-
Gen, which is an acronym for Yet Another YARA rule Generator. The framework has
been publicly released on GitHub 5, after the presentation "Looking for the perfect
signature: an automatic YARA rules generation algorithm in the AI-era" at BSidesLV
and Def Con 26, in August 2018.

5https://github.com/jimmy-sonny/YaYaGen

https://github.com/jimmy-sonny/YaYaGen

3.4 Extension to Windows Malware 43

YaYaGen is an automatic procedure, that starts from a set of Koodous reports,
either identified as a malware family, or by any other mean, and eventually produces
a signature in the form of a YARA rule that can be seamlessly used in Koodous.
YaYaGen analyzes the reports of the target applications, extract the analysis attributes,
and identifies an optimal attribute subsets that are able to match all the targets;
moreover, thanks to a heuristic measure, the generated signature has a limited risk of
detecting false positive in the future, yet it is general enough to catch future threats.

3.4 Extension to Windows Malware

The approach to automate the signature generation for Android malware has been
extended to Windows malware too, and YaYaGenPE is an extension of the original
YaYaGen (Section 3.3.4). Following the same principles of scalability and accurate
malware identification, YaYaGenPE has been specifically designed to automatically
generate signatures for Portable Executable (PE) files, that is the executable file
format of Windows binaries and libraries (DLLs).

YaYaGenPE shares many of the ideas at the base of YaYaGen, but the extension
to Windows required a substantial amount of work for the code development, which
has been partially conducted by Luca Cetro during his MSc Thesis "Automatic
Malware Signature Generation", Politecnico di Torino, 2018.

3.4.1 YaYaGenPE

Differently from the previous approaches that generate signatures for Windows
malware, YaYaGenPE introduces the following main advantages:

• The efficacy of the rule generation engine does not rely on an extensive
goodware database. Rules are generated through an optimization phase which
combines hundreds of simple features in complex and rare clauses that limit
the number of false positive detections.

• The ability of generalizing the detection to other malware variants of the same
family is directly related to the quality of the input set. The more the samples
of the same family are provided in input, the more the framework is able to

44 Proposed approach

Fig. 3.6 Work flow of a YARA rule generation in the YaYaGenPE framework.

select the relevant features that distinguish that particular family from all the
others.

As illustrated in Figure 3.6, YaYaGenPE mainly consists of four steps:

• Feature extraction: samples in input are processed in order to extract useful
features for the next rule generation phase. As the rule generation process is
completely independent from the specific type of features in input, anything of
semantically relevant can be selected in this phase. This include both simple

Table 3.4 Comparison of state-of-the-art automatic signature generation approaches for
Windows binaries.

YaraGenerator YarGen YaBin BASS YaYaGenPE

Language YARA YARA YARA ClamAV YARA
Features Strings Strings Binary Binary PE header
Algorithm Intersection Whitelist Whitelist LCS Set covering
Input coverage No No Yes Yes Yes
Clustering No No No Yes Yes
Scalable 100+ Yes Yes Yes No Yes
Low FNs No Yes Yes Yes Yes

3.4 Extension to Windows Malware 45

feature, such as patterns extracted from the PE header or code, and complex
features, such as other rules that match the samples in input. In the latter case,
rules are preprocessed in order to extract the literal from which are composed,
where each of them is later treated as a simple feature.

• Clustering: finding subgroups of similar samples is an optional step that
guarantees the scalability of the approach. It allows to keep the approach scal-
able, even if thousands of samples are provided in input. Different clustering
methods can be used, but the Unsupervised Decision Tree is the preferred one.

• Rule generation: a set of signatures that cover the input samples is automati-
cally generated as a result of an optimization phase that reduce the original
problem to a variant of the set-covering problem. As the original YaYaGen,
two algorithms are proposed, the pure greedy and the clot. Optionally, in case
of false positives detection, the rule generation can be repeated to exclude the
unwanted detections.

• Syntax conversion: the generated rule is converted into the specific signature
syntax, where the YARA language is the default choice.

Each phase is detailed in the following sections.

Feature extraction

Each automatically produced signature is a combination of simple features extracted
from the samples in input. The rule generator mechanism used by YaYaGenPE
is completely independent from the type of features provided, hence finding the
most effective type of feature is a crucial step to ensure the final high quality of the
signature.

Features can be simple terms extracted from the binary, such as PE header files,
strings and binary patterns. On the other hand, complex features, such as existing
signatures that match the file in input, can be used too. In case of complex feature
set, those will be preprocessed in order to extract their basic elements (i.e., simple
features) to be used in the following steps of the rule generation process.

Simple Features YaYaGenPE uses by default all the header fields extracted from
the PE header []. It consist of hundreds of entries, and apart from the AddressOfEn-

46 Proposed approach

tryPoint and the Import Address Table, most of the PE header fields are not modified
by packers. The imphash [75] and the overlay [76] are extracted too, although they
are not part of the standard.

Since the specification of some fields of the PE header are loose, and different
tools implements the extraction of those fields in different ways, it is important to
ensure that the value of each field of header file is the same in both the extraction
and checking phase.

YARA allows the feature extraction from specific file format, such as the PE file,
through custom modules which are added at the compilation time of the tool. In order
to ensure the equality among the features extracted and those checked, a modification
to the YARA tool, and respective Python bindings has been implemented.

Complex Features Complex features include all of those features that cannot
directly extracted from the file under analysis, but requires an external source of
information to enrich the available data. After a pre-processing phase, complex-
features are translated in set of simple features that can be used to construct a malware
signature. In the context of malware, thousands of signatures are freely available,
and even if none of them entirely match the sample analyzed, they are usually made
of tens of tens of literals. By extracting the literals from available rules, and filtering
those that match the samples, it is possible to enrich the set of features. The idea
behind the use of existing ruleset is that they encode the expert knowledge of humans
who analyzed the malware and extracted those patterns that are characteristics of a
specific malware threat 6.

Clustering

For windows binaries, an optional clustering phase is devised to ease the generation
of the rule before applying the clot algorithm. Given the rich feature set of each
application, in order to meet the scalability requirement and being able to process
thousands of files in input, an unsupervised clustering algorithm is used to identify
cluster of samples.

6A YARA rule parse has been implemented by Luca Cetro in his MSc thesis “Automatic Malware
Signature Generation”

3.4 Extension to Windows Malware 47

Fig. 3.7 Example of a binary tree constructed by the UDT clustering algorithm. Each path
highlights the boolean value of the selected features.

Besides the iterative clustering (Section 3.2.1), an approximated Unsupervised
Decision Tree (UDT) algorithm is presented. As the UDT finds at each iteration a
binary split, according to the value of a single feature, it has the main advantage of
generating part of the signature while producing the clustering. Indeed, the path the
connects the root of the tree to the leaf (i.e., the cluster) represent a logical expression
that can be easily translated into a valid signature.

The algorithm selects the best splitting feature according the the one that maxi-
mize the distance among the cluster centroids, which calculation is approximated.
Experimentally, we found that the Russell-Rao and the Jaccard distances delivers the
best results. The tree generation ends when the distance among centroids is lower
than an experimentally defined value.

Figure 3.7 shows an example of a binary tree generated by the UDT clustering
algorithm. The figure shows for each path the boolean value of the feature selected at
each level of the tree. The entire path from the root of the tree to the selected cluster
can be easily translated into a boolean expression, as shown in Figure 3.8.

Signature Generation

Starting from the clusters identified at the previous step, or directly from the all
set of samples in input, the algorithm that generate the signatures follows a similar
approach to the one adopted by YaYaGen framework (Section 3.3.1). Indeed, the
presented algorithms are general, and independent from the specific types of features

48 Proposed approach

Fig. 3.8 Example of path from the root the leaf of binary tree created by the UDT clustering
algorithm. The path will be translated into a boolean expression and will be integrated into
the rule of the selected cluster.

extracted. The problem of generating a minimal set of signatures from the samples in
input can be reduced to a variant of the set coverage problem, where sets can overlap,
but cannot cover other point (i.e., samples) which otherwise will lead unwanted
detections.

The scoring system The rule generation process requires the definition of two
thresholds, MIN_T and MAX_T, which identifies the limits of a rule in terms of
generality and specificity. The choice of these two parameters is critical, and the
effectiveness of the generated rules is strongly related to their value.

Malware industry commonly identifies two type of rules, each with its own
requirements:

• Hunting rules requires a low number of FNs, in flavor of a higher number
of FPs. The goal of the rule is the investigation of a particular threat. Each
detected samples will be further manually analyzed, looking for variants of a
particular malware.

• End-point rules are used for the customer (i.e., endpoint) protection and FPs
are usually not accepted. Rules should be very specific to the type of threat,
but should also limit the FNs originated by new variants of the malware.

An appropriate choice of MIN_T and MAX_T make YaYaGenPE suitable for both
scenarios.

3.5 Limitations 49

Differently from the Android scenario, a manual procedure has been adopted
to set the threshold values. The value of MIN has been arbitrary decided after a
precise static analysis of thousands of malware samples, and the scoring system has
been simplified, making each feature counts one, that is considering them equally
important.

Given the high cardinality of the feature set, with hundreds of features extracted
from the PE header, and thousands from existing rules, finding their value through an
optimization procedure, as proposed in the Android case (Section 3.3.2), is extremely
challenging. Moreover, the problem cannot be simplified, as there is no unique way
to categorize those features in group of semantically similar features, and there is the
lack of a huge dataset of labeled malware which presents different characteristics in
respect of the selected features.

Syntax conversion

The set of features that describe a rule is finally converted into the specific signature
syntax. The choice of the syntax is strongly related to the engine that will be used
for checking the samples. YaYaGenPE automatically converts the rules into valid
YARA signatures.

For each feature a corresponding YARA literal is created, and in the condition
section it is added the logical expression corresponding to the logical “AND” of each
literal. If properties from custom modules are used, those are directly inserted in the
condition section, according to YARA specification. Finally, several signatures can
be included in the same YARA rule, if concatenated by the “OR” logical operator.

3.5 Limitations

A major limiting factor of the described semi-supervised approach is represented
by the ability to extract meaningful information regarding the malicious behaviour
of the applications under analysis. Indeed, the accuracy of the analysis directly
affects the clustering results and the automatic rule generation process. The Android
platform lacks of mature reverse engineering tools compared to the ones used for x86
malware [77]. Since each malware is different, automatically finding the malicious
code by means of static analysis is difficult, because it is mixed with benign code;

50 Proposed approach

moreover dynamic code loading and reflections make the analysis even harder.
Unfortunately, most malware include trigger-based anti-analysis techniques that
delay or hide their malicious activities at the first application run or in an emulated
environment. For instance, the family of applications known as DroidKungFu7 uses
a time bomb of 240 minutes to schedule the execution of its malicious code, indeed
a simple dynamic analysis fails to observe interesting behaviors. However, in this
research we do not address problems related to application analysis, as we focus on
the detection of new samples and the automatic generation of new signatures.

Evasion attacks, such as noise-injection attacks [78] and other similar approaches
[79–82] may affect the correctness results of the clustering and the signature gen-
eration. Those attacks rely on the ability of injecting, in the analysis platform,
applications specially crafted to mislead the clustering process and the generation of
a good detection model.

In the described system, an attacker could exploit such attacks by injecting
specially crafted applications with the final goal of generating a false positive or
a false negative detection. However, in both cases we assume that the detection
information of already known threats (identified through signatures or by triage)
cannot be maliciously tampered, thus new injected families will result in a Type 4, 5,
6 or 7, hence will be subject to manual validation.

If the attacker wants to deliberately generate a false positive, several malicious
applications whose statistical properties are similar to a target goodware can be
injected. Since a false positive detection mainly generates a disruption to a third
party service, causing a reputation fail for the AV solution, the magnitude of the
echo is proportional to the diffusion of the target goodware. As a matter of fact, the
analyst will be alerted by such a family.

On the other hand, if the goal is to generate a false negative, the attacker could
inject several goodware with the same statistical properties of a target unknown
malicious app. Such a family could be misclassified as a completely goodware
even after the validation process, as the manual analysis focus only on few samples.
However, such a situation applies only as far as the malware is a zero-day, and no
specific knowledge about that threat is available. The identification of zero-day
malware is a challenging and an open-research problem in the security community.

7Sample MD5: 7f5fd7b139e23bed1de5e134dda3b1ca

3.5 Limitations 51

Finally, the proposed system strongly relies on the information provided by the
platform to automatically extend the detection to new applications and identify new
potential malware families. It is a prerequisite that this information is not tampered
by any malicious actor. Although Koodous provides protection mechanism for both
YARA rules (rules before becoming active undergo a review process) and the triage
process (community members are subject to a reputation check), it is not intent of
this research to tackle those issues, leaving their study to future works.

Chapter 4

Experimental Results

Part of the work described in this chapter has been previously published in "Counter-
ing Android Malware: A Scalable Semi-Supervised Approach for Family-Signature
Generation", IEEE Access, 2018 [69].

4.1 Android applications

4.1.1 Android dataset

As a case study we used a dataset of 1.5 million Android applications collected over
the 2016. The dataset is recent and diverse in the set of attack vectors it represents:
in order to have the same ratio between detected and undetected applications as
in Koodous, we sampled a subset of 1 million apps1. As result, the dataset under
analysis is composed by 65% undetected applications, 31% detected by signatures,
and 4% detected through triage only.

4.1.2 Clustering

HDBSCAN has two parameters that mostly influence the results of the clustering:
min cluster size (mss) determines the smallest size of a cluster, while min samples

1In order to ensure the quality of the results and avoid artifacts, the sampling of 1 million
applications have been repeated three times: in all the cases the proposed techniques showed coherent
results.

4.1 Android applications 53

Table 4.1 Comparison of Homogeneity (Hom.) and Completeness (Comp.) index values
between the families inferred by the clustering process (using both the iterative clustering
with different chunk sizes N, and the non-iterative version), and the families labels extracted
from Koodous and VirusTotal.

Koodous labels VirusTotal labels
N Hom. Comp. Hom. Comp.

50k 0.96 0.36 0.85 0.49
100k 0.96 0.35 0.85 0.49
200k 0.96 0.35 0.85 0.50
non-iterative 0.92 0.36 0.78 0.50

(ms) how conservative are the results. A higher value of min samples restricts clusters
to more dense areas, but it also increases the number of outliers. We use mss = 3 and
ms = 1; in other words, we considered only malware clusters containing a minimum
of three samples as representative of a malware family.

We used a high-performance, open-source implementation of HDBSCAN in
Python from Leland McInnes [83]. All experiments were performed on a 6-core Intel
Xeon (CPU E5-1650 v2 @ 3.50GHz), with 128 GB of RAM, although HDBSCAN
only used up to four cores and 6 GB of RAM in each run.

The quality of the clustering results is evaluated as a measure of the ability of
correctly extending malware detection to undetected applications. However, given
the difficulty of establishing a reliable ground truth in the field of malware analysis,
evaluating the results was challenging. Finally, for the clustering validation we
used all the available information: detection results and AVs labels extracted from
VirusTotal reports, and signature labels extracted from existing YARA rules in
Koodous.

Since clustering exploits the relationship between statistical similarities among
applications, in contrast to the structural properties commonly used in AVs signatures,
no one-to-one correspondence between clusters and AV labels is expected, however
by combining several indexes we deliver a trustworthy quality measures of clustering
performances. In order to estimate cluster assignment, we adopt the Adjusted Rand
Index in combination with other external indexes as proposed by Rosemberg et
al. [84]:

54 Experimental Results

• Adjusted Rand Index (ARI) is defined as the number of pairs of items that are
either both in the same cluster or both in different clusters in the two partitions,
normalized over the total number of pairs of items. The index lies between
0 and 1: when two partitions agree perfectly, the Rand index achieves the
maximum value 1, and more in general a larger adjusted Rand index means a
higher agreement between two partitions. Moreover, ARI supports the measure
of the agreements even when the compared partitions have different numbers
of clusters

• Homogeneity (Hom.), which measures whether its clusters contain only data
points which are members of a single class

• Completeness (Comp.), which measures whether all the data points that are
members of a given class are elements of the same cluster

• V-measure (V-ms.), measured as the weighted harmonic mean of homogeneity
and completeness; this is useful since homogeneity and completeness of a
clustering solution run roughly in opposition: increasing the homogeneity of a
clustering solution often results in decreasing its completeness.

Table 4.1 compares homogeneity and completeness index values between the
families (i.e., clusters) inferred during clustering process, and the families labels
extracted from Koodous signature names and VirusTotal AV labels2. Results are
compared using both the iterative clustering, with different chunk size N, and the
non-iterative version.

Since AVs listed in VirusTotal commonly use different names to identify the
same type of threat, we took advantage of AVclass [85], an automated labeling tool
that, given the labels of multiple antivirus engines, returns the most likely family
names for each sample, focusing on normalization, removal of generic tokes and
alias detection. The implementation is open-source, available on GitHub [86], and
provides VirusTotal integration.

Interestingly, all the cases reported in Table 4.1 show very high homogeneity
value, which indicates that malware families identified by AVs signatures are further
split in finer partitions during the clustering process. Moreover, precise clusters
increase the effectiveness of the following automatically generated signatures.

2The comparison with VirusTotal AV labels is limited to 100,000 randomly selected applications.

4.1 Android applications 55

Fig. 4.1 Number of total applications, and newly automatically inferred detections, for each
type of malware family (Type 2...6). Results refer to the iterative clustering approach, using
chunk size N = 100k, over a dataset of 1 million applications.

Table 4.2 Number of families automatically inferred by the clustering algorithm (using both
the iterative clustering with different chunk sizes N, and the non-iterative version), using
dataset of 1 million applications. Results are gathered for each type of malware family (Type
2...6).

N Type 2 Type 3 Type 4 Type 5 Type 6

50k 1,890 2,949 1,467 463 2,846
100k 1,477 2,439 1,519 500 3,385
200k 1,193 2,203 1,436 536 3,133
non-iterative 435 1,046 2,126 536 4,629

Extending malware detection

Fig. 4.1 illustrates the result of the automatic detection extension for the 1 million
applications under analysis: each bar in the plot is related to a family type (refer to
Section 3.2.2 for an accurate description of each type of malware family), illustrating
both the total number of applications, and the number of those automatically identi-
fied as malicious. Results are obtained using the iterative clustering approach, with
chunk size N = 100k. Note that Type 1 and 7 families are not shown, as the first con-
sist of application that are already completely detected by signature, while the latter
include families found within unknown applications, hence no direct information
about their composition can be automatically inferred.

56 Experimental Results

Table 4.2 is complementary to Fig. 4.1, as it compares the number of families,
for each family Type, using both the iterative clustering with different chunk sizes N,
and the non-iterative version.

Among the clusters of Type 2 and 3, the system automatically identifies a total
of 21,450 new malicious applications that will be automatically covered by new
signatures, without requiring any human intervention. In more detail, 5,386 applica-
tions (Type 2) are found within clusters with other apps already detected by YARA
signatures; while 16,064 applications (Type 3) are assigned to clusters purely made
of applications detected during the triage phase only. As matter of fact, generating
new family signatures for these applications allows to transform the knowledge of
existing threats into a more reliable and scalable form of detection, without affecting
the precision of the results: all those applications have been already identified as
malicious by the community of malware experts.

On the other hand, 34,818 applications are assigned to families Type 4, 5 and
6: 20,464 are the newly identified potential threats, since previously marked as
undetected. In this case, the proposed framework allows an easy identification of
hard to find potential threats, reducing the human intervention from the manual
analysis of thousands of applications to the validation of a very fewer number of
families where applications reflect a similar behavior, eventually speeding up the
procedure of new malware discovery. For example, the system identified a total of
500 families for the Type 4 (refer to Table 4.2, second row) reducing of an order of
magnitude the need of manual analysis, as a detail analysis of a malicious application
could take few hours, this approach results in a huge time saving.

Evaluation of malware detection extension

Aiming at evaluating the detection extension performance in a real-world case, we
evaluate how the proposed system is accurate in relationship to the information
of the detections available in VirusTotal. We choose VirusTotal as a well-known
and trustworthy source of information about existing threats since it collects the
detection results from tens of independent AV companies. Moreover, recently other
researchers used the same metric [87].

In order to evaluate the detection extension results, we firstly assessed how pre-
cisely Koodous detects malware samples, and how effectively covers all the malware

4.1 Android applications 57

Table 4.3 Comparison of the detection results between VirusTotal and two datasets of 50,000
applications, respectively undetected (und.) and detected (det.) by Koodous. Columns
indicate the number of applications unknown (unk.), undetected (und.), detected by at least
one AV (det.), and detected by more than three AVs, as reported by VirusTotal.

VT unk. VT und. VT det. VT det. >3

Koodous det. 18 72 49,910 49,717
Koodous und. 3,449 12,508 34,043 28,166

Table 4.4 Evaluation of the accuracy of the clustering system to automatically identify groups
of malicious applications, by comparing the detection of the new applications with VirusTotal.
Columns Correct and Incorrect respectively reports the number of applications correctly or
wrongly classified, while Min and Error illustrate the minimum precision and the maxim
error of the proposed approach. Results are reported using both the iterative clustering with
different chunk sizes N, and the non-iterative version.

N Correct Incorrect Min % Error %

50k 7,493 254 91.23 2.91
100k 12,502 877 86.04 6.03
200k 13,628 917 89.54 6.18
non-iterative 14,619 1,109 87.93 6.67

variants. Starting from two randomly sampled subsets of 50,000 applications, re-
spectively originally undetected and detected in Koodous, we cross-checked their
maliciousness using VirusTotal. Results are illustrated in Table 4.3. The first line
of the table (Koodous det.) shows that among detected applications, Koodous has
100% of precision, and very high recall (99.8%), as almost all Koodous detected
applications are completely identified as malware by traditional AVs too, while only
100 applications (the 0.2% of the dataset) are unknown or undetected by VirusTotal.
However, the second line of the table (Koodous und.) shows a very low accuracy
(27.8%), as a consequence of a major diversity in the detection ratio among the
applications undetected by Koodous and VirusTotal. Although such a difference
could be partially explained by the different policies that traditional AVs use in
identifying a malicious application, particularly regarding adware, this result further
motivates the need of an automatic mechanism to increase the number of correct
detections in Koodous.

With the awareness that VT detection results are not completely reliable, we
only considered those clusters for which the VT information is available for all the

58 Experimental Results

applications. In order to calculate the accuracy of the proposed system, we adopted
the following metrics:

• if the system proposes an extension to a malware family where all the applica-
tions are detected by VT, we consider the extension as correct;

• if the system proposes an extension to a family where all the applications are
undetected by VT, the extensions is considered as incorrect;

• if the system proposes an extension to a cluster that mixes applications partially
detected and undetected by VT, the result is considered unknown.

Table 4.4 illustrates the results. For each clustering experiment, each line of
the table reports the number of applications that have been correctly or wrongly
classified, according to the type of the cluster to which they were assigned. Without
any human intervention, the system scores a minimum accuracy that ranges from
86.04% to 91.23%, and it has a worst case error of the 6.18%. A further manual
inspection of the results revealed that several families completely undetected by
VT are mostly related to aggressive adware samples, whose classification is subject
to different considerations. Furthermore, results show that a smaller chunk size
increase the precision the detection, reducing the error, although the absolute number
of applications automatically extended is smaller. Accordingly, the chunk size can
be set in accordance with the needs of the system.

Example of manual analysis of a malware family

Table 4.5 shows an example of a Type 4 malware family. As the first two samples are
already detected by the signature Xynyin.Trojan3 in Koodous, the system proposes to
extend the detection to the other applications of the same cluster. The comparison of
the detection results with VirusTotal4 shows that all but one application are already
detected, while a manual analysis of Leagueoftankheroes3D5 confirm its affinity to
the Xynyin malware family6.

3https://koodous.com/rulesets/1225
4Detection results refer to 15 Nov 2016
5MD5: 695d6b9f97a9e992f8e321d36509c080
6From 24 August 2017, VirusTotal’s AVs detect the application too.

https://koodous.com/rulesets/1225

4.1 Android applications 59

Table 4.5 Example of a Type 4 malware family. As the first two samples are already detected
in Koodous by the YARA rule Xynyin.Trojan, the system identifies other applications within
the cluster as potentially malicious too. The comparison with VirusTotal (the number of
detection is reported) and a manual analysis confirm the accuracy of the system.

Detected
MD5 Koodous VT

998faf5e7a0d45f6ad60903bc5d60817 Yes 12
5a8dd85a5707f520563069bf536f9d5f Yes 19
695d6b9f97a9e992f8e321d36509c080 No 0
304754e9f8f95228af0e7118d62e999f No 12
805d8770d6314f5adad266ddaba610e1 No 10
23863ddba21b96aea3e8b2cc120bb2b2 No 12

Table 4.6 Comparison of the clustering results using using both the iterative version with
different chunk sizes N, and the non-iterative one. Column Time indicates the time (in
seconds) required by the clustering process, while column "Outliers" reports the number of
outliers found at the end of the iterations.

N Time (s) Outliers

50k 5,746 64,553
100k 6,408 65,685
200k 10,573 67,081
non-iterative 16,592 119,919

One of the major benefit of a semi-supervised system is to limit the detection
of false positives, and the operation is further simplified since the analysts should
only focus on groups of similar applications, without considering single samples.
As useful side effect, the system could be also used to improve the precision of the
results, by reducing false positive detections for those families of applications that
have been partially miss-classified by existing signatures.

The Iterative algorithm

The adoption of the iterative approach brings a number of benefits: it proved to
be essential in order to analyze millions of applications, and the resulting number
of outliers, as illustrated in Table 4.6, is much lower than what was obtained by
clustering all applications together. The time required by the clustering phase is

60 Experimental Results

Table 4.7 Indexes comparison of the clustering label inferred by the iterative approach (with
different chunk sizes N) using the assignment produced by the non-iterative version as a
reference.

N ARI Homogeneity Completeness V-Score

50k 0.26 0.92 0.78 0.85
100k 0.27 0.93 0.81 0.86
200k 0.29 0.94 0.84 0.89

proportional to the chunk size and it is up to one order of magnitude lower than in
the non-iterative case.

The adoption of the iterative approach does not affect the quality of the results,
even though using a bigger chunk size results in a greater number of new detections.

Table 4.7 compares the iterative approach using as a reference clustering assign-
ment the one produced by the non-iterative version. A relatively low ARI value
indicates a difference in the clustering assignment between the two approaches,
while a very high homogeneity value, compared to completeness, is a clear sign of
a finer cluster partitioning. In other words, using the iterative approach the quality
of the information is not compromised, although the resulting clusters are smaller,
hence less likely to contain enough applications that span different detection areas,
finally resulting in a lower extension. A bigger chunk size lowers the differences
between the iterative and the non-iterative assignment, as shown by an increasing
V-score value. Eventually, if a large enough chunk size is used, the iterative approach
produces almost the same results as the non-iterative one, while generally finding a
higher number of clusters, as illustrated in Table 4.2, and a less outliers, Table 4.6.

Finally, in order to further test the scalability of the proposed method, we suc-
cessfully applied the algorithm on a very large dataset of 10 million applications,
using a chunk size N = 500k.

4.1.3 Android signatures

In order to evaluate the effectiveness of the automatic signature generator, we
compare the detection results of several YARA rules automatically generated by the
proposed algorithm with existing rulesets created by expert analysts.

4.1 Android applications 61

Table 4.8 reports the results of the rules detections on a dataset of 1.5 million
applications: in all the cases, the automated generated rules 7 performed better than
the one authored by humans, increasing the detection from the 8.2% up to 131.2%,
without generating any false positives.

Referring to Section 3.3.2, in all the cases the rule generation process stopped at
the second step, as none of the new rules produced any false positives in the current
dataset of applications. A further manual analysis of the detected applications,
confirmed that no false positive was generated.

As shown in Table 4.9, the time required to generate a rule for few hundreds
malware is always less than a minute, although when the target increases to a few
thousands applications, the time required grows up to several minutes, as the most
expensive part of the process is the check for false positives against a reference
dataset. This is not considered a limitation, since all the process is automatic, and
given the goodness of the results, it is of invaluable support for the family signature
generation process.

Table 4.9 reports the number of literals (i.e., application features) and the final
score for each generated YARA rule: referring to Section 3.3.2, each score is higher
than the minimum threshold Tmin = 400, satisfying the minimum requirement for
acceptability in order to avoid false positive detections, and lower than the maximum
threshold Tmax = 700, as a result of the optimization process to increase the rule
generality and therefore the ability to catch future malware variants.

In order to increase the effectiveness of a rule, URLs are included only if are
known to be malicious, like in case of http:// s.adslinkup.com/v2 for the Syringe
malware family. Moreover, aiming at identifying malware with very high precision
and avoiding false positives, whenever available, the automatic signature generator
includes those attributes extracted from the application analysis that contains a
typing mistake. For instance, the rule YaYaMetasploit18 includes a wrong permission
ACCESS_COURSE_LOCATION instead of the correct one ACCESS_COARSE_LOCATION.
Given the difficulty of reproducing such an uncommon mistake, we consider this
feature as a hard indicator of the maliciousness of a sample.

7Example rulesets could be found at the following address: https://koodous.com/analysts/
YaYaGen/rulesets

8https://koodous.com/my_rulesets/3466

http://s.adslinkup.com/v2
https://koodous.com/analysts/YaYaGen/rulesets
https://koodous.com/analysts/YaYaGen/rulesets
https://koodous.com/my_rulesets/3466

62 Experimental Results

Table 4.8 Comparison of detection performances of human authored YARA rules (Original)
with automated generated ones (Auto). Last column reports the improvement (in percentage)
for the newly generated rules. Detections are tested on a dataset of 1.5 million applications.

Rule name
Detections

Original Auto Improvement

SmsSender 539 1,004 +86.3%
Syringe 220 315 +43.2%
HummingBad2 136 257 +89.0%
Marcher2 559 652 +16.6%
SMSReg 159 172 +8.2%
VolcmanDropper 186 430 +131.2%
FakeGoogleChrome 516 822 +59.3%

Table 4.9 Comparison of the number of literals, score and time (in seconds) required to
generate each YARA rule.

Rule name Literals Score Time (s)

SmsSender 15 412 43
Syringe 19 574 48
HummingBad2 12 599 52
Marcher2 20 686 49
SMSReg 34 537 42
VolcmanDropper 10 439 13
FakeGoogleChrome 15 407 43

4.1.4 Signature optimization

Table 4.11 shows a comparison of the scores of the signatures in the three cases of
no optimization (original version of YaYaGen, Not Optimized column), optimization
with Hill Climber Optimizer (HC Optimizer column) and optimization with Evo-
lutionary Optimizer (SGX Optimizer column). Since the score of a rule is directly
related to the accuracy of the malware detection, the results show that both the
optimization methods succeed in reducing the score within the range [Tmin, Tmax]
that is defined as optimal (Tmin = 400, Tmax = 650), but the SGX-Optimizer reaches
the best results using a combination of sub-optimal literals defined through heuristic
rules (Section 3.3.3).

Results are computed on the average of 10 independent tests performed on 10
different clusters. Each cluster contains a different number of applications which

4.2 Windows malware 63

can vary between 3 and 20, but the exact number of elements of a cluster is shown in
the TPs column.

On average the Selfish Gene algorithm is able to reach a lower score, with a
higher number of literals for the rules optimized. The execution time of the SGX is
fixed to a maximum of five minutes.

Table 4.10 Comparison of the scores of the signatures in the three cases of no optimization,
hill climber (HC) and evolutionary optimization (SGX).

Cluster TPs Non Optimized HC Optimizer SGX Optimizer
Literals Score Literals Score Literals Score

Cluster10 4/4 260 17614 9.00 625.00 11.50 401.70
4/4 260 17614 9.20 597.00 12.60 401.80

Cluster20 3/4 64 2073 20.20 612.30 39.20 555.00
1/4 59 1907 19.80 620.40 39.30 550.50
1/4 59 1907 20.80 615.40 38.30 536.20
3/4 64 2073 18.20 620.50 40.90 583.90

4.2 Windows malware

Part of the experiments described in this section have been implemented by Luca
Cetro in his MSc Thesis "Automatic Malware Signature Generation", Politecnico di
Torino, 2018.

4.2.1 Windows dataset

In order to validate the proposed approach for the automatic signature generation
on Windows malware, a dataset of 6,881 malicious binaries and 3,413 goodware
samples has been used. Malicious samples have been kindly provided by VirusTotal
through their academic program, while goodware samples have been manually
selected among common user and system applications, extracted from a Windows
10 installation.

Malware samples are provided with a report of analysis, which include the
detection information of about 60 antivirus products. Samples have been automat-
ically labeled through AVclass [27], which selects the most frequent name from

64 Experimental Results

Table 4.11 Comparison of the scores of the signatures in the three cases of no optimization,
hill climber (HC) and evolutionary optimization (SGX).

Cluster TPs Non Optimized HC Optimizer SGX Optimizer
Literals Score Literals Score Literals Score

Cluster1 2/3 64 4263 10.30 608.70 21.00 400.00
1/3 165 7526 13.80 592.60 17.40 440.00
2/3 64 4263 9.40 603.10 21.70 409.30
2/3 18 440 - - - -

Cluster2 3/3 15 1145 8.00 651.50 5.00 405.00
3/3 15 1145 8.70 630.00 5.00 406.00

Cluster3 4/4 260 17614 9.00 625.00 11.50 401.70
4/4 260 17614 9.20 597.00 12.60 401.80

Cluster4 3/3 163 12015 8.80 597.30 10.30 408.30
3/3 163 12015 9.10 616.10 10.10 406.50

Cluster5 3/4 64 2073 20.20 612.30 39.20 555.00
1/4 59 1907 19.80 620.40 39.30 550.50
1/4 59 1907 20.80 615.40 38.30 536.20
3/4 64 2073 18.20 620.50 40.90 583.90

Cluster6 4/4 30 904 21.50 610.10 20.30 411.70
4/4 30 904 20.90 611.20 19.60 400.60

Cluster7 4/4 157 12215 8.70 615.00 10.00 405.00
4/4 157 12215 7.90 620.00 10.00 405.00

Cluster8 14/15 13 620 - - - -
1/15 91 2512 19.80 603.90 41.40 611.30
3/15 21 400 - - - -
14/15 12 435 - - - -

Cluster9 8/8 128 10725 7.70 608.50 21.80 412.00
8/8 128 10725 7.20 619.50 22.70 425.50

Cluster10 7/20 20 421 - - - -
16/20 24 438 - - - -
1/20 37 750 30.50 617.50 29.20 405.20
1/20 37 750 30.00 596.50 29.10 405.10
18/20 22 408 - - - -
17/20 19 406 - - - -

4.2 Windows malware 65

Fig. 4.2 Distribution of malware families with more than 10 samples from the VirusTotal
dataset.

the antivirus signature names after a pre-processing step where standard names are
removed (e.g., Trojan, Agent). Figure 4.2 illustrates the distribution of the families
with more than 10 samples in the dataset.

Dataset analysis

Detailed information about the samples in the dataset, such as the packer detection
or the compiler version, have been automatically extracted using an open dataset
of YARA rules available on GitHub9, where rules related to windows malware and
packer detection have been manually selected. Results show that about the 63% of
the samples match a packer rule.

9https://github.com/Yara-Rules/rules

https://github.com/Yara-Rules/rules

66 Experimental Results

Packer Matched samples

Armadillo 2537
NSIS 338
PureBasic 105
PCGuard 95
aPLib 58
PECompact 48
Yoda 30
UPX 27
ASProtect 12
ASPack 5
VMProtect 4

Table 4.12 Number of matching samples for each packer rule.

About the 37% of the samples resulted to be packed by Armadillo, a well known
commercial packer. The second most frequent match is NSIS (5%), an installer 10

which was reported to be used in ransomware attacks11.

4.2.2 PE signatures

In order to test automatically generated rules for PE files, five criteria have been
defined and addressed by the experimental results.

• Cluster quality, using the v-measure and homogeneity metrics.

• True positives, that is the number of malware samples from a specific family
covered by the rule.

• False positives, that is the number of goodware samples misclassified as
malicious.

• Dataset coverage, that is the total number of malware samples from the dataset
under study that have been covered by the rule.

10https://nsis.sourceforge.io/Main_Page
11https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/ransomware-

families-use-nsis-installers-to-avoid-detection-analysis/

https://nsis.sourceforge.io/Main_Page
https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/ransomware-families-use-nsis-installers-to-avoid-detection-analysis/
https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/ransomware-families-use-nsis-installers-to-avoid-detection-analysis/

4.2 Windows malware 67

• Packer resistance, that is the ability of the rule of matching malware samples,
even though malware has been packed.

In the following results, the proposed approach, YaYaGenPE, is compared with
two state of the art approaches YarGen (section 2.5.1) and YaBin (section 2.5.1),
using several algorithm configurations. YaraGenerator (section 2.5.1) has been
discarded, as it only managed to generate few signatures for few cases. On the
other hand, BASS (section 2.5.1) cannot be used to generate signatures for more
than few tens of samples, making such an approach non applicable in the performed
experiments.

All experiments here reported were performed on a 6-core Intel Xeon (CPU
E5-1650 v2 @ 3.50GHz), with 128 GB of RAM. However the proposed algorithms
were executed on a single core: an optimized implementation of a multi-threads
version is left as future work.

The following tables show the result of the tests which aim to compare several
algorithm configurations, and the legend here reported includes the acronyms used
to identify different configurations:

• U: unsupervised decision tree (clustering algorithm)

• HD: HDBSCAN (clustering algorithm)

• C: clot algorithm (rule generation subsection 3.3.1)

• G: pure greedy algorithm (rule generation, alternative to clot)

• RUL: complex features (i.e., other signatures) are used additionally to PE
header ones.

• GOODWARE refers to the usage of goodware applications in the clustering
process.

Table 4.13, Table 4.14, and Table 4.15 compare the number of rules, true positives
(TP), and false positives (FP), for three malware families of different sizes. In
particular, Table 4.13 refers to Cryptowall, a small malware family of 47 samples12,

12There are thousands of different malware variants for each malware family here reported. The
terms small, medium, and large refer to the size of the family within the dataset of study.

68 Experimental Results

Table 4.13 Comparison of number of rules generated, false positives and true positives for
the Cryptowall malware family.

Tool Parameters Num rules FPs TPs

YaYaGenPE U + G 29 0 76
U + G + RUL 31 0 75
HD + G + RUL 23 0 80

YarGen RUL Z0 53 1 130
RUL Z0 + OPC 53 0 86

YaBin Yara (-y) 36 0 76
YaraHunt (-yh) 36 10 194

Table 4.14 Comparison of number of rules generated, false positives and true positives for
the Cerber malware family.

Tool Parameters Num rules FPs TPs

YaYaGenPE U + G 65 2 854
U + G + RUL 64 2 896
HD + G 137 0 768

YarGen RUL Z0 328 7 705
RUL Z0 + OPC 321 4 687

YaBin Yara (-y) 157 0 737
YaraHunt (-yh) 157 16 937

while Table 4.14 refers to Cerber, a malware family with 533 samples. Finally,
Table 4.15 refers to a big malware families, with 2478 input samples. Results
show that the number of generated rules by YaYaGenPE, regardless the algorithm
configuration, is always lower than the other approaches. Such a difference is more
relevant in case of thousands of inputs, such as in the Teslacrypt example, where
the number of generated rules is about one order to magnitude less than the other
approaches. On the other hand, the number of true positives and false positives is
comparable with the other approaches.

Table 4.16 shows the result of the false positives test: a low number of unwanted
detections is a key property of an effective signatures. In order to test the signatures,
the retrohunt service of VirusTotal has been used: it tries to match a rules with about
100TB files 13, which corresponds to tens of millions of binaries. Only in the case of

13The size of the dataset is the same in all the runs of the retrohunt service, but the actual files can
change in each run.

4.2 Windows malware 69

Table 4.15 Comparison of number of rules generated, false positives and true positives for
the Teslacrypt malware family.

Tool Parameters Num rules FPs TPs

YaYaGenPE U + G 497 0 3349
U + G + RUL 493 0 3373
HD + G 837 0 3237

YarGen RUL Z0 2782 2 3367
RUL Z0 + OPC 2760 0 3226

YaBin Yara (-y) 1166 0 3172
YaraHunt (-yh) 1166 68 4027

Table 4.16 Comparison of the false positives test for automatic generated rules for several
malware families.

Family Algorithm Input size Total matches* FPs

OlympicDestroyer U + G + RUL 22 143 0
Sagecrypt HD + C + RUL 47 136 0
Crowti U + G + RUL 75 66 0
Scatter U + G 12 57 8
Scatter U + G + RUL 12 35 4
Shiz U + C + RUL 104 12 0

the Scatter family, the rules matched 8 unwanted applications, which is lowered to 4
if other complex features (i.e., existing ruleset, as described in subsection 3.4.1) are
used. It is also possible to note how the generated signatures were able to extend the
detections to other variants of the same family, extending the detection from two to
six times the number of the original input samples.

Table 4.17 reports the result of the packer resistance test. Packers are commonly
misused by malware developers to easily create new variants of the malware, increas-
ing the difficulty of the detection and of the analysis. If signatures are automatically
created on the code of the packer, they will match any sample which is packed
with the same mechanism, regardless of being goodware or malware. In order to
perform this experiment, each application of the goodware dataset has been packed
with UPX, a well-known packer. The results show that rules created on malware
packed samples with UPX do not match any binary of the goodware dataset. One
possible explanation of the results, is that most of the fields of the PE header are left
untouched by the majority of the packers.

70 Experimental Results

Table 4.17 Test on false positives detection of packed samples. As the table shows, none of
the rule matches any goodware packed sample.

Algorithm rule:Cerber rule:Locky rule:Upatre rule:Zerber

U + G 0 0 0 0
U + G + RUL 0 0 0 0
U + C 0 0 0 0
U + C + RUL 0 0 0 0
HD + G 0 0 0 0
HD + G + RUL 0 0 0 0
HD + C 0 0 0 0
HD + C + RUL 0 0 0 0

Table 4.18 Number of rules, average number of literals, and time necessary to cover the 3
malware families Fareit, Zerber, and Teslacrypt

Family Size Algorithm Num. rules Num literals (avg) Time

Fareit 14 U + G 5 594 30s
Zerber 329 U + C + RUL 36 163 5m

HD + C + RUL 86 187 5m
Teslacrypt 2478 U + G + RUL 493 381 3-4h

HD + G+ RUL 850 336 3-4h

Table 4.18 shows the number of rules, the average number of literal for each rule,
and the time necessary to automatically compute the rules for the three malware
families in input. Several algorithm configurations are reported. The rule generation
time spans from 30 seconds with 10 input samples, up to 4 hours if over 2 thousands
samples are used. Although the generation time is a nonlinear function of the number
of samples, it makes the approach applicable in practice even if large dataset are
provided in input.

Table 4.18 shows that on average both the unsupervised decision tree and HDB-
SCAN produce clusters of five samples each, but the latter identifies about the 20%
of the input points as outliers.

Finally, a detailed comparison of the execution time of the various algorithm
configurations is reported in Table 4.19. UDT clustering is slower than HDBSCAN,
taking about the double of the time to terminate, but it globally delivers better results.
Similarly, using existing rulesets, which has the effect of increasing the number of

4.2 Windows malware 71

Table 4.19 Detailed comparison of the execution time for each algorithm configuration of the
proposed approach.

Family Algorithm Set Size Time

yakes U + G 682 25m
yakes U + G + RUL 682 40m
yakes HD + G 682 10m
yakes HD + G + RUL 682 10m
yakes HD + C + RUL 682 25m

features for each sample under analysis, hence the computation time, effectively
decrease the number of false positives. Indeed, reuse existing rulesets allows to
exploit the knowledge that experts applied to select significant piece of information
which are strongly indicators of a malicious behaviors.

The next paragraphs provide a detailed comparison of the results for 3 malware
families of different size.

Cryptowall Cryptowall is an example of a small malware family, with 47 samples.
Table 4.20, Table 4.21, Table 4.22, and Table 4.23 illustrate the results in terms
of false positives, true positives and number of generated rules for each algorithm
configuration.

Table 4.20 Comparison of false positives, true positives and number of rules for several
algorithm configurations, using the unsupervised decision tree (UDT) algorithm to cluster
the Cryptowall malware family.

Algorithm FP TP Num rules

G 0 76 29
G + RUL 0 73 29
G + GOODWARE 0 75 31
C 0 76 30
C + RULE 0 72 29
C + RUL + GOODWARE 0 72 29

Cerber Cerber is an example of a medium size family, with 533 samples. Ta-
ble 4.24, Table 4.25, Table 4.26, and Table 4.27 illustrate the results in terms of

72 Experimental Results

Table 4.21 Comparison of false positives, true positives and number of rules for several
algorithm configurations, using HDBSCAN to cluster the Cryptowall malware family.

Algorithm FP TP Num rules

G 2 85 20
G + RUL 0 80 23
G + GOODWARE 0 83 26
C 8 119 23
C + RUL 0 80 23
C + RUL + GOODWARE 0 80 23

Table 4.22 Comparison of false positives, true positives and number of rules for several
algorithm configurations, using the yarGen approach to create signature coverage for the
Cryptowall malware family.

Algorithm FP TP Num rules

RUL (DEFAULT MINSCORE) 15 122 36
RUL + EXCLUDEGOOD 15 122 36
RUL + OPCODES 0 45 36
RUL Z0 1 130 53
RUL Z0 + EXCLUDEGOOD 0 79 51
RUL Z0 + OPCODES 0 86 53

Table 4.23 Comparison of false positives, true positives and number of rules for several
algorithm configurations, using the YaBin approach to create signature coverage for the
Cryptowall malware family.

Algorithm FP TP Num rules

Yara (-y) 0 76 36
YaraHunt (-yh) 10 194 36

false positives, true positives and number of generated rules for each algorithm
configuration.

Teslacrypt Teslacrypt is an example of a large family, with 2478 samples. Ta-
ble 4.28, Table 4.29, Table 4.30, and Table 4.31 illustrate the results in terms of
false positives, true positives and number of generated rules for each algorithm
configuration.

4.2 Windows malware 73

Table 4.24 Comparison of false positives, true positives and number of rules for several
algorithm configurations, using the unsupervised decision tree (UDT) algorithm to cluster
the Cerber malware family.

Algorithm FP TP Num rules

G 2 854 65
G + RUL 2 896 64
G + GOODWARE 0 936 61
C 2 838 69
C + RUL 2 877 62
C + RUL + GOODWARE 0 882 68

Table 4.25 Comparison of false positives, true positives and number of rules for several
algorithm configurations, using HDBSCAN to cluster the Cerber malware family.

Algorithm FP TP Num rules

G 0 773 135
G + RUL 0 768 137
G + GOODWARE 0 773 135
C 0 773 136
C + RUL 0 768 137
C + RUL + GOODWARE 0 768 138

Table 4.26 Comparison of false positives, true positives and number of rules for several
algorithm configurations, using the yarGen approach to create signature coverage for the
Cerber malware family.

Algorithm FP TP Num rules

RUL (DEFAULT MINSCORE) 19 693 174
RUL + EXCLUDEGOOD 19 693 174
RUL + OPCODES 7 474 174
RUL Z0 7 705 328
RUL Z0 + GOODWARE 9 769 328
RUL Z0 + EXCLUDEGOOD 4 687 321

74 Experimental Results

Table 4.27 Comparison of false positives, true positives and number of rules for several
algorithm configurations, using the YaBin approach to create signature coverage for the
Cerber malware family.

Algorithm FP TP Num rules

Yara (-y) 0 737 157
YaraHunt (-yh) 16 937 157

Table 4.28 Comparison of false positives, true positives and number of rules for several
algorithm configurations, using the unsupervised decision tree (UDT) algorithm to cluster
the Teslacrypt malware family.

Algorithm FP TP Num rules

G 0 3349 497
G + RUL 0 3373 493
G + GOODWARE 0 3376 497
C 0 3356 491
C + RUL 0 3386 478
C + RUL + GOODWARE 0 3403 479

Table 4.29 Comparison of false positives, true positives and number of rules for several
algorithm configurations, using HDBSCAN to cluster the Teslacrypt malware family.

Algorithm FP TP Num rules

G 0 3237 837
G + RUL 0 3179 850
G + GOODWARE 0 3237 837
C 0 3236 839
C + RUL 0 3180 850
C + RUL + GOODWARE 0 3180 850

4.2 Windows malware 75

Table 4.30 Comparison of false positives, true positives and number of rules for several
algorithm configurations, using the yarGen approach to create signature coverage for the
Teslacrypt malware family.

Algorithm FP TP Num rules

RUL (DEFAULT MINSCORE) 0 2306 1796
RUL + GOODWARE 3 2595 1796
RUL + OPCODES 0 2175 1796
RUL Z0 2 3367 2782
RUL Z0 + GOODWARE 15 3349 2782
RUL Z0 + EXCLUDEGOOD 0 3226 2760

Table 4.31 Comparison of false positives, true positives and number of rules for several
algorithm configurations, using the YaBin approach to create signature coverage for the
Teslacrypt malware family.

Algorithm FP TP Num rules

Yara (-y) 0 3172 1166
YaraHunt (-yh) 68 4027 1166

Chapter 5

Case of Study: Android Banking
Trojans

Part of the work described in this chapter has been previously published in "The Rise
of Android Banking Trojan", IEEE Potentials, 2019 [88].

5.1 Introduction

As banks started developing mobile applications, or simply “apps”, to enable users to
perform financial activities on-line, cybercriminals introduced new ways to penetrate
this channel of communication and execute illicit transactions. As a matter of fact,
for cybercriminals it is easier to exploit the scarce end-user security awareness and
attack individual clients devices, while directly targeting banks portals.

Malicious programs that hide their intention under an apparently legitimate
behavior are generically called “Trojans”. Banking Trojans are written with the
specific purpose of stealing confidential information from victims bank accounts and
on-line payment services. They are so common, that most sources just refer to them
as “bankers”. Attackers commonly exploit social engineering techniques, inducing
users to visit hostile websites and install malicious applications; alternatively, the
malware is spread through official (i.e., Google Play) and unofficial app-stores.

In December 2016, the source code of Bankbot, one of the most well known
Android banker, was released in the wild: since then, the number of its variants

5.2 History 77

exploded, and, as of 2017, they represent the most prominent threat in the Android
ecosystem. Trojans of the Bankbot variety, “Bankbots” for short, steal users creden-
tials by accessing other apps private data, or displaying a fraudulent log-in page on
top of legitimate banking apps. Moreover, some variants known as “SMS Trojans”,
activate paid services by sending SMS to premium-rate numbers without the user
knowledge. Finally, the gathered credentials are uploaded to a Command&Control
server, which operates as an administrative panel, and it is used to constantly update
the malware behavior.

This chapter surveys the Android banking Trojans evolution, their mode of
operation. Finally, we highlight how the proposed methodologies can be applied to
stop their diffusion.

5.2 History

The ancestor of banking Trojans is Zeus, a PC malware created in 2006, which
managed to compromise over 3.5 million devices in US and created one of the history
largest internet-connected network of infected devices. Zitmo, an abbreviation for
“Zeus in the mobile”, was the first banker for Android: it emerged later, in 2010, and
was devised to work in symbiosis with the desktop version and intercept two-factor
authentication messages.

In 2011 Alexander Panin created SpyEye, a banker that attacks popular web
browsers, targeting users of both Mac OS and Microsoft Windows operating systems.
The author sold at least 150 copies of the code on the black market, at a price starting
from $1,000, up to $8,500. When the FBI tracked down one of the buyers, the
Russian cybergang Soldier, it claimed that over $3.2 million were stolen in just six
months.

The 2012 saw the rise of the Carberp family, when a few samples were released
through the official Google Play Store masqueraded as mobile applications from
major Russian banks, such as Sberbank and Alfa Bank. The Trojans were devised to
steal SMS messages and upload them to a remote server. The framework, composed
of mobile and desktop versions, was offered on a monthly subscription-based model,
with prices ranging between $2,000 and $10,000, depending on the number of

78 Case of Study: Android Banking Trojans

additional modules. In June 2013, the source code was leaked, and new variants of
the malware targeted U.S., Europe, and Latin America.

In 2013, the new banker Hesperbot appeared: it targeted users in Turkey, Czech
Republic, Portugal and the United Kingdom, stealing personal data and SMS mes-
sages. The Android application uses an activation code to match the desktop version
of the virus, making the attacker aware of new possible victims. Moreover, when-
ever the user tries to uninstall the application, the malware locks the screen using a
run-time generated password, making the smart phone useless.

The forefather of a new generation of Android banking Trojans was GM Bot,
possibly derived from SimpleLocker, the first known file-encrypting ransomware for
Android. It first appeared in 2014 in Russian-speaking forums of the cybercrime
underground, and, beyond intercepting SMS messages, it was the first to exploit the
overlay attack, tricking users into entering their access credentials into a fraudulent
window, and providing the attackers enough information for illicit money transfers
out of their accounts. GM Bot was mostly distributed on third party app stores,
without strict security checks, as an adult-content app or a plug-in app, like Flash.

New variants, with new and different capabilities were developed soon after,
such as MazarBot, SlemBunk, Bankosy, Acecard, and Slempo. In the meantime, its
original creator, GanjaMan, developed a second version which included three new
Android exploits, and eventually sold it for $15,000.

Later, in June 2015, a new Trojan was discovered in Russia: Bankbot.65.Origin
was disguised as the patched version of the official Sberbank online app, able to offer
a wider range of mobile-banking features. The attack reached 100,000 Sberbank
users, who in July of the same year reported losses for over 2 billion rubles (about
$35 million).

Through 2016 and 2017, probably the most widespread family was Bankbot.
Criminals managed to upload several variants on the official Google Play Store, that
were downloaded thousands of times before being eventually removed. In December
2016, similarly to previous cases, the original source code was released in a forum,
this time by a user named Maza-in, and it showed similarities with other well-known
malware, such MazarBot and RedAlert.

Later variants ascribable to the family include Faketoken, which is capable of
running overlay attacks for about 2,000 financial applications, monitoring active

5.3 Modus Operandi 79

apps and showing a fraudulent screen as soon as one of the target is open, or Tordow,
which targeted Russian users through popular apps, including Telegram, the Russian-
speaking social-network Vkontakte, and games such as Pokemon Go, and Subway
Surfers.

At the same time, malware anti-detection techniques are growing in sophistication
and effectiveness too. For example, Loapi moves the malicious code outside the
application, in a code module downloaded and executed at runtime, or delay the
execution waiting for commands from a remote server, thus eluding detection tools.
Other anti-malware detection techniques involve identification of the running system
and application, for example checking the functionality of the execution environment
and the file name characteristics, which are pretty standard in many sandbox settings
(e.g., detection programs often creates hashes for file names they analyze, resulting
in long and detectable file name characteristics). If malware gets aware of being in a
sandbox, it will frustrate the analysis by merely not showing malicious behavior.

These adapting anti-detection tactics highlight the capability to circumvent fresh
security countermeasures and call for the development of promptly evolving security
strategies.

5.3 Modus Operandi

Hundreds of variants exist, and new ones are developed on a daily basis. However, all
banker Trojans share common traits aiming to get user credentials and steal money.

Phase I: Infection

Banking Trojans exploit several vectors to infect a device. However, the most
common ones are malicious web pages and legit app store markets. In the former,
social engineering attacks are used to cheat users to visit hostile websites, and then a
malicious JavaScript code infects the device downloading the malware. The power
of such attacks is further increased if exploits unknown vulnerabilities in the mobile
web browser, making the need for user intervention to a minimum. In the latter
case, users commonly percept Android app stores, both official and third parties,
as a trusted source, despite most of them offer an “open market model” where

80 Case of Study: Android Banking Trojans

applications are distributed without any preliminary check. Among the others, the
Google Play Store is of particular interest for the attackers: since it is the default
source to download new apps, an infection would easily obtain widespread diffusion.

In the past, several banking malware campaigns, like Acecard and Marcher,
tried to compromise users with malicious apps distributed via Google Play. Even
though these apps are often removed within days after having been reported, they
still manage to infect thousands of users. As a countermeasure, since February 2012
Google Play adopts Bouncer, an automated tool designed to discover and remove
malicious applications from the official store. Furthermore, in May 2017, Google
presented Play Protect, comprehensive security services for Android which also
include an anti-virus embedded in the Google Play Services installed on each device.

On the other hand, a direct app analysis can be no longer sufficient: attackers hide
their malware using Droppers, that is applications designed to remotely download
and install others apps, mostly without any user intervention. Such type of attack,
known as drive-by-download, or multi-stage, is particularly challenging to detect,
as the same pattern is commonly used by goodware in some circumstances, such as
during the software updates.

As the Android security model relies on the least privilege principle, each in-
stalled application is provided with the minimum capabilities to guarantee its func-
tionalities. The access to additional sensitive resources, from the battery level to the
Wi-Fi state, is limited by the grant of specific permissions. To help end-user choice,
the operating system classifies permissions into four distinct groups according to
their danger, but ultimately their acceptance relies on the user perception of risk [89].
So, social engineering techniques and targeted vulnerabilities could be used to trick
users for unintentional permission granting, thus trespassing the Android security
model.

Phase II: Persistence

Once installed, recent Trojans (like Bankbot) try to hide both from users and anti-
virus and achieve persistence on the target device to operate seamlessly. As persis-
tence is a requirement for any Trojan, a variety of solutions are applied.

A standard technique is to hide the application icon from the list of installed
apps. Alternatively, if the application obtains administrative privileges (i.e., the most

5.3 Modus Operandi 81

privileged state of the operating system), it tries to be installed as a system app,
making its removal more complex, e.g. requiring administrative privileges as well.

In order to escape from antivirus (AV) detection, applications commonly use
anti-analysis tricks. Among the others, triggers are very practical: the app shows
a non-suspicious behavior until a specific condition, known as trigger, exhibits.
Triggers are mainly used to mislead the detection during the AV analysis, which is
usually limited to few minutes of run-time monitoring. Typically, both “time bombs”
(i.e., a timer) and device reboots are used as triggers.

As well as to escape AV detection, drive-by-download is commonly applied to
dynamically adapt the malware behavior to the target device and user: initial versions
embedded the list of target banks in plain text within the source code of the malware,
despite could be easily detectable. On the contrary, in more recent malware the
target information is either obfuscated or dynamically collected from a remote server,
exploiting several file formats, and possibly encrypting the communication. For
instance, in October 2017, malware researchers discovered the Tornado FlashLight,
a Bankbot that uses the hash of the package names to identify the target banking
apps.

In the same way, malware authors progressively moved the payload (i.e., the
malicious behavior) outside the Trojan, either using Dropper to download a “second-
stage” malware, or directly moving the malware code to native C/C++ libraries, like
in the Corkow family.

Command&Control

In order to control their Trojans, attackers setup complex Command&Control (C&C)
infrastructures, that is malicious networks where infected devices receive instructions
(i.e. the command), from a central entity (i.e. the control).

Initially, communications were done using simple HTTP requests in plain text,
while exploiting cheap botnets as C&C. Later, malware adopted increasingly complex
encryption routines, obfuscating the password within the application package. Recent
malware campaigns show that hiding such communications is vital for the malware,
and the most disparate techniques are used. For instance, the banker family Twitoor
exploits tweets published by a Twitter account, while other samples from the Charger
family misuse the Firebase Cloud Messages.

82 Case of Study: Android Banking Trojans

Being able to communicate with the malware, attackers can change the targets of
the attacks, as well as keep up to date the fraudulent log-in screens according to the
new graphical releases of the legit banking apps. Moreover, applications send log
information, credentials and credit card details to the C&C infrastructure, which acts
as an administrative panel for the threat actors.

Phase III: the Attack

Bankbots could achieve their malicious behavior in different ways, mainly depending
on the availability of superuser access rights.

If rooting capabilities are granted, the malware could subvert the Android security
model and steal confidential data directly from other applications key store, like
log-in passwords and bank card details. Furthermore, it could maliciously tamper
the web traffic and alter web pages content to redirect users to fraudulent websites.

Otherwise, if superuser access rights are not granted, overlay attacks and screen
recording could be applied. In the former case, the malware displays log-in forms
seemingly coming from legitimate banking apps and trick users to insert their
credentials into the fraudulent forms. In the latter, bankers could use screen recording
or screen-shotting as a graphical keylogger to steal sensitive information manually
inserted from the users.

Furthermore, malicious bankers commonly have the capability of intercepting
text messages to bypass SMS-based 2-factor authentication, and send SMS to activate
paid services.

Finally, some malware also provide locking capabilities, allowing attackers to
remotely lock devices using a fake update screen to hide fraudulent activity, and
ensuring that user cannot interfere.

Rooting

Obtaining superuser access rights, a procedure known as rooting, allows users to
take full control over their devices. For some applications, including popular ones
from Google Play Store like GMD Gesture and FolderMount, this is a requirement
to function properly. Although rooting is commonly seen as a way to extend the
capabilities of an Android device (e.g., game hacking, delete preinstalled apps,

5.3 Modus Operandi 83

CPU overclocking), it has substantial security implications, since it overcomes the
Android basic security principle. Normally, applications are executed in isolated
environments without access to other apps or private system files. Rooting removes
such limitation, eventually allowing free access to all the system resources and data.

The dark side of rooting is that malware could silently obtain administrative
rights without the user agreement by exploiting a vulnerability in the operating
system: Android is a Linux-based platform, and it shares most of its underlying
code with the desktop operating system, hence most kernel exploits work roughly
the same way.

Some rooting techniques are pretty naive, like the one presented in DRAM-
MER [90] which exploits an issue with new generation DRAM chips: repeatedly
accessing a row of memory can cause a “bit flipping” in an adjacent row, allowing
anyone to change the value of contents stored in the memory.

Although the original version of Bankbot did not exploit unauthorized rooting
capabilities, most of the samples include checks to verify if the device is rooted, and
thus directly steal user credentials in other apps key store or tamper web traffic.

On February 2016 was discovered Tordow, a malware which used a popular
exploit pack to have unlimited access to the key store of the default Android browser
and Google Chrome, being able to steal log-in details, passwords, and saved bank
cards. Later, on March 2016, researchers identified a new Trojan named Triada,
which gains unauthorized superuser privileges too. The application behaves like
a Dropper, using a remote server to get the list of new applications to download,
eventually installing new Trojans. One of them, Triada.p/o/q tampers URLs loaded
in a browser, especially targeting online banking platforms.

The Overlay Attack

The overlay attack is a common strategy adopted by malware authors to draw
fraudulent screens on top of a target application. Overlay was initially introduced
in the Android platform as a way to increase the user experience. For example,
Facebook Messenger uses overlays to pop-up “Chat Heads” alerts indicating that a
new message has been received.

Commonly Bankbots monitor which apps are installed on the infected device;
then, if sensitive applications are detected (e.g., Online Banking, VPN, Social

84 Case of Study: Android Banking Trojans

Fig. 5.1 Overlay attack on the Google Play Store. Picture on the left shows the original user
interface, while the one on the right shows the fraudulent pop-up displayed during an overlay
attack. In this case the attackers were able to replicate the same look and feel of the original
application.

Networks) the malware redraw a similar log-in screen on top of the legitimate ones.
In most of the cases, the user is not able to distinguish the fraudulent version from
the original one and will insert its credentials which will uploaded on a C&C server.
Figure 5.1 shows an example of overlay attack at the Google Play Store app: a
malicious pop-up is displayed over the app, asking the credit card number.

Overlay attacks come in two variants, and both allow rogue developers to create
apps that include the overlay functionality without user awareness. In the former,
applications require a permission called SYSTEM_ALERT_WINDOW. Due to a
peculiarity in the Android ecosystem, apps directly downloaded from the Google
Play Store do not require users to grant it explicitly. In the latter, malware achieve
a similar result abusing the Toast component, which is typically used to display a

5.3 Modus Operandi 85

quick message, for instance indicating that an email has been removed. Due to a
vulnerability in the Android operating system, its usage does not require any specific
permission in all the Android versions prior the 7.1.

The efficacy of overlay attack may increase if applied in combination with
the BIND_ACCESSIBILITY_SERVICE permission which grants an app the ability
to discover UI widgets displayed on the screen, query their content, and interact
with them programmatically, introduced as a means to make Android devices more
accessible to users with disabilities.

Moreover, if social engineering techniques and misleading overlays are applied
together, attackers could even trick users to enable the Accessibility Services, as well
as any other permission, without their explicit consensus. Similarly, Droppers may
enable the “Unknown Sources” option in the Settings menu, and silently install new
malicious applications without the user knowledge, overtaking the operating system
security measure that blocks the installation of apps from untrusted sources.

Overlay issues are known since 2011, but the attack was lead to fame in 2017,
when the Cloak&Dagger [91] research showed how granting only two permissions
(i.e., System Alert Window and Accessibility Services) could result in a very ef-
fective technique to steal user credentials. When researchers tested a simulated
Cloak&Dagger attack on 20 Android users, none of them was aware its device was
being hacked.

As a remedy, in the Mashmellow (v6.0) release Android changed the default be-
havior, requiring users to manually approve the access to the overlay capabilities for
all the apps, including those downloaded from the Google Play Store. Furthermore,
Android Oreo (v8.0) includes a visual notification whenever an overlay is displayed,
allowing the user to easily dispose it. However, since the attack works seamlessly in
all the Android versions prior to Oreo, the scope of devices covered is still huge.

The ability to replicate high-quality user interfaces is essential to guarantee the
phishing attack. For instance, Figure 5.2 compares two log-in pages for the Skype
application; although graphically different, they have the same look and feel of the
original Skype, and could easily mislead the user. Even for the most careful one,
recognizing the legitimate version is hard due to the frequent graphical updates and
variants that applications show.

1https://github.com/geeksonsecurity/android-overlay-malware-example

https://github.com/geeksonsecurity/android-overlay-malware-example

86 Case of Study: Android Banking Trojans

Fig. 5.2 Comparison between the original Skype log-in page (on the left), and the one
prompted during an overlay attack (on the right). Pictures are generated using the android-
overlay-malware-example1.

Initially, only a few Russian Banks were included, but soon the number of targets
was expanded. In order to operate silently to avoid AV detection, and keep up-to-date
the targets, custom log-in screens are downloaded at run-time in HTML format from
the C&C server, while other times a common template is used, downloading and
updating only bank icons and writings.

Recent malware discovered with overlay capabilities include Charger, a banking
Trojan masquerade as a flashlight app removed from the Google Play Store after
5,000 downloads: the targets were generic, covering from Westpac Mobile Banking,
to Facebook and WhatsApp. Then, on November 2017, researchers found Crypto
Monitor, used to track the cryptocurrency market, and StorySaver a third-party tool
to save Instagram stories, both designed to target fourteen different Polish banks. In
the same month, was found on Google Play Smart AppLocker, posed as a legit app
that secure device applications using a PIN code, but it was the first known malware

5.3 Modus Operandi 87

to exploit the Toast overlay attack: at the time of removal count between 100,000
and 500,000 installations.

SMS Spoofing

As online banking increased popularity, bank institutes adopted new countermeasures
to ensure the security of online operations and stop banking frauds. Since the
adoption of the two-factor authentication (2FA), a one-time password (OTP) uniquely
generated for each new operation, attackers deployed new features to steal it.

Since the first versions of Bankbot, Trojans include SMS spoofing capabilities,
being able to receive SMS and hide their notification to the users, finally sending the
OTP to the C&C server.

Furthermore, if the permission of sending SMS is granted, either with the user
consensus or not, malware can activate paid premium services and ensure an imme-
diate reward to malicious actors. Even if this type of attack is inherently location
dependent, as each premium phone number is bound to a specific area, the C&C
infrastructure can enlarge its scope, providing an updated list of numbers according
to the user position.

The Social Engineering Role

The term “social engineering” refers to the psychological manipulation of users,
tricking their confidence with nefarious purposes, for example the illegal gathering of
sensitive information. Bankbots regularly apply social engineering to circumvent the
technical security measures imposed by the operating system, and more in general by
the Android ecosystem: malware authors commonly deceive users to visit harmful
web pages, install unwanted applications, grant risky permissions, and insert sensitive
information in fraudulent log-in or payment forms.

By sending counterfeit SMS, and displaying intriguing advertisements that imper-
sonate well-known and trusted parties, attackers encourage their victims to download
applications from untrusted sources. Moreover, attackers usually exploit malicious
repackaging: well-known apps are decompiled, modified inserting some malicious
behavior, and finally redistributed. For example, the malware Tordow used popular
app names like Skype and MX Player, while the app SexDrugVokrug, from the

88 Case of Study: Android Banking Trojans

Twitoor family, aims to mislead the users of the Russian Social Network “Drug
Vokrug”.

Then, in order to maximize the efficacy of the attack, typical techniques include
creating mirror icons of well-known apps (e.g., Gmail, Google Play and Chrome)
and displaying notifications linking to a fraudulent “sign-in to your account” page,
despite users could become suspicious from such a behavior, and the malware could
be easily identified.

Finally, the family of overlay attacks is another example of social engineering, as
it exploits the user confidence in well-known log-in and payment forms to steal user
credential and credit card information.

Chapter 6

Conclusions

In this thesis, we introduced a set of semi-supervised techniques with the ultimate
goal of assisting human experts in the generation of malware family signatures. As
a result, we developed a scalable framework able to dig into real-world antivirus
datasets of applications, with the main purpose of identifying new malware samples,
and reducing false positive detections.

Our study shows that best results can be achieved combining the scalability of the
automatic techniques with the inherent flexibility of the manual analysis. Eventually,
the proposed approach introduces two essential automation improvements to assist
the signatures generation, the standard detection mechanism in the antivirus industry.

An iterative clustering algorithm allows an easy identification of hard to find
potential threats, reducing the human intervention from the manual analysis of
thousands of applications to the validation of a much smaller number of clusters,
where the applications reflect a similar class of behavior.

Subsequently an automated procedure named clot, which exploits a heuristic
optimization strategy, generates a set of signatures to cover newly identified malware
with an acceptable generalization capability, yet minimizing false positives. More-
over, an evolutionary strategy, based on the Selfish Gene algorithm, has been devised
to further increase the detection of new malware variants, while minimally affecting
the number of unwanted detections.

The proposed approach has been validated with both Android and Windows
malware, and it has been implemented in two frameworks, YaYaGen and YaYaGenPE,

90 Conclusions

which tackle the specific needs of the automatic signature generation for each
platform.

Experimental results on 1.5 million unique Android applications confirm the
effectiveness of the proposed methodology, in both the identification of new malware
samples, and in the generation of new family signatures in the form of YARA rules.
More in details, the clustering identified 21,450 applications ready for the signature
coverage without requiring human validation, and other 20,464 potential new threats,
subdivided in 500 tight malware families. Moreover, since January 2018 YaYaGen
and the clustering system is in use on Koodous, the mobile antivirus platform devel-
oped by Hispasec. The evaluation for Windows malware was conducted on a dataset
of ten thousands applications, and experimental results show that it successfully
fulfilled all the defined requirements, which include the cluster quality, low true
positives and false positives rates, the overall malware coverage, and the resistance
to the most common open source packing software.

Similarly to others machine learning based approaches, the proposed system
is vulnerable to noise-injection and other adversarial attacks, however the semi-
supervised system is designed to suggest malware families to the experts, rather
than completely replacing their role. On the other hand, application packing and
obfuscation represent a limitation of the approach, since the ability of generating
effective rules requires the analysis of the applications to be as precise as possible.

The presented work can be extended in a number of ways. For the clustering,
fuzzy hashing techniques should be explored as a more efficient way to find clusters
of similar applications. For instance, Locality-sensitive hashing (LSH) algorithms,
such as SimHash or MinHash, can handle million of input vectors in an efficient
way, and approximate nearest neighbors (ANN) techniques can be used for a fast
and approximate clustering, while a more refined one can be used as a second step.
For the rule generation, other approaches, like the the ones based on the graph
isomorphism problem should be explored too.

The thesis concludes with the study of the most prominent recent malware threat
in the Android ecosystem: the Android banking trojans, that is applications written
with the specific purpose of stealing confidential information from victims bank
accounts through online payment services. The chapter surveys the banking trojans
history, their evolution, and mode of operation.

References

[1] Fanglu Guo, Peter Ferrie, and Tzi-Cker Chiueh. A study of the packer problem
and its solutions. In International Workshop on Recent Advances in Intrusion
Detection, pages 98–115. Springer, 2008.

[2] Ilsun You and Kangbin Yim. Malware obfuscation techniques: A brief sur-
vey. In 2010 International conference on broadband, wireless computing,
communication and applications, pages 297–300. IEEE, 2010.

[3] Saba Arshad, Munam Ali Shah, Abid Khan, and Mansoor Ahmed. Android
malware detection & protection: a survey. Int. J. Adv. Comput. Sci. Appl,
7(2):463–475, 2016.

[4] Google_android_security_2016_report_final.pdf. https://source.android.com/
security/reports/Google_Android_Security_2016_Report_Final.pdf, Mar 2017.
(Accessed on 11/12/2017).

[5] The judy malware: Possibly the largest malware campaign found on google
play - check point software. https://blog.checkpoint.com/2017/05/25/judy-
malware-possibly-largest-malware-campaign-found-google-play/. (Accessed
on 07/21/2019).

[6] Martin Apel, Christian Bockermann, and Michael Meier. Measuring similarity
of malware behavior. In Local Computer Networks, 2009. LCN 2009. IEEE
34th Conference on, pages 891–898. IEEE, 2009.

[7] Jon Oberheide, Evan Cooke, and Farnam Jahanian. Cloudav: N-version an-
tivirus in the network cloud. In USENIX Security Symposium, pages 91–106,
2008.

[8] Alejandro Calleja, Juan Tapiador, and Juan Caballero. The malsource dataset:
Quantifying complexity and code reuse in malware development. IEEE Trans-
actions on Information Forensics and Security, 2018.

[9] Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and Peng Liu.
ViewDroid: Towards obfuscation-resilient mobile application repackaging
detection. In Proceedings of the 2014 ACM conference on Security and privacy
in wireless & mobile networks, pages 25–36. ACM, 2014.

https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf
https://blog.checkpoint.com/2017/05/25/judy-malware-possibly-largest-malware-campaign-found-google-play/
https://blog.checkpoint.com/2017/05/25/judy-malware-possibly-largest-malware-campaign-found-google-play/

92 References

[10] R Winsniewski. Android–apktool: A tool for reverse engineering Android apk
files, 2012.

[11] Jesus Freke. Smali, an assembler/disassembler for android’s dex format. Google
Project Hosting [online] http://code. google. com/p/smali, 2013.

[12] Anthony Desnos. Androguard: Reverse engineering, malware and goodware
analysis of Android applications... and more (ninja!). Retrieved June, 10:2014,
2011.

[13] Anthony Desnos and Patrik Lantz. Droidbox: An android application sandbox
for dynamic analysis, 2011.

[14] David Korczynski. Clusthedroid: Clustering Android malware. 2015.

[15] Anil K Jain and Richard C Dubes. Algorithms for clustering data. Prentice-Hall,
Inc., 1988.

[16] Roberto Perdisci, Wenke Lee, and Nick Feamster. Behavioral clustering of
http-based malware and signature generation using malicious network traces.
In NSDI, volume 10, page 14, 2010.

[17] Charles T Zahn. Graph-theoretical methods for detecting and describing gestalt
clusters. IEEE Transactions on computers, 100(1):68–86, 1971.

[18] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Data mining cluster
analysis: basic concepts and algorithms. Introduction to data mining, 2013.

[19] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In Kdd, volume 96, pages 226–231, 1996.

[20] Ricardo JGB Campello, Davoud Moulavi, and Joerg Sander. Density-based
clustering based on hierarchical density estimates. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pages 160–172. Springer, 2013.

[21] How HDBSCAN works — hdbscan 0.8.1 documentation. https://hdbscan.
readthedocs.io/en/latest/how_hdbscan_works.html. (Accessed on 03/27/2017).

[22] Ricardo JGB Campello, Davoud Moulavi, Arthur Zimek, and Jörg Sander.
Hierarchical density estimates for data clustering, visualization, and outlier
detection. ACM Transactions on Knowledge Discovery from Data (TKDD),
10(1):5, 2015.

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[24] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering: a
review. ACM computing surveys (CSUR), 31(3):264–323, 1999.

https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
http://www.deeplearningbook.org

References 93

[25] Michael Bailey, Jon Oberheide, Jon Andersen, Z Morley Mao, Farnam Jahanian,
and Jose Nazario. Automated classification and analysis of internet malware.
In International Workshop on Recent Advances in Intrusion Detection, pages
178–197. Springer, 2007.

[26] Roberto Perdisci et al. Vamo: towards a fully automated malware cluster-
ing validity analysis. In Proceedings of the 28th Annual Computer Security
Applications Conference, pages 329–338. ACM, 2012.

[27] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. Avclass:
A tool for massive malware labeling. In International Symposium on Research
in Attacks, Intrusions, and Defenses, pages 230–253. Springer, 2016.

[28] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher
Kruegel, and Engin Kirda. Scalable, behavior-based malware clustering. In
NDSS, volume 9, pages 8–11. Citeseer, 2009.

[29] Jiyong Jang, David Brumley, and Shobha Venkataraman. Bitshred: feature
hashing malware for scalable triage and semantic analysis. In Proceedings of
the 18th ACM conference on Computer and communications security, pages
309–320. ACM, 2011.

[30] Yajin Zhou and Xuxian Jiang. Dissecting Android malware: Characterization
and evolution. In Security and Privacy (SP), 2012 IEEE Symposium on, pages
95–109. IEEE, 2012.

[31] Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–
260, 1995.

[32] Tony Lee and Jigar J Mody. Behavioral classification. In EICAR Conference,
pages 1–17, 2006.

[33] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel
Laskov. Learning and classification of malware behavior. In International Con-
ference on Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 108–125. Springer, 2008.

[34] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high
dimensions via hashing. In VLDB, volume 99, pages 518–529, 1999.

[35] Ulrich Bayer, Christopher Kruegel, and Engin Kirda. Anubis: Analyzing
unknown binaries, 2009.

[36] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. Automatic
analysis of malware behavior using machine learning. Journal of Computer
Security, 19(4):639–668, 2011.

[37] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. On clustering
validation techniques. Journal of intelligent information systems, 17(2-3):107–
145, 2001.

94 References

[38] Xin Hu, Kang G Shin, Sandeep Bhatkar, and Kent Griffin. Mutantx-s: Scalable
malware clustering based on static features. In USENIX Annual Technical
Conference, pages 187–198, 2013.

[39] Kimberly Tam, Salahuddin J Khan, Aristide Fattori, and Lorenzo Cavallaro.
CopperDroid: Automatic reconstruction of Android malware behaviors. In
NDSS, 2015.

[40] Agoston E Eiben, James E Smith, et al. Introduction to evolutionary computing,
volume 53. Springer, 2003.

[41] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer
Berlin Heidelberg, 2015.

[42] Martin Pelikan, Mark W Hauschild, and Fernando G Lobo. Estimation of
distribution algorithms. In Springer Handbook of Computational Intelligence,
pages 899–928. Springer, 2015.

[43] Fulvio Corno, Matteo Sonza Reorda, and Giovanni Squillero. The selfish gene
algorithm: a new evolutionary optimization strategy. In Proceedings of the
1998 ACM symposium on Applied Computing, pages 349–355. ACM, 1998.

[44] Richard Dawkins. The selfish gene. New York, 1976.

[45] Ari Juels, Shumeet Baluja, and Alistair Sinclair. The equilibrium genetic
algorithm and the role of crossover. Unpublished manuscript, 1993.

[46] Shumeet Baluja. Population-based incremental learning. A method for inte-
grating genetic search based function optimization and competitive learning.
Technical report, Carnegie-Mellon Univ Pittsburgh Pa Dept Of Computer Sci-
ence, 1994.

[47] Heinz Mühlenbein and Gerhard Paass. From recombination of genes to the
estimation of distributions i. binary parameters. In International conference on
parallel problem solving from nature, pages 178–187. Springer, 1996.

[48] Georges R Harik, Fernando G Lobo, and David E Goldberg. The compact
genetic algorithm. IEEE transactions on evolutionary computation, 3(4):287–
297, 1999.

[49] Junwu Zhang, Michael L Bushnell, and Vishwani D Agrawal. On random
pattern generation with the selfish gene algorithm for testing digital sequential
circuits. In Test Conference, 2004. Proceedings. ITC 2004. International, pages
617–626. IEEE, 2004.

[50] Rui Tavares, António Teófilo, Paulo Silva, and Agostinho C Rosa. Infected
genes evolutionary algorithm. In Proceedings of the 1999 ACM symposium on
Applied computing, pages 333–338. ACM, 1999.

References 95

[51] Noor Elaiza Abdul Khalid, Norharyati Md Ariff, Saadiah Yahya, and Noorhay-
ati Mohamed Noor. A review of bio-inspired algorithms as image processing
techniques. In International Conference on Software Engineering and Com-
puter Systems, pages 660–673. Springer, 2011.

[52] Fulvio Corno, M. Sonza Reorda, and Giovanni Squillero. Optimizing de-
ceptive functions with the SG-clans algorithm. In Congress on Evolutionary
Computation, pages 2190–2195. IEEE, 1999.

[53] Virus Bulletin :: Rule-driven malware identification and classifi-
cation. https://www.virusbulletin.com/virusbulletin/2008/01/rule-driven-
malware-identification-and-classification, January 2008. (Accessed on
04/03/2017).

[54] Christian Kreibich and Jon Crowcroft. Honeycomb: creating intrusion detection
signatures using honeypots. ACM SIGCOMM computer communication review,
34(1):51–56, 2004.

[55] Hyang-Ah Kim and Brad Karp. Autograph: Toward automated, distributed
worm signature detection. In USENIX security symposium, volume 286. San
Diego, CA, 2004.

[56] Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. Automated
worm fingerprinting. In OSDI, volume 4, pages 4–4, 2004.

[57] Ke Wang, Gabriela Cretu, and Salvatore J Stolfo. Anomalous payload-based
worm detection and signature generation. In International Workshop on Recent
Advances in Intrusion Detection, pages 227–246. Springer, 2005.

[58] Vinod Yegneswaran, Jonathon T Giffin, Paul Barford, and Somesh Jha. An
architecture for generating semantic aware signatures. In USENIX Security
Symposium, pages 97–112, 2005.

[59] Zhichun Li, Manan Sanghi, Yan Chen, Ming-Yang Kao, and Brian Chavez.
Hamsa: Fast signature generation for zero-day polymorphic worms with prov-
able attack resilience. In Security and Privacy, 2006 IEEE Symposium on,
pages 15–pp. IEEE, 2006.

[60] Konrad Rieck, Guido Schwenk, Tobias Limmer, Thorsten Holz, and Pavel
Laskov. Botzilla: Detecting the phoning home of malicious software. In
Proceedings of the 2010 ACM Symposium on Applied Computing, pages 1978–
1984. ACM, 2010.

[61] Christian Rossow and Christian J Dietrich. Provex: Detecting botnets with
encrypted command and control channels. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment, pages
21–40. Springer, 2013.

[62] Yinglian Xie, Fang Yu, Kannan Achan, Rina Panigrahy, Geoff Hulten, and Ivan
Osipkov. Spamming botnets: signatures and characteristics. ACM SIGCOMM
Computer Communication Review, 38(4):171–182, 2008.

https://www.virusbulletin.com/virusbulletin/2008/01/rule-driven-malware-identification-and-classification
https://www.virusbulletin.com/virusbulletin/2008/01/rule-driven-malware-identification-and-classification

96 References

[63] Weidong Cui, Marcus Peinado, Helen J Wang, and Michael E Locasto. Shield-
gen: Automatic data patch generation for unknown vulnerabilities with in-
formed probing. In Security and Privacy, 2007. SP’07. IEEE Symposium on,
pages 252–266. IEEE, 2007.

[64] Peter Wurzinger, Leyla Bilge, Thorsten Holz, Jan Goebel, Christopher Kruegel,
and Engin Kirda. Automatically generating models for botnet detection. In Eu-
ropean symposium on research in computer security, pages 232–249. Springer,
2009.

[65] James Newsome, Brad Karp, and Dawn Song. Polygraph: Automatically
generating signatures for polymorphic worms. In Security and Privacy, 2005
IEEE Symposium on, pages 226–241. IEEE, 2005.

[66] Parvez Faruki, Vijay Ganmoor, Vijay Laxmi, Manoj Singh Gaur, and Ammar
Bharmal. Androsimilar: robust statistical feature signature for Android malware
detection. In Proceedings of the 6th International Conference on Security of
Information and Networks, pages 152–159. ACM, 2013.

[67] Min Zheng, Mingshen Sun, and John CS Lui. Droid analytics: a signature based
analytic system to collect, extract, analyze and associate Android malware. In
Trust, Security and Privacy in Computing and Communications (TrustCom),
2013 12th IEEE International Conference on, pages 163–171. IEEE, 2013.

[68] Bass. https://github.com/Cisco-Talos/BASS.

[69] Andrea Atzeni, Fernando Díaz, Andrea Marcelli, Antonio Sánchez, Giovanni
Squillero, and Alberto Tonda. Countering android malware: A scalable semi-
supervised approach for family-signature generation. IEEE Access, 6:59540–
59556, 2018.

[70] YARA — The pattern matching swiss knife for malware researchers. https:
//virustotal.github.io/yara/, November 2013. (Accessed on 03/27/2017).

[71] Leland McInnes and John Healy. Accelerated hierarchical density clustering.
arXiv preprint arXiv:1705.07321, 2017.

[72] Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics
of operations research, 4(3):233–235, 1979.

[73] Eliana Giovannitti, Luca Mannella, Andrea Marcelli, and Giovanni Squillero.
Evolutionary antivirus signature optimization. In 2019 IEEE Congress on
Evolutionary Computation (CEC), 2019.

[74] Ling Wang, Chen Fang, Chun-Di Mu, and Min Liu. A pareto-archived
estimation-of-distribution algorithm for multiobjective resource-constrained
project scheduling problem. IEEE Transactions on Engineering Management,
60(3):617–626, 2013.

[75] Tracking malware with import hashing. https://www.fireeye.com/blog/threat-
research/2014/01/tracking-malware-import-hashing.html.

https://github.com/Cisco-Talos/BASS
https://virustotal.github.io/yara/
https://virustotal.github.io/yara/
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html

References 97

[76] Things you didn’t known about portable executable file format (pecoff).
https://media.blackhat.com/bh-us-11/Vuksan/BH_US_11_VuksanPericin_
PECOFF_Slides.pdf.

[77] Nicolas Kiss, Jean-François Lalande, Mourad Leslous, and Valérie Viet Triem
Tong. Kharon dataset: Android malware under a microscope. In The Learn-
ing from Authoritative Security Experiment Results (LASER) workshop. The
USENIX Association, 2016.

[78] Roberto Perdisci, David Dagon, Wenke Lee, Prahlad Fogla, and Monirul Sharif.
Misleading worm signature generators using deliberate noise injection. In
Security and Privacy, 2006 IEEE Symposium on, pages 15–pp. IEEE, 2006.

[79] James Newsome, Brad Karp, and Dawn Song. Paragraph: Thwarting signature
learning by training maliciously. In International Workshop on Recent Advances
in Intrusion Detection, pages 81–105. Springer, 2006.

[80] Weilin Xu, Yanjun Qi, and David Evans. Automatically evading classifiers. In
Proceedings of the 2016 Network and Distributed Systems Symposium, 2016.

[81] Battista Biggio, Konrad Rieck, Davide Ariu, Christian Wressnegger, Igino
Corona, Giorgio Giacinto, and Fabio Roli. Poisoning behavioral malware
clustering. In Proceedings of the 2014 Workshop on Artificial Intelligent and
Security Workshop, pages 27–36. ACM, 2014.

[82] Jonathan Crussell and Philip Kegelmeyer. Attacking dbscan for fun and profit.
In Proceedings of the 2015 SIAM International Conference on Data Mining,
pages 235–243. SIAM, 2015.

[83] Leland McInnes, John Healy, and Steve Astels. hdbscan: Hierarchical density
based clustering. The Journal of Open Source Software, 2(11), mar 2017.

[84] Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-
based external evaluation measure. In EMNLP-CoNLL, volume 7, pages
410–420, 2007.

[85] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. Avclass:
A tool for massive malware labeling. In International Symposium on Research
in Attacks, Intrusions, and Defenses, pages 230–253. Springer, 2016.

[86] malicialab/avclass: AVClass malware labeling tool. https://github.com/
malicialab/avclass, July 2016. (Accessed on 03/27/2017).

[87] Yuping Li, Sathya Chandran Sundaramurthy, Alexandru G Bardas, Xinming
Ou, Doina Caragea, Xin Hu, and Jiyong Jang. Experimental study of fuzzy
hashing in malware clustering analysis. In 8th workshop on cyber security
experimentation and test (cset 15), volume 5, page 52. USENIX Association,
2015.

https://media.blackhat.com/bh-us-11/Vuksan/BH_US_11_VuksanPericin_PECOFF_Slides.pdf
https://media.blackhat.com/bh-us-11/Vuksan/BH_US_11_VuksanPericin_PECOFF_Slides.pdf
https://github.com/malicialab/avclass
https://github.com/malicialab/avclass

98 References

[88] Andrea Atzeni, Fernando Díaz, Francisco Lǿpez, Andrea Marcelli, Antonio
Sánchez, and Giovanni Squillero. The rise of android banking trojans. IEEE
Potentials, 2019.

[89] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin,
and David Wagner. Android permissions: User attention, comprehension,
and behavior. In Proceedings of the eighth symposium on usable privacy and
security, page 3. ACM, 2012.

[90] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clé-
mentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano
Giuffrida. Drammer: Deterministic rowhammer attacks on mobile platforms.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1675–1689. ACM, 2016.

[91] Yanick Fratantonio, Chenxiong Qian, Simon Chung, and Wenke Lee. Cloak and
Dagger: From Two Permissions to Complete Control of the UI Feedback Loop.
In Proceedings of the IEEE Symposium on Security and Privacy (Oakland),
San Jose, CA, May 2017.

