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Abstract

Machine learning and evolutionary computation are powerful tools that achieved
incredible results in the most variegate fields. While the techniques are quite known,
their application requires a deep knowledge in the field of usage. This thesis explores
the application of computational intelligence methodologies to open problems in
computer security, mainly in the field of malware families detection.

Malware is a big business. With hundreds of thousands of malware delivered
every day, manual analysis in not an option. Malicious samples are commonly
detected using a combination of techniques, ranging from machine learning to hash-
based content. However, the industry mostly relies on signatures, which are patterns
extracted from the code or behavior of selected samples. Generating effective
signatures, with O-false positives, and low false negatives rates, is a task that requires
a considerable amount of time and resources from skilled experts, while automatically

generating them is an open problem.

In this thesis, we propose a semi-supervised methodology for the automatic
identification of malware families, used to safely extend experts knowledge on new
malicious samples, and to reduce the amount of applications to manually analyze.
Then, newly discovered samples are submitted to an automatic signature generation
procedure, which produces a formal rule which has a limited risk of detecting false
positives in the future, yet it is general enough to catch future threats.

The effectiveness of the approach is assessed running experiments on 1.5 million
Android applications, the largest dataset ever used in a public research on Android
malware. The procedure has been implemented in two frameworks which have been
publicly released: YaYaGen for Android applications, and YaYaGenPE for Windows.
Furthermore, since January 2018, part of the proposed approach is in use in Koodous,

a collaborative analysis platform for Android, developed by Hispasec.



Astratto

Machine learning e algoritmi evolutivi sono potenti strumenti matematici che hanno
permesso di raggiungere incredibili risultati nei campi piu disparati. Nonostante
le tecniche siano note da decadi, un utilizzo efficace richiede un’approfondita
conoscenza del campo di applicazione. In questa tesi vengono esplorate alcune
applicazioni di Computational Intelligence a problemi aperti di sicurezza informat-

ica, soprattutto incentrati sul riconoscimento delle famiglie di malware.

Con un flusso di centinaia di migliaia di nuove applicazioni rilasciate ogni
giorno, negli anni sono stati sviluppati diversi metodi in grado di automatizzare
I’identificazione di malware, basati su una varieta di tecniche, che spaziano dal
machine learning, al calcolo dell’hash di porzioni di codice. Lo standard industriale
¢ bastato sull’utilizzo delle signature: regole contenti pattern unici estratti dal codice
o dall’analisi di un’applicazione. Tuttavia, scrivere signature efficaci, con un basso

numero di falsi positivi e negativi, richiede tempo e risorse.

In questa tesi, viene proposta una metodologia semi-supervised per identificare
automaticamente le famiglie di malware, utilizzata sia per individuare nuovi esem-
plari, che per ridurre il numero di file da analizzare manualmente. In seguito, 1
campioni selezionati sono sottoposti ad un processo di generazione automatica della
signature, che produce una regola abbastanza specifica da non generale falsi positivi,
ma al contempo generica da individuare varianti future.

Lefficacia dell’approccio ¢ stata verificata sperimentalmente, utilizzando 1.5
milioni di applicazioni Android, il pill grande dataset mai utilizzato in una ricerca
sul malware Android. Inoltre sono stati rilasciati due framework YaYaGen e YaYa-
GenPE, per la generazione automatica di signature rispettivamente per Android e
Windows. Infine, a partire da Gennaio 2018, parte dell’approccio proposto € stato in-
tegrato in Koodous, una piattaforma di analisi collaborativa per applicazioni Android,
sviluppata da Hispasec.
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Chapter 1
Introduction

Malware is a long-standing well-known problem. Since the first computer virus, Elk
Cloner, in 1982 the malicious-software scenario completely changed. Originally
malicious programs were mostly developed for fun, where the complexity of the
program was a showcase of the skill set of the author, and they even explicitly showed

a message to inform about the computer infection.

As the computer and network infrastructure evolved, malware did too. Today’s
malware is more focused, either designed for the ultimate profitability, or as a
pernicious spying tool supported by the state-sponsored attacks. Being able to
promptly identify a malicious behavior is a well-studied, but still an open problem

for researchers from both the academia and the industry world.

With the coming of mobile operating systems, iOS and Android above all, new
opportunities arise for malware developers. A fully-connected device, in constant
proximity of the user, with almost unlimited access to personal data is an extremely
valuable target for an attacker. Although mobile OS development did benefit from
decades of computer security experience of traditional operating systems, and they
introduced strict security measures (such as sandboxing the applications execution,
or asking before granting sensible permissions) the attack surface is so vast that
the combination of technical vulnerabilities with social engineering attacks is still a
powerful, yet effective, attack. Moreover, in the Android ecosystem, the situation is
made worse by the open market model, where the fast availability of applications is

a priority over the strict security check of the application behavior.



2 Introduction

Malware authors exploit executable packing [1] and other code obfuscation tech-
niques [2] to generate a large number of variants of the same malicious application.
As a consequence antivirus (AV) software are struggling to keep their signature
database up-to-date, and AV scanners suffer from a considerable quantity of false
negatives. However, while malware variants can be generated at a high pace, they
are likely to perform similar malicious activities when executed. One possible solu-
tion would be to automatically cluster such applications in families and focus the
manual analysis on few archetypal samples, with the underlying assumption that
malware bearing significant similarities are likely to derive from the same code base.
Eventually, if a large number of malware belonging to the same family is identified,
it may become possible to define a generic behavioral signature able to detect future

variants with reduced false positives and false negatives.

In this thesis we tackle two well-known, but yet unsolved, problems in the
malware research domain: the clustering of vast dataset of applications and the

automatic signature generation of a malware family.

Firstly, we introduce a scalable semi-supervised system for the analysis of mas-
sive malware datasets based on careful feature engineering, and a standard density-
based clustering algorithm. Then, starting from a cluster of malicious samples, we
propose an algorithm that automatically generates a family signature. Thanks to
exact and heuristic evaluations, such rules are intelligible and appear reasonable to
human experts. Moreover, the algorithm guarantees zero false positives in the exist-
ing dataset, and limits the possibility of false positives in the future. The procedure
includes an evolutionary-based approach, based on the Selfish Gene algorithm, to
optimize automatically generated signatures in order to further decrease the number
of false negatives, and detect future malware variants. The proposed algorithms are
implemented in two frameworks, called YaYaGen and YaYaGenPE, to automatically

generate signatures for Android and Windows binaries.

Finally, the thesis includes a study on one the most prominent threat in the
Android ecosystem: the Android Banking Trojans, that is applications written with
the specific purpose of stealing confidential information from victims bank accounts

and on-line payment services.



Chapter 2

Background

2.1 Android Malware

Since August 2010, when the first Android malware FakePlayer was released, the
number of new malicious samples steadily increased [3]. After eight years, malware
programs are hundreds of times bigger than the old FakePlayer, hide their presence,
use sophisticate anti-analysis tricks, and they can even secretly communicate through

complex anonymous networks.

Differently from the iOS Apple Store, Android offers an open market model,
where millions of applications are downloaded every day. Although applications
undergo a mandatory review process before being published in the official Play
Store, in order to confirm their compliance with Google policies [4], other third-party
markets do not. Hence, a typical pattern among malware developers is to repack
popular applications from Google Play Store, add malicious features, and finally
distribute them to third-party app-stores with loose security checks, leveraging apps
popularity to accelerate malware propagation. Moreover, automatic checks used by
Google Play Store can be bypassed too, as shown by the malware campaign found
by Check Point in 2017, where 41 malware apps from Google Play infected millions

of devices [5].

In the personal-computer ecosystem, malware developers commonly exploit
executable packing and other code obfuscation techniques to generate a large number
of polymorphic variants of the same malicious application [1, 6]. As a consequence

antivirus (AV) software are struggling to keep their signature database up-to-date,
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and AV scanners suffer from a considerable quantity of false negatives [7]. Malware
developers commonly reuse and customize the code to fit different needs. For
example, a developer may reuse the rootkit installation code, while replacing the

modules that provide network connectivity to a Command-and-Control server [8].

By the end of 2010s, the Android ecosystem is facing a similar scenario, although
the situation is made worse by the simplicity of malicious repackaging [9]. This
is an alteration of the original application installation package (i.e., the APK file),
where legitimate applications are reverse engineered, modified to include malicious
code, signed one more time, and eventually distributed in open markets. Since
applications mainly consist of bytecode, reversing the original application and adding
new portions of code is relatively easy to implement, and ad-hoc tools exist to assist
the procedure [10, 11].

2.1.1 Koodous

Koodous is an open platform for the analysis of Android applications which combines
several state-of-the-art tools with the social interactions among analysts. Started
in 2014, in 4 years it became the largest open repository of Android applications:
its databases contain more than 40 millions of applications, among which more
than 7 millions have already been identified as malicious. Fig. 2.1 illustrates the
applications submission and detection trend from October 2014, until March 2017.

Koodous provides both analysis service and end-point protection: upon submis-
sion, each application is analyzed both statically and dynamically, and the final report
is accessible through a web interface specifically designed to help analysts detect
new malware threats. Analysis tools include a custom version of Androguard [12],
CuckooDroid! and DroidBox [13].

Instead of relying on a closed group of expert malware analysts, Koodous takes
advantage of an open community to identify malicious applications. Furthermore, in
order to guarantee high quality results, manual detections are subject to reputation-
based checking. The endpoint protection is guaranteed through an Android applica-
tion, which backs to the cloud platform to detect most recent threats?.

Thttps://github.com/idanr1986/cuckoo-droid
2https://play.google.com/store/apps/details?id=com.koodous.android
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Fig. 2.1 Monthly trend of applications submitted and detected in Koodous from October
2014 until March 2017.

Koodous uses YARA (Section 2.4.1) to describe patterns for detecting malware
application: since the creation of high-quality YARA rules requires a considerable
effort, the platform also offer the possibility to identify malware through a simpler
voting mechanism — an operation referred to as “triage”. As of July 1, 2018, more
than 2.5 millions applications are detected by triage?.

Thanks to the collaboration with Hispasec, in this thesis Koodous has been used
as a testbed to evaluate the proposed methodology. Moreover, since January 2018,
part of the proposed framework has been integrated into the platform.

2.2 Clustering

Clustering is the technique to subdivide objects into groups according to the similarity
in their feature set: objects within the same group are more similar to each other
than those assigned to different groups. A feature set is used to describe data as

3For the up-to-date figure, visit https://koodous.com/apks?search=rating: %3C-1%20%
26%20detected:1.
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efficiently as possible, and it bridges the semantic gap between individual data
objects and partitions with a higher-level of understanding. Similarity is the notion
of closeness between two elements, and it is commonly measured through a distance
function [14].

Typical cluster models include hierarchical-, centroid- and density-based method-
ologies. Hierarchical- and density-based approaches are following described: the
former historically represents the most popular choice for malware analysis, while
the latter is at the base of the proposed methodologies.

Hierarchical clustering

Hierarchical clustering takes a matrix of pairwise distances among objects as input,
and produces a dendrogram as output, a tree-like data structure where leaves represent
original objects, and the length of the edges the distance between clusters [15].
Hierarchical clustering is able to find clusters of arbitrary shapes, and can work on
arbitrary metric spaces (i.e., it is not limited to distance in the Euclidean space) [16].
Differently from other, well-known clustering algorithms, such as k-means and
DBSCAN, that only provide the clustering output, the resulting dendrogram shows a

representation of how clustering evolved.

Two types of hierarchical clustering algorithms exist: divisive (top-down) and
agglomerative (bottom-up). Divisive algorithms initially consider all elements in the
same cluster and then proceed by splitting points into groups. On the other hand,
agglomerative algorithms initially treat each element as a singleton cluster and then

proceed by merging them.

Hierarchical agglomerative clustering (HAC) techniques use various criteria to
decide locally, at each step, which clusters should be merged (or split for divisive
approaches): the definition of cluster proximity differentiates the various agglom-
erative hierarchical approaches. Single and complete linkage, group average and
Normalized Compression Distance (NCD) represent a few commonly used tech-
niques to measure cluster proximity. Single linkage defines the distance between two
clusters as the minimum distance between any two members of the cluster, while
complete linkage is the exact opposite, characterizing the similarity between two
clusters as the similarity between the two furthest elements inside each cluster. Both

linkage typologies are local merge criteria, as they define similarity between two
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clusters by only considering a single element from each cluster: consequently, they
can both lead to undesirable clusters. On the other hand, NCD uses the ability of
compression functions (e.g., bzip2, gzip) to find similarities between two objects to

define a distance between them [6].

Finally, to retrieve a flat clustering from a dendrogram, it is needed to decide at
which level stop the merging of the clusters. Multiple general-purpose methods are
described in the literature, such as cutting at a predefined constant depth, cutting
links that are larger than a certain threshold, and cutting links that are considerably
larger than their siblings [17].

Hierarchical algorithms are typically used whenever the underlying application,
e.g., the creation of a taxonomy, requires a hierarchy. However, agglomerative hierar-
chical clustering algorithms are computationally and storage expensive, respectively
O (n*logn) and 0'(n?) [18], while divisive clustering with an exhaustive search are

computationally even worse &'(2").

Density-based clustering

Density-based approaches locate regions of high density, surrounded by regions
of low density, with Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [19] being the most well-known technique of this kind. Density is
evaluated on user-specified parameters € and min points. A dense region in the data
space is a n-dimensional sphere with radius € and at least min points objects inside.
DBSCAN iterates over data objects in the collection by analyzing their neighborhood
and classifies objects as being (i) inside a dense region (a core point), (i) on the edge
of a dense region (a border point), or (iii) in a sparsely occupied region (a noisy or
outlier point). Any two core points that are close enough (within a distance € of
one another) are associated to the same cluster. Any border point close enough to a
core point is put in the same cluster as the core point. Finally, outliers are those far
from any core point. Since outliers are isolated, the algorithm does not produce a

complete clustering.

Differently from other clustering methods, density-based algorithms can effec-
tively discover clusters of arbitrary shape and filter out outliers, increasing cluster
homogeneity. Additionally, the number of expected clusters to be found in the

data is not required; in many practical cases, such as the automatic discovery of
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malware families, the number of clusters is hard to guess a priori, as the goal is
to discover groups of similar applications without any prior knowledge about their
composition. In low-dimensional spaces, the time complexity of DBSCAN can be
as low as & (nlogn), while its space requirement is &'(n), making it applicable to

large datasets.

In 2013, Campello et al. [20] proposed a new density-based algorithm that
converts the original DBSCAN into a hierarchical clustering algorithm. For its speed
and robustness, Hierarchical Density-Based Spatial Clustering of Applications with
Noise (HDBSCAN) is ideal for exploratory data analysis [21]. Matter-of-factly, this
technique performs DBSCAN over several values of €, and integrates the results to
find a clustering that provides the best stability over €. This allows HDBSCAN to find
clusters of varying densities, and be more robust to parameter selection. Moreover,
HDBSCAN also supports the Global-Local Outlier Score from Hierarchies (GLOSH)
outlier detection algorithm: during the fitting phase, each data point is associated to
a score that represents its likelihood of being an outlier; at the end of the process,

outliers are selected via upper quantiles [22].

2.2.1 Clustering Evaluation

As clustering is an unsupervised learning task, analyzing the validity of its results is
intrinsically hard due the difficulty of establishing a ground truth. Indeed, clustering
itself is inherently ill-posed, in the sense that there is no single criterion that measures
how well a clustering of the data corresponds to the real world [23]. Cluster validity
analysis often involves the use of subjective criteria of optimality specific to a
particular application. Therefore, no commonly accepted standard of validating the

output of a clustering procedure exists [24].

In real-world applications, it is often completely infeasible to manually inves-
tigate the results of a clustering, making necessary the definition of automatic
measures [14]. Helpful metrics to determine the quality of a clustering process are

commonly classified in internal and external indexes.

Internal indexes evaluate both cluster cohesion (e.g., compactness and tightness),
which determine how closely related the objects in a cluster are, and cluster sepa-

ration (e.g., isolation), which determine how distinct or well-separated a cluster is
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from others. Internal indexes are often called unsupervised measures, since they only

use information derived from the data set.

On the other hand, external indexes, known as supervised measures, use a refer-

ence set as a means of quality control for the setup of the clustering algorithm [14].

For instance, the Adjusted Rand Index (ARI) computes a similarity measure
which consider all pair of samples, counting pairs that are assigned in the same
or different clusters in the predicted and true clusterings. The Homogeneity index
measures if each cluster contains only member of a single class, while Completeness
if members of a given class are assigned to the same cluster. Finally the V-measure
is the harmonic mean between homogeneity and completeness. All of them are
bounded score between 0.0 and 1.0, where 1.0 stands for a perfect and complete
labeling.

Malware clustering validation

In the field of malware analysis, clustering validation is made further complex by the
intrinsic difficulty of establishing a reliable ground truth. Firstly, malware analysis
is challenging and it gets more difficult when anti-analysis, triggering sequences
and dynamic code loading techniques are in place. Secondly, not even a manual
categorization would provide a reliable partition, since most of the malware could
not be unequivocally assigned in categories; not to mention the unrealistically high

amount of time it would require.

As a reference set is not available, one possibility is to take advantage of labels
assigned to each malware sample by several antivirus scanner. The availability of
services that specifically provide these results, e.g. VirusTotal®, eases the procedure.
However, there is an intrinsic complexity in defining a unique labeling schema,
since most of the malware result in being marked as belonging to one malicious
category only. As a matter of fact, Bailey et. al. [25] showed that antivirus labeling
fails in satisfying three fundamental criteria: consistency among different products,
completeness in malware tagging, and conciseness in label semantics. One possible
explanation is that signatures used in the malware-matching algorithms mostly
evaluate static properties of the binary, in contrast to behavioral properties: the result

is that the families found using static features might be quite different from the

“https://virustotal.com/
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ones established using behavioral features. Moreover, different AV products apply

different criteria and granularity to rule generation, resulting in inconsistent results.

Despite the complexity and intrinsic challenges of the procedure, given the im-
portance of automatically building a malware reference dataset to evaluate clustering
results, the problem was directly tackled in different researchers, such as VAMO
[26] and AV class [27].

In the literature of malware clustering, several techniques have been proposed. In
[28] and [29], precision and recall have been used as a way of determining the quality
of the proposed feature set by conducting analysis on an already labeled dataset.
However, in practice this approach requires to define a manual mapping between la-
bels assigned by different AVs. Nevertheless, as the dataset size increase this method
becomes hardly sustainable and quite costly. In the same way, ClusTheDroid [14]

used a reference set developed through manual analysis [30].

On the other hand, Apel et al. [6] choose to take into consideration the amount
of “shared behavior” that can be found among different analysis traces within the
same cluster of applications. In practice, each system call is modeled as a single
character, and the evaluation is computed in linear time finding all substrings in a
generalized suffix tree, using the algorithm described in [31]. The main limitation of
this technique is related to the choice of the reference dataset, since Apel et al. use
an artificial dataset starting from three real-world malware traces, then divided into

blocks of system calls and randomly permuted.

Differently, Perdisci et al. [16] tackle the problem of analyzing the validity of
malware clustering results without exploiting any manual mapping of AV labels.
Their approach is based on a measure of cohesion and separation of each cluster,
in terms of agreement between labels assigned to the malware samples by cluster
analysis and those assigned by multiple AV scanners. However, since AV labels have
been shown to be inconsistent [25], the measures of cluster cohesion and separation

only give an indication of the validity of the clustering results.

2.2.2 Clustering applied to malware analysis

The first attempt to automatically group computer malware based on their behavior
dates back to Lee and Mody [32], who use a sequence of runtime events (e.g.,

registry and file system modifications) to cluster similar programs. As a similarity
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measure, they choose a variant of the edit distance, resulting demanding in term
of computational resources, since it has a computational complexity &'(n?) in the

number » of features.

Later, Bailey et al. [25] propose a system for automated malware classification
and analysis as a remedy for the inconsistent and incomplete labeling that commonly
affect traditional antivirus. By applying single-linkage Hierarchical agglomerative
clustering (HAC) with Normalized Compression Distance (NCD) and using inconsis-
tency measure as a cutting criteria, Bailey et al. are able to automatically categorize
malware profiles into groups that reflect similar classes of behaviors in terms of sys-
tem state changes. While results are generally affected by the restriction of dynamic
analysis, for the first time they introduce the idea of “detection through clustering”,

exploited in our proposed framework.

In their work, Apel et al. [6] study which combination of metrics (i.e., Edit
Distance, Approximated Edit Distance with Blockwise Hashing, NCD and Manhattan
Distance) and n-gram features are mostly appropriate for determining relations
between malware samples. They define three different criteria to support their
evaluation (i.e., appropriateness, computable efficiency and local sensitiveness),
using single-linkage HAC as clustering algorithm. Experimental results show that
Manhattan Distance along with 3-grams deliver the best results, while NCD and Edit
Distance generally perform poorly.

Neither Lee and Mody [32], nor Bailey et al. [25] have any specific solution to
large-scale clustering. On the other hand, Bayer et al. [28], Rieck et al. [33], and
Jang et al. [29] directly address the problem of managing large datasets, developing

methods to scale the clustering process.

Bayer et al. [28] propose a scalable malware clustering approach using a com-
bination of approximate and hierarchical clustering with Local Sensitive Hashing
(LSH) [34] to significantly reduce the number of distance computations. By extend-
ing Anubis [35], they are able to extract detailed behavioral-reports based on taint
tracking results and network captures from malware execution. In particular, the
taint engine allows them to map low-level operations (e.g., system calls) to operating
system objects (e.g., registry keys and files). By deploying LSH, Bayer et al. are
capable of clustering 75,000 samples in less than 3 hours. By contrast, Rieck et

al. [33, 36] proposes an incremental approach, where they alternate a prototype-
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based clustering algorithm with a classification step, eventually reducing the runtime

complexity by performing clustering only on representative samples.

Jang et al. [29] develop BitShred as remedy to the problem of clustering large
data sets with high-dimensional feature sets. They propose to use feature hashing
to reduce the dimensionality of high-scale feature sets, while reducing the compu-
tational cost of the calculation of the Jaccard index using an approximated version
that exploits bit-vector arithmetic. However, since BitShred simply relies on a static
analysis approach, results are susceptible to binary level obfuscation.

In 2010, Perdisci et al. [16] propose a network-based version of a behavioral
malware clustering system, relying on a three-step clustering refinement process,
starting from the analysis of malicious HTTP traces. The first phase consists in a
coarse-grained clustering where malware samples are grouped together according to
simple statistical similarities; subsequently, a fine-grained clustering further splits
samples considering structural properties of HTTP queries. In the final step, fine-
grained clusters whose centroids are close to each other are merged together. The
system is tested on HTTP traces generated from 25,000 applications using single-
linkage HAC and the Davies-Bouldin (DB) validity index [37] as cutting criteria.
While the underlying idea of a multi-step clustering refinement process is quite
interesting, this practically results in the biggest limitation to the scalability of their
work. Moreover, Perdisci et al. limit behavioral analysis to HTTP-based malware
only, which in practice can be easily bypassed by using an encrypted protocol (e.g.,
HTTPS).

In 2013 Hu et. al [38] present MutantX-S, focusing on malware comparison
and triage on a large scale. Their system falls into the static-analysis category,
since it relies on features extracted from the malware instructions. MutantX-S can
efficiently cluster a large number of samples into families based on program static
features, by extracting N-gram features directly from the x86 opcode sequences
and exploiting a feature hashing technique to reduce features dimensionality, thus
significantly lowering the memory requirement and computation costs. MutantX-S
adopts the same prototype-based algorithm of [36] because of its efficiency and
explicit expression of malware features.

In the Android context, ClusTheDroid [14] is the first research to combine
behavioral analysis and clustering to specifically target Android malware. The goal
is both to develop a tool, and to evaluate clustering alternatives. Finally they focused
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on single and complete linkage HAC, using a feature set composed of 38 numerical
quantities extracted from the CopperDroid [39] report, and weighted according to a

three-level interpretation of malware behaviors.

2.3 Evolutionary Strategies

Evolutionary algorithms are based on the idea that given a population of individuals
within some environment that has limited resources, competition for those resources
causes natural selection, known as survival of the fittest, which also generates a
raise in the fitness of the population. The fitness is the result of a quality function
applied to an individual of the population (i.e., candidate solution) to evaluate it. On
the basis of these fitness values, some of the best candidates are chosen to seed the
next generation by applying recombination and/or mutation. Recombination is an
operator that is applied to two or more selected candidates (the so-called parents),
producing one or more new candidates, the children. On the other hand, mutation is
applied to one candidate individual and results in a new one. This process can be
iterated until a candidate solution with sufficient quality is found or a previously set

computational limit is reached.

There are two main forces that form the basis of evolutionary systems: variation
operators, that create the necessary diversity within the population, and selection,
that acts as a force increasing the mean quality of solutions in the population. The
combined application of variation and selection generally leads to improving fitness
values in consecutive populations [40].

2.3.1 Selfish Gene

In canonical evolutionary algorithms (EAs) [41], an individual encodes a candidate
solution and the set of all individuals that have a role in the evolutionary process
is called population. In estimation of distribution algorithms (EDAs) [42], on the
contrary, candidate solutions are not explicitly stored, but the population contains
the distributions, and possibly the relationships, of the variables.

The Selfish Gene algorithm (SG) is an EDA proposed more than two decades
ago [43], it was inspired by a tough experiment suggested by Richard Dawkins in
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his celebrated book [44]. It exploits an univariate discrete probabilistic model—a
vector that stores the marginal probabilities of allele values for each gene position,
independently of other gene positions—and is akin to other algorithms, such as
the equilibrium genetic algorithm (EGA) [45], the population-based incremental
learning (PBIL) [46], the univariate marginal distribution algorithm (UMDA) [47],
and remarkably similar to the compact genetic algorithm (cGA) published the same
year [48].

Like the cGA, the SG algorithm iteratively samples two solutions at a time and
conducts a competition between them. It then updates the probabilistic model by
rewarding the allele values contained in the winner and penalizing the allele values
contained in the loser of the competition. The strength of the reward/penalty for
each gene position i is determined by a parameter €;, which usually depends on the
number of different alleles that can occupy the i-th locus.

The original SG was quite simple to implement and efficient in finding optima,
yet far more robust than pure hill climbing. It was exploited by practitioners in
some real-world applications, such as CAD problems [49], by scholars for various
test benches [50], and few new approaches derived from it [S1]. In 1999 it was
enhanced to tackle highly deceptive functions at the expense of a significant loss in

performance [52].

2.4 Signature

Early AV products used the hash value of an application to detect malicious software.
However, every modification in the source code, as tiny as one byte, results in a
detection evasion. Today’s signatures are pattern-matching rules commonly defined
on static or dynamic properties of applications under analysis and, even though they
are assisted by heuristic and Al-based solutions, still represent the most reliable (i.e.,

with the lowest false positives) antivirus technology.

Today’s there are two main standard languages used: ClamAV > and YARA ©.
In this thesis we will focus on YARA, as it is more flexible and easy to adapt to

different platforms and analysis through custom modules.

Shttps://www.clamav.net/
®https://github.com/VirusTotal/yara
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24.1 YARA

YARA is a pattern matching tool, designed to provide a fast matching between
signatures (i.e., YARA rules) and multi-platform binaries. YARA has been described
to be the equivalent for binaries of what is SNORT to network traffic. The software
has been originally developed by Victor M. Alvarez [53], and it is now owned by
VirusTotal.

The name YARA indicates both the signatures, also known as YARA rules, and
the name of the tool to match a signature with a binary. The tool internally compiles
the rule, and implements an efficient pattern matching mechanism using a custom
stack-based virtual machine. The output is the list of the rules names that matched a

particular binary.

One of the biggest advantages provided by YARA is the flexibility to extend
core functionalities through custom modules written in C 7. YARA already includes
modules to correctly parse and process the PE, ELF, MACHO and .NET file formats,
but custom ones can be used to enrich the semantic of the detection, introducing
platform-specific matching attributes. For instance, the PE module has been designed
to parse the PE header of an executable or DLL for Windows, and it provides specific

attributes to match corresponding fields of the executable header.

YARA rules are language-specific signatures, and are composed of three main
section. The first one, meta is where additional information is added. This section is
skipped during the rule evaluation, and it is commonly used only to enrich the rule
with a description of the desired behavior and detected samples. The strings section
is where hexadecimal or strings pattern are placed. Each pattern is associated to a
variable, which is then used in the last section, condition, to express the matching
logic. In case custom modules are used, this section is used to specify the usage of

those attributes. An example of YARA rule with the PE module is presented below.

One major limitation of YARA is that rules are applied to the binary as it is,
without any prior transformation. This limits the rule detection effectiveness in case

of packed samples, and any obfuscation techniques.

Interestingly, YARA rules have several applications other than malware identi-

fication: among the others, rules can be used to identify indicators of compromise,

"https://yara.readthedocs.io/en/v3.10.0/writingmodules.html
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shellcode, compilers, and packer software. Moreover, open and public repositories
of YARA rules exist, and are daily updated.

" "

import "pe

rule silent_banker : banker
{
meta:
description = "This_is,_just_an_example"
thread_level = 3
in_the_wild = true
strings :
$a = {6A 40 68 00 30 00 00 6A 14 8D 91}
$b = {8D 4D BO 2B C1 83 CO 27 99 6A 4E 59 F7 F9}
$¢ = "UVODFRYSIHLNWPEIXQZAKCBGMT"

condition :

($a or $b or $c) and pe.number_of_sections ==

2.5 Automatic Signature Generation

A number of prior works propose systems to automatically generate different types
of network signatures to identify malicious traffic.

Honeycomb [54], Autograph [55], and EarlyBird [56] propose the generation of
signatures comprising a single contiguous string (i.e., token). Later on, PAYL [57],
Nemean [58], Hamsa [59] and Botzilla [60] introduce more complex methods based
on the token subsequence signatures.

Other researchers like ProVex [61], AutoRE [62], ShieldGen [63], and [64] also
tackle the problem of automatically generating network signatures, although their

applicability is specific to the network traffic detection.

In 2005, Newsome et. al. introduces Polygraph [65], a system which exploits
the Token-Subsequence algorithm to automatically obtain IDS signatures to match
polymorphic worms. Polygraph is tested against three real-world exploits and is able

to successfully generate HTTP and DNS signatures with a low false positive rate.
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Perdisci et al. [16] also tackles the problem of automatically generate network
signatures for cluster centroids, with the aim of deploying them into an IDS at
the edge of a network in order to detect malicious HTTP traffic. Since malware
samples may contact legitimate websites for malicious purposes, instead of pre-
filtering HTTP traffic against legitimate websites, authors apply a pruning process by
testing the signature set against a large dataset of legitimate traffic, while discarding
signatures that generate false positives, although such an approach is as effective as

it is the legitimate traffic available.

In the Android context, Faruki et al. [66] propose AndroSimilar, a statistical
signature-based solution that generates variable-length signatures for the application
under test and identifies malware on the basis of a similarity percentage with a dataset

of known malicious samples.

Another approach is presented in DroidAnalytics [67], a signature-based analytic
system, which extracts and analyzes applications at opcode level. Firstly, a three-
level signature (i.e., methods, classes, application) is generated by combining the
API call traces, then the malware is associated to a family according to its malicious

content.

While [66] shows robustness against control-flow obfuscation, junk method
insertion and string encryption, [67] could fail in the detection of repackaged malware.
On the the other hand, both solutions are affected by a high false-positive rate due
to the wrong choice of signature patterns available in both malicious and benign

applications.

2.5.1 Tools

Along with the proposed approaches in the literature, several tools have been de-
veloped to automate the process of generating the signatures, balancing the need of
generality to catch future samples, with the requirement of avoiding false positives de-
tections. Given that YARA is the de-facto standard language used to write signature,
several tools directly tackle the signature generation into the YARA format.
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YaraGenerator

In 2013, Chris Clark develops YaraGenerator®, a Python program which automati-
cally generates YARA rules by sampling a small subset of common strings between
malware, while blacklisting goodware ones. Although the tool is designed to work
with any type of malicious file, in order to increase the efficacy of the results, specific
dataset of goodware strings are available for several file formats (e.g., Windows

executable, PDF, email and office document).

YarGen

YarGen® is a Python tool developed by Florian Roth to automatically generate YARA
rules by combining the topmost malware strings, while removing those that also
appear in goodware files. By using fuzzy regular expressions, each malware string is
assigned a score proportionally to the inverse of its frequency, and the “Gibberish
Detector” allows to select real language over character chains without any meaning.
The tool also exploits a naive-bayes-classifier to classify candidate strings, avoiding
compression or encryption garbage in favor of more generic strings. Finally, each
rule is created by combining the 20 strings with the highest score. The result of
the generation process may be a single rule, specific to one sample, or a super rule,

catching malware variants and groups.

YaBin

YaBin'? is a tool developed by Christopher Doman, from AlienVault antivirus com-
pany. The signatures are directly generated using the YARA syntax using a simple
combination of function prologues extracted from a lightweight static analysis of the

executable code.

The function extraction is based on the assumption that different compilers use
different unique pattern to define the function prologue, hence using a simple set
of regular expression, it is possible to get the binary functions without the need of

disassembling the entire binary. Then, the efficacy of the tool relies on the availability

8https://github.com/XenOphOn/YaraGenerator
https://github.com/Neo23x0/yarGen
1Ohttps://github.com/AlienVault-OTX/yabin
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of a huge whitelist of about 5 millions function prologues extracted from goodware

binaries.

YaBin does not perform any optimization of the rule, hence if the samples slightly
differ, one rule for each sample is usually generated. Finally, As the author declares,
the tools is designed to work on unpacked binary samples, otherwise the signature

generated could lead to false positives as it could match the packed code.

BASS

BASS [68] is a tool developed by Cisco Talos to generate ClamAV logic signatures.
Although the ClamAV syntax differs from YARA, signatures can be usually converted
in the two formats.

BASS uses a very detailed approach to find shared portion of code among
samples, exploiting a clustering phase through binary-diffing technique and the

Longest-Common-Subsequences (LCS) algorithm to generate the final signature.

The complexity of the algorithms involved in the procedure is the main downside
of the proposed approach, which finally limits to few tens the number of samples that
can be processed together. Indeed, the clustering phase, which is based on a divisive
hierarchical approach, requires to compute the similarity among all the pairs of
binaries. Then, the LCS algorithm finds the sequence of not necessarily contiguous

characters that appear in the same relative order in both binary sequences.

Generated signatures are checked against an internal database of goodware, and
in case of a false positive, the entire process is repeated, but excluding the unwanted

matching.



Chapter 3
Proposed approach

Part of the work described in this chapter has been previously published in "Counter-
ing Android Malware: A Scalable Semi-Supervised Approach for Family-Signature
Generation", IEEE Access, 2018 [69].

3.1 Problem Statement

The growth of malware created a major challenge for AV vendors to efficiently
handle new samples and accurately label them. Due to the practical impossibility
of manually analyzing thousands of suspicious samples received every day, a large

fraction of them is left unlabeled, delaying the signature generation.

While malware variants can be generated at a high pace, they are likely to
perform similar malicious activities when executed. Hence, one possible solution is
to automatically cluster the applications into families and focus the manual analysis
on few archetypal samples, with the underlying assumption that malware bearing
significant similarities are likely to derive from the same code base [38]. Furthermore,
new samples that belong to a known family can be automatically labeled, and existing
signatures and other mitigation techniques could be easily extended to cover the new

threats too.

Eventually, if a large number of malware belonging to the same family is identi-
fied, it may become possible to define a generic behavioral signature able to detect

future variants with reduced false positives and false negatives [16]. Therefore, a
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precise and robust clustering is crucial to help AV companies categorizing the large
amount of samples, avoiding duplicate work, and allowing analysts to prioritize their

limited resources on novel and representative samples [29, 28].

In this chapter, we describe a semi-supervised system for the analysis of massive
datasets of malicious applications. We introduce a platform that is able to suggest new
families of applications to human experts, and which also generates an intelligible
signature, in the form of a YARA rule [70], to identify family members with high
precision. The proposed methodology explicitly minimizes false positives, a business
hazard and a reputation blow for AV vendors. Finally, the approach aims to alleviate
human experts from the burden of manually inspecting thousands of malware, while

letting the system take critical decisions.

The main contributions of the proposed approach can be summarized as:

* We introduce a scalable system for the analysis of massive malware datasets
based on careful feature engineering, and a standard clustering algorithm. The
mechanism is demonstrated to be robust and able to overcome the well-known

limitations of traditional signature-matching mechanisms.

* We propose an algorithm that, starting from a cluster of samples, generates its
family signature as a YARA rule. Thanks to exact and heuristic evaluations,
such rules are intelligible and appear reasonable to human experts. Moreover,
the algorithm guarantees zero false positives in the existing dataset, and limits

the possibility of false positives in the future.

* We present an evolutionary-based approach to optimize automatically gener-
ated signatures in order to further decrease the number of false negatives, and

detect future malware variants.

* We have implemented the proposed algorithms in two frameworks, called
YaYaGen and YaYaGenPE, to automatically generate signatures for Android

and Windows binaries.

Since the 2000s, researchers from the academia proposed several approaches
based on machine learning aiming at completely replacing humans in the malware
analysis process. In most of the cases, such proposals fell back into mere classifi-

cation, also known as supervised machine learning. The drawbacks included the
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need of large amount of accurately labeled, i.e., already analyzed, data, and hard to
control false positives, a major cause of concern for all the AV vendors. As a result,
AV companies developed systems mostly based on the reliable signature-detection
mechanism. Even though signatures suffer from the so-called “specificity” problem,
and new ones need to be frequently generated, they have been demonstrated effective,
scalable, and almost unaffected by false positives.

The proposed framework is semi-supervised and introduces essential improve-
ments in the identification of similar applications and the generation of family
signatures. It combines the scalability of fully automatic techniques for clustering
and the optimization of new family signatures, while it exploits manual analysis,
inherently more flexible and accurate, in few crucial steps, such as the validation of

newly discovered malware families.

Traditionally, the effort of automatically classifying and analyzing malware
focuses on content-based signatures that specify binary sequences. Indeed, content-
based signatures are inherently vulnerable to malware obfuscation: even if all
variants of a malicious application share the same functionalities and exhibit the same
behavior, they can have tiny different syntactic representations. As a consequence, a

huge number of signatures needs to be created and distributed by AV companies.

On the other hand, a rule that automatically identifies the behavior of a family
of samples would be the first step towards the creation of true family signatures.
Such a signature would match all samples of a family, and would significantly help
to reduce the number of signatures required to cover it. Moreover, as new samples
could be mapped to a family behavior already known, the time and effort required to

analyze and reverse engineer new samples would be reduced.

Differently from the previous approaches, the proposed system generates effec-
tive, precise and descriptive rules using the properties directly extracted from both
static and dynamic analyses. While aiming at reducing false positives and false
negatives, it also exploits a heuristic measure to emulate how expert analysts write

existing signatures.
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3.2 Clustering

3.2.1 Iterative clustering

Clustering provides a mechanism to automatically categorize applications into groups
that reflect their similarity, both in source code and runtime behavior. Ideally, the

clustering algorithm to use should meet the following requirements:

e The algorithm should be able to find clusters of any shape and it should be

able to identify outliers, because real data has outliers.

e The number of clusters should not be defined a priori, because the composition
of the data is not known a priori and there is not preprocessing step that gives

any hint on the number of different families.

* The algorithm should be able to scale in order to meet the necessity of process-
ing millions data points in input. As a matter of fact, AV vendors are currently
required to process about 1 million new application every day to find new
malware samples, and existing malware dataset consist of several millions of

samples.

HDBSCAN, a density-based algorithm, was chosen as it fits most of previous

requirements.

Density-based clustering algorithms locate region of high-density in the feature
space, moreover they can effectively discover clusters of arbitrary shape and filter
out outliers, eventually increasing cluster homogeneity. Additionally, the number
of expected clusters to be found in the data is not required: our aim is to discover
groups of similar applications without any prior knowledge about their composition,

otherwise the number of clusters is hard to guess a priori.

Differently from most of the previous works [25, 6, 28, 16, 14] that rely on the
HAC algorithm (which is both computationally and storage expensive, respectively
0 (n*logn) and 0'(n?) [18]), in low-dimensional spaces HDBSCAN has an average
complexity of approximately &'(nlogn), while its space requirement is &'(n), making
it applicable to moderately large datasets [71]. Furthermore, differently from [36],

we devise an iterative clustering approach where HDBSCAN is iteratively applied
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over the entire dataset, without the needed of alternate any classification step, finally

discovering precise families of applications with a shared behavior.

As the number of samples in malware datasets is in the tens of millions, through
the iterative process the original dataset D (Formula 3.2) is divided into m chunks
(Formula 3.1) d; of fixed size N. The methodology used to divide the original data

into the m chunks does not influence the results.

m= [%—‘ (3.1)
m—1

D={]Jd; (3.2)
i=0

The parameter N balances the quality of the results with the time required for the
analysis, and can be set experimentally according to the available resources.

HDBSCAN is applied to each chunk of data d; finding, at each step, a set of
clusters ¢; and a set of outliers 0;. Finally, all the outliers O (Formula 3.3) are
processed together through another clustering iteration in order to find even those
small groups of applications whose samples are spread through several chunks of

data. In the end, m + 1 total iterations are required to complete the process.

m—1
o=_Jo (33)
i=0

Since the clustering on the first m chunks of data can be executed in parallel, the
benefit of the iterative approach is the huge reduction in the analysis time. On the
other hand, few applications could be misclassified as outliers and the same group of
similar applications could be found multiple times, although, as shown in section

3.2.2, those corner cases do not limit the framework efficacy.

The following description refers to to the clustering of Android applications,

although the proposed approach is generic, and it can be applied also to other datasets.
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Features selection

An accurate features selection is a crucial step in every machine learning approach.
As suggested in [16], we exploit aggregate information: from the analysis result of
each application, we extract a subset of “statistical” properties, meant as quantitative
measure of a malware behavior. Indeed, we experimentally found that exploiting
statistical similarities among applications, rather than “structural” properties which
exactly describe the malicious behavior, does not effectively alter the results, while

at the same time, significantly reduces the amount of data to process.

Starting from a set of n analysis reports provided by Koodous 2.1.1, each report 7;
is translated into a feature vector v; = (fy, ..., f34) containing 35 statistical properties
extracted from the results of the static and dynamic analysis. These properties are
summarized in Table 3.1 and represent the standard type of information extracted in
the field of malware analysis.

In more detail, the static analysis performed by Androguard extracts the features
from the Manifest file (i.e., number of activities, permissions, receivers, filters), and
the source code analysis. The former allows to unveil similarities among applications
based on the software architecture used to develop the application, while the latter
models each application extracting portions of code related to suspicious API call
(e.g., number of calls to SMS API, or IMEI, or other network related methods). On
the other hand, the dynamic analysis extracts features that model the application
interaction with the surrounding operating system both at file system and network
level extracted by DroidBox (e.g., files written, usage of cryptography, SMS sent),
and the network information extracted by CuckooDroid (e.g., number of DNS
resolved, HTTP requests).

Because the range of each feature is quite different, the dataset is firstly normal-
ized so that the features have mean equal to zero and variance equal to one. Since
the choice of the distance to use during cluster analysis is tied to the type and the
dimension of selected features, we experimentally found that the combination with

the Euclidean distance delivered the best performances.
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Table 3.1 List of the 35 statistical properties extracted from the analysis result of each APK
file. Features are grouped according to the type of analysis. Static features are extracted
using Androguard both parsing the Manifest file and looking for interesting API calls in the
decompiled source code. Dynamic features are extracted using DroidBox and CuckooDroid
from the dynamic analysis of the application.

Analysis method Sofware Statistical property

Filters
Activities
Parsing Manifest file Androguard  Receivers
Services
Permissions

Accounts
Advertisement
Browser history
Camera

Crypto functions
Dynamic broadcast receiver
Installed applications
Run binary

MCC

ICCID

IMEI

IMSI

SMS

MMS

Phone call

Phone number
Sensor

Serial number
Socket

SSL

Statically from APK  Androguard

Files wri