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Abstract

A central problem in uncertainty quantification is how to characterize the impact
that our incomplete knowledge about models has on the predictions we make from
them. This question naturally lends itself to a probabilistic formulation, by making
the unknown model parameters random with given statistics. In the following this
approach is used in concert with tools from large deviation theory (LDT) and opti-
mal control to estimate the probability that some observables in a dynamical system
go above a large threshold after some time, given the prior statistical information
about the system’s parameters and/or its initial conditions. It is established under
which conditions the extreme events occur in a predictable way, as the minimizer
of the LDT action functional, i.e. the instanton.

In the first physical application, the appearance of rogue waves in a long-crested
deep sea is investigated. First, the leading order equations are derived for the wave
statistics in the framework of wave turbulence (WT), showing that the theory can-
not go beyond Gaussianity, although it remains the main tool to understand the
energetic transfers. It is shown how by applying our LDT method one can use the
incomplete information contained in the spectrum (with the Gaussian statistics of
WT) as prior and supplement this information with the governing nonlinear dy-
namics to reliably estimate the probability distribution of the sea surface elevation
far in the tail at later times. Our results indicate that rogue waves occur when the
system hits unlikely pockets of wave configurations that trigger large disturbances
of the surface height. The rogue wave precursors in these pockets are wave patterns
of regular height but with a very specific shape that is identified explicitly, thereby
potentially allowing for early detection. Finally, the first experimental evidence of
hydrodynamic instantons is presented using data collected in a long wave flume,
elevating the instanton description to the role of a unifying theory of extreme water
waves.

Other applications of the method are illustrated: To the nonlinear Schrödinger
equation with random initial conditions, relevant to fiber optics and integrable tur-
bulence, and to a rod with random elasticity pulled by a time-dependent force. The
latter represents an interesting nonequilibrium statistical mechanics setup with a
strongly out-of-equilibrium transient (absence of local thermodynamic equilibrium)
and a small number of degrees of freedom (small system), showing how the LDT
method can be exploited to solve optimal-protocol problems.
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Chapter 1

Introduction

1.1 Extreme events in everyday life
In many aspects of the natural phenomena and of human life, events that are rare
but extreme play a significant role. Often, these are really what matters the most.
In order to realize this, it is sufficient to think of devastating situations we are
familiar with, such as a boat hit by a rogue wave [123, 144], the large number of
deaths caused by a heat wave [164], a stock market collapse [176], or the damage
inflicted by failure events in combustion systems [166]. Many more examples can be
done: The overheating of a component in an electric circuit, the adaptive ability of a
bacterial colony based on very unlikely mutations that turn out crucially favorable,
etc.

In an age where climate change is inexorably and unpredictably impacting our
lives, we are becoming more and more accustomed to an Alpine climate with winters
without snow (like the current season at the beginning of 2019 in Northwest of Italy)
and with very hot summers. Over the past fourty years, some combination of these
factors has literally melted down most of those majestic glaciers that had inspired
the fantasies of Goethe and Dumas. To be convinced of this fact, it is enough
to look at the pictures that people—among which the author’s grandfather—used
to take of glaciers in the ’80s in places where nowadays one can see nothing but
rocks and grass. Those glaciers had been there for millennia, since the last ice age!
How could that happen so fast, considering that the average global temperature
has increased slightly more than half of a Celsius degree since 1970? The answer
is that climate is nonlinear and complex, a tiny average change can trigger domino
effects whose extent and magnitude are hard to predict, and “the consequence of
global warming is not the change in the averages but the overall increase of extreme
events” [132]. Examples of climatic extreme events include heat waves [168, 11],
droughts [120, 132], hurricanes and storms [179, 42].

Regardless of the field of application being fluid dynamics, climate, technology,
finance or biology, all of the events mentioned above have a fundamental feature in
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1 – Introduction

common: each of them is catastrophic. Despite the event being rare, an irreversible
damage is inflicted on the system at hand. Usually, as intuition would suggest,
an increasing extremeness goes along with an increasing rareness. At least on a
general level, this principle is an implication of the central limit theorem (CLT),
regulating the probability of deviations of the empirical mean from its expected
value. Though, the mentioned phenomena make it apparent that their frequency is
surely not sufficiently low to justify neglecting them. On the contrary, their abrupt
and brutal character and the tragic impact motivate a systematic treatment, in
order to understand better their likelihood and the underlying mechanisms. Indeed,
concerning the risk assessment, the ultimate goal is to make such catastrophic
occurrences predictable and, as a direct implication, to be able to minimize their
irreversible consequences. A lot of effort has been put in this direction in recent
years [170, 133, 166, 161, 194, 61], in the field of uncertainty quantification.

Indeed, we should say that not always the extreme events have a negative con-
notation. Looking at the problem from a different perspective, for instance one
might be interested in achieving a difficult task by acting on a system. In this
setting, being able to predict—and therefore reproduce—extreme realizations may
represent a problem of great relevance as well, closely related to the aims of optimal
control [189, 8].

1.2 Are the extreme events predictable?
Predicting the pathway to the extreme events in general is a hard problem, espe-
cially if the challenge is tackled naively. The straightforward approach consists of
sampling a great amount of realizations out of a given statistical prior—the precise
setup we have in mind will be defined in Chapter 2—, selecting the events that
fulfill some extremeness requirement, and finally processing the signal obtained via
a suitable averaging in order to extract useful information. Such blind procedure
is complicated and can be highly inefficient.

Fortunately, another quite intuitive observation comes to help here: when an
extreme rare realization of a random variable occurs, there are much fewer ways by
which it can occur compared to more likely, typical realizations. As an example, let
us think of the roll of two dice. If we wish to obtain 7 for the sum of the two dice, we
have 6 possibilities out of 36, while to obtain 12 we have only 1. This simple example
suggests the following idea: in order for a sample mean of a random variable (here
the mean of two independent realizations, i.e. the two dice) to reach a very unlikely
value, typically very large, all of the degrees of freedom must “conspire” together
in a specific way. More simply, all of the extreme events look alike and this yields
crucial implications for their predictability. Mathematically, this idea is effectively
formulated in terms of a saddle-point approximation (Laplace’s method), in a region
where the least unlikely scenario is so much more likely than all of the others, that it
dominates the statistics. The approximation works well if the number N of samples

2



1.2 – Are the extreme events predictable?

over which the empirical mean is computed becomes very large. Then, all of the
occurrencies of an extreme mean event are well approximated by the most likely
realization of that mean event. This concept has far-reaching consequences and, not
surprisingly, it has been widely exploited by physicists and rigorously formalized
by mathematicians during the last century. In particular, we are referring to the
concepts of instanton and of large deviations, which we are going to review in the
following.

One of the main reasons why these large deviations are so important to have an
entire theory named after them, is the fact that the CLT is restricted by its assump-
tions to the description of fluctuations comparable to the standard deviation of the
random variable of interest—at least, in general, when the probability distribution
of the latter is not itself a Gaussian. Therefore, a different theory is needed for
fluctuations significantly larger than the standard deviation. On the other hand,
as we have already suggested, the saddle-point approximations (mentioned above)
represent powerful tools by which the computations can be done in practice.

Hereafter, we shall restrict ourselves to physics for the sake of the argument, and
consider generic systems with a certain given temporal evolution law, which math-
ematically we think of as dynamical systems. It is known that the result of a mea-
surement on a physical system can be reduced to an ensemble average, i.e. a sample
mean over independent realizations, at equilibrium and in the thermodynamic limit.
This is the well known ergodic hypothesis dating back to Boltzmann, and thermo-
dynamic equilibrium is the setup where it is well justified [108, 26, 84, 35]. In fact,
there is an entire domain of mathematical physics devoted to such problem, named
ergodic theory. Notice that even the novel theories of fluctuations based on Markov
processes such as stochastic thermodynamics [172, 68] are derived at least under the
assumption of local thermodynamic equilibrium for the many degrees of freedom
of the heat bath. Out of the context of thermodynamic equilibrium, instead, it
can be misleading to assign physical meaning to ensemble averages [119]. Let us
consider a single toss of a coin, where we measure s = +1 if the outcome is “head”
and s = −1 if the outcome is “tail”—the two states of the system. Knowing that
the expected value of the measurement is 0 does not help much, as it is a very
different value from the possible outcomes of the event s: we have the right to say
that here the sample mean is not a physical observable depending on the state of
the system at a given moment. We should not forget that the sample mean of N
independent tosses, converging to 0 as N →∞ by the law of large numbers, in this
case represents the mean of N independent experiments. It is fair to study such
quantity, but keeping in mind that it is not describing the single-system behavior,
but a so-called ensemble behavior. On the other hand, when having a system of N
coins and studying the behavior of the observable N−1∑N

i=1 si, the sample mean
now is not just an ensemble property but a good physical observable well defined
on the system. We hope that these simple examples helped illustrating the limits
of a sample-mean approach that one should be aware of. For a clear presentation of

3



1 – Introduction

these subtle (and often overlooked) concepts, we refer the reader to Lebowitz [119].

One of the ways to go beyond sample means without giving up on the predictable
character of the rare events, is to rescale the random variable by a small parameter
ε, for instance interpreting it as a small random noise. If this is done, it is no
longer necessary to considerN independent realizations of the system, but Laplace’s
method will work for an observable defined on a single realization, ε−1 playing the
role of large parameter for the saddle point in place of N . Thus, we are now
restricting to situations where such a small-noise limit is meaningful, and with the
advantage that all of the single extreme realizations look like the most likely one.
And as we have pointed out, in general there is a conceptual difference between
results on the single system’s behavior (à la Boltzmann) and the mean behavior of
an ensemble of identical systems independent of each other (à la Gibbs) [119, 83].

A further step can be taken at this point, and this is precisely what the present
dissertation aims at. Such step consists of considering the large size itself of the
physical observable as the large parameter justifying the saddle-point approxima-
tion. Conceptually, this can often be thought of as the rescaling of a small-noise
problem, where the noise is small and the observable of typical size, to an equivalent
problem where the randomness parameters do not need to be small but one is inter-
ested in very large values of the observable. Sometimes, as we will show explicitly
via a suitable rescaling, there is a true equivalence between the two approaches.
In other situations, though, the relationship between the random parameters (or
noise) and the observable is so complicated that it is not possible (at least, in prac-
tice) to view the “extreme size” problem as a “small noise” problem. It is for such
cases that a method with the focus on the “extremeness” of the events becomes re-
ally important, as we will demonstrate in the following. Therefore, the saddle-point
approximation will work only for the extreme events, the size z playing itself the
role of large parameter. Moreover, also in this setup the results will hold for single
extreme realizations which are not just ensemble quantities. On the other hand,
being the large parameter the event size itself and not an external parameter, one
will have to pay the price that the obtained asymptotic result does not apply in
the range of the typical events.

Intentionally, so far we have kept the discussion on the level of mere ideas. These
will be made precise in the following. In particular, the approach to the extreme
events mentioned in the previous paragraph is the core of the dissertation. In order
to go deeper into the problem, in the next two sections we will review how all of the
ideas above have been developed in the context of physics, around the concept of
instanton, and in the context of mathematics, originating that branch of probability
known as large deviation theory.

4



1.2 – Are the extreme events predictable?

1.2.1 Instanton theory
Rare and extreme realizations of stochastic systems are known to be described by
instantons [165, 59, 171], saddle-point configurations of the action of the associated
stochastic field theory. Developed originally in the context of quantum chromo-
dynamics [171] starting from the late ’70s, later on instantons have been used
successfully as theoretical tool to predict limiting behavior of extreme events in dif-
ferent fields, e.g. for chemical reactions [59] or for turbulence in fluids [76, 90, 91].
At the core of the theory lies the realization that the evolution of any stochastic
system, be it quantum or classical, reduces to a well-defined (semi-classical) limit
in the presence of a smallness parameter. Concretely, the simultaneous evalua-
tion of all possible realizations of the system subject to a given constraint results
in a (classical or path-) integral, where the integrand contains an action functional
S(ψ). The dominating realization can then be obtained to leading order by approx-
imating the integral by a saddle-point approximation, δS(ψ)/δψ = 0. The critical
point ψ∗ of the action functional associated with a stochastic system is called the
instanton, and it represents the maximum likelihood realization of the stochastic
system subject to the given constraints.

One of the simplest prototypes of instanton computation is the quantum double
well potential, with two stable fixed points separated by a potential barrier. In a
classical deterministic system, a particle with total mechanical energy lower than
the potential energy barrier would have no way to cross the barrier and would
remain trapped indefinitely in one of the wells. On the other hand, a quantum
particle with energy smaller than the energy barrier does have a chance to cross
the barrier, via the well know quantum tunnelling effect. One simple way to see why
this happens is, in the WKB approximation, to compute the transition probability
from one well minimum (x = a) to the other (x = b). Using Feynman’s path
integrals, the expression of the transition probability from a to b writes

P(xf = b|x0 = a) =
∫
d[x(τ)]e−

S[x(τ)]
~ ,

S[x(τ)] =
∫ τb

τa

1
2

(
dx

dτ

)2

+ V (x)
 dτ , (1.1)

where V is the potential and τ = it is just a Wick rotation of the time variable
t. If we consider a potential V (x) = 1

4(x2 − 1)2, the action minimization via
δS[x(τ)]/δx = 0 yields

xinst(τ) = tanh
(

1√
2

(τ − τ0)
)
. (1.2)

Around the arbitrary jumping time τ0, such solution transitions quickly from one
classical minimum a = −1 to the other b = +1, tunnelling the barrier by “climb-
ing” uphill along the time-reversed classical downhill solution. The rapid transient
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character of the solution is self-explanatory for the origin of the name instanton.
Moreover, in (1.1) we see that as ~ → 0 (essence of the WKB approximation) the
saddle-point approximation

P(xf = b|x0 = a) ∝ e−
S[xinst(τ)]

~ (1.3)

becomes more and more accurate: The instanton solution dominates the transition
probability. Instanton calculus basically developed around this idea, focusing on
the minimum-action trajectory and the bundle of trajectories that fluctuate close
to the instanton trajectory.

For stochastic differential equations (SDEs), the concept is analogous. For in-
stance, the double-well problem above can be formulated as a stochastic problem
concerning a Brownian particle in a heat bath that determines the strength of the
noise. If the noise is small compared to the size of the potential barrier, the tran-
sition probability from a to b can be cast exactly in the form of Eq. (1.1), where
~ is replaced by the noise strength ε ∝ T (proportional to the temperature T ).
For SDEs, these ideas have found a rigorous justification in the Freidlin-Wentzell
theory of large deviations [80] (see next section).

1.2.2 Large deviation theory
The theory of large deviations concerns the exponential-order decay of the probabil-
ity tails of random variables, going beyond the results of the central-limit theorem
(CLT) that is restricted to fluctuations of the order of the standard deviation.
Historically, the first results are found in the ’30s by Scandinavians studying risk
analysis in the insurance market [67], and then by Cramér [47] who formalized his
theorem for sums of independent identically distributed (i.i.d.) random variables.
Sanov’s theorem [169], instead, was derived for distributions of i.i.d. random vari-
ables. It is in the late ’60s, then, that a rigorous formalization of large deviation
theory (LDT) started, from the work of Varadhan [192], Gärtner [86] and Ellis [66],
generalizing the results to Markov chains. The results on small random perturba-
tions of dynamical systems are mainly due to Freidlin and Wentzell [80]. We men-
tion some references covering most of the aspects of LDT [52, 50, 175, 65, 53, 79].
Nowadays, LDT has countless applications to the most diverse fields, and it is con-
sidered the underlying language of statistical mechanics [187]—notice that many
of the ideas in large deviations were anticipated by Boltzmann about 140 years
ago! [19] (see [64]).

Central to LDT is the large deviation principle (LDP). For the empirical mean
of i.i.d. random variables XN = 1

N

∑N
j=1 Yj, we wish to study the probability

P (a) ≡ P(XN > a). Such probability might be hard to obtain in general. If an
exponential approximation holds of the form

P (a) � e−NI(a), (1.4)

6



1.2 – Are the extreme events predictable?

—where the symbol “�” indicates logaritmic equivalence in the limit, more pre-
cisely: limN→∞

1
N

logP (a) = limN→∞−I(a)—we say that we are in the presence of
an LDP. Different forms of LDP can be found, like

P (a) � e−
1
ε
I(a) (1.5)

for P (a) ≡ P(X > a), where I(a) can be a function or a functional (called quasi-
potential) as in the Freidlin-Wentzell theory for Brownian motion [80], and ε is the
small strength of the noise—and ε → 0 the limit of the asymptotic equivalence.
Yet, we may have

P (a) � e−TI(a), (1.6)
with P (a) ≡ P(XT > a), XT being a time-averaged dynamical observable of a
Markov process in the T →∞ limit [188].

In each of the above cases, the LDP is not useful unless we have a way to access
the rate function I(a). The latter can be found straightforwardly by using asymp-
totic expansions like Stirling approximation, but such path is not always possible to
follow. Alternatively, there is a major result in LDT to this end called Gärtner-Ellis
theorem [86, 66], which expresses the rate function I(a) as the Legendre-Fenchel
transform of the scaled cumulant generating function S(λ),

I(a) = sup
λ

(λa− S(λ)), S(λ) ≡ lim
N→∞

N−1 logE
(
eNλYj

)
(1.7)

referring to the LDP (1.4), where S(λ) can be simply computed from the statistics
of the Yj’s. The result (1.7) of Gärtner-Ellis is of great relevance both to estab-
lish when an LDP holds and to practically compute the rate function. It is easy
to see how substantially it comes from concentration of an integral in the point
of maximum of the integrand, i.e. a saddle-point approximation, from which the
maximization of the Legendre-Fenchel transform comes about—see section III.C
of [187]. We see therefore how LDT is the framework capturing the common in-
tuitions about the extreme events that were discussed in section 1.1, actually also
representing the underlying mathematics of instantons. The concept of an optimal
point dominating the statistics, the dominating point [143] or instanton hereafter,
is really intimately connected with the LDP. We will expand on this concept in
chapter 2.
At this point, we can draw some general considerations that will be useful in the
following to relate our results to the context of the existing theory:

• For the LDP, in any of its forms (1.4), (1.5) or (1.6), we need a large pa-
rameter with a specific meaning. In the applications, this parameter for
instance can be the number of components of the system as in thermody-
namics [187], the reciprocal of the noise strength for random perturbations
of dynamical systems [92], or the time over which a time-averaged observ-
able is computed in Markov processes [188]. The large parameter limit is
the asymptotic regime in which the LDP equivalence is intended.

7
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• There are two independent scales in LDT: one is the scale aN by which we
need to divide the observable to make it intensive, i.e. XN = aN

−1∑N
j=1 Yj;

the other is the so-called speed of the LDP bN , P (a) � e−bN I(a). The two
scales are independent a-priori. The fact that in the example above we have
aN = bN = N is a coincidence for i.i.d. random variables, but it is not
necessary in general.

• The meaning of the LDP (1.4) is that the dominant behavior of the tail
probability P (a) is a decaying exponential in N (or bN to be more general),
with I(a) (at fixed a) a positive constant. Thus, with a simple passage we
can invert the relationship and extract such constant: I(a) = b−1

N logP (a) +
o(b−1

N ). Taking the limit, the result is a positive constant if the tail is actually
an exponential in bN , it is vanishing if the tail is sub-exponential and it is
infinite if it is super-exponential. Only the first case yields a meaningful
LDP.

• The Legendre-Fenchel transform is ubiquitous in LDT, and it provides the
main framework for the optimization problems from which the rate function
is computed.

• The rate function enjoys a number of important properties, some of which we
limit ourselves to mention—they can be found in any good review, e.g. [187]:
I(a) is generally convex, it is positive and it is zero at its minimum. The
point of minimum is where the probability concentrates as the limit is taken,
and this is the way the CLT is included within the more general LDT.

• LDT extends the estimate of the CLT to extreme fluctuations well beyond
the order of the standard deviation, where the CLT is supposed to hold—of
course, the extension of the estimate is in the weaker sense of logaritmic
equivalence proper of LDT.

1.2.3 A guiding example: multiscale modelling of the ocean
surface

In order to make this introductive discussion more concrete, we bring the exam-
ple of the ocean waves. This will motivate the need for a large deviation method
that can be applied to fluctuations of dynamical systems where none of the scaling
regimes in the previous section are meaningful. On the scale of the naval vessels,
the fluctuations of the ocean surface are the waves that we all are familiar with.
It is important to quantify how they can reach an extreme height, representing a
serious danger for navigation. Such large fluctuations of the water surface are single
events localized in space, so that an N → ∞ limit is not meaningful. Moreover,
they appear as fast transients, and a T → ∞ scenario cannot capture such occur-
rences. Lastly, by considering a small energy of the surrounding wave field, in a
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1.2 – Are the extreme events predictable?

similar fashion to the Freidlin-Wentzell ε→ 0, we would “kill” all of the nonlinear
hydrodynamic effects that may play a significant role in the energy localization
phenomena. Therefore, if we wish to use LDT, there is no large parameter here
but the fluctuation size itself.

In the remainder of the section, we review the state of the art of ocean-wave
modelling, by tracing an interesting parallel with nonequilibrium thermodynamics.
This will help understanding the overlap of different levels of description at the
different scales, from the thousands of kilometers of the atmospheric forcing down
to the few meters of width of an oil rig.

The macroscopic scale

We start from the macroscopic scale, where the description is analogous to the con-
tinuum description of fluids where some local macroscopic fields (mass and energy
densities, momentum, temperature) flow and evolve with given deterministic laws
(PDE’s such as the Navier Stokes equations). For the ocean surface, such descrip-
tion involves the evolution of the wave action (playing a similar role to the mass
density), momentum and energy fields, whose integrals are the conserved quantities
of the system1. The mass is proportional to H2

s , where Hs is the significant wave
height quantifying the roughness of the sea. A dimensional estimate of the energy
is given by ω0H

2
s . Fig. 1.1 is the output of the ECMWF global model, representing

the macroscopic state of the Atlantic Ocean at a given moment. The flag at a
specific point indicates Hs = 6.8 m and a spectral peak with period T0 = 10 s,
i.e. ω0 = 2π/T0 ' 0.63 s−1 at that point, that is, an equivalent representation of
the macroscopic fields. The color map, instead, represents the spatial distribution
of Hs = Hs(x, y), appearing as a smooth field. The forcing by the winds is where
the ocean surface takes most of its energy from, on the large scales of hundreds of
kilometers of the atmospheric perturbations. The counterpart of the hydrodynamic
equations (PDE’s) for the space-time evolution of mass and energy are not known.
Nonetheless, the evolution of these quantities is implemented in the global mod-
els of weather forecast such as ECMWF or Wavewatch, where the ocean surface
is coupled with the atmosphere dynamics and with the oceanic currents. This is
done by using the more detailed description of wave turbulence (WT) involving a
mesoscopic transport equation analogous to the Boltzmann equation.

The mesoscopic scale

Behind the macroscopic representation in Fig. 1.1 there is an assumption of lo-
cal thermodynamic equilibrium (LTE) for the mesoscale level, in analogy to the
LTE assumption that allows to define a continuous density to describe a gas that

1For simplicity, here we restrict the discussion to action and energy
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Figure 1.1. Global-model prediction of the state of the ocean, from the
website windy.com.

Figure 1.2. Pattern of surface elevation at the platform Aqua Alta in the Adriatic Sea.
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1.2 – Are the extreme events predictable?

is microscopically discontinuous. Without such assumption, it would not be pos-
sible to define a macroscopic deterministic density at all. The resolution of the
ECMWF WAM model is 13 km, meaning that in Fig. 1.1 anything happening at
smaller scales is coarse grained and averaged out resulting in a collective informa-
tion representing the 13 km box. At the mesoscale level, within each box there
is a stochastic “bath” of waves that interact nonlinearly exchanging energy on the
nonlinear timescales. Such interactions are captured by the collision integral of the
wave kinetic equation (WKE), in analogy to how the Boltzmann equation describes
the molecular interactions in statistical mechanics. The quantity evolving with the
WKE (playing the part of the single-particle density) is the spectrum n(k), which
is the wave-action density per frequency mode. The spectral energy density e(k)
relates to the wave-action density as e(k) = w(k)n(k). If we suppose that the at-
mospheric forcing is constant on a box, the WKE reaches a nonequilibrium steady
state called the Kolmogorov-Zakharov (KZ) spectrum—anH−theorem predicts the
convergence.2 The KZ spectrum is a (turbulent) nonequilibrium state since there
is a net energy flow from the large scales of the forcing towards the small scales of
dissipation, where the latter is mostly due to wave breaking. In absence of forcing,
a true equilibrium state is attained, the Rayleigh-Jeans state—and in such case the
H−theorem is analogous to the BoltzmannH−theorem predicting relaxation to the
Maxwell-Boltzmann distribution. Thus, the spectrum is an averaged quantity over
the whole box, describing the distribution of energy among the modes, analogously
to how the Maxwell-Boltzmann distribution describes the velocity distribution of
the molecular constituents at equilibrium in a large box. Clearly, the mesoscopic
box must be very large (so as the observation time) in order for the law of large
numbers to make the empirical spectrum converge to a deterministic limit. The
WKE is the main object of the WT theory, and the resonant interactions within
the collision integral (4-wave resonances for surface gravity waves) determine the
spectral transfers which are included in the computations of the global models.
For a good continuum description as in Fig. 1.1, it is fundamental that the macro
and meso scales be separated: The mesoscopic box is large enough that the WT
formalism holds thanks to the law of large numbers, but also small enough that
the atmospheric forcing and the statistics of the wave field can be considered ho-
mogeneous over the box. To give an idea of such scale separation, under each
anticyclone forcing the Atlantic in Fig. 1.1, of diameter on the order of a thousand
of kilometers, there are hundreds of mesoscale boxes of side 13 km!

Now, we said that the mesoscopic box is characterized by random waves. But
where does the randomness come from, if the underlying “microscopic” equations
(describing the wave surface) are deterministic? There are at least two main sources

2The flux (turbulence cascade) is among the Fourier modes. Instead, the LTE assumption that
was mentioned is spatial, assuming that the statistics is homogeneous inside the box and that the
net fluxes at the boundaries of the box are small compared to the fluctuations inside.
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of stochasticity: one is due to our poor knowledge of the initial conditions, there-
fore modelling the uncertainty coming from “ignorance” of the true state—epistemic
uncertainty, in the language of philosophy of science; the other is due to the dy-
namical properties of dispersion and to the internal and external interactions of a
large number of degrees of freedom, making the system chaotic or at least with
good mixing properties—called ontic uncertainty by philosophers of science. This
justifies an ergodic hypothesis analogous to Boltzmann’s, but rather in the practical
weaker sense of Khinchin [108, 35], which allows for a full use of ensemble averages.
Such passages will be explained further in the WT derivation of section 4.2, when
the kinetic limit (large box and weak nonlinearity) is taken. Whether the prob-
ability can be interpreted in an epistemic or ontic sense, or both, does not make
a difference in the math, and for our concerns also to any practical purpose other
than an interpretation of results. In the end, once the bridge law of ergodicity is
accepted, the epistemic aspect of probability can be reasonably considered to be-
come ontic as well, in the same way that Gibbs ensemble description is equivalent
to Boltzmann’s macrostate at thermodynamic equilibrium. Indeed, the idealized
scale separation we are talking about are not even close to the “astronomic separa-
tion” of the molecular and the macroscopic scales of thermodynamics, of the order
of Avogadro’s number. Still, if one is to treat the macroscopic scale as a continuum,
it is important to have clear in mind what type of assumptions are needed to that
end. The “thumb rule” for LTE, i.e. a proper mesoscopic-box size allowing for the
definition of a deterministic density, is that the fluctuations at the boundary of the
box be negligible compared to the averages of what is inside the box. If this is
fulfilled, then the finite size effects will be negligible, and the macroscopic density
will be independent of the actual size and shape of the box itself.

The “microscopic” (human) scale

Finally, we come to the scale of the actual waves encountered on the ocean surface.
For waves like in Fig. 1.1, where the flag is pointing we have a carrier period of 10
s. For waves in deep water, the dispersion relation is ω(k) =

√
gk, where g is the

gravity acceleration. Using this information and the definition of the wave length
λ = 2π/k, we have that the carrier wave has a wave length of about 150 m. This
means that within a mesoscopic box there are hundreds of waves. As required, the
mesoscopic box is large compared to the dimensions of the single waves: a second
sharp scale separation is present between the mesoscale and the human scale. In
Fig. 1.2 we show the wave patterns on the small scale, recorded in the surround-
ings of a platform in the Adriatic Sea. On such scales, the governing equations are
deterministic, and if one wishes to have any predictive power against the formation
of extreme wave fronts, it is necessary to deal with the deterministic equations of
motion. This is true especially if one wants to quantify single fluctuations and not
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just average behaviors, i.e. if one wants to switch from a CLT to a LDT frame-
work able to account reliably for the extreme excursions. Whatever the method
employed, it will need to account for the uncertainty coming from the stochastic
bath of the mesoscale, as well as the deterministic faster dynamics governing at
the small scale. We add that in principle the fluctuations can also be studied in-
ferring information from the mesoscopic stochastic theory to obtain predictions on
the small scale fluctuations. This procedure was followed in the past leading to a
theory named quasi-determinism. Forcingly, by following this path the nonlinear
dynamical effects are neglected and the CLT Gaussianity of WT is enforced onto
the small-scale fluctuations.

Most of the work that follows is oriented to devise an LDT method allowing us
to bridge the WT statistical prior and the governing deterministic dynamics, and
then to apply it to the problem of the rogue waves at sea. Actually, the results
are quite striking: as shown in Chapter 4 the method will turn out successfull at
reproducing the extreme waves in numerical experiments, proving that indeed a
LDT regime is attained, and subsequently the results will be confirmed for real
extreme water waves in a wave flume experiment.

1.3 Outline
Theoretical framework

The rest of the manuscript is organized as follows:
In chapter 2 the theoretical aspects of the method are worked out, starting from

an introductive paragraph 2.1. The main result is the large deviation principle
presented in the form of a theorem in section 2.2.1. It is established under which
conditions the extreme events occur in a predictable way, as the minimizer of the
LDT action functional.

In section 2.2.2 a simple illustration for the particular case of a Gaussian measure
and a linear observable is used to familiarize with the method. It will be helpful
to discuss how our setup relates to LDT. In this simple case a rescaling by a
small parameter ε shows that our approach reduces to Gärtner-Ellis theorem—at
least, in the tails—in particular cases where the speed of the LDP is known. In
general, though, our main result is an unusual LDP where the speed is unknown
and implicitly contained in the rate function.

Section 2.2.3 is devoted to argue why our result is indeed in the realm of LDT,
and how it is oriented to the study of the extreme events in dynamical systems. Im-
portantly, as will be clear in the Applications Part, our method is designed to inves-
tigate extreme events for observables depending on complicated, high-dimensional,
nonlinear dynamics which would be difficult or even impossible to study by means
of other conventional LDT tools. For clarity, we present another example in sec-
tion 2.2.4, from which we gain an instructive insight on the conceptual difference
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from Gärtner-Ellis.

In chapter 3 it is shown how the minimization can be numerically performed in
an efficient way using tools from optimal control. Two alternative routes can be
followed to compute the gradient of the LDT action, either via the direct method
(section 3.1.1) involving the Jacobian matrix (sensitivity of the field with respect
to the random parameters), or via the adjoint method (section 3.1.2). As discussed
in section 3.2, the gradient computation is necessary at each step of an outer loop
performing a gradient descent in the LDT action landscape.

The findings of chapter 2 are illustrated on various physical applications in the
Applications Part (chapters 4 through 6).

Applications

By itself, chapter 4 represents an all-round study of the extreme events in the
context of surface gravity waves.

Section 4.1 contains a brief review of the derivation of the Zakharov equation in
the limit of small nonlinearity, making the connection with the 4-wave turbulence
theory, and the subsequent derivation of the nonlinear Schrödinger equation (NLSE)
in the narrow-band limit—both of which will be used in the following sections.

Starting from the setup of wave turbulence (WT), in section 4.2 we present
an original derivation of the leading-order equation for the multimode PDF for
4-wave resonant systems—the class in which surface gravity waves belong. The
technique employed is based on the Feynman-Wyld diagrams. With the help of
numerics, it is explored how intermittent phenomena and non-Gaussianity could
possibly arise in the WT framework. We find quite convincing evidence that de-
viations from Gaussianity cannot be retrieved within the mean-field formalism of
WT, even when forcing and dissipation are present. Indeed, WT remains the ef-
fective theory describing the energetic transfers within the wave field, determining
the Kolmogorov-Zakharov stationary spectrum.

In section 4.3, we start from the Gaussian statistical prior of WT, with a spec-
trum given by a parametrization often used by oceanographers—but which could
in principle be the stationary spectrum of WT—and we use such prior for the LDT
method, using the modified nonlinear Schrödinger equation (MNLS) which governs
the dynamics on the fast timescale. Then, with a setup in analogy with Bayesian
inference, the appearance of rogue waves in the modelled 1D deep sea is investi-
gated. The rogue wave precursors are wave patterns of regular height but with
a very specific shape that is identified explicitly, thereby potentially allowing for
early detection.

In section 4.4 we present an experimental study performed in a water tank, where
analogous results are confirmed for real-world extreme waves on the water surface.
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This work represents the first experimental evidence of hydrodynamic instantons.
Moreover, our theory yields a unified picture of two existing theories of extreme
waves: in the linear limit, the quasi-determinism of Lindgren-Boccotti, and in the
highly nonlinear limit, the gradient-catastrophe of Tovbis-Bertola. In the two lim-
its, the instantons reduce to the existing predictions of the limiting theories, and
they describe accurately the extreme events in the in-between regimes.

In chapter 5, the LDT method is applied to the nonlinear Schrödinger equation
(NLS) with random initial conditions for nonlinear laser waves in fiber optics, in
the context of what is known as integrable turbulence. We study the problem of the
onset of rogue waves out of a bath of random waves taken as initial condition for
NLS, and we discuss possible implications that our results may have.

The example of a rod with random elasticity pulled by a time-dependent force
is treated in chapter 6. The LDP can be used here to infer the probability of atyp-
ically large extensions of the rod. Such example serves as a nontrivial application
to nonequilibrium statistical mechanics, and it exemplifies a nice problem of search
of the optimal protocol. Moreover, in this chapter the numerical optimization is
carried out with the adjoint method.

Closing remarks are found in chapter 7, trying to clarify some concepts in light
of the applications presented, and suggesting possible future directions both from
the theoretical and the applicative perspectives.
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Theoretical Framework
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Chapter 2

Large deviation method for
extreme events

Part of the material in this chapter was published in

G. Dematteis, T. Grafke, and E. Vanden-Eijnden. “Extreme event quantification in
dynamical systems with random components”. https://arxiv.org/abs/1808.10764, 2018

(to appear in “SIAM/ASA Journal of Uncertainty Quantification”).

2.1 Probabilistic setup
The governing equations we use to model complex phenomena are often approx-
imate. For example, we may not know exactly the initial and/or boundary con-
ditions necessary to integrate these equations. Other parameters entering these
equations can also be uncertain, either because we are not sure of the model itself
or because these parameters may vary from situations to situations in a way that is
difficult to predict in detail. The question then becomes whether we can quantify
how our imperfect knowledge of the system’s parameters impact its behavior. This
question lends itself naturally to a probabilistic formulation. Consider for example
the case of a dynamical system whose state at time t can be specified by some u(t)
which can be a vector or a field and satisfies

∂tu = b(u, ϑ), u(t = 0) = u0(ϑ). (2.1)

Here b(u, ϑ) is a given vector field and ϑ denotes the set of parameters we are
uncertain of. Assuming that these parameters take value in some set Ω, which
can again be finite or infinite dimensional, it is then natural to equip Ω with a
probability measure µ to quantify our uncertainty. This makes ϑ random, and
therefore the solution to (2.1) becomes a stochastic process. Denoting it by u(·, ϑ),
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2 – Large deviation method for extreme events

we can ask questions about the statistics of this process. For example, if f(u) is a
scalar valued observable, we can define

PT (z) ≡ P (f(u(T, ϑ)) ≥ z) , z ∈ R , (2.2)

where P denotes the probability over µ and T > 0 is some observation time. The
probability (2.2) is useful e.g. in the context of certification problem where, given
z ∈ R and ε > 0 (typically z large and ε small), we wish to verify that PT (z) ≤ ε.
Other quantities of interest include

P
(∫ T

0
f(u(t, ϑ))dt ≥ z

)
, P

(
sup

0≤t≤T
f(u(t, ϑ)) ≥ z

)
, etc. (2.3)

The numerical estimation of (2.2) or (2.3) can be performed by Monte Carlo
sampling methods: generate N independent realizations of ϑ, for each evaluate
f(u(T, ϑ)) via integration of (2.1), and compute the fraction of these realizations
for which f(u(T, ϑ)) ≥ z. As N → ∞, this fraction will converge to PT (z). This
direct approach is not effective when PT (z) is small, however, since the relative
error of the estimator just described is

√
(1− PT (z))/(NPT (z)) ∼ 1/

√
NPT (z).

This means that in order to get an estimate accurate to order δ � 1, we need
to use N = O

(
δ−2P−1

T (z)
)
samples, which can become prohibitively expensive as

PT (z) gets smaller. This is problematic since it excludes from consideration events
that are rare but may nonetheless have dramatic consequences. Similar issues arise
if we replace (2.1) by some time independent equation like

0 = b(u, ϑ), (2.4)

where b(·, ϑ) is some function of u and possibly its derivatives and (2.4) is supple-
mented with boundary conditions that may also depend on the random parame-
ter ϑ. The solution to (2.4) defines a complicated map u(ϑ), and given a scalar
valued observable f(u), the estimation of

P (f(u(ϑ)) ≥ z) , z ∈ R (2.5)

will again be challenging when this probability is small, i.e. when the event f(u(ϑ)) ≥
z is rare.

In these situations alternative methods such as those proposed e.g. in [88, 106,
27, 87, 181, 191, 77, 164] must be used to estimate (2.2), (2.3), or (2.5). The
approach we introduce in this chapter builds on earlier results found in [49] and
uses large deviation theory (LDT) [50, 192] as a tool: we show that, if in (2.2)
PT (z)→ 0 as z →∞, then under some additional assumptions we have

PT (z) � exp
(
− min

θ∈Ω(z)
I(θ)

)
where Ω(z) = {θ : f(u(T, θ)) ≥ z} ⊆ Ω.

(2.6)
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Here � indicates that the ratio of logarithms of both sides tends to 1 as z → ∞
and we defined

I(θ) = max
η

(〈η, θ〉 − S(η)) , (2.7)

where 〈·, ·〉 is a suitable inner product on Ω and S(η) is the cumulant generating
function of ϑ:

S(η) = logEe〈η,ϑ〉 = log
∫
Ω
e〈η,θ〉dµ(θ) . (2.8)

We will also show that the minimizer of I(θ) in Ω(z), i.e.

θ?(z) = argmin
θ∈Ω(z)

I(θ) , (2.9)

is the point of maximum likelihood in Ω(z). The most likely way the event
{f(u(T, ϑ)) ≥ z} occurs is when ϑ = θ?(z). Similar estimates hold for (2.3) and (2.5)
upon straightforward redefinition of the set Ω(z) upon which the optimization is
performed.

Establishing the large deviation principle (LDP) in (2.6) is one of the objectives
of this chapter. As we will see in Sec. 2.2.1, this can be done by proving that θ?(z)
is a dominating point in Ω(z), building on results derived e.g. in [20, 143, 23, 101]
that provide us with a framework to justify the saddle-point approximations often
used in physics [105, 82]. Eq. (2.6) is a somewhat unusual LDP however because
there is no small (or large) parameter associated to the random variable ϑ: rather
we play with the variable z being large. More precisely, instead of scaling ϑ so
that events with a finite z become rare, we keep ϑ as is and look at rare events
that occur in the tail of the distribution when z � 1. As a result, the standard
approach developed in [20, 143, 101] must be adapted. Of course, both viewpoints
are equivalent up to some appropriate rescaling of the variables ϑ and z, but this
rescaling involves the so-called speed of the LDP, which is unknown to us a priori.
The formulation we adopt can be viewed as a way to estimate this speed.

When (2.6) holds, we can reduce the evaluation of PT (z) to the minimization
problem in (2.9), and a second objective here is to design numerical tools to perform
this minimization. As we will see in Sec. 3, this can be done by adapting techniques
used in optimal control [189, 21].

2.2 Large deviation principle

2.2.1 Formulation of the theorem
Here we establish (2.6), using background material that can be e.g. found in [20,
143, 101]. For simplicity, we will restrict ourselves to situations where ϑ is finite
dimensional, i.e. we assume that ϑ ∈ Ω ⊆ RM with M ∈ N. In this case we can
also assume that the inner product 〈·, ·〉 appearing in (2.7) and (2.8) is the standard
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2 – Large deviation method for extreme events

Euclidean inner product on RM . Under appropriate assumptions, the results below
will hold also in the infinite-dimensional set-up, when ϑ is a random field, but the
arguments to establish them will require generalization (see e.g. [62, 112] for results
in infinite dimension). To treat the problems in (2.2), (2.3) and (2.5) on the same
footing we also define the map F : Ω → R via

F (θ) = f(u(T, θ)), for (2.2)

F (θ) =
∫ T

0
f(u(T, θ)) dt, or F (θ) = sup

0≤t≤T
f(u(T, θ)), for (2.3)

F (θ) = f(u(θ)) for (2.5)

(2.10)

so that we can recast these probabilities into

P (z) = P(F (ϑ) ≥ z) = µ(Ω(z)) where Ω(z) = {θ : F (θ) ≥ z} . (2.11)

To proceed, we start by making two assumptions:

Assumption 1 The map F is continuously differentiable, and such that |∇F (θ)| ≥
K > 0 for all θ ∈ Ω.

Assumption 2 The measure µ is such that (this is (2.8))

S(η) = logEe〈η,ϑ〉 = log
∫
Ω
e〈η,θ〉dµ(θ) (2.12)

exists for all η ∈ RM and defines a differentiable function S : RM → R.

Ultimately, Assumption 1 is about the specifics of the governing equation in (2.1)
or (2.4) and the observable f : since the field u is typically a complicated function
of ϑ, establishing the conditions under which this assumption holds will have to be
done on a case-by-case basis. Note that it guarantees that the set Ω(z) is simply
connected with a boundary that is C1 for all z ∈ R, with inward pointing unit
normal at θ(z) ∈ ∂Ω(z) given by n̂(z) = ∇F (θ(z))/|∇F (θ(z))|. We could relax the
constraint |∇F (θ)| > 0, and allow e.g. for the sets Ω(z) to have several connected
components (the number of which could depend on z), but this requires to modify
the argument below. Assumption 2 allows us to introduce the tilted measure

dµη(θ) = e〈η,θ〉dµ(θ)∫
Ω e
〈η,θ〉dµ(θ) = e〈η,θ〉−S(η)dµ(θ) . (2.13)

It is easy to see that the mean of µη is shifted compared to that of µ. A simple
calculation shows that ∫

Ω
θ dµη(θ) = ∇S(η) , (2.14)
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2.2 – Large deviation principle

and this will allow us to pick η such that the mean of µη is precisely at the point
minimizing I(θ) in Ω(z). Note that

Ω(z + δ) ⊆ Ω(z) ∀z ∈ R, δ ≥ 0 , (2.15)

and to establish (2.6) we will find conditions such that (i) µ(Ω(z)) decreases fast
with z and (ii) this probability is dominated by a small region around a single point
on ∂Ω(z). This will require us to make additional assumptions on the geometry of
Ω(z) that we discuss next in connection with properties of the rate function I(θ)
defined in (2.7).

Letting
θ?(z) = argmin

θ∈Ω(z)
I(θ) , (2.16)

we first make:

Assumption 3 There exists a finite z0 such that, ∀z ≥ z0, θ? : [z0,∞) → Ω is
continuously differentiable and I(θ?(·)) is strictly increasing with z with

I(θ?(z))→∞ and |∇I(θ?(z))| ≥ K > 0 as z →∞. (2.17)

This assumption implies that θ?(z) ∈ ∂Ω(z) for z > z0, i.e. we can replace (2.16)
with

θ?(z) = argmin
θ∈∂Ω(z)

I(θ) . (2.18)

The Euler Lagrange equation for (2.18) is

∇I(θ?(z)) = λ∇F (θ?(z)) (2.19)

for some Lagrange multiplier λ. Since by definition both S and I are convex
functions, by the involution property of the Legendre transform we have

S(η) = max
θ

(〈η, θ〉 − I(θ)) , (2.20)

and this maximum is achieved at the solution of

η = ∇I(θ) (2.21)

in θ. Therefore if we define η?(z) via

η?(z) = ∇I(θ?(z)) (2.22)

the mean of µη?(z) is θ?(z). From (2.20) this also implies that

〈η?(z), θ?(z)〉 − S(η?(z)) = I(θ?(z)) , (2.23)
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2 – Large deviation method for extreme events

which gives the following exact representation formula for µ(Ω(z))

µ(Ω(z)) =
∫
Ω(z)

eS(η?(z))−〈η?(z),θ〉dµη?(z)(θ)

= e−I(θ?(z))
∫
Ω(z)

e−〈η
?(z),(θ−θ?(z))〉dµη?(z)(θ) .

(2.24)

To proceed further we need to make some assumptions about Ω(z). First:

Assumption 4 For all z ≥ z0, the set Ω(z) is contained in the half-space whose
boundary is tangent to Ω(z) at θ = θ?(z), i.e.

Ω(z) ⊆ H(z) = {θ : 〈n̂?(z), θ − θ?(z)〉 ≥ 0} , (2.25)

where n̂?(z) = ∇F (θ?(z))/|∇F (θ?(z))| denotes the inward pointing unit normal to
∂Ω(z) at θ?(z).

In the terminology of Ney [143], it means that θ?(z) is a dominating point in Ω(z).
If we combine (2.19) and (2.22) we deduce that

η?(z)
|η?(z)| = ∇F (θ?(z))

|∇F (θ?(z))| = n̂?(z) (2.26)

and as a result we can use Fubini’s theorem to express (2.24) as

µ(Ω(z)) = e−I(θ?(z))
∫ ∞

0
e−|η

?(z)|s|η?(z)|G(z, s) ds . (2.27)

Here we defined
G(z, s) = µη?(z) (Ω(z) \ H(z, s)) , (2.28)

with
H(z, s) = {θ : 〈n̂?(z), (θ − θ?(z)− n̂?(z)s)〉 ≥ 0} . (2.29)

Note that in (2.27) the lower limit of the integral is at s = 0 by Assumption 4.
Since by definition we have

∀s > 0 : G(z, s) ∈ (0,1), ∀s, s′ > 0, s′ > s : G(z, s′) > G(z, s), lim
s→0+

G(z, s) = 0 ,
(2.30)

from (2.27) we obtain the upper bound

µ(Ω(z)) ≤ e−I(θ?(z))
∫ ∞

0
e−|η

?(z)|s|η?(z)|ds = e−I(θ?(z)) , (2.31)

which implies
log µ(Ω(z))
I(θ?(z)) ≤ −1 . (2.32)
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2.2 – Large deviation principle

To get a matching lower bound notice that for all s1 > 0 we have

µ(Ω(z)) ≥ e−I(θ?(z))
∫ s1

0
e−|η

?(z)|s|η?(z)|G(z, s)ds

≥ e−I(θ?(z))G(z, s1)
(
1− e−|η?(z)|s1

)
≥ e−I(θ?(z))G(z, s1) |η?(z)|s1

1 + |η?(z)|s1
.

(2.33)

Therefore if we make:

Assumption 5 There exists s1 > 0 such that

lim
z→∞

logG(z, s1)
I(θ?(z)) = 0, (2.34)

for this s1 we have (using also Assumption 3 that guarantees that |η?(z)| ≥ K > 0)

log µ(Ω(z))
I(θ?(z)) ≥ −1 + logG(z, s1) + log (|η?(z)|s1)− log (1 + |η?(z)|s1)

I(θ?(z))

= −1 +
logG(z, s1)− log

(
1 + |η?(z)|−1s−1

1

)
I(θ?(z))

→ −1 as z →∞ .

(2.35)

Combining (2.32) and (2.35) we finally deduce

Theorem 1 (Large deviation principle) Under Assumptions 1–5, the follow-
ing result holds:

lim
z→∞

logP (z)
I(θ?(z)) = lim

z→∞

log µ(Ω(z))
I(θ?(z)) = −1. (2.36)

Note that (2.36) is just a rephrasing of (2.6).
It is useful to comment on the assumptions on Ω(z) that lead to Theorem 1.

Assumption 3 states that the event {F (ϑ) ≥ z} becomes rare as z → ∞, which is
clearly necessary for an LDP to apply. Assumption 4 guarantees that all regions in
Ω(z) remain much more unlikely than θ?(z): this assumption can be relaxed, but at
the price of having to analyze more carefully how I(θ) behaves on ∂Ω(z) and exclude
that regions with lower likelihood near this boundary accumulate and eventually
dominate the probability. Finally, Assumption 5 is about the shape of the set Ω(z)
near θ?(z). Since the mean of µη?(z) is θ?(z), we know that this measure must
have mass in a region around θ?(z) but we need to make sure that this region has
sufficient overlap with Ω(z). For example, if for each z ≥ z0 we can insert in Ω(z) a
set that contains θ?(z) on its boundary and is such that its volume remains finite as
z →∞, Assumption 5 will automatically hold. On the other hand, this assumption
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2 – Large deviation method for extreme events

could fail for example if Ω(z) becomes increasingly thin. More discussion about
this kind of geometric assumptions can be found e.g. in [100, 112].

It is also interesting to note that (2.27) offers a way to derive asymptotic expan-
sions for µ(Ω(z)) more refined than (2.36) if we assume that: (i) |η?(z)| grows with
z, i.e. we supplement (2.17) with

|η?(z)| = |∇I(θ?(z))| → ∞ as z →∞ ; (2.37)

and (ii) G(z, s) has a specific behavior near s = 0 as z →∞. For example, suppose
that there is a C > 0 such that for all u ≥ 0

G(z, |η?(z)|−1u) ∼ C|η?(z)|−αuα with α > 0 as z, |η?(z)| → ∞ , (2.38)

where f(z) ∼ g(z) indicates that limz→∞ f(z)/g(z) = 1. Then we have

P (z) = µ(Ω(z)) = e−I(θ?(z))
∫ ∞

0
e−uG

(
z, |η?(z)|−1u

)
du

∼ e−I(θ?(z))C|η?(z)|−α
∫ ∞

0
e−uuαdu

= CΓ (α + 1)|η?(z)|−αe−I(θ?(z)) .

(2.39)

It is interesting to note that both (2.27) and (2.39) are consistent with ϑ|Ω(z)
(outcome of the event conditioned on F (ϑ) ≥ z) having fluctuations of order
O(|η?(z)|−1) away from θ?(z) in the direction parallel to η?(z). Perpendicular to
η?(z) the fluctuations remain of order O(1) even as z →∞, but integrating in these
perpendicular directions only gives a sub-exponential correction to µ(Ω(z)). This
correction depends on the geometry of the hypersurface ∂Ω(z) (in particular on its
curvature) near θ?(z). This is what is accounted for in (2.39), and this picture will
be confirmed in the numerical examples below.

2.2.2 Illustration: Gaussian measure with linear observable
Let us illustrate the LDT optimization in the simple case of a Gaussian random
variable ϑ with mean 0 and covariance Id, taking values θ ∈ RN . If we consider a
linear observable

F (θ) = 〈b, θ〉, b ∈ RN , (2.40)

we have
P(〈b, ϑ〉 ≥ z) = (2π)−N/2

∫
〈b,θ〉≥z

exp
(
−1

2 |θ|
2
)
dθ , (2.41)

and a direct calculation shows that

P(〈b, θ〉 ≥ z) = 1
2 erfc

(
z√
2|b|

)
∼ (2π)−1/2|b|z−1 exp

(
−1

2 |b|
−2z2

)
as z →∞ .

(2.42)
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Figure 2.1. Representation of the concentration of the extreme realizations in
the support of the parameters ϑ, in the case of N = 2, for the linear observable
in (2.41) with b = (

√
3

2 ,
1
2), and I(θ) from (2.43). Both figures represent about 2000

points sampled from the conditional event F (ϑ) ≥ z, and in the bottom figure the
event size is twice the event size of the figure on top. We notice that as the size
doubles, the standard deviation of the fluctuations in the parallel direction shrinks
of a factor 2, i.e. the ratio of the lengths of η?(z), according to the prediction be-
low (2.39). It is in the direction of η?(z) that the extreme events collapse onto the
most likely realization θ?(z). Instead, in the perpendicular directions, tangent to
the iso-surface of probability, the fluctuations remain of order O(1). Such degen-
eration does not contribute to the exponential leading order of the probability, but
just to a sub-exponential prefactor estimated in (2.39) via geometric arguments.
The saddle-point approximation works as the events become extreme because the
projection of the fluctuations ϑ− θ?(z) in the direction of η?(z) tends to zero.
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2 – Large deviation method for extreme events

Let us check that the LDP derived above is consistent with this result. Here

I(θ) = 1
2 |θ|

2, S(η) = 1
2 |η|

2. (2.43)

If we minimize I(θ) subject to 〈θ, b〉 ≥ z, we deduce

θ?(z) = z|b|−2b and I(θ?(z)) = 1
2 |b|

−2z2. (2.44)

Comparing this result with (2.42) we see that it is consistent with the prediction
in (2.36).

We can also test what the theory can say beyond the log-asymptotic estimate.
Here, the planar condition corresponding to Ω(z) = H(z) is exactly fulfilled by
linearity of F (θ) = 〈b, θ〉. We need to estimate G(z, |η?(z)|−1) as z → ∞. From
(2.22) and (2.23) we have that

η?(z) = ∇I(θ?(z)) = θ?(z) = z|b|−2b, S(η?(z)) = 1
2z

2|b|−2 , (2.45)

and the tilted measure (2.13) at η = η?(z) reads

dµη?(z)(θ) = (2π)−N/2 exp
(
−1

2 |θ|
2 + zb|b|−2〈b, θ〉 − 1

2z
2|b|−2

)
dθ . (2.46)

Using (2.45), we obtain

G(z, s) =
∫
z≤〈b,θ〉≤z+s

dµη?(z)(θ)

= (2π)−1/2
∫ s

0
exp

(
−1

2u
2
)
du

= 1
2 erf

(
1
2

√
2s
)
.

(2.47)

As a result

G(z, |η?(z)|−1s) ∼ (2π)−1/2|η?(z)|−1s = (2π)−1/2|b|sz−1 as z →∞. (2.48)

Comparing with (2.38), we see that here C = (2π)−1/2 and α = 1. Therefore (2.39)
agrees with (2.42) as expected.

2.2.3 Relationship with Gärtner-Ellis
The example above can be interpreted as a usual LDP by introducing a rescaling
by a small parameter ε. The meaning is either that the variance of the random
parameters is very small, ϑ → εϑ (which is conceptually close to the Freidlin-
Wentzell approach), or equivalently that the size of the events we look at is very
big z → ε−1z. By simply introducing the latter substitution, we can interpret (2.42)
as

P
(
z
ε

)
� exp

(
−ε−2 z2

2|b|2
)

as ε→ 0 , (2.49)
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2.2 – Large deviation principle

where the limit is now taken for ε. That is, ε−2 is the so-called speed of the LDP,
i.e. the correct scale to use for the limit commonly defining the (properly scaled)
rate function:

I(z) ≡ − lim
ε→0

ε2 logP ( z
ε
) = z2

2|b|2 . (2.50)

Now, we realize that instead of (2.36) we could have used Gärtner-Ellis theorem,
obtaining the equivalent result (2.49) for the probability tails from the Legendre-
Fenchel transform of the scaled cumulant generating function. On top of this, (2.49)
also gives us information on the CLT concentration, by knowledge of the global
minimum of the rate function at z = 0, whereas our asymptotic result (2.36) is
restricted to large values of z (the probability tail). Thus, it is important to point
out that whenever the speed of the LDP is known, (2.36) reduces to the tail part
of some usual form of LDP. This is not completely a surprise, as the proof of (2.36)
can be viewed as a parallel to the proof of Gärtner-Ellis theorem, just adapted in
a different limit—particularly, we have seen that our assumptions are in analogy
to those of [143], ensuring a dominating-point regime. On the other hand, often
it is not possible to establish a-priori the LDP speed. We are going to see in
the following that this is the case in many applications of interest. Therefore, the
importance of the LDP (2.49) is not of establishing a result with a very hard or
original proof, but rather of giving an emphasis on the magnitude of the rare events,
independently of other large or small parameters. In the Applications Part the
reader will find compelling evidence of the usefulness of such an approach, which
paves the way for new kinds of application of the LDT techniques. Moreover,
in (2.36) the LDP speed is implicitely hidden within the rate function I(θ?(z)), but
computation of I(θ?(z)) can offer a way to establish such speed a-posteriori—see
section 2.2.5.

2.2.4 Application to the Example IV.7 of Ref. [187]
In order to understand better in which way our setting relates to other results in
large deviations, let us spend some more time on another test example, that is,
Example IV.7 of reference [187]. The following random variable is considered

Un = Y + 1
n

n∑
i=1

Xi , (2.51)

where Y takes the two values ±1 with probability 1
2 each, and the Xi’s are i.i.d.

normal random variables with zero mean and unit variance. Let us briefly review
the main LDT results about such system. Here, the scaled cumulant generating
function defined as

Ssc(λ) ≡ lim
n→∞

1
n

log
[
E
(
enλUn

)]
(2.52)

takes the form
Ssc(λ) = 1

2λ
2 + |λ| . (2.53)
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2 – Large deviation method for extreme events

Being Ssc(λ) non-differentiable at λ = 0, the implication of Gärtner-Ellis, that the
rate function Isc(z) can be found via Legendre-Fenchel transform of Ssc(λ), does
not hold here. One can see that by definition

Isc(z) ≡ − lim
n→∞

1
n

log [P (Sn ∈ ds)] =
{
I−(z) if z < 0
I+(z) if z ≥ 0 (2.54)

where I±(z) = (z∓1)2/2, which is a non-convex function. Calculating the Legendre-
Fenchel transform of Ssc(λ), I∗∗sc (z), one obtains instead the convex envelope of
Isc(z), which is identically zero for −1 < z < 1—due to non-differentiablility of Sn
in λ = 0.

Now, let us see how (2.36) applies to this example. In our framework, we call
θ0 = ±1 the binary variable spanning the support of Y and θi, i = 1, ...n, the real
variables spanning the support of Xi’s. Using the definition (2.8), the cumulant
generating function writes

S(η) = 1
2

n∑
i=1

η2
i + log cosh η0 , (2.55)

which is everywhere differentiable in Rn+1. Its n+1−dimensional Legendre-Fenchel
transform (2.7), performing the maximization in η and after some computations
involving inverse hyperbolic functions, yields

I(θ) = 1
2

n∑
i=1

θ2
i +

∑
s=±1

1+sθ0
2 log(1 + sθ0) = 1

2

n∑
i=1

θ2
i + log 2 , (2.56)

where the last equivalence is true since θ0 can only take the two values ±1. The
rate function will be given by the constrained minimization

I(θ?(z)) = min
{θ:Un=z}

I(θ) , (2.57)

which in practise we can perform with a Lagrange multiplier enforcing the constraint
and transforming it into the unconstrained minimization

I(θ?(z)) = min
θ

[I(θ)− λUn(θ)] . (2.58)

Imposing that the gradient be zero, we find the minimizer θ?j (λ) = λ/n, function
of λ, and then the constraint Un(θ?(λ)) = z provides the parametrization λ(z) =
n(z − θ0). Substituting into I(θ), we obtain

I(θ?(z)) = min
θ0=±1

n
2 (z − θ0)2 + log(2) , (2.59)

which is a non-convex rate function. Not only: if we divide by n, we notice that
this is nothing but the correct rate function (2.54). On the right branch, as z →∞
we have

I(θ?(z)) = n
2 z

2 − nz + o(z) . (2.60)
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Such limit is conceptually different from the n → ∞ limit of (2.54): There, the
focus is on how concentration takes place as the numer n of samples increases. Here,
given a fixed number of samples n, we ask how the probability tail behaves for the
rare events. In the limit z → ∞, since here we know the rate function explicitely,
we can express the LDP (2.36) with an auxiliary scaling parameter ε (speed of the
LDP) as

P (z/ε) � eε
−2Isc(θ?(z)) , Isc(θ?(z)) = lim

ε→0
ε2 log(P (z/ε)) = n

2 z
2 . (2.61)

This is a rigorous definition, although (2.60) has more detailed information on
how the asymptotic regime is attained. We conclude by emphasizing the important
difference between defining the cumulant generating function either on the projected
space of the observable as (2.52) or in the full space of the parameters as (2.55).
When performing the constrained minimization after taking the Legendre-Fenchel
transform, the second procedure allowed us to obtain the correct non-convex rate
function, whereas in the first procedure the Legendre-Fenchel transform of (2.52)
is forcingly convex and some information was missed.

2.2.5 Estimate of the scales of the LDP
If we use ε as an auxiliary small parameter, we have that (2.36) writes

P
(
z
ε

)
� exp

(
I
(
θ?
(
z
ε

)))
, as ε→ 0 . (2.62)

We wish to see this as an LDP with a given speed in ε, which we need to infer
somehow by knowledge of I(θ?(z)). For simplicity, suppose that I(θ?(z)) = g(z),
where g(z) is a power law whose exponent is unknown. Hence, we can rewrite (2.62)
as

P
(
z
ε

)
� exp

(
g(ε−1)g(z)

)
, (2.63)

in the form of a conventional LDP with rate function g(z) and speed g(ε−1). This is
a simple illustration of how one can try to unveil the hidden LDP structure of (2.36)
a-posteriori.

As can be noticed from the proof in section 2.2.1, the main result (2.36) builds
on the dominating-point property of the extreme realizations. This means that the
approximation by the most likely realization improves as the fluctuations become
smaller. After the rescaling by ε, the values taken by the observable are of the order
of unity, z = O(1)—it is ε−1 that now tends to infinity. Thus, it is the fluctuations
normalized by the signal that need to be small. We recall that the fluctuations in
the direction of η?(z) ≡ ∇I(θ?(z))—the direction perpendicular to the iso-surface
of probability, i.e. the direction that matters for the probability, as the others just
contribute to a subexponential prefactor—are predicted to be of order O(|η?(z)|).
Heuristically, we can thus define a parameter

δz(ε) = 1
|η?( z

ε
)|
ε
z
, (2.64)
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quantifying the relative magnitude of the fluctuations at event-size z as a function
of the parameter ε: δz(ε) can be seen as a concentration parameter. The meaning
of it should be clear: when δz(ε) approaches zero, the saddle-point approximation
giving (2.36) works well as the events of size ε−1z concentrate around the most
likely one, with larger fluctuations in directions that do not contribute to the the
leading exponential order of the probability. This parameter can be used to keep
under control the speed at which the LDT regime is attained, that is, at which
point of the tail the regime of the LDP (2.36) sets in.

For instance, in the Gaussian case above, after introducing the scaling in ε as
in (2.49), we have η?( z

ε
) = 1

ε
zb/|b|2, using (2.45). Thus, the value of the concen-

tration parameter is δz(ε) = ε2b/z2, which gives an idea of the rate at which the
extreme events concentrate dependent of the scaling and of the event size.

A similar estimate holds for the LDP (2.61), for which η?( z
ε
) = n( z

ε
− 1) so that

δz(ε) ∼ ε2

nz2 .
We will see in chapter 6 a case where the quantity η?(z) →

√
Mα, a constant,

as z → ∞. There, for the concentration parameter we have δz(ε) ∼ ε√
Mαz

, still
tending to zero as ε → 0 but at a slower rate than in the previous cases. In a
way, one can say that in the latter case the concentration of measure—and the
subsequent saddle-point approximation—does a “worse” job and one needs to go
to relatively larger events for the approximation to work properly.
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Figure 2.2. Top: The rate functions in section 2.2.4. Bottom: A cartoon
of the concentration parameter behavior for the example in section 2.2.4,
capturing how fast the LDT regime, based on a saddle point approximation,
sets in. Therefore, the narrower the shaded area (stretched by an arbitrary
factor in the y direction, so in arbitrary units) around the rate function,
the better the rate-function approximation to the probability: all tail events
concentrate onto the most likely ones.
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Chapter 3

Numerical optimization

The material in this chapter was published in

G. Dematteis, T. Grafke, and E. Vanden-Eijnden. “Extreme event quantification in
dynamical systems with random components”. https://arxiv.org/abs/1808.10764, 2018

(to appear in “SIAM/ASA Journal of Uncertainty Quantification”).

Here we review how to numerically perform the minimization in (2.6) and thereby
estimate P (z) – the method can be straightforwardly generalized to consider also
the minimization associated with the calculation of (2.3) or (2.5). We impose the
constraint f(u(T )) ≥ z by adding a Lagrange multiplier term to (2.6), so that the
minimization can be rephrased in Hamiltonian formalism by [189, 21]:

E(u, θ) = I(θ)− λf(u(T ))) , (3.1)

where u(T ) should itself be viewed as a function of θ obtained by solving (2.1) with
ϑ = θ, that is

∂tu = b(u, θ), u(t = 0) = u0(θ). (3.2)

The minimization of (3.1) with u(T ) obtained from (3.2) can be performed via
steepest descent with adaptive step (line search). This requires to compute the
gradient of E with respect to θ, which can be achieved in two ways: by the direct
and the adjoint methods [21, 160]. These steps are described next.

3.1 Gradient Calculation

3.1.1 Direct method
The gradient of the cost function with respect to the control reads:

∇θE(u(T, θ), θ) = ∂θE + (∂θu(T, θ))> ∂uE = ∇θI − λ J>(T, θ) ∂uf(u(T, θ)) , (3.3)
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where J = ∂θu is the Jacobian—componentwise Ji,j = ∂ui/∂θj. An evolution
equation for J can be obtained by differentiating (3.2) with respect to θ:

∂tJ = ∂ub J + ∂θb, J(0) = ∇θ u0. (3.4)

Summing up, given the current state of the control, θn, we calculate the gradient
of the objective function via:

1. Field estimation: Obtain the current field un by solving

∂tu
n = b(un, θn), un(0) = u0(θn) . (3.5)

2. Jacobian estimation: Obtain the Jacobian Jn by solving

∂tJ
n = ∂ub(un, θn) Jn + ∂θb(un, θn), Jn(0) = ∇θ u0(θn). (3.6)

3. Gradient calculation: Compute the gradient (∇θE)n via

(∇θE)n = ∇θI(θn)− λ (Jn(T ))> ∂uf(un(T )). (3.7)

3.1.2 Adjoint method
Let us introduce the adjoint field p(t) solution of

∂tp = −(∂ub)>p, p(T, θ) = λ∂uf(u(T, θ)). (3.8)

Using this equation as well as the transpose of (3.4) we deduce

∂t(J>p) = ∂tJ
>p+ J>∂tp

= J>(∂ub)>p+ (∂θb)>p− J>(∂ub)>p = (∂θb)>p .
(3.9)

As a result∫ T

0
(∂θb)>pdt = J>(T )p(T )− J>(0)p(0) = λJ>(T, θ)∂uf(u(T, θ))− (∇θu0)>p(0, θ).

(3.10)
This expression offers a way to write the gradient of the objective function in (3.3)
as

∇θE = ∇θI − (∇θu0)>p(0, θ)−
∫ T

0
(∂θb)>p dt . (3.11)

Using this expression instead of (3.3) is computationally advantageous because it
avoid the calculation of the Jacobian J – note in particular that the adjoint field p
has the same dimensions as u, independent of the dimensions of the space Ω. The
price to pay is the field u must be computed and stored separately since (3.8) for
p must be solved backward in time. Summarizing, the gradient of the objective
function is now calculated via:

1. Field estimation: Obtain the current field un by solving

∂tu
n = b(un, θn), un(0) = u0(θn). (3.12)
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2. Adjoint field estimation: Obtain the adjoint field pn by solving

∂tp
n = −(∂ub(un, θn))>pn, pn(T ) = λ∂uf(un(T )). (3.13)

3. Gradient calculation: Compute the gradient (∇θE)n via

(∇θE)n = ∇θI(θn)− (∇θu0(θn))>pn(0)−
∫ T

0
(∂θb(un(t), θn))>pn(t) dt .

(3.14)

Note that equations (3.12) for u and (3.13) for p are adjoint in both space and
time. As a result the numerical simulation of these equations has to be done with
care, as the integration scheme used for one equation needs to be the adjoint of the
other. This is preferably done by using schemes that are self-adjoint. For recent
literature on the topic we refer the reader to [197, 95, 193].

3.2 Descent with pre-conditioning of the gradient
Once we have calculated the gradient of the objective function at θn, we can make
a downhill step in the cost function landscape using

(4) Descent step with pre-conditioning:

θn+1 = θn − αnBn(∇θE)n , (3.15)

where Bn is a pre-conditioning M × M matrix (recall that θ ∈ Ω ⊆ RM), and
αn > 0 is the step size that is tuned optimally at each iteration via line search: this
can be done using classical merit functions as discussed in [198].

The estimate of the matrix Bn deserves some further comments. Ideally, Bn

should be the inverse of the Hessian of the objective function E(θn), but this Hessian
is typically difficult to calculate. Therefore, a simpler solution is to use the Hessian
of the prior I(θn), which in the case of a Gaussian measure is simply the inverse
covariance matrix C−1 (which is independent of θ. Since this estimate coincides
with the Hessian of E(θn) only when λ = 0, it will deteriorate when λ increases and
the pre-conditioning may become inefficient. If that is the case, it may be useful to
switch to “quasi-Newton” methods such as the BFGS algorithm, or the Limited-
Memory BFGS algorithm whenM is very large (> 100). In the applications treated
in this thesis, the naive pre-conditioning depending only on the prior I(θ) turned
out to be sufficient to perform the optimization efficiently.

Since we are typically interested in calculating (2.6) for a range of values of z,
instead of fixing z and trying to determine the corresponding Lagrange multiplier λ
in (3.3), it is easier to vary λ and determine a posteriori which value of z this leads
to. Indeed this offers a parametric representation of θ?(z) via

θ?(z(λ)) = θ̃?(λ), z(λ) = f(u(T, θ̃?(λ)) , (3.16)
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where θ̃?(λ) is the minimizer of E(θ) at λ fixed. We can then also calculate
I(θ?(z(λ))) = I(θ̃?(λ)) and estimate P (z(λ)) � exp(−I(θ̃?(λ))).
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Chapter 4

Surface gravity waves: from
theory to experiment

Introductory paragraph
The modelling of the sea surface gravity waves is at once very interesting and
highly challenging. Waves are essentially energetic perturbations of a medium that
propagate in space and time. In this case the medium is the surface of water at
the interface with the atmosphere, and all the waves of wavelength larger than
about ten centimeters propagate due to gravity, following the dispersion relation
ω(k) =

√
gk in the case of deep water. In order to characterize the phenomenon

from a physicist perspective, we need to understand where the energy of the waves
comes from, how it is transferred through different scales, how it happens to focus
and form large waves, etc. Possibly, all of this should be done quantitatively by
deriving and studying the equations that govern the different aspects.

The main theory to understand the energy transfers in the oceanic wave field
is a statistical-mechanical framework called Wave Turbulence. When wind blows
quite strongly on the sea surface, the stress forces the very small scale perturbations
(gravity-capillary waves) that tend to grow due to resonance and linear instability
effects (Miles-Phillips mechanism). Such effect represents the primary source of
wave energy at high wave numbers (small wave lengths). Now, the gravity waves
turn out to communicate energy by interacting in resonant quartets of waves of
different wave number. These resonances are described by the so called Kinetic
Equation, which in the case of surface gravity waves comes from the Zakharov
equation based on a Hamiltonian with fourth-order nonlinearity, which implies 4-
wave interactions. Such interactions transfer energy from the small scales toward
the large scales, until the large waves reach a steepness large enough to break (main
energy-dissipation process), or the wind eventually stops blowing, etc. The possible
phenomenology is indeed very complex and rich and here we are rather interested in
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4 – Surface gravity waves: from theory to experiment

giving an idea of the phenomena at play. The theory of Wave Turbulence describes
this and similar out-of-equilibrium wave systems in a statistical way, quantifying
the evolution of the energy spectral density, i.e. how the energy of the wave field is
distributed and exchanged among the different scales. In section 4.1 we review the
derivation of the Zakharov and Nonlinear Schrödinger equations, which are used
in the following. In section 4.2 we perform an original derivation of the equations
governing the statistics of 4-wave systems (including the Kinetic Equation).

At this point, we are interested in investigating how extreme random waves can
arise on the sea surface. The high interest in this question is partly motivated by
the fact that such occurrences (sometimes referred to as rogue waves) often ap-
pear with higher frequency than expected in a sea of random Gaussian waves. The
derivation of section 4.2 leads to an H-theorem implying that the stationary state
of Wave Turbulence is indeed a Gaussian state (maximum entropy state). There-
fore, we are convinced that in order for a description to go beyond Gaussianity one
needs to introduce different strategies. In section 4.3, we apply the LDT method
introduced in chapters 2 and 3 to a Gaussian initial state and we look at how a
governing nonlinear dynamics on short time scales is able to drive the probability
tail of the surface elevation away from Gaussianity. We show that the instantons
of the problem, that we can compute explicitly, dominate the statistics of the ex-
treme waves. In section 4.4, finally, we provide experimental support to our finding,
exploring different regimes. Our results indicate that the instanton describes the
typical extreme realizations for any level of nonlinearity, from the quasi-linear case,
reducing to earlier results known in the literature as “quasi-determinism”, to the
highly-nonlinear case, tending locally to the Peregrine soliton—i.e. an exact so-
lution of the nonlinear Schrödinger equation that plays an important role in the
so-called semi-classical (highly nonlinear) regime.

Part of the material in this chapter was published in

S. Chibbaro, G. Dematteis, C. Josserand, and L. Rondoni. “Wave-turbulence theory of
four-wave nonlinear interactions”. Physical Review E, 96(2):021101, 2017.

S. Chibbaro, G. Dematteis, and L. Rondoni. “4-wave dynamics in kinetic wave
turbulence”. Physica D: Nonlinear Phenomena, 362:24–59, 2018.

G. Dematteis, T. Grafke, and E. Vanden-Eijnden. “Rogue waves and large deviations in
deep sea”. Proceedings of the National Academy of Sciences, page 201710670, 2018.

G. Dematteis, T. Grafke, M. Onorato, and E. Vanden-Eijnden. “Experimental evidence
of hydrodynamic instantons: The universal route to rogue waves”. Under revision, 2018.
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4.1 – NLS-type equations for surface gravity waves

4.1 NLS-type equations for surface gravity waves

First, we review how from “first principles”,1 i.e. from the Euler equations for
the water surface, one can derive the 4-wave Hamiltonian (A.10), on which the
statistical description of the waves, named wave turbulence, is based. For the water
waves such Hamiltonian is the one of the Zakharov equation. The derivation involves
the weak-nonlinearity limit. In fact, upon that Hamiltonian dominated by 4-wave
resonances, as for the water waves, we will build the WT theory of 4-wave systems
in section 4.2.

Second, we show how one can easily derive the NLS equation from the Zakharov
equation, by introducing a Taylor expansion of the dispersion relation up to second
order, in the narrow-band limit. For this review section, we follow the book [151],
and all of the calculations are done for the case of one horizontal dimension for
simplicity.

1At any level of description, one needs to postulate some laws on which to operate accepting
them as first principles. Indeed, Euler equations are obtained from Navier-Stokes’ equations with
the assumptions of inviscid, incompressible and irrotational fluid. Navier-Stokes can be considered
as Newton’s laws for a fluid in the continuum description. But Navier-Stokes’ equations can be
reasonably derived from the Boltzmann transport equation, by introducing a series of nontrivial
conceptual ingredients taking us from a mesoscopic stochastic atomistic description to a macro-
scopic deterministic continuum description. The Boltzmann equation, in turn, was written by
Boltzmann somehow “heuristically”, and it is not merely a reduction from the microsopic New-
ton’s laws for the fundamental constituents (molecules) to the mesoscopic level: in the passage,
further fundamental assumptions are needed such as the Stosszahlansatz (bridging the microscopic
and the macroscopic descriptions), and emergent phenomena appear, characteristic of the new
point of view and extraneous to the lower level. The view that we find more convincing, therefore,
is that there is not really a theory which is more fundamental than the others. Each level (or
scale) of description typically has an effective theory which has some overlaps with the effective
theories at the levels above and the ones at the levels below, but there exists no such thing as a
legitimate ranking of fundamental-ness of theories—chemistry cannot be substituted by physics,
although many of the first principles of chemistry may be justified by quantum mechanics. The-
ory reduction is not that simple. The computations of quantum mechanics become operationally
almost unfeasible already for the two electrons of the Helium atom, the second element of the
periodic table, and chemistry is very much needed if we wish to understand something in the
realm of chemical reactions. The theories inform each other in a cooperative way in the over-
lapping regions, but at any level in general we find one theory (or a few) which is the effective
“fundamental” theory at that level of description. If one is interested to these topics, a read to [36]
is highly recommended.
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4.1.1 From Euler equations to the Zakharov equation ex-
panding in small nonlinearity

Under the assumptions of inviscid, incompressible and irrotational fluid, the equa-
tions for the water surface, known as the Euler equations, read

∂xxφ+ ∂zzφ = 0 , −h < z < η(x, t)
∂tφ+ ∂xφ ∂xη = ∂zφ z = η(x, t)

∂tφ+ 1
2
[
(∂xφ)2 + (∂zφ)2

]
+ gη − γw = 0 , z = η(x, t)

∂zφ = 0 , z = −h

(4.1)

g is the gravity acceleration, γ is the ratio between the coefficient of surface tension
and the fluid density and w is the surface curvature w = ∂xη√

1+(∂xη)2
. Moreover,

because of the irrotational assumption we have that v = ∇φ, where v(x, t) is
the velocity field and φ(x, t) is the velocity potential, while η(x, t) is the surface
elevation. Introducing the velocity potential at the free surface ζ(x, t) = φ(x, z =
η(x, t), t), in [201] it was shown that η and ζ are canonically conjugated via the
Hamiltonian given by the sum of the kinetic energy and the potential energy. The
normal variable is introduced as follows in Fourier space (here with the dimensions
of an action density, which leads to simpler coefficients in the following),

ûk(t) =
√

g

2ωk
η̂k(t) + i

√
ωk
2g ζ̂k(t) . (4.2)

where the relation ωk =
√

(g|k|+ γ|k|3) tanh(|k|h) is used for the dispersion relation
in arbitrary depth h. Limited to the current section, the index k can indicate either
a continuous Fourier variable or a discrete one in the case of a finite physical space
with periodic boundary conditions—therefore, the sign of integral will indicate a
true integration in the k variable or just a summation, respectively. Expanding in
small nonlinearity (i.e. in powers of ûk) up to third order, from (4.1) and (4.2) we
obtain the following equation

i∂tû1 = ω1û1 +
∫
V

(1)
1,2,3û2û3δ(k1 − k2 − k3)dk23 + 2

∫
V

(2)
1,2,3û

∗
2û3δ(k1 + k2 − k3)dk23

+
∫
V

(3)
1,2,3û

∗
2û
∗
3δ(k1 + k2 + k3)dk23 +

∫
T

(2)
1,2,3,4û

∗
2û3û4δ(k1 + k2 − k3 − k4)dk234

+
∫
T

(1)
1,2,3,4û2û3û4δ(k1 − k2 − k3 − k4)dk234 +

∫
T

(1)
1,2,3,4û

∗
2û
∗
3û4δ(k1 + k2 + k3 − k4)dk234

+
∫
T

(4)
1,2,3,4û

∗
2û
∗
3û
∗
4δ(k1 + k2 + k3 + k4)dk234 .

(4.3)
We use the notation: aj = akj , V

(1)
1,2,3 = V

(1)
k1,k2,k3 , dk123 = dk1dk2dk3, etc., the the

simbols δ(·) are Dirac’s deltas. The equation is valid both for gravity and capillary
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waves. However, assuming that the waves are long leads to the dispersion relation
of surface gravity waves, ωk =

√
g|k| tanh(|k|h). For the energy transfers to be

active in the equation above, the resonance conditions have to be fulfilled, that is,
the following pairs of equations need to be fulfilled at the same time

k1 − k2 − k3 = 0, ω1 − ω2 − ω3 = 0
k1 + k2 − k3 = 0, ω1 + ω2 − ω3 = 0 (4.4)
k1 + k2 + k3 = 0, ω1 + ω2 + ω3 = 0

for the 3-wave terms. For the capillary waves, 3-wave interactions are resonant,
and dominate the spectral energy transfers. For gravity waves, instead, 3-wave
resonances are never satisfied—being the dispersion relation concave, see [137]—,
and the 4-wave resonances are satisfied only for the interactions of 2 waves going
into 2 waves, that correspond to the resonance condition

k1 + k2 − k3 − k4 = 0, ω1 + ω2 − ω3 − ω4 = 0 . (4.5)

The integrals that do not satisfy the resonance conditions can be removed by a
canonical transformation into a new variable ak:

û1 = â1 +
∫
A

(1)
1,2,3â2â3δ(k1 − k2 − k3)dk23 + 2

∫
A

(2)
1,2,3â

∗
2â3δ(k1 + k2 − k3)dk23

+
∫
A

(3)
1,2,3â

∗
2â
∗
3δ(k1 + k2 + k3)dk23 +

∫
B

(2)
1,2,3,4â

∗
2â3â4δ(k1 + k2 − k3 − k4)dk234

+
∫
B

(1)
1,2,3,4â2â3â4δ(k1 − k2 − k3 − k4)dk234 +

∫
B

(1)
1,2,3,4â

∗
2â
∗
3â4δ(k1 + k2 + k3 − k4)dk234

+
∫
B

(4)
1,2,3,4â

∗
2â
∗
3â
∗
4δ(k1 + k2 + k3 + k4)dk234 .

(4.6)
The choice of the coefficients A1,2,3 and B1,2,3,4 is done in order to eliminate the
quadratic and the cubic non-resonant terms in (4.3). For the new variable the
evolution equation, named Zakharov equation, takes the simple form

i∂tâ1 = ω1â1 +
∫
T̃

(2)
1,2,3,4â

∗
2â3â4δ(k1 + k2 − k3 − k4)dk234 , (4.7)

where T̃ (2)
1,2,3,4 is the effective interaction coefficient that depends on T (1)

1,2,3,4 and on
the terms A1,2,3. It is easy to see that the Zakharov equation comes from Hamilton’s
equation for the canonical conjugate variables ak and a∗k, from the Hamiltonian

H =
∫
ω1|â1|2dk1 +

∫
T̃

(2)
1,2,3,4â

∗
1â
∗
2â3â4δ(k1 + k2 − k3 − k4)dk1234 , (4.8)

which is exactly in the form of (A.10), starting point for the WT approach of a
system with 4-wave resonances.
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4.1.2 Derivation of NLS in the narrow-band limit
The Zakharov equation (4.7) is not only the basis for the statistical description
of WT, on which for instance the modern ocean forecast models are based, but
it represents also a good starting point for the derivation of envelope equations
like the NLS equation or higher-order variants. From (4.7), it is sufficient to take
the narrow-band approximation, expanding the dispersion relation to second order
around k0,

ωk = ω0 + dωk
dk

∣∣∣∣∣
k0

(k − k0) + 1
2
d2ωk
dk2

∣∣∣∣∣
k0

(k − k0)2 + o((k − k0)3) , (4.9)

with ω0 = ωk0 , and the interaction coefficient to zero-th order,

T
(2)
k1,k2,k3,k4 = T

(2)
k0,k0,k0,k0 ' k3

0 . (4.10)

Furthermore, we use a new variable b̂k = âke
−iω0t removing a phase, and we Fourier

transform to finally obtain

i (∂tb+ cg ∂xb) = β ∂xxb+ α |b|2b , (4.11)

with cg = dωk
dk

∣∣∣
k0

= ω0
2k0

the group velocity, β = 1
2
d2ωk
dk2

∣∣∣
k0

= ω0
8k2

0
the dispersion

coefficient, and α = k3
0 the coefficient of nonlinearity.

In equation (4.32) in the next section, the Dysthe equation, one can recognize
the four terms of (4.8). The other terms come from an higher order expansion in
both nonlinearity and narrow band [60].

4.1.3 NLS equation with spatial evolution
Due to the narrow-band and small-nonlinearity limits, the last two terms of the
NLS equation (4.11), dispersion and nonlinearity respectively, are of higher order
compared to the other terms. Thus, at leading order one can use this information
to express the space derivative in terms of the time derivative,

∂xb = − 1
cg
∂tb . (4.12)

Differentiating the latter one more time in x and using the fact that the derivatives
commute, we obtain

∂xxb = − 1
cg
∂t∂xb = 1

c2
g

∂ttb . (4.13)

Replacing (4.12) and (4.12) in (4.11), we obtain a version of the NLS equation with
evolution in space

i

(
∂xb+ 1

cg
∂tb

)
= β

c3
g

∂ttb+ α

cg
|b|2b . (4.14)
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4.2 Wave turbulence: a powerful “mean field”
theory

4.2.1 Wave turbulence theory of 4-wave resonant systems

Dispersive waves are ubiquitous in nature, and their nonlinear interactions make
them intriguing and challenging [196, 15]. Wave Turbulence is the theory that de-
scribes the statistical properties of large numbers of incoherent interacting waves,
with tools such as the wave kinetic equation analytically derived in the late sixties.
This equation describes the evolution of the wave spectrum in time, when homo-
geneity and weak nonlinearity are assumed [206, 137, 142]. It has been applied
to numerous phenomena, including ocean waves [110, 73], capillary waves [163, 70]
Alfvén waves [85], optical waves [157] and solid oscillations [54, 135, 22, 131, 98, 99].
It is the analogue of the Boltzmann equation for classical particles and it allows
the Rayleigh-Jeans equilibrium state as well as non-equilibrium solutions, in terms
of Kolmogorov-Zakharov (KZ) spectra [200].

To characterise the invariant measure of the dynamics, that is to find the com-
plete statistical description concerning all quantities of interest, an important step
has been taken by Sagdeev and Zaslavski [209], who obtained the Brout-Prigogine
equation for the probability density function (pdf) of wave turbulence [24]. More
recently, this statistical framework has been nicely revisited using the diagrammatic
technique [137] and performing analytical calculations, in the 3-wave case [39, 38,
69]. Interestingly, many experimental and theoretical results have shown that de-
viations from wave-turbulence predictions can be found for rare events, e.g. inter-
mittency [129, 73, 72, 125, 139, 75]. This seems to be the case when a more general
theoretical framework [141, 17, 41, 127, 102] is required, because the nonlinearities
are not small [34, 31].

4.2.2 Derivation of the M−mode PDF equation and its im-
plications for the stationary state

Following the results that we obtained in [32, 33], in this section the complete wave-
turbulence theory is developed for a fully general 4-wave system, whose hamiltonian
is expressed by the following canonical expression2 (the details of the derivation,
based on the Feynman-Wyld diagrammatic averaging technique, can be found in

2We have seen in 4.1 that the Hamiltonian of the Zakharov equation is precisely in this form,
with Hσk = T

(2)
1,2,3,4, non-vanishing only when σ has two “plus” and two “minus” signs, i.e. inter-

actions of type 2 waves → 2 waves.

47



4 – Surface gravity waves: from theory to experiment

Appendix A):

H = 1
2
∑

1
ω1A

σ1
1 A

−σ1
1 + ε

∑
1234
Hσ

k A
σ1
1 A

σ2
2 A

σ3
3 A

σ4
4 δσ·k,0 . (4.15)

Here, ω1 is the normal frequency of wave 1, that nonlinearly interacts with waves
2,3,4 with coupling constant Hσ

k,
∑
i
.= ∑

σi=±1
∑

ki∈Λ∗L , Λ
∗
L = 2π

L
ZdM . Aσk = 1√

2(Pk +
iσQk) are the canonical variables of the wave-field, whose real and imaginary parts
are the coordinates and momenta. σ = ±1 represents the “spin" of a wave, so that
A+

k
.= Ak, A−k

.= A∗k (* is complex conjugation).
Given the Hamiltonian (A.10), we concisely derive the equations of motion in

terms of canonical normal variables; the details are given in Ref. [33]. First, recall
that the action-angle variables (amplitudes and phases) for the linear dynamics
are defined by Jk = |Aσk|2 and ϕk = σ arg(Aσk), so that Aσk =

√
Jkψ

σ
k, where

ψk = exp(iϕk). Then, the Liouville measure µ preserved by the Hamiltonian flow
reads: dµ = ∏

k dQkdPk = ∏
k

1
i
dA+

k dA
−
k = ∏

k
1
i
da+

k da
−
k = ∏

k dJkdϕk. A
σ
k and aσk

are linked by the rotation in the complex plane: Aσk = aσke
iσωkt. The equations

of motion with 4-wave interactions can thus be expressed by (σ = +1 when it is
omitted):

∂a1

∂t
= ε

∑
234
L+σ2σ3σ4

1234 aσ2
2 a

σ3
3 a

σ4
4

× exp [i (−ω1 + σ2ω2 + σ3ω3 + σ4ω4) t] (4.16)
×δ−k1+σ2k2+σ3k3+σ4k4,0

For a system with N modes in a box of size L, the complete statistical description
of the field is given by the generating function, defined by:

ZL[λ, µ, T ] .=
〈

exp
 ∑

k∈Λ∗L

λkJk(T )
 ∏

k∈Λ∗L

ψµk
k (T )

〉
, (4.17)

where λk ∈ R, µk ∈ Z, ∀k ∈ Λ∗L.
Assuming that the canonical wavefield enjoys the Random Phase (RP) prop-

erty at the initial time, we have averaged over phases using the Feynman-Wyld
diagrams [137]. Further, taking the large-box limit, we have normalized the ampli-
tudes in such a way that the wave spectrum remains finite. This step is crucial for
the evaluation of the different diagrams [69]. Then, taking the large-box limit, fol-
lowed by the small nonlinearity limit, and introducing the nonlinear time τ = ε2T ,
we have formally obtained the following closed equation for the generating function
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4.2 – Wave turbulence: a powerful “mean field” theory

(the characteristic functional):

dZ[λ, µ, τ ]
dτ

= −192πδµ,0

×
∑
σ

∫
ddk1d

dk2d
dk3d

dk4λ (k1) |H−σ2σ3σ4
1234 |2δ(ω̃1

234) (4.18)

×δ1
234

(
δ3Z

δλ(k2)δλ(k3)δλ(k4) − σ2
δ3Z

δλ(k1)δλ(k3)δλ(k4) +

−σ3
δ3Z

δλ(k1)δλ(k2)δλ(k4) − σ4
δ3Z

δλ(k1)δλ(k2)δλ(k3)

)
,

which constitutes the main ingredient of the present section. The frequency in
δ(ω̃1

234) has been renormalised [137] as ω̃k
.= ωk +Ωk, taking into account the self-

interactions possible in 4-wave systems, that do not contribute to the nonlinear
interactions but shift the linear frequency.

The characteristic functional constitutes the most detailed description of the
phenomenon [134], for which the following holds: (i) the RP property of the ini-
tial field is preserved in time, implying the validity of eq.(A.139) for τ > 0; (ii)
eq.(A.139) has a solution preserving in time the stricter Random Phase and Am-
plitude (RPA) property of an initial wavefield, i.e. the possible factorization of
Z[λ, µ,0]; (iii) differentiating with respect to the λk’s, the spectral hierarchy for
the moments, analogous to the BBGKY hierarchy in Kinetic Theory, is obtained.
Then, RPA allows us to close the hierarchy, leading to the wave spectrum equation,
the kinetic equation.

As the characteristic functional gives too detailed information, in relevant sit-
uations we have derived the equation for the characteristic function Z(M), that
concerns a number M of modes, and enjoys the same properties of Z[λ, µ, τ ] [33].

Then, under the RPA hypothesis, we derived a closed fully general equation for
the 1-mode pdf that reads [33]:

∂P

∂τ
= −∂F

∂s
= ∂

∂s

[
s
(
ηk
∂P

∂s
+ γkP

)]
, (4.19)

ηk
.= 192π

∑
σ

∫
ddk2d

dk3d
dk4δ

k
234δ

(
ω̃k

234

) ∣∣∣H−σ2σ3σ4
k234

∣∣∣2
×n(k2)n(k3)n(k4) ≥ 0, (4.20)

γk
.= 192π

∑
σ

∫
ddk2d

dk3d
dk4δ

k
234δ

(
ω̃k

234

) ∣∣∣H−σ2σ3σ4
k234

∣∣∣2
×
[
σ2n(k3)n(k4) + σ3n(k2)n(k3) + σ4n(k2)n(k3)

]
The conservation equation for P explicitly expresses F , the flux of the 1-mode
probability in the amplitude space. This is a nonlinear Markov evolution equation
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4 – Surface gravity waves: from theory to experiment

in the sense of McKean. As a matter of fact, the solutions must satisfy a set of self-
consistency conditions: n(k, τ) =

∫
ds sP (s, τ ; k), where n(k, τ) is the spectrum,

that also appears in the formulas for the coefficients (A.126). The derivation of the
standard kinetic equation from equation (A.142) is straightforward. Let us assume
that the wave turbulence picture is valid for s ∈ (0, snl), where the upper bound of
the interval can also be +∞ (a fact that will be discussed later). Using (A.142),
the definition of the wave spectrum n(k) =

∫ snl
0 sP (s)ds and integrating by parts,

we obtain
∂n

∂τ
= ηk − γkn− snl(F (snl) + ηkP (snl). (4.21)

The last term is a null term that has to vanish in order for the equation to be
satisfied in general, giving a boundary condition in the amplitude space at s = snl.
What we are left with is nothing but the kinetic equation. To make it clear for
a concrete example of a 4−wave resonant system where not only 2 → 2 wave
interactions are present, we derive the kinetic equation for the vibrating plates [54].
Writing (4.21) in the 2−dimensional case, we obtain

∂n

∂τ
= 192π

∑
σ

∫
d2k1d

2k2d
2k3δ

(2)k
123 δ(ω̃k

123)|H−σ2σ3σ4
kk1k2k3

|2

× nkn1n2n3 ·
( 1
nk

+ σ1

n1
+ σ2

n2
+ σ3

n3

)
, (4.22)

which is the same equation as in [54, 56]: the quantity J−kk1k2k3 in [54] corresponds
to 4iH−σ2σ3σ4

kk1k2k3
because of the way their coefficients relate to the Hamiltonian coef-

ficients. Therefore, a factor 16 appears making the two equations identical. The
equation for the pdf can be written also as the following set of stochastic differential
equations

dsk = (ηk − γksk)dτ +
√

2ηkskdWk, (4.23)

interpreted in the Ito sense and with self-consistent determination of n(k, τ). An
important solution of (A.142) is the distribution

Q(s, τ ; k) = 1
n(k, τ)e

−s/n(k,τ) . (4.24)

In absence of forcing and dissipation, an H-theorem and the law of large-numbers
for the empirical spectrum imply that the solution relaxes to Q, for typical initial
wavefields [69, 33]. It strictly describes thermodynamic equilibrium only when n
is stationary, but our results show (see Fig.4.1) that P tends to the asymptotic
state Q before n has reached its stationary state. This justifies that Q be called
distribution of equilibrium despite its formal dependence on time. Furthermore,
the results in Fig.4.2 suggest that relaxation to equilibrium also extends to forced
and damped systems.
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4.2 – Wave turbulence: a powerful “mean field” theory

The general stationary solution to eq.(A.142) reads [39, 137]

P (s) = Ce−s/ν − F∗
ηk

Ei
(
s

ν

)
e−s/ν (4.25)

where Ei(x) is the integral exponential function Ei(x) = −
∫∞
−x

e−t
t

dt. Eq.(4.25)
is obtained enforcing a constant probability flux in amplitude space: F (s) =
−s
(
ηk

∂P
∂s

+ γkP
)
≡ F∗. For the positivity of P (s) for s � ν, F∗ must be neg-

ative, corresponding to a probability flux from the large to the small amplitudes.
This must be physically motivated by the existence of strong nonlinear interactions
(e.g. breaking of wave crests) which feed probability into the weak, near-Gaussian
background. In this picture, this happens at s = snl and due to the strong nonlinear
effects P (s) decays very quickly for s > snl. Thus, the cut-off amplitude snl and
the stationary flux F∗ are two aspects of the same phenomenon, connected to each
other through the boundary condition that comes out of (4.21) in a natural way:

P (snl) = −F∗/ηk. (4.26)

This is consistent with the fact that if the weak-turbulence assumption holds over
the whole amplitude space, s ∈ (0,∞), the normalization of probability implies
F∗ = 0, and the equilibrium exponential distribution is recovered, as expected in
absence of strong nonlinear effects that would affect the dynamics. So, clearly the
picture with cut-off is meant to describe systems where forcing and damping are
present at some wave numbers, which are necessary to sustain the strong nonlinear
phenomena. Then, the corrective term in (4.25) represents the increased probability
in the tail of the distribution due to such nonlinear phenomena (Ei(x) ∝ 1

x
for

x� 1).
Before numerically verifying this scenario, some remarks are in order. At vari-

ance with previous studies [39, 69], we do not need a probability sink to allow the
solution, because we have F (s) = F∗ for s ∈ (0, snl) (similarly as in [137]). Inte-
grating (A.142) from 0 to snl, ∂

∂t

∫ snl
0 dsP (s) = F (s = snl)−F (s = 0) = 0, it is seen

that the normalization of the probability in the system is preserved. This appears
natural when considering the logarithmic variable σ = ln(s), whose probability
density Π(σ) satisfies

∂tΠ = ∂σF, (4.27)

with the same F of Eq. (A.142). Imposing F (s = 0) = F∗, as in the rest of
the interval, just means that there is a probability flux from σnl = ln(snl) toward
σ = −∞, with probability transferred to infinitesimally small amplitudes. In the
stationary state, using (4.26) and normalizing the probability yields:

C = 1
ν

(
1 +

Γ + ln snl
ν
− e−

snl
ν Ei

(
snl
ν

)
e
snl
ν − Ei

(
snl
ν

) )−1

, (4.28)
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where Γ ' 0.5772 is the Euler-Mascheroni constant, and P (s) = 1
ν
e−s/ν , in the

snl →∞ limit. As snl becomes finite, the complete solution has to be chosen (with
F∗ < 0) and this contribution brings a correction to the asymptotic solution. In
conclusion, given the cut-off value snl, which enters as a parameter of the model,
and the spectrum ν = η/γ in the equilibrium limit, the two free constants in (4.25)
are fixed and a unique general solution with cut-off is obtained.

4.2.3 Numerical verification of convergence to Gaussianity

Figure 4.1. Normalized pdf of the modes |Ψk(τ)|2 for |k| = 2 as a function of
the normalized quantity x = |Ψk(τ)|2/n(k, τ) where n(k, τ) is the mean value of
|Ψk(τ)|2. The numerical simulation of the 2D NLSE is performed over a domain of
size 256× 256 using a regular square grid of mesh size dx = 0.5 so that 512× 512
modes are simulated. The statistics and mean values are obtained both by an
ensemble average over 128 realizations of the numerical simulation of the NLS
equation starting at τ = 0 with a Gaussian Fourier mode distribution with random
phases, and using the isotropy of the fields allowing angular mean. The pdf are
shown for τ = 0.01, 0.03, 0.05, 0.1, 0.2, 0.5 and 1 time units respectively from top
to bottom. The short time pdf are concentrated around the mean value while they
converge at large time to the expected e−x law (corresponding to the dashed red
line, pdf for τ = 10) and no more variations of the pdf are observed for τ > 10.
The inset shows the spectrum n(k, τ) for the times τ = 0.1, 10, 30, 50 and 110,
from bottom to top respectively looking at low k. The equipartition of energy
spectrum n(k, τ) ∝ 1/k2 is still not reached for the latest time shown here.
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4.2 – Wave turbulence: a powerful “mean field” theory

In order to validate these analytical predictions, we performed numerical simu-
lations for two prototype equations of 4-wave turbulence. The first is the Nonlinear
Schrödinger equation (NLSE) in two dimensions, modeling for instance the propa-
gation of electromagnetic fields in optic fibers [58]:

i∂tΨ = −1
2∆Ψ + |Ψ |2Ψ, (4.29)

where ∆ = ∂2
x+∂2

y is the Laplacian operator and Ψ is a field taking complex values.
The second is the Föppl Von-Karman equation in two space dimensions for the
vibrations of elastic plates [115], which in dimensionless form reads:

∂2ζ

∂t2
= −1

4∆
2ζ + {ζ, χ}; (4.30)

∆2χ = −1
2{ζ, ζ}. (4.31)

χ is the Airy stress function imposing the compatibility condition for the displace-
ment field and the Poisson bracket {·, ·} is defined by {f, g} ≡ fxxgyy + fyygxx −
2fxygxy, so that {ζ, ζ} is the Gaussian curvature.

The reason for investigating these two models is that they exhibit an important
difference in the 4-wave interactions: while the NLSE only allows a two waves-two
waves collision kernel, because of an additional conservation law, the FVK equation
allows 1 wave-3 waves collisions as well. Both equations are solved in a periodic
square domain using similar numerical schemes involving a pseudo-spectral method
(see for instance [54] for details on the numerical methods). We first investigate the
evolution of the fields starting with a Guassian distribution (consisting for NLSE of
|ψ(k,0)|2 ∝ e−k

2/k2
0 with a random phase): the initial pdf of the amplitudes is given

by P (x) = δ(x− 1) for each mode, where x = s/n(0) is the normalized amplitude.
The evolution of the one mode pdf is shown in Fig.4.1 together with the time evolu-
tion of the density spectrum (inset). We can see that P (x) converges rapidly to the
exponential solution given by eq.(A.145), in agreement with the theory. Interest-
ingly, the dynamics of the spectrum is different. The spectrum converges towards
the equilibrium solution given by the Rayleigh-Jeans spectrum [206], but the char-
acteristic time is much larger: the pdf has reached equilibrium when the spectrum
is still far from it. That validates the theory and in particular it supports the RPA
approximation, which appears to be verified from whatever initial conditions after
extremely short times. The same dynamics was also observed for the elastic plate
(not shown here). This evidence confirms the results already obtained for a general
3-waves system [182]. Then, we study the non-equilibrium wave turbulence energy
cascade for the elastic plate dynamics obtained by injecting energy at large scale
through a random noise in Fourier space at small k and a dissipation dominant
at small scale. The balance between these two contributions leads to a station-
ary regime with a wave turbulence spectrum following roughly |ζk|2 ∼ k−4 at low
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Figure 4.2. Normalized pdf of the Fourier modes |ζk|2 as a function of the rescaled
parameter s/n for two different wave numbers k = 3.45 and k = 4.43, in a linear-log
plot. The statistical average is made using angle average due to the isotropy of the
system and time average, because of the statistically stationary regime reached in
time. Here dx = 0.25 and the the square plate is L × L = 1024 × 1024, meaning
that 4096× 4096 modes are simulated. The pdf are reasonably well fitted by the
equilibrium law e−x although for k = 4.43 the generalized function (4.25) with
the cut-off snl = 3.6n(k) is a much better fit. The inset shows the compensated
spectrum k4|ζk|2 that exhibits a complex inertial regime, with a k−2 slope at large
scale (k . 1) indicating intermittent behavior, and the expected weak turbulence
spectrum |ζk|2 ∝ k−4 at smaller scales (1 < k < 5), where are located the two
modes shown here [34]. The other modes pdf’s show, outside of the forcing region
(k < 0.05), the exponential Rayleigh distribution.

forcing (up to a logarithmic correction [54]) that corresponds to a constant flux
of energy from the large to the small scales. It is thus tempting to compare the
pdf of the Fourier modes of this dynamics with that of the Hamiltonian dynamics
studied above, for which the theory has been derived. Indeed, no theoretical pre-
dictions can be easily made in such configuration, because the forcing-dissipation
terms break the Hamiltonian structure. Moreover, while a distribution close to the
one of the equilibrium situation could be expected at low forcing, intermittency at
high forcing is supposed to heavily influence the pdf of the Fourier mode, similarly
to what has been observed for the high moments of the structure function in real
space [34]. Surprisingly, Fig. 4.2 shows that the pdf’s are very close to the Rayleigh
distribution predicted for the Hamitonian dynamics, in the absence of flux (F∗ = 0)
even at high forcing where the spectrum exhibits a k−6 slope at small k. However,
a closer analysis shows a slight deviation from this distribution for modes at small
scales, just before the dissipative range, where the pdf is better fitted by the gener-
alized distribution (4.25) with F∗ /= 0. Similar results have also been observed for
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4.2 – Wave turbulence: a powerful “mean field” theory

the NLSE with no noticeable non-zero F∗. The weak value of F∗ obtained for our
systems suggests that while clear signature of intermittency is detected in physical
space via structure functions [34], it is difficult to find anomalous scaling looking
at the 1-mode spectral pdf.

4.2.4 Main results from wave turbulence

To conclude the section, we sum up the main results, that will be useful in the
following section.

• Due to their fast linear rotation and to periodicity of their domain, the
phases decorrelate extremely fast implying an effective mixing that physi-
cally justifies the RP (random-phase) assumption. An implication is that
the RP assumption is likely bound to fail at low k’s for systems with a disper-
sion relation ω(k) passing through the origin, the linear dynamics becoming
very slow.

• The RP assumption is sufficient to derive a closed equation for theM−mode
statistics, in the kinetic limit—large box and weak nonlinearity. This is in
close analogy with the BBGKY hierarchy for the Boltzmann equation.

• The M−mode equation preserves a factorized form of the initial conditions.
In the RPA assumption (uniform phases, uncorrelated amplitudes), the RPA
property of the field is preserved in time and therefore one can derive the
1−mode PDF equation.

• An H−theorem predicts convergence to Gaussianity of the 1−mode PDF.
From numerics, this is confirmed to happen very fast, even in the nonequi-
librium case of a forced and damped dynamics.

• From the 1−mode PDF equation we can easily derive the kinetic equation
for the spectrum, which is consistent with the one typically found in WT
and admits the Kolmogorov-Zakharov (KZ) spectra as its nonequilibrium
steady states.

• Convergence to the KZ solutions is slow, with the nonlinear time scales
of the system. Supported by numerics, we find that there is a clear scale
separation between convergence to Gaussianity and convergence to the KZ
spectrum. Indeed, this is consistent with the fact that the kinetic equation
can be derived straigthforwardly assuming quasi-Gaussianity and RPA.
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4.3 Large deviations and rogue waves

4.3.1 Rogue waves and nonlinear focusing effects

Rogue waves, long considered a figment of sailor’s imagination, are now recog-
nized to be a real, and serious, threat for boats and naval structures [136, 195].
Oceanographers define them as deep water waves whose crest-to-trough height H
exceeds twice the significant wave height Hs, which itself is four times the stan-
dard deviation of the ocean surface elevation. Rogue waves appear suddenly and
unpredictably, and can lead to water walls with vertical size on the order of 20–
30 m [97, 144], with enormous destructive power. Although rare, they tend to
occur more frequently than predicted by linear Gaussian theory [150, 138]. While
the mechanisms underlying their appearance remain under debate [6, 5, 149], one
plausible scenario has emerged over the years: it involves the phenomenon of mod-
ulational instability [13, 202], a nonlinear amplification mechanism by which many
weakly interacting waves of regular size can create a much larger one. Such an
instability arises in the context of the focusing nonlinear Schrödinger (NLS) equa-
tion [202, 114, 156, 7, 154, 207, 152] or its higher order variants [60, 178, 190, 46, 93],
which are known to be good models for the evolution of a unidirectional, narrow-
banded surface wave field in a deep sea. Support for the description of rogue
waves through such envelope equations recently came from experiments in wa-
ter tanks [145, 29, 30, 89], where Dysthe’s MNLS equation in one spatial dimen-
sion [60, 178] was shown to accurately describe the mechanism creating coherent
structures which soak up energy from its surroundings. While these experiments
and other theoretical works [124, 43] give grounds for the use of MNLS to describe
rogue waves, they have not addressed the question of their likelihood of appearance.
Some progress in this direction has been recently made in [44], where a reduced
model based on MNLS was used to estimate the probability of a given amplitude
within a certain time, and thereby compute the tail of the surface height distri-
bution. These calculations were done using an ansatz for the solutions of MNLS,
effectively making the problem two-dimensional. The purpose of this chapter is to
remove this approximation, and study the problem in its full generality. Specif-
ically, we consider the MNLS with random initial data drawn from a Gaussian
distribution [137]. The spectrum of this field is chosen to have a width comparable
to that of the JONSWAP spectrum [96, 146] obtained from observations in the
North Sea. We calculate the probability of occurrence of a large amplitude solution
of MNLS out of these random initial data, and thereby also estimate the tail of
the surface height distribution. These calculations are performed within the frame-
work of large deviations theory (LDT), which predicts the most likely way by which
large disturbances arise and therefore also explains the mechanism of rogue wave
creation. Our results are validated by comparison with brute-force Monte-Carlo
simulations, which indicate that rogue waves in MNLS are indeed within the realm
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of LDT. Our approach therefore gives an efficient way to assess the probability of
large waves and their mechanism of creation.

4.3.2 LDT method for MNLS with random initial condi-
tions

Our starting point will be the MNLS equation for the evolution of the complex
envelope u(t, x) of the sea surface in deep water [60], in terms of which the surface
elevation reads η(t, x) = <

(
u(t, x)ei(k0x−ω0t)

)
(here k0 denotes the carrier wave

number, ω0 =
√
gk0, and g is the gravitational acceleration). Measuring u and x

in units of k−1
0 and t in ω−1

0 we can write MNLS in non-dimensional form as

∂tu+ 1
2∂xu+ i

8∂
2
xu− 1

16∂
3
xu+ i

2 |u|
2u

+ 3
2 |u|

2∂xu+ 1
4u

2∂xū− i
2 |∂x| |u|

2 = 0, x ∈ [0, L],
(4.32)

where the bar denotes complex conjugation. We will consider Eq. 4.32 with random
initial condition u0(x) ≡ u(0, x), constructed via their Fourier representation,

u0(x) =
∑
n∈Z

eiknx(2Ĉn)1/2θn, Ĉn = Ae−k
2
n/(2∆2), (4.33)

where kn = 2πn/L, θn are complex Gaussian variables with mean zero and covari-
ance Eθnθ̄m = δm,n, Eθnθm = Eθ̄nθ̄m = 0. This guarantees that u0(x) is a Gaussian
field with mean zero and E(u0(x)ū0(x′)) = 2∑n∈Z e

ikn(x−x′)Ĉn.To make contact with
the observational data, the amplitude A and the width ∆ in Eq. 4.33 are picked so
that Ĉn has the same height and area as the JONSWAP spectrum [96, 146].

Because the initial data for Eq. 4.32 are random, so is the solution at time t > 0,
and our aim is to compute

PT (z) ≡ P
(
F (u(T )) ≥ z

)
, (4.34)

where P denotes probability over the initial data and F is a scalar functional de-
pending on u at time T > 0. Even though our method is applicable to more general
observables, here we will focus on

F (u(T )) = max
x∈[0,L]

|u(T, x)|. (4.35)

A brute force approach to calculate Eq. 4.34 is Monte-Carlo sampling: Generate
random initial conditions u0(x) by picking random θn’s in Eq. 4.33, evolve each of
these u0(x) deterministically via Eq. 4.32 up to time t = T to get u(T, x), and count
the proportion that fulfill F (u(T )) ≥ z. While this method is simple, and will be
used below as benchmark, it looses efficiency when z is large, which is precisely the
regime of interest for the tails of the distribution of F (u(T )).
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Figure 4.3. Top: Time evolution of |u(t, x)| from an initial condition opti-
mized for maxx |u(T, x)| ≥ 8 m at T = 20 min. Bottom: Same for a typical
Gaussian random initial condition.

4.3.3 The LDT approach

In that regime, a more efficient approach is to rely on results from LDT which assert
that Eq. 4.34 can be estimated by identifying the most likely initial condition that
is consistent with F (u(T )) ≥ z. To see how this result comes about, recall that the
probability density of u0 is formally proportional to exp(−1

2‖u0‖2
C), where ‖u0‖2

C is
given by

‖u0‖2
C =

∑
n∈Z

|ân|2

Ĉn
, ân = 1

L

∫ L

0
e−iknxu0(x)dx . (4.36)

To calculate Eq. 4.34 we should integrate this density over the set Ω(z) = {u0 :
F (u(T, u0)) ≥ z}, which is hard to do in practice. Instead we can estimate the
integral by Laplace’s method. As shown in Material and Methods, this is justified
for large z, when the probability of the set Ω(z) is dominated by a single u0(x)
that contributes most to the integral and can be identified via the constrained
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Figure 4.4. Comparison between the average realization reaching
maxx |u(T, x)| ≥ 4.8 m at T = 20 min (dark blue) and one standard de-
viation around this mean (light blue), with the solution reaching the same
amplitude starting from the maximum likelihood initial condition (black)
for t = 0,10,20 min.

minimization problem
1
2 min
u0∈Ω(z)

‖u0‖2
C ≡ IT (z) , (4.37)

which then yields the following LDT estimate for Eq. 4.34

PT (z) � exp (−IT (z)) . (4.38)

Here � means that the ratio of the logarithms of both sides tends to 1 as z →∞.
As discussed in Material and Methods, a multiplication prefactor can be added
to (4.38) but it does not affect significantly the tail of PT (z) on a logarithmic scale.
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Figure 4.5. Probabilities PT (z) of maxx |u(T, x)| for different times T for Set 1
(a) and Set 2 (b). The probabilities estimated by Monte-Carlo sampling with
106 realizations (dots) are compared with those predicted by LDT (lines). These
probabilities agree over about 5 orders of magnitude in probability, though LDT
allows for the calculation of the tail where Monte-Carlo becomes prohibitively
costly. The error bars in the Monte-Carlo results represent the statistical error
of 2 standard deviations (95% confidence interval) for the Bernoulli distribution
with parameter PT (z).

In practice, the constraint F (u(T, u0)) ≥ z can be imposed by adding a La-
grange multiplier term to Eq. 4.37, and it is easier to use this multiplier as control
parameter and simply see a posteriori what value of z it implies. That is to say,
perform for various values of λ the minimization

min
u0

(
1
2‖u0‖2

C − λF (u(T, u0))
)
≡ ST (λ) , (4.39)

over all u0 of the form in Eq. 4.33 (no constraint), then observe that this implies
the parametric representation

IT (z(λ)) = 1
2‖u

?
0(λ)‖2

C , z(λ) = F (u(T, u?0(λ))) . (4.40)

where u?0(λ) denotes the minimizer obtained in Eq. 4.39. It is easy to see from
Eqs. 4.37 and 4.39 that ST (λ) is the Legendre transform of IT (z) since:

ST (λ) = sup
z∈R

(λz − IT (z)) = sup
z∈R

(λz − 1
2 inf
u0∈Ω(z)

‖u0‖2
C), (4.41)

4.3.4 Numerical results
We considered two sets of parameters. In Set 1 we took A = 5.4 · 10−5k−2

0 and
∆ = 0.19k0. Converting back into dimensional units using k−1

0 = 36 m consistent
with the JONSWAP spectrum [96, 146], this implies a significant wave height Hs =
4
√
C(0) = 3.3 m classified as a rough sea [153]. It also yields a Benjamin-Feir index

BFI= 2
√

2C(0)/∆ = 0.34, [146, 104], meaning that the modulational instability of
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4.3 – Large deviations and rogue waves

a typical initial condition is of medium intensity. In Set 2 we took A = 3.4 ·10−4k−2
0

and ∆ = 0.19k0, for which Hs = 8.2 m is that of a high sea and the BFI is 0.85,
meaning that the modulational instability of a typical initial condition is stronger.

Fig. 4.3 (top) shows the time evolution of |u(t, x)| starting from an initial con-
dition from Set 1 optimized so that maxx |u(T, x)| = 8 m at T = 20 min. For
comparison, Fig. 4.3 (bottom) shows |u(t, x)| for a typical initial condition drawn
from its Gaussian distribution. To illustrate what is special about the initial con-
ditions identified by our optimization procedure, in Fig. 4.4 we show snapshots of
the surface elevation η(t, x) at three different times, t = 0,10,20 min (black lines),
using the constraint that maxx |u(T, x)| ≥ 4.8 m at T = 20 min. Additionally, we
averaged all Monte-Carlo samples achieving maxx |u(t, x)| ≥ 4.8 m, translated to
the origin. Snapshots of this mean configuration are shown in Fig. 4.4 (blue lines).
They agree well with those of the optimized solution (black lines). The one standard
deviation spread around the mean Monte-Carlo realization (light blue) is reason-
ably small, especially around the rogue wave at final time. This indicates that the
event maxx |u(T, x)| ≥ 4.8 m is indeed realized with probability close to 1 by start-
ing from the most likely initial condition consistent with this event, as predicted
by LDT. The usefulness of LDT is confirmed in Figs. 4.5 (a,b) depicting the prob-
abilities of maxx |u(T, x)| for both Sets 1 and 2 calculated via LDT optimization
(lines), compared to Monte-Carlo sampling (dots). As can be seen, the agreement
is remarkable, especially in the tail corresponding to the rogue wave regime. As
expected, the Monte-Carlo sampling becomes inaccurate in the tail, since there the
probabilities are dominated by unlikely events. The LDT calculation, in contrast,
remains efficient and accurate far in the tail.

The probabilities plotted in Fig. 4.5 (a,b) show several remarkable features.
First, they indicate that, as T gets larger, their tails fatten significantly. For ex-
ample, in Set 1 PT=20 min(6m) ≈ 10−5, which is 5 orders of magnitude larger than
initially, Pt=0 min(6m) ≈ 10−10. Secondly, the probabilities converge to a limiting
density for large T . This occurs after some decorrelation time τc ≈ 10 min in Set 1
and τc ≈ 3 min in Set 2. Similarly, the LDT results converge. In fact, this conver-
gence can be observed at the level of the trajectories generated from the optimal
u?0. As Fig. 4.6 shows, reading these trajectories backward from t = T , their end
portions coincide, regardless on whether T = 20 min, T = 15 min, or T = 10 min.
The implications of these observations, in particular on the mechanism of creation
of rogue waves and their probability of appearance within a time window, will be
discussed in Interpretation below.

Before doing so, let us discuss the scalability of our results to larger domain
sizes, referring the reader to the Appendix B for more details. As shown above,
the optimization procedure based on large deviation theory predicts that the most
likely way a rogue wave will occur in the domain is via the onset of a single large
peak in |u(t, x)|. In the set-up considered before, this prediction is confirmed by
the brute-force simulations using Monte-Carlo sampling. It is clear, however, that
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Figure 4.6. Contourplot of the optimal trajectories from LDT for T = 10, 15,
and 20 min in Set 1. The trajectories, superposed to match at t = T , coincide,
which is consistent with the convergence of the probabilities PT (z) for large T .

for increased domain size, e.g. by taking a domain size of NL with N � 1, it will
become increasingly likely to observe multiple peaks, for the simple reason that
large waves can occur independently at multiple sufficiently separated locations.
In these large domains, the large deviation predictions remain valid if we look at
the maximum of |u(t, x)| in observation windows that are not too large (that is,
about the size of the domain L considered above). However, they deteriorate if we
consider this maximum in the entire domain of size NL, in the sense that the value
P
(
maxx∈[0,NL] |u(t, x)| ≥ z

)
predicted by large deviation theory matches that from

Monte-Carlo sampling at values of z that are pushed further away in the tails. This
is an entropic effect, which is easy to correct for: events in different subwindows
must be considered independent, and their probabilities superposed. That is, if we
denote by

PN
T (z) = P

(
max

x∈[0,NL]
|u(T, x)| ≥ z

)
, (4.42)
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it can be related to PT (z) = P(maxx∈[0,L] |u(T, x)| ≥ z) via

PN
T (z) = 1− (1− PT (z))N . (4.43)

This formula is derived in Appendix B and shown to accurately explain the nu-
merical results. In effect, this provides us with a method to scale up our results to
arbitrary large observation windows.

Details on LDT and Laplace’s method

For the reader’s convenience, here we recall some standard large deviations results
that rely on the evaluation of Gaussian integrals by Laplace’s method and are at
the core of the method we propose. All of the following is justified rigorously by
the results of chapter 2. It is convenient to rephrase the problem abstractly and
consider the estimation of

P (z) = P(φ(θ) > z) , (4.44)
where θ ∈ RD are Gaussian random variables with mean zero and covariance Id,
and φ : RD → R is some real valued function – as long as we truncate the sum
in Eq. 4.33 to a finite number of modes, |n| ≤ M , the problem treated in this
chapter can be cast in this way, with θ playing the role of C−1/2u0 and φ(·) that of
F (u(T,C−1/2·)). The probability P (z) in Eq. 4.44 is given by

P (z) = (2π)−D/2
∫
Ω(z)

e−
1
2 |θ|

2
dθ , (4.45)

where Ω(z) = {θ : φ(θ) > z}. The interesting case is when this set does not contain
the origin, 0 /∈ Ω(z), which we will assume is true when z > 0. We also make two
additional assumptions:

1. The point on the boundary ∂Ω(z) that is closest to the origin is isolated:
Denoting this point as

θ?(z) = argmin
θ∈∂Ω(z)

|θ|2 , (4.46)

we assume that
1
2 |θ

?(z)|2 is strictly increasing with z ≥ 0 ;
lim
z→∞

1
2 |θ

?(z)|2 =∞ .
(4.47)

2. The connected piece of ∂Ω(z) that contains θ?(z) is smooth with a curvature
that is bounded by a constant independent of z.

The point θ?(z) satisfies the Euler-Lagrange equation for Eq. 4.46, with the con-
straint incorporated via a Lagrange multiplier term:

θ?(z) = λ∇φ(θ?(z)) (4.48)
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4 – Surface gravity waves: from theory to experiment

for some Lagrange multiplier λ. This implies that

θ?(z)
|θ?(z)| = ∇φ(θ?(z))

|∇φ(θ?(z))| = n̂(z) . (4.49)

where n̂(z) denotes the inward pointing unit vector normal to ∂Ω(z) at θ?(z). If we
move inside the set Ω(z) from θ?(z) in the direction of n̂(z), the norm |θ|2 increases
under the assumptions in Eq. 4.47. Indeed, setting θ = θ?(z) + n̂(z)u with u ≥ 0,
we have

|θ|2 = |θ?(z)|2 + 2〈n̂(z), θ?(z)〉u+ u2

= |θ?(z)|2 + 2|θ?(z)|z + z2 ,
(4.50)

where we used Eq. 4.49. In fact, if we were to perform the integral in that direction,
the natural variable of integration would be to rescale u→ u/|θ?(z)|. In particular,
if we were to replace Ω(z) by the half space P (z) = {θ | n̂(z) · (θ − θ∗(z)) > 0}, it
would be easy to estimate the integral in Eq. 4.45 by introducing a local coordinate
system around θ∗(z), whose first coordinate is in the direction of n̂(z). Indeed this
would give:

(2π)−D/2
∫
P (z)

e−
1
2 |θ|

2
dθ

= (2π)−D/2
∫ ∞

0
e−

1
2 |θ

?(z)|2−|θ?(z)|u−1
2u

2
du

∫
RN−1

e−
1
2 |η|

2
dη

= (2π)−1/2e−
1
2 |θ

?(z)|2
∫ ∞

0
e−|θ

?(z)|u−1
2u

2
du

= (2π)−1/2|θ?(z)|−1e−
1
2 |θ

?(z)|2
∫ ∞

0
e−v−

1
2 |θ

?(z)|−2v2
dv

∼ (2π)−1/2|θ?(z)|−1e−
1
2 |θ

?(z)|2 as z →∞. (4.51)

The last approximation goes beyond a large deviations estimate (i.e. it includes
the prefactor), and it implies

lim
z→∞
|θ?(z)|−2 log

(
(2π)−D/2

∫
P (z)

e−
1
2 |θ|

2
dθ

)
= −1

2 . (4.52)

This log-asymptotic estimate is often written as∫
P (z)

e−
1
2 |θ|

2
dθ � e−

1
2 |θ

?(z)|2 as z →∞. (4.53)

Interestingly, while the asymptotic estimate in Eq. 4.51 does not necessarily apply
to the original integral in Eq. 4.45 (that is, the prefactor may take different forms
depending on the shape of ∂Ω(z) near θ?(z)), the rougher log-asymptotic estimate
in Eq. 4.53 does as long as the the boundary ∂Ω(z) is smooth, with a curvature
that is bounded by a constant independent of z. This is because because the
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4.3 – Large deviations and rogue waves

contribution (positive or negative) to the integral over the region between Ω(z)
and P (z) is subdominant in that case, in the sense that the log of its amplitude
is dominated by |θ?(z)|. This is the essence of the large deviations result that we
apply in this thesis.

Numerical details

To perform the calculations, we solved Eq. 4.32 with L = 40π and periodic bound-
ary conditions, and checked that this domain is large enough to make the effect
of these boundary conditions negligible (see Appendix B). The spatial domain was
discretized using 212 equidistant gridpoints, which is enough to resolve the solution
of Eq. 4.32. To evolve the field u(t, x) in time we used a pseudo-spectral second
order exponential time-differencing (ETD2RK) method [45, 107].

When performing the Monte-Carlo simulations, we used 106 realizations of the
random initial data constructed by truncating the sum in Eq. 4.33 over theM = 23
modes with −11 ≤ n ≤ 11, i.e −3∆ ≤ kn ≤ 3∆: these modes carry most of the
variance, and we checked that adding more modes to the initial condition did not
affect the results in any significant way (see Appendix B).

Details on the optimization procedure

As explained above, the large deviation rate function IT (z) in Eq. 4.37 can be
evaluated by solving the dual optimization problem in Eq. 4.39, which we rewrite
as ST (λ) = infu0 E(u0, λ), where we defined the cost function

E(u0, λ) ≡ 1
2‖u0‖2

C − λF (u(T, u0)) . (4.54)

We performed this minimization using steepest descent with adaptive step (line-
search) and preconditioning of the gradient [21]. This involves evaluating the (func-
tional) gradient of ET (u0, λ) with respect to u0. Using the chain rule, this gradient
can be expressed as (using compact vectorial notation)

δE

δu0
= C−1u0 − λJT (T, u0)δF

δu
(4.55)

where J(t, u0) = δu(t, u0)/δu0 is the Jacobian of the transformation u0 → u(t, u0).
Collecting all terms on the right-hand-side of the MNLS Eq. 4.32 into b(u), this
equation can be written as

∂tu = b(u), u(t = 0) = u0 , (4.56)

and it is easy to see that in this notation J(t, u0) satisfies

∂tJ = δb

δu
J, J(t = 0) = Id. (4.57)
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Consistent with what was done in the Monte-Carlo sampling, to get the results
presented above we truncated the initial data u0 over M = 23 modes using the
representation

u0(x) =
11∑

n=−11
eiknxân, kn = 2πn/L. (4.58)

This means that minimization of Eq. 4.54 was performed in the 2M − 1 = 45
dimensional space spanned by the modes ân, accounting for invariance by an overall
phase shift – to check convergence we also repeated this calculation using larger
values of M and found no noticeable difference in the results (see Appendix B).

In practice, the evaluation of the gradient in Eq. 4.55 was performed by integrat-
ing both u(t) and J(t) up to time t = T . Eq. 4.57 was integrated using the same
pseudo-spectral method as for Eq. 4.32 on the same grid. To perform the steepest
descent step, we then preconditioned the gradient through scalar multiplication by
the step-independent, diagonal metric with the components of the spectrum Ĉn as
diagonal elements.

4.3.5 Interpretation: combining the long-timescale WT pre-
dictions and the fast nonlinear effects

The convergence of PT (z) towards a limiting function P (z) has important conse-
quences for the significance and interpretation of our method and its results. Notice
first that this convergence can be explained if we assume that the probability dis-
tribution of the solutions to Eq. 4.32 with Gaussian initial data converges to an
invariant measure. In this case, for large T , the Monte-Carlo simulations will sam-
ple the value of maxx |u| on this invariant measure, and the optimization procedure
based on LDT will do the same. The timescale τc over which convergence occurs
depends on how far this invariant measure is from the initial Gaussian measure of
u0(x). Interestingly the values we observe for τc are in rough agreement with the
timescales predicted by the theory of high-power pulse propagation [16, 185]. As re-
called in the Appendix B, this approach predicts that the timescale of apparition of
a focusing solution starting from a large initial pulse of maximal amplitude Ui and
length-scale Li is τc =

√
TnlTlin, where Tnl =

(
1
2ω0k

2
0U

2
i

)−1
is the nonlinear timescale

for modulational instability and Tlin = 8ω−1
0 k2

0L
2
i is the linear timescale associated

to group dispersion. Setting Ui = Hs (the size at the onset of rogue waves) and
Li =

√
2π∆−1 (the correlation length of the initial field) gives τc ' 18 min for Set 1

and τc ' 8 min for Set 2, consistent with the convergence times of PT (z). This ob-
servation has implications in terms of the mechanism of apparition of rogue waves,
in particular their connection to the so-called Peregrine soliton, that has been in-
voked as prototype mechanism for rogue waves creation [156, 3, 174, 4, 150, 186], in
particular for water waves [29, 30, 28], plasmas [10] and fiber optics [109, 180, 185].
This connection is discussed in Appendix B.
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Figure 4.7. Contourplots of the probability to observe a wave whose amplitude
exceeds z in the time window [0, TI ] for Sets 1 (a) and 2 (b).

Our findings also indicate that, even though the assumption that u0(x) is Gaus-
sian is incorrect in the tail (that is, PT=0(z) is not equal to the limiting P (z) in
the tail), it contains the right seeds to estimate P (z) via PT (z) if T & τc

3. Alto-
gether this is consistent with the scenario put forward by Sapsis and collaborators
in [133, 77] to explain how extreme events arise in intermittent dynamical systems
and calculate their probability: they occur when the system hits small instability
pockets which trigger a large transient excursion. In this scenario, as long as the
initial probability distribution in these pockets is accurate, the dynamics will per-
mit precise estimation of the distribution tail. In some sense, the distribution of
the initial condition plays a role of the prior distribution in Bayesian inference4,
and the posterior can be effectively sampled by adding the additional information
from the dynamics over short periods of time during which instabilities can occur.
In [133], this picture was made predictive by using a two-dimensional ansatz for
the initial condition u0(x) to avoid having to perform sampling in high-dimension
over the original u0(x). What our results show is that this approximation can be

3This convergence occurs on the timescale τc which is much smaller than the mixing time for
the solutions of Eq. 4.32, i.e. the time it would take from a given initial condition, rather than
an ensemble thereof, to sample the invariant measure.

4Note in particular that the Gaussian field in Eq. 4.33 is the random field that maximizes
entropy given the constraint on its covariance C(x).
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avoided altogether by using LDT to perform the calculations directly with the full
Gaussian initial condition in Eq. 4.33.

Interestingly, we can use the results above to calculate the probability of oc-
currence of rogue waves in a given time window. More precisely, the probability
p(z, TI) that a rogue wave of amplitude larger than z be observed in the domain
[0, L] during [0, TI ] (i.e. that maxt∈[0,TI ] maxx∈[0,L] |u(t, x)| ≥ z) can be estimated in
terms of P (z) and τc as

p ≡ P
(

max
t∈[0,TI ]

max
x∈[0,L]

|u(t, x)| ≥ z
)
∼ 1− (1− P (z))TI/τc , (4.59)

where we used the fact that rogue waves can be considered independent on timescales
larger than τc and assumed TI � τc. The function p is plotted in Fig. 4.7 as a func-
tion of z and TI . For example for Set 1, Eq. 6.7 indicates a 50% chance to observe
a rogue wave of height z = 4 m (that is, about 8 m from crest-to-trough) after 11
hours (using τc = 10 min and P (z = 4 m) = 1.1 · 10−2); if we wait 30 hours, the
chance goes up to 85%. Similarly, for Set 2 the chance to observe a wave of 11 m
height is about 50% after 3 hours and about 85% after 8 hours (τc = 3 min and
P (z = 11 m) = 1.2 · 10−2).

4.4 Experimental evidence of instantons
In the following section we apply the same method to an experiment in a real water
tank. Conceptually, the setting is in analogy with the previous section, though
the evolution is in space rather than time, and for semplicity we use the NLS
equation (4.14) without the higher order terms of the Dysthe equation.

4.4.1 Experimental setup and analysis
The experimental data were recorded in the 270m long wave flume at Marintek
(Norway) [147, 148], represented in Fig. 4.8a. On one end of the tank a plane-wave
generator is able to perturb the water surface with a predefined random signal. The
perturbations create long-crested wave trains that propagate along the tank toward
the opposite end, where they eventually break on a smooth beach that suppresses
reflections. The water surface η(x, t) is measured by probes placed at different
distances from the wave maker (x-coordinate). The signal at the wave maker η(x =
0, t) is prepared according to a stationary random-phase statistics with amplitudes
given by the JONSWAP spectrum [96], designed to replicate energy spectra of deep
water waves in the ocean. The statistics of JONSWAP depend on two parameters
Hs and γ, quantifying the significant wave height and the enhancement factor,
respectively. Experimental data are collected for three different regimes: quasi
linear ( γ = 1, Hs = 0.11 m), intermediate (γ = 3.3, Hs = 0.13 m), and highly
nonlinear (γ = 6, Hs = 0.15 m).
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Figure 4.8. Experimental setup. (a) Wave flume experiment. The wave maker
generates a random wave field with stationary Gaussian statistics. The planar wave
fronts propagate along the water tank, where the surface elevation η is measured
by vertical probes. (b) Extreme wave event selection. At x = 45 m, we pick
a temporal maximum of the experimental data series of η which exceeds a large
threshold z. We track the event evolution at probes located earlier in the channel,
within an observation time window centered at the maximum and following the
wave packet with group velocity cg; we repeat this for the whole time series building
a collection of extreme events and their evolution. (c) Mean extreme event. The
thick line shows the mean extreme event at different points along the channel, the
shaded area a 1 standard deviation range around it. The noise to signal ratio is
small in the focusing region, leading naturally to the question: Is there a common
pathway by which most of the rogue waves arise?

Due to the deep-water, small-steepness and narrow-band properties, the evolu-
tion of the system is accurately described by the one-dimensional nonlinear Schrödinger
equation [202, 13, 146, 6, 150, 29]. The NLS equation describes the change of the
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complex envelope ψ, that relates to the surface elevation via the Stokes’ series trun-
cated at second order. The so-called Benjamin-Feir index (BFI, ratio of the non-
linear term over the dispersive term) quantifies the degree of nonlinearity present
in the system. Its value for the three chosen regimes, as visible from Table 4.1,
justifies their names. In order to characterize the dynamics leading to extreme

Set γ Hs (m) BFI Llin (m) LPer (m)
quasi linear 1 .11 .56 8.9 32
intermediate 3.3 .13 1.50 46 61

highly nonlinear 6 .15 2.11 69 65

Table 4.1. The three experimental regimes with different strength of non-
linearity quantified by the nondimensional parameter BFI, ratio of non-
linearity over dispersion. γ and Hs characterize the JONSWAP spectrum
enforced by the wave maker.

events of the water surface, we adopt the following procedure: At a fixed location
x = L along the channel, we select small observation windows around all temporal
maxima of η that exceed a threshold z. Knowing the group velocity cg = ω0/(2k0),
we can track the wave packet backward in space and look at its shape at earlier
points in the channel. This allows us to build a collection of extreme events and
their precursors. In Fig. 4.8b, this procedure is pictured for two extreme events
at x = 45 m and their precursors at x = 30 m and x = 10 m. Now, we can do
statistics of the conditional event by computing its average and standard deviation
at the different positions along the channel, obtaining a result like in Fig. 4.8c for
the highly-nonlinear case.

Further details

The surface elevation η is measured simultaneously by 19 probes placed at different
locations along the axes at the center of the tank, recording data with a rate of
5 measurements per second. At each of two different positions (x = 75 m and
x = 160 m) two extra probes closer to the sides are used to check that the wave
fronts remain planar. The signal at the wave maker η(x = 0, t) ≡ η0(t) is prepared
according to the stationary random-phase statistics with fixed spectral amplitudes,

η0(t) =
N∑
j=1

√
2Ĉ(ωj)δω cos(2πωjt+ φ). (4.60)

The phase φ is uniformly distributed in [0,2π], δω = 2π
T
, ωj = jδω, T is the time-

series length. The spectrum Ĉ(ω) is given by the JONSWAP parametrization [96]

Ĉ(ω) = αg2

(2π)4ω5 exp
(
−5

4

(
ω0

ω

)4
)
γ

exp
(
− (ω−ω0)2

2σ2ω2
0

)
, (4.61)
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with g the gravity acceleration, ω0 = 4.19 s−1 the carrier frequency (spectral peak),
σ = 0.007 if ω ≤ ω̃0, and σ = 0.09 if ω > ω̃0. The value of ω0 yields a carrier wave
number k0 = ω2

0/g = 1.79 m−1, where the dispersion relation of surface gravity
waves in deep water is used. We use data from 5 time series for each set, each of
which is 25 min long.

Because of the asymmetry of the JONSWAP spectrum, the effective group ve-
locity to track the wave packets along their evolution is slightly different from the
nominal one: in the quasi linear case the correction is by a factor .90, in the in-
termediate and in the highly nonlinear cases by a factor .88. The choice of the
threshold z is meant to select extreme events with a similar probability for all sets:
the values of z = Hs for the quasi linear set, z = 1.1Hs for the intermediate set and
z = 1.2Hs for the highly-nonlinear set lead to 78, 99 and 88 conditional maxima
of the surface elevation such that η(x = 45 m, t) ≥ z, respectively.

The NLS equation with space evolution reads

∂xψ + 2∂tψ + i∂2
t ψ + i|ψ|2ψ = 0 . (4.62)

This is the effective equation describing the evolution of the surface complex enve-
lope |u| when the conditions of deep-water, small-steepness and narrow-spectrum
are at once satisfied. The first condition requires k0h � 1, where h is the water
depth. The wave tank is everywhere 5 to 10 meters deep, meaning k0h ≥ 8.95� 1.
For the second condition, in the most energetic set we have k0Hs ' .26� 1, where
Hs is an estimate of the height of the tallest waves. The third condition requires
∆ω/ω0 � 1: for increasing nonlinearity, our three sets have a value of ∆ω/ω0 of
.25, .11 and .09, i.e. all of them have narrow-banded spectra. The surface elevation
relates to the complex envelope via the Stokes series truncated at second order
(being third and higher orders negligible)

η = |ψ| cos(θ) + 1
2k0|ψ|2 cos(2θ) +O(k2

0|ψ|3) , (4.63)

where θ = k0x−ω0t+ϕ and ϕ is the phase of ψ. Considering the third order term
of the series would lead to differences always smaller than 2% that are not relevant
to our results.

4.4.2 LDT method
In order to theoretically predict rare events, we make use of instanton theory. De-
veloped originally in the context of quantum chromodynamics [171], at its core lies
the realization that the evolution of any stochastic system, be it quantum and clas-
sical, reduces to a well-defined (semi-classical) limit in the presence of a smallness
parameter. Concretely, the simultaneous evaluation of all possible realizations of
the system subject to a given constraint results in an integral (classical or path-
integral), where the integrand contains an action functional S(ψ). The dominating
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realization can then be obtained to leading order by approximating the integral by
a saddle point approximation, δS(ψ)/δψ = 0. The critical point ψ∗ of the action
functional associated with a stochastic system is called the instanton, and it rep-
resents the maximum likelihood realization of the stochastic system subject to the
given constraints.

In our case, the evaluation is taken over all realizations ψ0 of the random energy
input at the wave generator, weighted by their respective probability under the
JONSWAP spectrum. We consider only those initial data that result in an evolution
that will exceed the defined threshold further down the channel, subject to its
evolution via the NLS equation. More precisely, we are interested trajectories
of the elevation η(t, x) that fulfill η(0, L) ≥ z, i.e. trajectories that exceed the
threshold z at spatial position L, where we use temporal invariance to designate
t = 0 to be the point in time of the extreme event. We denote the set of initial
conditions that fulfill this constraint with Λ(z). It will turn out that we can use
z−1 as our smallness parameter, justifying the instanton approximation. Denoting
by PL(z) ≡ P(η(0, L) ≥ z), we then have

PL(z) ∼ exp(− min
ψ0∈Λ(z)

S(ψ0)) , (4.64)

where S(ψ0) is the action associated with the random initial condition. The deriva-
tion of the action, and the validity of the instanton approximation, can be made
precise within large deviation theory (LDT), as discussed in chapter 2. At this
stage, it is clear from equation (4.64) that the stochastic sampling problem is re-
placed by a deterministic optimization problem, which we solve numerically. The
solution of this optimization problem, i.e. the associated minimizer, corresponds
to the instanton trajectory, which in the following we will compare to trajectories
obtained from the experiment.

4.4.3 Agreement of experimental extreme waves and in-
stantons

In Fig. 4.9 we show the comparison between the evolution of the average extreme
event of the experiment and the instanton evolution, both constrained at x = 45
m. In all cases the instanton tracks the dynamics of the mean extreme event very
closely during the whole evolution. Moreover, in the focusing region the standard
deviation around the mean is small, especially toward the end of the evolution. Ob-
serving this is itself a statement that indeed all of the extreme excursions leading
to η(x,0) ≥ z resemble the instanton plus small random fluctuations. The instan-
ton approximation shows excellent agreement not only across different degrees of
nonlinearity (and therefore substantially different physical mechanisms), but also
captures the behavior of precursors earlier along the channel.

In Fig. 4.10 the envelope evolution of a single realization of the conditional
event is shown at multiple points and is compared to the instanton evolution, in
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Figure 4.9. Validity of the instanton. The black lines display the instanton evo-
lution along the channel, comparing it to the mean and standard deviation of the
experimental extreme events in color, for different regimes of nonlinearity. The
instanton prediction agrees with the experimental mean across all regimes, and
captures the whole evolution along the channel. This confirms that the typical
extreme event is well represented by the instanton, and the typical extreme events
collapses onto this most likely one only with small fuctuations around it.

the highly-nonlinear case. Apart from random fluctuations, one can notice that in
the focusing region the experimental sample shares with the instanton the same
overall structure, which needs to be there in order for it to reach an extreme size.

4.4.4 A unifying theory of rogue waves
We want to particularly stress that previous theory described either the fully linear
case or the fully nonlinear case. In the linear case, i.e. a Gaussian stationary field,
the shape of an envelope time series with a large local maximum in t = 0 is expected
to be given by the covariance of the wave field, i.e. the inverse Fourier transform
of the spectrum. This is a well established result in probability [121]. In the
oceanographic context, the result was rediscovered in the ′90s [18] and subsequently
tested for some real quasi-Gaussian wave records in the ocean [183], also accounting
for second-order Stokes’ corrections [78]. We refer to such result as to the linear
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4 – Surface gravity waves: from theory to experiment

Figure 4.10. Agreement of the instanton with single extreme events. The evo-
lution of a single realization of an extreme wave (depicted in red) is reasonably
approximated by the instanton evolution (black/white surface), here for a sample
of the highly nonlinear dataset. In order to capture the focusing pattern in an es-
sential way, the envelope |ψ| is plotted instead of the surface elevation η to remove
carrier-frequency oscillations.

theory for extreme events.
The framework in which the mentioned result belongs and represents one of the

central aspects is often called theory of quasi-determinism, valid for Gaussian fields
– which strictly speaking requires a linear dynamics. A core result of the theory is
the prediction that conditioning the surface elevation to have a maximum of size
z at t = 0 (at a fixed location in space), the expected shape of the envelope is
given by z C(t)/C(0), where C(t) is the covariance of the wave field, i.e. the inverse
Fourier transform of the spectrum Ĉ(ω0 +Ω).

In our case, the linear prediction is justified if the nonlinear focusing effects are
small so that the statistics stay close to Gaussian along the tank, as in the quasi
linear set. Then, conditioning on a temporal maximum of η(L,0) at x = L, we
can compute the history of the wave packet by evolving NLS backward in space.
In Fig. 4.11a this linear prediction is plotted in comparison with the envelope of
the mean conditional extreme event for the quasi linear set. A good agreement
is observed at all spatial points considered. Moreover, the theoretical instanton
found through the optimization procedure reduces perfectly to the linear prediction,
proving that such result is included in the instanton theory and represents its
limiting linear case.
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Figure 4.11. Comparison of the instanton to the limiting theories. (a) The quasi
linear instanton converges to the linear prediction, correctly reproducing the mean
extreme event of the experiment. The results clearly differ from the Peregrine
soliton predicted by semi-classical theory. (b) The highly nonlinear instanton evo-
lution, closely following the experimental mean extreme event, converges locally
to a Peregrine around its space-time maximum, as predicted by the semi-classi-
cal theory, and reproduced by the instanton. The linear prediction instead fails
particularly around the maximum. (c) The contour plots show agreement with
the two limiting theories and recover the respective dominant length scales. In
the linear limit, dominated by dispersion, the rogue waves arise and decay very
rapidly. On the contrary, in the semi-classical limit, where nonlinearity dominates,
the Peregrine-like structure of the extreme event is persistent, with a very slow
dacay. The rogue waves in intermediate regimes, as exemplified by the central
panel, display both linear and nonlinear features.

For the opposite regime, a recently formulated theorem [16] based on the regu-
larization at the gradient catastrophe point states that in the zero-dispersion (semi-
classical) regime of the NLSE any single localized pulse on a vanishing background
leads locally to the emergence of a Peregrine soliton. By scale invariance of the
NLSE, such a regime can be attained whenever a peak is large and focused enough
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4 – Surface gravity waves: from theory to experiment

that the nonlinear term dominates over dispersion. In fiber optics [180], emerging
Peregrine-like structures have been observed out of a random background. For the
highly nonlinear case, in Fig. 4.11b we compare the instanton and the Peregrine
reaching the same maximal height z at x = 45 m, finding that in the focusing
region the two converge to the same shape, which is also closely followed by the
envelope of the experimental mean event. Looking at the event precursor at earlier
x, instead, we notice that the experimental mean stays close to the instanton, grad-
ually diverging from the Peregrine. Thus, it appears that the instanton captures
the mechanism underlying the rogue wave events also when nonlinearity rules over
dispersion, tending locally to the Peregrine solution around the maximal focusing
point, consistently with the regularization of the gradient catastrophe [16].

A useful quantification of the effective mechanisms consists in looking at the
length scales at play. The linear length of dispersion is given by Llin = ω2

0/(k0∆ω
2),

while the characteristic length associated with the Peregrine soliton is LPer =√
LlinLnl, where Lnl = 8/k3

0H
2
s is the nonlinear length of modulational instability.

Looking at Fig. 4.11c, these length scales are clearly visible in space-time contours
of the amplitude. In the linear and quasi linear regimes, the wave packet has a
characteristic length around Llin ' 9 m. Thus, we can state that linear superpo-
sition dominates and the expected mechanism leading to the extreme event is the
linear dispersion of a coherent wave packet. The quasi linear instanton evolution
is almost indistinguishable from the linear approximation. On the other hand, the
extent of the structures in the highly nonlinear agrees with the length LPer ' 65 m.
The dynamics of the highly nonlinear instanton clearly converges to the Peregrine
dynamics in proximity of the space-time maximal focusing, including the charace-
teristic isolated “dips” of the amplitude around the extreme event. This picture
highlights a sharp qualitative difference between the rapid evanescent linear rogue
waves and the much more persistent nonlinear ones. Quite strikingly, the instanton
is able to interpolate between those two limiting regimes, as evidenced by the inter-
mediate instanton in Fig. 4.11c, which displays features of both the linear theory
and the Peregrine soliton. The instanton therefore predicts extreme surface waves
universally.
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Chapter 5

Nonlinear waves in fiber
optics

Introductive paragraph

In this chapter, we treat an application of the LDT method devised in chapters 2
and 3 to the problem of laser beams propagating within a Kerr optical fiber. The
beams are randomly generated at the fiber input and evolve nonlinearly via the
nonlinear Schrödinger equation with evolution in space. The situation is completely
similar to the 1D evolution of random waves in a water flume analyzed in the
previous chapter, as recently pointed out in [63]. Although in the following we
carry out a purely numerical study, experiments of this kind are rapidly becoming
more and more common. As expected, the mathematical setup is analogous to
the one in chapter 4, but with different parameters. We compute the instantons
of the problem and compare them to the “optical rogue waves”. In the parameter
range of optics, where no wave breaking occurs, one is able to explore regimes
with very strong nonlinearity. The observed collapse of the extreme events onto
the instanton is truly remarkable and the LDT probability estimate in the tail is
accurate across the whole rogue-wave regime. We believe that these results will
raise interest in the optics community and pave the way to new approaches such
as for instance the theoretical design of optimal conditions to create highly focused
energy concentration by exploiting nonlinearity.

Part of the material in this chapter was published in

G. Dematteis, T. Grafke, and E. Vanden-Eijnden. “Extreme event quantification in
dynamical systems with random components”. https://arxiv.org/abs/1808.10764, 2018.
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5.1 The 1D NLS equation in optical turbulence
The nonlinear Schrödinger equation (NLSE) in one dimension arises in a variety of
different contexts such as surface gravity waves [202, 150], nonlinear fiber optics [4],
plasmas [10] and Bose-Einstein condensates [94, 159]. Here we will focus on appli-
cations of NLSE in nonlinear optics, a domain that has seen exciting experimental
developments in recent years [109, 180, 185]. Specifically, we study the problem of
the onset of rogue waves out of a bath of random waves taken as initial condition
for NLSE, which is a key question in integrable turbulence [203, 167, 2, 44, 77].

In non-dimensional units, the 1D NLSE for the envelope of a light beam propa-
gating in an optical fiber reads

∂ξΨ = i
1
2Ψττ + i|Ψ |2Ψ , τ ∈ Γ, (5.1)

where Γ = [0, T ], with periodic boundary conditions Ψ(ξ,0) = Ψ(ξ, T ), and a suit-
able initial condition Ψ(0, τ) = Ψ0(τ), at the input end of the fiber ξ = 0. The non-
dimensional distance ξ, time τ , and envelope Ψ are related to the respective physical
quantities x, t, and ψ via characteristic constants that depend on the specifics of the
optical fiber: x = L0ξ, t = T0τ and ψ =

√
P0Ψ . For instance, if we pick T0 = 5 ps,

L0 = 0.5 km, P0 = 0.5 mW, the NLSE (5.1) models an optical fiber with dispersion
|β2| = T 2

0 /L0 = 50 ps2km−1 and nonlinearity γ = 1/(L0P0) = 4 km−1mW−1.
Let us denote by {Ψ̂n}n∈Z the Fourier component of {Ψ(τ)}τ∈[0,T ], i.e.

Ψ̂n = 1
T

∫ T

0
e−iωnτΨ(τ)dτ, Ψ(τ) =

+∞∑
n=−∞

eiωnτ Ψ̂n , (5.2)

where ωn = 2πn/T and n ∈ Z. Equation (5.1) is derived under the quasi-
monochromatic assumption, meaning that the spectrum Ĉn defined as

Ĉn = 1
T

∫ T

0
e−iωnτC(τ)dτ , C(τ − τ ′) = E(Ψ0(τ)Ψ̄0(τ ′)) , (5.3)

must be narrow – here and below the bar denoting complex conjugation. We will
consider a Gaussian spectrum with

Ĉn = Ae−ω2
n/(2∆) A > 0, ∆ > 0, −M ≤ n ≤M, M > 0, (5.4)

and Ĉn = 0 for |n| > M . Assuming that the initial Ψ(0, τ) is a Gaussian field with
mean zero and covariance C(τ − τ ′), this implies the representation

Ψ(0, τ, ϑ) =
M∑

n=−M
eiωnτ Ĉ1/2

n ϑn, (5.5)

where ϑn are complex Gaussian variables with mean zero and covariance Eϑnϑ̄m =
δm,n, Eϑnϑm = Eϑ̄nϑ̄m = 0 . Note that the spectral amplitude is related to the opti-
cal power P (ξ, τ) = |ψ(ξ, τ)|2 (statistically homogeneous in τ) viaA = E(P )/∑n e

−ω2
n/(2∆).
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5.1 – The 1D NLS equation in optical turbulence

The initial statistical state of the system is thus completely determined given the
two parameters ∆ and E(P ), and the average power E(P ) is relevant to optical
experiments – it also enjoys the property of being invariant under the NLSE evo-
lution in the variable ξ, i.e. it can be measured at the input or at the output of the
optical fiber, equivalently.

In the set-up above, we will investigate extreme fluctuations of the optical power
at the output of the optical fiber (ξ = L). Recalling that |Ψ(L, τ)| =

√
P (L, τ),

this amounts to looking at the statistics of

f(Ψ(ϑ)) = max
τ∈Γ
|Ψ(L, τ, ϑ)| , L > 0. (5.6)

Analyzing this observable using the framework developed in Secs. 2.2.1 and 3
amounts to minimizing the cost function (this is (3.1))

E(Ψ, θ) = I(θ)− λf(Ψ) with I(θ) = 1
2

M∑
n=−M

|θn|2 . (5.7)

This minimization must be performed on the 2× (2M + 1)-dimensional space Ω ⊆
C2M+1 of the initial conditions. The gradient of the cost function (5.7) is given by

∇θE(Ψ(θ), θ) = ∇θI(θ) + <(J(L, τ∗))T
<(Ψ(L, τ∗))
|Ψ(L, τ∗)|

+ =(J(L, τ∗))T
=(Ψ(L, τ∗))
|Ψ(L, τ∗)|

,

(5.8)
where Ψ(L, τ∗) ≡ maxτ∈Γ |Ψ(L, τ)| . The field Ψ is evolved with (5.1) and the initial
condition depends on the point θ ∈ Ω through the mapping Ψ(0, θ) defined in (5.5),
with the difference that here θ is no longer random. The matrix J (also complex)
evolves according to

∂ξJ(ξ, τ) =
∫ L

0
dξ′

(
δb(Ψ(ξ))
δΨ(ξ′) J(ξ′, τ) + δb(Ψ(ξ))

δΨ̄(ξ′)
J̄(ξ′, τ)

)
, (5.9)

where b(Ψ(ξ))) is a shorthand for the right hand side of (5.1): explicitly
∫ L

0
dξ′

δb(ξ)
δΨ(ξ′) J(ξ′) =

(
i

2∂ττ + 2i|Ψ(ξ)|2
)
J(ξ) , (5.10)

∫ L

0
dξ′

δb(ξ)
δΨ̄(ξ′)

J̄(ξ′) = i
(
Ψ(ξ)

)2
J(ξ) . (5.11)

The initial condition for (5.9) is

J(ξ = 0, θ) = ∇θΨ(0, θ) . (5.12)

Before turning to the results, let us explain how the numerical simulations were
performed. Equations (5.1) and (5.9) were evolved from ξ = 0 to ξ = L (up to
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L = 0.2) using the pseudo-spectral second order Runge-Kutta exponential-time-
differencing method (ETDRK2) [45, 107] with step dξ = 5 × 10−4 on a periodic
box [0, T ] discretized by 212 equidistant grid points. The size T = 30 is found
large enough for the boundary conditions to not affect the statistics on the spatio-
temporal scales considered. Each Monte Carlo simulation involves 106 realizations
of the random initial data constructed via (5.5), with M = 45. Adding more
modes to the initial condition does not affect the results in any significant way. The
minimization was performed in the space Ω (with high dimension 2× (2M + 1) =
182). This step was carried out via steepest descent with adaptive step (line search)
and preconditioning of the gradient, using the covariance of the initial condition as
metric, as explained in Sec. 3.

5.2 Instantons in optical fibers and the gradient
catastrophe

For generality, we present the results for the normalized fieldA(ξ, τ) = Ψ(ξ, τ)/
√
E(P )

using non-dimensional units. One can easily obtain the physical dimensions by ap-
plying the straightforward transformations given below equation (5.1). Four sets of
parameters have been chosen to explore different regimes: In Set 1, we take ∆ = π,
E(P ) = 5/4; in Set 2, ∆ = π/2, E(P ) = 5/4; in Set 3, ∆ = 3π/2, E(P ) = 5/4; and
in Set 4, ∆ = π, E(P ) = 5/9.

There have been recent claims, supported by both numerical and experimen-
tal evidence [180, 185], about the universality of the Peregrine Soliton (PS) as a
pathway to optical rogue waves out of a random background. For this reason, we
carried out a comparison between the instantons and the PS. In Fig. 5.1, the path
of occurrence of two extreme events is shown for Set 1, selected among the events in
the random sampling with maximum power amplification |A|2 = P/E(P ) exceeding
a value of 40. The instanton and the PS reaching the same power amplification are
also plotted.

In Fig. 5.2 the probability P (z) = P(maxτ |A(L, τ)| ≥ z) is shown for various
values of L, showing good agreement between the results from MC sampling and
those from LDT optimization. A rough estimate for the onset threshold of optical
rogue waves is |A|RW = 4

√
2/πE(|A|) ' 2.8 [63], independently of the set considered

because of the use of the normalized variable A. As can be seen, the focusing
NLSE increases the probability of large excursions of |A(L, τ)| compared to its
initial Gaussian value with expectation E(|A(L = 0, τ)|) =

√
π/4. This happens

gradually as the distance L separating the input from the output increases. The
tail fattening can be interpreted quantitatively in terms of the typical lengths of
the coherent structures of NLSE. Defining the linear length as Llin = 2/∆2 and the
nonlinear length as Lnlin = 1/E(P ), the typical length of emergence of a coherent
structure starting from a small hump is Lc = 1

2
√
LlinLnlin. This gives Lc = 0.2 for
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Figure 5.1. Set 1: The paths of occurrence of two extreme events plotted are
compared with the instanton and the Peregrine solution reaching the same max-
imum power at ξ = L. Shown is the quantity |A(ξ, τ)|2, i.e. the power in units
of average power, at three different locations (L = 0.2). The solution are shifted
away from one another for clarity, exploiting homogeneity in τ .

Set 1, in good agreement with the width of the spatial transient over which the fast
tail fattening takes place.

The asymptotic agreement of the probabilities shown in Fig. 5.2 is a numerical
evidence that the focusing NLSE (5.1) with random initial data (5.5) satisfies an
LDP. Additional support for the LDP is found in Fig. 5.3, where we compare the in-
stanton with the sampling mean. Looking at the signal to noise ratio, one sees that
the events reaching a certain extreme amplification are all very similar. According
to the results in Sec. 2.2.1, these events are expected to have typical fluctuations
in the direction perpendicular to the instanton in the space Ω: notice how away
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output point is taken at increasing distance L from the input. The rogue-wave
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Figure 5.3. Set 1: Results of the conditioning on the sampling for
maxτ∈Γ |A(L, τ)| ≥ z = 6.25, with L = 0.2. Shown is the average of the con-
ditional event (blue line), surrounded by the 1 std range (red area). The instanton
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from the focusing region (determined by the direction perpendicular to the instan-
ton because there the instanton is vanishing) the observable |A| fluctuates with
standard deviation

√
E(P )/2

√
(4− π)/2/

√
E(P ) ' 0.57 around the expected value√

π/2
√
E(P )/2/

√
E(P ) ' 0.89, exactly as expected for typical events. Instead,

the extreme size of the event is due to the component parallel to the instanton in
Ω, with small fluctuations in this direction: As a matter of fact, in the focusing
region (determined by the component parallel to the instanton) the signal to noise
ratio becomes very big, meaning that, as z increases, the extreme rogue waves with
maxτ |A(τ, L)| ≥ z become closer to the instanton reaching maxτ |A(τ, L)| = z.

Interestingly, from the knowledge of the LDT tails for a particular configuration
of the parameters ∆ and E(P ) we can derive the LDT tails for any combination of
∆ and E(P ), using only analytical transformations. This is possible thanks to two
properties: First, the scale invariance of the NLSE; second, the way the parameter
E(P ) appears in the cost function (5.7). Indeed the term I(θ) is independent of
E(P ), and from (5.5) the term f(Ψ(θ)) can be seen as a function of

√
E(P )θ.
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Figure 5.4. The two panels show how knowledge of the LDT tail at the out-
put point L for a given ∆ and E(P ) allows us to recover the LDT tail for an
arbitrary ∆′, with the properly rescaled mean power E(P )′, space L′, and time
τ ′. Left: Instanton reaching maxτ∈Γ |A(L, τ)| = 8.5, for sets 3 and 4. Right:
P(maxτ |A(L, τ |) ≥ z from MC sampling and tail estimate for Sets 3 and 4,
at an equivalent rescaled output point L. Note that not only the probability
tail is the same for the two sets, but also the entire distribution, as the scale
invariance establishes a complete equivalence between two sets having the same
value of the ratio

√
E(P )/∆.

• Starting from the second property, we have that given a fixed spectral width ∆
and a mean power E(P ), giving the cost function (5.7) E(θ, λ), the cost function
E ′(θ, λ) associated to a new mean power E(P )′ (but same spectral width) can be
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5 – Nonlinear waves in fiber optics

written as

E ′(θ, λ) = E(P )
E(P )′E(θ′, λ′), θ′ = θ

√√√√E(P )′
E(P ) , λ′ = λ

E(P )′
E(P ) . (5.13)

Since λ′ is nothing but a rescaling of λ, and they are both arbitrary variables, E
and E ′ represent actually the same landscape, just differing by a positive factor
and a rescaling of the variables. This implies that if we know an instanton θ?(z)
and its associated probability P (z) for the mean power E(P ), we also know that for
mean power E(P )′ the same event will have instanton θ′?(z) = θ?(z)

√
E(P )′/E(P )

with associated probability

P ′(z) = P (z)
E(P )
E(P )′ . (5.14)

Thus, keeping ∆ fixed, the LDT tails for a given E(P ) are sufficient to generate
the LDT tails for any mean power E(P )′, using (5.14).

• Using the scale invariance of the NLSE, it is possible to make a similar argument
to extend the LDT tails to arbitrary ∆. Knowing that initial conditions with the
same ratio

√
E(P )/∆ are scale invariant for the NLSE, one can pick an arbitrary

spectral width∆′. This gives a new mean power E(P )′ = E(P )(∆′/∆)2, and allows
us to compute the new length L′ = (∆/∆′)2L and time coordinate τ ′ = (∆/∆′)τ .
Thus, a bijection is established between the two parameter sets, where each pair
is characterized by the same non-dimensional instanton and same probability.
Hence, knowing the LDT tails at different L for one value of the spectral width,
one is able to obtain the whole spatial transient of the LDT tails for an arbitrary
spectral width. In Fig. 5.5 the invariance of the non-dimensional instanton and of
the LDT tail is shown for Sets 3 and 4, which yield the same dynamics once the
appropriate rescaling is performed.

Figs. 5.1 and 5.3 confirm that the high-power pulses arising spontaneously from
a random background tend to the shape of the PS around its maximum space-time
concentration [185]. Interpreting this in light of the gradient-catastrophe regular-
ization [16], it is clear that such characteristic shape of the extreme power amplifi-
cations is independent of the solitonic content of the field, although it is shared with
the local behavior of an exact solitonic solution. The random extreme realizations
quickly diverge from the PS away from the maximum, however. In contrast, the in-
stantons characterize all the essential dynamics of the extreme events in integrable
turbulence. They give an approximation of the extreme excursions that is much
more accurate than the PS, as can be observed in Fig. 5.3, and their shape adapts
to the size of the event. In addition, unlike the PS, they come with probabilistic
information and allows the estimation of the distribution tail, as seen in Fig. 5.2,
with mathematical justification in the LDT result (2.36). Furthermore, the instan-
tons depend on the statistical state of the random background, as shown in Fig. 5.5,
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Figure 5.5. Snapshots at increasing spatial coordinate from left to right (ξ = 0,
ξ = 0.1, ξ = 0.2) of instantons reaching the same peak intensity, for the three sets
of parameters with different spectral width: Set 1 (∆ = π) in red; Set 2 (∆ = π/2)
in green; and Set 3 (∆ = 3π/2) in blue. The PS reaching the same final height (at
the point of maximal focusing) is also plotted in black. For all the profiles, striking
agreement is observed around the point of maximal focusing in space-time, while
significant differences are observed away from that point.

while the PS is always the same. Because of these properties and their connection
with the gradient catastrophe (which is their generating mechanism), the instan-
tons can be important objects for further investigations in integrable turbulence.
In this context, recent results [49] suggest that the formation of extreme coherent
structures may not necessarily be linked to integrability, but may pertain to a more
general class of systems with instabilities (e.g. due to non-resonant interactions)
leading to spatio-temporal concentration phenomena.
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Chapter 6

Nonequilibrium forcing of an
inhomogeneous elastic rod

Introductory paragraph
In this section we study a model for a one-dimensional rod with random elasticity
structure, under the action of a prescribed external mechanical forcing (i.e. pulling
at one end). Harmonic interactions are used for instance for coarse-grained models
of DNA stretching [25, 40, 118] to account for the elastic response from extension
– although our minimal model neglects the elastic response from changes in the
polymer configuration. In general, the discrete version of the model can be viewed
as a simple molecular mechanics model for a short sector of a stiff polymer with
harmonic interaction between nearest neighbors (Hooke’s law) [1]. This being said
about possible physical or biological applications, we want to emphasize that the
present model is picked as a simple illustrative example case where a random struc-
ture (here the elasticity coefficients) and a given dynamics (here Hamiltonian) are
known, and we do not claim the extent of our results to go beyond the intended
illustrative purpose. In a strongly out-of-equilibrium regime enforced by an exter-
nal time-dependent forcing, we characterize the dynamical response of the system,
equipped with a random inhomogeneous elasticity that represents our uncertainty
on the system’s state. By LDT optimization we locate the optimal configurations
leading to extreme responses and we show that such realizations dominate the
statistics asymptotically.

In the case of forcing increasing linearly in time, we are able to derive analytical
results. This is an important test case to validate the numerical method. Moreover,
the linear protocol corresponds to pulling at constant speed, which is a common
scenario in the experiments [122]. Then, our numerical method is exploited to
study efficiently the extreme events with an arbitrary nonlinear forcing, and to
yield results about the optimality of the protocol, a problem that has risen recent
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6 – Nonequilibrium forcing of an inhomogeneous elastic rod

interest for small nonequilibrium molecular systems [9, 48].
Part of the material in this chapter was published in

G. Dematteis, T. Grafke, and E. Vanden-Eijnden. “Extreme event quantification in
dynamical systems with random components”. https://arxiv.org/abs/1808.10764, 2018

(to appear in “SIAM/ASA Journal of Uncertainty Quantification”).

6.1 Time-dependent Hamiltonian system with ran-
domness

6.1.1 Continuous model with random structure
Consider a one-dimensional elastic rod of length 1 that is being pulled at one
end with a time-dependent force and whose energy is specified in terms of its
displacement field u : [0,1]→ R via

V (u, t) = 1
2

∫ 1

0
D(x) |∂xu|2 dx− r(t)u(1) , (6.1)

where the first term is the total internal energy of the rod and the second term
is the external energy (negative of the work potential); D(x) > 0 is the elasticity
coefficient, assumed to be spatially dependent, and r(t) is a prescribed external
forcing protocol acting on the right end of the rod – the specific form of r(t) will
be introduced later. The dynamics of the rod is governed by the Euler-Lagrange
equation associated with (6.1):

∂2
t u = ∂x(D(x)∂xu) x ∈ (0,1) , (6.2)

with initial conditions to be prescribed later and boundary conditions

u(t,0) = 0 , D(1)∂xu(t,1) = r(t) , ∀t ≥ 0 . (6.3)

In order to introduce uncertainty in the model we make the elasticity random,
i.e. we take D(x) ≡ D(x, ϑ). Here we will assume that D(x, ϑ) is piecewise constant
over blocks of size 1/M for some M ∈ N, with independent values in each block.
Specifically, we take:

D(x, ϑ) =
M∑
k=1

ϕk(x)g(ϑk) , (6.4)

where the functions {ϕk}Mk=1 are given by

ϕk(x) =
{

1 if M−1(k − 1) ≤ x < M−1k

0 otherwise
; (6.5)

g is a given function; and {ϑk}Mk=1 are i.i.d. random variables. Below we will consider
two cases:
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6.1 – Time-dependent Hamiltonian system with randomness

Case 1. Here we assume that g : (0,∞)→ (0,∞) with

g(y) = y−1 (6.6)

and we take the variable {ϑk}Mk=1 to be exponentially distributed, i.e.

P(ϑk ≥ θk) = e−αθk , θk ≥ 0, α > 0 . (6.7)

This choice implies that

S(η) = logEe〈η,ϑ〉 = −
M∑
k=1

log(1− α−1ηk), ηk < α ∀k = 1, . . . ,M, (6.8)

so that

I(θ) =
M∑
k=1

(αθk − 1− log θk) θk > 0 ∀k = 1, . . . ,M . (6.9)

Case 2. Here we assume that g : R→ (0,∞) with

g(y) = 1
2y +

√
1
4y

2 + 1, (6.10)

and we take the variable {ϑk}Mk=1 to be normally distributed with variance σ2 > 0,
i.e.

ϑk = N (0, σ2) (6.11)

This choice implies that

S(η) = 1
2

N∑
k=1

σ2η2
k, I(θ) = 1

2

N∑
k=1

σ−2θ2
k . (6.12)

Given this random input, our aim is to investigate the statistics of the dis-
placement of the right end of the rod at time T : this amount to considering the
observable f(u(T )) = u(T,1), and studying the behavior of

P (z) = P(u(T,1, ϑ) ≥ z) for z � 1. (6.13)

Below we will analyze the behavior of this quantity in two cases, when the forcing
r(t) in (6.1) is linear in t and when it is not – the first situation is amenable
to analytical treatment whereas the second is not in general. Note that in both
situations, the behavior of P (z) for large z will depend on how fast g(u) decays to
zero: due to the shape of g this will depend on the right tail of the distribution of
ϑk in Case 1 and on its left tail in Case 2.
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6.1.2 Discrete model
To perform the numerics, we need to consider a spatially discretized version of the
model above. We do so by introducing the discrete energy

V (u, t) = 1
2

N−1∑
j=0
Dj+1(ϑ)(uj+1 − uj)2

∆x
− r(t)uN , (6.14)

in which uj = u(j∆x), Dj = D(j∆x), ∆x = 1/N . Alternatively, (6.14) can be
thought of as the energy for a system of N + 1 beads uj connected by N springs
with random spring constants Dj(ϑ). The dynamics obeys the system of ODEs

∂2
t uj = Dj+1

∆x2 (uj+1 − uj)−
Dj
∆x2 (uj − uj−1) , j = 1, ..., N − 1 , (6.15)

with fixed boundary condition u0 = 0 at the left end and dynamic boundary con-
dition

∂2
t uN = − DN

∆x2 (uN − uN−1) + r(t)
∆x

(6.16)

at the right end. We will pick N = PM for some P ∈ N, so that by our choice for
D(x, ϑ) in (6.4) we have

Dj(ϑ) = g(ϑk) for dj/P e = k, j = 1, . . . , N, k = 1 . . . ,M. (6.17)

Since we focus on the statistics of the observable f(u(T )) = uN(T ) = u(T,1)
that measures the displacement at time T of the right end point with respect to its
initial position, the cost function is

E(u, θ) = I(θ)− λuN(T ) , (6.18)

to optimize on the parameters {θk}Mk=1.

6.2 Analytical optimization for a linear forcing
Assume that r(t) = at for some a > 0 and as initial conditions for (6.2) take

u(0, x) = 0 , ∂tu(0, x) = a
∫ x

0

dx′

D(x′, θ) , ∀x ∈ [0,1] . (6.19)

The solution to (6.2) equipped with the boundary conditions in (6.3) is

u(t, x, ϑ) = at
∫ x

0

dx′

D(x′, ϑ) . (6.20)

90



6.2 – Analytical optimization for a linear forcing

Let us consider the implications of this formula in Case 1, which is suitable to
derive analytical results. Eq. (6.20) implies that

u(T,1, ϑ) = aT
∫ 1

0

dx′

D(x′, ϑ) = aT

M

M∑
k=1

ϑk , (6.21)

where we used the specific form of D(x, ϑ) given in (6.4) with g given in (6.6). Note
that since the discrete equivalent to the initial conditions (6.56) is

uj(0) = 0, ∂tuj(0) = a

M

j∑
k=1

θk , (6.22)

the result (6.21) also holds for the discretized model, i.e. we have

uN(T, ϑ) = aT

M

M∑
k=1

ϑk . (6.23)

From (6.7), this implies that u(T,1, ϑ) = uN(T, ϑ) follows a gamma distribution
with shape parameter M and rate parameter αM(aT )−1:

P (z) =
∫ ∞
z

(αM(aT )−1)MyM−1

(M − 1)! e−αM(aT )−1ydy

= 1
(M − 1)!Γ

(
M,αM(aT )−1z

)
,

(6.24)

where Γ (·, ·) is the upper incomplete Gamma function. When z � 1 with M fixed,
(6.24) gives

P (z) ∼ (αM(aT )−1z)M−1

(M − 1)! e−αM(aT )−1z , (6.25)

meaning that

logP (z) ∼ −αM(aT )−1z + (M − 1) log(αM(aT )−1z)− log(M − 1)!. (6.26)

In this last expression the second and third terms at the right hand side are sub-
dominant over the first, αM(aT )−1z, and disappear in the limit as z → ∞. It is
useful to keep this terms for comparison with the result (2.36) in Theorem 1 and
the result (2.39), which we do next.

If we solve

min I(θ) = min
M∑
k=1

(αθk − 1− logαθk) subject to u(T,1, θ) = aT

M

M∑
k=1

θk = z ,

(6.27)
we get

θ?k(z) = (aT )−1z for k = 1, . . . ,M . (6.28)
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6 – Nonequilibrium forcing of an inhomogeneous elastic rod

As a result
I(θ?(z)) = M

(
α(aT )−1z − 1− log(α(aT )−1z)

)
, (6.29)

which from (6.26) is consistent with logP (z) ∼ −I(θ?(z)) as z →∞, as predicted
by (2.36). Note also that here

η?k(z) = ∂θkI(θ?(z)) = α− aTz−1 for k = 1, . . . ,M . (6.30)

Since this implies that |η?(z)| →
√
Mα as z → ∞, this means that the condition

in (2.37) is not satisfied here.
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Figure 6.1. Linear forcing with a = 0.1, final time T = 15, initial condi-
tions (6.22), and the statistical prior of Case 1. The numerics are performed
withM = N = 30. Left panel: Comparison between the exact expression for P (z)
in (6.24), the empirical MC estimate with 2 × 107 samples, the analytical LDT
estimate (6.29), and the LDT estimate obtained via numerical optimization. Right
panel: Comparison between the analytical (6.28) and the numerical instantons, for
z = 1.58,1.71,1.85,2.04,2.32,3.08 from top to bottom.

In Fig. 6.1 we compare the asymptotic estimate (6.29) with the exact expres-
sion (6.24). We also check that the numerical optimization is consistent with the
analytical one, which is important to validate the numerical code described below.

6.2.1 Relationship with Gärtner-Ellis
The result (6.29) can be interpreted in two different ways. In the sense that we
intend it for, M is nothing but a constant included in the rate function, which has
been fixed—say, the number of beads of the polymer— and does not have to be
a large number. In this scenario, it is really the large size z of the events that we
look at, and such largeness goes along with concentration of the events around the
most likely realization. Knowing the rate function explicitly, we can equivalently
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formulate the LDP as P (z/ε) � exp[ε−1I(θ?(z/ε))], as ε→ 0, where now z is finite,
and ε−2 is the speed of the LDP.

On the other hand, if one wishes to interpret (6.25) looking at the same observ-
able but as the number of beadsM →∞, then it is immediate to recognize (6.25) as
an LDP for a sum of M i.i.d. random variables. In such case, the expression (6.25)
divided by M is already the properly scaled rate function that one obtains from
Gärtner-Ellis theorem, and the speed of that LDP is M , indeed.

6.3 Adjoint method optimization
We will minimize (6.18) using the adjoint method to compute the gradient. As
shown below, the adjoint equations read

∂2
t pj = Dj+1

∆x2 (pj+1 − pj)−
Dj
∆x2 (pj − pj−1) , j = 1, ..., N − 1 , (6.31)

with conditions at the boundaries given by

p0(t) = 0 , ∂2
t pN = − DN

∆x2 (pN − pN−1) , (6.32)

and final conditions
pj(T ) = 0, ∂tpj(T ) = λδj,N . (6.33)

The gradient of the cost function can be expressed as

∇θE(u(θ), θ) = ∇I(θ)−G>∇D(θ) , (6.34)

where ∇D(θ) is the N × M tensor with entries ∂Dj(θ)/∂θk, j = 1, . . . , N , k =
1, . . . ,M , and G is a vector with entries

Gj =
∫ T

0

uj − uj−1

∆x

µj − µj−1

∆x
dt , j = 1, . . . , N . (6.35)

6.3.1 Derivation of (6.31) and (6.34)
Using the convention that DN+1 = 0, the evolution equation (6.15) can be rewritten
as a system of first order ODEs,

∂tuj = vj

∂tvj = Dj+1

∆x2 (uj+1 − uj)−
Dj
∆x2 (uj − uj−1) + δj,N

r(t)
∆x

, j = 1, ..., N (6.36)

with fixed boundary condition in the origin,

u0(t) = 0 , (6.37)
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and initial conditions
uj(0) = 0, vj(0) = 0 . (6.38)

To make the notation compact, we will use:

X =
(
u
v

)
, Y =

(
q
p

)
, (6.39)

column vectors in R2N . Then, (6.36) can be written as

∂tX = b(X, θ) , (6.40)

where b(X, θ) is the 2N -dimensional vector with the components of the RHS of
(6.36). Note that (6.40) is in the general form (3.2) (linear system of ODEs), and
this is helpful to make direct contact with the formulas (3.8) and (3.11), and thereby
compute the gradient of the cost function (6.18) as

∇θE = ∇θI(θ)−
∫ T

0
(∂θb)>Y dt , (6.41)

with Y the adjoint field to X. Let us start by deriving the adjoint equation. One
can easily check that the linearization of the operator b(X, θ) for small variations
of X reads

∂Xb(θ) =
(

0 Id
B(θ) 0

)
,

with Bjk =Dj+1

∆x2 (δj+1,k − δj,k)−
Dj
∆x2 (δj,k − δj−1,k).

(6.42)

Id is the N ×N identity matrix and we recall that Dj = D(θj), by (6.10). It is the
adjoint operator (∂Xb)> that we need to compute, defined implicitly by the identity〈

(∂Xb)>Y,X ′
〉
R2N

= 〈Y, ∂XbX ′〉R2N , (6.43)

where 〈·, ·〉R2N denotes the standard scalar product in R2N . Using (6.43) we obtain,

〈Y, ∂XbX ′〉R2N =
N∑
j=1

(
qjv
′
j + pj

(Dj+1

∆x2 (u′j+1 − u′j)−
Dj
∆x2 (u′j − u′j−1)

))

=
N∑
j=1

(
qjv
′
j +

(Dj+1

∆x2 (pj+1 − pj)−
Dj
∆x2 (pj − pj−1)

)
u′j

)
,

(6.44)

where in the last passage we just reorganized the indices in the sum in an equivalent
way, provided that we assume the boundary condition

p0(t) = 0 . (6.45)
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Comparing the last line of (6.44) with the LHS of (6.43), we deduce that

(∂Xb)> =
(

0 B(θ)
Id 0

)
(6.46)

which is the transpose of the RHS of (6.42) (B(θ) is symmetric), as we should
expect. Though, starting from the identity (6.43) is the rigorous way to obtain the
adjoint operator, making the proper boundary conditions arise naturally. Plugging
the result (6.46) into (3.8), we finally obtain the adjoint equation∂tqj = Dj+1

∆x2 (pj+1 − pj)−
Dj
∆x2 (pj − pj−1)

∂tpj = qj

, j = 1, ..., N , (6.47)

with boundary condition (6.45). To obtain the correct conditions at final time, it
is sufficient to observe that the final conditions of (3.8) now read

qj(T ) = λ∂ujf(u(T )) = λδj,N , pj(T ) = 0. (6.48)

Let us now compute (∂θb)>, again starting from the definition of the adjoint
operator: 〈

(∂θb)>Y,w
〉
RN

= 〈Y, ∂θbw〉R2N , (6.49)

where w ∈ RN and

(∂θb) =
(

0
∇θB(θ)

)
(two N ×N blocks)

(∇θB)jk = D
′(θj+1)
∆x2 (uj+1 − uj)δj+1,k −

D′(θj)
∆x2 (uj − uj−1)δj,k.

(6.50)

With the convention that D′(θN+1 = 0), a straightforward calculation yields

〈Y, ∂θbw〉R2N =
N∑
j=1

pj

(
D′(θj+1)
∆x2 (uj+1 − uj)wj+1 −

D′(θj)
∆x2 (uj − uj−1)wj

)

=
N∑
j=1

(
D′(θj)
∆x2 (uj − uj−1)(pj − pj−1)

)
wj ,

(6.51)

from which, comparing with the LHS of (6.49), we observe that

((∂θb)TY )j = D′(θj)
uj − uj−1

∆x

pj − pj−1

∆x
. (6.52)

Now, integrating in time according to (6.41),∫ T

0
((∂θb)>Y )jdt = D′(θj)

∫ T

0

uj − uj−1

∆x

pj − pj−1

∆x
dt , (6.53)

leads to (6.34).
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6.4 Nonlinear forcing

6.4.1 Nonlinear protocols and work normalization
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Figure 6.2. The forcing protocols rδ(t) in (6.54), which are decreasing functions
of t when δ < 0 and increasing functions when δ > 0.
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Figure 6.3. Comparison between the empirical distributions P (z) obtained via
MC sampling and their LDT estimate. The sampling works down to events
whose probability is about the inverse of the MC sampling size, while the LDT
optimization allows us to extend the tails to much smaller probabilities.
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Next we consider nonlinear forcing protocols of the type
r(t) = atβ and r(t) = a(T − t)β both with a, β > 0 . (6.54)

Letting s = +1 if r(t) = atβ and s = −1 if r(t) = a(T−t)β, we will use rδ(t) with δ =
sβ as shorthand to describe the family of forcing protocols, which is continuous in
the parameter δ: notice that when β → 0 both increasing and decreasing protocols
tend to the constant protocol, δ = 0. The different forcings are shown in Fig. 6.2.

As initial conditions for (6.2) we take
u(0, x) = 0 , ∂tu(0, x) = 0 , ∀x ∈ [0,1] . (6.55)

At discrete level these initial conditions read
uj(0) = 0, ∂tuj(0) = 0 . (6.56)

In this section we restrict ourselves to Case 2 and we use M = N = 30 and final
time T = 1. Observing that the mean elasticity E (D(x)) = 1 (as for Case 1), the
average velocity of propagation of the waves along the bar is also 1. Thus, 1 is the
average time that a signal takes to propagate from the right end to the left end.
This means that taking T = 1 we are considering a short transient strongly out
of equilibrium, where the random structure will contribute in a non-homogeneous
way.

To integrate (6.15) and (6.16) numerically, we use a velocity-Verlet integrator,
which is of second order, symplectic, and time reversible, with a time step of 10−3.
The optimization is performed as described in Sec. 3, using (6.34) and (6.35).

We remind the reader that the meaning of r(t) in (6.1) is that of external force
applied to the right end of the rod. The work of the external forcing labelled by δ
on the system is therefore defined by

W (θ, δ) =
∫ T

0
rδ(t)u̇(t,1, θ)dt , (6.57)

with dependence on the elasticity structure (θ) and the forcing (δ). Considering that
in the LDT regime the optimal realizations (instantons) dominate the statistics of
the extreme events (this is going to be checked below), we define the work restricted
to the optimal events by

Wo(z, δ) = W (θ?(z), δ) , (6.58)
where we recall that θ?(z) is the solution of the minimization

min
θ
I(θ) subject to u(T,1, θ) ≥ z . (6.59)

We normalize the factor a of each protocol (thus becoming an a(δ)) so that the
curvesWo(z)|δ lay on top of each other independent of δ (up to small deviations) in
the range of interest of the extreme events. This means that under this normaliza-
tion any given amount of work done on the system leads the instanton configurations
to the same final extension, for all protocols. This will turn out useful to compare
the different protocols from an optimality viewpoint.
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Figure 6.4. Top panel: Elasticity structure of the instantons for z ≥ 2.7, for the
different protocols labeled by δ. Inset: the probability P (z = 2.7) as a function
of the forcing protocol. Bottom panel: Same as in the top panel, but for z ≥ 3.3.
Inset: the probability P (z = 3.3) as a function of δ in the forcing protocol.

6.4.2 Instantons and optimal protocol

Let us now describe our results. In Fig. 6.3 the LDT estimates of P (z) are compared
to the empirical estimates obtained via MC with 2 × 106 samples, showing good
agreement. Next we look at the specific elasticity structure of the optimizers,
D(x, θ?(z)). These are shown in Fig. 6.4. As can be seen, the region that is
relevant for having an extreme extension u(T = 1,1) occupies only the right half of
the space domain, independent of the protocol. This makes sense since on average
the signal takes a time 1 to cross the whole domain: For a point x0 to influence
u(T = 1,1) the signal needs to have time to propagate to x = 1. As a result, the
points on the left side will not have the possibility to influence the dynamics at all,
and the optimal state of D(x, θ) is determined by mere minimization of I(θ) with
no dynamical constraint. In contrast, on the right side of the domain, D(x, θ) must
take low values to allow for large values of u(T = 1,1)—since these low values are
unlikely, this also accounts for the drop in probability observed in Fig. 6.3. Fig. 6.4
also indicates that D(x, θ?(z)) depends on the forcing protocol. This dependency
can again be interpreted intuitively by realizing that the region that impacts u(T,1)
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the most will be the one that is reached by a strong signal (i.e. the propagation
front of the most intense part of the forcing) and is able to send a strong feedback
back to the right end at final time—this feedback is what is accounted for by the
backward evolution of the adjoint equation in the optimization. So, the earlier
the most intense part of the forcing takes place, the further from the right end a
low elasticity peak appears. This explains why going towards negative δ the low-
elasticity peak moves to the left in Fig. 6.4, and the constant forcing (δ = 0) is the
one where the low elasticity contribution is the most uniformly distributed.

Note that in this framework it is possible to compare how likely the protocols are
to produce extreme realizations of a given size, as shown in the insets in Fig. 6.4. In
this sense, the constant protocol appears to be the optimal one. This is consistent
with the fact that δ = 0 is the highest curve in Fig. 6.3. Furthermore, not only
we gain quantitative information on which protocol is the most suitable to sample
extreme events, but also we have access to the peculiar shape common to all the
extreme realizations. For a given statistical prior, such specific shape depends only
on the protocol (δ) and on the event size (z), and it determines the “instantons” of
the problem, like the ones depicted in Fig. 6.4.

6.4.3 Instantons “filtered” out of the random sampling
To further clarify the role of the instantons and why they dominate the dynamics
and the statistics of the extreme events, it is useful to “filter” the conditional events
such that u(T,1) ≥ z in the following way: First, we fix a size z and generate via MC
a large set of ϑ such that u(T,1, ϑ) ≥ z. Second, we average over such conditional set
to obtain the mean conditional event and its fluctuations around the mean, which
is generally very close to the instanton θ?(z). Third, we decompose the fluctuations
ϑ− θ?(z) into the components parallel and perpendicular to η?(z), i.e. the normal
to the hypersurface Ω(z). This procedure is then repeated for various z.

In Fig. 6.5 we show the outcome of this analysis for the protocol with δ = 1.5
and for two different values of z – analogous results hold for the other kinds of
forcing as well. As can be seen the average event u(T,1) ≥ z lies on top of the
instanton θ?(z), with fluctuations independent of the size of the event and also
of the position along the rod (upper panels). The decomposition shows that the
components perpendicular to η?(z) are independent of the size of the event, and
basically independent of the dynamics too. Their mean and standard deviation
are the mean and the standard deviation of the unconstrained random variables ϑ
(central panels). In contrast, the parallel fluctuations are small and tend to zero
as z increases (bottom panels). The scaling of the fluctuations is analyzed in more
detail in Fig. 6.6, which shows that they are O(1) in the direction perpendicular to
η?(z) and O(|η?(z)|−1) in the direction parallel to it, consistent with the theoretical
predictions of section 2.2.1.

99



6 – Nonequilibrium forcing of an inhomogeneous elastic rod

−5.0

−2.5

0.0

2.5

5.0

θ

(a) (d)

−4

−2

0

2

4

θ⊥

(b) (e)

0.0 0.2 0.4 0.6 0.8 1.0

x

−3

−2

−1

0

θ‖

(c)

0.0 0.2 0.4 0.6 0.8 1.0

x

(f)

Figure 6.5. Comparison between the instanton θ?(z) (black solid line) and the
Monte Carlo sampling on the distribution of ϑ, conditioned on uN (1) = u(1,1) ≥
z (color map with intensity proportional to the empirical probability density;
thick white line = mean; thin white lines = 1 standard deviation range around
the mean). Left panels: z = 2.10, right panels: z = 2.40. The top panels
show the full data: the instanton agrees with the mean, but the variance does
not substantially change going to more extreme events. The two central panels
show the fluctuations perpendicular to η?(z), confirming that their amplitude
is independent of the size of the event (left and right panels have the same
variance) and homogeneous in space. The bottom panels show the fluctuations
in the direction parallel to η?(z), indicating that their amplitude decreases as z
increases, as predicted by the theory in Sec. 2.2.1.
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Figure 6.6. Increasing z, the fluctuations in the direction perpendicular to η?(z)
stay constant, whereas in the parallel direction they scale as O(|η?(z)|−1). Both
behaviors are predicted analytically and here confirmed numerically.
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Chapter 7

Concluding remarks

After having analyzed thoroughly some relevant physical applications of the LDP
(2.36), it is worth commenting further on some aspects that hopefully will clarify
the state of the art and possibly indicate future directions.

1. The philosophy of the proof of the theorem (2.36) follows the Gärtner-Ellis
theorem: the upper bound makes use of the Tchebycheff inequality and the
lower bound needs differentiability of the cumulant generating function, im-
plying convexity of I(θ) by definition (2.7). Indeed, since we consider the
limit z → ∞ rather than recalling the random variable itself, the proof
needs to be adapted. More precisely, such reformulation is carried out in
analogy with the dominating point results of Ney [143]. The example in sec-
tion 2.2.4 shows that (2.36) amounts to taking the Legendre-Fenchel trans-
form of the differentiable cumulant generating function (with domain the
N−dimensional support of the random parameters) and then computing
the rate function from it via a constrained minimization. This procedure
leads to the correct rate function, whereas the Gärtner-Ellis theorem does
not apply here (as explained in section IV.D of [187]) being the scaled cumu-
lant generating function (defined differently, the domain being the support
of the scalar observable) non-differentiable.

2. From a mathematical viewpoint, what we do is not a very hard deriva-
tion either, since the five assumptions that are made are most of what is
needed for the result (2.7), i.e. they are very general conditions ensuring
a dominating-point situation. Furthermore, our mathematical assumptions
are not immediate to test on a given dynamics and a choice of an observable,
although they are related to them. What would be useful, for the applica-
tions, is to know what classes of dynamics and observables do satisfy the
LDP (2.7), and which ones do not. For example, for dynamics characterized
by fast transients due to instabilities, in the sense of [133, 77], a proper
observable must be instantaneous or involve a time average on a short time
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window. There, a long-time average would not surely satisfy a dominating-
point LDP, since there would be a degenerate situation with instabilities at
different points of the time window, all contributing to the same value of
the observable.
In a quite tautological statement, the answer is that (2.7) holds whenever
the statistical prior I(θ), the dynamics of the field u(t) and the observable
f(u) are combined in such a way that the onset of a dominating-point regime
is observed, when the size of f is conditioned to be large.

3. The result (2.7) is unusual as an LDP, as the speed of the LDP is implicitly
contained within the non-scaled rate function. We refer the reader to the
book [12], where similar ideas are developped in the formalism of the mov-
able saddle point. In the examples in the sections 2.2.2, 2.2.4 and 6.2, we
have shown how our result is equivalent to the usual LDP, via a rescaling
by a small parameter ε. On the other hand, these remain very simple cases,
while the numerical tools of our LDT method are specifically designed for
cases where the mapping between the random parameters and the observ-
able is extremely complicated, possibly involving a nonlinear dynamics in
a very high-dimensional setting. For such cases, we have shown through
all of the applications in chapters 4, 5 and 6 that the LDP (2.7) is directly
applicable. Moreover, the prediction on the decay of the fluctuations in the
direction parallel to η?(z) (O(|η?(z)|−1) is a useful quantification of the speed
of concentration around the instanton realization, that is, a quantification
of how fast the asymptotic behavior (2.7) is attained as z → ∞. For the
applications, this test can be applied a-posteriori to check whether the LDP
dominating-point concentration is satisfied, as exemplified in Fig. 5.4. For
instance, in the case of the elastic rod this was verified in detail in Figs. 6.5
and 6.6. For the rogue waves, the analysis is more complicated, although
in Figs. 4.4, 4.9 and 5.3 it is clear that the variance of the conditional ex-
treme event becomes small in the focusing region (somehow “parallel” to the
instanton) while it stays O(1) where the instanton is vanishing (“perpendicu-
lar” to the instanton), where parallel and perpendicular are now interpreted
in the sense of the L2 scalar product.
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Appendix A

Derivation of the leading
order equations of wave
turbulence

The material in this chapter was published in

S. Chibbaro, G. Dematteis, and L. Rondoni. “4-wave dynamics in kinetic wave
turbulence”. Physica D: Nonlinear Phenomena, 362:24–59, 2018.

A.1 Introduction
Wave Turbulence (WT) theory concerns the dynamics of dispersive waves that
interact nonlinearly over a wide range of scales [137]. In general the nonlinear
interaction can be considered small, allowing a perturbative analysis and then
an asymptotic closure for statistical observables [142]. For this reason, some-
times one then talks about Weak Wave Turbulence (WWT). Until recently, most
of the attention was given to the energy spectrum, which is governed by a ki-
netic equation. Wave turbulence also provides exact solutions of the kinetic equa-
tion, which are related to equipartition, Rayleigh-Jeans solution, or stationary cas-
cade, Kolmogorov-Zakharov solutions [206]. Many physical phenomena are studied
within this general framework, for instance gravity [111, 74, 146, 138], capillary or
Alfvèn waves [204, 163, 71, 85], non-linear optics [158] and elastic plates [54, 22, 135].
Furthermore, applications of WT to non dispersive systems such as the acoustic
waves [208, 128] exist, even though the necessary statistical closure is subtler in
such cases [140, 173].

In the last years, many experiments and numerical simulations were performed to
verify the predictions of WT. The picture is relatively clear in the case of the capil-
lary waves on a fluid surface (water, ethanol, liquid hydrogen or liquid helium):
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both experiments and numerical simulations confirm the Kolmogorov-Zakharov
spectrum predicted by WT in this case. For other cases, e.g. surface gravity
waves or waves in vibrating elastic plates, the picture is more complicated: both
numerics and experiments showed deviations from theoretical predictions, and the
presence of intermittency [81, 57, 75, 130]. This was unexpected, since WT appears
as a mean-field theory, based on an initial “quasi-gaussianity”, previously believed
to prevent sensible deviations from gaussianity.

An important step forward in this context has been the development of a more
efficient formalism for non-gaussian wavefields [37, 38, 103, 137]. In particular,
these works pointed out that probability density functions (PDF) are the rele-
vant statistical objects to be analysed, reviving the interest in the study of PDFs
in WT, that dates back to the works of Peierls, Brout, Prigogine, Zawlaski and
Sagdeev [155, 24, 209]. These authors had considered waves in anharmonic crys-
tals, which constitute a special case of 3-wave systems. In the recent develop-
ments a diagrammatic approach was proposed [137], based on Zakharov’s pioneer-
ing work [134, 205], to analytically investigate PDF equations. Importantly, this
has also clarified the role of the different assumptions needed for the statistical
closure. In particular, the 3-wave resonant systems has been studied in details and
a Peierls equation for the N-particles PDF has been proposed [37, 38, 137].

Nevertheless, the Peierls equation does not guarantee the strict preservation of
the independence of phases and amplitudes, even though it can be argued that
the property of random phases and amplitudes (RPA) is preserved in a weaker
form [39, 137]. Starting from these premises, it has been shown that a proper
normalization of the wave amplitudes is necessary for 3-wave resonant systems, in
order to obtain a finite spectrum in the infinite-box limit, that leads to an amplitude
density, dependent on the continuous variable k [69]. In particular, the original
amplitudes must be normalized by a factor scaling as 1/V , where V is the volume
of the box. Adopting such a point of view, the Peierls equation for the multimode
PDFs is not the leading-order asymptotic equation of the continuum limit of weakly
interacting, incoherent waves. In Ref. [69], then, new multimode equations were
derived, that importantly have the factorized exponential solutions excluded by the
Peierls equation. This is equivalent to the preservation of the RPA property. In
turn, the preservation of exponential solutions implies a law of large numbers (LLN)
for the empirical spectrum at times τ > 0, which is analogous to the propagation
of chaos of the BBGKY hierarchy in the kinetic theory of gases. This LLN implies
that the empirical spectrum satisfies the wave-kinetic closure equations for nearly
every initial realization of random phases and amplitudes, without necessity of
averaging. Just as the Boltzmann hierarchy has factorized solutions for factorized
initial conditions, so does the kinetic wave hierarchy for all multi-point spectral
correlation functions. An H-theorem corresponding to positive entropy variation
holds as well. On the other hand, using these multimode equations, Ref. [69] shows
that the 1-mode PDF equations is not altered by the different normalization, if the
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modes initially enjoy the RPA property.
The 4-wave case has not yet been dealt with, although a formal analogy has been

used to propose a possible extension of the 3-wave result to the 4-wave case [39].
Therefore, the present derivation is devoted to the case of 4-wave interactions,
which is of particular interest. As a matter of fact, most of the known violations
of gaussianity arise in gravity waves and in vibrating elastic plates, which are 4-
wave resonant systems. Following the same diagrammatic approach of Ref. [137],
and using the normalization proposed in Ref. [69], we first explicitly derive the
continuos multimode equations, and then we obtain the equation for the M -mode
PDF equation. These equations are different from the Peierls equations obtained
by the formal analogy of Ref. [39]; they constitute instead a direct extension of the
3-wave case treated in Ref. [69]. The relation between the Peierls and our equations
is thus discussed, showing the limit in which they coincide. Our framework also
sheds some light on the issue of WT intermittency, as demonstrated by [32], in
which the equations obtained here are confirmed by numerical simulations of two
4-wave resonant Hamiltonian systems.

The derivation is organized as follows. First, we describe our model and nota-
tion, which are consistent with previous works [137, 69]. Section A.2 discusses the
probabilistic properties of RPA fields. The main results are reported in sections
A.3 and A.4, where the multimode equations are derived and discussed. In Sec-
tion A.3 the spectral generating functional and correlation functions are considered,
while Section A.4 concerns the PDF generating function and the multipoint PDFs.
Section A.5 summarizes our results.

A.1.1 Model and notation
Similarly to [69], we consider a complex wavefield u(x, t) in a d-dimensional periodic
cube with side L. This field is a linear combination of the canonical coordinates
and momenta. It is assumed that there is a maximum wavenumber kmax, to avoid
ultraviolet divergences. This can be achieved by a lattice regularization with spac-
ing a = L/M, for some large integer M, so that kmax = π/a. The location variable
x then ranges over the physical space

ΛL = aZdM , (A.1)
with the usual notation ZM for the field of integers, modulo M. This space has
volume V = Ld. The dual space of wavenumbers is

Λ∗L = 2π
L
ZdM (A.2)

with kmin = 2π/L. The total number of modes is N = Md, so that V = Nad. The
following index notation will be used:

uσ(x) =
{
u(x) σ = +1
u∗(x) σ = −1 (A.3)
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for u and its complex-conjugate u∗. Likewise, we adopt the convention for (discrete)
Fourier transform:

Aσ(k) = 1
N

∑
x∈ΛL

uσ(x, t) exp(−iσk · x) (A.4)

so that A+(k) and A−(k) are complex conjugates. This quantity converges to the
continuous Fourier transform 1

Ld

∫
[0,L]d d

dx uσ(x, t) exp(−iσk ·x) in the limit a→ 0.
The discrete inverse transform is

uσ(x) =
∑

k∈Λ∗L

Aσ(k) exp(iσk · x). (A.5)

The dynamics is assumed to be canonical Hamiltonian, with a 4th power term in
the Hamiltonian density (energy per volume) describing 4-wave interactions. As
in [206] and with lattice regularization, we write:

H = H0 + δH , H0 = 1
2
∑

k∈Λ∗
ωk|Ak|2 (A.6)

Taking the most general Hamiltonian with any kind of 4-wave interactions, [206],
one can write δH in the symmetrized compact form:

δH = ε
∑
1234
Hσ1σ2σ3σ4

1234 Aσ1
1 A

σ2
2 A

σ3
3 A

σ4
4 δ1234 (A.7)

with the coefficients satisfying the general relations:

(Hσ1σ2σ3σ4
1234 )∗ = H−σ1−σ2−σ3−σ4

1234 , Hσ1σ2σ3σ4
1234 = HΠ(σ1σ2σ3σ4)

Π(1234) . (A.8)

Π ∈ S4 represents any permutation of the four elements. Introducing further
notation:

σ
.= (σ1, σ2, σ3, σ4) , k .= (k1,k2,k3,k4) , δσ·k,0 = δσ1k1+σ2k2+σ3k3+σ4k4,0

ω1
.= ω (k1) , A1

.= A (k1) ,
∑

1

.=
∑

σ1=±1

∑
k1∈Λ∗

(A.9)

the Hamiltonian can be written as:

H = 1
2
∑

1
ω1A

σ1
1 A

−σ1
1 + ε

∑
1234
Hσ

k A
σ1
1 A

σ2
2 A

σ3
3 A

σ4
4 δσ·k,0 (A.10)

which leads to

∂Aσk
∂t

= iσωkA
σ
k + ε

∑
234
Lσσ2σ3σ4

k234 Aσ2
2 A

σ3
3 A

σ4
4 δ−k+σ2k2+σ3k3+σ4k4,0 (A.11)
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where
Lσσ2σ3σ4

k234
.= 4iσH(−σ)σ2σ3σ4

k234 . (A.12)
Changing k → k1 and introducing the interaction representation1 Aσk = aσke

iσωkt,
one obtains2:

∂a1

∂t
= ε

∑
234
L+σ2σ3σ4

1234 aσ2
2 a

σ3
3 a

σ4
4

× exp [i (−ω1 + σ2ω2 + σ3ω3 + σ4ω4) t] δ−k1+σ2k2+σ3k3+σ4k4,0 (A.13)

With notation [69]:

L1234
.= L+σ2σ3σ4

1234 , ω1
234

.= −σ1ω1 + σ2ω2 + σ3ω3 + σ4ω4

δ1
234

.= δ−σ1k1+σ2k2+σ3k3+σ4k4,0

(A.14)

the dynamical equation of motion with 4-wave interactions now reads:

ȧ1 = ε
∑
234
L1234a

σ2
2 a

σ3
3 a

σ4
4 exp

(
iω1

234t
)
δ1

234 (A.15)

A.2 Fields with random phases and amplitudes
In derivations of wave kinetic equations, it is often assumed that initial fields have
Fourier coefficients with random statistically independent phases and amplitudes
(RPA). This property is expected to be preserved in time, in some suitable sense,
in the wave-kinetic limit.

Let N complex-valued random variables ak, k ∈ Λ∗L be the Fourier coefficients
of a random field:

uL(x) =
∑

k∈Λ∗L

ak exp(ik · x). (A.16)

Here ak corresponds to a+
k , i.e. A+

k in the previous section (no distinction need be
made between the two at time t = 0). It will be crucial in the following to work
with normalized variables

ãk =
(
L

2π

)d/2
ak (A.17)

which are assumed to remain finite in the large-box limit L → ∞. This normal-
ization is sufficient for the spectrum of the random field to be well defined in that

1Such a representation eliminates the fast linear oscillations, giving a variable aσk that does not
oscillate on fast scales.

2In our derivation, for simplicity and no loss of generality, we consider σ = +1. Trivially, the
equations with σ = −1 are redundant, because obtained by complex conjugation of the ones with
σ = +1. From now a1 stands for a+

1 .
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limit, as first pointed out in [69]. It is convenient to write the complex variables in
polar coordinates (action-angle variables, or amplitudes and phases)

ak =
√
Jke

iϕk =
√
Jkψk (A.18)

with normalized action defined by

J̃k =
(
L

2π

)d
Jk. (A.19)

We denote by sk and ξk for possible values of the random variables J̃k ∈ R+ and
ψk = eiϕk ∈ S1.

dµ(s, ξ) =
∏

k∈Λ∗L

dsk
|dξk|
2π (A.20)

suitably normalized. The N -mode joint probability density function P(N)(s, ξ) is
defined with respect to the Liouville measure, such that the average of the random
variable fJ̃ψ(s, ξ) is given by

〈fJ̃ψ〉 =
∫
dµ(s, ξ)P(N)(s, ξ)f(s, ξ) (A.21)

where the integral is over (s, ξ) in the product space (R+)N × (S1)N .
The field uL(x) is called a random-phase field (RP) if for all k ∈ Λ∗L the ψk = eiϕk

are independent and identically distributed (i.i.d.) random variables, uniformly
distributed over the unit circle S1 in the complex plane [137]. For the joint PDF,
this is equivalent to:

P(N)(s, ξ) = P(N)(s) (A.22)
Note that an RP uL(x) is a homogeneous random field on ΛL, statistically invari-
ant under space-translations by the finite group aZdM . In the limit L → ∞ the
field uL(x) defined with appropriately chosen J̃k,L will converge to a homogeneous
random field u(x) invariant under translations by aZd. The standard definition of
the spectrum n(k) = limL→∞(L/2π)d〈|ak,L|2〉 implies that one must choose

lim
L→∞
〈J̃kL,L〉 = n(k), (A.23)

for k ∈ Λ∗ = [−kmax,+kmax]d, where kL = kL
2π (modM) · 2π

L
∈ Λ∗L converges to k as

L = aM →∞ (for fixed a). So, uL(x) converges in distribution to a homogeneous
field u(x) with spectrum n(k).

Let uL(x) be a random-phase and amplitude field (RPA) if uL(x) is RP and if
also J̃k are mutually independent random variables for all k ∈ Λ∗L. This is equivalent
to the factorization of the N -mode PDF into a product of 1-mode PDFs:

P(N)(s) =
∏

k∈Λ∗L

P (sk; k). (A.24)
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All homogeneous Gaussian random fields are RPA. Conversely, for any sequence of
RPA fields satisfying condition (A.23) the spatial field uL(x) converges in distri-
bution to the homogeneous Gaussian field with mean zero and spectrum n(k) as
L→∞ [113]. Here we note only that

uL(x) =
(2π
L

)d/2 ∑
k∈Λ∗L

√
J̃k,L exp(ik · x + iϕk) (A.25)

is a sum of N independent variables scaled by 1/
√
N. It is important to emphasize

that the Fourier coefficients ãk,L can remain far from Gaussian in this limit. In
physical space also there are non-vanishing cumulants for large but finite L.

Let us define the characteristic functional, containing information about the
statistical distribution of amplitudes and phases:

ZL(λ, µ) =
〈

exp
[∫

dk(iλkJk + iµkϕk)
]〉

(A.26)

A most important result for RPA fields is that the empirical spectrum

n̂L(k) =
(2π
L

)d ∑
k1∈Λ∗L

J̃k1,Lδ
d(k− k1), k ∈ Λ∗ (A.27)

converges under the condition (A.23) to the deterministic spectrum n(k) with
probability going to 1 in the limit L → ∞ (weak LLN). One can show that∫
ddk λ(k) n̂L(k) converges in probability to

∫
ddk λ(k)n(k) for every bounded,

continuous λ. This is sufficient to infer that the amplitude characteristic function
defined in (A.26) satisfies

lim
L→∞

ZL(λ) = exp
(
i
∫
ddk λ(k)n(k)

)
(A.28)

with n(k) the deterministic spectrum. The LLN means that for RPA fields the
empirical spectrum n̂L(k) coincides with n(k) at large L for almost every realization
of the random phases and amplitudes.

Notice that for the above result one does not actually need the full independence
assumption in RPA, but it suffices that

lim
L→∞

[N (2)
L (k1,k2)−N (1)

L (k1)N (1)
L (k2)] = 0, (A.29)

where the M-th order correlation functions are defined as
N (M)
L (k1, ...,kM) = 〈n̂L(k1) · · · n̂L(kM)〉. (A.30)

Property (A.29) is analogous to Boltzmann’s Stosszahlansatz for his kinetic equa-
tion. Under this assumption, the M -th order correlations that exist will factorize
in the large-box limit [116, 117]:

lim
L→∞

N (M)
L (k1, ...,kM) =

M∏
m=1

n(km). (A.31)
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Our results indicate that properties RP and (A.23,A.29) for the initial wave field,
suffice for the wave kinetic equation and for the LLN for the empirical spectrum to
hold at positive times.

RPA fields whose Fourier amplitudes possess the full independence property
satisfy the even stronger LLN for the empirical 1-mode PDF

P̂L(s; k) =
(2π
L

)d ∑
k1∈Λ∗L

δ(s− J̃k1)δd(k− k1). (A.32)

Assume that the limiting random variables J̃k = limL→∞ J̃kL,L of an RPA field
exist and have PDFs P (s; k) which are continuous in k. Then, the random functions
P̂L(s; k) converge to P (s; k) with probability approaching 1 as L→∞. This implies
the previous LLN for the spectrum, since n̂L(k) =

∫∞
0 ds sP̂L(s; k) and n(k) =∫∞

0 ds sP (s; k). Although the “empirical PDF” defined in (A.32) is mathematically
very convenient, it is not a PDF for finite L. It is therefore more intuitive to use
an alternative definition

P̂L(s;∆) = 1
NL(∆)

∑
k∈Λ∗L∩∆

δ(s− J̃k), (A.33)

for any open set ∆ ⊂ Λ∗ and with NL(∆) the number of elements in Λ∗L ∩∆. This
quantity is nearly the same as 1

|∆|
∫
∆ d

dk P̂L(s; k) for large L but it has the advan-
tage that it defines a probability measure in s for each fixed ∆ and L. Definition
(A.33) also has a simple intuitive meaning, since it represents the instantaneous
distribution of amplitudes of the large number of Fourier modes that reside in the
set ∆ for large box-size L. Under the same assumptions as above, it follows with
probability going to 1 that

lim
L→∞

P̂L(s;∆) = 1
|∆|

∫
∆
ddk P (s; k) ≡ P (s;∆). (A.34)

Strict independence is not necessary for this to hold; factorization of multimode
PDFs for k1, ...,kM ∈ Λ∗ is required:

P(M)
L (s1, ..., sM ; k1, ...,kM) = 〈δ(s1 − J̃k1,L,L) · · · δ(sM − J̃kM,L,L)〉. (A.35)

The factorization property for all pairs of distinct k1,k2 ∈ Λ∗

lim
L→∞

[P(2)
L (s1, s2; k1,k2)− P(1)

L (s1; k1)P(1)
L (s2; k2)] = 0 (A.36)

suffices for the LLN for the empirical PDF and also the factorization of the multi-
mode PDFs

lim
L→∞

P(M)
L (s1, ..., sM ; k1, ...,kM) =

M∏
m=1

P (sm; km) (A.37)

for all integersM > 2 and distinct k1, ...,kM ∈ Λ∗. The asymptotic independence is
considerably weaker than RPA, permitting statistical dependence between Fourier
modes at finite L. In the following, we show that properties (A.31), (A.37) are
preserved by the limiting kinetic hierarchies of WT.
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A.3 Multimode hierarchy equations
In this section we formally derive the multimode kinetic equations for the 4-wave
dynamics of our system. Our analysis differs from those of previous works [69, 39,
38] mainly because of the nonlinear frequency shift, and because of the details of
the L→∞ and ε→ 0 limits.

The action-angle variables (amplitudes and phases) for linear dynamics are de-
fined as Jk = |Aσk|2 and ϕk = σ arg(Aσk), so thatAσk =

√
Jkψ

σ
k, where ψk = exp(iϕk).

Then, the Liouville measure µ conserved by the Hamiltonian flow can be written
as

dµ =
∏
k
dQkdPk =

∏
k

1
i
dA+

k dA
−
k =

∏
k

1
i
da+

k da
−
k =

∏
k
dJkdϕk (A.38)

The canonical momenta and coordinates are given by real and imaginary parts of
Aσk = 1√

2(Pk+iσQk), and Aσk and aσk are linked by the simple rotation in the complex
plane used to obtain (A.13). Consistently with the general definition (A.26), the
generating function of amplitudes and phases for finite box-size L is:

ZL[λ, µ, T ] .=
〈

exp
 ∑

k∈Λ∗L

λkJk(T )
 ∏

k∈Λ∗L

ψµk
k (T )

〉
(A.39)

λk ∈ R, µk ∈ Z ∀k ∈ Λ∗L

A.3.1 Power Series Expansion in the Dynamical Equation
The frequency shift

Let us perturbatively expand the solution of Eq.(A.15) in ε at finite L. As explained
in [69] and [137], we consider an intermediate time between the “linear time”, that
is the wave period, and the “nonlinear time” that represents the time scale of
evolution of the wave amplitude statistics. To consider the long-time behavior of
the wave field expanding in ε the solution of the dynamical equation, we need to
renormalize the frequency [39, 137]. The equation for the order zero in ε has a
constant solution:

a
(0)
1 (T ) = a1(0), (A.40)

Thus, the terms like ∑234 L1234a
(0)
2 a

(0)
3 a4 exp (iω1

234t) δ1
234, for k2 = k3, σ2 = −σ3

and k4 = k1, play the role of linear terms in a1, responsible for fast oscillations.
We want to remove all terms of this kind, using an interaction representation and
a frequency renormalization [39]:∑

234

∗∗ .=
∑

σ2σ3σ4

∑
k2k3k4

δσ2,σ1δσ3,−σ4δk2,k1δk3,k4 + (2↔ 3) + (2↔ 4) (A.41)

∑
234

∗ .=
 ∑
σ2σ3σ4

∑
k2k3k4

−
∑
234

∗∗
 (A.42)
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A – Derivation of the leading order equations of wave turbulence

Recalling Eq.(A.15), we can write:

ȧ1 = ε

(∑
234

∗ +
∑
234

∗∗
)
L+σ2σ3σ4

1234 aσ2
2 a

σ3
3 a

σ4
4 exp

(
iω1

234t
)
δ1

234

= ε
∑
234

∗ L+σ2σ3σ4
1234 aσ2

2 a
σ3
3 a

σ4
4 exp

(
iω1

234t
)
δ1

234 + i Ω1 a1 + ε2D1a1 (A.43)

where
iΩ1

.= ε
∑

σ2=±1

∑
k2

L++σ2−σ2
1122

∣∣∣a(0)
2

∣∣∣2 + (2↔ 3) + (2↔ 4) (A.44)

and D1 = O(1). Introducing a new interaction representation with

bk = ake
−iΩkt (A.45)

Eq.(A.43) becomes:

ḃ1 = ε
∑
234

∗ L+σ2σ3σ4
1234 bσ2

2 b
σ3
3 b

σ4
4 eiω̃

1
234t δ1

234 + ε2D1b1 (A.46)

where the renormalized frequency with a shift is given by [39, 137]:

ω̃k
.= ωk +Ωk (A.47)

2nd order equations

Considering an intermediate time between the linear and the nonlinear time ( 2π
ω̃k
<<

T << 2π
ε2ω̃k

), the solution of Eq.(A.46) to second order in ε is:

bk(T ) = b
(0)
k (T ) + εb

(1)
k (T ) + ε2b

(2)
k (T ) +O(ε3) (A.48)

which implies

b
(0)
1 (T ) = b1(0) (A.49)
b

(1)
1 (T ) =

∑
234

∗ L1234b
(0)
2 b

(0)
3 b

(0)
4 ∆T (ω̃1

234)δ1
234 (A.50)

b
(2)
1 (T ) =

∑
234567

∗ L1234L4567 b
(0)
2 b

(0)
3 b

(0)
5 b

(0)
6 b

(0)
7 ET

(
ω̃1

23567, ω̃
1
234

)
δ1

234δ
4
567

+ (4↔ 3) + (4↔ 2) +
∫ T

0
D1b

(0)
1 dt (A.51)

where

∆T (x) .=
∫ T

0
exp(ixt)dt , ET (x, y) .=

∫ T

0
∆t(x− y) exp(iyt)dt (A.52)
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and ∑
234567

∗∗ .=
∑

σ2σ3...σ7

∑
k2k3...k7

δσ2,σ1δσ3,−σ4δσ4,σ5δσ6,−σ7

×δk2,k1δk3,k4δk4,k5δk6,k7 + (2↔ 3) + (2↔ 4)
+(5↔ 6) + (5↔ 7) + (2↔ 3,5↔ 6) + (2↔ 4,5↔ 6)
+(2↔ 3,5↔ 7) + (2↔ 4,5↔ 7) (A.53)∑

234567

∗ .=
 ∑
σ2σ3...σ7

∑
k2k3...k7

−
∑

234567

∗∗
 (A.54)

D1
.=
∑

σ2=±1

∑
k2

L++σ2−σ2
1122

(
b

(0)
2 b

(1)∗
2 + b

(1)
2 b

(0)∗
2

)
+ (2↔ 3) + (2↔ 4) (A.55)

A.3.2 Phase averaging: Feynman-Wyld Diagrams
In this section, we carry out the phase averaging using diagrammatic techniques,
which are in essence those used in the 3-wave case in Ref. [38]. However, here we
describe them in details, for completeness and also because we have introduced spin
terms, σi, absent in [38].

An expansion like (A.48) for the original normal variables Ak may be written as

Ak(T ) = A
(0)
k (T ) + εA

(1)
k (T ) + ε2A

(2)
k (T ) +O(ε3) (A.56)

where:
b

(i)
k = A

(i)
k e
−iω̃t, i = 0,1,2 (A.57)

and a similar expansion Equation (A.56) leads to:

Jk(T ) = |Ak(T )|2 = |bk(T )|2 .= J
(0)
k + εJ

(1)
k + ε2J

(2)
k +O(ε3) (A.58)

Definition (A.39) shows that ZL satisfies the simmetry:

ZL [λ, µ, T ] = Z∗L [λ,−µ, T ] (A.59)

Therefore, writing

ZL [λ, µ, T ] = χL {λ, µ, T}+ χ∗L {λ,−µ, T} (A.60)

one eventually gets:

χL {λ, µ, T} = χL {λ, µ,0}+
〈 ∏

k∈Λ∗L

eλkJ
(0)
k
[
εJ1 + ε2 (J2 + J3 + J4 + J5)

]〉
J

(A.61)
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where [38]:

J1
.=
〈∏

k
ψ

(0)µk
k

∑
1

(
λ1 + µ1

2J (0)
1

)
b

(1)
1 b

(0)∗
1

〉
ψ

(A.62)

J2
.= 1

2

〈∏
k
ψ

(0)µk
k

∑
1

(
λ1 + λ2

1J
(0)
1 −

µ2
1

4J (0)
1

)
|b(1)

1 |2
〉
ψ

(A.63)

J3
.=
〈∏

k
ψ

(0)µk
k

∑
1

(
λ1 + µ1

2J (0)
1

)
b

(2)
1 b

(0)∗
1

〉
ψ

(A.64)

J4
.=
〈∏

k
ψ

(0)µk
k

∑
1

(1
2λ

2
1 + µ1

4J (0)2
1

(µ1

2 − 1) + λ1µ1

2J (0)
1

)
(b(1)

1 b
(0)∗
1 )2

〉
ψ
(A.65)

J5
.= 1

2

〈∏
k
ψ

(0)µk
k

∑
1/=2

(
λ1λ2(b(1)

1 b
(0)∗
1 + b

(1)∗
1 b

(0)
1 )b(1)

2 b
(0)∗
2

+(λ1 + µ1

4J (0)
1

) µ2

J
(0)
2

(b(1)
2 b

(0)∗
2 − b(1)∗

2 b
(0)
2 )b(1)

1 b
(0)∗
1

)〉
ψ

(A.66)

The averages over phases and amplitudes have been separated. Furthermore,

χL {λ, µ,0} .=
〈∏

k
exp

[
λkJ

(0)
k

]〉
J

(A.67)

Rules for phase-averaging

The terms in the perturbative solution of the equation of motion can be represented
by Wyld diagram expansions [39, 69, 199, 205]. The main rules for such diagrams
and for averages over phases follow.

Rule 1 How to build the basic diagrams
The various contributions are represented by tree diagrams illustrated in
Figs. 1-3, for the zeroth-, first- and second-order terms, that we call “basic
diagrams”.

– Lines: a solid line labeled by an integer j represents factor b(0)
j ; dashed

line indicates the absence of such a factor. An arrow added to a solid
line, pointing away from j, indicates σj = +1 (source); if the arrow
points toward j, it corresponds to σj = −1 (sink).

– Vertices: the vertex labelled 1234 represents Lσ1,σ2,σ3,σ4
1234 eω̃

1
234tδ1

234 with
σ1 = +1 when the arrow points out of the vertex and σ1 = −1 when
the arrow points into the vertex. The times at each vertex are ordered
causally, with the latest times at the root of the tree, labelled by 1.
Integrating from time 0 to T , one gets the various contributions to
the perturbative solution.
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1 1

Figure A.1. b
(0)+
1 and b(0)−

1

1 3

2

4

1 3

2

4
Figure A.2. b

(1)+
1 and b(1)−

1

1 6

2 5

3 7

4 1 6

2 5

3 7

4

Figure A.3. b
(2)+
1 and b(2)−

1
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For completeness, observe that:

b
(1)
1 (T ) =

∑
234

∗ L1234b
(0)
2 b

(0)
3 b

(0)
4 ∆T (ω̃1

234)δ1
234 (A.68)

b
(2)
1 (T ) =

∑
234567

∗ L1234L4567 b
(0)
2 b

(0)
3 b

(0)
5 b

(0)
6 b

(0)
7

∫ T

0
∆t(ω̃4

567) exp
(
iω̃1

234t
)
dtδ1

234δ
4
567

+(4←→ 3) + (4←→ 2) +
∫ T

0
D1b

(0)
1 dt (A.69)

Rule 2 How to combine basic diagrams before phase-averaging
Before averaging over phases, the various contributions (A.62)-(A.66) can
be represented by diagrams (see next section), combining the tree diagrams
in Figs. A.1-A.3. The combination of two basic diagrams graphically rep-
resents the product of the two analytical terms to which the diagrams are
associated, and this is performed by joining the trees with the same “root”
indices, over which there must be a sum. Each of the integer labels indi-
cates an index to be summed over independently of the others, except for
the constraints imposed by Kronecker deltas at the vertices.

From now, we omit superscripts, as they are (0).

Rule 3 Phase-averaging: diagrams closed by internal or external couplings
The only contributions that survive the average over phases have phases
summing to zero before averaging. Then, each b(0) either pairs with another
b(0) so that their phases sum to zero or belong to a set of b(0)’s that pair
with a ψ(0)µk

k making the sum of their phases vanish. The first is an internal
coupling, represented by a solid line connecting the paired indices ij that
contribute a factor δσi+σj , 0δki,kj after phase averaging. The second is an ex-
ternal coupling, represented by joining all solid lines with indices i1, i2, ..., ip
to a blob • labeled a, that represents the phase ψ(0)µka

ka which contributes
a factor δσi1 +···σip+µa, 0

∏p
j=1 δkj ,ka after phase averaging. We will say that

the blob (Kronecker delta) makes the wavenumber kj pinned to the value
ka. Conventionally, we omit the letters labeling the blobs: factors such as
δkj ,kaδµa+σj ,0 are denoted by δµj+σj ,0, meaning that kj is constrained to the
value ka because of external coupling [38].

Call bridge the line connecting two vertices, labeled with just one number: e.g.
the line labeled with 1 in presence of the factor L+σ2σ3σ4

1234 L−σ5σ6σ7
1567 . We distinguish

between in-internal coupling, with two lines starting from the same vertex closed
together, and cross-internal coupling, when two lines starting from two different
vertices are bound. Let the number of degrees of freedom (or number of free
wavenumbers) be the number of summations over all N modes, cf. Appendix B.
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Lemma Let us assume the initial wavefield is an RP field. Consider the phase
average 〈∏

l

ψµll ψ1 · · · ψpψ∗p+1 · · · ψ∗q
〉

and all the possible associated diagrams giving non-null contributions. Then, the
degrees of freedom of each closed diagram are equal to the total number of internal
couplings in the diagram, no matter if “in-” or “cross-internal” couplings. No
degrees of freedom must be counted for a bridge.
This implies a new rule for the phase-averaging method.

Rule 4 Distinguishing leading order graphs
The terms with a larger number of internal couplings are greater in order, so
the leading contributions come from the terms with the maximum number
of internal couplings. Therefore, we can subdivide the diagrams in four dif-
ferent types: type 0 diagrams with three free wavenumbers; type I diagrams
two; type II diagrams with one; type III with no free wavenumbers. The
leading contributions are then given by type 0 or type I diagrams and, in
some cases, by type II diagrams.

The symbol∑∗ expresses the fact that the combinations of ki’s and σi’s giving linear
terms inside the interaction term are separated. Then, the interaction representa-
tion (A.45) allows us to remove such linear terms from the interaction, implying:

Rule 5 Diagram “eliminated” by frequency renormalization
Definition (A.42) implies that the Kronecker delta’s inside (A.41) vanish
in ∑∗

234 for any allowed configuration. Definition (A.54) implies that the
delta’s inside (A.53) also vanish in the term ∑∗

2...7. Thus, a diagram for b(1)
1

implying the arguements of the delta’s inside (A.41) to be simultaneously
equal to zero is not contributing. The same holds for a graph for b(2)

1 whose
particular state requires null arguements for the delta’s inside (A.53).

Contributions J1 − J5

The graph associated to J1 before phase-averaging is represented in Fig. A.4, and
analitically expressed by:

J1 =
〈∏

k
ψµk

k
∑
1234

∗
(
λ1 + µ1

2J1

)
L+σ2σ3σ4

1234 a−1 a
σ2
2 a

σ3
3 a

σ4
4

×∆T (−ω1 + σ2ω2 + σ3ω3 + σ4ω4) δk1,σ2k2+σ3k3+σ4k4

〉
ψ

(A.70)
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1 3

2

4
Figure A.4. Diagram associated to J1 before phase-averaging
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Substituting the action-angle variables, we have:

J1 =
∑
1234

∗
(
λ1 + µ1

2J1

)√
J1J2J3J4L+σ2σ3σ4

1234

〈
ψ−1

1 ψσ2
2 ψ

σ3
3 ψ

σ4
4
∏
k
ψµk

k

〉
ψ

×∆T (−ω1 + σ2ω2 + σ3ω3 + σ4ω4) δk1,σ2k2+σ3k3+σ4k4 (A.71)

where only the term within angular brackets depends on phases. This term can be
thought of as the sum of the contributions of all the possible closures (Rule 3) of
the diagram in Fig. A.4.

4

1

3

2

4

1

3

2

Figure A.5. Diagram 1 (type I, vanishing) and diagram 2 (type II)

1. The contribution associated with diagram 1 in Fig. A.5 may be directly
written as
∑
σ

∑
k

∗
(
λ1 + µ1

2J1

)√
J1J2J3J4L+σ2σ2σ4

1234
∏
m

δµm,0 ∆T (0) δk1,k4δk2,k3 (A.72)

σ = (1, σ2,−σ2,1)

The two Kronecker delta’s of the internal couplings make the vertex delta
redundant. Applying Rule 5, one sees that this kind of graph is missing in
the interaction. The physics of this diagram has already been included in
the frequency renormalization and thus it must not been considered here.
This implies that this is not a leading order term in J1.

2. For diagram 2 in Fig. A.5, one has the following contribution to J1:

∑
σ

∑
k

′(
λ1 + µ1

2J1

)√
J1J2J3J4L+σ2σ2σ4

1234 δµ1,1δµ4,1δσ2,−σ3

×
∏

m/=1,−1
δµm,0 ∆T (−ω1 − ω−1) δk2,k3δk1,−k4 (A.73)

Here σ = (1, σ2,−σ2,−1), because the internal coupling between 2 and 3
needs σ2 = −σ3 for the phase of k2 to vanish. Then, k1 = σ4k4 = −k4, as
σ4 = −1.
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4
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3

2

4

1

3

2

Figure A.6. Diagram 3 (type II) and diagram 4 (type II, vanishing)
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3. For diagram 3 in Fig. A.6, the contribution to J1 reads:
∑
σ

∑
k

′(
λ1 + µ1

2J1

)√
J1J2J3J4L+σ2σ2σ4

1234 δµ2,−σ2δµ3,−σ2

×
∏

m/=2,3
δµm,0 ∆T (σ2 (ω2 + ω−2)) δk2,−k3δk1,k4 (A.74)

and σ = (1, σ2, σ2,1).

4. For diagram 4, the last Kronecker delta in (A.71), which represents momen-
tum conservation at the vertex, implies k2 = k3 = 0. So this diagram does
not represent an effective interaction. As a matter of fact, for spatially ho-
mogeneous WT fields there must be no coupling with the zero mode k = 0
because such coupling would violate momentum conservation, cf. [137, 38].
If one of the arguments of L1234 vanishes, the matrix element is zero. That
is to say that for any spatially homogeneous WT system L1234 is identically
zero if one of k1, k2, k3 or k4 is zero. The situation is analogous for graphs
obtained by permutations of the indices.

4

1 2

3

1 3

2

4
Figure A.7. Diagram 5 (type II) and diagram 6 (type III)

5. Diagram 5 in Fig. 4 contributes as
∑
σ

∑
k,

k1=k2=k3=k4

(
λ1 + µ1

2J1

)√
J1J2J3J4L+σ2σ2σ4

1234 δσ2+σ3+σ4,1
∏
m

δµm,0 ∆T (0)

(A.75)
σ = (1, σ2, σ3, σ4)

6. All other diagrams are type III (like e.g. diagram 6 in Fig. 4) and give
subleading contributions.

Normalization of amplitudes: Let us introduce the change of variables

Jk =
(2π
L

)d
J̃k, λk = iλ(k) (A.76)
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A – Derivation of the leading order equations of wave turbulence

This substitution implies that the characteristic function be expressed by:

ZL[λ, µ] .=
〈

exp
i ∑

k∈Λ∗L

(2π
L

)d
λ(k)J̃k

 ∏
k∈Λ∗L

ψµk
k

〉
(A.77)

where λ(k) is a smooth test function and µk are integers. Here we keep the time
dependence implicit, for sake of notation. This characteristic function, after the
transformation of the sum to an integral thanks to the large-L limit, becomes a
characteristic functional [69]. The change of variables (A.76) is the key to a finite,
well defined expression, in the thermodynamic limit.
Main contributions to J1: Diagram 2 is the only type II diagram with mode k1
pinned to an external blob, so that µ1 /= 0. This graph contributes to O(1), as it
is order O(Ld) (one free wavenumber, that is an unconstrained sum) multiplyed by
order O(L−d) (term proportional to µ1, see (A.62)). A factor 3 appears to account
for the possible permutations of the indices. There is no other leading order term.
The other graphs contribute to order O(L−d) and vanish in the L → ∞ limit.
Summarizing, J1 may be written as:

J1 = 3
2

(2π
L

)d∑
(1)

[√√√√ J̃2J̃3J̃4

J̃1
L+σ2σ3σ4

1234 δµ1,1δµ−1,1
∏

m/=±1
δµm,0∆T (−(ω1 + ω−1))

]
+O

(
L−d

)
, where

∑
(1)

.=
∑

σ1=−σ4=1,
σ2=−σ3

∑
k2

(A.78)

The contributions from the terms J2, ...,J5, are computed in the appendix of [33].
Contribution of J2

J2 = i

2

(2π
L

)3d
δµ,0

{
9
∑

(2)

[
λ (k1)L+σ2σ3σ4

1234 L−σ5σ6σ7
1567 J̃2J̃4J̃5|∆T (ω̃1 + ω̃−1) |2

]
+6
∑

(3)

[
λ (k1) |L+σ2σ3σ4

1234 |2J̃2J̃3J̃4|∆T

(
ω̃1

234

)
|2
]}

+O
(
L−1

)
(A.79)

∑
(2)

.=
∑
σ

∑
k

′
δk4,−k1δk4,k7δk2,k3δk5,k6 , σ = (1, σ2,−σ2,−1, σ5,−σ5,1) (A.80)

∑
(3)

.=
∑
σ

∑
k

′
δ1

234δk2,k5δk4,k7δk3,k6 , σ = (1, σ2, σ3, σ4,−σ2,−σ3,−σ4) (A.81)
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Contribution of J3

J3 = 18i
(2π
L

)3d
δµ,0

×
{∑

(4)

[
λ (k1)L+σ2σ3σ4

1234 Lσ4σ5σ6σ7
4567 J̃1J̃3J̃5ET (0, σ3 (ω3 + ω−3))

]
+1

2
∑

(5)

[
λ (k1)L+σ2σ3σ4

1234 Lσ4σ5σ6σ7
4567 J̃1J̃3J̃6ET (0,− (ω̃1 + ω̃−1))

]
+
∑

(6)

[
λ (k1)L+σ2σ3σ4

1234 Lσ4σ5σ6σ7
4567 J̃1J̃2J̃3ET

(
0, ω̃1

234

) ]}

+9
(2π
L

)2d {∑
(7)

[
L+σ2σ3σ4

1234 Lσ4σ5σ6σ7
4567

√√√√ J̃−1

J̃1
J̃3J̃5

∏
m/=1,2

δµm,0

×ET
(
− (ω̃1 + ω̃−1) ,− (ω̃1 + ω̃−1) + σ3ω̃3 + σ4ω̃4

)]

+1
2
∑

(8)

[
L+σ2σ3σ4

1234 Lσ4σ5σ6σ7
4567

√√√√ J̃7

J̃1
J̃3J̃5

∏
m/=1,7

δµm,0

×ET
(
− (ω̃1 + σ4ω̃4) ,− (ω̃1 + σ4ω̃4)

)]

+
∑

(9)

[
L+σ2σ3σ4

1234 Lσ4σ5σ6σ7
4567

√√√√ J̃−1

J̃1
J̃3J̃5

∏
m/=1,6

δµm,0

×ET
(
− (ω̃1 + ω̃−1) , ω̃1

234

)]}
+O

(
L−1

)
(A.82)

where∑
(4)

.=
∑
σ,k

′
δk4,−k3δk1,k2δk3,k7δk5,k6 , σ = (1,1, σ3, σ3, σ5,−σ5,−σ3)

∑
(5)

.=
∑
σ,k

′
δk1,−k4δk1,k5δk3,k2δk6,k7 , σ = (1, σ2,−σ2,−1,1, σ6,−σ6)

∑
(6)

.=
∑
σ,k

′
δ1

234δk1,k6δk3,k7δk5,k2 , σ = (1, σ2, σ3, σ4,−σ2,1,−σ3)

∑
(7)

.=
∑
σ,k

′
δ−σ4k4,σ3k3δk1,−k2δk3,k7δk5,k6 , σ = (1,−1, σ3, σ4, σ5,−σ5,−σ3)

∑
(8)

.=
∑
σ,k

′
δk1,σ4k4δk1,σ7k7δk3,k2δk5,k6 , σ = (1, σ2,−σ2, σ4, σ5,−σ5, σ7)

∑
(9)

.=
∑
σ,k

′
δ1

234δk1,−k6δk3,k7δk5,k2 , σ = (1, σ2, σ3, σ4,−σ2,−1,−σ3) (A.83)

Contribution of J4
One finds that J4 = O

(
L−d

)
, so it represents a subleading contribution.
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Contribution of J5

J5 = 3
(2π
L

)2d∑
(10)

µ1µ2

4J1J2
L+σ3σ4σ5

1345 L+σ6σ7σ8
2678

√
J1J2J3J4J5J6J7J8

×δµ1,1δµ2,1
∏

m/=1,2
δµm,0 ∆T

(
ω̃1

345

)
∆T

(
ω̃(−1)345

)

+9
(2π
L

)2d∑
(11)

µ1µ2

4J1J2
L+σ3σ4σ5

1345 L+σ6σ7σ8
2678

√
J1J2J3J4J5J6J7J8

×δµ1,2δµ2,2
∏

m/=1,2
δµm,0 ∆T

(
ω̃1

(−1)44

)
∆T

(
ω̃(−1)177

)
+O

(
L−d

)
(A.84)

∑
(10)

.=
∑
σ

∑
k

′
δk1,−k2δk3,k6δk4,k7δk5,k8δ

1
345, σ = (1,1, σ3, σ4, σ5,−σ3,−σ4,−σ5)

∑
(11)

.=
∑
σ

∑
k

′
δk1,−k2δk1,−k3δk1,k6δk4,k5δk7,k8 , σ = (1,1,−1, σ4,−σ4,−1, σ7,−σ7)

(A.85)

A.3.3 Dynamical Multi-Mode Equation

In this section we turn Eq.(A.61) into a dynamical equation for the characteristic
functional Z taking the L −→ ∞ and ε −→ 0 limits. The two limits do not
commute: the large-box limit must be taken first, the weak-nonlinearity limit after.
The physical meaning of this operation is that there is a vast number of quasi-
resonances (introduced by the large box limit, which leads to a continuous k-space
sending Λ∗L −→ Λ∗), each of which is as important as the exact resonances [137].

Large-box limit

Let us introduce the large-L asymptotics standard substitutions, and

(2π
L

)d∑
k

=⇒
∫
ddk ,

(
L

2π

)d
δk,k′ =⇒ δd(k− k′) (A.86)
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Recalling Eq.(A.60), using (A.78), (A.79), (A.82) and (A.84), and neglectingO
(
L−d

)
corrections, we can eventually write:〈

exp
[
i
∫
ddkλ(k)J̃k

]6iε
(∑

k1

δµ1,1δµ−1,1
∏

m/=±1
δµm,0

)

×
∑
σ2

∫
ddk2J̃2

√√√√ J̃−1

J̃1
H−σ2(−σ2)−

1224 ∆T

(
− (ω̃1 + ω̃−1)

)
+

+8iε2δµ,0

[
9
∑
σ2,σ5

∫
ddk1d

dk2d
dk5λ (k1)H−σ2(−σ2)−

122(−1)

×H+σ5(−σ5)+
155(−1) J̃−1J̃2J̃5|∆T (ω̃1 + ω̃−1) |2

+6
∑

σ2,σ3,σ4

∫
ddk1d

dk2d
dk3d

dk4λ (k1) |H−σ2σ3σ4
1234 |2J̃2J̃3J̃4|∆T

(
ω̃1

234

)
|2δ1

234

]
+

+288iε2δµ,0

[ ∑
σ4,σ5

∫
ddk1d

dk4d
dk5 (−σ4)λ (k1)H−+σ4σ4

11(−4)4

×H(−σ4)σ5(−σ5)(−σ4)
455(−4) J̃1J̃4J̃5ET (0, σ4 (ω4 + ω−4))

+1
2
∑
σ2,σ6

∫
ddk1d

dk2d
dk6λ (k1)H−σ2(−σ2)−

122(−1)

×H++σ6−(σ6)
(−1)166 J̃1J̃2J̃6ET (0,− (ω̃1 + ω̃−1))

+
∑

σ2,σ3,σ4

∫
ddk1d

dk2d
dk3d

dk4 (−σ4)λ (k1) |H−σ2σ3σ4
1234 |2J̃1J̃2J̃3ET

(
0, ω̃1

234

)
δ1

234

]
+

+144ε2
[(∑

k1

δµ1,1δµ−1,1
∏

m/=±1
δµm,0

) ∑
σ3,σ4,σ5

∫
ddk3d

dk4d
dk5

× (−σ4)H−−σ3σ4
1(−1)34L

(−σ4)σ5(−σ3)(−σ5)
4535

√√√√ J̃−1

J̃1
J̃3J̃5 δ (σ3k3 + σ4k4)

×ET
(
− (ω̃1 + ω̃−1) ,− (ω̃1 + ω̃−1) + σ3ω̃3 + σ4ω̃4

)
+1

2
∑

σ2,σ4,σ5,σ7

(∑
k1

δµ1,1
∑
k7

δµ7,−σ7

∏
m/=1,7

δµm,0

)

×
∫
ddk2d

dk4d
dk5d

dk7 (−σ4)H−σ2(−σ2)σ4
1224 H(−σ4)σ5(−σ5)σ7

4557

√√√√ J̃7

J̃1
J̃3J̃5

×ET
(
− (ω̃1 + σ4ω̃4) ,− (ω̃1 + σ4ω̃4)

)
δ(k1 − σ4k4)δ(k1 − σ7k7)

+
(∑

k1

δµ1,1δµ−1,1
∏

m/=±1
δµm,0

) ∑
σ2,σ3,σ4

∫
ddk2d

dk3d
dk4

× (−σ4)H−σ2σ3σ4
1234 H(−σ4)(−σ2)−(−σ3)

42(−1)3

√√√√ J̃−1

J̃1
J̃2J̃3ET

(
− (ω̃1 + ω̃−1) , ω̃1

234

)
δ1

234

]
+
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−12ε2
(∑

k1

δµ1,1δµ−1,1
∏

m/=±1
δµm,0

) ∑
σ3,σ4,σ5

×
∫
ddk3d

dk4d
dk5H−σ3σ4σ5

1345 H−(−σ3)(−σ4)(−σ5)
(−1)345

J̃3J̃4J̃5√
J̃1J̃−1

∆T

(
ω̃1

345

)
∆T

(
ω̃(−1)345

)
δ1

345

−36ε2
(∑

k1

δµ1,2δµ−1,2
∏

m/=±1
δµm,0

) ∑
σ3,σ4

∫
ddk3d

dk4H−−σ3(−σ3)
1(−1)33 H−−σ4(−σ4)

(−1)144 J̃3J̃4

×J̃3J̃4∆T

(
ω̃1

(−1)33

)
∆T

(
ω̃(−1)144

)
〉
J

(A.87)

Weak-nonlinearity limit

Recall that in section A.3.1, we took 2π
ω̃k
� T � 2π

ε2ω̃k
, with T between the wave

period and the nonlinear time. We can now take T ∼ 2π
εω̃k

, so that limε→0 T = ∞.
Then, in (A.87) we must take the T → ∞ limit, consistently with the large-T
asymptotics of ∆T and ET [69, 14]:

∆T (x) ∼ ∆̃(x) = πδ(x) + iP
(1
x

)
, ET (x; y) ∼ ∆T (x)∆T (y) ∼ ∆̃(x)∆̃(y),

|∆T (x)|2 ∼ 2πTδ(x) + 2P
(1
x

)
∂

∂x
, ET (x; 0) ∼ ∆̃(x)

(
T − i ∂

∂x

)
, (A.88)

Some considerations are in order.

1. in Eq.(A.87), only the terms containing |∆T (x)|2, ET (x; 0) or ET (0; y) give
secular contributions (proportional to T ); the non-secular contributions are
irrelevant in the T → ∞ (ε → 0) limit. Thus, only the terms with δµ,0
survive the weak-nonlinearity assumption, while those with δµ1,1 etc. are
subleading.

2. The µ-dependent part of Z is constrained to be 1 by δµ,0. Then, using (A.76),
switching to iλ(k) and taking the large-box limit leads to the functional
derivative (

L

2π

)d ∂

∂λk
=⇒ −i δ

δλ(k) (A.89)

3. Replace (Z[T ] − Z[0])/T with the time derivative Ż. This can be done
([137],pg. 81) because time T is small compared to the characteristic time
of averaged quantities such as Z (nonlinear time). Indeed, the istantaneous
time derivative can be of same order or even greater than the rate of change
described by our substitution, but such rapid changes are oscillatory and
they drop out.
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4. We introduce a new time variable τ .= ε2T .

5. Renaming indices, we split the integral with 4 wavenumbers into identical
contributions

dZ[λ, µ, τ ]
dτ

= −192πδµ,0
∑

σ=(1,σ2,σ3,σ4)

∫
ddk1d

dk2d
dk3d

dk4λ (k1) |H−σ2σ3σ4
1234 |2

δ
(
ω̃1

234

)
δ1

234

(
δ3Z

δλ(k2)δλ(k3)δλ(k4) − σ2
δ3Z

δλ(k1)δλ(k3)δλ(k4)

−σ3
δ3Z

δλ(k1)δλ(k2)δλ(k4) − σ4
δ3Z

δλ(k1)δλ(k2)δλ(k3)

)

−288πδµ,0
∑

σ=(1,σ2,σ3)

∫
ddk1d

dk2d
dk3λ (k1)

×
[
H−−σ2(−σ2)

1(−1)22 H++σ3(−σ3)
1(−1)33 δ (ω̃1 + ω̃−1)

∑
σ=±1

δ3Z
δλ(σk1)δλ(k2)δλ(k3) − 2σ2Hσ2σ2+−

2(−2)11

H(−σ2)(−σ2)σ3(−σ3)
2(−2)33 δ (ω̃2 + ω̃−2) δ3Z

δλ(k1)δλ(k2)δλ(k3)

]
(A.90)

Resonance condition

Recall definition ω̃k
.= ωk+Ωk. The definition of Ωk (A.44) and the thermodynamic

limit imply:

Ω1
L→∞−→ 24ε

∫
Λ∗
ddk2H+−+−

1122 J̃
(0)
2 , Ω−1 = 24ε

∫
Λ∗
ddk2H+−+−

(−1)(−1)22J̃
(0)
2 (A.91)

Note: each component of k2, defined in the dual space Λ∗, ranges in the interval
[−kmax, kmax] and space isotropy implies that our system is symmetric under the
k→ −k transformation. Therefore:

Ω−1 = 24ε
∫

(−Λ∗)
dd(−k2)H+−+−

11(−2)(−2)J̃
(0)
−2 (A.92)

where (−Λ∗) means that we are integrating over each component of k2 from +kmax
to −kmax and not from −kmax to +kmax as it would be for Λ∗. However, the
integration over −k2 ∈ (−Λ∗) is equivalent to the integration over the variable
k3 ∈ Λ∗, and this leads to:

Ω−1 = 24ε
∫
Λ∗
dd(k3)H+−+−

1133 J̃
(0)
3 ≡ Ω1 (A.93)
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Space isotropy also implies that ωk = ω−k (ωk is positive for all k ∈ Λ∗) and then:

ω̃k + ω̃−k = ωk +Ωk + ω−k +Ω−k = 2(ωk +Ωk) (A.94)

Thus, the condition to fulfill for the resonance in the second term (last four lines)
of equation (A.90) reads:

ωk +Ωk = 0 (A.95)
Also, J̃ (0)

2 is positive, whereas the sign of H+−+−
1122 implies that it is impossible to

generalize without looking at the specific problem we want to describe.
If we take as a paradigmatic example a relatively simple, 4-wave resonant system,

namely the Nonlinear Klein Gordon system, we easily notice that the Hamiltonian
coefficients are strictly positive, see also [56]. A more accurate analysis is needed
in other cases, such as the deep water gravity waves, whose effective coefficients
have been derived in [206]. If the Hamiltonian coefficients are positive, then Ωk is
positive too.

Actually, many of the physical systems one usually considers have positive Hamil-
tonian coefficients. Furthermore, this last condition is even not necessary to satisfy
our weaker condition Ωk ≥ 0, ∀k ∈ Λ∗. The reason to rely on such a condition is
justified by the fact that those systems enjoy the property:

ω̃k = ωk +Ωk ≥ 0, ∀k ∈ Λ∗. (A.96)

Thus, condition (A.95) is never fulfilled, implying that the arguments of the two
Dirac delta’s δ (ω̃1 + ω̃−1) and δ (ω̃2 + ω̃−2) in equation (A.90) cannot vanish for
any value of k except from k = 0, but in that case the Hamiltonian coefficients are
identically null. As a consequence, for “positive renormalized frequency” systems
(i.e. satisfying (A.96)) the last four lines of equation (A.90) give zero identically
and the dynamical multi-mode equation reduces to the really compact form (A.97)
given below. Let us also note that the frequency Ωk, Eq.(A.44), contains a factor
ε and that the sum in (A.44) is expected to converge if the energy of the system is
finite, then Ωk is of order O(ε). Therefore, Ωk � ωk. As a matter of fact, even for
a system where Ωk can be negative, Ωk does not nullify the frequency ωk. Thus,
the relevant equation for 4-wave resonant systems is:

dZ[λ, µ, τ ]
dτ

= −192πδµ,0
∑

σ=(1,σ2,σ3,σ4)

∫
ddk1d

dk2d
dk3d

dk4λ (k1) |H−σ2σ3σ4
1234 |2

δ
(
ω̃1

234

)
δ1

234

(
δ3Z

δλ(k2)δλ(k3)δλ(k4) − σ2
δ3Z

δλ(k1)δλ(k3)δλ(k4)

−σ3
δ3Z

δλ(k1)δλ(k2)δλ(k4) − σ4
δ3Z

δλ(k1)δλ(k2)δλ(k3)

)
(A.97)

which is a natural generalization to the 4-wave case of Eq.(94) in [69]. It is worth
emphasising that this equation has been obtained with the RP assumption but not
with the RPA.
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A.3.4 Derivation of the spectral hierarchy
We may now consider the characteristic functional of amplitudes only:3

ZL[λ, T ] .=
〈

exp
( ∑

k∈Λ∗L

λkJk(T )
)〉

(A.98)

In analogy to [69], from (A.97) we derive a hierarchy of evolution equations for
the M-mode spectral correlation functions defined in (A.30), in the kinetic limit:

N (M)(k1, ...,kM , τ) = lim
ε→0

lim
L→∞

N (M)
L,ε (k1, ...,kM , ε−2τ). (A.99)

The hierarchy is easy to derive knowing the relation

N (M)(k1, ...,kM , τ) = (−i)M δMZ[λ, τ ]
δλ(k1) · · · δλ(kM)

∣∣∣∣∣
λ=0

. (A.100)

By taking M functional derivatives of (A.97) and setting λ ≡ 0, one obtains:

Ṅ (M)(k1, ...,kM , τ) = 192π
M∑
j=1

∑
σ

∫
ddk2d

dk3d
dk4δ

(
ω̃1

234

)
δ1

234|H
σ
kj |

2

[
N (M+2)(k1, ...,kj−1,kj+1, ...,kM ,k2,k3,k4, τ)− σ2N (M+2)(k1, ...,kM ,k3,k4, τ)

− σ3N (M+2)(k1, ...,kM ,k2,k4, τ)− σ4N (M+2)(k1, ...,kM ,k2,k3, τ)
]

(A.101)

We shall refer to this set of equations as to the spectral hierarchy of kinetic wave
turbulence. It is exactly analogous to the hierarchy derived by Lanford from the
BBGKY hierarchy in the low-density limit [116, 117]. If the spectral correlation
functions satisfy bounds on their growth for large orders M that allow them to
uniquely characterize the distribution of the empirical spectrum, then the spectral
hierarchy (A.101) is not only a consequence of the equation (A.97) but is in fact
equivalent to that equation. If the initial functional Z[λ,0] is of exponential form
(A.28), as follows for an initial RP field with uncorrelated amplitudes, an exact
solution of (A.97) is given by:

Z[λ, τ ] = exp
(
i
∫
ddk λ(k)n(k, τ)

)
, (A.102)

where n(k, τ) satisfies the standard wave kinetic equation with initial condition
n(k,0) = n(k). Equivalently, factorized Mth-order correlation functions (A.31) as
initial data, entail a factorized solution of the spectral hierarchy (A.101):

N (M)(k1, ...,kM , τ) =
M∏
m=1

n(km, τ). (A.103)

3Then, we can consider equation (A.97) without the δµ,0 term.
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Under suitable conditions [69] this is analogous to the propagation of chaos of
Boltzmann’s Stosszahlansatz [116, 117]. The results above have an important im-
plication. As follows from our discussion in section A.2, the conditions (A.102) or
(A.103) imply a law of large numbers for the empirical spectrum at positive times.
That is, with probability going to 1 in the kinetic limit (first L→∞, then ε→ 0),
it follows that

n̂L(k, ε−2τ) ' n(k, τ), τ > 0 (A.104)
where n(k, τ) is the solution of the wave kinetic equation. An interesting implication
for laboratory and numerical experiments is that the wave kinetic equations hold
for typical initial amplitudes and phases chosen from an RPA ensemble. Some
technical comments are in order. As explained in section 2, the very definition of our
generating function (A.26) entails that, in the thermodynamic limit, the solution
has the form (A.28) if the initial field is RPA. It is important to remark that this
is an exact solution of Eq.(A.97), which has been derived asymptotycally under
the sole RP assumption. Therefore, the result is not trivial, besides constituting a
consistency check.

A.4 Derivation of the PDF equation
With respect to Section A.3, we now consider a second possible limit involving
only a fixed number of modes km, m = 1,2, ...,M , as the total number N → ∞.
As before, one must keep J̃k = O(1) for all modes. We thus define the joint
characteristic function:

Z(M)
L (λ1, ..., λM , µ1, ..., T ; k1, ...) .=

〈
exp

[
i
M∑
m=1

λmJ̃kM (T )
]

M∏
m=1

ψµmkm (T )
〉

(A.105)

This is the characteristic function (110) of [69], which corresponds to the generating
function (68) of [38] but with λkm = i

(
L
2π

)d
λm, Jkm =

(
2π
L

)d
J̃km , m = 1, ...,M ,

and for all the other modes λk = 0. It also corresponds to the generating functional
(5.15) of [137], with same λm and J̃m, but with an imaginary unit in the exponent,
and with a finite number M of nonzero arguments.

The reason why λm is finite and λkm is not is that the exponent of (A.105)
contains finitely many terms λmJ̃km , each of which is finite. Then, as J̃km must be
finite as L→∞, the same holds for λm.

We use the symbol Z(M)
L (λ, µ, T ) when there is no possibility of confusion, and

we use the perturbation expansion in ε giving (A.60) for the generating functions
(∀M), with the definitions (A.61) of χL(λ, µ, T ) and (A.62) - (A.66) of the J ’s. As
λm is finite, different relations hold for the orders of the prefactors in the J ’s. In
particular, for J1, J2, J3 we have:

λk1 + µk1

2J̃k1

, λk1 + λ2
k1 J̃k1 −

µ2
k1

4J̃k1

= O
(
Ld
)

(A.106)

132



A.4 – Derivation of the PDF equation

and for J4, J5 we have:
1
2λ

2
k1 + µk1

4J̃2
k1

(
µk1

2 − 1
)

+ λk1µk1

2J̃k1

, λk1λk2 ,

(
λk1 + µk1

4J̃k1

)
µk2

J̃k2

= O
(
L2d

)
(A.107)

To calculate the leading order contributions, one must note that some wavenumbers
are discrete and take only M values (mode 1 for J1 - J4, modes 1 and 2 for J5),
whereas all the others are continuous in the infinite-box limit. This is important
to distinguish O(Ld) from O(M) terms.

A.4.1 Derivation of the PDF hierarchy
Collecting the contributions of the J1 − J5 terms enumerated in the Appendix
of [33], we can neglect nonsecular terms. Furthermore, ω̃k + ω̃−k = 0 is never
fulfilled, so we ignore the non-resonant terms with a δ(ω̃k + ω̃−k) contribution. The
two remaining contributions contain δµ,0, hence we can write:

δµ,0〈J̃je
∑

m
iλmJ̃m〉J = −iδµ,0

∂

∂λj
Z(M) (A.108)

for wavenumber kj, j = 1, ...,M . Similarly, for mode k /= km, ∀m = 0, ...,M we
have:

δµ,0i〈J̃ke
∑

m
iλmJ̃m〉J = δµ,0

∂

∂λk
Z(M+1)

∣∣∣∣∣
λk=0

(A.109)

Subsequently, we consider an intermediate time between the linear time and the
nonlinear time, cf. Section A.3.3, T ∼ 1

ε
, and we take the ε → 0 limit. Be-

cause Z(M)(λ, µ, T ) = χ(M)(λ, µ, T ) + χ(M)∗(−λ,−µ, T ), while χ(M)(λ, µ, T ) =
χ(M)∗(−λ,−µ, T ) and Z(M)(λ, µ, T ) = 2χ(M)(λ, µ, T ), we get:

Z(M)(T )−Z(M)(0)
ε2T

∼ ∂Z(M)

ε2∂T
(λ, µ, T ) = ∂Z(M)

∂τ
(λ, µ, τ) (A.110)

where τ = ε2T is the nonlinear time. This leads to:4

∂Z(M)

∂τ
(λ, µ, τ) = −192πδµ,0

×
M∑
j=1

∑
(1,σ2,σ3,σ4)

∫
ddk2d

dk3d
dk4δ

j
234δ

(
ω̃j234

) ∣∣∣H−σ2σ3σ4
j234

∣∣∣2

×
{(

λj + λ2
j

∂

∂λj

)
∂3Z(M+3)

∂λ2∂λ3∂λ4

∣∣∣∣∣
λ2=λ3=λ4=0

− σ2λj
∂3Z(M+2)

∂λj∂λ3∂λ4

∣∣∣∣∣
λ3=λ4=0

− σ3λj
∂3Z(M+2)

∂λj∂λ2∂λ4

∣∣∣∣∣
λ2=λ4=0

− σ4λj
∂3Z(M+2)

∂λj∂λ2∂λ3

∣∣∣∣∣
λ2=λ3=0

}
(A.111)

4The continuous quantities are identified by a bar, and symmetrization is made in the three
continuous modes k2, k3, k4.

133



A – Derivation of the leading order equations of wave turbulence

for M = 1,2,3, .... An important fact is that δµ,0 implies that the RP property
of the initial wavefield is preserved in time. By Fourier transformation in the λ
variables, one can obtain an equivalent hierarchy of equations for the joint PDFs
P(M)(s1, ..., sM , τ ; k1, ...,kM), which appears more practical to implement boundary
conditions on the amplitudes.

A.4.2 The M-mode PDF equations
From the definition of the joint characteristic function of amplitudes, one has:

Z(M)(λ1, ..., λM) =
〈
e
∑

m
iλmsm

〉
J

=
∫
ds1...dsMe

∑
m
iλmsmP(M)(s1, ..., sM) (A.112)

P(M) is the Fourier transform of Z(M), so that:

P(M)(s1, ..., sM) = 1
2π

∫
dλ1...dλMe

−
∑

m
iλmsmZ(M)(λ1, ..., λM) (A.113)

A straightforward Fourier transformation yields the following continuity equation:

Ṗ(M) +
M∑
m=1

∂

∂sm
F (M)
m = 0, (A.114)

F (M)
m =− 192πsm

∑
σ=(1,σ2,σ3,σ4)

∫
ddk2d

dk3d
dk4δ

m
234δ (ω̃m234)

∣∣∣H−σ2σ3σ4
m234

∣∣∣2

×
[ ∫

ds2ds3ds4s2s3s4
∂P(M+3)

∂sm
+ σ2

∫
ds3ds4s3s4P(M+2)

+ σ3

∫
ds2ds4s2s4P(M+2) + σ4

∫
ds2ds3s2s3P(M+2)

]
(A.115)

This is not a closed equation for P(M), as it contains P(M+2) and P(M+3), for
M = 1,2,3, ...

A.4.3 Relation with Peierls equation
As recalled above, a similar diagrammatic calculation for the 3-wave case was per-
formed in Ref. [38]. Starting from the same defintion of generating function adopted
here, the authors derived the canonical Peierls equation, in their version of the ther-
modynamic limit [38, 137]. Later, it was shown that certain terms contributing to
the Peierls equation are actually negligible, if the variables are normalized so that
the characteristic functional remains finite in the thermodynamic limit [69]. Con-
sequently, an equation that at the leading order differs from the Peierls equation
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was derived in Ref. [69].
Because the PDF, rather than the generating function, is the object of physical

interest, in this subsection we investigate the relation between the two asymptotic
equations for the PDF, and we show that under two assumptions the Peierls equa-
tion reduces to the other leading order equation. We compare our PDF equation
(A.114,A.115), that follows from the leading-order equation (A.111), with the 4-
wave Peierls PDF equation, Eq.(6.120) of Ref. [137], that has been derived taking
the Laplace transform of the generating function equation, obtained in the thermo-
dynamic limit, in formal analogy with the 3-wave case. Such a PDF equation, that
takes the form:

Ṗ = πε4 ∫ |W ij
nm|2δ(ωij)δijnm

[
δ
δsj

+ δ
δsl
− δ

δsm
− δ

δsn

]
×
(
sjslsmsn

[
δ
δsj

+ δ
δsl
− δ

δsm
− δ

δsn

]
P
)
dkjdkldkmdkn (A.116)

is meant to describe the behaviour of an infinite set of modes. Unlike our case,
there are no spins in Eq.(A.116), but this is irrelevant for the following discussion.
Equation (A.116) can also be written as a continuity equation, which reads:

Ṗ +
∫ ∂

∂sj
Fjdkj = 0, (A.117)

Fj = −4πε4sj

∫
|W lj

nm|2δ(ωlj)δljnmsjslsmsn
[
δ

δsj
+ δ

δsl
− δ

δsm
− δ

δsn

]
P dkldkmdkn .

(A.118)
To compare with our M-mode equation, let us assume that the Peierls equation
holds with same form also in the case of large but finite N, so that we can write:

Ṗ(N) +
N∑
j=1

∂

∂sj
F (N)
j = 0, (A.119)

F (N)
j = −4πε4sj

(2π
L

)3d N∑
l,m,n=1

|W lj
nm|2δ(ωlj)δljnmsjslsmsn

[
δ

δsj
+ δ

δsl
− δ

δsm
− δ

δsn

]
P(N) .

(A.120)
This is tantamount to commute the thermodynamic limit and the T ∼ 1/ε → ∞
limit with the Laplace transform, if the N →∞ limit can be taken without further
specifications.5 Now, one can integrate out N −M variables, as in the standard
BBGKY procedure, to obtain

Ṗ(M) +
M∑
j=1

∂

∂sj
F (M)
j = 0, (A.121)

5Strictly speaking, here the derivative is only a finite difference.
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with the flux given by

F (M)
j =− 4πε4

(2π
L

)3d
×

N∑
l,m,n=M+1

|W lj
nm|2δ(ωlj)δljnm

(∫
slsmsn

∂PM+3

∂sj
dsldsmdsn

−
∫
smsnPM+2dsmdsn + 2

∫
smslPM+2dsmdsl

)

+
M∑

m,n=1

N∑
l=M+1

|W lj
nm|2δ(ωlj)δljnm

[
−sjsmsn

(
PM + ∂

∂sj

∫
dslslPM+1

)]

+
M∑
l=1

N∑
m,n=M+1

|W lj
nm|2δ(ωlj)δljnm2

(∫
slsmsn

∂PM+2

∂sj
dsmdsn +

∫
slsmPM+1dsm

) .

(A.122)

Analogously to the analysis of Ref. [69] for the 3-wave case, we note that this flux
contains more terms than the leading order (A.114)-(A.115). Nonetheless, taking
N � M , and assuming that all the terms are individually of the same size, one
may obtain the leading order only from the sum having all three indices l,m, n in
[N −M,N ]. The remaining terms can be neglected simply because they constitute
a negligibly small set compared to the others. Under this assumption, the last two
lines of Eq.(A.123) can be discarded, and the flux can be written as:

F (M)
j =− 4πε4

(2π
L

)3d N∑
l,m,n=1

|W lj
nm|2δ(ωlj)δljnm

{(∫
slsmsn

∂PM+3

∂sj
dsldsmdsn

−
∫
smsnPM+2dsmdsn + 2

∫
smslPM+2dsmdsl

)
, (A.123)

Then, taking the thermodynamic limit (N,L→∞) leads to our equation (A.115).
In summary, the procedure based on the Peierls equation leads to our same

results, provided: (i) the thermodynamic limit is not singular; (ii) the wave modes
in the first M modes can be neglected, compared to all the others.

A.4.4 The 1-mode PDF equation
It is interesting to note that factorized initial conditions (which is equivalent to RPA
property at the initial time) imply factorized solutions for Eq.(A.115), ∀τ ≥ 0:

Z(M)(λ1, ..., λM , τ ; k1, ...,kM) =
M∏
m=1
Z(λm, τ ; km), τ ≥ 0 (A.124)
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with each Z(λk, τ ; k) satisfying

∂Z(λk, τ ; k)
∂τ

= iηkλk

(
1 + λk

∂

∂λk

)
Z(λk, τ ; k)− γkλk

∂Z
∂λk

(λk, τ ; k) (A.125)

where

ηk
.= 192π

∑
σ

∫
ddk2d

dk3d
dk4δ

k
234δ

(
ω̃k

234

) ∣∣∣H−σ2σ3σ4
k234

∣∣∣2 n(k2)n(k3)n(k4) ≥ 0,

(A.126)

γk
.= 192π

∑
σ

∫
ddk2d

dk3d
dk4δ

k
234δ

(
ω̃k

234

) ∣∣∣H−σ2σ3σ4
k234

∣∣∣2
×
[
σ2n(k3)n(k4) + σ3n(k2)n(k3) + σ4n(k2)n(k3)

]
(A.127)

For the PDF hierarchy an analogous result holds. Substituting a factorized solution
into Eq.(A.114) we get the equation for the 1-mode PDF:

P(M)(s1, ..., sM , τ ; k1, ...,kM) =
M∏
m=1

P (sm, τ ; km) .=
M∏
m=1

Pm, τ ≥ 0 (A.128)

Equation (A.114) transforms into:

∏
m/=1

Pm
∂P1

∂τ
+
∏
m/=2

Pm
∂P2

∂τ
... = ∂

∂s1

{
192πs1

∑
σ

∫
ddk2d

dk3d
dk4δ

1
234δ

(
ω̃1

234

)

×
∣∣∣H−σ2σ3σ4

1234

∣∣∣2 ∏
m/=1

Pm

[
∂P1

∂s1

∫
ds2s2P2

∫
ds3s3P3

∫
ds4s4P4

+
(
σ2P1

∫
ds3s3P3

∫
ds4s4P4 + (2↔ 3) + (2↔ 4)

)]
+ ...

}
(A.129)

Recall that
∫
dsisiP (si, τ ; ki) = n(ki, τ), because of the definition of the wave spec-

trum. Equation (A.129) is made of M independent parts, each of which can be
written in the continuity equation form:

∂P

∂τ
= ∂

∂s

[
s
(
ηk
∂P

∂s
+ γkP

)]
(A.130)

where ηk and γk are the same defined in (A.126) and (A.127). These are nonlinear
Markov evolution equations in the sense of McKean, since the solutions satisfy the
set of self-consistency conditions:

n(k, τ) =
∫
ds sP (s, τ ; k) (A.131)

where n(k, τ) is the same spectrum that appears in the formulas for the coefficients
(A.126) and (A.127).
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These equations are the exact solutions of a model of “self-consistent Langevin
equations”. Here, the model equations take the form of the stochastic differential
equations

dsk = (ηk − γksk)dτ +
√

2ηkskdWk, (A.132)

interpreted in the Ito sense, with self-consistency determination of n(k, τ) via
(A.131). This generalizes the 3-wave case of Ref. [69] where, P (s, τ ; k) relaxes
to

Q(s, τ ; k) = 1
n(k, τ) exp(−s/n(k, τ)), (A.133)

which corresponds to a Gaussian distribution of the canonical variable b̃ =
(

2π
L

)d/2
b.

For any solution n(k, τ) of the wave kinetic equation, Q(s, τ ; k) solves the 1-mode
PDF equation (A.130). Also, the relaxation of a general solution P to Q is indicated
by an H-theorem for the relative entropy

H(P |Q) =
∫
ds P (s) ln

(
P (s)
Q(s)

)
=
∫
ds P (s) lnP (s) + lnn+ 1. (A.134)

This is a convex function of P, non-negative, and vanishing only for P = Q. Taking
the time-derivative using (A.130), it is straightforward to derive

d

dτ
H(P (τ)|Q(τ)) = −η

∫
ds

s|∂sP (s, τ)|2
P (s, τ) + η

n(τ) , (A.135)

where ∫
−s∂sP (s, τ) ds =

∫
P (s, τ) ds = 1 (A.136)

is used to cancel terms involving γ. The self-consistency condition n(τ) =
∫
s P (s, τ) ds

implies

d

dτ
H(P (τ)|Q(τ)) = −η

(∫
ds

s|∂sP (s, τ)|2
P (s, τ) − 1∫

s P (s, τ) ds

)
≤ 0. (A.137)

The inequality follows from the Cauchy-Schwartz inequality applied to (A.136)

1 =
∫ √

sP ·
√
s

P
(−∂sP ) ds ≤

√∫
sP (s) ds ·

∫ s|∂sP |2
P

ds. (A.138)

Equality holds and relative entropy production vanishes if and only if
√
sP =

c
√

s
P

(−∂sP ), or P = −c∂sP for some c. The solution of this latter equation gives
P = Q with n = c. Then, P (τ) relaxes to Q(τ) as τ increases, assuming that kinetic
theory holds over the entire amplitudes range s ∈ (0,∞).
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A.5 Conclusions
1. We have worked within the framework of WWT. We have considered a

Hamiltonian system in d dimensions, with a quartic small perturbation im-
plying 4-wave interactions. From Hamilton equations, we have derived the
equations of motion expressed in canonical normal variables.

2. To reach a closure for the problem, we have assumed that the canonical
wavefield has the RP property at the initial time, allowing a statistical de-
scription of the field through its modes. We have averaged over phases using
a method based on the Feynman-Wyld diagrams.

3. For the large-box limit, we have normalized the amplitudes to keep the wave
spectrum finite, which is crucial for a correct evaluation of the contributions
of the different diagrams [69]. The result differs significantly from the pre-
vious approach of Ref. [137], but it has been shown that the approach of
Ref. [137] is equivalent to ours, under two technical assumptions.

4. We have formally taken the large-box (thermodynamic) limit, followed by
the small nonlinearity limit, obtaining the following closed equation:

dZ[λ, µ, τ ]
dτ

= −192πδµ,0
∑
σ

∫
ddk1d

dk2d
dk3d

dk4λ (k1) |H−σ2σ3σ4
1234 |2δ(ω̃1

234)

×δ1
234

(
δ3Z

δλ(k2)δλ(k3)δλ(k4) − σ2
δ3Z

δλ(k1)δλ(k3)δλ(k4) +

−σ3
δ3Z

δλ(k1)δλ(k2)δλ(k4) − σ4
δ3Z

δλ(k1)δλ(k2)δλ(k3)

)
(A.139)

where τ is the nonlinear time. Note that:

• Due to the δµ,0 factor, the RP property of the initial field is preserved
as time goes on. This fact is crucial as it ensures the validity of the
equation itself at τ > 0.

• The stricter initial RPA property for the wavefield, and thus a fac-
torized form for Z[λ, µ,0], entails a solution preserving the factorized
form in time.

• Differentiating the characteristic functional in the variables λk’s, one
obtains the spectral hierarchy, which is analogous to the BBGKY
hierarchy of Kinetic Theory. Assuming RPA for the initial field,
the hierarchy is closed obtaining the kinetic wave equation for the
spectrum. This connects our work, that gives for the first time the
general derivation for the 4-wave case, with the existing literature.
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5. We have defined a different characteristic function, for a finite number of
modes M , and derived a hierarchy of equations for its time evolution for any
value of M , which reads:

∂Z(M)

∂τ
(λ, µ, τ) = −192πδµ,0

×
M∑
j=1

∑
(1,σ2,σ3,σ4)

∫
ddk2d

dk3d
dk4δ

j
234δ

(
ω̃j234

) ∣∣∣H−σ2σ3σ4
j234

∣∣∣2

×
{(

λj + λ2
j

∂

∂λj

)
∂3Z(M+3)

∂λ2∂λ3∂λ4

∣∣∣∣∣
λ2=λ3=λ4=0

− σ2λj
∂3Z(M+2)

∂λj∂λ3∂λ4

∣∣∣∣∣
λ3=λ4=0

− σ3λj
∂3Z(M+2)

∂λj∂λ2∂λ4

∣∣∣∣∣
λ2=λ4=0

− σ4λj
∂3Z(M+2)

∂λj∂λ2∂λ3

∣∣∣∣∣
λ2=λ3=0

}
(A.140)

6. By taking the Fourier transform of equation (A.140), we have derived a
hierarchy for the M -mode joint PDFs, which can be written in continuity
equation form:

Ṗ(M) +
M∑
m=1

∂

∂sm
F (M)
m = 0, (A.141)

F (M)
m =− 192πsm

∑
σ=(1,σ2,σ3,σ4)

∫
ddk2d

dk3d
dk4δ

m
234δ (ω̃m234)

∣∣∣H−σ2σ3σ4
m234

∣∣∣2

×
[ ∫

ds2ds3ds4s2s3s4
∂P(M+3)

∂sm
+ σ2

∫
ds3ds4s3s4P(M+2)

+ σ3

∫
ds2ds4s2s4P(M+2) + σ4

∫
ds2ds3s2s3P(M+2)

]

where F (M)
m is the flux for one of theM modes. As in the case of Eq.(A.139)

we have:

• RP property for the wavefield at τ = 0 remains fullfilled for the field
at τ > 0. So, equation (A.140) is valid for any nonlinear time τ ≥ 0.

• An initial RPA field remains RPA under the evolution of Eq.(A.141).

• Under RPA, the hierarchy (A.141) can be closed to yield the the
1-mode PDF equation:

∂P

∂τ
= ∂

∂s

[
s
(
ηk
∂P

∂s
+ γkP

)]
, (A.142)
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ηk
.= 192π

∑
σ

∫
ddk2d

dk3d
dk4δ

k
234δ

(
ω̃k

234

) ∣∣∣H−σ2σ3σ4
k234

∣∣∣2
×n(k2)n(k3)n(k4) ≥ 0, (A.143)

γk
.= 192π

∑
σ

∫
ddk2d

dk3d
dk4δ

k
234δ

(
ω̃k

234

) ∣∣∣H−σ2σ3σ4
k234

∣∣∣2
×
[
σ2n(k3)n(k4) + σ3n(k2)n(k3) + σ4n(k2)n(k3)

]
(A.144)

that can be efficiently treated numerically. The spectrum n(k) in ηk
and γk can be determined using the kinetic equation.

• Our Eq.(A.142) is more general than Eq.(6.51) of [137], as it contains
all interactions, not only the “2 waves → 2 waves” interactions.6

• An important solution to (A.145) is represented by the Rayleigh dis-
tribution:

Q(s, τ ; k) = 1
n(k, τ)e

−s/n(k,τ) (A.145)

corresponding to equilibrium. In absence of forcing and damping, P
tends to the Rayleigh form (A.145) for any typical initial condition.
This was tested numerically in [32].

7. In the most general case, Eqs.(A.139,A.140,A.141) would have some supple-
mentary terms (see equation (A.90)). However, as argued in Section A.3.3,
we think they are irrelevant for the known physical systems of wave turbu-
lence, since the resonant condition is never fulfilled.

8. For any system where the leading nonlinear phenomena are N -wave reso-
nances, our results suggest the conjecture that the coefficient preceding the
right-hand side in Eq.(A.139) equals 12i2−NAN , where AN is a number and
A3 = 3, A4 = 16. Integration over the N wavenumber variables, on which
also the Hamiltonian coefficients and the two delta’s depend yields:(

δN−1Z
δλ(k2)δλ(k3)...δλ(kN) −

N∑
i=2

σi
δN−1Z∏
j /=i δλ(ki)

)
(A.146)

9. We conclude noting that our derivation of the wave kinetics is not mathe-
matically rigorous, as is common in the specialized literature. In particular,
analogously to Ref. [69] for 3-wave systems, we have not shown that O(ε3)
terms are negligible in the perturbation expansion (A.48). The kinetic limit

6Remarkably, see the system of vibrating elastic plates treated in [55].
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consists indeed of a delicate combination of large box and small nonlinear-
ity limits [177], whereas rigorous proofs based on asymptotic methods are
problematic and presently limited to particular systems, see e.g. Ref. [126].
At the same time, treating a discrete system in a finite volume and succes-
sively taking a suitable large system limit makes physical sense: the various
quantities are well defined, classical mechanics issues are naturally cast in
a discrete formalism, and splitting schemes can be mathematically justi-
fied in a variety of circumstances, including kinetic equations [184, 51, 162].
Furthermore, this approach allows us to identify and test the properties of
the leading order equations of the 4-wave dynamics. As a matter of fact,
the recent work [32] has demonstrated the agreement of part of our results
with the kinetic equation in [55], that had been derived through asymptotic
methods [56]. Reference [32] also shows the agreement of the predictions
of the PDF equation with direct numerical simulations of relevant 4-wave
systems. This further vindicates the approach developed.
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Appendix B

Supplemental material to
Chapter 4

The material in this chapter was published as Supporting Information to

G. Dematteis, T. Grafke, and E. Vanden-Eijnden. “Rogue waves and large deviations in
deep sea”. Proceedings of the National Academy of Sciences, page 201710670, 2018.

B.1 Construction of the initial condition and dy-
namical consistency check

Our procedure requires to specify the statistics of the (complex) envelope at initial
time, u0(x), whereas the experimental spectrum is for the surface elevation η(x)
which is related to u0(x) as

η(x) = <
(
u0(x)eik0x

)
, (B.1)

To construct the intial u0(x), we introduce the auxiliary variable ζ(x), [150]

ζ(x) = =
(
u0(x)eik0x

)
, (B.2)

which we treat as a field independent of η(x), with the same statistics. It is easy
to see from Eqs. (B.1) and (B.2) that the envelope u0(x) can then be expressed as

u0(x) =
(
η(x) + iζ(x)

)
e−ik0x . (B.3)

Assuming that both η(x) and ζ(x) are independent Gaussian fields with covariance
E(η(x)η(x′)) = E(ζ(x)ζ(x′)) = Cη(x−x′), the envelope u0(x) is also Gaussian, with
covariance Cu(x− x′) = E(u(x)ū(x′)) given by

Cu(x− x′) = 2Cη(x− x′)e−ik0(x−x′) . (B.4)
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This relation implies that
Ĉu(k) = 2Ĉη(k + k0) . (B.5)

where we defined

Ĉu(k) = 1
2π

∫
R
e−ikxCu(x)dx, Ĉη(k) = 1

2π

∫
R
e−ikxCη(x)dx. (B.6)

Recalling that k0 is defined as the wave vector at which the spectrum of η(x) should
be centered, if we take a Gaussian ansatz for this spectrum, we should pick

Ĉη(k) = Ĉη(0)e−|k−k0|2/(2∆2) . (B.7)

As a result,
Ĉu(k) = 2Ĉη(0)e−k2/(2∆2) . (B.8)

The spectrum for u0(x) used in the following is a discretized version of the one
above, with A = (2π/L)2Ĉη(0).
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Figure B.1. Evolution of the spectrum of u(t, x). The left panel shows that this
spectrum stays essentialy constant in time over 100 min, which justifies our choice
of prior: indeed, from the viewpoint of this prior, the time evolution of u(t, x) leads
to no changes. Of course, some features of u(t, x) change, as apparent from the
evolution of other observables such as Pt(z) = P(maxx |u(t, x)|): These changes
can be detected in the spectrum, but they require us to look at much finer energy
scales, as shown on the right panel where we plot the energy contained in modes
above k > 0 as k increases.

The results reported in main text require us to evolve the field u(t, x) from
its initial condition u0(x). As explained in main text, through this evolution, the
probabities Pt(z) = P(maxx |u(t, x)|) change with time t until they converge to
some limit value. It is interesting to ask how much this evolution changes the prior
information we used to construct the initial u0(x): that is, it is interesting to look at
the spectrum of u(t, x) and see how much it differs from that of u0(x). The results
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of this calculation are shown in Fig. B.1, and they indicate that the spectrum stays
essentialy constant in time over 100 min. This justifies our choice of prior: indeed,
from the viewpoint of this prior, the time evolution of u(t, x) leads to no significant
changes. Of course, some features of u(t, x) change, as apparent from the evolution
of other observables such as Pt(z) = P(maxx |u(t, x)|). Detecting the trace of these
changes in the spectrum requires one to look at much finer energy scales: this can
be seen on the right panel in Fig. B.1 where we plot the energy contained in modes
above k > 0 for increasing values of k.

B.2 Influence of the size of the domain and of the
observation window

In this section, we investigate the influence of the size of the domain and/or that
of the observation window on our results. To this end, we conduct experiments
in domains of size L = L0 = 40π (the domain size used in main text, which is
L0 ≈ 4.53 × 103 m in dimensional units), and compare to L = 2L0, L = 4L0,
and L = 8L0. The base domain size L0 was chosen to be as small as possible for
computational efficiency, but still large enough that the influence of the periodic
boundary conditions be negligible (as checked below). Consequently, the results
below can be interpreted either by thinking of L ≥ L0 as the actual domain size, or
as the size of the observation window in an even larger domain (including one that
could be infinite). We also stress that our results are numerically converged and
consistent in terms of numerical resolution, in the sense that we doubled both the
number of gridpoints in the domain and the number of modes in the initial data
each time we doubled the domain size. In particular, we used 212 gridpoints and
M = 23 initial modes (−11 ≤ n ≤ 11) in the domain of size L, 213 gridpoints and
M = 47 initial modes (−23 ≤ n ≤ 23) in the domain of size 2L, etc.

We begin by checking that the domain of size L0 = 40π is already large enough
to render negligible the effect of the boundary conditions. To this end, let us
consider a different observable than the one in main text, namely the probability
that |u(t, x)| be above a certain threshold at a given location x0 in the domain,

PL
0 (t, z) = P(|u(t, x0)| > z), x0 ∈ [0, L]. (B.9)

By translational invariance, PL
0 (t, z) is independent of x0. As L → ∞ this prob-

ability converges to a limiting value, PL
0 (t, z) → P0(t, z), which makes it useful to

consider here. As can be seen from Fig. B.2, convergence is already achieved for
L = L0, PL0

0 (t, z) ≈ P0(t, z). The results shown in Fig. B.2 are for t = 15 min, when
the probability has converged to that on the invariant measure already. A similar
conclusion can be made at intermediate times: Fig. B.3 shows that doubling the
domain size makes no significant difference, i.e. P 2L0

0 (t, z) ≈ PL0
0 (t, z), both in the

results from Monte-Carlo sampling and in those from our large deviation approach.
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The same invariance is also observed in the trajectories obtained by optimization in
the large deviation approach, see Fig. B.4. Note that these results are not surpris-
ing since L0 is already much larger than the correlation length of the initial field,
L0 ' 10Lc – this is in fact why this value of L0 was chosen to begin with.
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Figure B.2. Numerical verification of the invariance PL
0 (z) = limt→∞ P

L
0 (t, z) for

L ≥ L0. The limiting value P0(z) (gray curve) was calculated by propagating 1500
samples up to time of 3000 min in the largest domain with L = 8L0). Note that
this also shows that PL0

0 (t, z) in the MC sampling has essentially converged to the
invariant P0(z) after only 15 min.

Coming back to the quantity investigated in main text, let us denote

PL
max(t, z) = P

(
max
x∈[0,L]

|u(t, x)| > z

)
. (B.10)

Unlike PL
0 (t, z), the probability PL

max(t, z) does depend on L – the larger L, the
higher PL

max(t, z). We can actually estimate this growth explicitly. To see how,
consider a domain of size NL that can be partitioned into N ≥ 1 sub-domains
of size L, each large enough to be roughly statistically independent of the others.
Then we have

1− PNL
max(t, z) =

(
1− PL

max(t, z)
)N

, N ≥ 1 (B.11)

since in order for the maximum of |u| to be less than z in the larger domain of size
NL, it must be less than z in each of the (roughly independent) sub-domains of
size L. Eq. (B.11) is the fundamental equation used in extreme value statistics. We
confirmed its applicability for L = L0 = 40π in our system via direct estimation of
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Figure B.3. Left: PL
0 (t, z) = P(|u(t, x0)| > z) at a fixed location x0 and differ-

ent times t in domains of size L = L0 and L = 2L0 obtained by Monte Carlo
(MC) sampling. Right: Same, obtained by optimization using our large deviation
approach and a larger range of values for z (such large values cannot easily be
reached by MC). As can be seen, the PDFs essentially lay on top of each other for
the two different domains, confirming that the domain size L0 is large enough for
the periodic boundary conditions to not affect the results.
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Figure B.4. Optimal trajectories calculated in the domains of size L = L0 (thick
line) and L = 2L0 (thin line). As can be seen, the periodicity of the domain does
not affect significantly the shape of the instanton inside this domain.

PNL0
max (t, z) for N = 1,2,4,8 by Monte Carlo sampling. These results are reported in

Fig. B.5.
Since L0 = 40π is already large enough for (B.11) to hold, we can rewrite this

equation as
1− PL

max(t, z) =
(
1− PL0

max(t, z)
)L/L0

, L ≥ L0 (B.12)

Note that this equation implies that, at fixed z, PL
max(t, z) increases with L since
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Figure B.5. Numerical verification of (B.11) for L = L0 = 40π. These
results confirm that adjacent boxes of size L0 can be considered statistically
independent. The probability PL

max(z) = limt→∞ P
L
max(t, z) for L = 8L0, is

also shown, indicating that this quantity can be estimated accurately from
PL0

max at 15 min using (B.11).

1−PL0
max(t, z) < 1 and therefore 1−PL

max(t, z) =
(
1− PL0

max(t, z)
)L/L0 ≤ 1−PL0

max(t, z)
for L ≥ L0. Intuitively, this increase in PL

max(t, z) stems from the fact that multiple
large values of |u| are expected to arise simultaneously in different sub-domains
since they are statistically independent – this is usually referred to as an entropic
effect, and it can be seen in the typical realizations from the Monte-Carlo sampling
shown in Fig. B.6 for L = L0 and L = 8L0. Of course this effect is properly
accounted for by Eq. (B.11). Indeed, realizations like those shown in Fig. B.6 are
those from which the probabilities shown in Fig. B.5 were calculated.

It is also important to stress that this entropic effect cannot be accounted for
directly by our large deviation approach. The solution obtained by optimization
becomes independent of L for L large enough (which is the case already for L = L0).
This implies that, without correction, the results of the large deviation approach
will deteriorate with increasing L. Eq. (B.12) shows that this issue can be easily
fixed, however: indeed this formula indicates how the large deviation results at
L = L0 (i.e. in a domain that is large enough to not be influenced by the boundary
condition, but small enough that the entropic effects remain negligible) can be
extended to larger L.
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Figure B.6. Typical realizations from the Monte-Carlo sampling such that
maxx |u(t, x)| ≥ 3.5 m at t = 15 min in the domains of size L = L0 (top)
and L = 8L0 (bottom). As can be seen, as the domain size increases, it
becomes increasingly likely to observe more than one large value of u(t, x)|
in the domain.

B.3 The case of the nonlinear Schrödinger equa-
tion (NLS) and the role of the Peregrine soli-
ton (PS)

For completeness, we redid all of our calculations in the context of the standard
Nonlinear Schrödinger (NLS) equation instead of the MNLS equation. Using the
same non-dimensional variables as in MNLS, NLS reads

∂tu+ i

8∂xxu+ i

2u|u|
2 = 0. (B.13)

Fig. B.7 shows the distributions for the spatial maximum of the envelope |u| at
different times calculated by both direct Monte-Carlo sampling and minimization
using our large deviation approach, using the same random initial conditions as in
MNLS. As can be seen, here too the approach based on large deviation theory does
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an excellent job at capturing these PDFs.
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Figure B.7. P(maxx |u(t, x)| ≥ z) for u(t, x) solution of NLS at different times
calculated by Monte Carlo sampling using 106 realizations and compared to the
results obtained via optimization in our large deviation approach.

The advantage of using NLS is that it permits us to assess the relevance of the
Peregrine soliton (PS), which is an exact solution of NLS (though not of MNLS)
that has been invoked as prototype mechanism for rogue waves creation [156, 3, 174,
4, 150, 186] – recent experimental results in the context of water waves [29, 30, 28],
plasmas [10] and fiber optics [109, 180, 185] have lent support to this hypothesis.
The PS reads

u(t, x) = Uie
−it/Tnl

(
4(1− 2it/Tnl)

1 + 4
(
t/Tnl

)2
+ 4

(
x/Lnl

)2−1
)
, Tnl = 2

U2
i

, Lnl = 1
4

√
Tnl =

√
2

4Ui
,

(B.14)
where Ui > 0 is a free parameter. It can be checked that this solution reaches its
maximal amplitude |u(0,0)| = 3Ui at (t, x) = (0,0) and decays both forward and
backward in time to limt→±∞ |u(t, x)| = Ui.

To compare the PS to our results, we translated t in (B.14) to make the time at
which this solution reaches its maximal amplitude coincide with the time at which
a prescribed value of the wave elevation is observed in either our minimization
procedure or in the MC sampling. By adjusting Ui so that the maximal amplitude
of the PS also coincides with this prescribed value of the amplitude, we can then
verify how well the PS reproduces our instanton as well as the mean and variance of
the solutions observed in the MC sampling. These results are reported in Fig. B.8.
As can be seen, the PS captures the shape of the instanton at final time (i.e. when
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Figure B.8. Comparison of the optimized solution, the mean and standard
deviation of the Monte-Carlo realizations, and the PS reaching the same maximal
surface elevation at T = 20 min. From bottom to top the figures are at 0, 10 and
20 minutes respectively, and these results are for NLS.

the rogue wave occurs) reasonably well, at least near the location x = 0 where the
maximum amplitude is observed (focusing region). The PS also does a reasonably
good job at tracking the evolution of the solution that led to this extreme event. In
particular, the focusing time scale of the optimized solutions (which we interpret
to also describe the convergence time of the a-priori distribution to the invariant
distribution) is in rough agreement with the effective focusing time scale of the PS
starting from a pulse of size Li [180, 185]. This time scale is given by τc =

√
TnlTlin,

where the nonlinear time Tnl is defined in (B.14) and the linear time Tlin = 8L2
i is
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Figure B.9. Comparison between the optimized solution for a very extreme
surface elevation and the PS reaching the same final height (after T = 10
minutes). Comparison with realization from the Monte-Carlo sampling is im-
possible due to the extreme rareness of such event on the ensemble of the initial
conditions. The evolution is shown at times 0 min, 5 min, 7.5 min, and 10 min,
respectively. These results are for NLS.

that associated with group velocity dispersion of the initial pulse – in dimensional
units, these are Tnl =

(
1
2ω0k

2
0U

2
i

)−1
and Tlin = 8ω−1

0 k2
0L

2
i .

The relative agreement both in shape and timescale between the optimized so-
lution and the PS suggests that the main physical phenomenon responsible for the
focusing in the NLS equation is the gradient catastrophe [16], which fosters a very
unique evolution pathway as the point of maximum focusing is approached in space-
time. Still, it should be stressed that the discrepancies between the PS and the
actual solution we observe become more and more pronounced backward in time.
These differences can also be observed in Fig. B.9 where we plot the amplitude of u
for a more extreme event that is too rare to be observed by MC sampling. In this
figure, we show the optimized solutions obtained for two different spectral widths
∆, whose shapes are slightly different from one another: clearly, these differences
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cannot be captured by the PS since this solution is completely specified by the final
amplitude, which is the same for both sets.
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Figure B.10. Same as in Fig. B.8 for MNLS.

For completeness we also compared the PS with the solutions obtained in the
context of MNLS. These results are reported on Fig. B.10 and show similar type of
agreement, in particular in term of the shape of the rogue wave near its maximum
and the time scale of its emergence. Note the discrepancies between the PS and
our solutions is even more pronounced in this case, which is to be expected since
PS is an exact solution of NLS, but not of MNLS.

To summarize, while the PS can explain some features of the rogue waves, in
particular their shape as well as the focusing time scale over which these waves
evolve from a large initial pulse, it does not capture the details of the formation of
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these waves — indeed there is no reason why it should, since different sets of random
initial conditions lead to waves with different shapes (and whose amplitudes have
different statistics) and this information is not seen by the PS. In particular, the
instanton solution for the initial data chosen here depends on two parameters, the
significant wave height Hs and the BFI, while the PS only allows a single parameter
Ui. Additionally and more importantly, the PS does not allow the estimation of the
probability of observing rogue waves of given amplitude since this solution per se
is devoid of a probabilistic framework.
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