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Abstract: Traditional hydraulic servomechanisms for aircraft control surfaces are being gradually
replaced by newer technologies, such as Electro-Mechanical Actuators (EMAs). Since field data
about reliability of EMAs are not available due to their recent adoption, their failure modes are not
fully understood yet; therefore, an effective prognostic tool could help detect incipient failures of
the flight control system, in order to properly schedule maintenance interventions and replacement
of the actuators. A twofold benefit would be achieved: Safety would be improved by avoiding the
aircraft to fly with damaged components, and replacement of still functional components would be
prevented, reducing maintenance costs. However, EMA prognostic presents a challenge due to the
complexity and to the multi-disciplinary nature of the monitored systems. We propose a model-based
fault detection and isolation (FDI) method, employing a Genetic Algorithm (GA) to identify failure
precursors before the performance of the system starts being compromised. Four different failure
modes are considered: dry friction, backlash, partial coil short circuit, and controller gain drift.
The method presented in this work is able to deal with the challenge leveraging the system design
knowledge in a more effective way than data-driven strategies, and requires less experimental data.
To test the proposed tool, a simulated test rig was developed. Two numerical models of the EMA
were implemented with different level of detail: A high fidelity model provided the data of the faulty
actuator to be analyzed, while a simpler one, computationally lighter but accurate enough to simulate
the considered fault modes, was executed iteratively by the GA. The results showed good robustness
and precision, allowing the early identification of a system malfunctioning with few false positives or
missed failures.

Keywords: electromechanical actuators; prognostics; fault detection and identification; genetic
algorithm; model-based approach

1. Introduction

A servoactuator is a device intended to control the position or velocity of a mechanical element by
converting power from different sources (usually hydraulic, electrical, or pneumatic) into a controlled
motion. In aerospace applications, such devices are commonly used for operating the aircraft control
surfaces and several utility systems like landing gear, cargo bay doors, or weapon systems. Most of
these functions are safety critical, so redundancy is a necessary risk reduction method, alongside with
the use of highly reliable components. With the traditional approach, regular scheduled maintenance
should guarantee the continuous airworthiness of the system, but various failure modes occur on a
random basis: therefore, maintenance interventions are often frequent and involve the preventive
replacement of still functional components, with increased costs; moreover, nothing can exclude the
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occurrence of a failure before the scheduled substitution of the interested system. Monitoring the
behavior of an actuator could enable to detect the early signs of different progressive faults, in order to
timely correct them. If a tool would be available with a high grade of robustness to isolate those incipient
faults, most failure modes of the flight control system could be identified before they start affecting the
performance of the system in terms of dynamical response, stability, stall force, or positioning accuracy.
The discipline aimed to this purpose is called Prognostics and Health Management (PHM) (as reported
in [1]). The application of PHM strategies involves the analysis of functional parameters of the system
in form of electrical signals: for this reason, the use of electrical actuators someway represents an
advantage, because no conversion of the signals (and therefore no additional sensors) is needed. Due to
the complexity and to the multi-disciplinary nature of the monitored systems, the FDI task on EMA
systems is particularly challenging, since several failure modes interact and an acceptable accuracy is
hardly achieved. Literature addresses these issues proposing a wide choice of FDI techniques, ranging
from the direct comparison of the system response with that of a monitor model (as proposed by [2]),
to the spectral analysis of well-defined system behaviors [3,4], to the use of Artificial Neural Networks
(as shown in [5–7]), to the combination of these methods [8,9]. Usually, model-based approaches are
more computationally expensive and require a detailed knowledge of the system, but lead to more
accurate results than data driven methods. Data-driven techniques, despite being computationally
light (not considering the offline training phase) treat the system with a black-box approach, to gain
all knowledge its behavior from raw data, and require large experimental training datasets which
are seldom available; for this purpose, NASA developed a Flyable Electro-Mechanical Actuator
(FLEA) [10–12] test stand to collect EMA monitoring data. However, an exhaustive data collection,
spanning different systems and different fault modes, remains a highly demanding task. Conversely,
model-based metaheuristic approaches, such as that presented in this paper, take advantage of the
knowledge acquired in the design phase in a more efficient way; as a result, less data is required for
the training phase (i.e., for the calibration of the fault models). The main drawback is the increase of
evaluation computational time, so hard real-time is not usually possible.

In applications related to aircraft flight control systems, the current tendency is to progressively
replace the traditional hydromechanial and electrohydraulic actuators with EMAs, according to the
“More Electric Aircraft” system architecture [13] or the “All Electric Aircraft” system architecture [14].
This technology is currently implemented on new generation aircraft (e.g., B-787) for secondary FCS
and non-safety critical applications, as well as primary FCS of small UAVs. An EMA is basically
composed of an electric motor transmitting rotational or linear motion to the user by means of a
reduction gearbox; a position sensor and control electronics complete the servoactuator functional
scheme, enabling the position control. These systems are relatively of recent adoption for aerospace
applications, so their reliability level and their failure modes art not fully understood yet: for this
reason, is important to develop robust and effective techniques for prognostic FDI, improving this
way the overall safety of operations. Therefore, this work focuses on the study of electromechanical
actuation systems for prognostic purpose.

2. Aim of This Work

The authors of this paper propose a new FDI tool based on Genetic Algorithms (GAs); this is
optimized and then validated through the comparison between the identified values of fault parameters
and the behavior of a numerical EMA virtual test bench, designed and modeled for the purpose.
The strategy is intended to provide at least a comparable accuracy to existing ones, without requiring
large datasets for training machine learning tools, at the expense of a longer computational time
in evaluation; a computational time in the order of minutes is acceptable for detection of slowly
progressing faults. The accuracy of the technique is then evaluated in different conditions to assess its
field of applicability. According to the hypotheses proposed by [8], the FDI tool is tested under four
different progressive failure modes: partial BLDC motor coil short circuit, backlash, dry friction and
drift of the proportional gain of the PID (Proportional-Integrative-Derivative) position control logic.
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Those failure modes are chosen since they usually feature a progressive growth and are among the
most common damages affecting electromechanical servoactuators, according to [10–12]. Moreover,
differently from most work available in literature [4,15,16], we propose a single algorithm able to
address multiple distinct fault modes, affecting different subsystems of the actuator at the same time.

3. Reference Model of the Electromechanical Actuator

Figure 1 is the functional block diagram of a typical EMA. Its main components are the following:

1. The Actuator Control Electronics (ACE) evaluates the corrective action for the motor bridge
comparing the actual and commanded positions;

2. The Power Drive Electronics (PDE) is the motor bridge itself, converting the DC power supply
into the three-phase current necessary to drive the motor, modulated accordingly to rotor angular
position and signal from the ACE module;

3. An electric motor, usually BLDC type (BrushLess Direct Current), converts electrical power into
mechanical power;

4. A mechanical transmission, composed by a gear reducer and/or a rotary/linear conversion
mechanism (e.g., a ball or roller screw) transfers the motion from the motor to the user,
i.e., the aircraft control surface;

5. A set of position, velocity and current transducers send their measured dimension to the ACE
module, allowing the closure of the feedback loop.

The goal of this research is the proposal of a tool able to identify the early effects of the degrading
of an EMA, while its performance is still compliant to the specifications and compatible with safe
operations. In order to assess robustness and accuracy of this technique, a simulated test environment
has been developed with the MATLAB/Simulink® platform. The reference model, formerly proposed
by [8], enhanced according to [17,18], and reported in Figure 2, has a very high level of detail. It is
able to simulate the dynamic response of a real system even in presence of the considered progressive
faults and taking into account the effects of analogic to digital conversion of signals and electrical noise
on signal lines. The model can be split into five different subsystems:

1. The ACE block simulates the behavior of the control electronics module by generating the output
reference current Iref, as shown in [19];

2. The BLDC EM Model subsystem represents the power drive electronic module and includes the
electromagnetic model of the trapezoidal BLDC motor; it evaluates the torque delivered by the
motor as a function of the voltages generated by the three-phase electrical power regulator (BLDC
EM Model); this model, as employed in [17], has been developed according to the mathematical
models and the assumptions propositioned by [20–22];

3. The EMA Dynamical Model block simulates the mechanical effects within the motor and the
transmission, by means of a single degree of freedom MCK model. Additionally, this model
accounts for several non-linear effects that characterize the dynamic response of the mechanical
system, such as dry friction [23,24], backlash [25], and mechanical end-stops [26].

4. The Com input block simulates the pilot’s command and allows to generate different functions as
steps, ramps, sine waves etc.;

5. Another input block (TR), similar to the previous one, is used to consider the aerodynamic load
on the control surface.
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A validation of the model has been performed by comparing the dynamical response of the
system under different operating conditions (control input, external load, boundary conditions and
magnitude of different faults) with data available in literature [27,28]. In particular, it has been assessed
that counter electromotive force, phase current waveforms and BLDC dynamical response show a
good matching to experimental values, even when faults are considered.

4. EMA Degradations and Fault Modes

As already mentioned, EMAs are of relatively recent introduction in aerospace applications;
for this reason, their cumulated flight hours are not enough to provide significant statistics about
their most common failure modes. According to [29] it is possible to sort the failure modes into four
different categories:

1. Mechanical or structural failures;
2. BLDC motor failures;
3. electronics failures;
4. sensor failures.

This study focuses on four particular faults, usually showing a progressive growth: backlash (BLK)
and dry friction (FST) affecting the mechanical transmission because of worn components,
partial coil-to-coil short circuit in one of the BLDC stator phases (Na) and a drift of the proportional gain
of the PID controller (Gprop). These particular failure modes were chosen according to data available
in literature, indicating them among those with the highest incidence and criticality [30–32]. It is
commonly known that dry friction effects appear when two contact surfaces are in relative motion;
in a mechanical transmission, the progressive wearing of components results in an increase of friction
coefficients, requiring higher torque to be delivered by the motor. Borello and Dalla Vedova [33]
showed how increased dry friction causes a reduction in the servomechanism accuracy along with
the appearance of characteristic behaviors such as stick-slip and limit cycles. Another consequence of
the mechanical wearing of moving components is the increase of the transmission backlash. When a
relatively large mechanical play interacts with the actuator feedback logic, the stability and stiffness of
the system are compromised, as highlighted by [25]. The main failure modes affecting BLDC motors are
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partial stator short circuit and rotor eccentricity due to the degradation of bearings. As shown by [34],
it is commonly assessed that 35% to 40% of induction motor breakdowns can be ascribed to the stator
winding short circuit; BLDC motors considered in this work share a very similar stator architecture to
three phase induction machines, so similar failure modes are expected. The stator short circuit usually
starts between two windings belonging to the same coil, and the resistance reduction causes a higher
current to circulate. Therefore, the localized overheating damages the polymeric insulation of the
adjacent windings, leading to the progressive growth of the fault. Eventually, when most of a phase is
compromised or the short circuit propagates to another phase or to ground, the motor has a complete
failure being no longer able to perform its function. Maggiore et al. [8] proposed a simplified model
of this fault, avoiding the necessity of computationally expensive electromagnetic finite elements;
since a stator short circuit affects the system behavior by modifying the electromagnetic stator-rotor
coupling, it can be simulated by varying the counter-electromotive force constant according to the
fault magnitude and the rotor angular position for each phase:

kei = Kei Cei (1 + ζ cos (θr)), (1)

where i = a, b, c for the three electrical phases. The constants kea, keb, kec are then used to evaluate
the torque generated by each phase (Cea, Ceb, Cec) and the counter-electromotive forces ea, eb, ec.
Sensor and electronics faults usually feature a rather fast evolution in time; however, [35,36] highlighted
that considering suitable time scales precursors of these failures can be found and used to take a
corrective action.

Therefore, the authors took into account an electronic fault leading to an unexpected change in
proportional gain, in order to evaluate the effectiveness of the proposed FDI algorithm in presence of
this kind of fault, and in particular considering its interactions with the other fault modes.

5. Monitor Model of the Electromechanical Actuator

The high-fidelity model described in the previous sections emulates the dynamic response of
the actual electromechanical servosystem in terms of both mechanical parameters (position, velocity,
acceleration, torque) and electromagnetic parameters (i.e., phase current and voltages). The model
computes the actuator response accounting for the actual command and load profiles (coming
respectively from the pilot and the external aerodynamic forces on the control surface), the varying
environmental conditions (temperature changes affecting the electromagnetic parameters of the motor,
such as phase resistance) and multiple failure modes.

Then, even with the unavoidable limitations coming from its lumped parameters architecture,
this model can be used as a simulated test bench to study the effects of incipient faults on the system
response and to test diagnostic and prognostic monitoring techniques.

In all model-based approaches to system diagnostics and prognostics, the behavior of the system
is monitored and compared to a simpler model. To this purpose, the authors developed a simplified
Monitor Model (MM), with the same logical and functional architecture as the high-fidelity reference
model. This simplified model is tailored to compute a response very close to the high fidelity one,
although its applicability is restricted to a subset of the operating conditions accounted for by the RM.

The computational cost of the MM is reduced by more than an order of magnitude with respect to
the RM, allowing it to be executed iteratively by the GA based FDI algorithm. The MM block diagram
is shown in Figure 3; as clearly appears, the model exploits a single-phase DC representation which is
globally equivalent to the three phase BLDC architecture of the RM. This, alongside with a simplified
hysteresis current loop, allows to increase the integration time step and at the same time to reduce the
computations required for each time step, resulting in a reduced computational effort.
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6. Proposed Fault Detection and Identification Algorithm and Problem Setup

Model based FDI is a parameter estimation task [37] which can be solved with an optimization
algorithm. An objective function is defined as a cumulative error between the actual system and the
model. The optimization updates iteratively a set of parameters encoding the fault condition of the
actuator; the optimization is stopped when an adequate match is found between the response of the
actual system and that of the monitor model. For testing purposes, and to make up for the lack of
actual field data, the high-fidelity reference model replaces the physical actuator in this work.

Several optimization techniques can be employed; they can be classified into two groups:
deterministic methods generally rely on the local gradient (analytical or numerical) of the objective
function to evaluate the next iteration, while probabilistic methods rely on a random search of the
minimum of the objective function. As observed by [3], most optimization algorithms are more likely
to converge to local minima, and often fail to find the global solution; in fact, a high dependency on the
initial settings and the optimization starting point is usually observed. This behavior is detrimental
to a robust and reliable fault detection, since it can possibly lead to the estimation of incorrect faults,
with a high likelihood of false positives or missed detections. More robust global search methods,
such as Genetic Algorithms and Simulated Annealing offer a higher success rate in detecting the global
function minimum, at the expense of a longer computational time [38,39].

Genetic Algorithms (GAs) [40] have been employed in literature for a multitude of applications,
solving problems ranging from optimal design of antennas and structural components, to control strategies
for robotic applications, to aerodynamic optimization of turbomachinery [41–44]. Generally, GAs are best
suited for problems featuring an expensive objective function depending on multiple variables. For this
reason, in recent years many technical applications in the field of mechatronics and electrical machines have
been employing Genetic Algorithms for model-based diagnostic and prognostic tasks [39]. In the specific
application of electrical machinery fault detection, an example can be found in [38], where GA-based fault
detection is leveraged to identify stator turn-to-turn coil short circuit faults with a parameter identification
on a model accounting for the short circuit fault.

In light of the above, in this work we developed a model-based FDI strategy able to perform
an identification and quantification of faults levels of an EMA. The algorithm analyzes the dynamic
response of the system (RM) and compares it with that of a numerical model (MM), through a GA
optimization. Specifically, the signals analyzed are the stator current and the motor speed. To compare
the three-phase square-wave current of the RM with the single-phase equivalent current of the MM,
the envelope of the three phases is considered. The objective function is defined as a quadratic
cumulative error between the signals of the RM and the MM:

e = a
∫

0
(iRM − iMM)2dt + b

∫ t

0
(ωRM −ωMM)2dt (2)
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where i denotes the stator current,ω is the motor angular velocity, and a, b≥ 0 are weighting coefficients.
The weighting coefficients are needed to normalize the cumulative errors computed by integrating the
current and velocity signals, obtaining non-dimensional quantities; the coefficients are adjusted to give
the two contributions a range of variation of the same order of magnitude.

The RM response is computed with static fault parameters, while the fault parameters of the
MM are the input of the objective function. In addition, the same command and external load time
histories are fed to both models, since those signals have a strong influence on the system response.
Obviously, the error is zero (or near zero) if the two models compute the same response: in this
condition, we assume that the faults injected in the MM correspond to those affecting the RM or the
actual system; otherwise, the error is always positive.

When the error function is minimized, the RM and MM responses match at their best. Since both
models account for the same fault modes, and are validated to show a consistent behavior over a wide
range of operating conditions, we can safely assume the fault parameters the MM as an approximation
of those initially injected in the RM. A GA is then employed to search the global minimum of the
objective function, by varying the fault parameters of the monitor model.

7. Genetic Algorithm Tuning

The core of the proposed FDI strategy is a standard Genetic Algorithm, as available in the Matlab
optimization toolbox. Genetic Algorithms are a class of metaheuristic evolutionary optimization
algorithms, inspired by the natural selection process.

Each iteration (or generation) of the algorithm evaluates the objective function (often referred to as
the fitness function) of a population of points, called chromosomes or individuals. Each chromosome is
a potential solution of the minimization; the individuals of each generation are then ranked according
to their fitness, i.e., in ascending order of the corresponding objective function value. The best ranking
individuals are chosen as parents for the next generation, which is composed by the best individuals of
the previous iteration and new ones created using the operators called selection, crossover, and mutation.
The process is repeated iteratively until a stopping criterion is satisfied, e.g., the best individuals are all
within a tolerance (either in the objective function or in the space of chromosomes), a maximum number of
iterations is reached, etc. A schematic representation of the process is given in the flow chart of Figure 4.

The setting of several parameters defining the behavior of the GA, such as the selection, crossover
and mutation functions, as well as the stopping criteria, are strongly problem dependent and have
a great influence on the convergence rate of the optimization. Then, these must be tuned for the
optimization to perform correctly on a given application. The following sections explain in detail the
settings employed for the considered problem.
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7.1. Definition of Bounds and Constraints

The bounds and constraints of an optimization problem define the limits of the search space to
be explored by the algorithm. It is important to determine the range of variability of each variable,
in order to avoid the presence of an unwanted global minimum of the fitness function which lies
outside the feasible space, that is for example, which is not in the space of applicability of the employed
models. Additionally, a smaller search space often eases the convergence of the algorithm by excluding
some of the local minima from the problem domain.

The fault parameters for the FDI problem studied here are bound between values determined
by considerations related to the physical architecture and behavior of the system. As an example,
the partial short circuit parameter Na cannot be higher than 1 (fully healthy system) or lower than 0.8
(full damage condition, the EMA is not working properly), or the dry friction coefficient cannot be
higher than its nominal value. Table 1 summarizes the bounds set for all the considered parameters.

Table 1. Summary of bounds considered for each.

Bounds Na FST (N) BLK (rad) Gprop (s−1)

Lower Bound 0.8 0.1689 1 0 1 5 × 104

Upper Bound 1 1 0.8445 0.04 1.5 × 105

1 Values corresponding to the actuator in nominal conditions.

7.2. Definition of Population Size

As a default setting, the GA solver available in the Matlab Optimization Toolbox computes
20 individuals for each iteration. Increasing the number of individuals allows a better exploration of
the search space, since the higher diversity of the population avoids the optimization to get stuck into a
local minimum. Additionally, the algorithm is likely to converge with less iterations. However, a large
population results in a long computational time, since the objective function, which is usually the most
computationally intensive part of the algorithm, is evaluated for each individual; this issue is somehow
mitigated by the parallelization of computations.

For single fault isolation, we found that a population size of 20 individuals produces acceptable
results; the increased complexity of the fitness function for multiple faults requires a larger population
of 30 individuals.

7.3. Initialization of the First Generation

Some or all of the individuals included in the population of the first generation can be initialized
to user-defined values. This way, if the solution is expected near a certain point in the search space,
the convergence rate is improved. For the considered problem, we set an individual of the initial
population to the value corresponding to an actuator in nominal condition. As a result, the optimization
converges in a single iteration if the system is healthy, and few iterations are needed when the faults are
small (i.e., in their early incipient condition), which is the case of most interest for prognostic analysis.

7.4. Definition of the Initial Range

The initial range parameter defines the dispersion of the individuals of the first generation.
A small value for this parameter results in a small fraction of the search space being explored in the
first iterations of the optimization. The convergence rate can be higher, but the algorithm risks to
converge to a local minimum. Conversely, a larger initial range produces a slower convergence but a
higher chance of finding the actual global minimum. For the given problem, the individuals of the first
generation which are not initialized are spread cross the whole search space (i.e., the initial range is
equal to the bounds of the problem). This way, being the problem constrained and being little known
about the shape of the objective function, the algorithm has a good probability of converging in the
wanted point.
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7.5. Scaling of the Fitness Function

For the considered problem, we used a rank-based fitness function scaling. That is, the individuals
of each iteration are ranked according their fitness and a progressive value is assigned to each one
(i.e., the best individual gets a rank of 1, the second best gets 2, and so on). Then, individuals are
chosen for reproduction with a probability depending on their rank, and not directly on their fitness.
This way, diversity of the population is preserved even if one individual is much fitter than the others.
In general, the distribution of the individual can result in some solutions having a fitness value orders
of magnitude better than the others, and if the probability of selection was based directly on fitness
the diversity would be greatly reduced, with the algorithm rapidly converging in a local minimum.
Conversely, the use of a rank-based fitness scaling is intended to prevent such behavior.

7.6. Definition of the Selection Fuction

A stochastic uniform selection function was chosen to determine the individuals to be used for
generating the new population. A geometric interpretation of the selection algorithm is given in the
following. A line is drawn, and a segment is allocated for each individual, with a length proportional
to the rank of the individual. Then, the algorithm performs a series of steps of constant random
amplitude. A parent individual is chosen for each step, according to the segment the step lands on.
This selection method gives a chance to be chosen also to the least fit individuals, preserving diversity
of the population.

7.7. Setting of the Crossover Fraction and Crossover Function

Crossover is the process by which the algorithm creates a new individual combining data from two
individuals belonging to the previous generation. Not all individuals are created by crossover, since a
fraction results from a random process known as mutation. The crossover fraction parameter represents
the amount of individuals created by crossover with respect to the population size. A crossover fraction
too close to 1 (i.e., all individuals are generated by crossover) results in a fast convergence but a poor
diversity; conversely, a small crossover function makes the algorithm similar to a random search,
with a very slow convergence rate.

We use a heuristic crossover function, reported in [45] to be the best performing for the considered
application. Once two parent individuals are selected for crossover, the children solutions are
created on the line connecting the two parents on the search space, closer to the best fitting parent.
This method has been shown to achieve a fast convergence on the considered problem, while the
mutation function employed is the adaptive feasible algorithm which is standard for constrained
fitness function applications.

8. Results

The FDI algorithm has been tested in presence of both single faults and multiple faults.
Clearly, if only one fault mode is taken into account, the FDI problem becomes much simpler,
and can be efficiently solved with deterministic, gradient based search strategies. However, in a real
environment, the failure mode affecting the system cannot be known a priori, so the fault detection
logic shall be able to recognize the actual damage among a set of possible known fault modes.

Additionally, unknown fault modes shall be detected as well, even if their identification is not
possible without the necessary knowledge about their effect on the system behavior (i.e., without a
model of the failure).

The detection of multiple faults requires to employ more robust algorithm than gradient based
ones, hence in this work we propose the use of GAs. Moreover, the combined effect of two different
faults affecting the system response at the same time can hide each other. As an example, while backlash
and gain drift have very distinct influence on the behavior of the actuator, partial short circuit and
dry friction affect the response in a similar way, i.e., modifying the motor speed for a given stator
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current. In particular, an increase in friction reduces speed for a given current, while a reduction of
the healthy windings causes an increase in motor speed. Then, the fitness function plotted against
friction coefficient and partial short (see Figure 5) has not a well-defined global minimum, since several
combinations of FST and Na result approximately in the same minimum fitness value.

Two ways are possible to overcome this problem. One consists in employing more accurate
monitor models, able to discriminate the effects of similar fault modes (citations needed). This strategy
is not always viable since it usually leads to an increased computational time, while some combinations
of faults are inherently difficult to identify being caused by similar physical phenomena. The alternative
approach adopted for this work leverages a simplified and computationally light monitor model,
but computes the system response in presence of different command and load time histories to detect
differences among similar behaving faults. As an example, dry friction and short circuit have similar
effects on motor speed for a given current value (as stated above). However, a given amount of friction
causes a smaller effect on the response to a sine wave command and a larger one for a step command;
conversely, a partial short circuit has a similar effect on both commands. This behavior enables the
algorithm to identify these two faults correctly.
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Results for Multiple Faults Identification

An extensive test campaign was carried out to validate the effectiveness of the proposed FDI
strategy in different operating conditions and in presence of different fault combinations. The following
paragraphs briefly describe the damage type and extent for each group of test cases considered:

• Nominal conditions: This test case corresponds to a non-damaged system. The FDI algorithm is
able to quickly recognize this condition since the initial population setting contains an individual
in nominal condition; then, the GA converges in a single iteration, and the execution is terminated
as the stopping criteria are satisfied. Results of these tests are reported in Table 2.

• Incipient damage: This condition is of particular interest for the prognostic field since it represents
the early stages of progressive faults; the extent of damages is small, so that they are detectable
but do not compromise the system performance. Correctly identifying those damages is the goal
of prognostic FDI and supplies the data necessary for estimation of the system Remaining Useful
Life. Results of incipient damage tests are reported in Table 3.

• Full damage: A larger fault level results in a full damage, i.e., the system cannot meet its functional
or performance requirements any more. This condition falls into the field of diagnostics since the
system has already failed, and no estimation of Remaining Useful Life can be performed to plan a
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maintenance intervention. However, an FDI algorithm shall be robust enough to identify such
conditions with acceptable accuracy, in order to trigger a corrective maintenance intervention.
Results of these tests are reported in Table 4.

• Random damage combination: A last group of test cases includes fault combinations of
heterogeneous extent, randomly sampled in the problem domain. This condition is expected to be
the closest to the real operating condition of the proposed FDI strategy, since in a field operation
multiple fault modes are likely to occur at the same time, but with widely different damage levels.
Results of tests for random multiple faults are reported in Table 5.

Table 2. Fault detection and isolation (FDI) results for nominal condition.

Fault Mode Actual Value Estimated Value Accuracy 1

Na 1 1 100%
FST 0.1689 0.1689 100%
BLK 0 0 100%
Gprop 1.0000 × 105 1.0000 × 105 100%

1 Relative error between estimated value and actual value for a given fault mode.

Table 3. FDI results for a low-level damage combination.

Fault Mode Actual Value Estimated Value Accuracy

Na 0.9500 0.9611 98.83%
FST 0.3378 0.3299 97.65%
BLK 0.0100 0.0099 98.60%
Gprop 1.0000 × 105 9.798 × 104 97.98%

Table 4. FDI results for a full damage combination.

Fault Mode Actual Value Estimated Value Accuracy

Na 0.8000 0.8141 98.23%
FST 0.8445 0.8274 97.97%
BLK 0.0400 0.0403 99.25%
Gprop 1.5000 × 105 1.4982 × 105 99.87%

Table 5. FDI results for a random damage combination.

Fault Mode Actual Value Estimated Value Accuracy

Na 0.9500 0.9610 98.41%
FST 0.6756 0.6729 99.60%
BLK 0.0100 0.0098 98.00%
Gprop 1.2500 × 105 1.2414 × 105 99.31%

Figure 6 shows the residual estimation error of the proposed FDI algorithm. All the faults are
detected with high accuracy, with an error at most in the order of 2%. The error can be addressed to
the small discrepancy between the Reference and Monitor models of the actuator.
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In a real application scenario, FDI error would be caused mainly by approximations of the monitor
model and by uncertainty in signal measurements, hence the need for accurately calibrated models of
the system and high-quality sensors. Given the absence of a unified standard for testing fault detection
algorithms [15], it is difficult to properly compare the accuracy of the proposed methodology with
alternative approaches available in literature. However, it is important to remark the ability of the
proposed strategy to estimate accurately the health condition of the system in presence of multiple
failure modes affecting the same signals at the same time.

9. Discussion and Conclusions

A Fault Detection and Identification method based on a Genetic Algorithm solver has been
proposed and validated. The results confirm the reliability and robustness of GA optimization when
dealing with multi-variable, multimodal problems. The proposed algorithm has been tested on
multiple fault conditions to assess its effectiveness and performance in situations as close as possible to
field operations.

The algorithm demonstrated a high accuracy and an acceptable computational time in the order
of minutes. The computations were performed on a common laptop, and better evaluation times
can be achieved using higher performance hardware. Computational time is compatible with FDI
performed during scheduled maintenance interventions, but not for real-time fault estimation (for
which the actual load time history experienced by the flight control actuator should be known and
measured by dedicated sensors). Additionally, convergence time varies quite widely depending on the
test case. In particular, small damage levels result in a lower number of iterations, with the extreme
case of nominal condition tests converging in a single iteration taking a few seconds. This behavior is
ascribable to the initial population setting, so that nominal condition is explored by the first generation
of solutions, speeding up convergence for nominal and incipient fault conditions.

A good repeatability of results was achieved in the performed tests. Actually, being GAs
non-deterministic optimization algorithms, two executions starting from the same conditions produce
different results. However, the proposed algorithm proved to be repeatable and robust, since similar
results were found on several runs for a given test case, both with and without the presence of noise on
the measured signals.

Further developments on this work will include the study of a larger set of failure modes,
the extension to other system architecture (such as electrohydraulic actuation systems), the optimization
of models and algorithms to reduce the computational requirements of the FDI strategy, and the
experimental validation of the models.
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