
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Software Attestation with Static and Dynamic Techniques / Viticchie', Alessio. - (2019 Jul 17), pp. 1-114.
Original

Software Attestation with Static and Dynamic Techniques

Publisher:

Published
DOI:

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2749160 since: 2019-09-02T09:56:42Z

Politecnico di Torino

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234930535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Doctoral Dissertation
Doctoral Program in Computer and Control Engineering (31st cycle)

Software Attestation with Static
and Dynamic Techniques

Alessio Viticchié
* * * * * *

Supervisors
Prof. Antonio Lioy, Supervisor

Cataldo Basile, Ph.D., Co-supervisor

Doctoral Examination Committee:
Prof. Bjorn De Sutter, Referee, Ghent University
Prof. Stefano Paraboschi, Referee, Università degli Studi di Bergamo
Bart Coppens, Ph.D., Ghent University
Prof. Claudia Raibulet, Università degli Studi di Milano-Bicocca
Prof. Riccardo Sisto, Politecnico di Torino

Politecnico di Torino
17 July 2019



This thesis is licensed under a Creative Commons License, Attribution - Non-
commercial - NoDerivative Works 4.0 International: see www.creativecommons.org.
The text may be reproduced for non-commercial purposes, provided that credit is
given to the original author.

I hereby declare that, the contents and organisation of this dissertation constitute
my own original work and does not compromise in any way the rights of third
parties, including those relating to the security of personal data.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alessio Viticchié

Turin, 17 July 2019

www.creativecommons.org


Abstract
The spread of software tools in every field of modern daily life is

forcing the need for effective software integrity protection techniques.
This kind of protection is becoming necessary in order to avoid economic
threats for producers and security threats for users. Software protection
is particularly needed when applications run in untrusted environments
(e.g. mobile devices or personal computers). Indeed, it is non-trivial to
ensure application security when the attacker controls the entire execu-
tion environment. This scenario has recently defined the new class of
attacks: Man-At-The-End (MATE). The application of protection tech-
niques against these attacks could be challenging for developers because
they often have limited knowledge in software protection. Furthermore,
protections techniques presented in literature have critical limitations
when applied in MATE scenarios (e.g. not effective enough, not practi-
cal or too complex to be applied). As a final issue, modern systems are
very diverse, and their configurations are highly varied. Consequently,
software protection techniques must be independent of any underlying
configuration in order to suit modern systems. Hence, it is worth to
investigate new software protection techniques and automatic methods
to apply them to general applications.

This thesis presents Software Attestation as a valuable integrity mon-
itoring technique. This work aims at defining the general model of the
protection methodology in order to provide a reference architecture and
workflow. From the general, abstract model, this work defines the spe-
cific versions of the protection as model instantiations that select par-
ticular software aspects as assets to protect, on which integrity evidence
is computed. Hence, this thesis investigates Static and Dynamic soft-
ware attestation as interesting instantiations of the general model. Both
these two flavours of attestation are investigated starting by defining the
requirements, then proposing possible implementations and finally per-
forming the validation of the requirements and the security analysis.
All this discussion aims at providing a comprehensive study about the
practical applicability of the protection model. Finally, the dissertation
aims at demonstrating that the software attestation model is valid for
protection and can be used to achieve more complex and robust protec-
tion methodologies by combining it with other methods. Furthermore,
this thesis underlines the issues that may come from the actual instanti-
ation of the software attestation model. Hence, the discussion wants to
present, once more, that threats generate from practical specifications
even when models are theoretically robust.

ii



Puzzled

From the illusion of the inception,
over the lasting duration;
revelation through the best of times
Adorable presence, the fearless men,
lasting stands in the pigpen;
lovely hidden down, the deepest rhymes
Thriving blossoming, deity herald,
hearty hunk of emerald;
envy, not in these hearths, it chimes
Fun and laughs acknowledge the cheerful,
unseen, perfection of God is stealth;
cherish the advice showing own thankful,
kindest protector and plentiful wealth;
shining souls when dark has been painful
Instants, moments, endless memories.
Here and now, mildest spot of serenity,
adorable being of life, of fire and ice;
vicious passion surely enters eternity,
engraves the stone; dazzling star, rise!
Novelty here and oldie there,
ought to hail and revere;
the roses crown in the saint’s hand
Graceful silence, God has heard;
infinite appeal, loyal horses made slave.
vice, obsession, etheric land of brave;
elder and latter, present and gone,
now is forever akin the deeds done.



Contents

List of Tables vi

List of Figures vii

1 Background 7
1.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Open issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Architecture 19
2.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 The Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 The Master Manager . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 The Slave Manager . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 The Attester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 The Verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 The Attestation Response Dispatcher . . . . . . . . . . . . . 29
2.5.2 The Actual Verifier . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 The Reaction Manager and the Reaction Enforcer . . . . . . . . . . 30
2.7 The central database . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Detection 37
3.1 Preliminary requirements . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Static software attestation . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Pre-computing attestations: the Extractor . . . . . . . . . . 47
3.2.3 Application of static software attestation . . . . . . . . . . . 47
3.2.4 Security analysis . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Dynamic software attestation . . . . . . . . . . . . . . . . . . . . . 57
3.3.1 Invariants Monitoring . . . . . . . . . . . . . . . . . . . . . . 60

iv



3.3.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.3 Application of Invariants Monitoring . . . . . . . . . . . . . 65
3.3.4 Security analysis . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Reaction 84
4.1 Client-Server Code Splitting . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Reactive Attestation . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.1 Annotations processing . . . . . . . . . . . . . . . . . . . . . 88
4.3.2 Static Software Attestation module . . . . . . . . . . . . . . 89
4.3.3 Client-Server Code-Splitting module . . . . . . . . . . . . . 90
4.3.4 Policy engine . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Conclusions 98

Bibliography 101

v



List of Tables

2.1 Application table description . . . . . . . . . . . . . . . . . . . . . . 34
2.2 Attesters table description . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Attest at Start-up table description . . . . . . . . . . . . . . . . . . 34
2.4 Session table description . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Request table description . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Status table description . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1 Statistical information on the use cases . . . . . . . . . . . . . . . . 72
4.1 Effectiveness of Reactive Attestation . . . . . . . . . . . . . . . . . 95
4.2 Overhead of Reactive Attestation . . . . . . . . . . . . . . . . . . . 97

vi



List of Figures

1.1 General Remote Attestation architecture . . . . . . . . . . . . . . . 7
2.1 Software attestation architecture . . . . . . . . . . . . . . . . . . . 21
2.2 Scheduling list insertion . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Scheduling insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Algorithms of software attestation components . . . . . . . . . . . . 36
3.1 Automatic application of static software attestation workflow . . . . 52
3.2 Source code that checks a key against a secret . . . . . . . . . . . . 58
3.3 Automatic application of Invariants Monitoring workflow . . . . . . 67
4.1 Example of source code annotated for Reactive Attestation . . . . . 90
4.2 Pseudo-code of the barrier slicing algorithm . . . . . . . . . . . . . 91

vii



Introduction

Hope proves man deathless.
It is the struggle of the soul,
breaking loose from what is perishable,
and attesting her eternity

Henry Melvill

In the last decades, the world underwent, and it is still undergoing, the fastest
technological revolution in its history. The digital world has drastically grown in
terms of both diffusion and importance in a way that completely changed every-
one’s daily life. Digital solutions reached more people in the world than any other
previous new technology and nearly all the fields of human activities. Digital so-
lutions that involve software tools already aid every daily task. The analysing
massive amounts of data from thousands of sensors optimises distribution and re-
duces leakages in water distribution. The same happens in electricity production
and distribution: smart grids intelligently manage power supply to improve the
efficiency of the network and reduce wastes. Medical patients profiling and diseases
prediction are improved by bioinformatics. Personalised health care was inconceiv-
able in the past, while advanced profiling software tools now make it real. Hybrid
and electrical vehicles are now reality both for private and public transportation,
software assists the driving tasks and the power consumption optimisations. Facto-
ries environments have muted as well: much fewer people and much more machines
in plants perform the same old work in a better way. In the Industry 4.0 model,
digital devices and tools lead the production lines and the tasks to perform under
the coordination of higher software infrastructures that manage all the aspects of
the production such as quality, traceability and auditing, as well as security. Office
tasks are all performed using software solutions; documents management, archiv-
ing, mailing, stock management, time sheets and agendas are activities that cannot
even be imagined without software aid. Mass media, entertainment and marketing
have undergone a revolution as well; smartphone apps, websites and smart TVs
completely changed the way users access information and enjoy free time.

Consequently, software solutions play a crucial role in this new era of technol-
ogy. As software applications are deeply involved in many of the new scenarios,

1



software has become a highly valuable asset also from an economic point of view.
An estimation tells that software impacts the global market for about one trillion
of euros1. Such a massive impact leads to a considerable interest by producers
in investing in software development and distribution for any field. The revenue
of such an investment is threatened by a set of security issues that come with
software distribution. Indeed, the profit of software makers comes from licensed
applications, right-reserved contents serving, and advertisements included in free
software. Hence, any violation of the delivered applications could result in a severe
economic loss for software producers. On the other hand, from the perspective of
users, a large set of critical data is managed by software applications. Most of
such data are personal data, credentials and sensitive or confidential information.
For instance, home banking applications manage bank accounts and users’ finan-
cial resources, e-commerce applications handle credit cards’ numbers and e-mail
clients have access to private information and credentials. This kind of data can be
leaked by corrupted software to malicious users that could use it to steal money, for
identity frauds and information gathering. Hence, corrupted software may cause
economic damages, harm the user’s business, threaten the user’s daily life or family,
and even put the user’s life at risk. For this reason, techniques and methods to
enforce security properties on software application are needed. Integrity is one of
the fundamental security properties that have to be guaranteed to avoid risks that
may generate from corrupted software.

Modern digital world strongly depends on software and software cracking is
a problem that puts at risk both software makers and users. Unfortunately, the
software security scenario is made even worse by the surrounding context. The end
user has the full control of the delivered software itself and on the environment
in which it runs. It means that the final user can exploit sophisticated tools and
methodologies to inspect, analyse and modify the software structure or behaviour.
Hence, the behaviour of a malicious user (i.e. an attacker) cannot be told from
the regular user’s one. That is, an attacker who wants to modify an application
to alter its original behaviour is inevitably able to do so, this may lead to very
stealthy attacks. This context has recently defined a new class of attacks: Man-At-
The-End (MATE) [3]. MATE attacks describe the cases in which attackers tamper
with software applications in contexts where they have full hardware and software
privileges, e.g. their computers or mobile devices.

This context introduces the need for software protection techniques able to re-
motely monitoring the integrity of released software, i.e. the target. The literature
presented Remote attestation as a valuable response to this need. Remote At-
testation is a tampering detection technique that aims at measuring the integrity

1https://software.org/wp-content/uploads/2018_EU_Software_Impact_Report_
A4.pdf

2

https://software.org/wp-content/uploads/2018_EU_Software_Impact_Report_A4.pdf
https://software.org/wp-content/uploads/2018_EU_Software_Impact_Report_A4.pdf


of software by extracting data from the target in its execution environment and
evaluating such data as integrity evidence from a remote node. Traditional trusted
computing patterns for remote attestation rely on hardware components, which are
assumed to be present in the deploy environments, to establish a root of trust.

Unfortunately, modern distributed computing paradigms involves non-uniform
participants; that is, the nature of the network nodes can vary very much. Server-
side machines range from classical monolithic hosts running single operating sys-
tems to physical hosts running virtual machines, from multiple hosts running sev-
eral virtual machines to most recent micro-services environments. On the client
side, there can be many different software and hardware technologies: traditional
personal computers, mobile devices, smart devices, domestic appliances, office de-
vices, and even sensors. Therefore, contemporary networks involve very different
devices that may even not be driven by a user, as it happens in modern contexts
like Internet-of-Things.

The large variety of deployed technologies makes classical approaches to software
security no more applicable. Indeed, it is no longer possible to rely on particular
trusted hardware configurations on the client side. Moreover, secure hardware so-
lutions are costly and often absent in most of the deployed devices. Consequently,
research resorted to new methods to protect distributed software remotely. Soft-
ware Attestation is one of the introduced methodologies; it can be considered as
the evolution of the classical hardware-based remote attestation. It still aims at
detecting tampering by remotely evaluating target integrity, but it does not assume
any particular underlying hardware or software component. Hence, different ways
to establish the trustworthiness of the client system have been introduced.

Developers represent another critical aspect in software protection: they can
be assumed to be neither security-aware nor security experts. Frequently, software
developers are skilled enough to realise robust and accurate applications, but they
lack the knowledge to implement security remedies in their programs. Hence, soft-
ware protection techniques have limited value if they are difficult to be manually
applied and not supported by automatic procedures.

The so far presented context formerly motivated the work described in the re-
mainder of this document. Then, research effort must be spent in software security
to enrich protections knowledge, by both inventing new software protections and
continuously improving the existing ones. Moreover, research in software protec-
tions has to assess and validate the existing protections to clearly expose the pros
and cons of each technique; thus decreeing protection has valuable for real-world
applications or not. Indeed, scientific literature presented many protection tech-
niques, they seem valuable and promising, but just a few works continued to study
their security properties and effectiveness. In addition, authors often claim their
protection techniques to be robust and effective, but no countercheck is provided
by other authors. Nonetheless, the software security world must be brought to non-
security experts, thus freeing software maker from caring about protection during

3



the whole development process. Finally, the research about software protection
must evolve to represent an opportunity for the security of the whole digital world.

This work identifies Software Attestation as a relatively recent protection tech-
nique, worthy of being further investigated.

The final goal of this work is to present software attestation as a complete
method for software security by demonstrating that: (1) the software attestation
model is valid to detect software corruption; (2) software attestation can be seen as
a general methodology, which can be easily tailored to monitor different software
aspects; (3) the detection abilities of software attestation can assist other techniques
in achieving robust protections; (4) software protections can be automatically ap-
plied to real-world software solutions by extending the software attestation model.

This thesis will report the author’s contribution to the existing state of the art
in the field of Software Attestation according to two primary levels.

High-level contribution. The dissertation will set the requirements for a valid
attestation architecture by unifying the concepts found in literature and the hur-
dles encountered in practice. A generalisation of software attestation methods will
define this technique as a robust abstract procedure. That is, the author will
demonstrate that software attestation is independent of the nature of the protected
software assets, from the kind of integrity evidence involved in verification and
from the implementation details of the deployed procedure. Hence, the author will
propose a new perspective by presenting the transversal features of the general
software attestation model. These features apply to any actual instantiation of the
abstract model and ensure that the attestation procedures are robust and rigorous.
Moreover, such a general approach will result in a flexible architecture that can be
adapted to the needs and extended to best suit any case of application.

Low-level contribution. The abstract model defines the architecture, protocols,
and high-level procedures for software attestation, hence, it lets the actual method-
ology free to work at a lower level. The contribution in this way will demonstrate
that actual instantiations of the abstract model differ by the detection strategy.
That is, different instances will differ by (1) the nature of the assets for which
integrity has to be guaranteed and (2) the kind of evidence used to prove assets’ in-
tegrity. Hence, two main classes of software assets will be considered for protection.
Structural software feature will be the foundation for static software attestation and
behavioural aspects of the software will enable dynamic software attestation. These
two instances of the abstract model will be presented by this work to report the au-
thor’s contribution in (1) validating the applicability of the reference architecture,
(2) assess the detection ability of the actual instances and (3) underline limitations
and security issues of the two most representative implementations of the technique
(i.e. static and dynamic software attestation).

Moreover, the author will demonstrate that software attestation is a valid tam-
per detection method, but it cannot provide comprehensive protection due to lim-
itations and intrinsic weaknesses. However, the discussion will further validate

4



the abstract architecture. Indeed, limitation and weaknesses come from the actual
software attestation instantiation and do not come from its abstract model. The ca-
pability of the presented model to be extended and combined with other protections
will demonstrate that the design effort has been spent in the right way. Hence, the
discussion will present Reactive Attestation: a novel technique that demonstrates
how the tamper detection ability of software attestation can be coupled with the re-
action capabilities of other techniques. The dissertation will exploit this techniques
combination to demonstrate that software attestation represents a building block
for sophisticated protection techniques. Not eventually, it is the exact purpose of
ASPIRE2, an EC research project in which the work presented in this thesis has
been developed in its early stages.

Dynamic software attestation is the object of another significant contribution
reported in this document. It will discuss a specific technique, i.e. Invariants
Monitoring, as a possible way of attesting software behaviour and execution in-
tegrity. Many limitations and critical issues will be identified. Many attempts to
overcome the discovered limitations will be presented and discussed, and some of
them will be found to be very hard to be fixed even with significant effort. Finally
and unfortunately, the contribution in this direction will present negative results:
the technique revealed to be not secure and weak, thus not applicable for software
protection purposes. Hence, this work should warn and discourage those who may
consider deploying Invariants Monitoring to protect their software.

Bibliographic foundation
The preliminary parts of the architecture and the static software attestation

methodology are unpublished. However, many parts of this thesis are the subject
of published works. Hence, several concepts presented in the remainder of the
dissertation are deliberately inspired by the following published articles:

• the early studies about Invariants Monitoring have been presented in “Re-
motely Assessing Integrity of Software Applications by Monitoring Invariants:
Present Limitations and Future Directions”, presented at CRiSIS 2017: Risks
and Security of Internet and Systems pp [52];

• a deeper discussion about Invariants Monitoring have been reported in “On
the Impossibility of Effectively using Likely-Invariants for Software Attesta-
tion Purposes”, published in the Journal of Wireless Mobile Networks, Ubiq-
uitous Computing, and Dependable Applications [53];

2https://aspire-fp7.eu

5

https://aspire-fp7.eu


• the work about Reactive Attestation has been detailed in “Reactive Attes-
tation: Automatic Detection and Reaction to Software Tampering Attacks”,
presented at the SPRO ’16 Proceedings of the 2016 ACM Workshop on Soft-
ware PROtection [54];

Thesis organisation
The remainder of this document will report the author’s work as follows:
Chapter 1 opens up the dissertation by extensively analysing the literature and

explaining the background in which software attestation lays its foundations.
Chapter 2 introduces the abstract software attestation model that acts as a

reference architecture for technique instantiations.
Chapter 3 shows how the general model can be characterised to monitor static

and dynamic properties of software. It presents the requirements, the design and
the security analysis about the specific attestation systems and their protection
abilities. Moreover, the same chapter discusses the automatic applicability of the
presented software attestation techniques.

Chapter 4 demonstrates that software attestation can be exploited as support
for protection methods that need tamper detection.

Chapter 5 draws the conclusions about the dissertation work and proposes pos-
sible future directions for software attestation.

Acknowledgements
First of all, I would like to thank prof. Antonio Lioy for allowing me to work in

the Computer and Network Security Group and working with such great people in
all these years.

As said, part of the work reported in this thesis has been carried out along with
the ASPIRE project. For this reason, I acknowledge the effort spent by other people
in collaborating to achieve such excellent results (dedicated thanks will appear
inside the thesis composition).

Furthermore, I have to thank Cataldo (Aldo) Basile for having been the best
guide I could ever have wished, and for his steady support throughout the whole
doctorate duration. Finally, I want to mention Daniele (Canavese) and Leonardo
(Regano) for all the work shared and the good time spent together.

To all of them,
I raise the glass

6



Chapter 1

Background

This chapter outlines the state of the art in the field of software protection based
on Remote Attestation.

Remote Attestation is a mechanism by which a software system proves its in-
tegrity by providing a set of evidence. The final decision about the integrity of the
protected system is taken by a remote component that resides on a remote and
trusted host.

Remote Attestation is then defined as a tamper detection technique; it is based
on a trusted server that evaluates the integrity of a remote system by checking the
validity of provided evidence. Coker et al. formally defined the principles and the
general architecture for Remote Attestation regardless of the underlying techno-
logical implementations [15]. Figure 1.1 reports the general Remote Attestation
architecture. According to work mentioned above, the main components of an

Figure 1.1: General Remote Attestation architecture.

attestation system are:

• Target, it is the final system that has to be protected, it is the set of software
components whose integrity is monitored by the attestation mechanism;

7



1 – Background

• Untrusted environment, it is the environment where the target is deployed;
in the MATE context, the end user is entirely in control of the execution
environment and has full privilege on it; thus it cannot be assumed to be
trusted;

• Attester, this component is in charge of extracting evidence to prove the
integrity of the monitored system;

• Manager, it triggers the Attester to start an attestation procedure, thus to
produce integrity evidence, from the trusted server;

• Verifier, this component receives the evidence collected by the Attester and
evaluates them in order to decree if the target system is still in a valid state
or not;

• Secure channel, all the communications among the components pass through
public networks then, a protected channel is needed to avoid information leak-
age or Men-in-the-Middle attacks.

Given the general scheme of Remote Attestation, the first distinction that
emerges depends on the practical implementation of the trust base and secondly
on the nature of the collected integrity evidence.

1.1 Hardware
The early stage works about remote Attestation exploit hardware components

as a trust base to build a robust root of trust. A critical event that enabled
the diffusion of hardware-based Remote Attestation has been the specification of
the Trusted Platform Module (TPM) by the Trusted Computing Group [25]. The
TPM is a hardware component, a chip, and provides a set of security operations
performed in a trusted way, such as cryptography primitives, keys generation and
management, pseudo-random number generation and small storage space. Hence,
the broad set of promising features and the relative expectations led the TPM to
be the most exploited element as a trust base for Remote Attestation.

Several works have been proposed to attest the integrity of a running system in
different ways but always exploiting the TPM. One of the first and one of the most
influencing work has been presented by Sailer et al. [45]. In this work, the authors
defined the Integrity Measurement Architecture (IMA) that aims at measuring the
whole environment of a running machine, from the BIOS up to the operating sys-
tem and the software it loads. Every software binary and configuration file whose
integrity needs to be attested is measured; the obtained measure is signed using
TPM facilities and stored for future requests from a remote appraiser. The integrity

8



1 – Background

measure is a hash of the attested element. In this way, every component of the tar-
get environment can be statically attested, and the whole system configuration can
be verified.

This approach is intrinsically limited, statically measuring a component does
not ensure that the obtained measure is valid when the component is used. Prac-
tically, there is a discrepancy between the time-of-use and time-of-attestation of
any element, as stated by Shi et al. [48]. In order to mitigate this issue, the same
authors proposed BIND. They tried to narrow the gap between time-of-attestation
and time-of-use by moving the Attestation closer to the execution time. As soon as
a process is launched, the attestation procedure starts as well and collects integrity
measures from the input/output data and the loaded binary image.

Another issue that emerged from IMA, therefore from static files attestation, is
that the bare measuring of files’ integrity does not protect from non-static attacks.
That is, attacks that do not alter the structure of the target’s components are not
detected. Jaeger et al. proposed PRIMA to enable measurement of information
flow integrity [29]. The proposed solution implements the IMA architecture but
uses different integrity evidence, i.e. the information flow. This solution is still
attesting program structure, but from a behavioural point of view, i.e. information
flow can be altered also without modifying binary or any other application related
file.

A paradigm shift in the collected evidence represents a step further in improving
the attestation’s effectiveness. Chen et al. proposed to verify if the target system
is respecting three main security properties classes [13]. Code Control, to enforce
the machine to behave as expected; Code Analysis to enforce code and machine
properties; Delegation to enable a trusted third party to certify the desired prop-
erties. Hence, they rely on a a priori analysis of the target to deduce the security
properties that the protected system has to ensure. Once these properties are set,
the Attestation acts as a challenge-response mechanism to attest execution against
the given input. In practice, the provided input is used to perform computations
on the attested system to verify that the set of previously deduced requirements
(properties) are satisfied. The scheme uses a hybrid approach: a property attester,
which runs as security kernel service, calls on a binary attester that exploits TPM
facilities.

Following the way of changing that moved attestation evidence toward some-
thing different from structural properties, Kil et al. proposed ReDAS [32]. This
attestation mechanism aims at monitoring the integrity of software applications
through dynamic system properties inferred from global variables values collected
at system call invocations. Then, they claim the system can offer protection from
tampering. It represents a significant improvement for Remote Attestation as it
gives importance to dynamic features as descriptive for system behaviour and exe-
cution.

So far, the dissertation presented the evolution in the literature about Remote

9



1 – Background

Attestation mechanisms in a classical scenario. Targets to monitor are (or run
on) physical machines where a standard commodity operating system with the full
software stack and configuration files gives the environment. As the technology
advanced, new distributed architectures appeared, such as cloud environments and
Internet of Things. In these environments, it is not possible to assume to have
specific hardware devices like TPM to rely on or, at least, it cannot be assumed to
reach it. For instance, in virtualised environments, it cannot be assumed that the
TPM feature can be reached from inside the virtual guest environments.

According to evolution, the trusted computing has evolved as well and, conse-
quently, the literature proposed solutions for virtualised environments. Garfinkel et al.
proposed Terra, a virtualisation solution that exposes TPM features to every vir-
tual machine independently through a virtual monitor that is integrated into the
hypervisor [22]. This solution relies on the TPM that is supposed to be present
on the physical machine that hosts the virtual ones. In the same way of Terra,
Santos et al. proposed a Trusted Cloud Computing Platform that allows cloud en-
vironments to rely on trusted computing features and to be inaccessible from the
underlying host system. Perez et al. proposed a software virtualised TPM in or-
der to provide the same interface to virtual guest systems [40]. These works did
not bring any new attestation mechanism; they instead demonstrated that Remote
Attestation is a valid protection technique, even in today’s’ scenarios, and it just
needs technological adjustments.

On the other hand, a set of works proposed alternatives to the TPM by exploit-
ing different hardware solutions. Basile et al. proposed the use of reconfigurable
devices (FPGA) as a hardware self-protecting trust base [8]. In their approach,
Attesters are implemented by the FPGA cores. The cores can attest the executed
binaries in memory by directly accessing them, thus bypassing the operating sys-
tem. In the same way, Noorman et al. proposed Sancus, an architecture for
resource-limited devices [38]. The authors rely on (minimal) hardware extensions
to provide Remote Attestation and integrity guarantees. The hardware extension
provides cryptographic facilities for keys derivation and digest computations, which
enable Attestation of loaded executable code. The Sancus attestation scheme can
verify the structural integrity of a software module and that it is loaded at the
expected address in memory. The system performs verification by comparing the
resulting digest with the expected, genuine one. In Copilot, Petroni et al. use an
add-in card connected to the PCI bus to perform periodic integrity measurements
of the in-memory Linux kernel image [42]. Then the trust base is implemented by
an external device connected to the monitored system through the PCI bus. Both
the just mentioned solutions still exploit static integrity measurements.

10



1 – Background

On the commercial side, Intel proposed the Trusted eXecution (TXT) Technol-
ogy1. TXT is a hardware technology that provides Attestation of the authenticity
of system software. Intel TXT exploits TPM and cryptographic techniques to mea-
sure software and platform components; it can be used for attestation purposes.
Moreover, Intel proposed a complete Remote Attestation mechanism based on Soft-
ware Guards eXtensions (SGX) [16]. SGX provides a set of extensions to the Intel
x86-64 architecture that aims at providing security-sensitive computations in poten-
tially malicious environments. Critical software pieces can be executed in isolated
hardware containers, i.e. enclaves, which can contain sensitive data and code to
manage it. Enclaves enable secure remote computation, which represents a funda-
mental building block to run trusted code that attests the target system. Hence,
the SGX attestation system exploits enclave and pre-installed certificates to com-
pute and sign attestation evidence on the target system securely. For the mobile
world, ARM has developed the TrustZone2 technology that partitions the processor
into two independent cores. One of them is for normal operations, while the other
one is for security-critical tasks. The secure processor is fully secured in hardware
and completely inaccessible from the other one. The ARM TrustZone is the start-
ing point of some hardware-based Remote Attestation solutions implemented by
industry, e.g. Samsung KNOX technology3.

In conclusion, hardware-based solutions brought Remote Attestation to be prac-
tically exploitable, and then they made this technique to be of interest for further
investigations. Early works defined the general architecture and proposed basic
methods to attest target structural integrity; after that, researchers have improved
the original model to achieve better descriptive methods to model the target’s in-
tegrity. Finally, industrials brought Remote Attestation in real-world applications,
thus confirming the validity of the technique.

1.2 Software
In modern days, participants in distributed systems are no longer uniform, and

the nature of the nodes of a network can vary very much. On the server side,
there can be traditional monolithic machines running single operating systems and
a set of services; physical hosts running multiple virtual machines that emulate
traditional ones; multiple physical hosts that run several virtual machines, which
provides single or multiple services, i.e. cloud environment.

On the client side, the scenario is even more diverse; the variety of devices

1https://www.intel.com
2https://www.arm.com
3https://www.samsungknox.com

11

https://www.intel.com
https://www.arm.com
https://www.samsungknox.com


1 – Background

that can be connected to the network is extensive. There can be regular personal
computers running traditional OSes, personal mobile devices running different OSes
(in different versions), modern smart devices with custom hardware and software
such as domestic appliances, office devices, sensors. Therefore, modern networks
are made of very different devices that may not be driven by a user, i.e. Internet-
of-Things.

The evolution in distributed networks led to new attacks model as well. Due to
a large number of connected devices and to the increment of their computational
power, contemporary services follow the client-server paradigms that tend to dele-
gate executions to client devices as much as possible in order to reduce the server
load. Hence, client devices are often asked to execute code and to manage data
that can be sensitive or of interest for malicious users. MATE attacks threat sev-
eral assets. For example, intellectual property can be stolen to take advantage from
others’ procedures, software integrity and execution correctness can be violated to
force arbitrary behaviours on applications, copyrighted contents can be abused and
disclosed.

MATE attacks motivate the need for a remote integrity checking mechanism.
Remote Attestation has been considered as a valid protection technique to manage
the integrity checking needs. Due to the large variety of hardware involved, it is not
possible to assume that a particular chip is available as done with TPM. Indeed,
devices running the same program can have different underlying hardware (and even
software) solutions. Consequently, it was necessary to find hardware-independent
solutions on which a root of trust could be built. The aim is to achieve Dynamic
Root of Trust, that is to trust the Attester, hence the target, on dynamic software
properties. Consequently, several mechanisms have been presented in the literature
to overcome the hardware limitations for Remote Attestation.

Sadeghi et al. gave a general definition: Software Attestation is a protection
mechanism that aims at monitoring the integrity of a remote target without any
hardware component to rely on to build root of trust [43].

Spinellis et al. proposed the earliest work on static software attestation; they
used the hash of random parts of the memory as integrity evidence and a challenge-
response protocol to build root of trust [49].

Seshadri et al. proposed Pioneer: one of the first attempts that do not rely on
HW specific components for Remote Attestation purposes [46]. Indeed, they com-
pute evidence using a checksum function and hashes of the result to send back for
verification. To trust the client, they exploit the time spent to compute the integrity
evidence, and if it exceeds a predefined delta, the evidence cannot be trusted. This
early solution is not entirely hardware independent: the execution time of a pro-
cedure on the client is assumed to be related to the underlying hardware. Then,
it is another way to attest hardware integrity, but it implies that the platform is
known. Seshadri et al. previously proposed a similar solution, namely SWATT, in

12



1 – Background

which they exploited the same methods of Pioneer in embedded devices [47]. An-
other work that adopts a time-based solution to trust the client was published by
Armknecht et al. [5]. Their method employs a challenge-response protocol; the ran-
dom challenge sent to the Attester determines which memory locations have to be
extracted for integrity evidence computations. The collected evidence is accepted
by Verifier depending on the execution time, like the previously cited works.

A proposal that slightly shifted the paradigm of Attestation is MobileGuards
by Grimen et al., short-lived Attesters are downloaded from a trusted server [24].
The downloaded code is executed to decree the integrity of the target.

As it happened for hardware-based, in software attestation the need to attest
dynamic properties has emerged. Static Attestation monitors static properties,
which are properties about the structure of the target, e.g. binaries, executable
memory portions, configurations, images and files in general. The main issue that
arises from this approach is related to attacks that do not alter the structure of the
target but tamper with it at runtime by altering its functionalities, e.g. system calls,
functions redirections, return-oriented programming and cloning. Then, several
works have proposed to monitor properties that are more semantically descriptive
for the execution integrity. Practically, literature moved evidence collected for
Attestation from something that describes the structure to something that describes
the behaviour of the target. Therefore, software attestation started to monitor
execution correctness instead of pure structural integrity. To pursue this goal,
different kinds of software properties have been proposed by published works.

Sadeghi et al. proposed to focus on software properties instead of specific soft-
ware or hardware component [43, 13]. Property-based Attestation aims at verifying
whether target properties are sufficient to fulfil predetermined security require-
ments. This approach opened up the way towards dynamic Attestation and has
been exploited to realise a virtual TPM and a property-based bootstrap architecture
[44, 34]. The proposed solution allows classical Remote Attestation mechanisms to
be applied even without any underlying physical device, but it does not introduce
any novelty in terms of methodologies.

Property-based Attestation has some limitations. Indeed, it is hard to define
properties that are related to trustworthiness. As an alternative to static and
property-based Attestation, Li et al. tried to overcome this limitation by proposing
model-based Attestation [36]. This work introduces a behaviour-based attestation
model that tries to determine the trustworthiness of the attested target from its
system related behaviours. The authors presented a model to describe system be-
haviour through a set of execution-involved parameters, which are the set of all the
subjects, the set of executable programs, the set of inputs and the set of outputs.
Alam et al. generalised model-based attestation in Model-Based Behavioural Attes-
tation (MBA) [4]. They based the Attestation on evidence related to the behaviour
of a policy model. Thus, the attestation feature is generalised and not specific.
Moreover, the generalisation made the model suitable for any Remote Attestation

13



1 – Background

architecture. The goal of MBA is to provide a method to attest the usage model
while accessing specific objects on the target.

Abadi et al. has proposed an alternative approach; they proposed to attest
Control Flow Integrity [1]. The idea is to verify that transitions between soft-
ware portions are followed with precise order and without sudden jumps. Hence,
execution correctness and dynamic integrity are attested by verifying that the con-
trol flow of target respects the deployed one. The same concept has been recently
re-proposed for low-end devices by Abera et al. [2].

An essential set of works for the remainder of this thesis exploit likely-invariants
to model software structure and behaviour. Invariants are logical assertions that
are always true for a portion or the whole application execution. These assertions
are specified by the developer, during the preliminary design phases, starting from
specification and requirements. Unfortunately, it has been demonstrated that man-
ually defined invariants are likely to be invalid valid or absent in the final software
application [20]. Consequently, researchers have developed tools to automatically
infer invariants from applications, the most exploited in the academic literature is
Daikon4 [21]. The inference is mainly based on a statistical analysis of the appli-
cation execution traces, and then, the deduced assertions may not always be valid.
Indeed, given the experimental procedure that extracts likely-invariants, they can
be considered valid only with a certain probability. On the other hand, the empiri-
cal nature of the inferred assertions itself made likely-invariants to be an auspicious
feature to describe software patterns and behaviour.

Even if it is hardware-based, ReDAS by Kil et al. defined Dynamic Attestation
(previously mentioned). It is the process of assessing the integrity of a target by
checking its dynamic properties at runtime. Furthermore, they propose a dynamic
attestation mechanism that exploits likely-invariants to check data and structural
integrity at system calls invocation time [32]. They evaluate likely-invariants with
values collected at runtime, thus decreeing the target correctness.

Baliga et al. proposed Gibraltar, a Remote Attestation system to detect kernel
level rootkits in operating systems. They check the validity of the target data
structures by evaluating likely-invariants against runtime values of crucial data
structure [6].

In the end, software-based Remote Attestation has been introduced as a neces-
sity to overcome technology limitations to hardware-based set by evolution. Despite
the hardware-based one, it has been investigated more from the semantic point of
view, than architectural and method one. As a result, it is possible to observe
different ways to model the target’s execution and to attest target properties that
are more precise than the mere structural ones.

4https://plse.cs.washington.edu/daikon

14

https://plse.cs.washington.edu/daikon


1 – Background

1.3 Reaction
Remote Attestation itself acts as a tamper detection mechanism; then, it has to

be supported by a reaction method. It means that, after an application has been
decreed as no more sound by Remote Attestation, another protection mechanism
must enforce countermeasures on the target to avoid an attacker to take advantage
of the tampering.

To realise effective reactions, both locally and remotely techniques have been
proposed in the literature. Even if reaction may seem the natural consequence of
detection, tamper reaction has not been consistently explored. Indeed, the number
of works about reaction is much smaller than the one about detection. Then, for
what concerns the academic world, tamper reaction solutions have not reached
a remarkable level of maturity or, at least, of diffusion. The industry, on the
other hand, tamper reaction seems to be more advanced, but it is difficult to be
demonstrated because of very few published works. It is common for companies
to maintain their advances undisclosed in order to exploit as much as possible the
so-called “security through obscurity principle”.

The most trivial way of reacting could be to stop the target execution as soon
as tampering is detected. This solution comes with a severe drawback, detection
and reaction are performed at the same time. Consequently, it gives a hint to an
attacker on where and when (in the code) the reaction takes place. Hence, this
is not very effective because the effect can be directly related to the cause, i.e.
the target crash is a direct consequence of the tamper. In practice, it is useful
in stopping tampered targets, but it gives hints on how to disable the reaction
components in the target.

To avoid trivial solutions that may threat the deployed protection technique
itself instead of securing the target, Tan et al. defined basic principles for tamper
reaction [50]. The most important principle states that tamper detection and tam-
per reaction must be separated in space and time. Components for detection and
reaction must be deployed in a different location in the target and must be hard
to tell from the rest of the application code. Moreover, the two elements must be
executed in different time moments in order to decouple the cause from the effect,
thus breaking down the detection-reaction relationship. In addition, the authors
proposed to postpone the injection of software failures to slowly worsen the target
functioning, i.e. to achieve graceful degradation.

Oishi et al. also proposed a graceful degradation reaction mechanism [39]. The
original target binary is modified by replacing a set of instructions, namely the
camouflage phase. The instruction is restored only at runtime only if the target
is valid, that is the de-camouflage phase. If any suspect of tampering is detected,
the reaction mechanism takes place and prevents the de-camouflage phase, thus
hurdling the normal target execution.

Jakubowski et al. proposed an alternative to degradation and interruption: a

15



1 – Background

self-correcting system [30]. Distinct components are identified and made redundant;
then a voting scheme is applied to results from the components copies. Moreover,
diversification is used to make the code different even if the implemented function-
alities are the same. Finally, a periodic verification is applied; a target checksum
is computed at precise points in the execution flow. These three mechanisms allow
the target to become tamper-resistant. If an integrity violation is detected, the pro-
tection applies delayed countermeasures, which are corrections of the results using
redundant outcomes and encryption of working data.

All the proposed reaction mechanisms locally apply changes to the target in or-
der to worsen or correct its behaviour. The changes made by the reaction inevitably
reside on the attacker’s (untrusted) environment, thus they could be eventually
spotted. In conclusion, literature has not yet presented a valid reaction mechanism
that is out of the end-user control, and that cannot be bypassed even if detected.

1.4 Open issues
Literature proposed several works such that Remote Attestation seems to have

reached the right level of maturity, given its consistent level of diffusion. At the
same time, many issues remain open and have to be discussed in order to improve
the technique’s robustness and protection efficacy.

The general architecture has intrinsic limitations that weaken the protection and
have to be addressed. The main architectural limitation is bound to the Attester:
this component has to run together with the delivered target. This limitation
comes with all the different kinds of Remote Attestation, even with techniques
that limit the lasting time of the Attester in the target system. In fact, for
classical hardware-based Attestation, the Attester may be a process or a piece
of code that is run when evidence has to be collected (e.g. at system bootstrap
while BIOS or during the kernel loading phase). On the other hand, for software
attestation, the Attester is a piece of code that is fully integrated with the delivered
protected application; thus it is entirely under the user control that can inspect and
manipulate it. Short-lived Attesters that are downloaded at runtime just limit
the window of exposure but do not prevent attacks to the Attester itself. Indeed,
the Attester is available and valid for a small amount of time, but its structure and
behaviour can still be inspected.

Attacks that aim at removing or disabling the protection can be mounted against
the different Remote Attestation techniques. Static techniques are vulnerable to
memory copy attacks. An attacker can force the attestation system to check for
integrity against an untampered version of the software that is actually run. In
practice, the attacker tampers with the program and keeps a valid version of it.
The correct version is used to perform Attestation on. Whenever an attestation
request arrives, it is redirected toward the correct version instead of the tampered

16



1 – Background

one, which is still run apart.
A subtler version of this attack is performed by redirecting the attestation evi-

dence extraction to a valid portion of the memory, as presented by Van Oorschot et al.
[51]. Two copies of the target application are run at the same time, and all the
Attester activities of the tampered application are redirected, employing memory
pointer redirection, to the correct version. In addition, static attestation tech-
niques cannot detect attacks that do not alter the binary structure of the target
application, e.g. attaching a debugger to drive the application behaviour.

Time-based Attestation is vulnerable to proxy attacks. This attestation tech-
nique relies on the execution time for a precise task that directly depends on the
hardware configuration. If an attacker runs the application on a system that is
faster than the foreseen one, he can gain an advantage on the attestation proce-
dure, i.e. continuous technological evolution of hardware strengthen this threat
daily. In fact, in this way, the attacker can exploit the time gained to redirect
the attestation procedure, to fake them or to retrieve attestation evidence from
different places than the monitored target application.

Dynamic software attestation techniques are subject to false positives and false
negatives. Dynamic procedures are somehow trained before the target application
is run in real-world scenarios. Then, the trained procedures may fail if the target
application reaches a state that has not been observed during the training phase,
thus leading to a false positive. It means that the application is labelled as tampered
even if no attacks are taking place. On the other hand, a set of attacks can pass
unnoticed, i.e. false negatives. Dynamic attestation techniques exploit software
artefacts to model the target application behaviour that may not suffice to describe
software in all its states.

For what concerns software attestation, it is noticeable that the protection is
particular and strictly related to the final platform on which the protected appli-
cation will run. Indeed, the Attester has to: know how to extract evidence and
to be fully integrated into the target. It makes the Attester the most critical ele-
ment in the attestation architecture. It may be readily detectable due to particular
low-level tasks performed to retrieve information and, in particular cases, due to is
functioning itself.

In the next sections, a software attestation model is investigated from an ab-
stract perspective to reason about the structural issues of the method. Conse-
quently, research made spent effort in studying the ability of the abstract model in
detecting the integrity violations on two main software properties, to the purpose of
overcoming the limitations presented in this section and assessing the effectiveness
of the protection technique. Static software attestation is investigated to monitor
structural software features. Dynamic software attestation is studied as representa-
tive for all the possible attestation specialisations aiming at monitoring behavioural
aspects of the software. For both the approaches, the reported study defines the

17



1 – Background

requirements and the security properties that drive the attestation model. The dis-
cussion finally presents the weaknesses and the points of strength of each attestation
instantiation.

18



Chapter 2

Architecture

This chapter describes the design of a general architecture for software attes-
tation systems. The work made in this direction firstly discussed the architecture
from a theoretical point of view; hence, it defined a set of mandatory features for
Software Attestation systems. Then, the dissertation presents practical directives
to implements such theoretical requisites in practical procedures.

Here it is described the research effort spent in defining prerequisites and fea-
tures that any software attestation mechanism should take into account to be prac-
tically usable. This work aimed at unifying the concepts from the literature; thus
providing a general reference model for software attestation implementations. The
author’s contribution consists of the refinement of the existing architectural con-
cepts as well as the collection of practical constraints and limitations. Moreover, the
author research committed to formulating an abstract architecture able to demon-
strate the applicability of the general software attestation concepts to any system,
regardless of which software features monitored and protected.

2.1 Prerequisites
An abstract architecture definition is needed to set the requirements of a robust

protection protocol for software attestation mechanisms.

Abstraction. The architecture definition has to describe the components, their
interactions and operations with a high level of details such that it would be able
to work regardless of the detection strategy that is chosen to implement, e.g. static
or dynamic. It allows the software attestation architecture to be employed for any
implementation that one may want to deploy.

19



2 – Architecture

Protocol. All the interactions that occur among components and the tasks that
they perform have to be extensively defined and listed. Hence, the foreseen op-
erations and their sequence must be unequivocally unique such that the software
attestation system could not work in any other way than the described one.

Robustness. The design of the general architecture must not introduce vulnera-
bility to any known attack. Hence, the abstract architecture must be well designed
to prevent attacks that are not related to the deployed detection strategy, and that
depends on the infrastructure. For instance, a software attestation architecture
must be aware of replay, Man-in-the-Middle and sniffing attacks, which could be
prevented by forcing challenge-based mechanisms (e.g. using nonces), client-server
authentication and channel protections.

Attestation principles. The definition of a Software Attestation architecture
has to be in line with principles defined by Coker et al. [15], thus avoiding incon-
sistencies that have been already studied and overcome.

Unpredictability. The general architecture must not involve repetitive mecha-
nisms. Whether it is not possible to avoid repetitive mechanisms, they must be
designed to prevent easily recognisable behaviour patterns. In other words, it is
required that the attestation system cannot be easily understood, reproduced or
faked by merely observing it.

Non-synchronicity. Attestation transactions must be initiated only by server-
side components. Indeed, client-side triggered attestations would need to inject
additional sensitive code and data in the target, thus enlarging the attack surface
of the technique. Moreover, client-initiated attestation procedures would contradict
the previous requirement (Unpredictability) as they would introduce repetitive or
identifiable patterns.

Scalability. The design of the general architecture must consider that a large
number of protected targets may run at the same time. Hence, the architecture
must work without any degradation in the execution of both client-side and server-
side components. Indeed, real-world applications can be distributed in a high num-
ber of instances that must be consistently attested at the same time. Moreover, the
design must let the server-side architecture to scale in a distributed manner so that
the relative deploy can exploit modern paradigms that natively enables scalability
(e.g. cloud-based deploy).

20



2 – Architecture

2.2 Overview
This section provides an overview of the components involved in the software

attestation architecture and their roles, the workflow of the general scheme and the
assumptions that lie behind the performed design.

Assumption. The target application is supposed to be fully connected and to
depend on network-based services exposed by a remote server. Then, the target
can be split into two parts, a client-side logic that interacts with a server-side logic
to work correctly and to provide the full functionalities to the final user. Although
this assumption is not mandatory for applicability, it makes the protection system
much more effective. A non-connected target application allows an attacker to
bypass the monitoring system by simply disconnecting it from the network while it
leaves the target business functionalities intact.

The software attestation system works alongside the client-server architecture
of the target application and is composed of three fundamental components: the
Manager, the Attester and the Verifier. In addition, two other components are
foreseen in the proposed architecture: the Reaction Manager and the Reaction
Enforcer. In the general architecture, software attestation works as follows.

Figure 2.1: Software attestation architecture.

1. As soon as the target application starts, the Attester connects to the Manager
and notifies the start-up event. Then, the Manager creates a session for the
just connected instance and stores it into the database. The session is used to
record information about attestation transactions and to schedule attestation
requests. Afterwards, if the connected target needs to be attested at start-up,
the Manager sends an attestation request and then schedules the next one.

21



2 – Architecture

2. During the target application execution, whenever it is necessary, the Man-
ager prepares and sends an attestation request to the Attester. The most
important element inside the attestation request message is a pseudo-random
nonce that will be involved in the computation of the returning results. It
helps to avoid replay attacks: an attacker that can intercept and store a valid
attestation response could reuse it to reply to any future attestation request,
thus presenting a tampered application as a good one.

3. The Attester performs the attestation routine to extract integrity evidence
and sends them back to the Verifier. The attestation evidence is collected
according to hard-coded routines and, eventually, driven by the nonce value.
The nonce does not bring any information itself, but its value can be used
as a seed for random procedures or to parametrise computations in order to
make the extracted evidence unique for each attestation request.

4. The Verifier analyses the received data and, consequently, emits a verdict
about the target application integrity. Then, the verdict is stored in the
database, coupled to the target instance and the current session. Then, the
database completely tracks all the attestation transactions.

5. The Reaction Manager asynchronously accesses the database to monitor the
state of the target and its evolution. Whenever a violation in the target’s
integrity is detected, the Reaction Manager can decide whether or not to
enforce countermeasures. Reactions may vary from very simple, drastically
punishments for single violations, to very complex, rules sets punish the target
according to sophisticated policies. Reactions may be enforced on both server-
side and client-side.

6. The Reaction Enforcer waits for commands from the Reaction Manager to
apply client-side reactions. The Reaction Enforcer practically applies deci-
sions taken on the server-side by the Reaction Manager through predefined
hard-coded procedures or by a dynamic interpretation of the received com-
mands.

The following sections give a detailed description of all the features of the ar-
chitecture’s components and their workflows.

2.3 The Manager
The Manager is the server-side component that is in charge of starting each at-

testation transaction. Hence, whenever it deems, the Manager generates a pseudo-
random nonce and sends it to the Attester. Although it is enough to trigger the

22



2 – Architecture

attestation procedure, it does not suffice to manage the target application life cy-
cle. Hence, the Manager also takes care of recording all the generated attestation
requests into the central database so that every attestation transaction is uniquely
identified and stored for analysis purposes. Furthermore, the Manager manages
the attestation requests scheduling. The central database records every deployed
Attester together with the information about the relative required attestation pe-
riod. The attestation period represents the average time between two subsequent
attestations. Indeed, attestation requests must not be sent with a fixed schedule,
as an attacker could predict the next request, restore a correct copy of the applica-
tion, let it reply to the attestation request, and restart the tampered version of the
application. Therefore, the Manager randomly selects the time of the next attesta-
tion procedure so that the average time between two attestations is kept constant
with a tolerance interval. The desired average period value can be changed by
any server-side component at any moment, thus allowing to alter the attestation
frequency while the target is running, e.g. for reaction purposes.

To perform its activities and to manage different connected Attesters, the Man-
ager is a two-tier component, composed of a single Master Manager and several
Slave Managers. The Master Manager is in charge of performing preliminary oper-
ations for newly connected targets and of assigning each target to a Slave Manager.
The Slave Manager performs the attestations.

2.3.1 The Master Manager
The Master Manager starts running together with the server-side environment;

hence, it is always listening for new incoming connections from Attesters. When
a client connects, the Master Manager reads from the database the information
about the attestation frequency and creates a new session for the current target
instance. Based on the read attestation frequency, the components estimates the
effort required to attest the client and assigns the target application instance and
its connection to the proper Slave Manager. Then, the Master Manager passes the
connection with the client to the selected Slave Manager. After having passed the
responsibility of the target application to one of the Slaves Managers, the Master
Manager will ignore all other communications from the client.

The reference architecture can scale on a large number of server machines and
for a large number of target applications as well. Indeed, while the Master Manager
works a single server endpoint, the number of Slave Managers can be customised
and adapted to the available resources. Moreover, this two-tier structure allows
the Manager to be distributed on several different network hosts, that is, to scale
up well and afford numerous targets. Several Slave Managers can run on different
network nodes, and a single Master Manager can act as a dispatcher or different
Master Managers can operate from different hosts and manage a dedicated Slave
Managers set each.

23



2 – Architecture

In addition, it must be taken into account that every Slave Manager can manage
more than one client, as the next section will explain.

Figure 2.4a reports the Master Manager workflow. As soon as the execution
begins, the Master Manager initiates the Slave Manager tread pool. The number
of the spawned Slave Managers is driven by the maximum number of threads that
the processor of the hosting machine can offer, i.e. one Slave Manager for each
thread. A higher number of spawned Slave Manager would result in an overload,
thus preventing some of the Slaves to work correctly, that is to accomplish the
requests schedule right on time. Then, it enters an infinite loop in which it waits
for new client connections, fetches information about the just connected client from
the database, selects the less loaded Slave thread in the thread pool and passes the
connection to it.

Finally, the Master Manager acts as a dispatcher for the Slave Managers. It
provides a single endpoint which clients address new connections to, which manages
the connection setup and a set of Slave Managers that perform the actual attestation
tasks.

2.3.2 The Slave Manager
This subcomponent is the one that performs the actual Manager’s work for

attestation purposes. It keeps track of the currently served clients, their schedule
and the status of their connection. For this reason, the Slave Manager is more
complicated than the Master.

The Master Manager spawns each Slave Manager as a single independent thread.
During the normal working of the global Manager system, there are multiple Slave
Managers running and each of them serves multiple target application clients. The
choice to generate as many Slave Managers as the system cores has been made for
scalability purposes. Multiple Slave threads permit to balance the effort needed
for attestation over all the resources of the server-side hosting system. A single
thread for Slave Manager would have meant to have a single core (or virtual core)
of the hosting environment involved in serving all the clients, thus leading to an
unbalanced situation: one core is overloaded and all the remaining ones are not
working at all (for attestation purposes). It would represent an issue when the
number of served targets increases. When the Manager system is not loaded, the
clients are balanced over the Slave Managers threads that spend most of the time
in sleeping. Hence, in this case, the operating system can schedule multiple Slave
Managers threads on the same core. Indeed, the threads-to-core association is not
forced in any way by the Master Manager. On the other hand, when the load
increases, the number of served clients gets higher and the sleeping time of each
Slave Manager decrease the operating system can distribute the threads all over
the cores to best exploit machine resources. It allows the Manager system to scale
up well, thus serving many clients as they were few.

24



2 – Architecture

As soon as the Slave thread starts, it initialises a set of data structures: the
served client list and the scheduling list. The first one keeps track of all the cur-
rently connected clients that have to be server with attestation requests. For each
client, this list stores the information to manage the session and to identify the
client itself: client identifier, the specified average period between two subsequent
attestation requests avgc, the allowed tolerance for the attestation period varc and
the session identifier. All these data are used whenever a client needs to be at-
tested to retrieve information from the database, create attestation requests and
schedule the next attestation. The second list is used to schedule all the client for
the next attestation. A target, i.e. its Attester(s), connects in an unpredictable
moment and could have a different attestation average period, then the scheduling
list sorts the connected clients depending on the time of the next attestation. The
scheduling list implements a differential time scheduling: each element of the list
stores the amount of time to wait from the moment its extraction from the list and
the moment to send it the attestation request, namely Time To Sleep (TTS). The
absolute time to wait (TTSabs) before an attestation request is sent to a client in
the list is equal to the sum of the TTS of all the previous clients in the list plus its
TTS. Hence, the first element in the list reports the next client to attest and the
time to wait for doing it. A possible situation of the scheduling list is depicted in
Figure 2.2 as an example over a timeline. To summarise, the scheduling list con-
tains one element for each currently served client, every element in the list stores
a differential time that represents the time to wait before sending an attestation
request, starting from the extraction of the element itself.

Figure 2.2: Scheduling list insertion.

At insertion time, a client comes with a TTSabs, which is the absolute time to
wait for the next attestation. Then, the list gets explored from the first to the last
element, until the sum of TTS values of the already explored elements is less than

25



2 – Architecture

TTSabs of the client to insert. In other words, the element is inserted in the last
position that makes the sum of all the previous TTS less than TTSabs. Once the
position is identified, the actual TTS of the client to insert is computed. Then, the
TTS of the subsequent element in the list is updated, and the element is inserted.
Figure 2.3 reports an example of the insertion task for the scheduling list.

Figure 2.3: Scheduling insertion.

After the initial data setup, each Slave Manager enters an infinite loop as de-
picted in Figure 2.4d. This loop performs all the tasks needed to realise the actual
Manager behaviour. First of all, it extracts the first element in the scheduling
list and retrieves the TTS value. Then, it enters executes a sleep function: the
Slave Manager enters an idle phase that can finish either because the sleep time
is up or because a new_client event has been triggered. In practice, the sleep
function is implemented using a conditional timeout wait for the new_client event
thus enabling two different scenarios: the timeout elapses and the event does not
take place, the new_client event happens and the timeout is not reached. The
statement at line 7 in Figure 2.4d implements these two cases.

Then, if the timeout expires, it means that the extracted client has to be served.
The Slave Manager generates a random nonce, envelopes it in an attestation request
message, stores the request’s information in the database and sends the request to
the Attester. The sending of the attestation request allows the Slave Manager to
detect whether the client is still connected or not. If yes, the client is inserted again
into the scheduling list with a new TTSabs that is calculated as:

ε = varc − (rand() mod (2varc))

26



2 – Architecture

TTSabs = avgc + ε

On the other hand, if the client has disconnected, the session gets closed and
persisted on the database. Consequently, the Slave Manager removes the client
from the list of the served ones and starts the loop again.

If the sleep time is interrupted before it reaches the timeout and the new_client
event is caught, the thread manages the new incoming client. The Slave Man-
ager reinserts the client that was supposed to be served at thread wake up in the
scheduling_list. The new TTS is equal to the value it had at extraction time, less
the time slept (assuming the time to process the new client is negligible). Hence, the
new client is inserted into served_clients_list (Master Manager already valorised
all the data needed for attestation). After the initial managing of the incoming
client, the thread checks if the client needs to be attested at start-up. In case of
required start-up attestation, the Slave Manager prepares and immediately sends
all the needed attestation requests to the client, otherwise, the client is inserted
into the scheduling_list, and the loop continues with the next iteration.

2.4 The Attester
The Attester is the only client-side component in the attestation architecture

deployed to the purpose of this document. This element is wholly integrated into
the target binary and works beside the target business logic code; it starts executing
before the target and runs independently from the target logic. This component
aims at running in the background, waiting for attestation requests. Whenever a
request is received, the Attester performs all the tasks that lead to extract integrity
evidence to verify the integrity of the target. The kind of evidence extracted by
the Attester depends on the deployed detection strategy.

The Attester can be included more than once in the target application, thus
allowing to protect the application with different software attestation flavours or
with multiple instances of the same software attestation version. Including multiple
Attesters and multiple attestation techniques in a protected application allows to
increase the level of security and to increase the attack time. Indeed, an attacker
that wants to circumvent the software attestation features has to block or bypass
all the included Attesters. Moreover, the Attester’s instances inserted into the
application can be configured to protect one another, thus making attacks much
more difficult.

The Attester usually needs data to work correctly. The architecture is designed
to include a precomputed binary object of data into the target such that the Attester
can parse it and load the information needed. The structure of the included data
strictly depends on the deployed detection strategy. Hence, all the operations
needed to obtain the binary to inject into the target and to parse it when the
Attester starts are delegated to the selected software attestation implementation.

27



2 – Architecture

To this purpose, additional tasks are performed during the target compilation: the
data structures required by the Attester implementation are populated, encoded
and embedded in the final binary so that they will be available at runtime. For
instance, static attestation needs to know the binary memory areas that it has to
monitor and their location at load time, invariants-based software attestation needs
to know variables and their location in memory.

The workflow of the Attester lists a set of generic steps that do not depend
on implementation choices. Then, Figure 2.4b depicts the overall behaviour of the
Attester. As soon as the target starts, the Attester starts as well and performs
necessary setup tasks. Data structures are parsed and loaded (if the detection
technique requires it), the connection with the Manager is established, and all the
connection parameters are stored in a session object for future communications.
Whether any setup activity fails, the Attester itself and the target application are
prevented from starting their routine.

If all the preliminary setup steps do not fail, the Attester begins an infinite
loop that only terminates if the entire target application stops. The main loop
waits for attestation requests coming from the Manager. The receiving of a request
triggers the collection of integrity evidence. The Attester extracts from the running
application all the data needed for attestation, and stores them in a buffer. The
nature of the extracted data and the procedure to extract them are tightly-coupled
with the kind of software attestation to realise. Then, the extract_data function
(reported in Figure 2.4b at line 8) has to be implemented according to that choice
and has to return a buffer that contains the data to send back to the Verifier. A
keyed digest function receives the data buffer containing the attestation evidence
and computes a signature on that data using the received nonce. It prevents replay
attacks and strongly relates the collected data to the attestation transaction that
is being performed. Then, the concatenation of attestation evidence and its digest
provides the final data that will be sent to the Verifier. After that, the Attester
connects to the Verifier and sends the obtained buffer. Finally, the loop starts again
by waiting for another attestation request.

In practical terms of the delivered architecture implementation, the Attester is
a software component that is compiled together with the target application code.
It is a static library, and it is linked with the target application at linking time. The
Attester static library has a single entry point, i.e. a function, which is invoked as
soon as the target software starts. The operating system invokes the Attester entry
function before the main function of the target or, in case of a shared library, before
the library load. This behaviour is achieved through compiler’s attributes assigned
to the Attester entry point function, e.g. constructor for GCC. Then, two different
scenarios could be possible: the target software is a standalone application or a
dynamically linked library. In the first case, the Attester entry function is invoked
by the operating system before the application’s main function starts. In the second
case, the Attester function is invoked at the library loading, before the requested

28



2 – Architecture

library function is executed.

2.5 The Verifier
The Verifier is the server-side component that checks the validity of the evidence

provided by the Attester. Like in the case of the Manager, this component has to
manage multiple connections from different clients (i.e. Attesters). In addition, the
evidence data format and the implementation of the Verifier strongly depend on the
deployed software attestation and on the chosen parameters Consequently, every
Attester has to communicate with the proper Verifier. Then, a set of different
Verifiers is available on server-side. For this reason, the Verifier is made up of
two subcomponents as well: the Attestation Response Dispatcher and the Actual
Verifier. Unlike the Manager, the two subcomponents are implemented as two
separate processes. In this way, the Actual Verifiers can be separately compiled
according to the chosen attestation version and parameters.

2.5.1 The Attestation Response Dispatcher
This subcomponent is the actual connection endpoint for all the Attesters. That

is, every new connection is addressed to this component. This component is state-
less, i.e. connections are independent one another as stateful information is kept
on the database by the Manager.

Whenever a connection from an Attester comes, the Attestation Response Dis-
patcher elaborates the received attestation response to determine which target
(then, which Attester) has connected. Then, the Attestation Response Dispatcher
retrieves from the database the parameters of the request and the target. As de-
scribed before, the Manager previously stored this information at request generation
time. Then, the Attestation Response Dispatcher retrieves the nonce used to create
the request associated with the received response. The nonce is used to verify the
digest of the received data, thus to prove they are freshly generated. Whether the
digest does not correspond to the expected one, the attestation transaction failure
is recorded into the database, and the verification procedure stops.

Once the hash has been decreed to be genuine, the Attestation Response Dis-
patcher identifies which Actual Verifier binary is associated with the sender At-
tester. Then, Attestation Response Dispatcher launches the Actual Verifier and
passes it the attestation data, and finally restarts the loop.

2.5.2 The Actual Verifier
This subcomponent verifies that the provided integrity evidence is valid and that

the target application is still sound. The internal details of this element are related

29



2 – Architecture

to the actual software attestation implementation and its parameters. Then the
Actual Verifier can be significantly different depending on the system conditions.
Hence, this component’s details will be discussed in the next sections for each
different software attestation techniques that will be presented in the document.
Anyhow, the general workflow of this component is quite trivial: it extracts each
attestation evidence from the attestation data received in input and uses them
for peculiar computation and comparisons as reported. This component takes the
final decision about the single attestation transaction and stores it in the database
according to a predefined transaction status (see Section 2.7).

2.6 The Reaction Manager and the Reaction En-
forcer

The definition of software attestation does not include components for reac-
tion decision and enforcement as the technique is only meant for tamper detection.
However, the purpose of this work was to bring software attestation to be a com-
prehensive protection technique that can be worthy of being used alone. To this
purpose, detection is not sufficient, and the software attestation architecture has
to include reaction components.

Given that the detection is based on a client-server paradigm, the reaction must
be designed according to this scheme. Hence, two components have been foreseen
in the architecture: Reaction Manager and Reaction Enforcer.

The Reaction Manager is deployed on the server side. Given an application, the
Reaction Manager is in charge of monitoring the attestations history for each ses-
sion to identify anomalous behaviours. In practice, the Reaction Manager accesses
history of stored attestation request and associated responses to decide whether to
apply a reaction or not. The Reaction Manager is an abstract component that can
be implemented in different ways in practice. For instance, reaction decision can
be very straightforward as stopping a target as soon as tampering is detected or
very complex like involving policies or decision strategies. Sophisticated decision
strategies may involve the history of attestations within a session or, even more,
across multiple session. Indeed, a Reaction Manager may implements policies to
stop or degrade the execution of a target to punish it whenever attestations fail
multiple consecutive times or simply to reduce the attestation period to monitor the
target more strictly. Reactions to punish targets may be applied directly at server-
side, e.g. attestation period reduction, or may need to be applied at client-side, e.g.
execution stop or degradation.

Given that it is on the server side and it does not have direct access to the
running target, the Reaction Manager is not able to apply reactions on the target,
on the client-side. Hence, the Reaction Enforcer is in charge of apply, on the target,
the decisions taken by the Reaction Manager. The Reaction Manager and the

30



2 – Architecture

enforcer communicate using the network and, preferably, using the same connection
used by the other software attestation components. It would reduce the possibility
that reaction messages could be told from the attestation ones. As for the reaction
decision, the reactions that can be applied may vary. Indeed, execution stops can
be caused by injecting runtime faults, deleting parts of the loaded binary code,
reference errors and many other software failures. The same is valid for execution
degradation. Then, the internal details of the Reaction Enforcer depend on the
implementation choices taken while that reaction system is designed to be applied
practically. Moreover, the implementation of the Reaction Enforcer is bound to
the Reaction Manager implementation. The Reaction Enforcer has to know how
to interpret the received commands and how to act accordingly.

Besides, these two components are both optional for the reference architecture.
The Reaction Manager may be useless if the implemented reaction is triggered
locally, without any remote decision. For instance, the Reaction Enforcer may apply
reactions based on decisions taken directly on the target when failure attestations
are detected. On the other hand, the Reaction Enforcer may not be included in
practical implementation if reactions are ultimately decided and enforced on the
server-side. It is the case in which, for instance, target logic depends on server-
side computations that can be prevented by Reaction Manager (as for the solution
presented in Section 4).

Finally, reaction mechanisms are foreseen by the design of a general reference
architecture to enable software attestation to detect and react to tampering, but
the actual details of the reaction components strictly depend on implementation
choices.

2.7 The central database
The central database plays a crucial role in the functioning of the whole at-

testation mechanism, regardless of the actual technique that is implemented. As
described in the previous sections, the database stores the data to manage all the
processes related to the protection mechanism.

Applications. First of all, all the protected applications are listed in a table,
namely Application table. Hence, every newly protected application is assigned a
string that uniquely identifies it in the software attestation system, as depicted in
Table 2.1.

Attesters. In addition to the applications list, the database lists also all the
Attesters per single target application in the Attesters table (Table 2.2). Indeed,
whenever a Attester is built to be inserted into a target application, it receives an
incremental identifier that is unique for the protected application. Together with

31



2 – Architecture

this information, the Attester table stores the data to manage the scheduling of the
client by the Manager, i.e. avgc and varc.

Attest-at-Startup assets. The assets monitored by each attester do not need
to be listed in the database as the object of attestations is randomly selected by the
request nonce. The only information about assets the database stores is related to
the attest-at-start-up procedures. In the Attest at Start-up table (Table 2.3) every
line report the Attester ID in the Attester table and a asset label. Then, each line
of this table refers to an asset that requires an attestation request to be sent as
soon as the target starts.

Sessions. To manage the application life cycles and attestation transactions, a set
of tables have been introduced. The Session table (Table 2.4) records all the session
for each Attester, then all the Attesters are treated independently, regardless of the
other ones in the same target application. Along with which Attester the session
belongs to, each record stores the begin time, the end time and the status of the
session. The Manager creates a record in this table when an Attester contacts it
and the session starts. The start field is valorised with the current timestamp and
the isActive field is set to true. When the client Attester disconnects, the finish
timestamp is recorded and the isActive field is set to false.

Requests. The Request table (Table 2.5) stores all the attestation transactions
and relates them to the associated session. A record is inserted by the Manager
every time a new attestation request is generated and sent to a Attester. After that,
a record in this table can be modified only by the Verifier whenever an attestation
response is received. Hence, every record in this table describes an attestation
transaction and associate it to a session. Every record is created with the sendTime
field valorised with the proper timestamp and with the status field that refers to
the PENDINIG record in the Status table. In addition, every request is associated with
a validity time, which is the maximum interval between the request sending and
the response receiving for which the response can be considered still valid. If the
response time exceeds the interval, the received attestation response is nevertheless
processed, but the attestation transaction is labelled as expired. The isStartUp field
tells whether the attestation request was sent at target application launch time or
during its normal execution runtime.

Statuses. Every request has its life cycle, then, in order to describe it, a set of
statuses have been designed and stored in an enumerative table, namely the Status
table (Table 2.6). The design preferred to use this representation rather than a
static enumeration of statuses to make the implementation flexible and extensible

32



2 – Architecture

in the future. Indeed, it is possible to introduce new statuses, in case it is needed,
by simply adding a line in the Status table.

The foreseen statuses for an attestation transaction are the following ones:

• PENDING, this status is assigned to a request as soon as the Manager creates
it. It happens when a request has been sent to the Attester, but no responses
have been received yet. It is the only status the Manager sets, all the other
statuses are assigned by the Verifier.

• SUCCESS, the Verifier associates a request record with this value whether an
attestation response is received within the validity time, and the target ap-
plication is evaluated to be genuine.

• FAILED, the Verifier associates a request record with this value whether an
attestation response is received within the validity time but the integrity
checks performed on the provided evidence gave a negative result.

• EXPIRED_SUCCESS, a request is referred to this value if the relative response
produced a valid integrity check but out of the validity time.

• EXPIRED_FAILED, a request is referred to this value if the relative response failed
the integrity check and it came out of the validity time.

• EXPIRED_NONE, this value is associated with a request for which a response has
never arrived.

33



Column Type Description
id int Primary key for the table
application_id char(32) A 32 characters long string ID to identify

the application
description varchar(MAX) An optional string to describe the appli-

cation

Table 2.1: Application table description.

Column Type Description
id int Primary key for the table
application_id int Foreign key to the target application
attesterNo int Identifier of the Attester for the target ap-

plication
description varchar(MAX) An optional string to describe the At-

tester
sleepAvg int Average attestation period
sleepVar int Attestation period tolerance

Table 2.2: Attesters table description.

Column Type Description
attester_id int Foreign key to the Attester (Attesters ta-

ble)
asset_label smallint Label of the referred asset

Table 2.3: Attest at Startup table description.

Column Type Description
id int Primary key for the table
attesterID int Foreign key to the Attester (Attesters ta-

ble)
start timestamp Timestamp relative to the moment when

the attestator connects to the Manager
finish timestamp Timestamp relative to the moment when

the attestator disconnects from the RA
manager

isActive bit States wether the session is currently ac-
tive or not

Table 2.4: Session table description.



Column Type Description
id int Primary key for the table
sessionID int Foreign key to the associated record in the

Session table
sendTime timestamp Timestamp relative to the moment when

the request has been sent
responseTime int Number of seconds between the request

sent and response receival
status int Foreign key to the response in the Status

table
validityTime int Time within which the response has to

arrive to be considered valid
nonce byte(32) The random nonce included in the request
isStartup bit True if the request is relative to a startup

attestation, false otherwise

Table 2.5: Request table description.

Column Type Description
id int DB id for RA request status
name int Enumerative name of the request status
decription timestamp Optional description of the status value

Table 2.6: Status table description.



Data: scheduling_list, serving_thread_pool
1 begin
2 scheduling_list←− ∅;
3 for t ∈ serving_thread_pool do
4 initialise t with servingRoutine;
5 end
6 while True do
7 wait connection from Attester;
8 read client parameters from DB;
9 initialise session in DB;

10 select least loaded Slave thread;
11 notify new_client event to thread_pool;
12 end
13 end

(a) Master Manager algorithm.

Data: a, d, appID, session, vars_list, n
1 begin
2 parse ADS from memory;
3 connect to Manager;
4 save connection parameters into session;
5 while True do
6 wait attestation request;
7 nonce from request;
8 data←− extract_data(nonce);
9 digest←− digest(data, nonce);

10 a←− data||digest
11 connect to Verifier;
12 send a to Verifier;
13 end
14 end

(b) Attester algorithm.
1 begin
2 while True do
3 wait for a connection from Attester;
4 receive attestation response r;
5 identify the target from response;
6 read session parameters from DB;
7 verify attestation data hash;
8 if hash not verified then
9 record the event in the DB;

10 else
11 select the proper Actual Verifier;
12 launch the Actual Verifier with

attestation data;
13 end
14 end
15 end

(c) Attestation Response Dispatcher algorithm.

Data: scheduling_list, served_clients_list,
wake_reason ∈ {timeout, new_client}

1 begin
2 wake_reason←− timeout;
3 while True do
4 client←− remove first of

scheduling_list;
5 time_to_sleep←− client’s time to sleep;
6 timeout-wait(time_to_sleep) for

new_client event;
7 if wake_reason = timeout then
8 nonce←− random bytes;
9 store nonce for session in DB;

10 send att_request(nonce) to client;
11 if client disconnected then
12 close session for client;
13 remove client from

served_clients_list;
14 else
15 insert client into

scheduling_list;
16 end
17 else /* wake_reason = new_client */
18 insert client into scheduling_list;
19 insert new_client into

served_clients_list;
20 if attest_at_startup(client) then
21 nonce←− random bytes;
22 store nonce for session in DB;
23 send att_request(nonce) to

client;
24 if client disconnected then
25 close session for client;
26 remove client from

served_clients_list;
27 end
28 else
29 insert new_client into

scheduling_list;
30 end
31 end
32 end
33 end

(d) Slave Manager algorithm.

Figure 2.4: Algorithms of software attestation components.



Chapter 3

Detection

This Chapter describes the research effort invested in designing a software-
based system able to work on real-world applications according to the architecture
previously defined (Chapter 2). The aim is to model a system able to detect
violations of software integrity for both static and dynamic software features.

The general definition of the protection scheme permits to monitor the integrity
of a large variety of software features. The software features to be used by the
designed software attestation have been selected by considering two kinds of attacks
that the technique has to be able to detect. The nature of attacks that can be ported
to a piece of software mainly involves static or dynamic modifications.

In the first case, an attacker tries to alter the normal behaviour of the application
by tampering with its structural properties, thus forcing the application to work
differently by modifying the binary layout of the target. For instance, a static attack
can be ported by removing a function call in the compiled application by merely
replacing the relative CALL instruction with the NOP instruction. Then, it is possible
to circumvent security checks, such as license verification, or to prevent any other
functionality of the original application. The same is valid for data embedded in
the software binary that can be altered to drive the software behaviour arbitrarily.

In the second case, the attacker tampers with features that are not related to
the software structure, rather with features that depend on the program execution
such as variable data in memory or execution flow. An excellent example of this
kind of attacks is represented by debugging attacks, in which the attacker attaches
a debugger to the running application and arbitrarily drives the program execution.
Attackers may bypass function calls or alter and steal data from memory remaining
unnoticed from a static point of view. All the possible modifications that can be
ported on dynamic software features cannot be detected by merely monitoring the
software binaries.

It is then clear that a software attestation system aiming at comprehensively
detecting as much as possible integrity violations have to be able to monitor both
static and dynamic features of a software. Consequently, two different software

37



3 – Detection

attestation implementations have been pursued to obtain two software attestation
models.

3.1 Preliminary requirements
Software attestation is meant to detect integrity violations on software binaries.

Hence, it is mandatory to define a set of requisites to design an accurate detection
mechanism for software attestation. The requirements hereafter discussed must
be considered as an addition and, in some cases, as a specification of the ones pre-
sented for the overall architecture (Chapter 2). In other words, these requirements
are reported in this chapter as their specification focuses more on procedures than
on architectural schemes or structures.

Assets. The definition of the assets to protect has to be the first task in designing
and implementing a protection technique. Indeed, it is necessary to know what the
technique is going to protect to design the best protection strategy. For instance,
for static software attestation, the assets would be tied to software binary features,
thus to its executable code. Hence, any instance of static software attestation has
to define: the target parts that are intended as assets to protect, the way to extract
integrity evidence and how to deliver them to the Verifier.

Unpredictability. Software attestation exploits continuous verification of the
target, that is, the target is periodically attested, and several attestation responses
are produced over time. Such repetitive behaviour may expose the system to un-
wanted vulnerabilities. Indeed, a high number of similar data generated by the
protection enable an attacker to collect information and to infer patterns that may
reveal internal detail of the protection scheme. The designed detection technique
has to make procedures unpredictable to avoid such threats.

Unpredictable evidence extraction. It is needed to ensure that different at-
testations performed on the same asset generate different integrity evidence, thus
avoiding that an attacker could produce fake attestation responses by reusing col-
lected valid responses. Moreover, a technique that can protect multiple assets at the
same time should ensure an unpredictable asset selection. In other words, integrity
evidence should be extracted from a different asset for each attestation transaction,
and the asset to attest should be selected randomly.

Low information exposure. Software attestation intrinsically exposes data to a
potential attacker. Indeed, the client-server architecture needs to exchange network
messages and to embed data into the delivered target. Given that exposures are
not entirely avoidable, the design of a software attestation method has to limit such

38



3 – Detection

exposures as much as possible. Hence, messages to exchange and data to embed
into the target have to be designed to be concise in order to expose fewer data. As
a side but important effect, compact data structures also let to reduce the overhead
introduced by the technique. Moreover, messages and data computed on the target
platform and sent over the network should be designed to be unintelligible from an
external observer.

Diversification. Protections that are always delivered in the same way and the
same form let attackers have much more chance to inspect, understand and disable
it once for any target. Hence, it is necessary that the design of a detection technique
let it be implemented in different versions in term of internal details. In other words,
software attestation procedures must be delivered with different implementations.
In this way, an attacker that defeat the protection can gain advantages just from
the version he has. Moreover, a periodic change may be designed to increase the
security level; that is, the protection procedure released with the target may be
new ones.

Composition. Software protections are known to be weak if applied alone; then,
it is usual to combine multiple protections to achieve a better security level. Hence,
software attestation should be designed by taking into account the chance to com-
bine it with other techniques. It means that all the procedures and data structures
involved in the designed software attestation system must take care of other protec-
tions. Moreover, as explained before, techniques such as diversification may change
the software structure at runtime. The software parts involved in the change may
eventually be part of the asset that attestation is monitoring. Hence, the compati-
bility with other protection has to be a feature also for runtime. If compatibility is
considered at design time, any additional protection technique can be applied to the
target regardless of the transformation it makes on the source or binary application
code. Then, if all the protections are applied before software attestation, the only
requirement to avoid compatibility issues is: protections must be able to track the
transformations they port. Indeed, software attestation has to be able to retrieve
data from assets as they have not been changed.

3.2 Static software attestation
This Section presents the work performed on static software attestation. The

main effort in realising a static software attestation system has been spent in design.
That means, collecting solutions from literature, analysing them, underline their
limitations and define a set of requirements for a model that can be practically used
to obtain a protection detection technique for real-world applications. Finally, to
test the effectiveness of the technique, an implementation of the defined model has

39



3 – Detection

been delivered. The overall aim of the here presented work about static software
attestation is to assess the technique from a security point of view and to evaluate
its practical applicability.

3.2.1 Design
This work presents an integrity monitoring mechanism that aims at lively check-

ing static properties of running software. In particular, the proposed software at-
testation system can assess the integrity of the code section of a target program
that is running, thus loaded in memory. The proposed system has been designed
to be modular in order to make it easily extensible and customizable.

With respect to the reference architecture, the fundamental features that a static
software attestation system should support have been defined. In this way, it is
possible to clearly define and semantically separate the basic tasks that are required
to obtain the desired static attestation mechanism, that means, each group of ba-
sic tasks gathers a set of operations that have the same purpose in performing the
attestation. Besides, it enables to design an utterly abstract system, i.e. a paramet-
ric system, that can accept different implementations for the same semantic basic
tasks. In order to describe the fundamental tasks, it is necessary to specify the in-
stantiation of the Attester and the Verifier features that, as described in Chapter 2,
strongly depend on the nature of integrity evidence and on the procedures needed
to extract and verify them.

Assets and integrity evidences

In order to define the procedure to extract integrity evidence, it is necessary to
identify which are the software assets that the static software attestation system
will aim at monitoring. Generally speaking, the detection system discussed in
this section was intended to detect modifications on the code portion of a running
program. In particular, it is necessary to define which is the level of detail the
detection has to identify for the protected asset.

To this purpose, it is worth considering the possible granularity levels in code
layout at which it is possible to establish the integrity checking: instructions,
branch-less code blocks, procedures (functions), whole code section. Single in-
struction integrity monitoring is quite hard to achieve. Indeed, it would require to
identify and to locate every single instruction at runtime. Furthermore, a single
instruction does not represent an asset to protect from a semantic point of view,
that means, a code asset is something that brings meaningful information about
sensitive algorithms or data. For this reason, a single instruction is not considered
a valuable asset in terms of security and protection.

The whole code section would be the most effective asset to protect, given that

40



3 – Detection

it brings the most comprehensive information about the program features. Unfor-
tunately, this level of granularity cannot be exploited to monitor the integrity of
a program. Indeed, the whole code binary section could be extensive and moni-
toring it at runtime could cause a significant execution overhead. Moreover, it has
not been chosen as a valid asset because it can change at runtime due to other
techniques applied to the binary. For instance, software attestation could be put
aside to dynamic code change techniques that can modify the loaded code directly
in memory, e.g. code mobility that loads freshly downloaded code portions. In this
case, the static integrity evaluation of the whole code section would be much harder
and more costly than effective.

Therefore, the asset to monitor has been identified at functions level. It ensures
an acceptable level of runtime overhead and to be compatible with dynamic software
changes. In addition, function code blocks have enough semantics to be considered
for protection purposes and to represent a valuable asset in terms of information
to protect. Branch-less code blocks are useful to represent functions’ disposition
in memory but may lack in semantic. Indeed, they represent just a portion of a
function; hence, a single block may not enclose the whole asset that is meant to be
protected.

Finally, the assets intended to be protected are functions, and their represen-
tation has been designed as a set of branch-less code blocks. The advantage that
comes from this decision is represented by the possibility to use the designed static
detection system even if binary code manipulation techniques are applied, e.g. bi-
nary obfuscation or layout randomisation. In practice, if a binary obfuscation tech-
nique modifies the layout of the compiled program by breaking down and scrambling
the code blocks to make harder to reconstruct the original control flow, it would still
be possible to represent functions’ information for software attestation. A function
that gets scrambled is firstly divided into code sub-portions, and then, all the code
chunks are shuffled inside the program and linked by inserting branch instructions
that make the execution to flow from one block to the subsequent one. Then, a
function can be represented as a set of blocks that execute in a specific order, i.e.
a sorted list of branch-less code blocks.

Once the assets have been identified, the integrity evidence and the way to col-
lect it from the target are the next elements to define. First of all, a representation
of the assets was needed to allow the attester to recognise them at runtime. Given
the nature of the monitored code regions and their possible fragmentation around
the global code memory, each function is represented by a data structure, named
memory area, which contains a list of blocks. Each element in the list stores the
virtual address of the beginning of the block and its length. The beginning ad-
dress is an offset from the starting virtual address of the whole code segment of
the target. In addition, each memory area item that is included in the Attester
data structure contains a label that uniquely identifies it for the monitored target
application. This label is used at attestation time to identify the memory area on

41



3 – Detection

which integrity evidence is extracted.
Given such data representation, the integrity evidence is obtained by hashing

the memory area selected for attestation. However, merely hashing a memory
area as it makes the attestation mechanism to be subject to trivial replay attacks.
For instance, an attacker that can detect the attestation procedure may exploit it
to compute valid hashes for all the memory areas and use them to reply to any
attestation request, thus circumventing the integrity check. Then, it is clear that
the bare hash of memory areas is not a secure measure of its integrity.

Evidences collection and verification

In order to make the integrity evidence more effective from a security point of
view, it is needed a mechanism to extract evidence from memory areas that can
make the evidence tightly coupled with the request that triggered their extraction.
Moreover, the mechanism has to be random. Hence, it has been decided to involve
the incoming nonce so that the evidence collection is driven by it.

Then, a procedure to extract evidence from the target that can be driven by a
random input (the nonce) was needed. In other words, it is desirable that evidence
data would be collected randomly. Moreover, the asset to attest selection has to be
random to make the procedure as less predictable as possible.

Hence, it has been decided to implement a random walk procedure that drives
the data collection from a target asset. A random walk is a pseudo-random explo-
ration procedure of a sorted and indexed set of elements. The implemented random
walk aims at extracting bytes from the selected memory area in a completely unpre-
dictable way. To this purpose, the delivered solution provides two different random
walk implementations to let the attestation system customisation to choose among
them for the final protection instantiation.

Normal random walk. This flavour of random walk exploits the properties
of group theory, in particular of cyclic groups1. The procedure treats the memory
area to attest like a cyclic group of integers whose elements are the bytes’ indexes
in the memory area buffer. An assumption enabled the design of the random walk:
the procedure does not apply to the whole memory area buffer but just on a portion
of it, whose size is a prime number p. In particular, the selected portion’s size is
equal to the greatest prime number less than or equal to the area size N . This
assumption lets any positive number a, strictly less than p, to be a generator for
the cyclic group. In fact, from group theory properties:

a ∈ Zn|gcd(a, n) = 1⇐⇒ ⟨a⟩ = (Zn, +)

1From algebra’s group theory: “A cyclic group is a group that can be generated by a single
element”.

42



3 – Detection

In other words, given any group Zn, any element a ∈ Zn that is coprime to the
group size n, is a generator of the group under addition. Moreover, form primes
properties

∀p ∈ P,∀a ∈ Z|a < p =⇒ gcd(a, p) = 1

then
∀p ∈ P,∀a ∈ Zp|⟨a⟩ = (Zp, +)

In practice, the greatest common divisor of any integer number less than a prime
number and the prime number itself is equal to one (by definition). Hence, a group
with a size equal to a prime number is generated by any element of that group.
Then, any element in Zp generate all the others in exactly p steps according to:

Zp =
⋃︂

i∈Zp

{(i · a) mod p}

Then, by applying these considerations, it is possible to ensure that the random
walk can retrieve p bytes from the considered memory area buffer with a certain
level of randomness and within the fewest possible steps, which is exactly equal to
p. Summing up, the random walk needs a set of parameters to work:

• actual buffer size p, the size of the considered portion of the memory area to
attest, e.g. the largest prime number in the interval [0, N ];

• generator a, the randomly selected number, less than the actual buffer size,
which will be used to generate the indexes of all the bytes to retrieve from
the memory area buffer;

• initial offset o, the offset in the memory area buffer from which the actual
buffer starts, i.e. a number in the interval [0, N − p];

• buffer size n, the total number of bytes to retrieve from the actual buffer;

The role of all the parameters should be clear from the previous considerations,
except for the buffer size. The buffer size has been introduced to increase the
randomness of the collected evidence. In particular, if two requests give the same
generator, offset and actual buffer size, the number of bytes to retrieve should make
the hash of the collected buffers different. Indeed, this parameter introduces n− p
duplicated byte values or p − n missing byte values in the collected buffer that
do not give any additional information but alter the final hash value. All these
data are deduced from nonce, then a high level of randomness is expected. Indeed,
the same memory area would generate twice the same hash value with a very low
probability. The probability of obtaining the same attestation response data from
the two different attestation requests for the same memory area depends only on
the parameters of the random walk. Indeed, any hash function gives the same result

43



3 – Detection

if and only if the input data are the same. Hence, that probability is given by the
function:

f(n, p, o, a) = 1
|p| × |o| × |n| × |a|

where |p|, |o|, |n|, |a| are the number of values that can be assumed, respectively,
by the parameter p, o, n, a, i.e. the size of their domain. For a fixed memory area,
the value of the parameter p is always the same; hence, |p| is equal to one. Given
that p is supposed to be close to N , it is possible to assume p ≈ N for any value of
N . Consequently, o becomes always null, and its domain size is equal to one. The
parameter a can assume any value less than p, thus less than N . Hence, |a| can be
assumed to be equal to N . Formally:

p ≈ N =⇒ |p| = 1

p ≈ N =⇒ o = 0 =⇒ |o| = 1

p ≈ N =⇒ |a| = N

Then, the probability of obtaining the same attestation response from two different
attestation requests for the same memory area is given by:

f(N, n) = 1
N × |n|

The parameter n can vary from 0 to 232; then the probability function depends
only on the size of the attested memory area:

f(N) = 1
232 ×N

For instance, for a memory area whose size is 1 KiB (1× 210 B), the probability to
obtain two attestation responses that are the same is:

Pr = 1
232 × 210 = 2.27× 10−13

Starting from index o, at each step i, the random walk extracts a byte from
the memory area M and inserts it into the prepared data buffer. In the end, the
prepared data buffer will be hashed to obtain the integrity evidence to be sent to
the verifier. Then, the i-th byte of the prepared data buffer is obtained according
to:

B[i] = M [o + ai mod p]

where B is the prepared data buffer and M is the byte array of the memory area
to attest.

Goldbach random walk. This second version of the random walk extends the
previous one. Instead of working on the whole selected buffer from the memory area

44



3 – Detection

to attest, the procedure is applied to two sub-buffers. The Goldbach decomposition2

gives the sub-buffer partition. The actual buffer size is odd since it is a prime, then
it gets decremented to obtain an even number. The couple of primes whose sum
gives that buffer size value is searched in a pre-computed and hard-coded set of
Goldbach’s couples. Hence, two sub-buffer sizes p1 and p2 are obtained, and the
data will be extracted from these two buffers.

The actual buffer size could be made equal to the highest even number less
than or equal to the memory area size, However, it has been decided to implement
the same method to reduce the considered memory buffer in order to keep the
randomness level close to the one obtained for the normal random walk. In other
words, if the random walk considered the whole memory area, the initial offset
parameter would become useless, and the randomness introduced by this parameter
would be lost.

The Goldbach random walk produces a buffer of n bytes extracted from a given
memory area in n steps. At each step, the procedure extracts one byte from both
the partitions, it adds together the two extracted bytes and inserts the resulting
byte in the attestation data buffer. In practice, once the two partition buffers have
been identified, the normal random walk procedure is applied separately on each
of them. Hence, it is necessary to have two generators, one for each partition. The
generators are obtained from the generator a selected for the original actual buffer
size, in the following way:

a1 = a mod p1

a2 = a mod p2

In the end, the Goldbach random walk needs the following parameters to extract
the evidence from a memory area with a size of N .

• Actual buffer size p, the size of the actual part of the memory area to attest,
i.e. the highest prime number in the interval [0, N ], from which the two
sub-portions sizes form a Goldbach partition of p− 1.

• Generator a, the randomly selected number that would be the generator for
Zp from which the two partitions’ generators are obtained, as it happens for
the normal random walk

• Initial offset o, the offset in the memory area buffer as for the normal random
walk, i.e. a number in the interval [0, N − p− 1];

2The Goldbach conjecture states that every even number greater than four can be expressed as
the sum of two prime numbers. Hence, given an even number n greater than four, the Goldbach
decomposition gives, as a result, a couple of primes, p1 and p2, whose sum is equal to the number
n: p1 + p2 = n.

45



3 – Detection

• Buffer size n, the total number of bytes to retrieve from the actual buffer.

At the i-th step, the Goldbach random walk produces one byte in the final buffer
according to:

B[i] = M [o + ia1 mod p1] + M [o + p1 + ia2 mod p2]

The considerations of the probability of collisions in attestation responses made
for the normal random walk are valid also for the Goldbach random walk. Notice
that this random walk version does not introduce any practical advantage com-
pared to the normal random walk; hence, they provide the same security level.
Nevertheless, it is reported to demonstrate the capability of the overall attestation
mechanism to be flexible, extensible and to be compliant to the diversification and
composition requirement.

Parameters As seen in the previous sections, the data preparation procedures
need a set of parameters to work correctly. As anticipated, the randomness of the
process and then the predictability of the produced integrity evidence depends on
the input parameters. The central role in producing random parameters is played
by the random nonce sent with the attestation request.

A subset of the parameters that are deduced from the nonce have already been
presented in the random walk Sections, hereafter the full list:

• area label m is the ID of the memory area to attest among the monitored
ones;

• buffer size n, the total number of bytes to extract from the memory area to
generate integrity evidence;

• actual buffer size p, the size of the considered memory area portion;

• generator a, the generator number for the random walk procedure;

• initial offset o, the displacement from the beginning of the memory area where
the actual buffer starts.

All this data is obtained by manipulating the incoming nonce value and repre-
sent a preliminary set of parameters. The deployed procedures may additionally
manipulate the decoded parameters in order to adapt them to the needs. Given the
modularity of the designed system, it is possible to change the way these parame-
ters are calculated from the nonce. It permits to diversify the possible instantiation
of the protection and to them extend them. The delivered work includes four dif-
ferent implementations of the parameters extraction from nonce that are presented
in Section 3.2.3.

46



3 – Detection

As emerges from the previous discussion, the nonce is used as a sort of random
seed to obtain all the parameters and values needed for attestation purposes. The
nonce is generated using a cryptographically secure pseudorandom function from
the OpenSSL library named RAND_bytes. The fixed scheme to retrieve information
allows the nonce to be manipulated, at generation time, to drive the attestation
on the client in an arbitrary way. It can be a useful feature but may come with a
drawback. If the randomness of the sent nonces is altered, the attestation mecha-
nism gets more vulnerable to attacks like replay or cloning. Then, it is preferable
to avoid that the distribution of the nonce values is altered to avoid any help to
attackers.

3.2.2 Pre-computing attestations: the Extractor
The Extractor is a bare functional component as it is not foreseen by the refer-

ence architecture presented in Chapter 2. It has been introduced for the proposed
static software attestation method to reduce the verification time and the compu-
tational load at run-time. Indeed, it takes care of some tasks that are required
by the Verifier, but that can be performed offline before the attestation process is
actually in place.

The Extractor pre-computes and stores couples of nonces and associated valid
attestation data. Practically, it randomly generates a set of nonces and, from an
untampered version of the protected target, it computes the attestation data. That
is, it performs the proper random walk on the memory areas, calculate the hash
using the proper function and stores the resulting digest on the database. Then,
the Verifier runtime tasks are eased and speeded up as it has just to compare the
received digest with the pre-computed one.

However, the Extractor is very efficient; it can produce hundreds of nonces and
related attestation data in seconds on an off-the-shelf laptop. Moreover, the nonce
generation can be easily parallelised. The Extractor is a helper component that is
neither exposed as a service nor directly reachable by clients. It is only invoked by
the Manager when the available pre-computed data are about to finish.

3.2.3 Application of static software attestation
Once the protection mechanism has been designed, the next step was to bring

the protection to be usable in real life. To this purpose, it has been designed
a toolchain to protect a given application automatically. Figure 3.1 reports the
workflow of the protection toolchain. A developer who wants to protect his appli-
cation with static software attestation has to provide the source code with proper
annotations.

47



3 – Detection

Annotations

The annotations are provided together with the source code through a cus-
tom directive: #annotation(<params>). The user can specify two different types of
annotations: Attester declaration and memory area definition.

Attester declaration annotation. This annotation declares a Attester and de-
fines its parameters. As described in Section 3.2, a Attester can be configured
through a set of parameters that describe the technique’s key features. Conse-
quently, this annotation characterises also the Attester related components, i.e.
Actual Verifier and the Extractor.

The Attester declaration annotation can be inserted in any place in the applica-
tion source code. The first parameter to pass to the annotation directive defines the
type of annotation, namely declaration, and states that this annotation describes
a Attester to insert into the target application. The declaration directive takes a
set of parameters in turn:

• RW parameter, it specifies the kind of random walk that has to be used to
extract data from monitored code regions, as described in Section 3.2.1. The
possible values are:

RW_NORMAL, the Attester will implement the normal random walk;
RW_GOLDBACH, the Attester will implement the random walk based on Gold-

bach’s hypothesis.

• HF (Hash Function) parameter, it selects which hash function the Attester will
use to generate attestation digests, that is which function must be applied to
the prepared data to obtain the attestation response. It allows five different
values:

HF_BLAKE2, it selects the Blake2 hash function;
HF_MD5, it selects the MD5 hash function;
HF_SHA1, it selects the SHA1 hash function;
HF_SHA256, it selects the SHA256 hash function;
HF_RIPEMD160, it selects the RIPEMD160 hash function.

• NI (nonce interpretation) parameter, it specifies how nonces are interpreted
to extract parameters for the random walk. It allows four different values,
NI_1 ... NI_4, each them specifies a different way to obtain all the parameters
for the selected random walk: the selected code region to attest, the buffer
size, the actual buffer size, the random walk generator and the initial offset.
For the sake of simplicity, the details of each NI version are not reported here
as they do not provide any additional information from a research point of
view.

48



3 – Detection

• NG (nonce generation) parameter, it specifies the way the nonces are generated.
Only one implementation for nonce generation is provided. It generates the
nonces randomly and does not allows further customisations. For this reason,
only one value is foreseen, by now, for this parameter: NG_1.

• MA (memory areas) parameter, it specifies the memory area management API
to use. It selects the way to represent memory areas internally. In the current
implementation, memory areas are a list of sorted branch-less code blocks; in
other cases, it may be different. The API interface abstracts the access to
monitored memory areas as they have not undergone any transformation, as
they are linear and contiguous memory segments. By now, just one value is
accepted for this parameter, namely MA_1.

• DS (data structure) parameter, it specifies the data management API to use.
This API is used to parse attestation requests and prepare the attestation
response, to read and write requests and response components, to manage
attestation prepared data and hashed data. Just one implementation has
been delivered for this parameter; then it accepts just one value: DS_1.

The declaration annotation parameters are meant to specify the single primary
group of features implementations that have to be used to generate an Attester.
Given that the architecture was designed to be modular and to work independently
from the actual implementation of its components, the value allowed for each pa-
rameter can be extended to accept other implementations. It means that if it is
needed to tailor the software attestation system for a particular kind of hardware or
low-level software architectures, it is possible to generate ad-hoc attestation compo-
nents that fit the system features. If a new implementation of any fundamental task
will be defined, it must provide the relative source file and the relative parameter
value. The file to provide must implement, respectively:

• RW: ra_data_preparation.h;

• HF: ra_do_hash.h;

• NI: ra_nonce_interpretation.h;

• NG: ra_nonce_generation.h;

• MA: ra_memory.h;

• DS: ra_data_table.h.

Other than this group of parameters, the declaration annotation requires a label
specification and a frequency to associate to the Attester that is being declared.
The label is specified by using the label parameter and identifies the Attester among
the others in the application; it has the following format:

49



3 – Detection

label(<name >)

where <name> is a string specified without any quote. The frequency parameter has
this form:

frequency (<seconds >)

where <seconds> is an integer value that defines the number of seconds between two
subsequent attestation requests to be sent to defined Attester. Finally, here it is
an example of declaration annotation:

annotation (
declaration (RW_NORMAL , HF_SHA256 ,

NI_1 , NG_1 , MA_1 , DS_1),
label( att_n1 ),
frequency (100)

)

This annotation requires the inclusion of a Attester, named first. The server
must be configured to query this Attester once every 100 seconds, on average
(frequency(100)). The Attester uses the SHA256 hash function (HF_SHA256), per-
forms the normal random walk (RW_NORMAL) to prepare attestation data and inter-
prets received nonces according to nonce interpretation version 1 (NI_1).

Memory areas definition annotation. The second kind of annotations for
software attestation is the region. This annotation is used to select a function
whose code has to be to monitored by software attestation. Then, it has to be put
before a function definition.

The main parameter to pass to the annotation statement is the region param-
eter, it specifies the annotation type. There are two required parameters for this
annotation. The first specifies the reference to the Attester for the memory area.
The second one tells whether the area has to be attested at the target start-up or
not. The Attester reference is specified using

associate_to (<label >)

where <label> is a non-quoted string of characters. If the specified label is not
present in the list of defined Attesters the annotation interpretation process fails.
The attest-at-startup parameter has the following form:

attest_at_startup (<bool >)

where <bool> is a non-quoted string that can be either true or false. This parameter
specifies the need to send an attestation request for the selected code region as
soon as the Attester connects to the Manager. The attest-at-startup parameter is
optional; if omitted, it is equivalent to specify false as its parameter. An example
of a memory area definition annotation is:

# annotation (
region ,

50



3 – Detection

associated_to ( att_n1 ),
attest_at_startup (true)

)
void foo(int a, int b){

/* ... */
}

This annotation specifies that the code of function foo has to be protected with
static software attestation, the Attester that is in charge of monitoring this area is
the one with label first and this function have to be mandatory attested when the
target connects to the server.

Annotations are extracted by a Perl script, the Annotations Extractor, which
generates a JSON file that lists all the encountered annotations. A specialised
tool processes the annotations in the JSON file: Annotations Interpreter. The
Annotation Interpreter is a Java-written tool; it receives the annotation and creates
a folder for each Attester declaration. Each generated folder contains two files: a
descriptor and a frequency file. The descriptor file, named as the Attester label,
specifies the reference to implementation files of the attestation modules for that
Attester (as requested by the annotation). This file contains a set of variable
definitions following the syntax used by makefiles. Each variable definition specifies
the name of the real implementation file (.c) of the associated fundamental block.
The content of this file is, for instance:

RA_DATA_PREPARATION_BLOCK_NAME := ra_data_preparation
RA_DO_HASH_BLOCK_NAME := ra_do_hash_sha256
RA_NONCE_INTERPRETATION_BLOCK_NAME := ra_nonce_interpr_3
RA_NONCE_GENERATION_BLOCK_NAME := ra_nonce_generation
RA_DATA_TABLE_BLOCK_NAME := ra_data_table
RA_MEMORY_BLOCK_NAME := ra_memory

The second file, the frequency file, contains the required attestation frequency, as
it is interesting only for the server-side logic. The second file is named <label>.freq.

Besides, the interpreter checks that each defined Attester has at least one mem-
ory region associated with it. In practice, defined Attesters that do not monitor
any memory area are ignored. Moreover, the interpreter checks the unicity of the
Attesters labels.

Building steps

After the annotations extraction, the toolchain proceeds by building each At-
tester, then by bundling all the Attesters together. The Attester Builder is the
tool in charge of pursuing this task. All the implementation files are identified and
selected from a descriptor file. The entire source code contains placeholders to pre-
vent symbol names conflicts in the final build due to duplicated Attester files that
contain the same symbols. Then, a preprocessing phase is needed: each selected

51



3 – Detection

Figure 3.1: Automatic application of static software attestation workflow.

block source file is processed, and the placeholders are replaced. For example, the
function that prepares attestation data is declared as

RA_RESULT ra_prepare_data_NAYjDD3l2sEzY7Xcs ( RA_table t)

the NAYjDD3l2sEzY7Xcs part of the function name is replaced with the relative At-
tester name, which will be unique for the program. The placeholder string is the
same for every global symbol in all the source files. This way, all the global symbols
introduced by attestation files are surely made unique for the linking phase. In ad-
dition, the nature of the placeholders let the files to be compiled even without any
replacement, that is useful for server-side components compilation. The Actual
Verifier and the Extractor are compiled according to the Attester specifications.
Indeed, Extractor and Actual Verifier relate to only one Attester; thus, they do
not suffer any naming conflict as they include one and only one implementation of
every remote attestation implementation file. Then, after the preprocessing phase,
the name of the previously presented function would become, for instance:

RA_RESULT ra_prepare_data_label00001 ( RA_table t)

All the characterised files generated by the preprocessing phase are collected
into a folder for each Attester. In addition, that output folder will contain all the
non-parametric source files that are needed to build the relative Attester, i.e. those
files that do not need any customisation. At the end of this step, there is one folder
for each declared Attester, which contains all the source files ready to be built to
generate an Attester object.

52



3 – Detection

Afterwards, the toolchain invokes the compiler (that can be chosen by means
of configuration files) in each Attester folder, thus obtaining an object file for each
Attester. All the Attester object files are then linked together to produce a unique
object file that contains all the Attesters. On their tuns, the Attesters object file
is linked together with the protected application.

Since the static software attestation system has been developed in the context
of the ASPIRE project, some steps of the toolchain depends on third-party tools.
Indeed, the memory layout of the final binary strictly depends on binary trans-
formations that can be applied, for instance, by a layout randomisation tool. In
the project context, Diablo3 has been the chosen layout randomiser. Diablo acts
like a linker that transforms the given binary into another one that has a different
structure but the same behaviour and semantic. Then, the randomiser is asked to
generate the data structure that describes the final memory areas’ layouts, to pack
it into a binary portion, named Attestation Data Structure (ADS), and to link it
together with the target application. Hence, Diablo is in charge of extracting in-
formation about code blocks, labelling the memory areas and reporting areas that
have to be attested at start-up. The randomiser lists the memory areas that were
flagged with “attest-at-startup” in a file for each Attester4.

After the completion of the randomiser tasks, the toolchain builds the server
side elements and creates the records in the database (Section 2.7) for the newly
protected application, through the Deploy Tool. Hence, the deploy tool starts
the final setup stages. The descriptor file generated from annotation processing
defines the building blocks also for the Actual Verifier and the Extractor. Then,
the deploy tool runs the standard compiler to build properly characterised files
and to deliver server-side components as well. For every new application that gets
protected, the software attestation toolchain inserts a new line in the application
table, with a freshly generated application ID. Then, for every Attester inserted
into the application, one line in the Attester table is generated. Moreover, the
deploy tool launches the extractor to compute a set of nonces and related valid
attestation data. The amount of precomputed data can be customised throughout
an input parameter. After that, the deploy proceeds by processing the attest-at-
startup list file for each generated Attester to record all the specified memory areas
in the database.

3https://diablo.elis.ugent.be
4An acknowledgement is due to thank Bert Abrath for the work performed to extend Diablo,

which made the tool work together with the static software attestation mechanism presented in
this document.

53

https://diablo.elis.ugent.be


3 – Detection

3.2.4 Security analysis
The proposed architecture comes with a set of drawbacks that can be generalised

to any other static software attestation system. Considering the MATE scenario,
where the end-user and the attacker have the same privileges on the delivered
application, it is possible to underline the vulnerabilities that one have to take into
account when static software attestation is deployed. An attacker has to interrupt
the Attester’s tasks or to fake its behaviour to prevent the protection to work
correctly.

Attestation operations prevention

Hereafter are presented a set of possible threats that are introduced by im-
plementation choices made for the Attester. It generally means that most of the
presented issues may be overcome with enough engineering effort and do not require
any further research.

Preventing the Attester to start, the most trivial attack consists in avoiding
the execution of the Attester. Indeed, if the Attester does not run at all, it cannot
start any communication with the server; thus, the Manager would not be aware
whether the target application is running or not. This kind of attack is possible, for
the presented system, because the Attester run in a thread that is parallel to the
target application’s main process. An attacker that can identify the point in which
the Attester thread is spawned can bypass it as well, e.g. by statically removing
the system call to thread spawn of dynamically bypassing it.

Countermeasure: engineering is needed to make the Attester routine integrated
into the target business logic, thus to be not distinguishable from the regular ap-
plication tasks. Additional instrumentation operations should be introduced to
rewrite the target’s code so that it includes commands to start communications
with the server and reaction to incoming requests.

Requests Stop, another attack that can be mounted is to stop incoming re-
quests. Only by monitoring the system calls that receive data from the network,
an attacker can catch the communication and drop it before it reaches the Attester
logic. It is noticeable that it is not equivalent to disconnect all the application from
the network. Indeed, a full disconnection would prevent network business logic
operations as well. For instance, for a real-time streaming application network dis-
connection would cause the playback to stop as the stream is not reachable any
more.

Data Collection Inhibition, even if the attestation request reaches the at-
tester routine, it is possible from an attacker’s point of view, to avoid the execution
of attestation collection procedure. Indeed, once the attestation request is received,
the Attester thread calls the data preparation routine that is a function. Hence,
an attacker may identify the function call and, statically or utilising a debugger,

54



3 – Detection

she can force the execution to pass over that code, thus not running it at all. This
way, the attestation response is not computed and not sent to the Verifier.

Attestation Response Send Stop, an attacker can tackle the attestation
process even after the attestation data is computed and response is produced. It
is possible to prevent the Attester from sending responses back to the server both
from within the Attester process and from an operating system perspective. In the
first case, the attacker identifies the invocation to the network send system call and
bypasses it, e.g. by using a debugger. In the second case, the attacker captures the
traffic from the target to the server and drops packets from outside the application,
e.g. by using a packet filter, a firewall or a network traffic monitoring tool.

Countermeasures: the way to face all the previous three vulnerabilities strictly
depends on the kind of reaction that is put in place. If reactions are only local,
which means that the server does not trigger faults in the application, the threat
is more significant. That is, local reactions are usually based on events that can be
observed locally, e.g. timers that are reset by a positive event. Hence, an attacker
that can prevent requests to reach the Attester should be able to bypass this kind of
reactions as well. On the other hand, if reactions are server-based, the vulnerability
is much more negligible. The server-side mechanism can notice that no responses
are received against sent requests. In this case, an attacker cannot do anything to
block the reaction as the server can, for instance, stop to serve the application with
the requested contents. Consequently, countermeasures are more straightforward if
reaction enforcement is performed remotely, by the server, and they become more
laborious if the reaction enforces locally.

Cloning attacks

The vulnerability presented here affects any static attestation (both hardware
and software). Hence, it affects the delivered system as well. Van Oorschot et al.
presented this kind of attacks and demonstrated that it is possible to circumvent
self-hashing-based techniques for integrity protection in a subtle way [51]. The pre-
sented attack exploits on operating system modifications; it exploits the difference
between memory accesses to data and code.

The attacker clones the untampered target program, tampers with one copy,
and let the other one intact. Given that data memory accesses can be easily told
from code-fetch memory accesses, the attacker can modify the operating system
kernel so that it redirects all the data accesses (including those to code portions
performed by an Attester) arbitrarily. Then, the attacker runs both application
copies and let the patched kernel redirect all the data reads to the genuine copy in
memory while letting the instructions to be fetched from the tampered program.
Hence, when a self-hashing mechanism tries to read from the application code,
just like the Attester does, it gives valid data even if the running application is
corrupted.

55



3 – Detection

Finally, the attack is enabled by the MATE scenario and fully privileged access
to the execution environment. The attacker can perform any tampering on the
target structure, which is the kind of attacks that static software attestation aims
at detecting. Moreover, the attacker must not reverse engineer the application
to spot protection mechanisms such as software attestation; he can approach the
application as a black-box and concentrate on the sensitive parts to modify on his
needs.

Countermeasures: unfortunately, Cloning Attack is a severe issue for static soft-
ware attestation in general and the mechanism presented in this Chapter. There is
no remediation to this kind of attack, as it is still an open issue in literature as well.
The attack cannot be spotted from within the application because it is performed
at a higher level, that is, at the operating system level. Then, there is no chance to
block Cloning Attacks by using a technique that is entirely based on target embed-
ded components. The proposed architecture for static software attestation offers
possible mitigation to the cloning issue. Diversification and runtime renewability
may be exploited to replace the embedded Attester(s) periodically. Consequently,
it would periodically replace hard-coded procedures that extract evidence as well.
It would cause computed attestation evidence to differ from the ones obtained by
the original Attester even if the attacker redirected memory accesses. Nonethe-
less, run-time renewability techniques are out of the scope of this work; hence, this
document will not discuss them.

Non structural modification

Another class of vulnerabilities is represented by tampering modifications that
do not alter the application structure, those modifications that alter the program
behaviour without tampering with its binary code, e.g. Debugging Attacks. An
attacker can use whichever external tool to stop, restart and redirect the application
execution, as well as to modify the content of data locations (memory, registers,
data segments). In practice, these kinds of attack dynamically alter the target’s
execution while letting the software structure intact.

Countermeasure: this kind of attack cannot be detected by static software attes-
tation by definition. Indeed, static software attestation aims at discovering struc-
tural modifications to the original program and is not conceived to protect from
this kind of threats. To this purpose, it is worth to evaluate the possibility to com-
bine static software attestation with additional protections, e.g. dynamic software
attestation.

In conclusion, the static software attestation system presented in this chapter is
in line with most of the others found in the literature. For instance, it checksums
code portions to attest the structural integrity of the target and exploits random
nonce-based transactions. On the other hand, here it has been presented a static

56



3 – Detection

tamper detection system that can be extended, customised and diversified to ex-
ploit different procedures and assets kinds, as opposed to many works in literature.
Indeed, immutable structures and procedures represented a vulnerability for many
static attestation systems, as reported in [51]. Hence, flexibility features allow the
proposed mechanism to be tailored to resist to attacks that defeat the delivered
Attesters by offering the chance to vary the Attesters themselves. In particular,
it enables diversification as each fundamental part of the system can be extended
and rewritten. Finally, it enables composability with other protections to enhance
the security level of the resulting system and to protect the detection mechanism
itself.

3.3 Dynamic software attestation
The work performed in the context of dynamic software attestation was about

obtaining an attestation system to reason about the robustness of the security
model, to investigate the effectiveness of dynamic features for attestation purposes
and to assess practical applicability of such system against real-world attacks. As
anticipated during the background presentation (Section 1), dynamic software fea-
tures’ integrity seems slightly harder to be attested than the static one. Indeed,
dynamic attacks are subtler and harder to spot because they do interfere with pro-
gram behaviour and with features that are not related to their structure. Then,
it is not enough to monitor something that the application is made of; instead, it
must monitor something that the application does. For instance, the code reported
in Figure 3.2 naively checks the validity of an input key against a secret. The code
uses the function validate to validate the input key and, if that fails, the program
quits. As it can be deduced from the source code, it is confirmed by the disas-
sembled code: if an attacker can force the validate function to return 1, whatever
the input key is, the check process gets bypassed. In practice, an attacker could
attach a debugger (e.g. gdb) at the beginning of the validate function, make it to
not execute at all and return 1 (e.g. return command provided by gdb5). As demon-
strated, it is not so hard to modify the behaviour of a program without altering
its structure. Hence, this is the kind of attacks that dynamic software attestation
tries to detect.

The main challenge in this scenario is then to represent software behaviour
with a rigorous model that can be easily attested. In practice, a given behavioural
feature has to be translated into a formal representation in order to obtain a logic
or mathematical expression that can be verified by an automatic process.

Chapter 1 presented several attempts to pursue representation of a software

5GDB documentation: Returning from a Function:
https://sourceware.org/gdb/current/onlinedocs/gdb/Returning.html#Returning

57

https://sourceware.org/gdb/current/onlinedocs/gdb/Returning.html#Returning


3 – Detection

char secret [256] = secret_str ;

int validate (char secret [], char key []){

for(int i = 0; i < 256; i++)
if (! secret [i] ^ key[i])

return 0;

return 1;
}

int check(char key []){

if (! validate (secret , key))
exit( EXIT_FAILURE );

return 1;
}

Figure 3.2: Source code that checks a key against a secret.

application from a semantic point of view. One among the others exploits the so-
called software Invariants. Invariants are logic predicates that are expected to be
true during the whole execution of a program or just a portion of it. For instance,
with reference to Figure 3.2, from function validate it is possible to infer i > 0
i <= 256 as a couple of statements that are always evaluated as true. An attacker
that tries to alter the behaviour of the program in order to bypass the checking loop
in the validate function may modify the value of the variable i at the beginning
of the loop by giving it a value greater than 256. It will cause the loop not to
execute even once, thus making the function always returns 1. This kind of attack
is expected to alter the invariant i < 256, then a mechanism that monitors that
invariant is supposed to recognise that attack.

Historically, invariants have been introduced to describe programs’ constraints,
e.g. for assertions and programming by contract [23, 28, 31], or to detect program-
ming errors and incorrect implementations at runtime [17, 26]. Indeed, one of
the first applications of invariants appeared in software engineering literature, to
detect bugs before they take place at execution time [28]. Afterwards, invariants
have been exploited to define axioms and constraints that describe software correct
execution by deriving them from specifications as demonstrated by Gries [23]. In
addition, several works proposed to exploit invariants to identify and locate software
faults and problems [14, 9, 10, 33, 19]. As these former software engineering works
stated, invariants were manually defined starting from program specifications and
then checked against the implementation. All the early usage of invariants were

58



3 – Detection

related to software execution, thus behavioural, issues. It suggested employing
invariants as an integrity metric to evaluate execution correctness as they create
relations among software runtime features, such as variables.

In early stages, invariant assertions were manually defined. This approach is
not very effective; indeed, it has been as demonstrated that user-specified invari-
ants are likely to be absent in the final application [20]. Then, it is not possible
to rely on assertions that the designer or the developer of software expects to be
valid from specifications. This issue led to the introduction of dynamically-inferred
likely-invariants. Likely-invariants are quite the opposite of classical “true” invari-
ants, they are deduced by analysing execution traces. These traces are collected by
executing the application against a set of (considered valid) inputs [20]. Dynami-
cally inferred invariants are then not unquestionably valid and can fail, by chance,
even if the application is sound. Hence, likely-invariants are empirically deduced
statements that are valid during the application execution (or a portion of it) with
a certain level of confidence.

Consequently, there have appeared several works presenting automatic inference
tools for likely-invariants deduction, such as IODINE [27] and Agitator [11] from
industry, and DIDUCE [26], Dysy [18] and Daikon6 from academia. Daikon is the
most popular tool for likely-invariants inference, it is developed and maintained by
the University of Washington, and it is released as a free and open source tool.

Likely-invariants have been used as an integrity measure, for code or data,
by several works in literature. Lorenzolli et al. used likely-invariants to recognise
failure contexts [37]. They inferred invariants from these contexts then, if the
invariants are valid, their system can state that the target environment is about to
enter in a failing state. As a countermeasure, whenever a failure is detected, the
protection mechanism tries to correct the execution issue or to bypass the execution
of the failing part. ClearView is another example from Perkins et al.; it analyses
a running system and, using Daikon, it describes its behaviour in terms of likely-
invariants [41]. In case of failure, ClearView can automatically detect invariants
that are no more valid and to propose a patch to restore their validity. In such
a way, ClearView can protect from code-injection attacks. ReDAS is a software
attestation mechanism able to monitor dynamic system properties, such as global
variables. Daikon infers likely-invariants at system call invocations, and then, they
claim to detect tampering modifications at runtime by evaluating these invariants
[32]. Gibraltar is a solution based on likely-invariants that aim at detecting kernel
level rootkits. An inference phase deduces likely-invariants from data structures
and internal values of the Linux kernel, such as entropy pool, processes list, page
sizes. The detection phase continuously evaluates the inferred invariants in order

6Daikon is involved in a number of publications that can be found at https://plse.cs.
washington.edu/daikon/pubs/

59

https://plse.cs.washington.edu/daikon/pubs/
https://plse.cs.washington.edu/daikon/pubs/


3 – Detection

to detect tampering attacks [7]. Wei et al. exploited “scoped invariants”, likely-
invariants that are valid for a limited scope in a program, to detect execution
anomalies [55].

All this background led to invest in studying likely-invariants as an execution
correctness evidence, thus in studying likely-invariants based attestation, namely
Invariants Monitoring. The primary purpose was to check the effectiveness of
invariants in describing software behaviour and to detect dynamic attacks on a
running software application. In other words, the next sections describe the instan-
tiation of the abstract software attestation model considering likely-invariants as
evidence, hence, studying the capability of such evidence in modelling the software
execution. More generally, the work about dynamic software attestation exploits
likely-invariants as a specific modelling tool to assess literature claims, verify that
the attestation model can manage dynamic software properties and try (if possible)
to extend the drawn conclusions to all the dynamic software attestation systems.

3.3.1 Invariants Monitoring
Invariants monitoring is a software attestation technique that aims at verifying

the execution correctness of a target application by checking likely-invariants in-
ferred on its dynamic features. The main idea is that likely-invariants may be a
valid tool to define constraints and limitation to the possible executions states of a
program, then, to spot outlier conditions that may be introduced by an attack.

In terms of assets to protect, likely-invariants seemed a valid metric to measure
the integrity of two different, but related, software aspects. First, likely-invariants
can be used as evidence of data integrity. Indeed, statements given by invariants
are relations that limit the program variable data domains. It is not possible to
assume that a variable is valid if it is in a specific range, but, on the other hand,
it is possible to state that something happened if it exceeds that range. Second,
likely-invariants can be a metric for execution correctness. Logic assertions given by
invariants can be interpreted as pre-conditions to execute a piece of code, or as post-
conditions after the piece of code is executed. As for data, an application cannot
be assumed to be sound if these conditions are satisfied in the place they were
expected to stand. Anyhow, unmet condition statements can indicate something
wrong in the program execution. These considerations represented the reason that
finally pushed this work to investigate the Invariant Monitoring technique.

Problem statement: protection solutions presented in literature exploit likely-
invariants as an execution correctness measurement. Hence, they assume that there
exists a direct link between data constraints, i.e. likely-invariants, and software be-
haviour that allows such software properties to be considered as dynamic integrity
evidence. Unfortunately, for what concerns the author, literature does not present
any work that formally assesses this relationship.

60



3 – Detection

Hence, the remainder of this chapter presents the design of a likely-invariants-
based monitoring system for execution correctness and validate the model assump-
tions on which the technique relies. The research novelty brought by this work is
then represented by the discussion about the likely-invariants expressiveness to the
purpose of security-grade software behavioural modelling.

Given that such an assessment is quite hard to be performed from a theoretical
perspective, dynamic software attestation has been analysed from an experimen-
tal point of view in order to grasp empirical results. To this purpose, practical
implementation has been developed to:

• automatically inferring invariants on a program;

• model allowed program behaviours using inferred invariants;

• retrieve data from running program to verify invariants, thus to check execu-
tion correctness and valid behaviours.

3.3.2 Design
This work aims at fitting the lack of an attestation mechanism able to lively

checking dynamic software properties on running programs. In particular, the
proposed software attestation system can retrieve data from a running system and
evaluate the execution correctness of it through previously inferred likely-invariants.

Invariants inference and modelling

The first step is then represented by the inference and selection of invariants
that could model the target application. To this purpose, the design included a
preliminary training phase. During this phase, the target software is instrumented
and run under Daikon.

It is clear that Daikon plays a crucial role in this attestation system. Daikon
deduces and checks likely-invariants against observed runtime values of the target
execution traces. Daikon has a front-end instrumentation tool for C programs,
namely Kvasir. In order to run the application and collect traces, the incoming
source code has to be compiled with debugging symbols and without any optimi-
sations. Then, the built application runs under the control of Kvasir. At the end
of the execution, traces are collected and can be passed to Daikon for the infer-
ence analysis. The inferred likely-invariants are statistically filtered out in order
to minimise false positives. In practice, Daikon discards those statements whose
probability of being a mere coincidence is over a certain threshold, the ones that
pass this check are elected to be valid likely-invariants.

Daikon, as the other inference tools, is designed for software engineering pur-
pose, then it may introduce some issues when used for security purposes. It can

61



3 – Detection

check for invariants at functions entry and exit point. It can be a feature for main-
tenance goals, but it limits the usability for security purposes. The attestation
mechanism has to be able to check the target at any moment, not only in precise
program points, because attestation requests may come arbitrarily during the appli-
cation execution. Indeed, the validity of likely-invariants is statistically sound just
in the points where they were inferred, elsewhere they may fail by chance, e.g. an
involved variable may not be consistent with the others in the considered invariant.
On the other hand, it is not possible neither to define nor to infer invariants that
are valid at any point of a program. That is because of the program’s data tightly
depend on the point where it has been evaluated. It is the first drawback that
comes from likely-invariants. This limitation is related to another drawback that
has to be addressed. Most of the attacks are mounted internally to a function, at
code blocks level. Hence, invariants that do not describe the code inside functions,
but just at the beginning or the end of them, are useless for detection purposes.

For this reason, an attempt has been made to extend the invariant points of
detection. Daikon documentation suggests a trick to make the tool to infer in-
variants from loop variables: by adding a call to a dummy function that takes
the variables that have to be considered for invariants as input parameters. Based
on this idea, a code manipulation tool has been developed. The tool aims at in-
jecting dummy functions in every inner scope of the C-language syntax. It means
that every syntax statement that generates a new scope, and potentially intro-
duces new variables, will be modified so that all the internal variables are passed
as parameters to a dummy function. Hence, the Functions Injector is an ad hoc
tool, made in Java by exploiting ANTLR7 libraries to explore the Abstract Syn-
tax Tree. For each new scope that is encountered during the exploration of the
Abstract Syntax Tree, the injector lists all the continued variables, generates a
function with an empty body that takes all the variables as input parameters, in-
sert the function definition before the last explored function and insert a call to
the just generated function at the exit of the scope. To prevent dummy func-
tion from being removed by the compiler, their body is not left empty; instead,
it filled with a simple printf call that prints all the input variables. It should
ensure that the dummy function will be in the compiled program. That is, it
should enable Kvasir to trace all the local variables then Daikon to infer invari-
ants on inner scope variables. For instance, for the code of the following function:

7https://www.antlr.org

62

https://www.antlr.org


3 – Detection

double f(int a, int b){
int c; double d;
c=a+b;
d=( double )a/c;
return d;

}

the injector lists the c and d variables, then, generates the function:
void _____injectedFunction_rand (int c, double d){

printf ("%x %x\n", c, d);
}

where rand is a 32-characters random string added to make the function name
unique for the processed program. Finally, it injects a call in the original function
and the function definition:

void _____injectedFunction_rand (int c, double d){
printf ("%x %x\n", c, d);

}

double f(int a, int b){
int c; double d;
c=a+b;
d=( double )a/c;
_____injectedFunction_rand (c,d);
return d;

}

At this point, the inference task can be performed to model the target’s be-
haviour. All the likely-invariants obtained by this process represent the way to
prove target integrity. The evidence that the Attester would report are the ac-
tual values of target data that permits to evaluate invariants, i.e. variables and
data structures of the program. In practice, the Attester extracts data involved
in likely-invariants from the target and send it back to the Verifier. The Verifier
puts proper values into likely-invariants, evaluates the relative logic statements and
decree target application soundness.

Check process

After the design of the integrity evidence and proving method, the next crucial
point to address was to define the way to collect data from the running target. The
likely-invariants inferred by Daikon mainly involve variables, arrays and structures
(struct). The remainder of this section uses variables to refers to all these different
kinds of data. It is needed by the Attester to be able to retrieve this kind of
data from the target, while it is running. In practice, the Attester have to know
the location and size of interesting program data for any execution point of the
program.

63



3 – Detection

To this purpose, the procedure lists all the variables involved in all the selected
inferred invariants. The list of interesting data groups variables into global and local
variables. Local variables are grouped by the function they belong to, and global
ones are all grouped for the entire program.

Variables can eventually be in any possible memory place: stack, data seg-
ments, register, known memory location, memory location referenced by a register
or translated as a constant value. In addition, the location of a variable can change
during the execution and can be different depending on the instruction pointer
value. Then, the Attester needs hints to identify variables’ location depending on
the program state. To this purpose, the procedure exploits DWARF8 debugging
symbols. These symbols are additional information that a compiler inserts into the
built executable binary to ease debugging operations. Among the other informa-
tion, DWARF symbols associate the location of a variable to an instruction pointer
range, which specifies the code segment for which the location is valid. DWARF
symbols depend on the compiler (e.g. gcc or llvm) and, of course, the information
associated with symbols depend on the target platform architecture (e.g. x86 or
ARM).

At the instrumenting time, the procedure compiles the target application with
DWARF symbols; afterwards, it identifies the interesting variables and extracts
the related location information from debugging symbols. This process leads to
populate a data structure that records all the variables that the Attester has to
extract, their location description and uniquely identify them. Thus, a Variables
Data Structure (VDS) is generated and will be made available to the Attester at
runtime.

At runtime, the Attester tries to collect as many interesting variables as possible
and send their values to the verifier. The variables’ values extraction is best efforts
made. Indeed, it is improbable that all the variables are available for any execution
point in which the Attester can stop the program. Hence, the Attester scans the
VDS, and if it expects variable to be available for the execution point reached by
execution, it retrieves that variable value. If a variable does not exist at the moment
of retrieval, it will be not included in the evidence buffer.

As said, the variable availability depends on execution points. During its work-
ing, the target may call an arbitrary number of functions in a nested way, i.e. a
function calls other functions, thus generating a call stack. Hence, the valid exe-
cution points are all the ones present in the call stack. Then, the Attester has to
be able to unwind the call stack starting from the last function encountered at the
program stop to the first function invocation.

Finally, when attestation is needed, the Attester stops the application and starts

8DWARF is a debugging symbols standard produced by the DWARF Standards Committee
available at http://dwarfstd.org/.

64

http://dwarfstd.org/


3 – Detection

the variable extraction as follows:

1. identify the current execution point, i.e. instruction pointer, and the relative
stack frame;

2. retrieve values from the locations specified in VDS for that execution point;

3. move upwards in the call stack, if the function called is in the program address
space, restart the process from point 1, otherwise finishes.

Once all the available values have been retrieved, the attester builds the data
to send to the verifier according to:

d = n||(vID(vi), Value(vi))|| . . . ||(vID(vi), Value(vi))

where n is a 16 bit integer that counts the total number of collected variables,
vID(vi) is the unique identifier of the variable vi and Value(vi) is the value of the
variable vi found in memory. The Attester builds the final data to send to the
Verifier as follows:

r = d||H(d||N ||ID|S)
where H is a hash function of choice (SHA1, SHA256, and Blake2 are supported by
now), ID is the unique identifier the running application, and S are data that relate
the client to the server (e.g. secrets shared during the mutual authentication).

The central database stores the inferred likely-invariants in a form that eases the
verification phase. In particular, they are logical expressions that state relations
between variables. Daikon reports likely-invariants using variables’ names that
relate them to a function. Then, the procedure modifies the expression before
its storage: it replaces each variable name with a placeholder that specifies the
identifier of the variable to use to evaluate the invariant.

Hence, when the Verifier receives the response data r, it first checks the correct-
ness of the digest by computing the hash against data d. Then, Verifier scans all
the likely-invariants associated with the application in the database, selects those
for which all the involved variables are present in received data and tries to evaluate
them. For each retrieved likely-invariant, the Verifier replace all the variable place-
holders with the proper value and the obtained expression is evaluated. Finally,
the Verifier stored the result in the central database.

3.3.3 Application of Invariants Monitoring
In order to bring the proposed attestation mechanism to a real-life usable level,

it has been developed a (nearly) automatic procedure to apply protection to a given
vanilla application.

The overall input of the process is the set of target’s source files that has to
be protected. From a high-level perspective, the automatic application of dynamic

65



3 – Detection

software attestation follows two parallel and synergic sub-processes: discovery of
likely-invariants and extraction of DWARF information.

The first sub-process instruments the given application to make it ready for
Daikon processing and finally collects likely-invariants. This sub-process outputs
the list of invariants to check at runtime and the list the variables to locate and
retrieve from the running target. The second sub-process is in charge of collecting
all the information that would allow the Attester to collect variables values at
runtime. The sub-process obtains a build of the application containing the DWARF
debugging symbols. Then, it scans the obtained binary: the DWARF symbols are
parsed to collect all the data about interesting functions and variables life-cycle.
Moreover, the sub-process identifies and labels each variable that the procedure
will be monitoring. Finally, this sub-process produces the VDS blob and makes it
available for the Attester. Hence, the obtained VDS binary file will be injected into
the final protected binary.

In the end, the two sub-processes merge into a common final step. An interpreter
processes the extracted likely-invariants. It relates the involved variables to the
invariants expressions and stores the resulting statements in the central database
according to a format that is suitable for verification.

Figure 3.3 provides a closer look into the protection workflow. Hereafter, a fully
detailed description of the single components is reported.

Standard Compiler. This component is the standard compiler of choice that is
used to generate executable binaries, e.g. gcc. The choice of which compiler to use
is up to the final user. The only requirement for this element is that it has to be
compliant with DWARF debugging symbols so that it can produce proper binaries
containing proper symbols. This component is the only one whose execution cannot
always be made automatic. Real life applications usually come with a build script
(e.g. Makefile) that contains the proper commands to build it. Given that build
procedures must be compliant to Daikon’s requirements, it will be necessary to
manually modify building scripts by the user (e.g. removing optimisations or enable
debugging options). Then, for the steps that involve the Standard Compiler, it may
be required manual user intervention.

Function Injector. This component manipulates the source code of the original
application to protect. For each inner scope found, it lists all the declared variables
and generates an ad hoc function that takes those variables as input parameters
(as described in Section 3.3.1). The output of this component is then an altered
version of the source code and a description file. The description file reports, for
each function in the original program, all the injected functions. This output allows
the next components in the workflow to keep track of the injected functions, i.e. to
go back to the original function, starting from a known injected function.

66



3 – Detection

Figure 3.3: Automatic application of Invariants Monitoring workflow.

Traces Extractor. This component executes the application containing injected
functions. Then, before this component is invoked the output source code from
Function Injector is compiled using the Standard Compiler. Given that the invari-
ants inference tool selected for this prototype is Daikon, it is mandatory to use its
front-end instrumenter to collect traces, namely Kvasir. Kvasir requires that the
application is compiled with debugging flag enabled (e.g. -g for GCC) and with-
out any optimisation (e.g. -O0 for GCC). The Traces Extractor has to deliver, as
an outcome, a trace that is compatible with Daikon expected input format and a
declaration file. The declaration file reports only the program’s variables that are
interesting for invariants, thus ignoring all the others.

Invariants Extractor. This component properly invokes Daikon by giving it the
collected execution traces. The inferred invariants are listed and delivered to the
next steps.

67



3 – Detection

Associations Extractor. This component is in charge of listing all the functions
that are present in the binary, built after the function injection phase. Each function
is associated with its compilation unit full path name. This component prevents
problems that could come from duplicated filenames in the folder structure. Indeed,
DWARF symbols identify functions with respect to compilation units, i.e. source
files.

Declaration Simplifier. This component elaborates the declaration file pro-
duced by Trace Extractor. It selects the name of variables that the technique
has to be able to extract from the protected running application. In practice, it
removes syntax terms that are specific by merely leaving the bare name of the
variables for each found function.

VarDesc Generator. This component combines the data from the Function In-
jector, the Associations Extractor and the Declaration Simplifier. This component
aims at generating a file, namely the VarDesc file, to specify which are the informa-
tion to extract from the binary built from the unprotected sources. It will output a
properly formatted file that specifies, for each compilation unit, the functions and
the dependent variables for which locations and life-cycles have to be extracted by
the Attester at runtime.

DWARF Parser. Starting from the VardDesc file, this component analyses the
DWARF information contained in the unprotected application binary. To this pur-
pose, the original source code is preliminarily built by using the Standard Compiler
with debugging flags enabled (e.g. -g and -g-dwarf for GCC). The DWARF Parser
produces the VDS file, enumerates all the variables by assigning them to a unique
identifier and record them into the central database along with the data about its
owner function and compilation unit. Identifications of variables are also output in
a file for the next steps in the workflow.

Invariants Interpreter. This component elaborates the invariants extracted by
Invariants Extractor and rewrites them according to the variables identifications. In
practice, it replaces the variables names with the respective unique ID so that each
invariant expression is directly associated with the involved variables according to
a custom syntax. For instance, the following invariant:

_low + _limit <= 100

would become
@{127} + @{619} <= 100

by assuming that database IDs of variable _low and _limit are respectively 127
and 619. The interpreter stores the obtained expressions in the database for the
verification phase.

68



3 – Detection

Final Compilation. In this step, the toolchain generates the final protected
target. It builds the unprotected source code along with the attester one and
rewrites the obtained binary to inject VDS into it. The resulting application is the
protected target application that is ready to be delivered.

3.3.4 Security analysis
Once the prototype has been developed and tested, a set of experimental evalu-

ations have been performed on it. These evaluations aimed at assessing the validity
and the applicability of Invariants Monitoring. Moreover, it aimed at identifying the
possible limitations and security issues that could arise. A set of five applications
have been set up for protection as real-life use cases:

• Lynx, a command line web browser9, used to simulate Man-in-the-Browser
scenarios;

• MOC (Music On Console)10 and mpg123 11, two command line music players
used to simulate a DRM scenario;

• oathtool, an OTP generator and verifier12 used to check Invariants Monitoring
effectiveness in high-sensitivity authentication software;

• gamespace, a test application for ncurses library13 that is properly dimen-
sioned and interesting enough for an empirical assessment;

• Bzip2, a command line compression tool14 that is representative for a large
set of utilities that are useful for daily tasks.

Hereafter, a subset of these use cases is discussed as they are representative
for all the others and the same conclusions can be extended to all of them. Each
discussed use case is reported to underline different considerations and conclusions
that are nonetheless valid in general. Hence, the following discussion will report
one aspect for each discussed use case just for the sake of conciseness, but all the
drawn considerations are generally valid for all the analyses applications.

Table 3.1 reports statistical information about each considered use case appli-
cation. All the invariants inferred on the use cases have been published15.

9http://lynx.browser.org
10http://moc.daper.net
11http://www.mpg123.org
12http://www.nongnu.org/oath-toolkit/oathtool.1.html
13https://sourceforge.net/projects/game
14http://www.bzip.org
15https://github.com/vucinic/im

69

http://lynx.browser.org
http://moc.daper.net
http://www.mpg123.org
http://www.nongnu.org/oath-toolkit/oathtool.1.html
https://sourceforge.net/projects/game
http://www.bzip.org
https://github.com/vucinic/im


3 – Detection

The MOC use case: protection process and attacks assessment

The application allows the user to play and pauses songs, organise songs in
playlists that can be played linearly or randomly. The original MOC code has been
modified in order to simulate a DRM system. Hence, the original MOC application
plays the role of Premium version, with fully enabled features. The modified copy
acts as a Free version, and it restricts the access to some features: it only allows
the user to play playlists in random order and it does not allow the user to skip
tracks and arbitrary navigation within playlist songs.

The ported changes have been implemented as if statements that enable func-
tionalities based on a pre-compiler define:

if( PREMIUM ){
/* perform original task */

} else {
/* write a message */

}

The define and the unused branch of the statement are not present in the final bi-
nary due to compiler optimisations. Then, the modifications remove the functional-
ity and make the two versions of the application different. The changes prevent the
execution of the next, previous and toggle shuffle commands at the user interface
level. The user interface takes the selected command from the user and forwards
it to the proper player functionality. In addition, the player has been modified (for
the Free version) in order to make the jump to the next song a random skip, i.e.
prevent to play a playlist sequentially.

Afterwards, the protection procedure has been deployed. Sensitive functions to
protect have been selected16 to be monitored. Then, the toolchain has been applied
to protect the application.

Invariants inference issues have been encountered while the protection was ap-
plied. In the face of small execution traces, i.e. 100 MB, protection is applied in
5 h. With 3 GB execution traces, the toolchain took 50 h, but it has been stopped
when the 50% of the trace was processed. As a last trial, 1 GB execution traces led
to 140 h tool chain execution and 1% processed traces. By observing this evidence,
traces size could not be the only parameter that affects Daikon elaboration. Maybe,
also the type of collected traces affects the performances. Unfortunately, this con-
jecture could not be proven because performances widely varied over executions
against the same set of input; thus, the consideration is drawn by experience.

Once the execution extraction process has been tuned to run within an accept-
able time, Daikon has discovered 8553 invariants. Manual analysis on the inferred

16Namely, the functions are the main in main.c, go_to_another_file, audio_play, and
audio_queue_move in audio.c, go_file, play_it, cmd_next, menu_key, and options_get_int
in interface.c

70



3 – Detection

invariants revealed that most of them were redundant as repeated both as func-
tion pre- and post-conditions or because they were related only to global variables
whose value remains the same for the whole program execution. Finally, 246 dis-
tinct invariants were identified to be interesting but related to global variables. The
traces extraction process has been further tuned to ignore global variables, then 24
interesting invariants have been found.

Function injector revealed to be ineffective. Unexpectedly, the tool does not
provide any additional information to improve Daikons invariants inference. MOC
exploits an intensive usage of global variables, then a limited amount of additional
invariants were expected due to Function Injector but, surprisingly, no invariants
came out. The analysis looked for causes of this behaviour in the developed code,
extracted traces and Daikon process. The deployed toolchain executes on the use
case application. The collected traces contains references to the injected functions
and the dependent variables. Unfortunately, Daikon does not infer any invariant on
the additional functions. Then, the work performed suggest that the responsibility
for this issue resides in Daikon internal implementations, which are out of the scope
of this work. The study observed this behaviour also for the other use cases.

The assessment analysis tested the attack detection ability of the technique. A
user wanting to use Premium features on the Free version of the modified MOC
application well models an attack in the analysed context. Two different attacks
have been deployed.

1. Disable of shuffle mode to enable arbitrary order in playlist reproduction.
This attack performed by using a debugger to alter the content of Shuffle
option in the options global variable that is evaluated by go_to_another_file
function and bypassing the code that randomises the playlist order.

2. Enable the next function to allow the user to skip songs in a playlist. This
attack also involved the debugger, it traps the call to go_to_another_file func-
tion and executes the previously removed code to jump to next track in the
playlist.

Each attack underwent 100 attestation transactions. The first attack gets always
detected because it alters a variable that is involved in a monitored invariant; thus,
the detection success rate reached 100%. For the second attack, 100% of false
negatives has encountered. Indeed, the attack does not alter any variable value;
thus, no invariants are affected, just because it is out of the technique’s possibilities.
Other use cases have confirmed the analysis performed on the MOC player use case.

The MOC use case has been used to evaluate the performance of the Invariants
Monitoring prototype. At client-side, Invariants Monitoring uses resources to com-
pute the attestation response. The attestation response’s computation time is the
sum of the time to retrieve the values of the selected variables from memory, the
time to retrieve the ID of each variable from the VDS, assemble the response data,
and the time to compute the hash.

71



3 – Detection

Target Application Files Functions SLOC Likely-
invariants

Lynx 264 1890 193625 ∅
Bzip2 1 106 7010 5770 (193)
MOC 91 1215 43478 8553 (246)
mpg123 92 161 38060 7529 (3492)
oathtool 85 225 20469 3943 (2661)
gamespace 3 81 1752 29172 (18545)

Table 3.1: Statistical information on the use cases. ∅ indicates that Daikon was
not able to infer invariants in a reasonable time. Likely-invariants in parentheses
are the non-redundant ones.

From experimental considerations, the average time to compute an attestation
was 442 ms, while the average number of variables in memory was 87 and the aver-
age attestation data length was 22 591 B. It is worth to notice that the prototype
stopped the application’s execution; thus, the attestation time only depends on the
number and size of variables in memory and the hash algorithm speed. Therefore,
the experiment evaluated the same impact on the other protected target applica-
tions. Since that target applications were expected to be attested with an average
frequency of a few minutes, the delay introduced by Invariants Monitoring can be
considered manageable.

At server-side, the Manager uses resources to prepare an attestation request.
However, it is only the time to generate a 256 bit nonce, while Verifier has first to
compute a hash then use the ID of the variable to retrieve and check the invari-
ants. The average measured time to verify an attestation response was 1.3 s, being
the average number of invariants to check 165. This result may suggest scalability
issues. Nonetheless, proper engineering of invariants indexing, usage of data struc-
tures for fast verification, and, if really needed, dedicated hardware (e.g. FPGAs)
may grant scalability.

The Bzip2 use case: analysis of invariants

The Bzip2 use cases enabled the discussion about likely-invariants semantic
modelling properties and their meaningfulness for integrity monitoring purposes.
The use case application is relatively small, and the protection process took 27 min
to complete. As expected, inferred invariants were associated with precise points
in the program, i.e. functions entry and exit points.

Invariants discovered from BZ2_bsInitWerite function were 1645, 458 of them
were pre-conditions and 1187 post-conditions. Most of the invariants inferred from
the function exit point do not give any additional information to those at the

72



3 – Detection

entry point. Indeed, they report that a variable or a statement has not changed
during the execution of the function. These kind of invariants are utterly useless
for protection purpose as they do not represent any program’s behaviour or feature
that the implemented scheme can verify. Indeed, the Invariants Monitoring
Attester stops the application as soon as an attestation request is received. When
a program is interrupted, it is improbable to find the execution in a function entry or
exit point, but probably right in its middle. It also means that the likely-invariants
used to model software execution must be selected among the whole set of inferred
pre- and post-conditions. Only those conditions that are manually recognised to
apply to the whole reference function are chosen for attestation. This fact forces
the user to manually filter inferred invariants to select those that could actually be
useful.

Environment-specific invariants are invariants that generate from data that de-
pends on the execution environment, e.g. file paths. For instance, Bzip2 manipu-
lates input files and generates output files whose path is processed during the use
case execution. These values pass through the program execution and generate the
following invariants:

inName == " ../ inputs / in_big .txt"
outName == " ../ inputs / in_big .txt.bz2"

Obviously, this class of invariants is completely useless for protection purposes.
Indeed, any execution would invalidate them as it cannot be assumed that input
and output files have the same name and reside in the same path for any execution
of the program in any possible environment in which it could run.

Consequently, a manual selection has been performed to select invariants that
could be used to tell tampered application from a genuine one. Invariants can be
classified, and their properties can be discussed.

From Bzip2 documentation, the workFactor property is a value that can be
specified as an input parameter, and it is saved into a global integer variable when
the execution starts. This parameter specifies how high repetitive input is managed
and determines when to force the usage of fallback algorithms. The default value
for the parameter is 30 that gives an acceptable behaviour over a wide range of
cases. During the toolchain execution for protecting the Bzip2 application, the
value of this parameter has not changed, even over multiple executions. Hence, the
inferred invariants report the value of workFactor variable always equal to 30:

workFactor == 30

Consequently, legitimate users that specify, for instance, the --exponential flag to
select the compression algorithm would make the workFactor value not equal to 30
any more. Hence, a legitimated user would be considered as an attacker, and valid
executions of the application would be identified as tampered. It means that that
kind of invariants is prone to produce False Positives because the strict dependency

73



3 – Detection

on the inputs may generate invariants that are too restrictive. An informal con-
sideration can be done on this behaviour and should lead to a formalisation of the
problem. Let us consider the domain of an invariant that is the Cartesian product
of the domain of each variable involved in it. Invariants are potentially restrictive
if the measure of the part of the domain that maps to true is negligible compared
to the part that maps to false.

Broad invariants are the opposite of restrictive invariants. They very loosely
limit variables’ admitted values, so that they are useless for modelling and integrity
monitoring purposes. Broad invariants come from executions that make a variable
value to assume many and different values. An example of this class of invariants
is:

size > 1

In practice, broad invariants are useless because (nearly) always map to true. Al-
though broad invariants do not introduce a real security issue as they would not
generate false positives or negatives. Invariants monitoring should not consider
these invariants in order to reduce memory and time consumption during the tech-
nique execution.

Inconsistent invariants come from relations among semantically unrelated vari-
ables. For instance, several invariants about arrays use independent variables as
indexes:

BZ2_rNums [ longestFileName ] == 733
BZ2_rNums [ longestFileName -1] == 214
BZ2_rNums [ workFactor ] == 419
BZ2_rNums [workFactor -1] == 472

This kind of invariants do not represent an issue from a security perspective but
does not contribute to model the behaviour of a program or its valid states.

The invariants presented for the Bzip2 use case and the related issues have been
observed also during the analysis of the other use cases. Thus, they confirm issues
to be always present and diffused, regardless of the target’s nature.

The oathtool use case: extraction strategies

This use case has been useful to reason about how invariants’ semantic vary
depending on the collected execution traces, thus about strategies for tuning in-
variants inference and improving their behavioural descriptiveness.

As previously discussed, false positives come from restrictive invariants due to
non-exhaustive execution traces. On the other hand, broad invariants could be due
to executions that let variables to vary too much. Then, the analysis reported here
tried to precisely identify the causes of the restrictive and broad invariants related
to the execution traces and, eventually, to suggest the best way to collect traces in
order to prevent.

74



3 – Detection

Oathtool can generate and validate event-based HMAC OTPs against a key and
a window of computation iterations. An event-based HOTP is deterministic, as it
only depends on the given inputs and the constant internal values. The experi-
mental procedure extracted invariants from the validation phase: the application
takes as input the HOTP to validate, the key and the iterations window in which
the verification has to be performed and outputs verdict about the validity of the
provided input HOTP.

Single execution traces. Initial analysis executed the application just once
against a HOTP to validate, then inferring invariants from the obtained traces.
Daikon extracted 1580 invariants, 892 of them related to global variables and 688
only related to local ones. Two main behaviours emerged from the studied invari-
ants. First, most of the invariants are meaningless; that is, they do not describe any
security or behavioural feature of the application. Moreover, most of the invariants
are duplicated in different program points. Second, several invariants seem appeal-
ing at first glance, but, in the end, they revealed too restrictive. Indeed, using
a single execution trace, invariants may represent a single precise case of execu-
tion that is strongly related to the input parameters. Then, the inferred invariants
generated over-fitting as they are too specific and will likely be invalidated by any
execution that takes different input values. For instance, the oathtool validation
process stores the given input HOTP in a variable and Daikon deduce invariants
like this:

otp == " 328482 "

It is not acceptable as integrity evidence as it is valid in only one specific case.
The situation given by a single execution trace could very likely lead to false

positives. Deduced invariants are too tightly bound to a subset of the inputs and
may decree perfectly valid target applications as compromised, whose only fault
was to execute with different inputs.

Multiple execution traces. As an attempt to overcome the restriction that
comes from limited executions, the experimental procedure considered invariants
that generate from multiple executions’ traces. In particular, the HOTP validation
process has been run 100 times in two different ways: by giving it always the same
input HOTP value to validate and by giving a different value to each execution.
Traces have always been collected using valid HOTP values to be validated.

The first execution strategy (single value) led to gather 2643 invariants (1823
involving globals, 820 involving only local variables). The second attempting strat-
egy (diversified inputs) gave 2660 invariants (1838 involving globals, 822 involving
only local variables).

Therefore, it was expected to obtain more descriptive invariants and less useless
invariants. However, the collected evidence has not confirmed expectations. Indeed,

75



3 – Detection

the overall number of collected invariants increased, but the additional invariants
are not useful and do not describe any interesting property of the application.
Moreover, restrictive invariants observed in the single execution as potentially use-
ful, turned into broad invariants (e.g. moving_factor >= 0) or simply disappeared
(e.g. none of the invariants involve the otp variable).

Merging traces. An alternative to computing invariants on all the traces, it has
been attempted to extract invariants from different single executions and then to
merge them. In this case, several invariants were contradictory, e.g. two invariants
involving the same array stated that it contained exactly one value and more than
one value. This behaviour suggests ignoring all the conflicting invariants unless a
manual inspection suggests a better strategy (e.g. merge them in a broad invariant).

In conclusion, the analysed target application is deterministic, and its execution
is supposed to depend on the provided inputs directly. Thus, it was expected to in-
fer useful invariants. However, traces collected from a limited number of executions
produce invariants that are tightly related to the input values but do not describe
the general behaviour of the application. To better describe the application, the
experimental procedure used multiple execution traces with different input values.
Nevertheless, this strategy makes specific invariants disappear. Instead, the extrac-
tor infers broad invariants that are useless for integrity checking purposes. Even
worse, the merge of invariants collected from different executions may introduce
the risk to find conflicting predicates.

The gamespace use case: empirical assessment

In order to further support the experimental analysis of the technique, data from
an experiment involving master students from Politecnico di Torino have been used.
The experiment asked the students to attack the gamespace application, a testing
application for the ncurses library. The application presents to the user an interface
where a set of entities are moving. The user is allowed to move one piece, with
respect to hurdles, in the preferred direction. Each prompted direction makes the
piece moving by one step in that direction. Internally, the application uses a data
structure to keep track of the interface elements position and a set of functions to
move pieces around the interface17. Each graphical element, namely a Player, is
represented as a list of Point elements. Each Point element specifies the position
of each point of the figure to draw. When an element has to move, the moving
functions update the row and col fields value of all the Point in the list of the
associated figure according to the specified direction.

17movePoint, moveSolidPlayer, movePlayer, movePointInMap, moveFlexiblePlayer

76



3 – Detection

Participants were asked to perform an attack that consisted of forcing the ap-
plication to move of two steps at each keypress in each specified direction instead
of one. The participants were asked to write down a small report to describe the
action performed to port the attack and, possibly, to attach the modified source
files.

The collected reports underlined that successful attacks exploited a minimal set
of application changes. Then, the study analysed the ported changes in order to
understand if Invariants Monitoring could be able to detect them.

The involved students mainly followed two statistically balanced strategies:
modify data and modify control flow. For the first strategy, they modified the
content of point->row and point->col before the moving functions were invoked.
This kind of attack is supposed to be identifiable by Invariants Monitoring; in fact,
it alters variables’ values. However, it was not detected. A further investigation
reported that it is due to broad invariants. The attacks is ported by doubling the
movement, that is doubling the increment of the point->row and point->col vari-
ables. The attacker takes care of keeping the movement in the allowed area in order
to not crash the application. Unfortunately, invariants that could be violated by
these changes only restrict the domain of those variables to the movement area.
Given that the value of the two variables is always in the allowed range, the attack
violated no invariants. Indeed, the point->col and point->row variables keeps to be
valid with respect to invariants even if they are altered.

The only way to identify this kind of attack would be to compare the position
of points recorded from two subsequent executions of one of the moving functions
on the same point. However, currently, stateful information is never used to build
invariants but considering more dynamic, and stateful information in invariants
could be exciting future work.

As a second way of attack, students doubled the calls to the moving functions
without any change to variables (both global and local), thus implementing a code
replication attack or a debugging attack. This kind of attacks is not even supposed
to be identified by the technique, as confirmed by evidence.

Program size and inferred invariants. From Table 3.1 it is worth to notice
the strange relationship between the number of inferred invariants and program
size (SLOC) introduced by the gamespace use case. Indeed, from other use cases,
the SLOC/invariants ratio is equal to 4.2 on the average, and in the gamespace use
case, it becomes equal to 0.6. It means that the amount of inferred invariants is
nearly 15 times the SLOC value, this completely reverses the previously observed
trend that sees the number of inferred invariant to be (at least) less than the SLOC
value. The explanation for this behaviour must be sought in the software structure
of the use case.

Gamespace involves a high number of global variables that are, besides, involved
in many functions calls that are, in turn, very frequent. Hence, the number of

77



3 – Detection

inferred invariants becomes very high (compared to the program SLOC) due to the
high number of possible combination of variables and operations at each program
entry and exit point. Finally, this behaviour suggests that it is not possible to
deduce any relationship between program size and the number of invariants that
generate from it.

Execution issues

Along with issues that come from the usage of invariants as a modelling tool for
application behaviour, the protection execution disclosed a set of practical issues.

As aforementioned, inferred invariants are pre- post-conditions associated with
functions. Hence, they can only be evaluated when the associated functions execute,
even for invariants only based on global variables. The selected use case applications
model common behaviours in real life programs. Indeed, those programs are in the
idle state most of the time, while waiting for (user) input. During the idle period,
they execute very few functions are, often just the main (e.g., the library functions
that play tracks), thus few variables are available in memory. Consequently, there
exists the risk that either the protection evaluates almost always the same invariants
or checks no invariants at all if the idle functions are not monitored.

Similarly, when the Attester stops the program, all the invoked functions are
not in their entry or exit point. Hence, the invariants inferred for those func-
tions may be slightly invalid because the point in the program in which they are
evaluated is not precisely the same as the one in which they were inferred. Fur-
thermore, invariants introduce an issue that is directly related to the moment in
which variable values are extracted for evaluation. That is, the Attester must
extract values of variables involved in the same invariant from memory at the
same moment; otherwise, the invariant itself may be invalidated. It is intrinsi-
cally due to likely-invariants nature, likely-invariants are deduced from variables’
values from a precise execution point at a precise execution moment. Then, if
variables are extracted from different executions or different execution instants in
time, they may not be consistent. For instance, given the following code snippet:

for (i=0;i <100; i++) {
j=100 -i;
/* do something with i and j */

}

An invariant that could be deduced is i+j==0 but, at verification time, if values of
variables i and j

In addition, the developed system is a kind of best efforts approach. The At-
tester tries to retrieve all the variables that are somewhere available in memory
among the monitored ones (i.e. those in VDS). It could cause consistent memory
load and consistent amount of data to include in attestation response. Indeed, this
is very noticeable when most of the monitored variables are global (i.e. always

78



3 – Detection

available, thus always included in attestation response) and when the variable size
is large (e.g. big data buffer). This issue introduces a network overhead and a
computation overhead for the Attester routine. The overhead is linear with the
number of monitored variables and their size. Even worse, the higher the overhead
becomes, the easier to identify, locate and stop the Attester routine is, just because
the execution of the Attester becomes longer. Thus, an attacker may notice that
execution remains in a suspect point of the application for an extended period.
Another issue comes from practical needs. The delivered Attester has to access the
same memory area as the monitored application. Hence, Attester cannot be an
external entity and has to be embedded into the target application at most as a
thread.

Invariants Monitoring limitations

Given all the considerations reported in the previous sections, it is clear that
the protection technique is faulty and has to be improved to be practically usable.
To resume all the issues and limitation that the protection exposes, a classifica-
tion has been made based on two main classes. Limitations that are Specific of
invariants (S) are issues intrinsic to the use of invariants. In this class, limitations
related to the use of invariants for software protection are explicitly marked (with
P). On the other hand, technological limitations (T ) that depend on tools, proce-
dures and implementations choices to extract invariants and use them for remote
monitoring purposes. Every limitation is associated to a severity level, in the high
(h), medium (m), low (l) range. The severity level expresses how hard it should
be to overcome the limitation to the purpose of using Invariants Monitoring as real
software protection. In this way, it is possible to classify limitations in the compact
form (classes; severity). According to this class model, the full set of identified
limitation for Invariants Monitoring is reported hereafter. Moreover, the discussion
will propose mitigations (where possible) for each of the presented limitations.

Concurrent extraction (S, T ; m) of variables’ values causes invariants to be eval-
uated as invalid due to time-inconsistency for extracted variable values. It could be
mitigated by considering data dependency information. It seems that some invari-
ants could be verified with values from different executions while others will only
be evaluable with values taken at the same time, regardless of the technological
improvements. Further research is needed to overcome this issue.

Pre- and post-conditions (T ; m), invariants are inferred only at begin and end
of functions. This limitation could be overcome by inferring Invariants within
functions’ body, e.g. by injecting code (as presented for the inner scope) or waiting
for new tools to do it. However, the impact of this improvement needs an estimation.
It may only be an improvement for large functions when variables have longer and
more complex life-cycles.

79



3 – Detection

Inter-function invariants (S, T ; l) are not considered, that is, invariants are in-
ferred as statements that relates variables from the same scope. It can be mitigated
with further research that also considers data dependency. Indeed, evaluating in-
variants with variables from different functions could represent an improvement for
the quality of the verification.

Variables’ types (T ; l) represent an issue that is tightly related to Daikon, which
can consider only global variables, functions’ parameters, no data structures and
no inner scopes. This issue is important but not severe because the number of
invariants that can be found is already enough to model crucial software aspects.
However, overcoming this issue could allow Invariants Monitoring to better model
the target behaviour.

Impossibility to infer invariants on arrays (S, T ; m), it is also an issue related
to the tool of choice, i.e. Daikon. To overcome this issue could be not so easy.
Indeed, despite the technological evolution, arrays and matrices may contain data
that are difficult to correlate and may increase false positives. It some cases, it
could be useful to instrument the application to flatten multi-dimensional arrays.
More investigation would serve to assess this limitation better.

Sending of all the variables (T ; m) involved in invariants may be problematic
for bandwidth consumption, further research is needed. Attestation requests that
explicitly ask for a set of variables have been considered but discarded. Indeed, all
variables but the global ones are only available in memory when a specific part of
the code executes. Thus, the Attester is legitimate to answer that a variable is not
in memory, and an attacker may legally bypass the protection by always answering
that no variables are available in memory. A version of the Attester that only sends
specific variables may mitigate this issue. For instance, the Attester could send only
the variables whose value changed since the last attestation or just a subset of the
global variables, and it would require implementation effort to obtain complex and
state-aware Attesters. Furthermore, this solution must be investigated to identify
the real potential improved that it may bring in.

Constructor option (T ; l) is used to let the Attester to start and initialise itself
before the actual target starts. It lets the Attester to be spot and removed very
quickly. The impact of this issue is shallow since it is only related to the imple-
mentations presented in this document and, given that the system delivered to this
purpose is a research prototype, it should be easy to overcome with engineering
and implementation effort.

Non-discoverable attacks (P ; h), unfortunately, there is nothing to do when at-
tacks can be mounted by attaching a debugger without altering variables values.
Indeed, it is out of the scope of this protection technique that is not able to detect
attacks that do not alter variables values. Formerly, when the study of the tech-
nique begun, it was expected that Invariants Monitoring should be able to detect
any dynamic attacks by merely assuming that invariants were an excellent tool
to model all the aspects of the software behaviour. Unfortunately, the practical

80



3 – Detection

experience underlined that there is no chance to detect attacks that do not alter
variable values, e.g. attacks that redirect the execution flow.

False positives (S; m) take place whenever an invariant is invalidate by the
collected evidence, but the target is still sound. This issue can be reduced by
increasing the traces used to infer invariants. Theoretically, with full coverage,
no false positive should be found because invariant would become more precise.
However, the number of likely-invariants could decrease.

The most severe and challenging to overcome issue is related to false negatives
(P ; h). Attacks that pass unnoticed are undesired for a protection technique. As
demonstrated, a large set of attacks are not detected by the technique even if they
were expected to be identified. False negatives are a fundamental limitation to the
usage of likely-invariants for protection purposes. Indeed, they came out form all
the analysed use cases. From the analysis of likely-invariants and manual inspection
of a massive amount of logs produced by the Verifier of the developed system, false
negatives are due to the lack of a precise link between attacks that compromise the
assets in the target application and the extracted likely-invariants It invalidates the
baseline assumption for using likely-invariants for protection purposes. Even if this
dissertation can only discuss the experience from the analysed use cases, witnessed
practice suggests that it is a general limitation of likely-invariants. Trace collec-
tion and invariants inference are statistical processes that do not consider program
semantic, nature of assets, desired security properties (e.g. integrity), attack paths
and strategies. In other words, it is not possible to assume that an attack that
compromises one or more assets will surely also violate invariants. Hence, a valid
inference among invariant violations and attacks is a research issue of crucial impor-
tance. Without such inference, it is not possible to consider Invariants Monitoring
as a valid software protection technique, and it is not secure to use it in practice,
to protect execution correctness for real-world applications. This limitation high-
lights the inability of Invariants Monitoring in detecting attacks for which it was
designed, in addition to those attacks that the technique is not able to detect by
definition.

Injection of the VDS (T, m) includes sensitive information about assets inside
the protected program. Usually, software protections remove as much information
as possible from the target (e.g. strings stripping, symbol tables removal) to reduce
information provided to attackers. Then, the injection of VDS data in the deliv-
ered target weakens this practice as eases reverse engineering and secrets stealing.
Indeed, the VDS can be better hidden in the application binaries (e.g. with ob-
fuscation) but needs to be made available at the client. Enough engineering effort
may suffice to overcome this limitation. Anyhow, it does not threaten the general
protection model.

Manual effort (T ; l) is needed to compile for Kvasir and Daikon they require
particular symbols and optimisation flags. It is not a significant issue and appears
sustainable, yet annoying. In addition, if the inference tool is not Daikon, it is

81



3 – Detection

likely to have other practical requirements on the compilation process. However, it
seems feasible with better extractors or extensions of the existing ones, and with
more modern standards.

3.3.5 Discussion
The study exhaustively investigated Invariants Monitoring form different points

of view. Once applied to use cases, the protection method disclosed a broad set of
limitations that threaten its protection strength. Improvement attempts have been
performed to overcome as many limitations as possible, but the most critical issues
remain open. Most of the open limitations merely need engineering and practical
effort to be overcome.

Technological limitations do not affect the effectiveness of this technique sig-
nificantly. Indeed, they can be addressed to make Invariants Monitoring work in
practice. Techniques that avoid attaching debuggers should assist invariants Mon-
itoring. Indeed, there is nothing to do when attacks can be mounted by attaching
a debugger without altering variables values.

Two main limitations remain severe an hard to be overcome. False positives
and negatives do affect the possibility of using Invariants Monitoring for protection
purposes. False positives have been observed to be very likely and leading to trig-
gered tamper countermeasures even if the target application is correct. The number
of false positives may scare developers wanting to protect their applications using
Invariants Monitoring because of the management costs. Indeed, the effort can be
spent to collect extensive execution traces or to train a policy system to tolerate a
certain threshold number of violated invariants according to their probability to fail
(it will require to compute the invariants’ failure probability as well). The learning
phases, which should be done by developers before publishing the application, may
be very time consuming and may have to be repeated at every new version of the
application. Furthermore, eliminating the invariants that lead to false positive may
reduce the detection ability of IM, like happened with broad invariants. Hence,
this work should warn developers who want to protect their target applications
with Invariants Monitoring: the technique may be unusable in practice.

On the other hand, False Negatives are the most pressing issue as they make
this protection not secure to be used in practice to attest the integrity of target
applications. False Negatives revealed in all the analysed use cases. Evidence allow
the discussion to state that False Negatives are related to a lack of a precise rela-
tion between attacks that compromise the assets in the target application and the
extracted likely-invariants, which is the baseline assumption for Invariants Moni-
toring. The trace collection and likely-invariants extraction is a statistical process
that does not consider semantics, that is, the nature of assets, the security proper-
ties to satisfy on assets (i.e. integrity), and attacks paths and strategies aiming at
compromising them. In other terms, there is not any clear way to assume that an

82



3 – Detection

attack compromising one or more software assets will also violate likely-invariants.
A clear inference among violations of invariants and attacks is an important research
goal to achieve for whoever may want to develop protection techniques based on
likely-invariants monitoring.

There is not any clear strategy to, at least, mitigate this issue: research should
invest an enormous effort to this purpose, although there is not any hint suggesting
that it may be successful. The only way that could lead to some improvements
would be to support invariants with other software execution modelling tools or
mechanisms in order to enhance the protection’s capability of semantically describe
the software behaviour. It could be worth investigating data dependency and data
flow analysis techniques to improve the semantics of the inferred statements. Fur-
thermore, Invariants Monitoring must evolve to support runtime modifications and
reconfiguration (e.g. those introduced by code mobility). Combining these tech-
niques could be a valuable direction to achieve practical application of Invariants
Monitoring. Empirical assessment may be further exploited to identify human
strategies that circumvent the protection, thus leading the design of an improved
version of this technique.

Many of the works presented in Section 3.3 exploit likely-invariants to measure
the dynamic integrity of a target. The result grasped by most of the literature’s
works are usually sound and seem to validate the technique. Unfortunately, in
those works, likely-invariants are exploited for very particular use cases, to monitor
very restricted data structures that have previously been identified by the authors.
In practice, most of them based the protection on manually selected assets and
invariants, thus resulting in very specialised protections that are not able to adapt
to other use cases. For instance, Baliga et al. reports just a small set of invariants
they considered to monitor very specific kernel data structures. Moreover, none
of the found works discusses the Invariants Monitoring model from a higher ab-
straction level. The work reported in this document produced a (nearly) automatic
Invariants Monitoring technique that can be applied, with minimal effort, to any
target. The discussion about the Invariants Monitoring model represents the most
significant part of the work reported here. The former assumption tells that a set
of dynamically inferred likely-invariants can model the behaviour of an application.
Most of the effort spent in investigating Invariants Monitoring was involved in val-
idating that assumption. It has been demonstrated, with rigorous empirical work,
that likely-invariants are not suited to model dynamic properties, thus to model
dynamic software integrity. Hence, this work pursued a necessary in-depth study
about the effectiveness of likely-invariants that was not present in literature.

In conclusion, the technique has revealed to be weak and insecure from various
points of view despite what emerged in the literature. It is not able to detect a
broad set of attacks. Even worse, attacks that are supposed to be detected are
eventually ignored by the technique because of its inability to accurately model
software behaviour.

83



Chapter 4

Reaction

The security analysis of static software attestation revealed a set of limitations
that are intrinsic to the protection technique and the MATE scenario. Software
attestation is a detection mechanism that does not include any embedded reaction
mechanism. Then, even if the protection were secure and robust, there would not
be any way to hinder detected attacks.

For this reason, this work proposed an extension to the basic architecture of
static software attestation that improves the protection and to provide an effective
reaction mechanism. The aim is to satisfy the general scheme of protection tech-
niques: a detection system supported by a reaction mechanism. The enabling idea
is to force an application to depend on a remote server in its business logic. In
this way, if an attack is detected, the server can react by simply stopping to serve
the client application that, consequently, would become unable to work right any
more. Hence, a novel approach to anti-tampering has been proposed and published
in [54]. Reactive Attestation, such is the name given to the proposed approach,
consists of a proof-of-concept prototype that can:

1. automatically transforming a given target application to make it strictly de-
pendent on a remote server for its normal functioning, i.e. using Client-Server
Code Splitting;

2. adding tamper detection mechanism, i.e. static software attestation;

3. adding support to tamper reaction that stops the execution of tampered
clients by preventing server-side execution.

The Reactive Attestation design and the consequent development have been
performed in collaboration with Fondazione Bruno Kessler (FBK)1.

1https://www.fbk.eu

84

https://www.fbk.eu


4 – Reaction

4.1 Client-Server Code Splitting
Client-Server Code Splitting (CS-CS) transforms a program so that a portion

of its functional logic executes on a remote server.
The technique was formerly designed to protect software from malicious tam-

pering. Sensitive and critical portions of a program moved to a remote server can
run securely, without being tampered with by a client-side attacker. This tech-
nique assumes that an entire function cannot always be moved to the server. A
function scope might not precisely match a critical security region, that means, a
code portion that requires integrity protection may be smaller than the whole code
portion of the containing function. Hence, to protect code assets, it is necessary to
take into consideration just a few selected parts. Moving a full function can have
several side effects, e.g. updates to the program status that means synchronisation
between client and server. It may require intense client-server communications,
thus an excessive load of network and server. The evaluation of the portion of the
client to move to the server has to take into account data and control dependencies
to ensure minimal server overhead and performance impact while guaranteeing a
proper level of security on the client side.

To this purpose, barrier slicing is the fundamental notion for CS-CS [35], which
extends the concept of backward program slicing [56]. A backward slice is a sub-
program that is equivalent to the original program with respect to the value of a
variable at a specific statement; the pair variable-statement is called criterion. A
barrier slice is computed starting from two sets of variable-statement pairs: the
criterion and the barriers. All the statements in the criterion are marked. Then,
control and data dependencies are backwards traversed through several iterations
so that all the involved statements are marked as well. Instead, the algorithm does
not traverse the dependencies on barriers. The process ends when the fixed point
is reached, then the slice represents the part of the code to move away from the
target application.

In the anti-tampering context, security requirements determine the criterion
and the barriers. Variables in the criterion are those whose computation must be
protected, and barriers are secure points where tampering is no longer an issue.
If CS-CS is used to make an application server-dependent, it is sufficient to move
to the server software parts that are complex enough to prevent an attacker from
faking them.

When a slice is computed, a set of transformations are applied on the applica-
tion. The slice is removed from the client application, and the code is replaced with
synchronisation instructions. Each assignment performed to variables belonging to
the criterion is replaced with a synchronisation statement that has to be reached by
both client and server to allow the execution to proceed: sync messages exchange.
The client requests values of variables to the server throughout ask messages, and
the server requests variables’ values that are on the client using send messages.

85



4 – Reaction

The whole process of transforming a program with CS-CS can be made auto-
matic in order assist the user during the protection of his software, as done for
static software attestation (see Section 3.2.3). The proposed solution aims at auto-
matically combining and applying CS-CS and static software attestation to a target
application that needs anti-tampering protection. From the research point of view,
the here presented solution is intended to demonstrate that:

• software attestation can be considered as a valuable tampering detection tech-
nique for real-world programs;

• static software attestation can be used to realise robust protection methodolo-
gies, despite the underlined security issues (see Section 3.2.4), when assisted
by additional reaction techniques.

4.2 Reactive Attestation
A list of requirements set the guidelines for the design of the proposed code

protection approach. These requirements aim at defining robust guidelines to drive
the protection system development.

Automatic protection. An automatic procedure must be able to transform the
program to protect so that developers can focus their effort on developing and main-
taining the program business logic instead of taking care of security and protection.

Code annotations. The developer has to explicitly indicate the code assets that
need anti-tampering protection using code annotations. The protection tool must
be able to identify areas to extend the protected surface in order to achieve the
best security level possible; e.g. also protect the function call instead of protecting
only the function implementation. This requirement is due to the lack of a method
to infer the assets to protect from source code automatically.

Server dependency. The program to protect could be a stand-alone application
that does not depend on the network connection, thus letting a remote tamper
reaction to be easily identifiable. This kind of applications would be automatically
transformed to generate a semantically equivalent application that strictly depends
on a remote server to properly work, thus enabling remote reactions. The require-
ment sets up two main goals: turning the program into a server dependent one so
that the application functionalities may be interrupted by the server and avoiding
that an attacker could generate a fake server able to mimic the correct behaviour
of the real server.

Accurate reactions. Tampering detection must drive the decision about reactions
that have to be fast and well aimed at disturbing the target application execution.
Deployed reactions should promptly block all the tampered clients while legitimate
clients must not be disconnected, otherwise the protection would cause a general
denial of service.

86



4 – Reaction

Acceptable overhead. The protection should not be too much intrusive in terms
of execution time, memory and network consumption. That is, it must ensure that
the protection does not impact the user experience.

The design of the Reactive Attestation protection process started from the iden-
tified set of requirements. The source code of an unprotected application is given as
an input, and a set of transformations is ported to it automatically. The provided
source code is annotated by the developer so that it explicitly specifies the secu-
rity requirements on code portions that need integrity monitoring. The annotation
syntax is detailed in Section 4.3.1.

The protection process can automatically identify the boundaries of code por-
tions to split. The process exploits the System Dependency Graph (SDG): control
and data dependencies to be affected by splitting are minimised to limit client-server
interaction. The split portions are kept as small as possible to reduce overheads
and server load. The split configuration is marked as annotations in the source code
to protect as couples of criterion and barrier for the splitting algorithm. CS-CS
is applied to generate a client-side component and a server-side one. Proper sync,
ask and send messages are inserted into the transformed code to allow communica-
tion and synchronisation between both sides. Secondly, static software attestation
transformations are applied as depicted in Section 3.2.3. The Attester is generated
together with the server-side components of static software attestation, i.e. the one
specified in Chapter 2.

The server-side components of the two techniques have to communicate so that
software attestation can inform CS-CS whenever it detects a tamper in the target
application. At runtime, the interactions between tamper detection and tamper
reaction take place according to the following workflow. Static software attestation
checks the integrity of the target application following the procedures described in
Section 3.2. Evidence is collected at the client side by the Attester and sent back to
the server side. The Verifier decrees whether the target application is still sound or
not and stores the result of the verification in the central database. The history of
attestation results is available to reason about reactions. The server-side reaction
logic is based on an engine that processes the verification history and decides it
the target has to be stopped according to a reaction policy. Policies are sets of
rules that define which conditions trigger a reaction for a client application. For
example, a policy may indicate that a client application has to be stopped for x
minutes when the y subsequent verifications fail and to stop serving the application
for x + k · t for all the successive failed t requests. When a reaction is triggered, the
status of the target application is updated into the database.

Whenever a reaction has to take place, the system informs the CS-CS server
through the database, e.g. the status of the client target application is labelled as
tampered. Hence, before any client request is processed, the CS-CS server checks
the application status in the database. If the application is still in the valid status,
CS-CS process the request is processed and return results to the client. In case

87



4 – Reaction

that application is in an invalid state, thus labelled as tampered, the CS-CS server
does not execute the requested code and does not reply to the request at all. Since
split client and split server executions are synchronised with bidirectional data
exchange, when the server-side execution stops, the client-side execution also blocks.
As a consequence, the client application becomes not usable as it results in an
unresponsive running program.

This scheme represents just a simple design of a robust protection mechanism
that is built on top of software attestation to overcome its limitations. More com-
plex reactions may provide more sophisticated methods. Indeed, refined reaction
policies may increase the way to punish tamperings depending on its severity, the
bare interruption in serving the client application can be used as last chance, and
light software malfunctioning can be applied when the detected attack is considered
non-critical. The presented system is designed to support the definition of sophisti-
cated reaction policies as it involves a policy engine. For the sake of simplicity, the
presented technique does not involve any sophisticated reaction as it is just meant
to demonstrate the feasibility of the solution and to test the effectiveness of the
obtained protection.

4.3 Implementation
The realised prototype includes CS-CS and static remote attestation modules

that transform the input source code in order to deliver fully protected and working
client application and server-side components. The implemented system is only able
to work with source code written in C. Hence, the target application is supposed
to be written in C or, at least, to have a portion that satisfies this requirement. An
additional constraint, which directly derives from protection assumptions, is that
the application has to run in a connected environment so that it can communicate
with the server-side components over the network.

The implemented prototype is composed of four main modules: the annotation
processor, the software attestation module, the Client-Server Code-Splitting module
and the policy engine.

4.3.1 Annotations processing
Source code annotations are the key tool that allows the developer to specify

which are the critical or sensitive assets in the application whose integrity has to be
preserved. Reactive Attestation annotations extend the static software attestation
ones, presented in Section 3.2.3, and are extracted and processed by the same tool.

Besides the annotation for static software attestation that allows the user to
specify the Attester implementation and the memory areas to protect for each in-
serted Attester, Reactive Attestation introduces annotations for CS-CS. Splitting

88



4 – Reaction

annotations allows the user to specify criterion and barriers, and these annotations
indicate the variables that the splitting algorithm has to consider. An annota-
tion can declare a criterion by specifying criterion as the main parameter of the
annotation. The criterion specification requires the variable name that has to be
used to compute the criterion itself. The criterion annotation requires to specify
the label parameter as well. The label parameter is mandatory to associate the
criterion with the proper barrier. Paired with the criterion annotation comes the
barrier specification annotation. The barrier annotation is specified through the
barrier keyword. The barrier keyword parameter is the name of the variable that
acts as a barrier for the splitting algorithm. Like for the criterion annotation, it
is required to specify the label of the paired criterion. For instance, in the piece
of code reported in Figure 4.1 has been properly annotated for Reactive Attesta-
tion. Annotation at line 1 declares a Attester for static remote attestation. The
declared Attester will be in charge of monitoring the check_license function that is
given the region annotation (line 6). Annotations at lines 22 and 26 are provided
for CS-CS and respectively define the barrier involving the variable valid_year and
the criterion that involves the original_date variable. The splitting algorithm com-
putes the slices to remove from the calculate_original function starting from this
annotated code. The protection procedure replaces the portion of the original code
with synchronisation function calls. The removed code is then suited to run on the
server, and whenever a reaction is needed, the server can decide to not run the code
against a request from the corrupted client.

Annotations are extracted from the provided source code and then processed
by the static software attestation module and CS-CS module to apply required
transformations and to deliver the protected application.

4.3.2 Static Software Attestation module
The software attestation module is the same depicted in Section 3.2 and the

protection is automatically applied as described in Section 3.2.3.
The extracted annotations are processed to identify the Attester to generated

and to inject into the protected application. Software attestation module is inde-
pendent of the CS-CS one. Indeed, software attestation transformations do not
alter the source code of the target application. The CS-CS module applies most of
the code modifications.

89



4 – Reaction

1 # annotation ( declaration (RW_NORMAL , HF_SHA256 ,
2 NI_1 , NG_1 , MA_1 , DS_1),
3 frequency (180) ,
4 label(a1))
5
6 # annotation (region , associated_to (a1), attest_at_startup (true))
7 void check_license (int day , int month , int year) {
8
9 int dd1 = calculate_original (day , month , year);

10 int dd2 = calculate_current ()
11
12 if (dd2 - dd1 > 30)
13 printf ("Fail\n");
14 else
15 printf ("Ok\n");
16
17 }
18
19
20 int calculate_original (int d, int m, int y) {
21
22 # annotation ( barrier ( valid_year ), label(s1)))
23 int valid_year = 0;
24 valid_year = check_valid ();
25
26 # annotation ( criterion ( original_date ), label(s1)))
27 int original_date = d + m + y + valid_year ;
28
29 return original_date ;
30 }

Figure 4.1: Example of source code annotated for Reactive Attestation.

4.3.3 Client-Server Code-Splitting module
The CS-CS module performs several tasks. It combines Grammatech Code-

Surfer2 and the TXL transformation framework. These tools are used to analyse
the source code, to identify the portions that require to be moved onto the secure
server and to apply code transformation patterns to generate the protected client
application.

The implementation of Reactive Attestation is mainly a proof-of-concept. Such
a prototypical approach does not face any slice optimisation concern. Indeed, if
the removed code size is large, it could impact the performance of both client

2https://www.grammatech.com/products/codesurfer

90



4 – Reaction

1 procedure calculate - slice ( criterion C, barrier B)
2 set -of - vertices := vertices -of (C)
3 set -of - barriers := vertices -of (B)
4 slice := vertices -of(C)
5 while not (is - empty (set -of - vertices ))
6 predecessors := predecessors -of - vertices (set -of -vertices , DATA -CONTROL -DEPS)
7 filtered - predecessors := predecessors \ set -of - barriers
8 set -of - vertices := filtered - predecessors
9 slice := slice UNION filtered - predecessors

Figure 4.2: Pseudo-code of the barrier slicing algorithm.

and server application. It is due to the computation demanded to the server,
which has to execute code for many clients. On the other hand, many (small or
large) slices removed from the client introduces many synchronisation points with
the server, that means, many interruption points in the client application due to
synchronisation.

As described while discussing annotation syntax, the developer has to annotate
barriers and criterion explicitly. However, literature demonstrated that algorithms
are available to automatically determine barriers and criterion for a given code
portion and a specified asset [12]. It is a known limitation of the prototype. The
Reactive Attestation design deliberately ignored it to privilege the security aspects
rather than the engineering and implementation tasks.

Once barriers and criteria are available, the computation of the slice and all
the program transformation steps are fully automated. The input of the tool are
the annotations extracted from source code, while the output consists of the sliced
client and the corresponding server-side slice component.

The component that is in charge of computing the barrier slice is implemented
as a CodeSurfer analysis script. The implemented algorithm precisely calculates
the portion of code that represents the barrier slice according to the annotation con-
figuration and the code to protect. The give source code is analysed by CodeSurfer
to calculate the system dependence graph (SDG). The slicing algorithm iterates by
querying SDG to extract the barrier slice.

Figure 4.2 shows the pseudo-code of barrier slicing. Input parameters are the
slicing criterion C and the barrier B. These parameters are converted into vertices
of the SDG and stored in two local variables, set-of-vertices and set-of-barriers
respectively (line 2, 3). Then, the barrier slice, stored in variable slice, is initialised
to the vertices that represent the criterion C (line 4). Then, the algorithm iterates
by adding vertices to the slice set and stops when it is not able to add any new
vertex to the slice, that is the fixed point is reached. More specifically, in the first
iteration, the algorithm queries all the predecessors of the current set of vertices, i.e.
the criterion C, by following data and control dependencies backwards in the SDG.
Possible barriers are filtered out from the set of predecessors. The propagation of

91



4 – Reaction

dependencies stops when a barrier is found; then, the procedure does not include
vertices at that barrier in the slice. After the filtering, the resulting set of vertices
becomes the set of vertices for the next iteration. The algorithm stops and returns
the final barrier slice when it does not find any new predecessor.

Once the procedure obtains the slice, it applies a set of program transformation
rules. TXL rewriting transformations are used to the parse the abstract syntax tree
of the program and to modify the source code in order to create a new compilation
unit for the server side component and to transform the client program so that it
only works when coupled with the corresponding server.

The implementation activities involved the author for what concerned the de-
velopment of static software attestation module while FBK contributors developed
the CS-CS module. The final integration of the two modules has been carried out
by the author in collaboration with the FBK staff3.

4.3.4 Policy engine
The central database has the same structure described in Section 2.7. Additional

data for CS-CS management and communications between the two modules extends
the static software attestation database structure.

A reaction_status table reports the allowed values for the overall application
status, depending on the reaction policy. This information is brought by an addi-
tional table, namely the Reaction Statuses table.

A reaction table stores the overall status of clients as established by the reac-
tion policy engine. In practice, it associates a Reaction Status value to a target
application ID.

A policy table stores the association between a protected application and the
reaction policy that must be enforced on it. Enforceable policies are predefined and
used as constant values.

The reaction engine has been trivially implemented just to prove the feasibility
of the enabling idea. Such an engine is implemented as a set of processes, one for
each used policy. Each process accesses the database and interprets the last attes-
tation results to decide and whether it is needed or not and hot to react according
to the implemented policy. The prototype implements three sample policies: “stop
serving a tampered application”, “stop serving a tampered application until its re-
boot”, and the “stop serving for x minutes an application whose last y attestations
failed and to stop serving the application for x + k · t for all the successive failed t
verifications”.

3An acknowledgement is due to thank Andrea Avancini for the effort invested in making
static software attestation and CS-CS mechanisms work together.

92



4 – Reaction

4.4 Experimental validation
A set of experimental assessments have been performed to validate the procedure

and to verify the prototype effectiveness. The empirical evaluation has been set to
address the following research questions.

1. RQ1 – Accuracy: is Reactive Attestation (i.e. static software attestation)
effective in detect tampering?

2. RQ2 – Overhead: how large is the overhead given by Reactive Attestation?

The first research question aims at measuring the accuracy of the prototypical
protection technique in detecting real cases of code modifications. In other words,
the assessment aimed at verifying that Reactive Attestation can block tampered
applications while not impacting legitimate ones. The second research question is
intended to investigate the cost of the protection technique, in terms of execution
delay for client applications compared to the execution of the original application.

A set of metrics has been set to measure the effectiveness of the developed
system, thus to address the RQ1 research question.

True Positives (TP), it counts the number of tampered targets that get correctly
blocked by the protection;

False Positives (FP), it counts the number of genuine targets that get incorrectly
blocked by the protection;

True Negatives (TN), it counts the number of genuine targets that are correctly
let to execute by the protection;

False Negatives (FN), it counts the number of tampered targets that get incor-
rectly let to execute by the protection.

The defined metrics are key metrics in information retrieval to measure the
performance of a classifier to classify documents correctly, so they are useful to
measure the ability of the Reactive Attestation prototype to tell a legitimate target
from an unauthorised one. The assessment aims at maximising True Positives and
True Negatives in order to reach the best effectiveness of the correct functioning
of the protection. On the other hand, minimising the number of False positives
and False Negatives would improve the protection as a reduction of its failures in
tamper detection.

For what concerns overhead assessment, the metrics considered for evaluation
are the following ones.

Memory (MEM), the amount of memory required to execute the original and
the protected program. Memory consumption is measured using the time utility4.
The time command runs a program, and displays information about the resources,
like memory and time, consumed by that program.

4https://linux.die.net/man/1/time

93

https://linux.die.net/man/1/time


4 – Reaction

Execution time (TIME) is the time spent to run the program. As done with
MEM, TIME is measured using the time system utility.

Network usage (NET) is the amount of data exchanged by the program in
a complete run. NET is directly measured at server-side by the static software
attestation and CS-CS components.

One can expect to achieve an attack surface reduction when Reactive Attesta-
tion is applied so that an attacker could tackle fewer points in the program. As
a drawback, the introduced transformations impact the overall application perfor-
mance, in particular on the execution time and memory occupation. Hence, the
defined metrics aim at estimating the magnitude of this impact.

The empirical assessment has been conducted on a use case application, that is
a license check application, namely License. License is an Android Java applica-
tion whose critical parts resides in native C library. These critical parts implement
the routine in charge of checking the validity of the provided license number and
consequently enable or not further software components. Reactive Attestation is
deployed to the native part of the application as it is the real critical asset that
needs protection. The protected code is composed of two functions for a total of
105 LOC. One function verifies the license code, and it is monitored by software
attestation while CS-CS protect the decoding function used by the previous one.
If the decode function is inhibited, CS-CS acts as a server-side reaction that pre-
vents the application to work correctly. It this way, the two modules of Reactive
Attestation fully protect the entire security critical code.

The assessment involved seven different tampered protected versions of the ap-
plication and one protected untampered version. The tampering has been ported
by rewriting the binary code of the built target. For instance, tampering included:
skipping the check function call as it is overwritten with a NOP instruction, forcing
a date as a current date in the license period, and altering the license expiration
date. The assessment procedure slight modified the application so that the original
single license check became a loop of 100 consecutive checks. It was the only way
to observe the application run and grasp valuable data. Indeed, this workaround
provided measurable executions that were not possible with the original applica-
tion because its execution was too fast. The evaluation executed each application
version 100 times.

RQ1 – Accuracy. Results about True/False Positives and Negative are re-
ported in Table 4.1. Reactive Attestation correctly reports the untampered version
as a True Negative, such as it is executed, checked and allowed to execute as ma-
licious modifications are not detected. All seven tampered versions were correctly
classified as True Positives. Hence, according to the experiment setting, Reactive
Attestation is totally able to identify and grant execution to legitimate clients in
100% of the cases. It was also able to identify and stop, with 100% of success, all
the tampered clients.

Consideration: Reactive Attestation is effective as it blocks all the execution

94



4 – Reaction

of malicious targets. The prototype did not interfere with the execution of legiti-
mate and untampered clients. It is worth to notice that the accuracy observation
is valid on the considered use case, which is small and (maybe) not representative
of real-world applications. In addition, Reactive Attestation is intrinsically sub-
ject to all the vulnerabilities that affect static software attestation (as reported in
Section 3.2.4).

Variant TP FP TN FN
Protected - - X -
Tampered 1 X - - -
Tampered 2 X - - -
Tampered 3 X - - -
Tampered 4 X - - -
Tampered 5 X - - -
Tampered 6 X - - -
Tampered 7 X - - -
Overall 7 0 1 0

Table 4.1: Effectiveness of Reactive Attestation.

RQ2 – Overhead. Table 4.2 reports the results about measured overhead. For
each considered usage scenarios (column 1), the Table reports mean and standard
deviation of absolute values of Memory (MEM, column 2), execution time (TIME,
column 3) and network usage (NET, column 4). The scenario considered to assess
the overhead research question is represented by (1) the vanilla application run with
valid and invalid input license code, and (2) the protected (untampered) application
run with valid and invalid license input code.

Memory usage increases about six times when protection is applied. It is due
to the setup of the network communication infrastructure used by Reactive Attes-
tation, to the memory used by CS-CS communications and to the size of the in-
serted Attester and its ADS. All these components, except for the ADS, introduce
a constant memory overhead that does not depend on the application or protec-
tion configuration. The size of ADS linearly depends on the number of monitored
code regions. Execution time is the most problematic impacted metric. Indeed,
the protection slows down the average execution by two orders of magnitude. The
network load revealed to be constant. The data reported by column 4 of Table 4.1
is the exact amount of network data that Reactive Attestation exchanges for a
single application run, without considering the network consumed to establish the
connection between the two endpoints.

Consideration 1 : Reactive Attestation requires time as a considerable execution
time increase revealed from the vanilla application to the protected one. Although
for the assessed use case the execution time overhead is quite not perceivable from

95



4 – Reaction

a user experience point of view, it is not possible to ignore the issue for the general
case. It is worthy of considering that for the studied use case, the full code has
been protected with Reactive Attestation instead of focusing on specific variables
or assets. Then, it could be possible to mitigate the alarming impact on execution
overhead by wisely determine the size of the protected code. Focusing only on small
portions of the application could drastically reduce the execution impact. However,
in the use case, 105 lines of code were protected, which is roughly comparable to the
dimension of a security-critical area in real-world applications. In the case of bigger
applications, the execution time impact may be most probably dominated by the
regular execution time, which is usually much larger than a few microseconds.

Consideration 2 : Reactive Attestation has a small network impact. Collected
evidence tells that the data exchanged over the network by the protection prototype
are very limited so that it can be used to protect application in mobile contexts. It
has to be taken into account that the network load strongly depends on the func-
tionalities and the nature of the protected code. Applying CS-CS on a functionality
that is computationally intensive and involves lots of variables may highly increase
the network usage. Hence, the protection configuration has to be carefully chosen
in order to avoid severe network impact.

In addition, performance overhead depends on how often the target execution
encounters the split points and on the complexity of the split code. Nevertheless, to
avoid performance issues related to CS-CS, the parts to split should be selected by
analysing the execution traces in order to quantify the most executed parts of the
target application. Considering also this kind of information in the slicing process
may help to maintain the overhead to an acceptable level. Finally, performance
represents an open issue and an important point that has to be addressed to bring
this solution to a practically usable level, but this is out of the scope of the work
presented here. Indeed, it aimed just at demonstrating that software attestation
can be combined with other protection techniques to fit its security lacks, complete
its detection ability with reaction facilities and obtain robust protection.

In conclusion, Reactive Attestation is a quite successful attempt to integrate a
reaction mechanism such as CS-CS and a tamper detection method such as static
software attestation. It can automatically protect an application starting from its
source code. The only effort requested to the developer is to annotate the code to
specify the desired security requirements. The application is then transformed to
be made server-dependent, thus to have a way to punish tampered applications.
Experimental validation of the prototypical approach demonstrated its effective-
ness accuracy but underlined performance issues that have to be faced from an
engineering point of view to make the methodology practically usable.

This work demonstrates that although software attestation comes with a set of
limitations and security issues, it can be combined with other protections to achieve
adequate protection with the right security level. The whole discussion presented
in this work suggests that software attestation techniques are not very robust and

96



4 – Reaction

Variant MEM TIME NET
(scenario) Mean (kB) SD Mean (ms) SD Mean (B) SD

Original
(valid license) 2,192 0 0.17 0.006 - -

Original
(invalid license) 2,176 0 0.18 0.004 - -

Protected
(valid license) 13,715 145.540 84.41 0.290 392 0

Protected
(invalid license) 13,960 33.598 85.06 0.323 392 0

Table 4.2: Overhead of Reactive Attestation.

not very effective to protect real-world applications. However, software attestation
has been demonstrated to be usable as a starting point to build more sophisticated
security mechanisms for software protection that harden programs and effectively
hinder attacker tasks. For instance, the cloning attack presented in Section 3.2.4
represents a severe security threat for static software attestation itself. However,
cloning attacks can be mitigated by coupling static software attestation with other
software protection techniques as happens with CS-CS in Reactive Attestation.
Indeed, if a protection technique like Reactive Attestation removes sensitive and
strategic pieces of code from the target, they cannot be tampered with on client-side.
Then the power of cloning attacks is effectively reduced (as for other client-side-
based attacks).

97



Chapter 5

Conclusions

The work reported in this document aimed at analysing Software Attestation
as a complete method for software security. The general model was designed as an
abstract architecture that suits robust protection mechanisms for any kind software
attestation. It defines attestation procedures and protocols with a high abstraction
level in order to describe the procedures and leave internal customisations to the
actual implementation of the technique. Furthermore, the attestation model is
robust as it is resilient, by design, to the well known attacks, e.g. MitM, sniffing
or replay attacks, and unpredictable as it involves random processes and challenge-
based mechanisms. Moreover, the presented architecture is modular and allows
any security-skilled developer to implement new functionalities or to extend the
designed features to adapt the protection system to his needs.

Afterwards, investigation on the detection ability of software attestation was
performed. General requirements for a detection system ware settled in order to
drive any instantiation of the software attestation model. The analysis proceeded by
considering two essential software features: static and dynamic properties. Static
software attestation aims at monitoring the structural integrity of a program. The
nature of the assets whose integrity can be checked was defined as well as the pro-
cedures to characterise the abstract software attestation model to retrieve integrity
evidences. Consequently, a practical implementation of static software attestation
was reported to show what are the main choices to make and the issue to face when
this kind of protection is implemented and deployed in practice.

Dynamic software attestation was presented as a second instantiation of the ab-
stract model. It aims at monitoring the integrity of software behavioural features,
that are features that describe the software execution instead of its structure. Ref-
erence requirements were defined and, according to them, it was presented the way
to customise the software attestation model. Invariants Monitoring was presented
as a dynamic software attestation solution that model application behaviour by
means of automatically inferred likely-invariants. The analysis studied the mod-
elling properties of likely-invariants and assessed their effectiveness for protection

98



5 – Conclusions

purposes. An Invariants Monitoring working prototype was implemented both to
provide a practical evidence of the applicability of dynamic software attestation
and to experimentally asses its protection effectiveness.

The presented flavours of software attestation were designed to be automatically
applicable on arbitrary software applications. Hence, two distinct toolchains and
workflows were presented to emphasize that characterisation is tightly related to
the internal details of each attestation instantiation but the abstract model is valid
regardless of the low level details and can be automatically applied.

To complete the security discussion about static and dynamic software attesta-
tion, security analyses were performed on both the presented mechanisms. Static
software attestation is subject to a set of issues that are related to the architec-
tural choices made during its instantiation and intrinsic of its the model. The most
critical issues are represented by cloning attacks and non-structural runtime modi-
fications, which seem to be impossible to overcome just by improving the technique.
Most of the other issues can be resolved by enough engineering effort or by com-
bining static software attestation with other techniques. To this purpose, Reactive
Attestation was presented to show how static software attestation can be used to
drive reactions provided by tamper reaction techniques. The results grasped in re-
active attestation study can be generalised to assert that software protections can
be used in combination to achieve higher software security levels.

As opposite to the positive outcomes observed during the static software attes-
tation analysis, the analysis performed on Invariants Monitoring led to assert that
the technique should not be used for software security purposes. Likely-invariants
were a promising tool to model the software behaviour, then a broad investigation
on likely-invariants have exposed critical limitations. Indeed, invariants inferring
procedures collect non-precise invariants or, at least, they collect invariants that
are not valuable to describe software execution aspects. Use cases were involved
in the analysis to better analyse the effectiveness of Invariants Monitoring and to
try to overcome the encountered limitations, but also in this case the technique re-
vealed to be fallacious. The most harmful and dangerous issues are related to false
negatives that generate from the complete absence of any inference between cor-
rupted application and violated invariants. Consequently, the protection is unable
to detect attacks, thus identifying as genuine a tampered application.

Concluding, software attestation is a valuable solution for tamper detection
as its model can be applied to all the modern distributed scenarios. Software
attestation can be customised to fit the most disparate needs. The presented design
is completely independent from any underlying hardware or software architecture
and can be applied to any kind of software application. Moreover, it is compatible
with other protection techniques and represents a valid building block for robust
and complex protection methodologies.

Limitations are introduced by particular instantiations of the abstract model.
In particular, the definition model used to describe the assets is a crucial point when

99



5 – Conclusions

software attestation specialisation is designed. Indeed, conceptual errors introduced
by the asset model may lead to severe drawbacks if the model was not well inves-
tigated, as it happened for Invariants Monitoring. Static software attestation has
revealed to be successful even if it needs support by other techniques while dynamic
software attestation has emerged to be more critical. Dynamic software attestation
involves more complex software features, thus more complex modelling methods to
describe software states. Hence, future directions in software attestation research
should mainly be focused on better structures to model software aspects and fea-
tures. The most challenging limitation is about modelling the software behaviour
and describing its execution using tools that are semantically expressive and robust
from the security point of view.

100



Bibliography

[1] Martıén Abadi et al. “Control-flow integrity principles, implementations, and
applications”. In: ACM Trans. Inf. Syst. Secur. 13.1 (2009), pp. 1–40. issn:
1094-9224. doi: http://doi.acm.org/10.1145/1609956.1609960.

[2] Tigist Abera et al. “C-FLAT: control-flow attestation for embedded systems
software”. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM. 2016, pp. 743–754.

[3] Adnan Akhunzada et al. “Man-At-The-End attacks: Analysis, taxonomy, hu-
man aspects, motivation and future directions”. In: Journal of Network and
Computer Applications 48 (2015), pp. 44–57.

[4] Masoom Alam et al. “Model-based Behavioral Attestation”. In: Proceedings
of the 13th ACM Symposium on Access Control Models and Technologies.
SACMAT ’08. Estes Park, CO, USA: ACM, 2008, pp. 175–184. isbn: 978-1-
60558-129-3. doi: 10.1145/1377836.1377864. url: http://doi.acm.org/10.1145/
1377836.1377864.

[5] Frederik Armknecht et al. “A security framework for the analysis and design
of software attestation”. In: Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security. ACM. 2013, pp. 1–12.

[6] Arati Baliga, Vinod Ganapathy, and Liviu Iftode. “Automatic inference and
enforcement of kernel data structure invariants”. In: Computer Security Ap-
plications Conf. 2008. ACSAC 2008. Annual. IEEE. 2008, pp. 77–86.

[7] Arati Baliga, Vinod Ganapathy, and Liviu Iftode. “Detecting kernel-level
rootkits using data structure invariants”. In: IEEE Transactions on Depend-
able and Secure Computing 8.5 (2011), pp. 670–684.

[8] Cataldo Basile, Stefano Di Carlo, and Alberto Scionti. “FPGA-based remote-
code integrity verification of programs in distributed embedded systems”. In:
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews) 42.2 (2012), pp. 187–200.

[9] Dirk Beyer et al. “Path invariants”. In: ACM Sigplan Notices. Vol. 42. 6.
ACM. 2007, pp. 300–309.

101

https://doi.org/http://doi.acm.org/10.1145/1609956.1609960
https://doi.org/10.1145/1377836.1377864
http://doi.acm.org/10.1145/1377836.1377864
http://doi.acm.org/10.1145/1377836.1377864


BIBLIOGRAPHY

[10] Bruno Blanchet et al. “A static analyzer for large safety-critical software”.
In: ACM SIGPLAN Notices. Vol. 38. 5. ACM. 2003, pp. 196–207.

[11] Marat Boshernitsan, Roongko Doong, and Alberto Savoia. “From Daikon to
Agitator: lessons and challenges in building a commercial tool for developer
testing”. In: Proc. of the 2006 int. symposium on Software testing and anal-
ysis. ACM. 2006, pp. 169–180.

[12] Mariano Ceccato et al. “Trading-off security and performance in barrier slicing
for remote software entrusting”. In: Automated Software Engineering 16.2
(2009), pp. 235–261.

[13] Liqun Chen et al. “A Protocol for Property-based Attestation”. In: Proceed-
ings of the First ACM Workshop on Scalable Trusted Computing. STC ’06.
Alexandria, Virginia, USA: ACM, 2006, pp. 7–16. isbn: 1-59593-548-7. doi:
10.1145/1179474.1179479. url: http://doi.acm.org/10.1145/1179474.1179479.

[14] Ernie Cohen et al. “VCC: A practical system for verifying concurrent C”.
In: Int. Conf. on Theorem Proving in Higher Order Logics. Springer. 2009,
pp. 23–42.

[15] George Coker et al. “Principles of remote attestation”. In: International Jour-
nal of Information Security 10.2 (2011), pp. 63–81.

[16] Victor Costan and Srinivas Devadas. “Intel SGX Explained.” In: IACR Cryp-
tology ePrint Archive 2016.086 (2016), pp. 1–118.

[17] Flaviu Cristian. “Exception handling and software fault tolerance”. In: IEEE
Transactions on Computers 31.6 (1982), pp. 531–540.

[18] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. “DySy”. In:
Software Engineering, 2008. ICSE’08. ACM/IEEE 30th Int. Conf. on. IEEE.
2008, pp. 281–290.

[19] Nelly Delgado, Ann Q Gates, and Steve Roach. “A taxonomy and catalog of
runtime software-fault monitoring tools”. In: IEEE Transactions on software
Engineering 30.12 (2004), pp. 859–872.

[20] Michael D Ernst et al. “Dynamically discovering likely program invariants to
support program evolution”. In: IEEE Transactions on Software Engineering
27.2 (2001), pp. 99–123.

[21] Michael D Ernst et al. “The Daikon system for dynamic detection of likely
invariants”. In: Science of Computer Programming 69.1 (2007), pp. 35–45.

[22] Tal Garfinkel et al. “Terra: A virtual machine-based platform for trusted
computing”. In: ACM SIGOPS Operating Systems Review. Vol. 37. 5. ACM.
2003, pp. 193–206.

[23] David Gries. The Science of Programming. New York: Springer-Verlag, 1981.
isbn: 978-1-4612-5983-1. doi: 10.1007/978-1-4612-5983-1.

102

https://doi.org/10.1145/1179474.1179479
http://doi.acm.org/10.1145/1179474.1179479
https://doi.org/10.1007/978-1-4612-5983-1


BIBLIOGRAPHY

[24] Gisle Grimen, Christian Mönch, and Roger Midtstraum. “Tamper Protec-
tion of Online Clients through Random Checksum Algorithms”. In: Informa-
tion Systems Technology and its Applications, 5th International Conference
ISTA’2006, May 30-31, 2006, Klagenfurt, Austria. 2006, pp. 67–79. url: http:
//subs.emis.de/LNI/Proceedings/Proceedings84/article4304.html.

[25] Trusted Computing Group. TPM Specification version 1.2. Parts 1–3. https://
trustedcomputinggroup.org/resource/tpm-main-specification. [Online; accessed
19-July-2018]. 2003.

[26] Sudheendra Hangal and Monica S Lam. “Tracking down software bugs using
automatic anomaly detection”. In: Proc. of the 24th int. conf. on Software
engineering. ACM. 2002, pp. 291–301.

[27] Sudheendra Hangal et al. “IODINE: a tool to automatically infer dynamic
invariants for hardware designs”. In: Proc. of the 42nd annual Design Au-
tomation Conf.. ACM. 2005, pp. 775–778.

[28] Charles Antony Richard Hoare. “An axiomatic basis for computer program-
ming”. In: Communications of the ACM 12.10 (1969), pp. 576–580.

[29] Trent Jaeger, Reiner Sailer, and Umesh Shankar. “PRIMA: policy-reduced
integrity measurement architecture”. In: Proceedings of the eleventh ACM
symposium on Access control models and technologies. ACM. 2006, pp. 19–
28.

[30] Mariusz H Jakubowski, Chit Wei Nick Saw, and Ramarathnam Venkatesan.
“Tamper-tolerant software: Modeling and implementation”. In: International
Workshop on Security. Springer. 2009, pp. 125–139.

[31] J-M Jazequel and Bertrand Meyer. “Design by contract: The lessons of Ari-
ane”. In: Computer 30.1 (1997), pp. 129–130.

[32] Chongkyung Kil et al. “Remote attestation to dynamic system properties:
Towards providing complete system integrity evidence”. In: 2009 IEEE/IFIP
International Conference on Dependable Systems & Networks. IEEE. 2009,
pp. 115–124.

[33] Gerwin Klein et al. “seL4: Formal verification of an OS kernel”. In: Proc. of
the ACM SIGOPS 22nd symposium on Operating systems principles. ACM.
2009, pp. 207–220.

[34] René Korthaus et al. “A Practical Property-based Bootstrap Architecture”.
In: Proceedings of the 2009 ACM Workshop on Scalable Trusted Computing.
STC ’09. Chicago, Illinois, USA: ACM, 2009, pp. 29–38. isbn: 978-1-60558-
788-2. doi: 10.1145/1655108.1655114. url: http://doi.acm.org/10.1145/1655108.
1655114.

[35] Jens Krinke. “Barrier Slicing and Chopping”. In: SCAM. 2003, pp. 81–87.

103

http://subs.emis.de/LNI/Proceedings/Proceedings84/article4304.html
http://subs.emis.de/LNI/Proceedings/Proceedings84/article4304.html
https://trustedcomputinggroup.org/resource/tpm-main-specification
https://trustedcomputinggroup.org/resource/tpm-main-specification
https://doi.org/10.1145/1655108.1655114
http://doi.acm.org/10.1145/1655108.1655114
http://doi.acm.org/10.1145/1655108.1655114


BIBLIOGRAPHY

[36] Xiao-Yong Li, Chang-Xiang Shen, and Xiao-Dong Zuo. “An Efficient Attes-
tation for Trustworthiness of Computing Platform”. In: Proceedings of the
2006 International Conference on Intelligent Information Hiding and Multi-
media. IIH-MSP ’06. Washington, DC, USA: IEEE Computer Society, 2006,
pp. 625–630. isbn: 0-7695-2745-0. doi: 10.1109/IIH-MSP.2006.48. url: http:
//dx.doi.org/10.1109/IIH-MSP.2006.48.

[37] Davide Lorenzoli, Leonardo Mariani, and Mauro Pezze. “Towards self-protecting
enterprise applications”. In: Software Reliability, 2007. ISSRE’07. The 18th
IEEE Int. Symposium on. IEEE. 2007, pp. 39–48.

[38] Job Noorman et al. “Sancus: Low-cost trustworthy extensible networked de-
vices with a zero-software trusted computing base”. In: Presented as part
of the 22nd {USENIX} Security Symposium ({USENIX} Security 13). 2013,
pp. 479–498.

[39] Kazuomi Oishi and Tsutomu Matsumoto. “Self destructive tamper response
for software protection”. In: Proceedings of the 6th ACM Symposium on In-
formation, Computer and Communications Security. ACM. 2011, pp. 490–
496.

[40] Ronald Perez, Reiner Sailer, Leendert van Doorn, et al. “vTPM: virtualizing
the trusted platform module”. In: Proc. 15th Conf. on USENIX Security
Symposium. 2006, pp. 305–320.

[41] Jeff H Perkins et al. “Automatically patching errors in deployed software”. In:
Proc. of the ACM SIGOPS 22nd symposium on Operating systems principles.
ACM. 2009, pp. 87–102.

[42] Nick L Petroni Jr et al. “Copilot-a Coprocessor-based Kernel Runtime In-
tegrity Monitor.” In: USENIX Security Symposium. San Diego, USA. 2004,
pp. 179–194.

[43] Ahmad-Reza Sadeghi and Christian Stüble. “Property-based Attestation for
Computing Platforms: Caring About Properties, Not Mechanisms”. In: Pro-
ceedings of the 2004 Workshop on New Security Paradigms. NSPW ’04. Nova
Scotia, Canada: ACM, 2004, pp. 67–77. isbn: 1-59593-076-0. doi: 10.1145/
1065907.1066038. url: http://doi.acm.org/10.1145/1065907.1066038.

[44] Ahmad-Reza Sadeghi, Christian Stüble, and Marcel Winandy. “Property-
Based TPM Virtualization”. In: Information Security: 11th International Con-
ference, ISC 2008, Taipei, Taiwan, September 15-18, 2008. Proceedings. Ed.
by Tzong-Chen Wu et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 1–16. isbn: 978-3-540-85886-7. doi: 10.1007/978-3-540-85886-7_1. url:
http://dx.doi.org/10.1007/978-3-540-85886-7_1.

104

https://doi.org/10.1109/IIH-MSP.2006.48
http://dx.doi.org/10.1109/IIH-MSP.2006.48
http://dx.doi.org/10.1109/IIH-MSP.2006.48
https://doi.org/10.1145/1065907.1066038
https://doi.org/10.1145/1065907.1066038
http://doi.acm.org/10.1145/1065907.1066038
https://doi.org/10.1007/978-3-540-85886-7_1
http://dx.doi.org/10.1007/978-3-540-85886-7_1


BIBLIOGRAPHY

[45] Reiner Sailer et al. “Design and Implementation of a TCG-based Integrity
Measurement Architecture.” In: USENIX Security Symposium. Vol. 13. 2004,
pp. 223–238.

[46] Arvind Seshadri et al. “Pioneer: Verifying Code Integrity and Enforcing Un-
tampered Code Execution on Legacy Systems”. In: Proceedings of the Twen-
tieth ACM Symposium on Operating Systems Principles. SOSP ’05. Brighton,
United Kingdom: ACM, 2005, pp. 1–16. isbn: 1-59593-079-5. doi: 10.1145/
1095810.1095812. url: http://doi.acm.org/10.1145/1095810.1095812.

[47] Arvind Seshadri et al. “SWATT: Software-based attestation for embedded
devices”. In: Security and Privacy, 2004. Proceedings. 2004 IEEE Symposium
on. IEEE. 2004, pp. 272–282.

[48] Elaine Shi, Adrian Perrig, and Leendert Van Doorn. “Bind: A fine-grained
attestation service for secure distributed systems”. In: null. IEEE. 2005,
pp. 154–168.

[49] Diomidis Spinellis. “Reflection As a Mechanism for Software Integrity Veri-
fication”. In: ACM Trans. Inf. Syst. Secur. 3.1 (Feb. 2000), pp. 51–62. issn:
1094-9224. doi: 10.1145/353323.353383. url: http://doi .acm.org/10.1145/
353323.353383.

[50] Gang Tan, Yuqun Chen, and Mariusz H Jakubowski. “Delayed and controlled
failures in tamper-resistant software”. In: International Workshop on Infor-
mation Hiding. Springer. 2006, pp. 216–231.

[51] Paul C Van Oorschot, Anil Somayaji, and Glenn Wurster. “Hardware-assisted
circumvention of self-hashing software tamper resistance”. In: IEEE Trans-
actions on Dependable and Secure Computing 2.2 (2005), pp. 82–92.

[52] Alessio Viticchié, Cataldo Basile, and Antonio Lioy. “Remotely assessing in-
tegrity of software applications by monitoring invariants: Present limitations
and future directions”. In: International Conference on Risks and Security of
Internet and Systems. Springer. 2017, pp. 66–82.

[53] Alessio Viticchié et al. “On the impossibility of effectively using likely-invariants
for software attestation purposes.” In: JoWUA 9.2 (2018), pp. 1–25.

[54] Alessio Viticchié et al. “Reactive attestation: Automatic detection and reac-
tion to software tampering attacks”. In: Proceedings of the 2016 ACM Work-
shop on Software PROtection. ACM. 2016, pp. 73–84.

[55] Jinpeng Wei et al. “Modeling the runtime integrity of cloud servers: a scoped
invariant perspective”. In: Privacy and Security for Cloud Computing. Springer,
2013, pp. 211–232.

105

https://doi.org/10.1145/1095810.1095812
https://doi.org/10.1145/1095810.1095812
http://doi.acm.org/10.1145/1095810.1095812
https://doi.org/10.1145/353323.353383
http://doi.acm.org/10.1145/353323.353383
http://doi.acm.org/10.1145/353323.353383


BIBLIOGRAPHY

[56] Mark Weiser. “Program Slicing”. In: Proceedings of the 5th International Con-
ference on Software Engineering. ICSE ’81. San Diego, California, USA: IEEE
Press, 1981, pp. 439–449. isbn: 0-89791-146-6. url: http://dl.acm.org/citation.
cfm?id=800078.802557.

106

http://dl.acm.org/citation.cfm?id=800078.802557
http://dl.acm.org/citation.cfm?id=800078.802557

