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Abstract.  

The paper presents an application of the extended Refined Zigzag Theory (eRZT) in conjunction with the Ritz method to 

the analysis of bending, free vibration and buckling of functionally graded carbon nanotube-reinforced (FG-CNTR) 

sandwich plates. Two stacking sequences are taken into consideration: sandwich panels with a homogeneous core and 

functionally graded face-sheets and sandwich panels with homogeneous face-sheets and a functionally graded core. 

After validating the convergence characteristics and the numerical accuracy of the developed approach using 

orthogonal and non-orthogonal admissible functions, a detailed parametric numerical investigation is carried out. 

Bending under bi-sinusoidal and uniform transverse pressure, free vibration and buckling loads under uniform in-plane 

uniaxial, biaxial and shearing loadings of FG-CNTR sandwich plates are studied. Numerical results for square and 

rectangular FG-CNTR sandwich plates under various combinations of geometry (core-to-face sheet thickness ratio and 

side to thickness ratio), different set of boundary conditions, CNTs volume fraction and grading laws are presented and 

discussed in detail. It is concluded that the eRZT predicts the response for static, stability and free vibration problems 

more accurately than first-order (FSDT) and third-order (TSDT) shear deformation theories, also for FG-CNTR 

sandwich plates.  

 

Keywords: Carbon nanotube-reinforced sandwich plates; functionally graded materials; extended Refined Zigzag 
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1. Introduction  

Due to their excellent characteristics such as low weight, high specific flexural stiffness, good fatigue, thermal and 

damping properties, high noise absorption, sandwich structures have been used in the last decades in transportation, 

aerospace, military, marine and civil structures applications [1]. Typically, sandwich structures consist of two thin stiff 

face-sheets and one core adhesively bonded between them. Core is typically made of metal honeycomb or foam 

materials. For face-sheets aluminium, steel, fiber-reinforced-polymers (FRPs) are usually used. FRPs are formed by 

fiber with an imposed orientation. The result is a laminate with different mechanical and thermal properties through the 

thickness. The main problems affecting this kind of sandwich structures are stresses concentration between layers 

(delamination) due to the different material properties, matrix cracks, imperfect bonding of the layers or between face-

sheets and core [2,3]. To avoid these damages, during the 1980s, in Japan there has been developed a new class of 

materials, the Functionally Graded Materials [4]. These materials are formed by varying, with a specific grading law, 

the mechanical and thermal properties between two or more phases mixed together. During the last decades, their 

applications were extended in different areas, such as aerospace and civil structures, military applications, medical 

fields, energy and sensors [5–14].  

Experimental investigations showed that carbon nanotubes (CNTs) have extraordinary mechanical properties over 

continuous carbon fibers [15,16].  Moreover, the addition of small volume fraction of  single-walled carbon nanotubes 

(SWCNT) or double-walled carbon nanotubes (DWCNT) improve the mechanical characteristics (tensile modulus, 

yield strength and ultimate strengths) of the polymer films, and polymeric films with aligned CNTs as reinforcements 

exhibit superior strength compared to randomly oriented nanotubes, [17–21]. The aforementioned exceptional 

characteristics of CNTs make them a great candidate for reinforcing different polymer-based nanocomposites. Thus, in 

recent years, the concept of FG composite structures reinforced with SWCNT, DWCNT and nano-platelets (GPL), has 

been advanced for application in material science, in MEMS (micro-transducers, micro-actuators, micro-sensor), 

orthopedic implants, bio-medical instruments and also in the field of advanced transport systems (aerospace 

engineering, automotive engineering, shipbuilding), light weight armor materials, nuclear power plant, etc. due to their 

low specific weight, bending  stiffness, excellent vibration characteristics and good fatigue properties [22]. Motivated 

by the potentiality offered by CNTs reinforced composites (CNTRCs) [23,24], and the FGMs concept, in the last 

decade many researchers investigate on the FG-CNTRC. Shen et al [25,26] studied the nonlinear bending, buckling, and 

post-buckling behavior of FG-CNTRC plates in thermal environments. Wang et al [27,28] and Abdelhakim et al [29]  

investigated on nonlinear vibration and bending of FG-CNTRC plates. Liew et al [30] has paid much attention to the 

linear and nonlinear thermo-mechanical analysis of  FG-CNTRC beams, plates and shells, using various theories and 
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CNTs topology along the grading directions, i.e., uniformly distributed (UD-CNTRC) and functionally graded (FG-♢-

CNTRC), (FG-X-CNTRC), (FG-V-CNTRC), and  (FG-Λ-CNTRC). Based on three-dimensional theory of elasticity, 

Alibeigloo and Liew [31] investigated the bending behavior of FG-CNTRC rectangular plates under thermo-mechanical 

loads. They found, among other things, that stress and deflection at a point were higher for a uniform volume 

distribution pattern than that at the corresponding point for non-uniform CNT volume distributions. Kumar et al [32] 

studied the vibration, buckling and bending behavior of FG-MWCNTRC plates using the layer-wise formulation.  

Phung-Van et al [33] presented an effective formulation based on isogeometric analysis and higher-order shear 

deformation theory (HSDT) to investigate the static and dynamic behavior of FG-CNTRC plates. The buckling of FG-

SWCNTRC rectangular plate subjected to uniaxial and biaxial in-plane mechanical loadings was investigated by 

Mehrabadi et al. [34] using FSDT. They concluded that CNTRC plates with symmetric distribution profile are the 

potential alternative to the plates with uniformly distributed (UD) CNTs. Linear vibration using FSDT has been 

investigated by Zhang et al [35] and Vo-Duy et al [36]. Wang et al [37] investigated free vibration and static bending 

behavior of FG-GPLRC doubly-curved shallow shells, using HSDT and Navier solution method. Buckling and post 

buckling of nanocomposite plates having randomly oriented nanotubes under uniaxial compression were studied by 

Srivastava et al [38], free and forced vibrations of FG-GPLRC by Song et al [39] and bi-axially compressed FG-

GPLRC plates by Song et al [40]; thermal post-buckling by Kiani [41]; transient and impact analysis by Lei et al [42], 

dynamic instability analysis of sandwich plate with CNT reinforced face-sheets is performed by Sankar et al [43], Jam 

et al [44] studied the low velocity impact response of FG-CNTRC beams in thermal environment, using Timoshenko 

beam theory, and Yang et al [45] that of spherical shells using FSDT. Lin et al [46] investigated the vibration 

characteristics of CNTRC beams based on the first (FSDT) and Reddy’s third order shear deformation beam theories 

(TSDT) [47]. Jalali et al [48] studied the buckling of circular sandwich plates with tapered cores and FG-CNTRC face 

sheets. Static and dynamic analyses of plates resting on Pasternak elastic foundation were performed by 

Wattanasakulpong et al [49]. Geometrically nonlinear large deformation analysis of internally supported nanocomposite 

plates subjected to a uniformly distributed load has been investigated by Zhang [50]. 

Concerning the solution method, Natarajan et al [51] investigated the bending and the free flexural vibration of 

sandwich plates with CNTRC face-sheets using QUAD-8 shear flexible element developed in Natarajan et al [52]. 

Sankar et al [43] studied the panel flutter characteristics and the dynamic instability due to in-plane periodic load of 

sandwich plates with CNTRC face-sheets using an accurate higher-order theory and QUAD-8 shear flexible element 

developed by Natarajan et al [52]. In Sankar et al [53] the nonlinear dynamic thermal buckling of sandwich spherical 

and conical shells with CNTRC face-sheets is studied, using three-nodes axisymmetric curved shell element. The effect 

of nonuniform thermal loading on thermal buckling and free vibration of FG-CNTRC plate  has been studied by George 
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et al [54] using the finite element method. The bending analysis of FG-CNTRC plate has been performed by Chavan et 

al [55] using a C0
 continuity 9-node isoparametric element with seven degrees of freedom per node based on HSDT.  

Ansari et al [56] examine the effect of uniaxially aligned CNTs on flexural and free vibration analysis of FG-CNTRC 

plate using a 9-node C0 continuity isoparametric element with seven degrees of freedom per node and based on a third-

order Taylor’s series polynomial in the thickness co-ordinate. 

Based on the classical shell theory and Galerkin’s method, Nguyen Dinh et al [57] studied the linear dynamic response 

of FG-SWCNTRC truncated conical shells resting on elastic foundations. Moradi-Dastjerdi et at [58] investigated the 

vibrational behavior (free and forced vibrations, resonance and pulse response) of sandwich plates with FG-CNTR face 

sheets resting on Pasternak elastic foundation, using  a mesh-free method and FSDT. Huang et al. [59] present the 

nonlinear buckling analysis of FG-GPLRC shallow arches with elastic rotational constraints under uniform radial load. 

Using 8-node isoparametric plate element with five degrees of freedom  per node based on FSDT, Rout et al. [60] 

investigate the  transient response of four types of SWCNTRC plates subjected to low velocity impact. Mehar et al [61] 

investigated the free vibration analysis of FG-CNTRC plate under elevated thermal environment, using isoparametric 

finite elements based on HSDT. The buckling of FG-SWCNTRC plates of polygonal planform was investigated by 

Zhang [62] using FSDT and the element-free IMLS-Ritz method; skew plate was studied by Zhang et al  [63,64] and 

Kiani [63,64]; quadrilateral plate using FSDT element-free method by Zhang et al [65]; annular sector plate under 

thermal loadings by Ansari et al [66] and elliptical plates [67]. A study of linear free vibrations of FG-CNTRC in 

thermal environment was given by Lei et al [42,68] using the element-free kp-Ritz method. Mirzaei et al [69] studied 

the nonlinear free vibration of temperature-dependent sandwich beams with CNTRC face-sheets using the Timoshenko 

beam theory and the Ritz method with polynomial basis functions. Bhardwaj et al [70] presented nonlinear flexural and 

dynamic response of CNTRC plates using FSDT and solutions were obtained using Chebyshev polynomials. Selim et 

al. [71] investigated the vibration behavior of FG-CNTRC plates in a thermal environment using Reddy’s TSDT and the 

element-free kp-Ritz method;  nonlinear free vibration of FG-CNTR flat panel with temperature dependent material 

properties has been studied  by Mehar et al [72] using HSDT and finite element method; buckling using the element-

free kp-Ritz method by Lei et al [73,74]. In all the above studies, analysis was conducted by considering the plate as an 

equivalent single layer (with the exception of Kumar et al [32] where the layer-wise formulation has been adopted) with 

one or few types of volume fraction distribution of CNTs and using Equivalent Single Layer (ESL) theories, such as  

CPT, FSDT, HSDT theories, coupled with some numerical solution method (Finite element, element-free kp-Ritz 

method, cell-based smoothed discrete shear gap method by Phung-Van et al [75–79]). Due to inherent constraints in 

manufacturing processes, fabrication of ideal FG-CNT reinforced structure is extremely difficult. So, the dynamic 

analysis of CNTRC plate has been extended by considering multi-layer structure and has been performed by layer-wise 

https://www.sciencedirect.com/topics/engineering/dependent-material
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theory [32,76]. Previous literature review, although not exhaustive, shows that many ESL theories were used in the 

analysis of thermo-mechanical structural behavior of FG-CNTRC beams, plates and shells. To the best of the authors 

knowledge, only few papers use layer-wise [32,76,80] or zigzag theories [43,51,81–83]. 

Recently, Tessler et al formulated a new zigzag model, known as the Refined Zigzag Theory (RZT) for multilayered 

and sandwich beams [84–86], plates [87,88]  and shells [89]. In the RZT, the FSDT in-plane kinematics is improved 

with a piecewise linear zigzag function. In Iurlaro et al [90–93] the excellent capabilities of RZT to solve static, 

dynamic and stability problems for laminate and sandwich plates have been assessed. The RZT does not require the use 

of fictitious shear correction factors; moreover it is well suited for the formulation of  𝐶0 finite elements, as indicated by 

[94–96]. In Iurlaro et al. [93], the RZT has been extended to analyse functionally graded sandwich plates. Recently, Di 

Sciuva and Sorrenti [97] have been performed a deep numerical investigation in order to assess the capabilities of the 

RZT to analyse functionally graded sandwich plates. They concluded that RZT performs very well and in many cases 

better than Reddy’s TSDT. The present work extends the previous assessment to FG-CNTs sandwich plates. 

The paper is organized as follows. 

In Sect. 2, the general theory and the governing equations are derived. First, the extended RZT (eRTZ) is presented; 

based on the eRZT kinematics, the discrete governing equations for bending, free vibration and buckling analysis of 

functionally graded multilayered composite and sandwich plates are derived directly from the principle of virtual work. 

The effective material properties (Young’s moduli, Poisson’s ratios and mass density) of the layer reinforced by CNTs 

uniaxially aligned along the 𝑥1-direction and functionally graded in the 𝑥3-direction following different distributions 

(UD-CNT, FGΛ-CNT, FGV-CNT, FG♢-CNT, FGX-CNT) are derived using the extended rule of mixture, under the 

constraint that the value of CNT volume fraction is the same for the various distributions.  

Sect. 3 presents numerical studies. Results concerning bending, free vibration and buckling of functionally graded 

carbon nanotube (FG-CNTR) sandwich plates are presented.  Two stacking sequences are considered: sandwich panels 

with a homogeneous core and FG-CNTR face-sheets and sandwich panels with homogeneous face-sheets and an FG-

CNTR core.  

First, convergence analysis results of the Ritz method in conjunctions with orthogonal and non-orthogonal admissible 

functions are presented and discussed.  

Subsequently, in order to validate the predictive capability of the eRZT for the problems at hand, comparative 

numerical studies are performed using 3D elasticity, whenever available, FSDT (using standard and ad-hoc transverse 

shear correction factors) and Reddy’s TSDT.  The numerical assessment confirms the superior predictive capabilities of 

the eRZT over the traditional FSDT and TSDT, also for FG-CNTR sandwich plates. Finally, a detailed parametric 

numerical investigation is carried out based on the eRZT. Bending under transverse uniform pressure, free vibration and 
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buckling loads under uniform in-plane uniaxial and biaxial loadings of FG-CNTR sandwich plates are studied. 

Numerical results for square and rectangular FG-CNTR sandwich plates of different aspect ratio under various 

combinations of geometry (core-to-face sheet thickness ratio and plate to thickness ratio), different combination of 

boundary conditions, CNT volume fraction and thickness-wise topology (UD-CNT, FGΛ-CNT, FGV-CNT, FG♢-CNT, 

FGX-CNT with  the same value of CNT volume fraction within the face sheets or the core layers) are presented and 

discussed in details.  

In Sect.4, some conclusions are drawn based on the performed numerical investigations. 

In Appendix, the assumed orthogonal and non-orthogonal trial functions used in the Ritz method are discussed, in 

conjunction with the Gram-Schmidt orthogonalization method. 

 

2 Governing equations 

 

2.1 Geometrical preliminaries 

 

We consider a rectangular multilayered flat plate made of a finite number N of perfectly bonded layers. V is the 

volume of the plate, h the thickness, a the length and b the width. The thickness of each layer, as well as of the whole 

plate, is assumed to be constant, and the material of each layer is assumed to be linearly elastic and orthotropic with a 

plane of elastic symmetry parallel to the reference surface and whose principal orthotropy directions are arbitrarily 

oriented with respect to the reference frame. The points of the plate are referred to an orthogonal Cartesian co-ordinate 

system  ( 1,2,3)jx jX , where  ( 1,2)xx is the set of in-plane co-ordinates on the reference plane, here 

chosen to be the middle plane of the plate, and 𝑥3 ≡ 𝑧, is the co-ordinate normal to the reference plane (Figure 1); the 

origin of the reference frame is fixed at the center of the middle-plane of the plate, so that, 𝑥1  is defined in the range 

𝑥1 ∈ [−
𝑎

2
, +

𝑎

2
], 𝑥2 in the range 𝑥2 ∈ [−

𝑏

2
, +

𝑏

2
], and 𝑥3   in the range 𝑥3 ∈ [−

ℎ

2
, +

ℎ

2
]. In the body of paper, also the 

following nondimensional co-ordinates will be adopted (𝜉1, 𝜉2) = (
2𝑥1

𝑎
,

2𝑥2

𝑏
) ∈ [−1, +1].  

If not otherwise stated, in the paper the superscript (k) is used to indicate quantities corresponding to the kth layer 

(k=1,N), whereas the subscript (k) defines quantities corresponding to the kth interface (k=1,N-1) between the k and 

(k+1) layer. So, in the following, the symbol ( )(.) k stands for (.) valued for 3 ( )kx z= , i.e., at the k-th interface. Also, we 

use the subscript b and t to indicate the top and bottom surfaces of the plate; specifically,  (0) bz z  and ( )N tz z denote 

the co-ordinates of the bottom and top surfaces of the whole plate; thus, t bh z z is the plate thickness and 

( )

( ) ( 1)  ( 1,2,..., )k

k kh z z k N ,  the thickness of the kth layer (see Figure 1). 
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The plate is subjected to a transverse load zq  applied on the top surface of the plate, and to uniformly distributed in-

plane edge loads for unit length, 11 22, P P  and 12P  and boundary transverse loads 13 23, T T , applied along the edges 

𝑥1 = ±
𝑎

2
  and 𝑥2 = ±

𝑏

2
, respectively (see, Figure 1). 

The symbol ,

( )
( ) i

ix
 refers to the derivative of the function ( )  with respect to the coordinate ix , i.e., ,

( )
( ) .i

ix
  

In the paper, if not otherwise specified, the Einstenian summation convention over repeated indices is adopted, with 

Latin indices ranging from 1 to 3, and Greek indices ranging from 1 to 2. 

 

 

Figure 1. General plate notation: (a) plate geometry and co-ordinate system and layer numbering, (b) in-plane loads. 
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2.2 Homogenization of material properties 

It is assumed that functionally graded carbon nano-tubes reinforced (FG-CNTR) layers are made from a mixture of (10, 

10) armchair single-walled carbon nanotubes (SWCNTs) as reinforcement, and a matrix which is assumed to be 

isotropic and homogeneous from Mirzaei and Kiani [69]. The effective material properties of the two-phase composites, 

mixture of CNTs and an isotropic polymer, can be estimated according to the modified rule of mixtures (ROM) or the 

Mori–Tanaka scheme. Due to its simplicity and by taking into consideration that for the problem at hand they give 

almost identical results, as shown by Lei et al [74], in the present study the modified ROM is used to obtain the 

equivalent properties of the CNTR layer. 

According to the extended ROM, the effective material properties are given by [74] 

11 1 11

cnt m

cnt mEE V V E= +                                                                              (1) 

                                                    

 2

22 22

cnt m

cnt m

V V

E E E
= +

                                                                                       (2) 

 
1

3

12 2

cnt m

cnt m

V V

G G G
= +

                                                                                      (3)  

*

12 12

cnt m

cnt mVV +=                                                                                  (4) 

cnt m

cnt mV V= +                                                                                  (5)  

In the above equations, 𝐸11
𝑐𝑛𝑡 , 𝐸22

𝑐𝑛𝑡  and 𝐺12
𝑐𝑛𝑡 , 𝜈12

𝑐𝑛𝑡  and 𝜌𝑐𝑛𝑡 are the Young’s moduli, the shear modulus, the Poisson’s 

ratio and the mass density of SWNCTs, respectively; 𝐸𝑚, 𝐺𝑚 , 𝜈𝑚 and 𝜌𝑚 the corresponding quantities of the isotropic 

matrix phase. The coefficients 𝜂𝑖 (𝑖 = 1,2,3) are the so-called efficiency parameters: they account for the scale-

dependent material properties; they are evaluated by matching the effective properties of CNTRC obtained from the 

molecular dynamic’s simulations with those from the rule of mixtures [98]. Furthermore, 𝑉𝑐𝑛𝑡  and  𝑉𝑚  are the volume 

fractions of CNTs and matrix phase, respectively, which satisfy the condition  

1cnt mV V+ =                                                                                  (6) 

The mathematical expressions of CNTs volume fractions for the five topologies considered in this paper are given in 

Table 1, where  𝑉𝑐𝑛𝑡
∗  is given by  

 

( )( )
*

/ 1

cnt

cnt cnt m

cnt cnt

w
V

w w
=

+ − 
                                                                      (7) 

 

and 𝑤𝑐𝑛𝑡  is the mass fraction of the CNTs. 
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There are five different topologies of CNTR layers investigated in the open literature, i.e., uniformly distributed (UD) 

and four different functionally graded (FG) cases, namely FG-V, FG-♢, FGX and FG-Λ, this last being the symmetric 

one of FG-V (Figure 2). In this investigation, all of these topologies are considered for each of the face sheets and cores 

of FG-CNTR sandwich plates. 

 

Figure 2. Topologies of FG-CNTR layers 

 

 

 

Table 1. Volume fractions of the CNTRC for various distribution as a function of the z-coordinate (layer kth of 

thickness ℎ(𝑘); reference plane is the middle plane). 

CNTs distribution Volume fraction 

UD CNTRC 
( ) ( )

( )
*

cnt c
k

V
nt

k
V z =  

FG-V CNTRC 
2 2* *( ) 1 1

( ) ( )
( ) ( )

( ) ( ) 2

k k
z z

k k tz z z
cnt cn

bV z V V
t cMk k

h h
nt

  +     
            

 

+



= + − = −
 

FG-Λ CNTRC 
2 2* *( ) 1 1

( ) ( )
( ) ( )

( ) ( ) 2

k k
z zk k tz z z

cnt cn
bV z V V

t cMk k
h h

nt

  +     
            

 

−



= − − = −

 

FG-X CNTRC 

( ) ( )
( ) ( )

(

4 4* *(
) ( ) 2

)z z z
cnt cnt

k k
z z

k k t bV z V V
Mk k cn

h h
t

= −
+

= −
 

FG-♢ CNTRC 
2 2* *( ) 2 1 2

( ) ( )
( ) ( )

( )
1

( ) 2
z z z

c

k k
z z

k k t bV z V V
Mknt cnt ck n

h h
t

 
   

= − − = − −    
   

 

+  
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Table 1 gives the volume fractions for the CNT as a function of the z-coordinate for various topologies; 

( ) ( ) ( )k k k

t bh z z= − and 

( ) ( )
( )

2

k k
k t b

M

z z
z

+
=  are the thickness and the co-ordinate of the middle plane of the kth layer 

(here assumed as reference plane). It is easy to check from Table 1 that UD and all of FG types will have the same value 

of volume fraction of CNTs. 

As the effective Poisson ratio depends weakly on position [99], generally, it is assumed that the Poisson’s ratio is 

constant along the thickness. For the other mechanical moduli the following assumptions are made [82] 

 

 

33 22 13 23 12

22
13 12 31 21 32 23 21 21 12

11

;     

;   ;   ;   .

= =

= = =

=

= =

E G G

E

E G

E
        

                                      (8) 

Thus, the material characteristics are functions of the volume fractions of CNTs and matrix. By taking into account that 

Eq. (4) must by satisfied, only one of the two volume fractions could be chosen. Obviously, the volume fraction of 

CNTs is chosen.  

 

2.3 Kinematics 

 

To take into account layers made up of FGMs, the kinematics of the extended Refined Zigzag Theory (eRZT) [93], is 

adopted. The theory is based on the superposition of a global (G) first–order kinematics (that of the Mindlin plate 

theory) and a local (L) layer-wise correction of the in-plane displacements (see, Figure 3). Thus, the displacement field 

at time t is written in compact matrix format as 

 

3 3( , )

( , ) (

)

,

(

, ( )

,

)G L

j j j

G

j ju x t u

t

t

x x x

x

t t= +

=

u u u

                                                             (9) 

where 

3

( , ) ( , ) ( , )

( , ( ,) )

G

j

G

j

x t x t z x t

u x w x tt

 

=

= +u u θ

                                                            (10) 

 

gives the contribution which is continuous with its first derivatives with respect to the z-coordinate and 

 
( ) ( )u ( , ) ( ) ( , )ψ=L k k

jx t z x t                                                                  (11) 

 

gives the contribution to the in-plane displacement which is continuous with respect to z, but with jumps in the first 

derivative at the interfaces between adjacent layers. 
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In Eqs. (9)-(11), 

 

1 1 1

2 2 2

( , ) ( , ) ( , )
( , ) ,   ( , ) ,   ( , )

( , ) ( , ) ( , )

G L

j j jG L

j j jG L

j j j

u x t u x t u x t
x t x t x t

u x t u x t u x t

          
= = =     
          

u u u                    (12) 

 

1 1

2 2

( , ) ( , )
( , ) ,   ( , )

( , ) ( , )

u x t x t
x t x t

u x t x t

      
= =   
      

u θ
 

 

 



                                           (13) 

 

          

( )

1

( )

1 ( )

2 2

( , ) ( ) 0
( , ) ,   

( , ) 0 ( )

k

k

k
x t z

x t
x t z


    

= =   
    

ψ













                                       (14) 

 

In the previous equations, 𝑢1 and 𝑢2  are the displacements along the 𝑥1 − and 𝑥2 − axis of a  point belonging to the 

middle plane of the plate; 𝜃1  and 𝜃2 are the bending rotation of the normal to the middle surface along the directions 

+𝑥2 and −𝑥1, respectively, and w is the transverse deflection, assumed to be constant along the thickness.  𝜓1  and  𝜓2 

represent the spatial amplitudes of the zigzag functions 𝜙1
(𝑘)

 and  𝜙2
(𝑘)

, respectively. It should be noted that FSDT is a 

special case of the RZT, i.e., RZT reduces to FSDT for 𝒖
𝐿(𝑘)

= 𝟎 (see, Eqs. (9) and (10)). 

 
 

Figure 3. Contributions to the in plane RZT kinematics for a three-layered laminate. 

 

 

2.4 Strain-displacement relations 

The linear strain expressions associated with the displacement field in Eq. (9) are, in compact matrix format, 

( ) ( )k k

m bz= + +ε ε ε Φ ε                                                                             (15)  

( ) (0) ( )

,3 k k= +γ γ ψ                                                                                     (16)  

where 
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1,1 1,1 1,1

2,2 2,2 2,2

1,2 2,1 1,2 2

( )

11

,1 1,2 2

( )

22

11 ,2

,   ,   

k

k

m b

u u

u u

u u u u

       
       

= = = =       
       + + +      

ε ε ε



 







                                    (17) 

1

( )

2

2 1

1,1 ( )

2,1 ( )

1,2 ( ) ( )

2,2

0 0 0

,   0 0 0

0 0

k

k

k k

k

 
  
  

= =   
   

  
 

ε Φ








 



                                                     (18) 

( )( )

11,3 ,1( ) (0)13

22,3 ,2

,

2

1

,23

,  

kk

k
wu w

wu w









  +   +     
= =     

++          

γ γ                                                      (19) 

For the 𝑘th layer of thickness ℎ
(𝑘)

, the following expressions hold for the refined zigzag functions [88,93]: 

( ) ( 1)4 4

( ) ( 1) ( )
2

( ) ( 1)5 5 5

( ) ( 1) ( )
2

4

1

44 44 44

55 55 55

2

( )
( ) ( ) ( )

( )
(

( ) 1

) ( ) ( )

2

( ) 1
2

k
k q

k q k
q

k
k q

k q k
q

G G Gh
z h

Q Q Q

G G Gh
z h

Q Q Q

z
z z z

z
z z z





−

−
=

−

−
=

 
= + − + − 

 

 
= + − + − 



 
 
 

 
 
 




  (𝑘 = 1, … , 𝑁)            (20) 

 

where 

 

 

( )

( )

1

( )
1

1

( )

k
t

k
b

N z

j kz
k jj

dz
G

h zQ

−

=

 
=  
 
 
      𝑗 = 4,5                                             (21) 

 

and 𝑄𝑗𝑗
(𝑘)

(𝑧) is the transverse shear stiffness modulus of the kth layer (see Section 2.5).                    

 Eqs. (20) and (21) show that the refined zigzag functions 𝜙𝛼
(𝑘)

 are a priori known piecewise continuous functions of z, 

vanishing on the bottom (𝑧 = −
ℎ

2
) and top (𝑧 = +

ℎ

2
) surfaces of the plate (see, Figure 3). Note that, contrary to what 

happens for the traditional multilayered composite and sandwich structures where  𝜙𝛼
(𝑘)

 is a piecewise linear function of 

the z-coordinate [88], for multilayered structures with layers made of functionally graded materials, 𝜙𝛼
(𝑘)

 is a piecewise-

non-linear function whose shape is regulated by the grading law of the transverse shear stiffness [93]. Thus, the 

transverse shear strains 𝛾𝛼3
(𝑘)

 are nonlinear functions of z within each layer (see, Eq. 16). 

2.5 Stress-strain relations 

The constitutive equations for a functionally graded layer are2, in compact matrix format, 

( ) ( ) ( )k k k

p p=σ Q ε                                                                                           (22) 

 
2 In the present plate theory it is assumed 𝜎33 = 0.  
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( ) ( ) ( )k k k

t t= σ Q                                                                                        (23) 

where 

( )

( )11

( ) ( ) 13

22

23

12

,    

k

k

k k

p t









 
    

= =   
   

 

σ σ                                                                           (24) 

( )

( )11 12 16

( ) ( ) 44 45

12 22 26

45 55

16 26 66

,    

k

k

k k

p t

Q Q Q
Q Q

Q Q Q
Q Q

Q Q Q

 
  

= =   
  

 

Q Q                                                         (25) 

 

In Eq. (25) 𝑄
𝑖𝑗

(𝑘)
(𝑧) (i,j=1,2,6) and and 𝑄

𝑖𝑗

(𝑘)
(𝑧) (i,j=4,5) are the plane stress transformed stiffness moduli of the kth 

layer, that are functions of the z-coordinate. 

2.6 Discrete equations of motion 

 
The discretized equations of motion are obtained from the dynamic version of the principle of virtual displacements 

(D’Alembert principle) 

 ext inU W W− =        (26) 

where  

 

2 2

1 2
2 2

 
a b

T T

p p ta b
U dx dx

+ +

− −
= +  ε σ γ σ                                                       (27) 

 

is the virtual variation of the work done by the internal forces (stress); 

 

( )2 2

3 1 2
2 2

 
a b

T

in a b
W u w dx dx   

+ +

− −
= − +  u u                                               (28) 

is the virtual variation of the work done by the inertia forces, and exW is the virtual variation of the work done by the 

applied forces. Obviously, 

 

0=exW                                                                           (29) 

 

for free vibration. Moreover, 
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2 2

3 1 2
2 2

2

23 1 1 23 1 1 1
2

2

13 2 2 13 2 2 2
2

            ( , , ) ( , , ) ( , , ) ( , , )
2 2 2 2

           ( , , ) ( , , ) ( , , ) ( , , )
2 2 2 2

a b

ex a b

a

a

b

b

W q wdx dx

b b b b
T x t w x t T x t w x t dx

a a a a
T x t w x t T x t w x t dx

 

 

 

+ +

− −

+

−

+

−

= +

 
+ − − + + 

 

 
+ − − + 

 

 





                (30) 

for bending, and  

   
2 2 11 12

1 2
2 2

,

2

1 ,1

,2 ,21 22

T
a b

ex a b

w wP P
W dx dx

w wP P
 

+ +

− −

         
=               
                                                    (31) 

for buckling under normal and shear in-plane loads. 

In writing Eq. (30) it is assumed that for bending analysis, the plate is subjected to a transverse load 3q applied on the 

top surface of the plate, and to a boundary transverse loads per unit length  3  ( 1,2)=T   applied on the edge parallel to 

𝑥𝛼-axis. For buckling analysis, Eq. (31), the plate is assumed to be loaded by distributed in-plane normal and shear 

loads for unit length, P  applied on the edges (see, Figure 1(b)). It is also assumed that the top and bottom surfaces of 

the plate are free of shear tractions. 

In the previous equations, 3( )x  is the material mass density; the overdot indicates differentiation with respect to the 

time, and an overbar the prescribed value of a quantity. All other symbols have been defined above.  Moreover, 

3

3

( )

3
( 1)

1

( )
−

=

• = •
N x s

x s
s

dx      

 

and   is the variational operator.  

 

Substitution of Eqs. (9), (15), (16) into Eqs. (27) and (28), yields  

 

2 2

1 2
2 2

 e R
+ +

− −
=  

a b
T

a b
U dx dx                                                                   (32) 

 

where  

 

( )T ( )
R N M M T T =  

T T T T T

b

                                                              (33) 

 

(0)T T T T T T

m b  =  e ε ε ε γ                                                                  (34) 

 

In Eq. (33) the following force and moment stress resultants for unit length have been introduced 
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( )

( ) ( )

11 1

11 11 11( ) ( )

( ) 21 2

22 22 22( ) ( )

12 1

12 12 12( ) ( )

22 2

0 0

0 0
, , , , 1, ,

0 0

0 0

k

k

b k

k

M

M
z

M

M

      
           
          = =           
                            

N M M











  


  


  



                            (35) 

 

( )
( )

( ) 131 1

( )( )

2,

( )

3 232 2

1,3 0
, , 1,

0

k

k

T T

T T






 

 

             
= =                      

T T                                                    (36) 

 

The plate constitutive relations are derived by using Eqs. (15) and (16) with Eqs. (22)  and (23) into Eqs. (35) and 

(36), and integrating over the plate thickness. In matrix format they read 

 

=R Se                                                                                     (37) 

 

where 

 

T T

t t

T

t t

 
 
 
 =
 
 
 
 

A B A 0 0

B D B 0 0

S A B D 0 0

0 0 0 A B

0 0 0 B D





  



 

                                                                  (38) 

 

( ) ( ) ( )

( ) ( )

2

( ) ( )T ( )

,3 ,3 ,3

, , (1, , ) ,  , , 1, ,

, 1, ,  

T

p p

k k k

t t t t t

z z z  = =

= =

A B D Q A B D Φ Q Φ

A B Q D Q
   

                                        (39) 

 

The virtual variation of the work done by the inertia forces reads 

 

( )2 2 2 2

1 2 3 3 1 2
2 2 2 2

2 2

1 2
2 2

        

a b a b
T T

in i ia b a b

a b
T

a b

W u u dx dx u u dx dx

dx dx

+ + + +

− − − −

+ +

− −

= − = − +

= −

   

 

u u

d md

    



                             (40) 

where 

 

(0) (1) (0)

11

(0) (1) (0)

22

(1) (2) (1)

11

(1) (2) (1)

22

(0) (1) (2)

1 1 11

(0) (1) (2)

1 2 22

(0)

0 0 0 0

0 0 0 0

0 0 0 0

;   0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

m m mu

m m mu

m m m

m m m

m m m

m m m

mw









  
  
  
  
  

= =   
   
   
   
   
   

d m                                      (41) 
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( ) ( )(0) (1) (2) (0) (1) (2) 2 ( ) ( ) ( )2, , , , , 1, , , , ,k k km m m m m m z z z z=                                            (42) 

 

Due to the difficulty to obtain closed form solutions, we search for an approximate solution. To do this, the differential 

problem is transformed into an algebraic one (discretized problem) using the Ritz method and the D’Alembert principle. 

Let us expand the unknown functions in the form, 

( ) ( )( ) ( ) ( ) ( )

1 2 1 2

( )

1

, , ) ,ˆ ( Cg
=

= =
M f

m

f f f T f

m mf C tt g                                           (43) 

where ( )1 2, ,ˆ tf    stands for ( )1 2, ,û t   , ( )1 2, ,ˆ tw   , ( )1 2,ˆ , t   and ( )1 2,ˆ ,t    ( 1,2= ), respectively. In Eq. 

(43), ( )( )f

mC t are unknown coefficients (generalized coordinates) to be varied, and ( )( )

1 2,f

mg   are the approximating 

functions. In the Ritz method [32,100] these functions must be admissible functions, i.e., they must not violate the 

prescribed or geometric boundary conditions and should also be linearly independent and complete. 

Appendix gives details of the admissible functions used in this work.  

Thus, by taking into account Eqs. (15), (16), (41) and (43), yields 

=d GC                                                                                (44) 

 

=e G C                                                                              (45) 

 

where (T stands for transpose) 

1 2 1 2 1 2u u w

T T T T T T T T =  C C C C C C C C    ;      

1

2

1

2

1

2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

u T

u T

T

T

T

T

wT

 
 
 
 
 

=  
 
 
 
 
 

g

g

g

g

g

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

G 0 0

0 0

0

0

g

g

0









         (46) 

      

1 2

2 1

1 2 1

2 1 2

1 1 1

2 2 2

,1 ,2

,2 ,1

,1 ,2

,2 ,1

,1 ,2

,1 ,2

,1 ,2

u T u T

u T u T

T T T

T T T

T T T

T T T

wT wT

T



 
 
 
 
 

=  




 

g g

g g

g g g

g g g

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

g

0

g g

g

0 0 0

g g

0 0g g

  

  

  

  






             (47) 
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Substituting relations (44) and (45) into Eqs. (29)-(32) and (40), taking into account that the virtual variations are 

arbitrary independent variations, d’Alembert principle yields the following discretized set of governing equations 

 

                                               ( )G+ − =MC K K C P                                                                    (48) 

where 

 

2 2

1 2
2 2

a b
T

a b
dx dx

+ +

− −
=  M G mG                                                                (49) 

is the geometric stiffness matrix; 

 

2 2

1 2
2 2

a b
T

a b

t t

t t

dx dx
+ +

 
− −

 
 
 
 =
 
 
 
 

 

A B A 0 0

B D B 0 0

K G GA B D 0 0

0 0 0 A B

0 0 0 B D





  



 

                                          (50) 

 

is the stiffness matrix; 

 

G

G

 
 
 
 
 

=  
 
 
 
 
 

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

K 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 k

       with     
/2 /2

,112

,1 ,2 1 2
/2 /2

,112 2

1
wT

w w

w

a b

G
a b T

r
dx dx

r r− −

  
 =    

    
 

g
g g

g
k                 (51) 

 

𝐊𝐺 is the geometric stiffness matrix and λ is the buckling load parameter,                

 22 12

11 11 12

11 11

,   ,   
P P

P r r
P P

= = =                                                                        (52) 

In Eq. (48), 

P = 0                                                                                     (53) 

for free vibration;  

2 2

3 1 2 3
2 2

  0 0 0 0 0 0 0 0 0 0 0 0

p

a b
T

a b
p dx dx T d

+ +

− −


  = +      P G G                       (54) 

where 
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( )

2

3 23 1 1 23 1 1 1
2

2

13 2 2 13 2 2 2
2

1

23 23
1

( , ) ( , ) ( , ) ( , )
2 2 2 2

                 ( , ) ( , ) ( , ) ( , )
2 2 2 2

                ( , 1) ( , 1) ( ,1) ( ,1)
2

p

a
w w

a

b
w w

b

w w

b b b b
T d T x x T x x dx

a a a a
T x x T x x dx

a
T T d

+

−


+

−

+

−

 
 = − − + + 

 

 
+ − − + 
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for bending. 

3 Numerical results and discussion 

In this Section to assess the Ritz method using Gram-Schmidt orthogonal polynomials (GS polynomials) and non-

orthogonal polynomials, a convergence analysis is presented to predict maximum deflection and natural frequencies. 

Then two types of sandwich plates are taken into consideration (see Figure 4): a sandwich plate with FG-CNTRC face-

sheet and orthotropic core (Type A), a sandwich plate with piezoelectric face-sheets and FG-CNTRC core (Type B). 

 

Figure 4. Configuration of functionally graded sandwich plates: (a) Type A, functionally graded face-sheets and 

homogeneous core; (b) Type B, homogeneous face-sheets and functionally graded core. 

 

In this analysis only the mechanical effect of piezoelectric materials will be considered. Table 2 lists the stacking 

sequences for the various plates considered. Mechanical material properties for face-sheet and core are listed in Table 3 

and Table 4, respectively ([26,73,90,95,101,102]). Table 5 gives the values of volume fraction of CNTs commonly 

adopted for poly{(mphenylenevinylene)-co-[(2,5-dioctoxy-p-phenylene) vinylene]} (PmPV) matrix and the 

corresponding efficiency parameters [73]. In Table 6 the efficiency parameters for Poly (methyl methacrylate) (PMMA) 

matrix and CNTs reinforcement [26] are listed. For this second arrangement of polymeric matrix and CNTs 

reinforcement (PMMA/CNT), the shear moduli derived from mixture rules are obtained assuming 𝐺13 = 𝐺12 and 𝐺23 =

1.2𝐺12. 
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Table 2. Laminate stacking sequences (from bottom to top surface) 

Laminate Normalized Thickness 𝒉(𝒌)/𝒉 Lamina materials Lamina orientation [°] 

L1 (0.5/0.5) A/A (0/90) 

L2 (0.1/0.7/0.2) F1/N/Q (0/Core/0) 

L3 (0.5/0.5/10/0.5/0.5) F2/F2/C4/F2/F2 (0/90/Core/0/90) 

L4a Variable (See Table 9) FG(M1/CNT)/T/ FG(M1/CNT) (0/Core/0) 

L4b Variable (See Table 14) FG(M1/CNT)/T/ FG(M1/CNT) (0/Core/0) 

L5a (0.1667/0.6667/0.1667) FG(M1/CNT)/T/ FG(M1/CNT) (0/Core/0) 

L5b (0.125/0.75/0.125) FG(M1/CNT)/T/ FG(M1/CNT) (0/Core/0) 

L6a (0.1/0.8/0.1) PZT-4/FG(M2/CNT)/PZT-4 (0/Core/0) 

L6b (0.1/0.8/0.1) PZT-5A/FG(M2/CNT)/PZT-5A (0/Core/0) 

L7 (0.1429/0.7143/0.1429) FG(M1/CNT)/D/ FG(M1/CNT) (0/Core/0) 

 

 

 

 

Table 3. Mechanical properties of isotropic and orthotropic materials. The Young’s moduli, 𝐸𝑖
(𝑘)

, and the shear moduli, 

𝐺𝑖𝑗
(𝑘)

, are expressed in GPa; the density 𝜌(𝑘) is expressed in 𝑘𝑔/𝑚3. 

 Orthotropic Materials Isotropic Materials 

 A F1 F2 Q CNT PZT-4 PZT-5A M1 (PMMA) M2 (PmPV) 

𝐸1
(𝑘)

 157.9 50 131 525 5646.6 81.3 61 2.5 2.1 

𝐸2
(𝑘)

 9.584 10 10.34 21 7080.0 81.3 61 2.5 2.1 

𝐸3
(𝑘)

 9.584 10 10.34 21 - 64.5 53.2 2.5 2.1 

𝜈12
(𝑘)

 0.32 0.25 0.22 0.25 0.175 0.329 0.35 0.34 0.34 

𝜈13
(𝑘)

 0.32 0.25 0.22 0.25 - 0.432 0.38 0.34 0.34 

𝜈23
(𝑘)

 0.49 0.25 0.49 0.25 - 0.432 0.38 0.34 0.34 

𝐺12
(𝑘)

 5.930 5 6.895 10.5 1944.5 25.6 22.5 0.9328 0.9328 

𝐺13
(𝑘)

 5.930 5 6.205 10.5 - 25.6 21.1 0.9328 0.9328 

𝐺23
(𝑘)

 3.227 5 6.895 10.5 - 30.6 21.1 0.9328 0.9328 

𝜌(𝑘) - - 1627 - 1400 7600 - 1150 1150 

 

Table 4. Mechanical properties of core materials. The Young’s moduli, 𝐸𝑖
(𝑘)

, and the shear moduli, 𝐺𝑖𝑗
(𝑘)

, are expressed 

in GPa; the density 𝜌(𝑘) is expressed in 𝑘𝑔/𝑚3. 

 Orthotropic Materials Isotropic Materials 

 N T (Ti-6Al-4V) C4 D 

𝐸1
(𝑘)

 10−5 105.7 6.89 x 10−3 0.076775 

𝐸2
(𝑘)

 10−5 105.7 6.89 x 10−3 0.076775 

𝐸3
(𝑘)

 75.85 x 10−3 105.7 6.89 x 10−3 0.076775 

𝜈12
(𝑘)

 0.01 0.29 0 0.32 

𝜈13
(𝑘)

 0.01 0.29 0 0.32 

𝜈23
(𝑘)

 0.01 0.29 0 0.32 

𝐺12
(𝑘)

 22.5 x 10−3 40.97 3.45 x 10−3 0.01445 

𝐺13
(𝑘)

 22.5 x 10−3 40.97 3.45 x 10−3 0.01445 

𝐺23
(𝑘)

 22.5 x 10−3 40.97 3.45 x 10−3 0.01445 

𝜌(𝑘) - 4429 97 100 
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Table 5. Efficiency parameters for PmPV/CNT (T=300 K) composite for various values of volume fractions [73]. 

𝑉𝑐𝑛𝑡
∗  𝜂1 𝜂2 𝜂3 

0.11 0.149 0.934 0.934 

0.14 0.150 0.941 0.941 

0.17 0.149 1.381 1.381 

 

Table 6. Efficiency parameters for PMMA/CNT (T=300 K) composite for various values of volume fractions [26]. 

CNT-PMMA 

𝑉𝑐𝑛𝑡
∗  𝜂1 𝜂2 𝜂3 

0.12 0.137 1.022 0.715 

0.17 0.142 1.626 1.138 

0.28 0.141 1.585 1.109 

 

 

 

 

 

 

 

 

3.1 Convergence studies  

In this Section a convergence analysis of Ritz method is made to evaluate the differences between the use of GS 

orthogonal and non-orthogonal polynomials. For this purpose, two rectangular (𝑏 = 3𝑎) plates are considered: a cross-

ply orthotropic (L1) plate and a non-symmetric three-layers orthotropic sandwich plate (L2). The plate is simply 

supported on all edges under bi-sinusoidal load pressure. The numerical solution here obtained is compared with the 

exact and analytical trigonometric results computed by Iurlaro [95]. In the remainder of the paper, 𝑁1 and 𝑁2 are the 

numbers of GS orthogonal polynomials used in the Ritz method in x1 and x2 directions, respectively. The number p is the 

maximum number of the complete polynomials set used in the p-Ritz method. 

Table 7 shows the results of Ritz method using GS orthogonal and non-orthogonal polynomials. Comparing the results 

obtained using 8 orthogonal polynomials or a complete set of functions with maximum degree 7, it is concluded that 

both sets of the admissible functions have the same convergence rate to the analytical results for the maximum 

displacement.  

Differences between the two set of admissible functions appear when the free vibration problem is considered. Table 8 

gives the first four non-dimensional circular frequencies for a simply supported square orthotropic sandwich plate (L3), 

with core-to-face thickness ratio and span-to-thickness ratio 10. 
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Table 7. Convergence of normalized maximum deflection 𝑢̅3 =
100𝐷11

𝑞0𝑎4 𝑢3(0,0) for rectangular laminates (L1) and (L2) 

simply supported under bi-sinusoidal transverse load. 

 

Non-orthogonal 

Polynomials 

(p-Ritz Method) 

GS Orthogonal 

Polynomials 

(GS-Ritz Method) 

 L1 L2  L1 L2 

p 𝑢̅3 𝑁1 = 𝑁2 𝑢̅3 

1 1.9703 29.6618 1 0.2019 0.9171 

2 1.9855 29.7279 2 1.9708 29.6650 

3 2.4961 36.5167 3 1.9915 29.7503 

4 2.4968 36.5194 4 2.5018 36.6693 

5 2.5127 36.7814 5 2.5023 36.6708 

6 2.5127 36.7816 6 2.5115 36.7869 

7 2.5131 36.7876 7 2.5115 36.7869 

8 2.5131 36.7876 8 2.5116 36.7882 

9 2.5131 36.7878 9 2.5116 36.7882 

10 2.5131 36.7878 10 2.5116 36.7882 

3D Exact [95] 2.546 37.037 3D Exact [95] 2.546 37.037 

   RZT [95] 2.512 36.788 

 

 

Table 8. Comparison of convergence of first four non-dimensional circular (𝜔̅ = 𝜔√
𝑎4𝜌𝑓

ℎ𝐸2𝑓

) between p-Ritz Method 

and Gram-Schmidt-Rayleigh-Ritz Method for laminate (L3). 

Non-orthogonal 

Polynomials 

(p-Ritz Method) 

GS Orthogonal 

Polynomials 

(GS-Ritz Method) 

p 𝜔̅11 𝜔̅12 𝜔̅22 𝜔̅13 𝑁1 = 𝑁2 𝜔̅11 𝜔̅12 𝜔̅22 𝜔̅13 

2 1.8823 3.50458 - - 2 1.88143 - - - 

3 1.85238 3.50178 4.72998 - 3 1.88137 3.49961 4.71693 - 

4 1.85231 3.23587 4.72833 - 4 1.85165 3.49058 4.71603 - 

5 1.85216 3.23578 4.32602 5.29058 5 1.85165 3.23317 4.31157 - 

6 1.85214 3.23129 4.32549 5.29045 6 1.85158 3.23315 4.31157 5.28532 

7 1.85214 3.23124 4.31268 5.24460 7 1.85158 3.22925 4.30540 5.28529 

8 1.85212 3.23118 4.31239 5.24455 8 1.85158 3.22925 4.30540 5.24127 

9 1.85211 3.23115 4.31203 5.24384 9 1.85158 3.22923 4.30537 5.24127 

10 1.85211 3.23114 4.31189 5.24380 10 1.85158 3.22923 4.30537 5.24068 

Iurlaro et al. [90] 
𝜔̅11 𝜔̅12 𝜔̅22 𝜔̅13 

1.852 3.229 4.305 5.241 

 

Table 8 shows how using GS orthogonal polynomials guarantees the convergence, with few terms (𝑁1 = 𝑁2 = 8), of 

the first four frequencies to those analytically computed using trigonometric solution. Using non-orthogonal 

polynomials, it is necessary to increase the maximum degree p to have the convergence also for highest modes. It is 

concluded that at least for free vibration and dynamic response analysis, the GS orthogonal polynomials are preferable 
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in Ritz method. In the sequel of the paper, if not otherwise specified, eight GS orthogonal polynomials have been used 

in the x1 and x2 directions. The acronym TSDT is used to indicate numerical results obtained using Reddy TSDT [47]. 

 

3.2 Static Analysis 

In this Section, different FG-CNTRC sandwich plates under mechanical loads and with different boundary conditions 

are analyzed. For bending problem, a simply supported square sandwich plate (L4a) with homogeneous core and FG-

CNTRs face-sheet is considered (Figure 4 - Type A). The effects of plate side-to-thickness ratio, core-to-face-sheet 

thickness ratio, CNTs volume fraction, grading law and boundary conditions are analyzed. The core is made of 

Titanium alloy (Ti-6Al-4V) (see Table 4) and the face-sheets of PMMA/CNT composite (see Table 3). The grading law 

for lower and upper face-sheets are, respectively, FG- and FG-V (see, Table 1). The non-dimensional quantities in this 

paper, if not otherwise specified, are defined as follows (𝐸2𝑐
 is the Young modulus of core): 

 
2 3 2

2 1 2 3 1311

1 3 11 133 4 2

00 0 0

;    ;    ;    c c
h E u h E u

u u
q aq a q a q a

hh
= = = =
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Table 9. Bending of simply supported square sandwich plate (L4a) with FG-V face-sheets. Effect of volume fraction 

of CNTs, ℎ𝑐/ℎ𝑓 and a/h. 

ℎ𝑐/ℎ𝑓 𝑉𝑐𝑛𝑡
∗  a/h 

𝑢̅1 (−
𝑎

2
, 0, −

ℎ

2
) 𝑢̅3(0,0) 𝜎11 (0,0,

ℎ

2
) 𝜏1̅3 (−

𝑎

2
, 0,0) 

HSDT 

[51] 

Present 

(eRZT) 

HSDT 

[51] 

Present 

(eRZT) 

HSDT 

[51] 

Present 

(eRZT) 

HSDT 

[51] 

Present 

(eRZT) 

2 

0.17 

5 0.5463 0.5260 0.1036 0.1082 0.4476 0.4366 0.4021 0.4050 

10 0.8132 0.8054 0.0738 0.0751 0.6717 0.6613 0.3906 0.3939 

6 
5 0.5275 0.5218 0.0533 0.0552 0.4247 0.4287 0.3154 0.3177 

10 0.6535 0.6499 0.0470 0.0476 0.5383 0.5325 0.3183 0.3202 

2 

0.28 

5 0.3603 0.3454 0.0906 0.0972 0.4809 0.4683 0.3970 0.4017 

10 0.5584 0.5517 0.0574 0.0597 0.7496 0.7377 0.3846 0.3887 

6 
5 0.4118 0.3998 0.0481 0.0505 0.5378 0.5351 0.3167 0.3191 

10 0.5375 0.5308 0.0404 0.0412 0.7190 0.7078 0.3205 0.3226 

 

In Table 9, the eRZT results are compared with those computed by Natarajan et al [51] using the finite element method 

based on High Order structural Theory with 13 degrees of freedom. It is evident the ability of eRZT to provide very 

accurate results. Taking into account that the kinematics eRZT involves only 7 unknown kinematic variables, eRZT 

appears to be very effective from an accuracy/computational cost point of view. 

Now, a square simply supported and fully clamped sandwich plate with functionally graded face-sheets (L5a) under bi-

sinusoidal load with various span to thickness ratios is considered. In this case the core-to-face thickness ratio (ℎ𝑐/ℎ𝑓) 

is set to 4, and the volume fraction of CNTs for FG face-sheets to 𝑉𝑐𝑛𝑡
∗ = 0.17 (PMMA/CNT); the core’s material is 
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Titanium alloy (Material T, Table 6). Table 10 shows the non-dimensional maximum central deflection. The results of 

eRZT for different topology of FG face-sheets are compared with those of CPT. 

Table 10. Non-dimensional maximum deflection  𝑢̅3 = 100
ℎ3𝐸2𝑐𝑢3

𝑞0𝑎4  for simply supported (SSSS) and fully clamped 

(CCCC) sandwich square plate (L5a)  with different type of FG face-sheets (𝑉𝑐𝑛𝑡
∗ = 0.17), under bi-sinusoidal load for 

various span-to-thickness ratios.  In brackets the number of GS orthogonal polynomials used. 

 SSSS (𝑁1 = 𝑁2 = 8) CCCC (𝑁1 = 𝑁2 = 9) 

a/h U-U V-V - ♢-♢ X-X -V V- U-U V-V - ♢-♢ X-X -V V- 

6 6.2920 6.2882 6.2882 6.2885 6.2880 6.3171 6.3503 2.5982 2.5969 2.5969 2.6086 2.5857 2.7430 2.4903 

8 5.8943 5.8917 5.8917 5.8940 5.8878 5.8140 6.0419 2.2079 2.2066 2.2066 2.2103 2.2034 2.2967 2.1581 

10 5.7016 5.6997 5.6997 5.7042 5.6924 5.5613 5.8971 2.0030 2.0019 2.0019 2.0034 2.0008 2.0484 1.9946 

20 5.4347 5.4340 5.4340 5.4430 5.4198 5.2000 5.7018 1.6898 1.6896 1.6896 1.6915 1.6866 1.6405 1.7626 

50 5.3577 5.3575 5.3575 5.3680 5.3407 5.0931 5.6467 1.5889 1.5893 1.5893 1.5928 1.5836 1.4989 1.6935 

100 5.3466 5.3464 5.3464 5.3572 5.3293 5.0777 5.6388 1.5737 1.5741 1.5741 1.5780 1.5679 1.4769 1.6835 

CPT 5.3429 5.3427 5.3427 5.3536 5.3255 5.0725 5.6361 1.5685 1.5690 1.5690 1.5731 1.5626 1.4694 1.6801 

 

As expected, under the same mechanical load, the maximum central deflection for fully clamped case is lower than for 

simply supported case. For thin and relatively thick plates the FG-CNTs topology with the highest flexural rigidity is 

FG -V type (for both simply supported and fully clamped cases). Considering very thick plates (a/h=6) the effect of 

boundary conditions on the maximum deflection is greater than the effect of the grading law of CNTs. In fact, for this 

particular case, the previous type of FG sandwich plate (-V) has higher deformability than the typical FG plate (V-) 

with the lower bending stiffness. Also, the eRZT results converge to CPT solution for thin sandwich plates. 

 

Figure 5. Non-dimensional in-plane stresses for simply supported sandwich square plate (L5a) with FG -V under bi-

sinusoidal load (a/h= 6). The volume fraction is 𝑉𝑐𝑛𝑡
∗ = 0.17.  
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Figure 6.  Non-dimensional shear stresses for simply supported sandwich square plate (L5a) with FG -V under bi-

sinusoidal load (a/h= 6). The volume fraction is 𝑉𝑐𝑛𝑡
∗ = 0.17.  

 

For a simply supported square sandwich plate (L5a) with FG-V face-sheets under bi-sinusoidal mechanical load, in 

Figures 5 and 6, the through the thickness in-plane and transverse shear stresses distributions are plotted. It is evident 

how the eRZT distributions are very close to the 3D exact solution obtained with Pagano method [103], while other 

theories, the FSDT (𝑘1
2 = 𝑘2

2 = 1) and Reddy’s TSDT are not capable to predict the stresses near layer interfaces.  

Another case considered is a cantilever (CFFF) rectangular sandwich plate (L5a) with FG face-sheets subjected to a 

constant transverse load of intensity 𝑞0.  

Table 11. Cantilevered rectangular plate (L5a) under transverse uniform load: normalized maximum deflection 𝑢̅3 =

100
ℎ3𝐸2𝑐𝑢3

𝑞0𝑎4  . 𝑎/𝑏 = 4, ℎ𝑐/ℎ𝑓 = 4 ( 𝑁1 = 10, 𝑁2 = 8 ). 

𝑏/ℎ = 4 UD-UD FG V-V FG - FG ♢-♢ FG X-X FG -V FG V- 

𝑉𝑐𝑛𝑡
∗ = 0.12 162.2125 162.3402 162.3402 162.8450 161.5884 150.3966 176.6046 

𝑉𝑐𝑛𝑡
∗ = 0.17 124.0508 124.1929 124.1929 124.6001 123.5083 113.9373 136.6281 

𝑉𝑐𝑛𝑡
∗ = 0.28 85.0426 85.1784 85.1784 85.4433 84.6487 77.8389 94.4271 

 

Table 11 shows the maximum tip deflection for different FG face-sheet topologies and volume fraction of CNTs. It is 

evident that the FG -V topology has the highest bending stiffness, while the most deformable plate has the FG V- 

one. The differences between other topologies are not so evident. From Table 11, the effect of higher volume fractions 

of CNTs of FG face-sheets is highlighted. High volume fraction of CNTs in polymeric matrix significantly increases the 

plate stiffness and consequently decreases the deflection.  
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As a further example, a rectangular (𝑏 = 2𝑎) simply supported sandwich plate (L6a) with FG-CNTRC core 

(PmPV/CNT) and piezoelectric isotropic (PZT-4) (see Table 3) face-sheets (Figure 4 - Type B) under bi-sinusoidal 

pressure is considered. The maximum central deflection as computed using eRZT is compared in  Table 12 with 3D 

exact solution computed using Pagano method [103], for different  topologies of FG (FG-U, FG-V, FG-, FG-♢ and 

FG-X) and CNTs volume fractions. The span-to-thickness ratio is a/h=10. 

 

Table 12. Simply-supported rectangular (b=2a, 𝑎/ℎ = 10) sandwich plate (L6a) with FG core under bi-sinusoidal load 

of intensity 𝑞0: normalized maximum central deflection 𝑢̅3 = 100
ℎ3𝐸2𝑓

𝑢3

𝑞0𝑎4   

𝑉𝑐𝑛𝑡
∗  

FG-U FG- FG-V FG-♢ FG-X 

3D eRZT 3D eRZT 3D eRZT 3D eRZT 3D eRZT 

0.11 17.6211 17.3821 18.3281 18.0800 18.3281 18.0800 19.0597 18.7990 16.7678 16.5480 

0.14 16.6773 16.3689 17.4326 17.0851 17.4326 17.0851 18.1578 17.7805 15.8764 15.6255 

0.17 13.1120 12.8388 13.9858 13.6624 13.9858 13.6624 14.8003 14.4527 12.2198 12.0128 

 

As expected, for all types of functionally graded sandwich plates, increasing the volume fraction of CNTs, the 

maximum deflection decreases, because more CNTs phase increases mechanical characteristics, as said by the extended 

rule of mixture, and, consequently the bending stiffness.  The stiffest sandwich plate is obtained using FG-X type, then 

FG-U, FG- (or FG-V) and FG-♢, with the lowest bending rigidity. To exploit the great capability of the Ritz method 

for different boundary conditions, rectangular CCCC, CFCF and SSSS sandwich plates (L6a) with functionally 

FGCNTs core and piezoelectric face-sheet under uniform pressure are analyzed.  

Table 13. Normalized maximum central deflection 𝑢̅3 = 100
ℎ3𝐸2𝑓

𝑢3

𝑞0𝑎4  of sandwich rectangular plate (L6a) with FG core 

𝑎/ℎ = 10 under uniform pressure of intensity 𝑞0. In brackets the number of GS polynomials used.  

CCCC (𝑁1 = 𝑁2 = 10) 

𝑉𝑐𝑛𝑡
∗  FG-U FG- FG-V FG-♢ FG-X 

0.11 14.9418 14.9788 14.9788 15.1636 14.8046 

0.14 14.3150 14.2311 14.2311 14.3971 14.2250 

0.17 10.3702 10.3294 10.3294 10.4878 10.2835 

CFCF (𝑁1 = 10, 𝑁2 = 8) 

𝑉𝑐𝑛𝑡
∗  FG-U FG- FG-V FG-♢ FG-X 

0.11 15.1950 15.2543 15.2543 15.4715 15.0325 

0.14 14.5065 14.4326 14.4326 14.6222 14.4036 

0.17 10.3458 10.3213 10.3213 10.4996 10.2479 

SSSS (𝑁1 = 𝑁2 = 8) 

𝑉𝑐𝑛𝑡
∗  FG-U FG- FG-V FG-♢ FG-X 

0.11 25.4389 26.5670 26.5670 27.7272 24.0920 

0.14 23.8801 25.0428 25.0428 26.1664 22.6766 

0.17 18.7567 20.0873 20.0873 21.3597 17.4257 
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As expected, the results collected in Table 13 show that the values of deflection are influenced by the boundary 

conditions (a fully clamped rectangular sandwich rectangular sandwich plate is stiffer than the same plate with two 

opposite edge clamped and other two free or with four edges simply supported).  

From the results of Table 12 and 13 it is concluded that the best way to arrange the CNTs to get a stiffer plate 

(moderately thick) is FG-X; using FG- or FG-V give the same stiffness; the most flexible sandwich plate is that with 

FG-♢ core. 

3.3 Buckling Analysis 

In this section the buckling problem of sandwich plates with CNTs reinforced face-sheet or core is considered. A 

comparison is made with the results of Shen et al [104]. A simply supported square sandwich plate (L4b) with different 

CNTs volume fraction for face-sheets and core-to-face thickness ratios under uni-axial compression in x1-direction 

(𝑃11) is considered. The homogeneous core is made of Titanium alloy (Material T) (see Table 4), while the matrix for 

the face-sheet is made of PMMA/CNT (see Table 3). 

Table 14. Comparison of critical uni-axial buckling loads (𝑃11𝑐𝑟  in kN) obtained with different theories for a simply 

supported square sandwich plate with FG face sheet (L4b) (a/h=20). 

ℎ𝑐/ℎ𝑓 = 8 

(ℎ = 10 𝑚𝑚) 
𝑉𝑐𝑛𝑡

∗  CPT 
FSDT 

𝑘1
2 = 𝑘2

2 = 1 

FSDT 

𝑘1
2 = 𝑎𝑑 ℎ𝑜𝑐♦ 

𝑘2
2 = 𝑎𝑑 ℎ𝑜𝑐♦ 

TSDT 

[104] 
TSDT eRZT 

FG -V 

0.12 1192.96 1181.96 1170.37 1181.28 1181.12 1179.47 

0.17 1297.89 1284.65 1273.19 1284.26 1284.03 1281.56 

0.28 1488.55 1470.35 1449.53 1470.06 1470.37 1462.19 

ℎ𝑐/ℎ𝑓 = 6 

(ℎ = 8 𝑚𝑚) 
𝑉𝑐𝑛𝑡

∗  CPT 
FSDT 

𝑘1
2 = 𝑘2

2 = 1 

FSDT 

𝑘1
2 = 𝑎𝑑 ℎ𝑜𝑐♦ 

𝑘2
2 = 𝑎𝑑 ℎ𝑜𝑐♦ 

TSDT 

[104] 
TSDT eRZT 

FG -V 

0.12 683.08 676.95 665.96 676.96 676.751 673.81 

0.17 764.07 756.19 745.29 756.51 756.24 752.26 

0.28 911.48 899.54 879.35 900.08 900.255 889.43 

ℎ𝑐/ℎ𝑓 = 4 

(ℎ = 6 𝑚𝑚) 
𝑉𝑐𝑛𝑡

∗  CPT 
FSDT 

𝑘1
2 = 𝑘2

2 = 1 

FSDT 

𝑘1
2 = 𝑎𝑑 ℎ𝑜𝑐♦ 

𝑘2
2 = 𝑎𝑑 ℎ𝑜𝑐♦ 

TSDT 

[104] 
TSDT eRZT 

FG -V 

0.12 322.86 319.96 310.27 320.33 320.12 315.87 

0.17 380.04 375.85 365.95 376.56 376.27 370.72 

0.28 484.44 477.03 457.78 478.09 478.14 464.17 
♦ Shear correction factors [105]: for ℎ𝑐/ℎ𝑓 = 8: 𝑘1

2 = 0.4997 and 𝑘2
2 = 0.4508 (𝑉𝑐𝑛𝑡

∗ = 0.12),  𝑘1
2 = 0.5471 and 𝑘2

2 =

0.4951 (𝑉𝑐𝑛𝑡
∗ = 0.17), 𝑘1

2 = 0.4715 and 𝑘2
2 = 0.4199 (𝑉𝑐𝑛𝑡

∗ = 0.28); for ℎ𝑐/ℎ𝑓 = 6: 𝑘1
2 = 0.3664 and 𝑘2

2 = 0.3215 

(𝑉𝑐𝑛𝑡
∗ = 0.12),  𝑘1

2 = 0.4263 and 𝑘2
2 = 0.3759 (𝑉𝑐𝑛𝑡

∗ = 0.17), 𝑘1
2 = 0.3712 and 𝑘2

2 = 0.3238 (𝑉𝑐𝑛𝑡
∗ = 0.28); for 

ℎ𝑐/ℎ𝑓 = 4: 𝑘1
2 = 0.2304 and 𝑘2

2 = 0.1969 (𝑉𝑐𝑛𝑡
∗ = 0.12),  𝑘1

2 = 0.2960 and 𝑘2
2 = 0.2542 (𝑉𝑐𝑛𝑡

∗ = 0.17), 𝑘1
2 =

0.2697 and 𝑘2
2 = 0.2305 (𝑉𝑐𝑛𝑡

∗ = 0.28). 

 

In Table 14 the values of the buckling load are collected. The thickness ratio is assumed to be constant for all values of 

core-to-face thickness ratios and is equal to 𝑎/ℎ = 20. As expected, the CPT is stiffer than the other theories, in fact 

from Table 14, CPT overestimates critical buckling loads. FSDT takes into consideration the effect of shear 

deformability and the values for uni-axial buckling load decrease. Using an appropriate shear correction factor for 
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FSDT evaluated following Raman et al formulation [105] based on energetic consideration, the buckling loads are 

under-estimated with  respect to those computed with eRZT. The TSDT [47] results are very close with FSDT (without 

any shear correction factor) and with those presented in the literature [104]. It is evident from Table 14 that increasing 

the distance between face-sheet increases the uni-axial buckling loads.  

In the next example, rectangular and square sandwich plates (L5b) with different FG face-sheets under bi-axial 

compression load (𝑟11 = 0.5, 𝑟12 = 0,  see Eq. (52)) are analyzed. Three boundary conditions are considered: fully 

clamped (CCCC), two opposite sides clamped and the others simply supported (CSCS) and fully simply supported 

(SSSS). The core-to-face thickness ratio is assumed to be equal ℎ𝑐/ℎ𝑓 = 6 and the span-to-thickness ratio is 5 (thick 

plates). The volume fraction of carbon nanotube is  𝑉𝑐𝑛𝑡
∗ = 0.28. The core material is Titanium alloy (Material T, see 

Table 4) and the face-sheets are made of PMMA/CNT (see Table 3). If not otherwise stated, the results in Table 15 refer 

to the critical bi-axial load parameters for first buckling mode (with one half-wave both in x1 and x2 directions). For all 

FG topologies and plates geometry, the bi-axial buckling load parameters increase from simply supported to fully 

clamped case. When all sides of plates are clamped the values of parameters are the highest. As shown in Table 15, the 

effect of the aspect ratio of sandwich plate is relevant, rectangular plate 𝑏 = 0.5𝑎 has higher values than the 𝑏 = 2𝑎 

case. The combination of boundary condition and aspect ratio geometry could increase the parameters and, in particular 

for CCCC case with  𝑏 = 0.5𝑎, the buckling load parameters correspond to a buckling mode with two half-wawes in the 

x1 direction. In contrast to the uni-axial compressive case, the effect of bi-axial compressive load combined with the 

various types of FG give a buckling parameter higher for FG V- than FG -V.  

 

Table 15. Comparison of bi-axial buckling load parameters 𝜆 = 𝑃11
𝑐𝑟𝑎2/(𝐸2𝑐

ℎ3) for rectangular and square sandwich 

plate (L5b) with different FG face-sheet (see Figure 4, Type B). For CCCC and CSCS,  𝑁1 = 𝑁2 = 10. The core-to-

face thickness ratio is ℎ𝑐/ℎ𝑓 = 6  and 𝑉𝑐𝑛𝑡
∗ = 0.28 (a/h=5). 

𝑏 = 2𝑎 UD-UD V-V - ♢-♢ X-X -V V- 

CCCC 2.5004 2.5034 2.50343 2.4724 2.5040 2.2322 2.7275 

CSCS 2.4797 2.4824 2.4824 2.4496 2.5119 2.1969 2.7246 

SSSS 1.1017 1.1025 1.1025 1.1020 1.1027 1.0531 1.1209 

𝑏 = 𝑎 UD-UD V-V - ♢-♢ X-X -V V- 

CCCC 2.9248 2.9300 2.9300 2.9071 2.9498 2.7322 3.0938 

CSCS 2.3962 2.3994 2.3994 2.3750 2.4211 2.1907 2.5753 

SSSS 1.3698 1.3719 1.3719 1.3715 1.3720 1.3381 1.3832 

𝑏 = 0.5𝑎 UD-UD V-V - ♢-♢ X-X -V V- 

CCCC 5.1328b 5.1413b 5.1413b 5.0782b 5.1905b 4.8822b 5.3670b 

CSCS 3.2011 3.2082 3.2082 3.1976 3.2168 3.1240 3.2762 

SSSS 2.7888 2.7957 2.7957 2.7954 2.7958 2.7865 2.7947 
bBuckling mode (2,1) 
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The same previous rectangular sandwich plate (L5b) is analyzed with in-plane shear load 𝑃12. Also, in this example, 

three types of boundary conditions are considered: fully clamped (CCCC), two opposite side clamped and the others 

two simply supported (CSCS), fully simply supported (SSSS). 

Table 16. Comparison of in-plane shear buckling load parameters 𝜆 = 𝑃12
𝑐𝑟𝑎2/(𝐸2𝑐

ℎ3) for rectangular and square 

sandwich plate (L5b) with different FG face-sheet. (𝑁1 = 𝑁2 = 10). The core-to-face thickness ratio is ℎ𝑐/ℎ𝑓 = 6  and 

𝑉𝑐𝑛𝑡
∗ = 0.28 (a/h=5). 

𝑏 = 2𝑎 UD-UD V-V - ♢-♢ X-X -V V- 

CCCC 3.4635c 3.4688c 3.4688c 3.4343c 3.4971c 3.2771b 3.6166c 

CSCS 3.4034c 3.4084c 3.4084c 3.3735c 3.4373c 3.2244c 3.5621c 

SSSS 2.8970b 2.9011b 2.9011b 2.8827b 2.9172b 2.7471b 3.0175b 

𝑏 = 𝑎 UD-UD V-V - ♢-♢ X-X -V V- 

CCCC 4.0934 4.1000 4.1000 4.0665 4.1277 3.9292 4.2423 

CSCS 3.9169 3.9227 3.9227 3.8869 3.9524 3.7312 4.0816 

SSSS 3.4075 3.4130 3.4130 3.3971 3.4262 3.2873 3.5061 

𝑏 = 0.5𝑎 UD-UD V-V - ♢-♢ X-X -V V- 

CCCC 5.9887b 5.9976b 5.9976b 5.9612b 6.0246b 5.8727b 6.1014b 

CSCS 5.6469b 5.6553b 5.6553b 5.6214b 5.6821b 5.5226b 5.7674b 

SSSS 5.5629b 5.5780b 5.5780b 5.5517b 5.5983b 5.4553b 5.6789b 
b Second mode shear buckling; c Third mode shear buckling 

 

  

  
Figure 7. Shear buckling shapes for CCCC FG-V (L5b) sandwich plate: First Mode Buckling (𝑏 = 𝑎), Second Mode 

Buckling (𝑏 = 0.5𝑎), Third Mode Buckling (𝑏 = 2𝑎) 
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The results are collected in Table 16. It is observed that the effect of combination of aspect ratio and FG topology is 

similar to that observed for bi-axial compressive load problem. The highest values are obtained for FG V- type 

sandwich and the lowest ones for FG -V type sandwich. For rectangular plate, the combination of FG for face-sheet, 

geometry and especially boundary condition, leads to having a buckling parameter that corresponds to a buckling mode 

with two or three half-waves along the diagonal direction. As expected, the critical buckling parameters increase with 

more restrained edges.  

Wu et al [80] studied the stability of carbon nanotubes reinforced composite plates with surface-bonded piezoelectric 

layers using the finite layer method. To assess the capability of present formulation to predict the critical buckling loads 

also for this type of sandwich plate with functionally graded core (L6b), the results obtained by Wu et al [80] are 

compared with present eRZT. Different span-to-thickness ratios, CNTs volume fractions and topologies of FG for core 

are considered. The material for face-sheet as indicated by Wu et al [80] is PZT-5A, while the composite core is made 

of PmPV reinforced by SWCNTs (10,10) (see Table 3). Two types of compressive loads are considered: uni-axial in x1 

direction and bi-axial of equal intensity for both x1 and x2 directions. The authors [80] considered also a pre-buckling 

state with an initial membrane traction stress-state for piezoelectric layers but in this example, they are not taken in 

consideration, so it is expected that the critical buckling parameters obtained are lower. Because there are few 

differences between the two cases of piezoelectric conditions (open/close circuit) in reference work [80], here are 

compared those coming from open circuit case. 

Table 17. Critical buckling load parameters 𝜆 = 𝑃11
𝑐𝑟𝑏2/(𝐸𝑚ℎ3) for square sandwich (L6b), with PZT-5A material for 

face-sheet and FG-CNTR for core, under uni-axial compressive loads. 𝐸𝑚 is the Young’s modulus of matrix (PmPv). 

𝑉𝑐𝑛𝑡
∗  𝑎/ℎ (m,n) 

Wu et al [80] eRZT 

FG-U FG-♢ FG-X FG-U FG-♢ FG-X 

0.11 

5 (3,1) 11.1528 10.9999 11.2257 10.9105 10.8611 11.2179 

10 (2,1) 35.4755 35.0496 35.6151 34.6314 34.2706 34.7250 

50 (1,1) 80.7073 72.4404 88.7498 70.4541 62.0209 78.6703 

0.14 

5 (3,1) 11.5628 11.4068 11.6831 11.3048 11.3775 11.8026 

10 (2,1) 36.847 36.4906 36.9270 36.1578 36.1266 36.0475 

50 (1,1) 85.47522 74.9529 95.6359 75.2896 64.5532 85.6711 

0.17 

5 (3,1) 16.5336 16.5044 16.6461 16.1144 16.8052 16.6702 

10 (1,1) 50.2861 47.8790 50.9401b 47.0374 44.2047 48.7561 

50 (1,1) 92.0902 78.9165 104.9243 81.6589 68.2684 94.7169 
b Second mode buckling (2,1) 

 

Results presented in Table 17 are very close to those computed by Wu et al [80] for thick and relatively thick sandwich 

plates (𝑎/ℎ = 5, 10). For thin plate (a/h=50), as indicated by the authors [80], the effect of pre-stresses is more evident 

for critical buckling load parameters. As expected, the FG-X topology has the highest values for critical uni-axial 

buckling load. 
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Table 18. Critical buckling load parameters 𝜆 = 𝑃11
𝑐𝑟𝑏2/(𝐸𝑚ℎ3) for square sandwich (L6b), with PZT-5A material for 

face-sheet and FG CNTRC for core, under bi-axial compressive loads. 𝐸𝑚 is the Young’s modulus of matrix (PmPv).  

𝑉𝑐𝑛𝑡
∗  𝑎/ℎ (m,n) 

Wu et al [80] eRZT 

FG-U FG-♢ FG-X FG-U FG-♢ FG-X 

0.11 

5 (1,1) 7.7162 7.7294 7.7035 7.4817 7.4969 7.4687 

10 (1,1) 19.3925 18.8658 19.7367 18.1373 17.4708 18.5733 

50 (1,1) 40.3390 36.2050 44.3615 35.227 31.0105 39.3351 

0.14 

5 (1,1) 7.9800 8.0083 7.9619 7.7450 7.7982 7.7167 

10 (1,1) 20.0855 19.4918 20.4374 18.8901 18.1548 19.3174 

50 (1,1) 42.7215 37.4602 47.8029 37.6448 32.2766 42.8356 

0.17 

5 (1,1) 10.9369 10.9593 10.9125 10.5932 10.6600 10.5425 

10 (1,1) 25.0509 23.8550 25.8010 23.5187 22.1023 24.3781 

50 (1,1) 46.0277 39.4412 52.4457 40.8294 34.1342 47.3584 

 

Table 18 collects buckling load parameter results for bi-axial compressive load (r11=1 and r12=0 in Eq. (52)) for the 

same sandwich plate (L6b) of Table 17.  

The eRZT results are very close to those of Ref. [80]. Also, in this case the effect of pre-stresses is more evident for thin 

sandwich plates than for thick ones. The combination of bi-axial compressive loads and FG type produces higher 

buckling loads for FG-♢ than for FG-X sandwich plates, contrary to what happens for the uni-axial compressive load 

cases. 

3.4 Vibration Analysis 

In this section, rectangular and square sandwich plates with functionally graded face-sheets (Type A, Figure 4) and core 

(Type B, Figure 4) are analyzed.  

The results of Mohammadimehr et al [101] for a simply supported sandwich square plate (L7) FG-CNTs face-sheet are 

compared with those computed with eRZT and other theories (CPT, FSDT and TSDT). Different volume fractions and 

FG topologies are considered. The face-sheets are made of PMMA reinforced by (10,10) SWCNTs, the soft-core is 

made of Divinycell HD 100 with temperature dependent material’s properties [101]. For this analysis the temperature 

considered is T=300 K. 
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Table 19. Comparison using different theories of the first two non-dimensional circular frequencies Ω =
𝜔𝑏2

ℎ𝑓
√

𝜌𝑐

𝐸3𝑐

 for 

simply supported sandwich square plate (L7) (𝑏 = 500 𝑚𝑚, ℎ = 35 𝑚𝑚) with various FG face-sheet. 

ℎ𝑐/ℎ𝑓 UD-UD 

5  FSDT    

𝑉𝑐𝑛𝑡
∗  

Mode 

Number 
CPT 𝑘1

2 = 𝑘2
2 = 1 𝑘1

2 = 𝑘2
2 = 5/6 

𝑘1
2 = 𝑎𝑑 ℎ𝑜𝑐♦ 

𝑘2
2 = 𝑎𝑑 ℎ𝑜𝑐♦ TSDT [101] eRZT 

0.12 
(1,1) 286.32 202.371 193.261 79.9214 124.576 83.882 83.7616 

(1,2) 355.18 276.398 267.834 132.429 196.651 135.639 135.564 

0.17 
(1,1) 345.94 252.426 241.757 85.7549 152.865 89.475 89.3491 

(1,2) 439.625 350.678 340.454 139.158 245.763 144.382 144.28 

0.28 
(1,1) 430.311 284.997 270.75 84.0228 162.563 93.055 92.8372 

(1,2) 514.26 380.455 367.431 139.218 257.987 146.767 146.606 

ℎ𝑐/ℎ𝑓 X-X 

5  FSDT    

𝑉𝑐𝑛𝑡
∗  

Mode 

Number 
CPT 𝑘1

2 = 𝑘2
2 = 1 𝑘1

2 = 𝑘2
2 = 5/6 

𝑘1
2 = 𝑎𝑑 ℎ𝑜𝑐♦ 

𝑘2
2 = 𝑎𝑑 ℎ𝑜𝑐♦ 

TSDT [101] eRZT 

0.12 
(1,1) 287.005 202.941 193.813 80.2781 126.306 85.972 85.7556 

(1,2) 356.315 277.401 268.815 133.034 198.462 137.159 137.015 

0.17 
(1,1) 346.914 253.709 243.038 84.1945 155.827 92.375 92.1569 

(1,2) 441.918 353.137 342.889 139.895 249.433 146.600 146.444 

0.28 
(1,1) 432.007 290.043 275.831 84.7397 169.725 97.698 97.3223 

(1,2) 520.350 389.279 376.222 140.364 268.115 150.765 150.527 

ℎ𝑐/ℎ𝑓 ♢-♢ 

5  FSDT    

𝑉𝑐𝑛𝑡
∗  

Mode 

Number 
CPT 𝑘1

2 = 𝑘2
2 = 1 𝑘1

2 = 𝑘2
2 = 5/6 

𝑘1
2 = 𝑎𝑑 ℎ𝑜𝑐♦ 

𝑘2
2 = 𝑎𝑑 ℎ𝑜𝑐♦ 

TSDT [101] eRZT 

0.12 
(1,1) 285.817 202.555 193.482 79.6855 123.409 81.875 81.8243 

(1,2) 355.305 277.089 268.546 132.097 196.082 134.446 134.395 

0.17 
(1,1) 345.47 253.185 242.583 83.5542 151.608 86.745 86.6765 

(1,2) 440.655 352.672 342.48 138.814 245.497 142.669 142.57 

0.28 
(1,1) 430.132 289.499 275.365 84.0687 162.424 88.962 88.8674 

(1,2) 518.527 388.638 375.646 139.23 260.639 144.201 144.086 

ℎ𝑐/ℎ𝑓 V-V 

5  FSDT    

𝑉𝑐𝑛𝑡
∗  

Mode 

Number 
CPT 𝑘1

2 = 𝑘2
2 = 1 𝑘1

2 = 𝑘2
2 = 5/6 

𝑘1
2 = 𝑎𝑑 ℎ𝑜𝑐♦ 

𝑘2
2 = 𝑎𝑑 ℎ𝑜𝑐♦ 

TSDT [101] eRZT 

0.12 
(1,1) 286.028 202.627 193.545 79.7938 124.456 82.625 82.5532 

(1,2) 355.517 277.175 268.623 132.271 197.051 135.017 134.954 

0.17 
(1,1) 345.727 253.285 242.671 83.6705 153.286 87.782 87.6961 

(1,2) 440.943 352.814 342.611 139.011 247.275 143.559 143.453 

0.28 
(1,1) 430.463 289.608 275.461 84.1916 165.686 90.584 90.454 

(1,2) 518.943 388.848 375.844 139.437 264.369 145.724 145.593 

ℎ𝑐/ℎ𝑓 -V 

5  FSDT    

𝑉𝑐𝑛𝑡
∗  

Mode 

Number 
CPT 𝑘1

2 = 𝑘2
2 = 1 𝑘1

2 = 𝑘2
2 = 5/6 

𝑘1
2 = 𝑎𝑑 ℎ𝑜𝑐♦ 

𝑘2
2 = 𝑎𝑑 ℎ𝑜𝑐♦ 

TSDT [101] eRZT 

0.12 
(1,1) 300.342 207.1 197.37 83.3147 125.934 85.198 85.1006 

(1,2) 367.742 280.828 271.765 137.73 197.081 136.825 136.779 

0.17 
(1,1) 363.113 259.373 247.939 87.509 153.248 90.279 90.226 

(1,2) 456.216 358.267 347.405 145.4 245.279 145.690 145.656 

0.28 
(1,1) 453.026 295.888 280.826 88.2727 160.325 93.412 93.344 

(1,2) 540.963 396.364 382.587 146.254 257.065 149.090 149.053 
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ℎ𝑐/ℎ𝑓 V- 

5  FSDT    

𝑉𝑐𝑛𝑡
∗  

Mode 

Number 
CPT 𝑘1

2 = 𝑘2
2 = 1 𝑘1

2 = 𝑘2
2 = 5/6 

𝑘1
2 = 𝑎𝑑 ℎ𝑜𝑐♦ 

𝑘2
2 = 𝑎𝑑 ℎ𝑜𝑐♦ 

TSDT [101] eRZT 

0.12 
(1,1) 271.769 197.791 189.38 76.2472 122.639 80.134 80.0667 

(1,2) 343.48 273.302 265.279 126.676 196.743 133.277 133.185 

0.17 
(1,1) 328.407 246.736 236.966 79.7981 152.567 85.367 85.2319 

(1,2) 425.875 347.076 337.549 132.522 248.469 141.486 141.298 

0.28 
(1,1) 407.942 282.764 269.58 80.0899 168.979 87.817 87.6054 

(1,2) 497.061 380.918 368.727 132.567 268.811 142.401 142.156 
♦Shear correction factors listed in Table 20 

Table 20. Shear correction factors for Table 19 computed using Raman et al [105]. 

𝑉𝑐𝑛𝑡
∗  

UD-UD X-X ♢-♢ V-V -V V- 

𝑘1
2 𝑘2

2 𝑘1
2 𝑘2

2 𝑘1
2 𝑘2

2 𝑘1
2 𝑘2

2 𝑘1
2 𝑘2

2 𝑘1
2 𝑘2

2 

0.12 0.06657 0.05587 0.06657 0.05587 0.06557 0.05503 0.06578 0.05521 0.07291 0.06117 0.05902 0.04954 

0.17 0.04024 0.03367 0.04024 0.03367 0.03932 0.03291 0.03944 0.03301 0.04378 0.03663 0.03534 0.02958 

0.28 0.03593 0.03006 0.03593 0.03006 0.03378 0.02825 0.03388 0.02834 0.03763 0.03147 0.03033 0.02537 

When compared with the results of Ref. [101], all the theories used in Table 19, except eRZT, provide much higher 

frequency parameter, i.e., the plates are stiffer. Only FSDT with Raman’s shear correction factor [105] under-estimates 

the values for the first two frequencies. Only eRZT produces results very close to those of Mohammadimehr et al [101], 

although the present formulation is simpler  than Higher-Order Sandwich Plate Theory (HSAPT) used in [101]. From 

Table 19, it is clear how generally the FSDT and the TSDT might not be capable to predict the global response for a 

sandwich plate with soft-core material as well shown by Wang et al [28], Mohammadimehr et al [101], Yang et al 

[106], Frostig et al [107] and by Wu et al [108]. As expected, increasing the CNTs volume fraction the frequencies 

increase accordingly. Using FG X-X topology for face-sheet guarantee the highest flexural rigidity and values of 

frequencies. Two rectangular sandwich plates (L5a) with span-to-thickness ratio 𝑎/ℎ = 5, core-to-face thickness ratio 

ℎ𝑐/ℎ𝑓 = 4 with various FG topologies and boundary condition are analyzed. The material for core is Titanium alloy 

and the face-sheets are made of PMMA matrix reinforced by (10,10) SWCNTs (see, table 6). The volume fraction 

considered is 𝑉𝑐𝑛𝑡
∗ = 0.17. The following boundary conditions are considered: CCCC, SCSC, SFCS, CFSF and CFFF. 

For a better convergence of the results collected in Table 21, 10 GS orthogonal polynomials for both x1 and x2 directions 

were required.  
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Table 21. First five non-dimensional circular frequencies Ω =
𝜔𝑎2

ℎ √
𝜌𝑐

𝐸2𝑐

 for rectangular and square plate (L5a) with 

different boundary conditions and a/h=5. In brackets, the number of half-waves for the corresponding frequencies  

  -V X-X ♢-♢ V- 

BCs  (𝑎 = 𝑏) (𝑎 = 3𝑏) (𝑎 = 𝑏) (𝑎 = 3𝑏) (𝑎 = 𝑏) (𝑎 = 3𝑏) (𝑎 = 𝑏) (𝑎 = 3𝑏) 

CCCC 

1 
6.8351 

(1,1) 

23.4430 

(1,1) 

7.0639 

(1,1) 

23.4864 

(1,1) 

7.0076 

(1,1) 

23.4716 

(1,1) 

7.2107 

(1,1) 

23.5055 

(1,1) 

2 
11.6278 

(1,2) 

26.1277 

(2,1) 

11,7335 

(1,2) 

26.3808 

(2,1) 

11.7042 

(1,2) 

26.2729 

(2,1) 

11.7982 

(1,2) 

26.5099 

(2,1) 

3 
16.4188 

(2,1) 

30.7742 

(3,1) 

13.3362 

(2,1) 

31.3815 

(3,1) 

13.0767 

(2,1) 

31.091 

(3,1) 

13.6840 

(2,1) 

31.6625 

(3,1) 

4 
17.5240 

(2,2) 

36.9141 

(4,1) 

16.8357 

(2,2) 

37.9169 

(4,1) 

16.6654 

(2,2) 

37.3802 

(4,1) 

17.0598 

(2,2) 

38.3338 

(4,1) 

5 
18.3691 

(1,3) 

44.1722 

(5,1) 

18.4146 

(1,3) 

44.8115 

(1,2) 

18.398 

(1,3) 

44.7398 

(5,1) 

18.4358 

(1,3) 

44.9063 

(1,2) 

SCSC 

1 
5.5581 

(1,1) 

23.1298 

(1,1) 

5.5833 

(1,1) 

23.1191 

(1,1) 

5.5830 

(1,1) 

23.1174 

(1,1) 

5.5822 

(1,1) 

23.0962 

(1,1) 

2 
10.8871 

(2,1) 

25.408 

(2,1) 

11.0243 

(1,2) 

25.5748 

(2,1) 

11.0236 

(1,2) 

25.5414 

(2,1) 

11.0144 

(1,2) 

25.6794 

(2,1) 

3 
11.0210 

(1,2) 

29.7057 

(3,1) 

11.3908 

(2,1) 

30.3281 

(3,1) 

11.2882 

(2,1) 

30.0919 

(3,1) 

11.7277 

(2,1) 

30.6968 

(3,1) 

4 
15.2581 

(2,2) 

35.7659 

(4,1) 

15.5583 

(2,2) 

36.9245 

(4,1) 

15.4977 

(2,2) 

36.3462 

(4,1) 

15.7603 

(2,2) 

37.4736 

(4,1) 

5 
18.0598 

(1,3) 

43.1188 

(5,1) 

18.0507 

(1,3) 

44.7283 

(5,1) 

18.8914 

(3,1) 

43.8025 

(5,1) 

18.032 

(1,3) 

44.8158 

(1,2) 

SFCS 

1 4.1965 5.0928 4.3849 5.2293 4.3572 5.2062 4.4983 5.3107 

2 5.9988 11.6025 6.1119 12.1582 6.0920 11.9866 6.1787 12.4943 

3 10.5128 19.1584 10.7399 20.2404 10.7289 19.7807 10.7611 20.8071 

4 10.6966 21.3352 11.2158 21.3326 11.0000 21.3279 11.6367 21.3223 

5 12.1834 25.2958 12.7021 25.3681 12.5414 25.3431 13.0163 25.4075 

CFSF 

1 4.0377 4.0185 4.2370 4.2195 4.2084 4.1908 4.3569 4.3404 

2 4.5793 6.6637 4.7437 6.7322 4.7181 6.7173 4.8425 6.7713 

3 7.1032 10.2636 7.18711 11.0055 7.17058 9.50066 7.23529 11.4482 

4 10.3274 13.8649 11.0568 14.156 10.8331 14.0661 11.4926 14.3345 

5 10.9554 17.821 11.5969 19.1624 11.3995 18.5887 11.9824 19.8521 

CFFF 

1 1.2226 1.216 1.2078 1.2018 1.2046 1.1987 1.1761 1.1700 

2 1.8277 3.2550 1.8344 3.2731 1.8306 3.2681 1.8271 3.2813 

3 4.8215 5.5535 4.8425 5.8137 4.8353 5.7575 4.8469 5.9575 

4 5.6242 9.9274 5.8730 10.0373 5.8174 10.0010 6.0113 10.0972 

5 6.4903 12.4545 6.7017 13.2881 6.6505 13.0249 6.8170 13.7583 

 

Table 21 shows the effect of boundary conditions, aspect ratio and topologies of FG face-sheets on the natural 

frequencies. For a rectangular plate, all frequencies are higher than those of the corresponding square plate. Except for 

SCSC, the FG V- sandwich topology shows the highest flexural rigidity followed by the FG X-X topology. 

Comparing these results with those obtained in Table 19, the effect of boundary conditions is very evident. FG X-X has 

always high frequencies, but for simply supported plate another stiff sandwich is FG -V; for fully clamped plate, for 

example, the stiffer is FG V-. This effect is shown also for SFCS, CFSF and CFFF. For SCSC the stiffer is FG -V 

sandwich type as for simply supported case. For one or more clamped edges, with carbon nanotubes aligned along the 
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normal to these edges, there is an inversion of the stiffness between FG V- and FG -V sandwich types. In Figure 8 

the five modal shapes of SFCS rectangular sandwich plate with FG X-X topology are plotted. 

  

   
Figure 8. First five modal shapes of SFCS rectangular sandwich plate (L5a) with FG X-X face-sheets 

 

Let us consider a simply supported square sandwich plate (L6a) of type B (see, Figure 4) with different topologies of 

FG core (FG-U, FG-♢ and FG-X) and PZT-4 material for face-sheet.  

Table 22. Fundamental non-dimensional circular frequency Ω = 10𝜔ℎ√
𝜌𝑓

𝐸1𝑓

 for SSSS sandwich square plate (L6a) with 

FG-CNTRC core and PZT-4 face-sheet (ℎ𝑐/ℎ𝑓 = 8) (a/h=10). 

 Wu et al [102] eRZT 

FG-U 0.6621 0.6408 

FG-O 0.6509 0.6267 

FG-X 0.6690 0.6491 

 

Table 22 compares the eRZT results with those taken from Wu et al [102] where the authors considered a piezoelectric 

pre-stress  state of membrane traction and used the modified Pagano 3D theory. The volume fraction of CNTs is 𝑉𝑐𝑛𝑡
∗ =

0.17; the total thickness is ℎ = 1𝑚𝑚 and the span-to-thickness ratio is 10. The material for core is PmPV with (10,10) 

SWCNTs as reinforcement. Because in the present analysis no effect of piezoelectric pre-stress state is taken into 

consideration, it is expected that the eRZT results are lower than those of Ref [102]. By taking into account this effect, 

it can be concluded that eRZT results match very well the 3D results. As for buckling case (see, Table 17 and Table 18), 

the effect of initial pre-stress state leads to an increase of frequencies, in fact eRTZ results are smaller than those of  Ref 
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[102]. Now the effect of boundary conditions and CNTs volume fraction on the fundamental frequency of sandwich 

plates (L6a) with PZT-4 face-sheets and FG core (type B, Figure 4) is investigated. The results are collected in Table 

23. For CCCC and SFSF, the stiffest plate is FG-X type; however, considering for SSSS and CFCF, the stiffest is FG-

/FG-V and FG-♢, respectively. 

Table 23. Fundamental non-dimensional circular frequencies 𝜔 =
𝜔𝑎2

ℎ √
𝜌𝑓

𝐸1𝑓

 for square sandwich plate (L6a) with FG-

CNTRC core and PZT-4 face-sheet (a/h=10). 𝑁1 = 𝑁2 = 10 

CCCC 𝜔̅ 

𝑉𝑐𝑛𝑡
∗  FG-U FG- FG-V FG-♢ FG-X 

0.11 4.0264 4.0475 4.0475 4.0117 4.0540 

0.14 4.0936 4.1377 4.1377 4.0869 4.1339 

0.17 4.8601 4.9384 4.9384 4.8873 4.8998 

CFCF 𝜔̅ 

𝑉𝑐𝑛𝑡
∗  FG-U FG- FG-V FG-♢ FG-X 

0.11 2.8245 2.8517 2.8517 2.8153 2.8512 

0.14 2.8730 2.9302 2.9302 2.8793 2.9128 

0.17 3.4180 3.5164 3.5164 3.4716 3.4526 

SFSF (8) 𝜔̅ 

𝑉𝑐𝑛𝑡
∗  FG-U FG- FG-V FG-♢ FG-X 

0.11 2.3573 2.3450 2.3450 2.3329 2.3660 

0.14 2.4143 2.4099 2.4099 2.4034 2.4137 

0.17 2.8594 2.8426 2.8426 2.8236 2.8647 

SSSS (8) 𝜔̅ 

𝑉𝑐𝑛𝑡
∗  FG-U FG- FG-V FG-♢ FG-X 

0.11 3.5242 3.5279 3.5279 3.5295 3.5212 

0.14 3.5808 3.5901 3.5901 3.5934 3.5756 

0.17 4.1973 4.2088 4.2088 4.2139 4.1878 

 

4 Concluding Remarks 

In this work, the accuracy and reliability of the extended Refined Zigzag Theory (eRZT) are assessed for the analysis of 

bending, free vibration and buckling of functionally graded carbon nanotube-reinforced (FG-CNR) sandwich plates. For 

five different functionally graded topologies (FG-U, FG-V, FG-, FG-♢, FG-X), the mechanical properties of face-

sheets or core layers are derived using the extended rule of mixture (eROM). Then using the D’Alembert principle the 

governing equations for bending, free vibration and buckling are derived. Based on the Ritz method, a Matlab® software 

has been developed. First, a preliminary comparative study of convergence characteristics of Gramm-Schmidt (GS) 

orthogonal and non-orthogonal polynomials for static and dynamic analysis has been performed. The GS orthogonal 

polynomials functions appear to be the most performant and are used in this work. Rectangular and square sandwich 

plates with various boundary conditions and FG-CNTRC face-sheets (type A) or core (type B) have been considered. 

For static case, a comparison between eRZT and other theories such as CPT, FSDT with different shear correction 
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factors, Reddy’s TSDT and Pagano 3D exact elasticity solution are made. The numerical results show the capability of 

eRZT to accurately predict the bending, free vibration and buckling (under uni-axial, bi-axial compression and in-plane 

shear loads) behavior of sandwich plate respect other theories, especially Reddy’s TSDT. Subsequently, the effect of 

FG topology, CNTs volume fractions and boundary conditions has been investigated. In particular, numerical results for 

boundary conditions other than simply supported on all edges are really scarce in the open literature. Thus, with the aim 

to fill this gap, new cases are analyzed with different BCs, geometry and FG topologies. From the bending results, it is 

concluded that increasing the CNTs volume fraction and using an FG -V (for sandwich type A) or FG-X (for 

sandwich type B) increases the flexural stiffness and, consequently, decreases the maximum deflection; on the contrary, 

FG V- or FG-♢ topologies have the lowest stiffness. As expected, the BCs influence the sandwich stiffness; in fact, 

increasing the degree of constraint on the plate edges (CCCC>CFCF>SSSS) increases the plate bending stiffness. It is 

interesting to note that for a cantilever rectangular sandwich plate with FG-CNTRC face-sheets under uniform pressure, 

the effect of CNTs reinforcement distributions for bending stiffness is very evident, this is important to aeronautical 

structural aims. Various BCs, FG topologies and in-plane compressive loads are taken into consideration in analyzing 

the buckling loads of rectangular FG-CNTRC sandwich plates. Results of buckling loads show a very strong 

dependence between the stiffness of these FG-CNTRC sandwich plates and the BCs, in addition to the type of 

compressive loads (see, Tables 14 and 15). From the numerical results, it is evident how the highest values are obtained 

for FG -V typology sandwich and the lowest for FG V- topology.  Especially for in-plane shear buckling problem, 

the BCs and geometry of sandwich influence the buckling mode. Generally, the lowest buckling load parameters 

correspond to the first buckling mode, but the effect of BCs and loading type (i.e uni-axial, bi-axial compression or in-

plane shear load) leads to the lowest buckling parameter for buckling modes with either two or three half-waves. 

Wherein possible, a comparison with sandwich plate with piezoelectric face-sheets and FG-CNTR composite core is 

made. The eRZT results are very close to the 3D-Finite Layer Method used for these types of plates. As expected, in 

this analysis neglecting the initial membrane traction stress-state for the piezoelectric face-sheets results in lowest 

critical buckling loads. This effect, as we said, is stronger in thin FG-CNTRC sandwich plates than thick ones. Finally, 

the free vibration problem has been analyzed. A comparison between present eRZT and results of other theories, 

coming from open literature, is made. From a comparison with the results obtained using a kinematics based on HSAPT 

(see, Table 19), it is concluded that eRZT is very well suited to compute the natural frequencies and the modal shapes 

for different types of CNTs functionally graded face-sheet sandwich plates, while retaining its simplicity. The first 

natural frequencies are weakly dependent on the CNTs grading laws. In these cases, the most evident effects concerning 

the stiffness of sandwich plates are the BCs, the grading laws and the geometry. As expected, fully clamped BCs give 

the highest natural frequencies. FG X-X, FG -V and FG-X are preferred to others grading laws for their high flexural 
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stiffness, but in some combination of BCs, geometry and FG cases others CNTs arrangement might be considered, as 

for the bending case, the cantilever FG-CNTRC sandwich plate has the highest frequencies for the FG -V topology. 

The effect of BCs and CNTs topology for a sandwich with piezoelectric face-sheets is analysed and, as for the buckling 

problems, it is found a strong relationship between BCs and FG topology for moderately thick plates.  

In conclusion, this work shows the superior capability of eRZT to predict the global and local response for sandwich 

plates with different functionally graded CNTRC face-sheets (type A) or core (type B), boundary conditions and 

geometry. Moreover, a strong dependence among these parameters has been highlighted. It is concluded that the eRZT 

with Ritz method generally provides a valid tool for studying CNTRC sandwich plate. Last but not least, it should be 

noted that the implementation of eRZT in FEM codes requires only C0 shape functions.  

 

Appendix 

 

The Ritz method-Assumed trial functions 

As we said, in Ritz method the trial functions (also known as generalized functions) must be linearly independent and 

individually satisfy at least the kinematic boundary conditions, i.e., they must be a complete set of admissible functions. 

The choice of the admissible functions is a very important step because the convergence rate of the approximate 

solution depends on them. Commonly used admissible functions are polynomials, although there are examples where 

other types of admissible functions have been employed; for example, characteristic (modal shapes) functions of the 

problem of low order, i.e., modes of beam for the analysis of vibration of plates, Chebyshev polynomials and so on 

[32,100].  

In this research, simple polynomials and Gram-Schmidt (GS) orthogonal polynomials are used as generalized Ritz 

functions. The GS polynomials can accommodate various kinematic boundary conditions. Moreover, in our experience 

they present fast convergence characteristics when compared to other polynomial admissible functions. Moreover, 

being orthogonal, they yield a diagonal mass matrix. Here below the procedure for constructing such polynomials is 

summarized. 

Let ( )g  be the one-dimensional Gram-Schmidt polynomial with [ 1,1]  − ; the recurrence formula is  

( ) ( ) ( ) ( )1 1m m mm mg A g B g   + − − −              (m=1,2,…)                              (A.1) 

 

with   
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and 

 

( ) ( ) ( ) ( )1 2

0 1 1 20;         g g b b   
 

= =                                           (A.3) 

 

 

where in general 

 

 ( ) 0ib  =                                                                       (A.4) 

 

 

is the equation of the edge ith. For the one-dimensional problem at the hand, 

 

( )1 1b  = +    and   ( )2 1 .b  = −                                        (A.5) 

 

In Eq. (A.3) the values of the exponents depend on the boundary conditions: 0 if the function does not vanish, 1 if the 

function vanishes (for the problem at hand, see Table A.2).  

As usual, the two-dimensional admissible functions are written as a product of one-dimensional Gram-Schmidt 

polynomials. Thus, for the general unknown function (43), we write 

( ) ( ) ( ) ( )1 2 1 2 1

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 1

2
ˆ ( ) (, , ,)

= = =

= =  
P f R f M f

f f f f

pr p

f

r m m

p r m

t gf C gt C t g                         (A.6) 

with 

 

  ( ) ( )1m p R f r= − +                                                              (A.7) 

  

The first basis function is given by  

 

 ( ) ( )
( )

( )

1 1 1

1

2 2, ,
=



 =  
fl

j

n

j

f

jg                                                 (A.8) 

 

where 𝑛𝑙 gives the number of the plate edges (for qua adrilateral plate, 𝑛𝑙 = 4), 𝜒𝑗(𝜉1, 𝜉2) = 0 is the equations of the jth 

edge of the plate, the exponents Ω𝑗 are chosen such that the geometric (prescribed) boundary condition on the edge for 

the function ( )1 2, ,ˆ tf    be satisfied. 

For example, for the plate shown in fig. 1, the functions 𝜒𝑗(𝜉1, 𝜉2) are: 

 

 ( ) ( )1 1 2 1, 1= +    , ( ) ( )1 2 22 , 1= +    , ( ) ( )1 2 13 , 1= −    , ( ) ( )1 2 24 , 1= −     

Tables A.1 and A.2 give the prescribed (geometric) boundary conditions of eRZT (see, Ref. [88]) and  the 

corresponding exponents Ω𝑗
(𝑓)

, respectively. 

 

Table A.1- Prescribed (geometric) boundary conditions of eRZT. 
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Edge F ,  ,  ,  u w     free 

Edge 1 1=  SS  1 1 1 0;= = = =u w    2 2 2,  ,  u    free 

Edge 2 1=  SS  2 2 2 0;= = = =u w    1 1 1,  ,  u    free 

Edge C 0= = = =u w     

F=free, C= clamped, SS=simply supported 

 

 

 

Table A.2 – Exponents for the classical geometric boundary conditions. 

edge 1 1=  SS 
Ω𝑗

𝑢1 = Ω𝑗
𝜃1 = Ω𝑗

ψ1 = 0 

Ω𝑗
𝑢2 = Ω𝑗

𝜃2 = Ω𝑗
ψ2 = 1 

edge 2 1=  SS 
Ω𝑗

𝑢1 = Ω𝑗
𝜃1 = Ω𝑗

ψ1 = 1 

Ω𝑗
𝑢2 = Ω𝑗

𝜃2 = Ω𝑗
ψ2 = 0 

edge SS Ω𝑗
𝑤 = 1 

edge F Ω𝑗
𝑓

= 0 

edge C Ω𝑗
𝑓

= 1 
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