
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Building trust in autonomous vehicles: Role of virtual reality driving simulators in HMI design / Morra, Lia; Lamberti,
Fabrizio; Prattico', Filippo Gabriele; La Rosa, Salvatore; Montuschi, Paolo. - In: IEEE TRANSACTIONS ON VEHICULAR
TECHNOLOGY. - ISSN 0018-9545. - STAMPA. - 68:10(2019), pp. 9438-9450.

Original

Building trust in autonomous vehicles: Role of virtual reality driving simulators in HMI design

ieee

Publisher:

Published
DOI:10.1109/TVT.2019.2933601

Terms of use:
openAccess

Publisher copyright

copyright 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating .

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2746055 since: 2020-07-09T22:59:26Z

IEEE



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXXX XXXX 1

Building Trust in Autonomous Vehicles: Role of
Virtual Reality Driving Simulators in HMI Design

Lia Morra, Senior Member, IEEE, Fabrizio Lamberti, Senior Member, IEEE, F. Gabriele Pratticó,
Salvatore La Rosa, Paolo Montuschi, Fellow, IEEE

Abstract—The investigation of factors contributing at making
humans trust Autonomous Vehicles (AVs) will play a fundamental
role in the adoption of such technology. The user’s ability to
form a mental model of the AV, which is crucial to establish
trust, depends on effective user-vehicle communication; thus, the
importance of Human-Machine Interaction (HMI) is poised to
increase. In this work, we propose a methodology to validate
the user experience in AVs based on continuous, objective
information gathered from physiological signals, while the user
is immersed in a Virtual Reality-based driving simulation. We
applied this methodology to the design of a head-up display
interface delivering visual cues about the vehicle’ sensory and
planning systems. Through this approach, we obtained qualitative
and quantitative evidence that a complete picture of the vehicle’s
surrounding, despite the higher cognitive load, is conducive to a
less stressful experience. Moreover, after having been exposed to
a more informative interface, users involved in the study were
also more willing to test a real AV. The proposed methodology
could be extended by adjusting the simulation environment, the
HMI and/or the vehicle’s Artificial Intelligence modules to dig
into other aspects of the user experience.

Index Terms—autonomous vehicles, human-machine interac-
tion, driving simulator, user experience, virtual reality.

I. INTRODUCTION

MOST research efforts in the context of intelligent vehi-
cles (IVs) have been directed to improving safety and

effectiveness of vehicle’s control (autonomy) and vehicle-to-
vehicle coordination (connected vehicles) [1]. To fully reap
the benefits of autonomous driving (AD) systems, humans,
both drivers/passengers and pedestrians alike, will need to trust
their safety and reliability. Hence, there is an emerging need
to support effective and reassuring communication between
humans and IVs. Passengers need to feel confident, at all
times, that they have sufficient information about the state
of the vehicle, its environment and perceptions as well as its
planned and current behavior; even more, that they possess
all the appropriate information and means to take over all the
aspects regarding the operation of the vehicle in due time,
when needed, in a safe and appropriate manner.

Despite playing a crucial role in the uptake of any system
based on autonomous agents, including autonomous vehicles
(AVs), trust between humans and machines is generally hard
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to establish. According to a 2017 survey by the Pew Research
Center on “Automation in everyday life”, over half (56%) of
the Americans who were interviewed said they would not want
to ride in a driverless vehicle if given the opportunity [2].

However, preliminary experiments in the literature on par-
tially autonomous driving scenarios show that these negative
emotions can be reduced by adopting Human-Machine Inter-
action (HMI) designs that provide feedback about how the car
is acting (what automated activity it is undertaking) and the
reasons why the car is acting that way [3].

The role of HMI in IVs is thus profound and, for this reason,
user experience (UX) should be taken into large account
at any stage of the development process. By establishing
a collaborative relationship between drivers/passengers and
vehicles, HMI can positively affect the acceptance as well as
the technological advancement of AD solutions.

Unfortunately, the application of consolidated approaches
for UX design and evaluation to AD systems is not straight-
forward. For instance, focusing on the quantitative assessment
of a particular user interface design, techniques that measure
driver’s performance in specific driving tasks could not be
easily reused when, due to the specific level of automation,
there are no more drivers but passengers. Similarly, post-
experience questionnaires (alone) could be no more appropri-
ate when feedback to be collected concerns the huge amount
of aspects that may contribute to the perceived level of trust.
Even driving simulators that are used today for developing
vehicle’s intelligent behaviors may not be directly applied to
UX studies, as focus would have to be shifted, e.g., on the
vehicle’s interior and on interaction with it, rather than on
the fidelity of external factors affecting its decisions (traffic,
presence of pedestrians, etc.).

By moving from the above considerations, in this paper we
present a methodology that is meant to support the study of
HMI with IVs, and we show its helpfulness in the evaluation
of the passengers’ level of trust by considering the design of
a possible interface for AD systems.

The devised methodology relies on a simulation platform
based on immersive Virtual Reality (VR), which was devel-
oped by grounding on an existing driving simulator. Although,
in principle, the technology is applicable to many scenarios,
from unassisted to fully autonomous systems, we focused on
L4 and L5 automation levels, as they represent the configura-
tions for which characterizing the passenger’s experience from
the point of view of comfort and trust is more challenging.
We therefore created a virtual AD system that allows users
to experience a simulated ride in a virtual urban environment,
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facing a number of different situations.
For the assessment of the UX, we consider both cognitive

and affective factors, by integrating feedback based on subjec-
tive post-experience questionnaires with continuous, objective
information gathered from physiological signals. In particular,
in this paper we focused on stress level measurements to
investigate the perceived degree of safety and “connection”
with the vehicle. Notwithstanding, the proposed methodology
has been designed in a way to support later extensions for the
detection of other emotional states. It is worth observing that,
thanks to its immersive nature, VR allows to measure the latter
state much more realistically than other traditional simulation
scenarios [4].

With the aim to evaluate the suitability of the proposed
approach, the methodology was applied to the design of a
head-up display (HUD)-based interface for AVs that provides
visual cues about the vehicle’ sensory and planning systems.
As said, providing information about how and why the car is
acting is crucial to elicit trust in AVs, but little experimental
evidence is available to determine how such information is best
presented to the passengers [5], [6]. By applying our approach
to the above scenario, we obtained qualitative and quantitative
proofs that a complete picture of the vehicle’s surrounding,
despite the higher cognitive load, is conducive to a less
stressful experience. Moreover, after having been exposed to
an interface delivering a higher information content, users
involved in the study were also more willing to test a real
AD system.

Besides offering interesting insights that may drive future
HMI designs, the results confirm the effectiveness of the
proposed methodology in digging into a use case that well
represents possible facets of the UX which could be investi-
gated through the experimented techniques.

II. BACKGROUND AND RELATED WORK

A. HMI in Partially and Fully Automated Vehicles

Establishing trust is important in order for users to accept,
and even rely on, automated systems. Mcknight & Chervany
[7] have identified three constructs necessary to increase trust:
ability, benevolence, and integrity. When the trustee is an
autonomous system, these factors translate in the system’s
performance and skillful execution, into the sharing of a
common purpose with the user, and into the implementation
of a reliable and consistent process. Trust is thus established
through direct observation of the system’s behavior and its
underlying mechanisms. Lee & See observed that “Trust that
is based on an understanding of the motives of the agent will
be less fragile than trust that is based on the principle of
reliability of the agent” [8]. In the context of AD systems,
HMI plays a fundamental role in this respect, by providing
information about the vehicle’s performance. In fact, partially
automated vehicles on the market allow the driver to monitor
the status of the car’s components. User interfaces are designed
to increase the perceived ability of the system and to support
predictability, thus inducing trust.

In recent years, a study by Ekman and colleagues provided a
systematic review of HMI design principles that promote trust

in AD systems [9]. The authors distinguish a learning phase,
that starts with the first interaction and lasts until the user is
familiar with the AD systems, from the performance phase,
which takes into account a long-term use perspective. During a
testing simulation, it can be argued that the learning phase is
most important, although its specific duration differs on an
individual basis. In the performance phase, trust is mainly
based on the performance and dependability of the system,
and is fairly stable unless an error or unexpected event occurs;
in the learning phase, it is the user’s ability to form a mental
model of the AD systems that is crucial to form a trust bond.

Hence, in this work we focused our attention specifically
on the four factors that, according to [9], are more relevant
for the learning phase: mental model, the ability to form
an approximate representation of the AD system’s skills
and functions; the system’s proneness to be perceived as an
expert/reputable agent; the possibility to provide continuous
feedback to the user, ideally addressing two or more senses;
finally, the provision of how and why information regarding
upcoming actions. In this context, a “how” message describes
how the system solves a given task, whereas a “why” message
pertains to the motivations that lead to the task itself.

A limited number of experimental studies have, so far, es-
tablished that providing information to the driver/user usually
increases driving performance and acceptability in partially
[3], [10], [11] and fully automated driving systems [6]. For
instance, Verberne et al. [10] found that Adaptive Cruise
Control (ACC) systems that share the same drivers’ objectives,
like the adoption of a relaxed and safe driving style without
sudden braking and accelerations, while at the same time
providing information to the user, are considered more reliable
and acceptable. Koo et al. [3] explored the effect of providing
“how” and “why” information in the context of an auto-
braking system. Providing both the information types resulted
in the safest driving behavior, at the expense, however, of a
high cognitive load and decreased acceptability. Drivers pre-
ferred receiving only “why” information, whereas the “how”
information was often perceived as redundant. The interfaces
considered in these studies were very simple compared to the
technical possibilities of current user interfaces: they consisted
of brief verbal messages, with no visual cues [3], or included
only information on the position of obstacles [6].

It is important to consider not only which information is
provided to the users, but also how it is conveyed. The visual
mode is the primary and most widely used among the vehicle
interfaces, and represents the most consistent communication
channel. In-vehicle display devices can be grouped in three
categories: head-down displays (HDDs), head-up displays
(HUDs), and head-mounted displays (HMDs). HDDs offer the
advantage of not blocking the view of the real world for the
users, who, however, find themselves distracting from the road.
HUDs make it possible to take advantage of the necessary
information while keeping an eye on the external environment,
but pose significant construction challenges. HMDs share the
advantages of HUDs, but only a few devices are available on
the market, which suffer from some usability issues (especially
for in-vehicle applications).

Studies have consistently shown that HUDs result in a better
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TABLE I
INFORMATION DISPLAYED BY COMMERCIAL HUD CONCEPTS AND

DEMONSTRATION VIDEOS.

AR-HUD Displayed information
Continental AR-HUD
Concept

Lane Departure Warning System (LDWS),
Assisted Navigation, Adaptive Cruise Con-
trol (ACC)

Hyudai AR-HUD Concept Traffic lights, Assisted Navigation, LKA,
ACC

PSA group AR-HUD con-
cept

Assisted Navigation, LKA, ACC, Pedestri-
ans, Approaching obstacle warning

Daqri AR-HUD Concept Assisted Navigation, Lane Keep Assistance
(LKA), Lane Control, ACC, Approaching
obstacle warning, Children crossing, Pedes-
trians

WayRay Holographic AR
Display concept

Assisted Navigation

Waymo Demo video Traffic signs, Cars, Pedestrians, Cyclists
(bounding boxes and colored overlays with
distance and speed information), Motion
Prediction, Assisted Navigation

NVIDIA Drive AGX Traffic signs, Cars, Traffic lights, Lanes,
Pedestrians, Cyclists (bounding boxes with
distance information), Motion Prediction,
Lane separation lines, Route planning data

driving experience and performance than HDDs, leading to
shorter reaction times [12], decreased cognitive load [13], and
fewer driving errors [5], [14]; HUDs are also preferred by
users against both HDDs and HMDs [5]. Augmented Reality
HUDs (AR-HUDs) have been found especially effective in
increasing the driver’s intuitive cognition [15] and promoting
a safer and more effective driving behavior, particularly in
demanding driving situations [16], [17].

Given the technical difficulties in realizing AR-HUDs, cur-
rent displays often come in the form of prototypes, concepts or
demonstration videos. Examples in the literature often focus
on specific aspects of the driving experience, such as driver
assistance (DA) [5] and obstacle detection [6]. Many com-
mercial prototypes focus on partially automated systems that
extend current DA solutions, whereas Waymo and NVIDIA
are more directly focused on L4 and L5 automation.

Information displayed by the main commercial solutions
is reported in Table I. A tendency to adopt a common set
of symbols and metaphors can be observed among vendors.
For instance, information related to ACC and Lane Keep
Assistance functionalities, such as the current lane, speed, and
the position and speed of preceding cars are displayed by
Continental, Hyundai, PSA, and Daqri. Waymo and NVIDIA
include richer information on both the path planning and
the sensory capabilities of the vehicle. Through bounding
boxes (i.e., parallelepipeds enclosing detected objects), colored
overlays and other elements, all the factors involved in driving
are highlighted. In addition, navigation information is added
not only for the user’s vehicle, but also related to other cars,
pedestrians or cyclists through motion prediction.

B. Measuring User Experience in Driving Simulators

Researchers have for long time relied on driving simulators
to cope with difficulties and risks associated with field testing
[18]. In recent years, VR simulators have elicited a lot of
interest thanks to their immersive nature [5], [13], [19], [20].

Most studies investigating different aspects of driving in
simulated scenarios, including HMI design [5], [21], rely
on drivers’ behavior and performance as a proxy for their
emotional and cognitive status [3], [12], [22]. Experimental
measures include standardized questionnaires as well as indi-
cators such as driving speed, lane keeping, braking patterns,
etc., for which absolute or relative validity has been generally
established [22]. However, in AD systems, humans are ex-
pected to take progressively less part in driving, which makes
behavioral assessment less relevant.

Physiological signals are increasingly used to measure
users’ affective and cognitive states in engineering in general
[23]. The activity of the autonomic nervous system, which reg-
ulates affective states, can be captured non-invasively through
signals such as Heart Rate (HR) and Electrocardiography
(ECG), Electromyography (EMG), Respiratory Rate, and Gal-
vanic Skin Response (GSR). In the last years, researchers also
investigated their use combined with traditional or immersive
driving simulators [4], [22], [24].

In particular, the relative validity of physiological signals for
traditional driving simulators is supported by several studies,
albeit available data is less abundant than for driving perfor-
mance [4], [22], [25]. For instance, risk perception was found
to be highly correlated with changes in GSR [22]. Comparison
between on-road and simulated driving conditions established
the relative validity for mean HR and mean oxygen consump-
tion, although HR values observed in real driving conditions
were higher, probably due to the increased stress associated
with driving on a real road [25]. In a pilot study, Eudeave
and colleagues found that the physiological response in an
immersive VR environment is stronger than in a traditional
driving simulator [4].

Recording of physiological signals have also been exploited
in real-life driving conditions to characterize drivers’ perfor-
mance and experience, from measuring stress levels to detect-
ing drivers’ drowsiness [26], [27]. Of particular interest is the
study of Healey and colleagues on driving-related stress [26].
ECG, EMG and GSR were recorded while drivers followed
a set route; driving sessions were videotaped and visually
inspected for observable stress-induced actions, such as head
turning, to be used as reference standard. Collected signals
allowed the authors to distinguish different levels of stress
with high accuracy (over 97% across multiple drivers); GSR
and HR metrics were most closely correlated with drivers’
stress level. Again, studies have been conducted, so far, from
the point of view of an active driver, leaving the question
open on whether stress-induced changes can be equally and
as effectively observed in passengers.

III. PROPOSED METHODOLOGY

A. Overview

As discussed in Section II-A, trust in automated systems
can be achieved from direct observation of system’s behavior,
coupled with an understanding of the underlying mechanisms.
To this aim, as depicted in Fig. 1, the devised methodology
relies on a VR-based AV simulator. Simulation allows the
user to get immersed in repeatable scenarios including a
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Motion Platform

Vehicle Simulation Driving ScenarioVR Simulation

HMI Design

Subjective Feedback       

Quantitative Feedback

Fig. 1. Proposed methodology: exemplification on the task of HMI design. A defined AV driving scenario is simulated in immersive VR. Vehicle simulation
is based on the open source GENIVI platform. The simulator is integrated with a motion platform to further foster immersion. User’s feedback is collected
through both subjective, offline questionnaires, and objective, real-time physiologic measurements reflecting cognitive and affective states.

variety of both ordinary and emotional-intensive events. User
is provided with insights on the autonomous system’s behavior
by means of a virtual AR-HUD combined with additional
audio cues. In this way, we postulate that the user can form
an adequate mental model of the AD system. Assessment
is performed by collecting feedback from the user in the
form of subjective (questionnaire-based) ratings and objective
(physiological signal-based) measurements.

B. Technology and Setup

The VR system is implemented using the HTC Vive eco-
system (https://www.vive.com/eu/product/), by HTC Corpora-
tion, Taiwan. The Vive VR Headset features a resolution of
1080×1200 pixels per eye spanning a horizontal 110◦ FOV at
90Hz. The native positional tracking leverages the IR lasers
emitted from the Vive Base stations (built upon the Valve’s
Lighthouse technology) which, combined with headset’s built-
in sensors, enables a 6 DOF outside-in tracking of the user’s
head.

With the aim to foster immersion through the simulation of
the motion stimuli that a driver or passenger would experience
on a real vehicle, an inertial motion platform is used. The plat-
form exploited in this work is the Atomic A3 Racing, designed
by Atomic Motion Systems, which supports 2 DOFs (yaw
and pitch) motion simulation. To simulate the user’s perceived
accelerations, the so-called tilt coordination motion simulation
strategy [7] was implemented. In short, this technique works
by imitating the perceived acceleration via decomposition of
the gravity acceleration vector, obtained through a coherent
rotation of the platform. A motion compensation needs to be
applied to the VR coordinate system (which is centered in
the headset, i.e., in the user’s viewpoint), based on current
platform’s rotation. To this purpose, a Vive Tracker was
mounted on the seat and tracked together with the headset.

Finally, since it has been proved that letting the user see his
or her hands in the virtual environment increases the sense of
presence [28], a virtual replica of the user’s hands including
articulated fingers is created by tracking them using a Leap
Motion Controller device attached to the headset.

C. AV Driving Simulator

The vehicle simulator implemented is based on the open
source Simulator Vehicle project by the GENIVI Alliance [29]
(in the following simply referred to as GENIVI, for brevity).
GENIVI was selected among several possible alternatives for
multiple reasons: it was originally created to support HMI
design; it allows, by design, the addition of new features; it
already provides modules for intelligent traffic simulation; it
includes a basic auto drive functionality for the user’s vehicle;
it provides a few driving scenes and vehicles with their own
rigid body physics-based controller.

The main activities carried out to adapt GENIVI to the
purposes of this work involved: porting of available features
to VR; integration of the motion platform; implementation of
a custom AD controller. The latter activity was considered as
necessary since, in a preliminary study, the built-in controller
was judged not realistic enough, especially when dealing
with complex, unpredictable events (e.g., sudden pedestrian
crossing, etc.).

1) VR porting: Implementing the support for VR was
facilitated by the fact that GENIVI is based on the Unity
game engine, which natively allows for the creation of VR
applications for the HTC Vive. Our implementation allows to
virtual accommodate the user to any seat of the virtual vehicle.
Built-in vehicles, namely a Land Rover L405 and a Jaguar XJ,
are designed for a non-immersive simulation. Hence, a new
vehicle was created with VR-based interaction in mind, i.e.,
by focusing on visual fidelity of the vehicle’s interior. Finally,
support for users’ virtual hands was added.

2) Motion platform integration: to integrate the motion
platform, an additional software module was developed. The
module receives in input the acceleration values calculated
in the seat’s tracked point by the physics simulation engine
and outputs it to the proprietary platform’s driver (AMS
Symphinity), which remaps them to coherent tilt and pitch
angles and consequently applies them to the platform. Other
motion platforms may be integrated in a similar way.

3) AV simulation: within this work, our aim was to provide
a methodology to study the considered domain using simulated
VR-based scenarios, accompanied by suitable measurement
tools, rather than contribute to the advancement of the state of
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the art of AVs’ control sub-systems. Basic AD functionality
available in GENIVI was therefore extended to make it cope
with situations of interest. Attention was focused on re-
producibility, while preserving simplicity. More sophisticated
implementations, leveraging, e.g., data provided by vehicle’s
virtual sensors could nonetheless by integrated in the future.

Our implementation takes advantage of the native trajectory
system, which is used in GENIVI to manage the traffic. Paths
to follow are embedded in the scene description using a
complex network of waypoints. The developed AD system
relies on it to feed a PID-based controller, which is in charge
of driving the vehicle by making it accelerate, brake, and
steer. Differently than with the other cars in the traffic, the
AD system is affected by the full set of accurate, rigid body
physics simulation variables. The PID was fine-tuned in closed
loop using manual parameter adjustment targeting a maximum
overshooting of 5% at step response, in order to achieve
a comfortable and realistic behavior. To this aim, control
commands shaping and auxiliary waypoints were also used.
Although different and far more sophisticated approaches
could be investigated in the future (e.g., [30]), the selected
control system proved to meet the simplicity-effectiveness
trade-off required to cope with the issues tackled in this
work. Appropriateness of the pursued approach was also
confirmed by subjective observations concerning simulation
quality (Section IV-E and Supplemental material).

The same approach was pursued also to bind specific
vehicle’s reactions to the pre-programmed events. Obstacle
avoidance is handled by a dedicated logic, which also takes
into account trajectory replanning when the obstacle cannot
be avoided by simply adjusting vehicle’s speed. For moving
obstacles, replanning takes into account predicted motion.
Further details on the implementation can be found in [31].

D. HUD Design
Based on the principles discussed in Section II-A, an in-

vehicle user interface should continuously provide feedback
addressing, whenever possible multiple senses, highlighting
“why” information that explains the vehicle’s choices, and
adopting a pleasant and effective communication style that
presents the system as a skilled/reputable driver. These ele-
ments, while important in general, are particularly relevant in
the initial learning phase, where the user is still unfamiliar
with the AD system and needs to form an appropriate mental
model of its inner mechanisms [9]. As it will be illustrated
in more detail in Section IV, subjects who participated in our
study were never exposed to a real AD system. An AR-HUD
was therefore designed, as it was found in the literature to be
the most effective interface under the considered conditions.

It was deemed as important to ensure that visual cues
displayed by the AR-HUD are consistent with information
conveyed by commercial DA products, as users are mostly
familiar with it. However, it was regarded as crucial to provide
also information that illustrate the vehicle’s sensory capa-
bilities and hence, improve the user’s situational awareness.
Finally, given this work’s focus on L4 and L5 AD systems,
information about the vehicle’s planning functionalities needed
to be delivered as well.

Design was based on the features reported in Table I. The
HUD is capable to display information about all the relevant
elements in the surrounding environment, including both static
objects (trees, lighting poles, parked cars, traffic lights, road
signs, etc.) and dynamic objects (pedestrians, animals or other
cars). These elements are provided together with distance
information in meters from the vehicle, absolute speed when
available, and a visual warning status indicator. Lane keeping
and navigation cues for the user’s vehicle and other cars
(assuming that they are connected) are also considered. The
color of each car is randomly assigned by GENIVI.

Objects of interests are identified by means of a bounding
box. This metaphor, previously validated in the literature
[17], is adopted by commercial players such as Waymo and
NVIDIA. In our implementation, each bounding box has a
white outline and is associated with a label and an icon identi-
fying the detected object, thus satisfying the usability principle
which suggests that the adopted representation must be simple
and intuitively understandable by the user [32]; the use of
familiar cues, such as icons, also reduces the cognitive load in
the presence of a large amount of information [33]. Bounding
boxes are automatically generated in VR knowing the position,
size and pose of all objects in the scene. Technically, this
was implemented in Unity by associating to all objects with a
Collider component a visible colored material. The Colliders
are not visible by default in the rendering step because just
define the bounding volume of an object for the purposes
of identifying physical collisions through the physics engine.
Labels always face the vehicle and are, therefore, readable by
the user.

In order to determine which situations constitute a potential
danger, we relied on the definition from the ISO 15623
standard on “Forward vehicle collision warning systems” [34],
counting on a previous study by Sebastian et al [35]. A
mathematical model is used to determine potential collisions
based on the trajectory, speed and acceleration of the vehicle,
as well as that of potential obstacles (e.g., the preceding car).
Once the possibility of a collision has been established, a
safety distance is calculated, which depends on the speed of
the vehicle and the reaction time of the driver, which was
estimated based on the study in [36]. The distance between the
vehicle and the estimated collision point is therefore measured:
if this distance is less than the safety distance, the passenger
needs to be warned of the potential danger. We therefore
defined a hazard index, ranging from 0 to 1 and calculated
as the ratio between the distance from the obstacle and the
warning distance defined in [35].

The objects’ warning status is presented through both visual
and auditory cues. In the literature, the AR-based DA system in
[37] adopted an intuitive color code in which the severity of the
danger of an obstacle detected on the road is shown by means
of a color code that starts from the green (safety) and extends
up to the red (maximum state of danger). This color coding is
consistent with systems reviewed in Section II-A. Therefore,
we decided to color-code the hazard index with a green to red
gradient and use it to visually represent the warning status of
the detected object by controlling the transparency color of
the bounding box. The color-code value is computed using a
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perception-based equation, where the hazard index is used as
exponential factor.

To signal potential dangers, the label associated with the
bounding box flashes as well, so as to direct the user’s attention
towards the obstacle. Flashing is used in DA systems by
various vendors [38], [39]. It is important to underline that,
through the flashing information, the vehicle communicates to
the user why it is about to perform a specific action [9]. The
flashing visual cue, at a lower frequency, is also used to notify
the user of a road sign or traffic light. Flashing occurs when
a traffic light changes or when a new road sign is recognized.
The lower frequency reduces the sense of alarm and, hence,
allows the user to distinguish normal driving operations from
high-risk situations.

An immediate danger is also marked by a sound alert [34],
[40]. This is consistent with current DA systems, which pro-
duce audible warnings, e.g., in emergency braking conditions
[39]. A more pleasant sound is played when road signs are
detected, to capture the user’s attention in an unalarming way.

Two variants of the HUD were designed, which in the
following are referred to as omni-comprehensive (OMN) and
selective (SEL).

1) Omni-comprehensive HUD: in the OMN variant, we
show information about all dynamic elements (cars and pedes-
trians) within a “detection” diameter which is set to 150 me-
ters. This threshold was firstly motivated by practical reasons:
virtual objects beyond this distance would be too small to be
appreciated considering the resolution of the display in the VR
headset. This distance is also compatible with the equipment
of current AD prototypes and the detection range of LiDAR
systems. Road signs and traffic lights are always shown in the
interface, except for those that regulate road sections different
than the one the vehicle is currently on. Furthermore, it was
decided to exclude from the display the information about
static objects such as trees, parked cars, lighting poles, etc.
unless they become dangerous. This exclusion is motivated
by the principle of cognitive load, according to which an
interface should be easily understandable by the user, simple
and intuitive, as it avoids excessive cluttering [32].

2) Selective HUD: in the SEL variant, only information
that is deemed of specific interest to the user is displayed.
The guiding principle was to select information that pertains
to those elements of the environment that, at any given point,
affect the behavior of the AD system. Let us consider road
signs: the vehicle detects all road signs within the diameter
of interest, but not all of them are necessarily useful at the
time. For example, in the presence of a pedestrian crossing
sign and a speed limit sign, the vehicle may decide not to
show any information on the former sign, based on the fact
that, at the moment, there is no pedestrian intending to cross;
the latter sign may force the vehicle to slow down and, thus, it
would be highlighted in the interface. More specifically, in the
SEL variant only cars that precede the current vehicle or, more
generally, that intersect its current trajectory, are highlighted
with a bounding box. Pedestrians and other static or moving
objects are identified only if and when they become dangerous,
i.e., when a collision becomes possible. Navigation lines for
other cars are only displayed when assessed by the vehicle

(a) OMN

(b) SEL

Fig. 2. Comparison between the OMN (a) and SEL (b) AR-HUD interfaces.

(e.g., at intersections to determine priority). Traffic lights
information, as well as tracing of the vehicle’s navigation
line and the road center line, are unchanged in this variant.
A comparison of the two interfaces is provided in Fig. 2.

E. Simulated Scenario

In order to create a relationship of trust between a user
and an AD system, the latter must show its ability in dealing
with different driving scenarios [8]. Our simulated scenario is
constructed to include a variety of different situations, both
ordinary and challenging, that may occur in an urban setting.
The urban setting is, in general, considered the most difficult
to manage by AVs [41]. In fact, current L2 and L3 automated
systems are mostly restricted to motorways and extra-urban
routes, and the biggest challenge in the development of L4
and L5 systems is represented precisely by urban areas where
significantly more factors are at play, driving conditions are
far less predictable, and the presence of pedestrians amplifies
the perceived risk.

Compared to real-life driving, simulators offer the distinc-
tive advantage of creating repeatable scenarios, where most
experimental factors can be easily controlled. Therefore, it is
possible to study and compare subjects’ reaction to individual
events, whereas in real-life driving experiences one would be
mostly restricted to consider overall measures [25], [26].

The simulation was created starting from one of the scenes
included in the GENIVI platform, representing a miniature
version of the city of San Francisco. As said, despite the
basic auto drive functionality, GENIVI is natively meant to
support mostly first-person driving experiences, with random
traffic patterns, no pedestrians and no intentionally hazardous
situations. By leveraging the developed AD capabilities and
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the integrated waypoint system, different situations were em-
bedded in the simulated scenario in order to showcase different
AD abilities and elicit changes in the subjects’ affective
state. Considered abilities include: interacting with traffic and
especially with other cars, e.g., maintaining safety distance,
overtaking, etc.; handling road signs and traffic lights; avoiding
obstacles and dealing with other potentially dangerous situa-
tions, including those where other cars or pedestrians do not
behave correctly.

The subject is seated in the passenger’s position (front
right). The experience begins in an area with a relatively
simple environment and little traffic, to allow the user to
familiarize with the AD system. Then, the environment be-
comes populated by cars and pedestrians: the subject becomes
familiar with the HUD and the way information is conveyed
by the vehicle. Afterwards, riskier situations occur in which
the vehicle can show its decision-making skills. In [8], it was
observed that “If trust is primarily based on rules that char-
acterize performance during normal situations, then abnormal
situations might lead to the collapse of trust”. This strengthens
the importance of including driving situations that, while less
likely, may pose significant challenges for an AD system. To
simulate a typical urban context, such situations were spaced
throughout the simulation and alternated with ordinary ones,
as illustrated in Fig. 3. After every risky situation, the car
stops for few seconds, to ensure that the subject has enough
time to understand what happened and to reflect on how the car
handled that situation. Considering the time for letting subjects
get acquainted with the system as well as the time required
to achieve a suitable distribution of situations, the duration of
the simulated scenario was set to 12 minutes.

Simulated events include the sudden crossing of a dog
(Dog), a child on the sidewalk throwing a ball on the street
(Ball), scooters and cars that split lanes while driving (Scooter,
Car1 and Car2), as well as pedestrians crossing the street
(Man1 and Man2). Illustrative frames are reported in Fig. 3.
The Dog event corresponds to a highly hazardous situation,
in which the vehicle is forced not only to slow down, but
also to steer in the opposite direction to avoid a collision.
The same happens in the Ball and in the Man2 events (in
the latter case, a pedestrian crosses outside of a designated
crosswalk while the car is at full speed). Man1 is a less risky
situation, as the car is approaching a red light and is already
braking when the pedestrian starts crossing. In the Scooter
event, the vehicle slows down as the preceding car turns right;
in the meanwhile, a scooter enters the lane from the left.
The situation is not particularly dangerous, as the vehicle was
already reducing its speed to deal with traffic jam; however,
from the viewpoint of vehicle-to-human communication, this
interaction is complicated as it involves several vehicles. In the
Car1 event, a car suddenly changes its lane when approaching
road construction (which is poorly visible), forcing the vehicle
to quickly reduce its speed to avoid a collision. The Car2 event
is even riskier, as another car driving on the intersecting road
does not stop at a red traffic light and instead passes at full
speed, forcing the vehicle to brake very abruptly.

Two videos showing the simulated scenario with the OMN
and the SEL interfaces are available at http://tiny.cc/p4v16y.

Ball

Dog Car1

Scooter

Car2

Man1

Man2

Start End

Ball

Dog

Scooter

Car2

Man1

Man2

Start

End

Car1

Fig. 3. Timeline of the test scenario with simulated events.

F. Galvanic Skin Response

As discussed in Section II-B, physiological signals related to
the activity of the autonomic nervous system can provide non-
invasive information about the user’s affective state. While,
in principle, a combination of different signals can be used,
for the sake of simplicity in this work we focus on the GSR
signal, which was found to effectively detect stress in both
simulated and real-life driving [22], [26]. Furthermore, it is
easily measured with a simple sensor placed on the fingers
[23]. GSR is mostly sensitive to the dimension of arousal,
going from sleepiness to excitement or stress [42]; it leaves
open whether the arousal change is of a positive or negative
nature (the valence dimension), which nonetheless in our
specific case can be derived from the context.

The GSR can be decomposed into a slowly changing
tonic component, the Skin Conduction Level (SCL), and an
impulsive phasic component, the Skin Conductance Response
(SCR) [42]. While the SCL reflects the overall emotional state
as well as habituation to the environment, the SCR measures
activation in response to a stimulus, e.g., a potentially stressful
event occurring in the simulated scenario. The magnitude of
the response should correlate to the perceived threat. This
phenomenon was previously validated in other types of VR
environments [43], with an observable effect on the GSR
signal even after multiple exposures.

1) Signal processing: the SCR data was extracted using a
3rd order Butterworth band-pass filter ranging from 0.16 Hz
to 2.1 Hz [27], [42]. Normalization is required to account for
the intrinsic inter-individual differences in skin conductance
[23]. The most common choices are z-score standardization,
in which the signal is divided by the standard deviation after
subtracting the mean, and min-max normalization, in which the
signal is normalized between 0 and 1. We found that the min-
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max scaled signal was most useful for visualization purposes
and trend analysis, whereas z-score normalization could be
used for the final feature extraction as we observed less inter-
subject variability. Considering the fact that, typically, SCR
peaks appear between 1 and 5 seconds from the stimulus’s
onset and last for about 10 seconds, we extracted the SCR
waveform for a time window of ±10s centered on each event
[44], [45]. Within each window, all samples are divided by the
initial signal value, to focus on relative changes.

2) Feature extraction: for each event time window, a set of
features is extracted [44]. Let ˆGSR(k, j, i) be the z-score stan-
dardized data value for subject k, event j and sample at time i,
SCR(k, j, i) the corresponding filtered signal representing the
skin conductance response, and L the total number of samples
per time window. Features extracted include the mean GSR
(Eq. 1), the accumulated GSR (Eq. 2), the max GSR (Eq. 3,
and the Peak to Peak distance in SCR (Eq. 4). Each feature is
calculated on the 10s before (Pre) and the 10s after (Post) the
test event, and the difference (∆) is used as the final measure.

GSRmean(k, j) =

∑L
i=0

ˆGSR(k, j, i)

L
(1)

GSRAcc(k, j) =

L∑
i=0

ˆGSR(k, j, i) (2)

Max(k, j) = max
i

(
ˆGSR(k, j, i)

)
(3)

P2P (k, j) = max
i

(
SCR(k, j, i)

)
− min

i

(
SCR(k, j, i)

)
(4)

G. Questionnaire

Subjective data about the experience can be collected
through questionnaires. The questionnaire that we designed
tackles factors affecting trust and, in general, HMI effective-
ness [9]. Specific sections were included to test each of these
factors. The questionnaire includes both general questions, that
could be re-used across different driving scenarios, as well as
questions that are more specific to HMI and to the simulated
scenario. We focused our attention on those aspects that
are more relevant for establishing trust in an initial learning
phase, where the user gets acquainted with the system. When
possible, questions were mutuated from validated tools such
as Simulator Sickness Questionnaire (SSQ) [46], the Situation
Awareness Rating Technique (SART) [47] and the NASA Task
Load Index (NASA-TLX) [48]. Questions were organized in
the following sections.

1) Health status: VR systems may induce motion sickness
and other side effects: to avoid biases, health status is collected
before and after the experience using the SSQ tool.

2) System competence: Inspired by standard questions for
the evaluation of trust in human-robot interaction (HRI), this
section evaluates the perceived system’s competence across the
range of driving situations explored in the simulation [49].

3) Reaction to test events: For each test event, the user is
asked to rate four statements: 1) The situation was dangerous,
2) The event took me by surprise, 3) I was able to see the
potential danger before it affected the vehicle’s performance,
and 4) The interface provided me useful information to foresee
the event. These questions provide complementary information

to the physiological signals and disentangle the effect of the
specific event from the HMI.

4) Situational awareness: This section was inspired by the
SART tool, focusing on dimensions (quality, quantity and fa-
miliarity) that pertain to comprehensibility. Here, quality refers
to the usefulness with respect to clarifying system’s intentions.
Quality and quantity were evaluated for each element of the
HMI, e.g., bounding boxes, navigation lines, etc.

5) Cognitive load: This section was adapted from the
NASA-TLX evaluation tool.

6) Overall user experience: This section investigates gen-
eral aspects regarding the mental model, and is concluded
with a direct question about trust. Predisposition towards
participating in an AD experience was also assessed before
and after the simulation.

7) Immersion and presence: Immersion, presence and sim-
ulation fidelity were evaluated by adapting the relevant sec-
tions from the VRUSE questionnaire [50], an established
technique to measure usability of VR applications.

All questions were in Italian and had to be rated on a 1–5
Likert scale. Sections Reaction to test events and Situational
awareness included snapshots of the test events and the HMI
elements, respectively; the questionnaire was adapted for each
test group with snapshots from the specific HUD version.
The complete questionnaire (SEL version) is available at
https://forms.gle/CpSYZc729fho7gy86.

IV. EXPERIMENTS

A. Data Acquisition

Healthy individuals (e.g. with no impairing chronic or
acute illnesses at the time of the acquisition) with a valid
driving license were recruited to participate in the virtual
driving experiment. Participation was voluntary and no mon-
etary compensation was provided. Study participants were
randomly assigned to either the OMN or SEL HUD group.
All acquisitions were performed within one week.

The test phase began for each subject with a brief explana-
tion of the test session. Health status, demographic information
and general disposition towards AD systems were collected
before starting the simulation. Two baseline signals were also
acquired: one minute at rest, and one minute after placing the
VR headset. After the simulation, the final questionnaire was
administered and the experience debriefed.

The GSR was recorded through an ad-hoc device based on
the Groove GSR Sensor [51] and a Raspberry Pi 3 board.
The acquisition module was implemented in Python. An
external Analog to Digital Converter (MCP3008 [52]) was
used to connect the output of the sensor to the board via the
Raspberry’s Serial Peripheral Interface (SPI). The sampling
frequency was set to 256 Hz in order to separate the two
components of the GSR signal [44]. Due to inter-subject
variability, the GSR may saturate during the analog to digital
conversion: therefore, during the initial baseline acquisition,
the converter was manually calibrated by adjusting the resistor
until the output fell in the 200–512 a.u. range. The sensors
were applied on the fingers of the non-dominant hand, after
washing the hands. Postprocessing and feature extraction was

https://forms.gle/CpSYZc729fho7gy86
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implemented in Python 3.6.5 and the SciPy library for filtering;
all calculations were performed on an HP Pavilion, Intel Core
i5-3230M CPU.

B. Statistical Analysis

A two-way factorial Analysis of Variance (ANOVA) was
conducted to examine the main effect of HUD as well as the
interaction effect between event and HUD type on each GSR
feature. A mixed design was employed with the HUD type as
the between-groups factor and the event as the within-subjects
factor. Post-hoc comparison between the different events and
HUD types was performed applying Bonferroni correction.

Questionnaire data was analyzed separately for each group
of questions. Event-related questions were analyzed using a
two-way factorial ANOVA, using the same design of the
GSR feature. Outcomes of the other questions were compared
between the OMN and SEL groups using the Mann-Whitney
U-test for categorical data. A p-value of .05 or lower was
considered to indicate a statistically significant difference.
Statistical analysis was performed using SPSS v20, whereas
signal analysis and feature extraction were coded in Python.

C. Participants’ Characteristics

Thirty-nine subjects volunteered to participate in the study.
One subject with excessive motion sickness was excluded
from the data-set, as symptoms would bias the physiological
response [53]. A total of 38 subjects (25 male, 13 female,
mean age 23.9) were included in the analysis. GSR data was
not available for 8 subjects due to failures in the recording
equipment. Most of the subjects reported using VR or driving
simulators “never” or “rarely” (30/38 and 34/38, respectively).

D. Quantitative Measurements

The normalized GSR signals averaged over all study sub-
jects within each group are reported in Fig. 4(a)–(b). All
subjects showed an increase in baseline GSR in VR. Moreover,
a noticeable peak in the GSR occurred for most events in
the test scenario. Fig. 4(c)–(d) show the mean SCR curve for
each event. Each curve is extracted for a time window of ±10s
centered at each event; within each window, all samples are
divided by the first value to highlight changes.

From the SCR and GSR curves, different features have
been extracted, as defined in Section III-F2. We here report in
detail the two-way ANOVA results for the ∆P2P feature. The
main effect of HUD was significant, F(1,28)=4.72, p=.039,
indicating a statistically significant difference between the
OMN and SEL interfaces. The main effect of event was
also statistically significant, F(6,168)=13.9, p<.001. We did
not find a significant interaction between HUD and event,
F(6,168)=1.74, p=.115; hence, post-hoc analyses were con-
ducted on each main effect separately.

The mean and standard error of the SCR feature for each
event and for each HUD are reported in Fig. 5. At post-hoc
analysis, the SEL HUD consistently showed higher emotional
arousal for Car1 (p=.022), Car2 (p=.042) and Man2 (p=.041)
events. For the first two events in the timeline, a positive trend

(a) OMN (b) SEL

(c) OMN (d) SEL

Fig. 4. Normalized raw GSR signal for OMN (a) and SEL (b) interfaces;
baseline is collected prior to the experience and red lines represent test events
in the simulation. Average SCR curves over all subjects in the 10s before and
after the event for all the test events for OMN (c) and SEL (d) interfaces.
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Fig. 5. ∆P2P feature, for all events, with OMN and SEL. ∗ p-value<.05.

could be observed (p=.181 and p=.409). For the Scooter and
Man1 events, which elicit no emotional arousal, differences
were not statistically significant (p=.759 and p=.990).

All GSR features showed a significant main effect of HUD:
∆Max, F(1,28)=8.53, p=.007; ∆GSRMean, F(1,28)=9.36
p=.005, and GSRAcc, F(1,28)=9.02, p=.006. Likewise, a sig-
nificant main effect of event was always found (p<.001), with
no significant interaction between HUD and event. At post-
hoc analysis, results for the ∆Max feature were comparable
to ∆P2P , whereas ∆GSRMean and ∆GSRAcc features
reported significant differences (p<.05) for Ball, Car1 and
Car2 events, instead of Car, Car2 and Man2 events.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXXX XXXX 10

For each HUD and each test event, ∆P2P Pre (10s before
the event) and Post (10s after the event) values were tested for
differences using two-tailed t-tests. With the SEL HUD, all
events showed a significant increase in SCR (p<.001), except
for Scooter (p=.927) and Man1 (p=.920). Very similar results
were obtained with the OMN HUD: the Dog (p=.014), Ball
(p=.046), Car1 (p=.007), Car2 (p=.001) and Man2 (p=.003)
events showed a significant effect on SCR, whereas Scooter
(p=.142) and Man1 (p=.422) did not. Results for other GSR
features, here omitted for brevity, were also consistent.

E. Questionnaire Results

Only one subject was excluded from this analysis due
to high motion sickness; the other subjects did not report
excessive symptoms (nausea rating M=1.26, SD=.54).

Subjective ratings for test events are reported in Fig. 6.
Four statements were included for each test event, as detailed
in Section III-G3; for the sake of clarity, only question 1
(which evaluates the risk) and question 3 (which evaluates the
ability to detect the potential danger in advance) are included
in the plots, as answers to questions 2 and 4 were very
similar. At two-way ANOVA, the main effect of both HUD,
F(1,36)=15.91, p<.001, and event, F(6,216)=54.05, p<.001,
on the perceived risk (question 1) were statistically significant.
Interaction between the two factors failed to reach statistical
significance, F(6,216)=2.05, p=.060. Regarding the ability to
identify dangerous situations in advance (question 3), the
main effect of both HUD, F(1,36)=28.08, p<.001, and event,
F(6,216)=14.78, p<.001, were statistically significant, without
a significant interaction, F(6,216)=1.75, p = .112.

Since events are the same in both groups, we attribute
the difference in perceived risk to the greater ability of the
OMN interface to convey information about the vehicle’s sur-
roundings before critical situations occur. At post-hoc analysis,
differences were statistically significant for Car1 (p=.003),
Car2 (p=.017) and Man2 (p=.008) events, and a positive trend
was observed for Dog (p=.134) and Ball (p=.872) events.

For each event, questionnaire ratings and GSR features
values were compared by using multiple linear regression;
by attempting to predict the average GSR outcome (∆P2P )
from the average questionnaire ratings, we can desume the
degree of similarity between the two measurements. A per-
subject analysis was not attempted, given the limited sample
size. A statistically significant regression equation was found,
F(4,9)=14.34, p=.0007, with an adjusted R2 of 0.804, which
indicates that roughly 50% of the variance of the GSR can
be explained by the questionnaires. Individual factors failed
to reach statistical significance, but the strongest trends were
observed for the perceived level of risk (coefficient 0.111,
p=.29) and the element of surprise (coefficient 0.112, p=.29),
which are presented in the scatter plots of Fig. 7.

Subjects generally found the vehicle’s driving skills ad-
equate (SEL M=4.53, SD=0.61, OMN (M=4.68, SD=0.48,
p=.556). In the SEL group, subjects reported more often
that the vehicle faced difficulties with unexpected changes in
the environment (SEL M=1.68, SD=0.75 and OMN M=1.21,
SD=0.42, p=.41); such differences can only be attributed to
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Fig. 6. Subjective measurements for questionnaire section Reaction to test
events. Label 1 refers to the question which evaluates the risk perception, on
a scale from 1 (low risk) to 5 (high risk); label 3 refers to the question that
evaluates if and how the individual previously noticed the dangerous situation,
on a scale from 1 (not previously noticed) to 5 (previously noticed). Each test
event is considered separately. ∗p-value <.05, ∗∗p-value <.01.
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Fig. 7. Comparison of subjective vs. objective ratings. For subjective
measurements, the average perceived risk (a) and the average surprise rating
(b) are reported (where the latter refers to the extent to which the user was
taken by surprise by the event). The mean ∆P2P feature is reported as
objective rating. Each data point corresponds to a specific test event.

the HUD, considering that the vehicle’s behavior was exactly
the same in both experiences.

Displaying more information may result in an excessive
cognitive load. Indeed, subjects in the OMN group more often
rated the amount of information provided by the interface as
excessive (OMN M=2.1, SD=0.229, SEL M=1.05, SD=0.809,
p<.001), whereas comprehensibility was rated adequate for
both the interfaces (p=.908). On average, the UX was satis-
factory for both the interfaces, and the information provided
by the HUD was considered useful (SEL M=4.16, SD=0.69,
OMN M=4.84, SD=0.38, p=.001). Participants in the OMN
group reported that the information was more useful in order
to understand why the vehicle made a decision (SEL M=4.26,
SD=1.05, OMN M=4.84, SD=0.38, p=.055) and to feel in gen-
eral at ease (SEL M=3.79, SD=1.08, OMN M=4.68, SD=.59,
p=.003), as well as that the vehicle seemed to have greater
control on the external environment (SEL M=3.79, SD=1.08,
OMN M=4.84, SD=0.38, p< .001). Overall, the OMN HUD
was more helpful in anticipating potential dangers (SEL
M=2.42, SD=0.61, OMN M=4.10, SD=0.57, p<.001). Sub-
jects reported a high sense of immersion (M=4.50, SD=0.73)
and presence (M=4.37, SD=0.59), with no significant differ-
ence between the two groups.

Finally, users in the OMN group were better disposed
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Fig. 8. Disposition towards participating in a real AD experience. On the left,
the pre-test answer for the SEL and OMN interfaces; on the right, the post-test
answer. Scale from 1 (absolutely negative) to 5 (absolutely positive). Mann-
Whitney U-tests between pre- and post-test answers are shown, ∗p-value<.05,
∗∗p-value <0.01.

towards participating in a real AD experience (OMN M=4.68,
SD=0.58, SEL M=4.05, SD=0.85, p=.012). As shown in Fig. 8,
prior to the experiment all participants were mildly optimistic,
but after experiencing the OMN HUD, attitude towards the
technology markedly improved (M=4.0 vs. M=4.68, p=.002).

Complete data is provided in the Supplemental material.

V. DISCUSSION

We here proposed a methodology to validate the UX in
AD systems based on continuous, quantitative information
gathered from physiological signals while the user is immersed
in a VR driving simulation. Our methodology is exemplified
by the comparison of two AR-HUD-based interfaces which
differ in the amount of information displayed to the users.

By controlling all aspects of the simulated environment, we
were able to disentangle the effect of very specific design
choices and measure their impact on the overall UX. It must
be stressed that the only difference between the two groups
was the information displayed by the HUD, as the simulation
was otherwise identical; study groups were also homogeneous
in terms of age, sex and ethnicity.

Our results confirmed that providing “why” information is
important to reassure the user of the system’s competence
and to promote trust and situational awareness [3], [9]. To
the best of our knowledge, ours is the first contribution to
evaluate a realistic HUD displaying a wide range of visual and
auditory cues about the vehicle and its surroundings, as it is
expected in future AVs. Given the number of objects involved
in realistic scenarios, an omni-comprehensive (OMN) display
could lead to an excessive cognitive load. A possible way to
reduce information load, which we denoted as selective (SEL),
is to display only the most relevant visual cues in the current
context. Indeed, our results indicated that the users found
information displayed by the OMN HUD slightly excessive,
although acceptable in both cases, but this was compensated
by a less stressful driving experience, as confirmed both by
subjective and objective measures.

This difference is especially evident when potentially dan-
gerous events occur, such as a pedestrian crossing the street
at the last minute. It is worth noting how the HMI influenced
the perception of external events, on one hand, and of the
vehicle’s performance, on the other hand, despite the fact that

the simulated scenario was identical in those respects. For in-
stance, users in the OMN group perceived the vehicle as better
equipped to deal with unexpected changes in the environment.
We argue that this difference arose as a consequence of the
mental model that users formed: as the information provided
by the HUD allowed users to better anticipate dangerous
situations, they projected this feeling onto the AV as well.

Our results have important implications for AI research in
AD, and specifically for the sensory sub-systems, as HMI
constraints need to be considered in their design. For instance,
end-to-end training from sensory input to planning does not
explicitly extract all the information that was included in this
simulated HMI [54]. In our simulation, information displayed
by the SEL HUD was chosen based on a set of heuristics
that could be further improved by exploiting a more advanced
AI, such as the ability to predict the motion of objects and
pedestrians to foresee potentially dangerous situations before
they actually affect the vehicle’s trajectory.

In this study, we have sought to be as independent as
possible from specific AD systems, e.g., by simulating per-
fect vehicle sensing capabilities. Our conclusions are thus
unaffected by potential errors or misses in the AD object
detection system. The proposed methodology could certainly
be employed to test other types of autonomous vehicles and
their underlying AI systems, by changing the modeled interior
and/or behavior. It would also be possible to investigate how
possible errors may affect the UX and trust.

The proposed scenario is certainly representative of the
learning phase as defined in [9]. Information display by the
HUD is particularly relevant in this initial phase, when the
user is still forming a mental model of how the AD system
works. Our results may not apply entirely to the performance
phase, in which the user has observed the AD system for a
prolonged period of time. However, the unexpected events or
accidents which we simulate, while rare, can have a profound
effect on trust, both at the individual and collective level. It
should be noticed that trust begins to form even before the first
interaction with the system, e.g. based on information from the
media, or personal preferences [8], [9]. This was evident in
our study where, initially, many subjects were not willing to
participate in a real AD experience. However, participating
in the VR experience, and being exposed to an informative
interface, significantly improved their acceptance towards AD
systems. In a simulated setting, all AD technologies, as well
as all types of events, can be recreated, opening interesting
opportunities for “training” future users of AV technology.

GSR proved capable of detecting user’s stress in response
to potentially dangerous events, in line with previous literature
results which, however, were obtained in the context of manual
or partially automated driving [4], [26]. Notably, differences
in HMI design were reflected in observable changes in GSR
levels, even when using consumer electronics sensors. The
GSR response was correlated to the perceived risk as measured
by subjective questionnaires, as well as to the “surprise” factor,
which depends on the HMI. We here focused on the response
to specific events, but the methodology could be extended to
extract features that characterize the entire experience [26].
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VI. CONCLUSIONS AND FUTURE WORK

In this work we proposed a methodology to validate the UX
in AD systems based on continuous, quantitative information
gathered from physiological signals while the user is immersed
in a VR driving simulation. Its effectiveness was shown in
the context of HMI design, and specifically applied to the
comparison of HUD-based interfaces for AVs that provides
visual cues about the vehicle’s sensory and planning systems.
We explored in this exemplification the role of HMI in eliciting
a sense of trust and safeness in AD systems, as this will be
key for humans to relinquish control of the vehicle.

The proposed methodology relies on physiological signals
(GSR in this specific embodiment) to provide a continuous,
quantitative and objective feedback. This is particularly rel-
evant for simulation of AD systems, as objective measures
in driving research are traditionally based on driver’s perfor-
mance and behavior. A limitation of GSR is that it measures
arousal, but is a poor indicator of valence. In our specific case,
the experience was engineered to elicit a sense of distress and,
hence, a positive valence was excluded. In the future, this
lack could be overcome by including other sensors, e.g., to
measure the HR, other types of features that reflect different
characteristics of the UX, as well as machine learning models
to more accurately detect the passengers’ affective state.

It should be noticed that the increasing adoption of wearable
devices like smart watches incorporating a growing set of
health sensors will open additional opportunities for AVs’ per-
sonalization; anthropomorphism, customization and adaptivity
are also important factors for trust-worthy HMI [9]. While the
physiological response (1–5s in the case of GSR) is too slow
to be exploited for actual driving, it could be used to customize
various aspects of the HMI, like the quantity and quality of
information displayed, and of the overall driving experience.

The proposed methodology for testing could be extended to
cover also the above scenarios as well as other aspects of the
UX (e.g., considering not just in-vehicle scenarios, but also
vehicle-to-pedestrian interactions [55], long-term performance
[9], etc.), by adjusting the simulation, the HMI and/or the
vehicle’s AI as needed.
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