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Neuromuscular adaptations are well-reported in stroke survivors. The death of motor

neurons and the reinnervation of residual muscle fibers by surviving motor neurons,

for example, seem to explain the increased density of muscle units after stroke. It

is, however, unknown whether reinnervation takes place locally or extensively within

the muscle. Here we combine intramuscular and surface electromyograms (EMGs) to

address this issue for medial gastrocnemius (MG); a key postural muscle. While seven

stroke survivors stood upright, two intramuscular and 15 surface EMGs were recorded

from the paretic and non-paretic gastrocnemius. Surface EMGs were triggered with the

firing instants of motor units identified through the decomposition of both intramuscular

and surface EMGs. The standard deviation of Gaussian curves fitting the root mean

square amplitude distribution of surface potentials was considered to assess differences

in the spatial distribution of motor unit action potentials and, thus, in the distribution of

muscle units between limbs. The median number of motor units identified per subject in

the paretic and non-paretic sides was, respectively, 2 (range: 1–3) and 3 (1–4). Action

potentials in the paretic gastrocnemius were represented at a 33% wider skin region

when compared to the non-paretic muscle (Mann-Whitney; P = 0.014). Side differences

in the representation of motor unit were not associated with differences in subcutaneous

thickness (skipped-Spearman r = −0.53; confidence interval for r: −1.00 to 0.63).

Current results suggest stroke may lead to the enlargement of the gastrocnemius muscle

units recruited during standing. The enlargement of muscle units, as assessed from the

skin surface, may constitute a new marker of neuromuscular plasticity following stroke.

Keywords: motor unit, electromyogram, stroke, gastrocnemius, standing

INTRODUCTION

Motor impairment is a widely recognized consequence of stroke (1). Structural changes in the spinal
motor neuron and its muscle fibers have been advocated a contributing factor for the loss of motor
control in stroke survivors (2, 3). Indeed, loss of motor neurons, muscle atrophy and fiber-type
grouping have been reported within 2–5 months after stroke (2–5). It is the loss of motor neurons
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that seems to lead to major, structural changes within the
paretic muscle. More specifically, muscle fibers belonging to dead
motor neurons seem to be re-innervated by surviving ones. This
structural change is substantiated by increases in the size of
motor unit action potentials and, more directly, by collateral
sprouting and greater fiber density at chronic, stroke stages (6–
8). In virtue of the increased number of fibers per motor unit,
it seems therefore reasonable to ask whether these fibers span a
larger region within the paretic muscle.

Different methodologies have been designed to assess the
location of individual muscle units; i.e., fibers of single motor
units. Muscle units may be assessed directly by staining and
then locating glycogen-depleted fibers. Although this procedure
was applied successfully to study the topography of cat muscle
units (9), applying it in human muscles is currently unviable.
Tracking action potentials of single motor units with a needle
electrode moving along a corridor transverse to the fibers’
direction constitutes an alternative method for assessing muscle
units in humans (10). For muscles with large, physiological cross-
sectional areas, however, this technique would provide a limited
view of muscle units, as different corridors would have to be
scanned. Recently, we have shown the surface representation of
action potentials of medial gastrocnemius (MG) motor units,
identified with intramuscular electrodes during standing, reflects
well the distribution of muscle units (11). Notwithstanding
these different, existing means, none, however, seems to have
been considered to quantify the localization of muscle units
following stroke.

Here we, therefore, investigate whether stroke affects the
structure of MG muscle units recruited during standing. We
specifically ask: how diffusely does the amplitude of action
potentials of single, MG motor units distribute on the skin
of paretic and non-paretic limbs? Upright stance approach
was chosen because postural instability is one of the leading
motor impairment observed after stroke (12, 13). Moreover,
we selected MG because it seems to be greatly affected by
stroke (7, 14) and because of its functional relevance to
balance control (11, 15, 16). If reorganization of muscle units
takes place extensively along MG, then, we would expect to
detect surface potentials along a larger skin region in the
paretic limb.

METHODS

Participants
Eight, ischemic stroke survivors were recruited (four females;
range values; age: 47–64 years; height: 147–172 cm; body mass:
51–102 kg; months from stroke: 42–120). The presence of
aphasia, cognitive impairment, other neurological diseases or
lesions, rheumatologic or metabolic diseases, pregnancy, or
any musculoskeletal disorders affecting the standing posture
were exclusion criteria. All participants could stand upright
without external support for 60 s. The experimental procedures
were approved by the local Institutional Ethic Committee
(reference number: 13611913.8.0000.5249). All participants gave
written informed consent in accordance with the Declaration
of Helsinki.

Experimental Protocol
Participants were asked to stand upright over a force-plate
(AccuSwayPLUS, AMTI, Massachusetts, USA; Figure 1A), with
their feet at a comfortable position. They were instructed to hang
their arms loose alongside the body and to stand comfortably,
without gross movements and without moving their feet. Two
experimenters stood close to subjects at all times, to assist them
in case of balance loss. Recordings started once subjects got
acquainted with the standing tasks. At least two trials were
applied, lasting 60 s each and with 5min intervals. Given action
potentials were occasionally not observed in both surface and
intramuscular EMGs from the paretic limb in two subjects,
additional trials were applied. Specifically, we provided these
participants with visual feedback of their center of pressure (CoP)
position and asked them tomove it toward the paretic limb. After
roughly 5min of familiarization, participants could successfully
load the paretic limb with at least 50% of their body weight
(Figures 2A–C), according to the linear relationship between
CoP lateral position and weight distribution between limbs (17).
One trial per participant was retained for analysis; that providing
the greatest number of clearly visible action potentials in surface
EMGs detected from both sides. One participant did not show
any motor unit action potential even when loading the paretic
limb; signals recorded for this subject were disregarded.

EMG Recordings
Intramuscular EMGs were detected with two pairs of Teflon-
coated, stainless-steel wire electrodes (0.2mm diameter; A-M
Systems, Carlsborg, WA). Each pair was inserted in the paretic
and non-paretic MG with a 25-gauge hypodermic needle. Two
arrays of 16 silver bar electrodes each (1 × 10mm; 10mm inter-
electrode distance; Spes-Medica, Battipaglia, Italy) were used to
record 15 differential surface EMGs from each MG. Arrays were
fixed to the skin with bi-adhesive pads filled with conductive
paste (TEN 20 Conductive Paste, Weaver).

Wire and surface electrodes were positioned at specific MG
locations (Figure 1). Initially, the location of the distal extremity
of MG superficial aponeurosis [dashed line in Figure 1B

(11)] was identified with ultrasound imaging (see “Muscle
architecture” section). After that, the distance between this
location and the popliteal crease was measured and marked
on the skin. Wires were inserted halfway this distance. To
ensure the tip of the wires would be located roughly beneath
the surface array, needles were inserted obliquely to the skin.
Finally, after shaving and cleaning the skin with abrasive
paste, surface electrodes were aligned parallel to the muscle
longitudinal axis. Amplification factor for both intramuscular
and surface recordings ranged from 1,000 to 10,000 between
participants (10–4,400Hz bandwidth amplifier, EMG-USB2,
OT-Bioelettronica, Turin, Italy). EMGs and ground reaction
forces were digitized synchronously at 10,240Hz (12 bits A/D
converter; EMG-USB2, OT-Bioelettronica, Turin, Italy).

Estimating the Surface Representation of
Motor Units
First, EMGs were band-pass filtered with a fourth order
Butterworth filter (cut-off frequencies; intramuscular: 500–
3,000Hz; surface: 20–400Hz). Instants of motor unit firing
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FIGURE 1 | Standing posture and electrode positioning. While individuals stood at a comfortable stance (A) the feet position was marked on the force plate. These

drawings were considered to quantify the approximate center of pressure (CoP) position corresponding to a symmetric weight distribution between limbs (see

Methods, section Experimental Protocol). (B) shows the relative position between medial gastrocnemius (MG) and surface and intramuscular electrodes. Wire

electrodes were inserted at the MG region corresponding to the central location between the most proximal, surface electrode, and the distal extremity of the

superficial aponeurosis (see dashed line); for the example illustrated in panel (B), this region roughly corresponds to the position of the sixth electrode from top to

bottom. The length of MG superficial aponeurosis was estimated as the distance between its distal extremity and the popliteal crease.

were then automatically identified through decomposition
of intramuscular EMGs (17). Often, a greater number of
motor units could be observed in surface than intramuscular
recordings (Figure 2D). To obtain the greatest number of
motor units per subject, the firing pattern of additional motor
units was identified through decomposition of surface EMGs
with a validated procedure (18). It should be noted this
decomposition algorithm does not rely on the shape but
on the finite duration of motor unit action potentials. Even
though its potential to reconstruct pulse trains decreases in
highly underdetermined mixtures [i.e., when few electrodes
are used (19)], here we assess the surface representation and
not the firing pattern of single motor units. In virtue of the
gastrocnemius pennate architecture, action potentials of different
motor units appear in different locations and with different
shapes on the skin (11, 20), making it possible to distinguish
different motor units in the surface EMGs (e.g., Figure 3).
Given the degree of gastrocnemius activity fluctuates during
standing (11), the quality of decomposition results should be
not assessed with conventional metrics as e.g., the coefficient
of variation of the inter-spike intervals. For this reason, we
used the pulse-to-noise ratio to assess decomposition accuracy

(21); this metric does not depend on how regularly motor
units discharged.

Decomposed EMGs were considered to assess side differences
in the distribution of muscle units following stroke. Muscle units’
distribution was estimated based on the surface amplitude of
action potentials, using a slightly modified approach to that
described in our previous study (11). Briefly, we first averaged
EMGs over 40ms epochs, centered on the firing instants of
each motor unit. The root mean square (RMS) amplitude was
then calculated for each of the 15 averaged EMGs, providing
the surface distribution of RMS amplitude values for individual
motor units. As shown previously (11), the distribution of RMS
values scales with the distribution of fibers within individual, MG
muscle units; the more distributed the muscle unit is, the more
diffusely the RMS values distribute on the skin. After that, we
computed Gaussian curves that numerically minimized the mean
square error (MSE) with respect to the RMS values obtained for
EMGs detected over MG superficial aponeurosis:

MSE (µ, σ ,A) =

15
∑

i=1

(

RMSi −

[

e
−

(i−µ)2

2σ2 + A

])

2

Frontiers in Neurology | www.frontiersin.org 3 June 2019 | Volume 10 | Article 686

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Vieira et al. Post-stroke Postural Muscle Unit Plasticity

FIGURE 2 | Muscle activity and standing posture. (A) illustrates the CoP position along the lateral and anterior-posterior axes (top panel) and the surface (black traces)

and intramuscular (gray traces) electromyograms (EMGs) detected during 10 s for a representative subject. EMGs are shown exclusively for the paretic (right) MG. The

dashed line in the top panel denotes the CoP location where body weight distributes roughly symmetrically between limbs (Figure 1A). Note that action potentials are

not present both in the surface and intramuscular recordings. When this subject shifted his CoP toward the paretic limb (B), action potentials could be clearly

appreciated. An expanded view of EMGs (light gray rectangle) is shown in (D). Note there is a correspondence in the instants when action potentials were detected by

the intramuscular electrodes and by the central though not by the distal nor proximal electrodes in the surface array. (C) shows the mean CoP position, calculated

over the entire recording (60 s), while the subject stood at ease (black circle) and on his right leg (gray circle). Horizontal and vertical traces correspond to the standard

deviation along the lateral and sagittal directions, respectively.

where RMSi corresponds to the RMS amplitude obtained from
the i-th channel, normalized with respect to the maximal
RMS value across the array, whereas A was allowed to vary
from 0 to 0.5 at 0.01 steps. The mean value (µ) of the
Gaussian fitting spanned the RMS peak position ±2 cm and
the theoretical standard deviation (σ), henceforth referred to
as sigma, varied from 0.1 to 8 cm, both at 0.1 cm steps.
Sigma values were then considered to assess how diffusely
RMS values distributed on the skin [cf. Figure 3 in (11)].
Finally, sigma values were normalized with respect to the
length of MG superficial aponeurosis (Figure 1B) to control
for both side differences in muscle length (due e.g., to
atrophy) and inter-individual differences. The normalized sigma
values provide, therefore, a relative indication of how largely
the amplitude of motor unit action potentials distributes
along the MG physiological cross-sectional area [cf. Figure 1
in (22)].

The procedure considered above for the computation ofMSE
values is slightly different from that used in our previous study
(11), where Awas fixed at 0. This modified Gaussian curve allows
for the compensation of baseline values different from 0, due
both to noise and to the background activity not suppressed by
averaging (Figures 3, 4). To assess potential differences in the
quality of the Gaussian fitting between limbs, the coefficient of
determination R2 was computed and then adjusted for the degree
of freedom of the RMS variance

(

dofRMS = 15− 1 = 14
)

and of
the estimated error variance:

R2adj = 1−
(

1− R2
) dofRMS

dofe

Muscle Architecture
Ultrasound images were acquired longitudinally from MG, with
the US probe roughly centered where wire electrodes were
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FIGURE 3 | Motor unit action potentials in surface and intramuscular

recordings. Short epochs (20ms) of EMGs detected by wire and surface

electrodes are shown. These epochs (thin traces) were obtained by triggering

EMGs with the firing pattern of individual motor units, separately for each

surface and intramuscular recordings. Thick traces were obtained by averaging

the triggered EMGs. For this participant, three motor units were identified

through decomposition of surface EMGs (cf. the first three columns from left to

right). Note the similarity between waveforms obtained for the motor unit (MU

2) identified from decomposition of surface recordings and those obtained for

the motor unit (MU 4) identified from decomposition of intramuscular EMGs.

inserted (7 MHz, 59mm linear probe, Echoblaster 64, Telemed,
Vilnius, Lithuania). Subcutaneous and MG thicknesses were
quantified for the paretic and non-paretic limbs. The first was
defined as the distance between the superficial aponeurosis and
the skin-fat interface, whereas MG thickness was quantified as
the distance between the superficial and deep aponeuroses.

Statistics
Given data distribution was not Gaussian (Shapiro-Wilk test,
P < 0.03 in all cases), the Mann-Whitney test was applied to
quantify the significance of side differences in sigma values,
in the adjusted coefficient of determination and pulse-to-noise
ratio. Differences in the thickness of subcutaneous and MG
tissues between limbs were quantified with the paired, Wilcoxon
test. Skipped-Spearman correlation analysis (23) was used to
assess whether there was a monotonic, positive relationship

between the ratio values (paretic/non-paretic) for sigma and
subcutaneous thickness.

RESULTS

Gastrocnemius Motor Units Identified
During Standing
Thirty-four motor units (13 in the paretic MG) were identified
from EMGs collected from both limbs for the seven participants
analyzed. The median number of motor units identified per
subject in the paretic and non-paretic sides was, respectively,
2 (range: 1–3) and 3 (1–4). As shown in Figure 2, more units
were decomposed from surface than intramuscular EMGs; close
inspection of Figure 2B reveals that action potentials detected
distally (from channel 3 to 5 at the first 50ms) and proximally
(from channel 9 to 11) belonged to different motor units, with
the proximal though not distal potentials being detected by
intramuscular electrodes as well (Figure 2D). When considering
all participants, 16 and 20 motor units were decomposed from
intramuscular and surface EMGs, respectively (two common
units; Figure 3). Pulse-to-noise-ratio values were remarkably
high for all units decomposed, varying from 25.3 to 36.5 dB
(median value: 32.7 dB) for the non-paretic muscle and from 23.4
to 33.4 dB (30.4 dB) for the paretic muscle. No side differences
in the pulse-to-noise ratio were observed (Mann-Whitney;
P = 0.49).

Median values (interquartile intervals) for the adjusted
coefficient of determination were 0.72 (0.60–0.89; N = 13 units)
for the paretic and 0.81 (0.68–0.90; N = 21 units) for the non-
paretic limb. No significant side differences were observed in
the adjusted coefficient of determination (Mann-Whitney; P =

0.39), indicating the quality of Gaussian fitting in both sides
was comparable.

Side Differences in the Spatial Distribution
of Muscle Units
Action potentials in the paretic and non-paretic MG were
represented locally in the surface EMGs. As shown for a
representative participant in Figure 4, action potentials with
high amplitude were detected by few consecutive channels,
centered at different skin regions. This local representation
resulted in RMS values distributed narrowly on the skin, leading
to Gaussian curves with relatively small sigma values in both
non-paretic (0.79 and 0.88 cm) and paretic (1.05 cm) muscles.
Due to a shorter aponeurosis in the paretic MG (cf. shaded
area in Figure 4), relative side differences were emphasized by
normalizing sigma with respect to the length of MG superficial
aponeurosis (normalized sigma; paretic MG: 6.3%, non-paretic
MG: 3.8 and 4.2%).

Group analysis confirmed that action potentials ofmotor units
in the paretic MG were represented over a significantly larger
skin region than those from the non-paretic MG. The median
sigma value in the paretic limb was significantly greater than that
obtained for motor units in the non-paretic muscle (Figure 5A;
Mann-Whitney; P= 0.037;N = 34 motor units). Side differences
increased when normalizing sigma with respect to the length of
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FIGURE 4 | Surface representation of motor unit action potentials. (A) schematically illustrates the relative position between surface electrodes and MG fascicles for a

representative subject. (B) shows the spike triggered average potentials of motor units identified for EMGs detected from the paretic and non-paretic MG muscle,

both from the skin surface and intramuscularly. The absence of an action potential in the bottom trace of the central panel indicates this motor unit was identified

through decomposition of surface EMGs. Circles denote the root mean square (RMS) amplitude of each surface EMG. Note the greatest RMS values appear in

correspondence of EMGs conveying the biggest potentials. Thick gray traces correspond to Gaussian curves fitted to the distribution of RMS values (11). These

curves were estimated by considering the RMS values of surface EMGs detected by electrodes over the superficial aponeurosis (shaded area).

MG superficial aponeurosis (Figure 1), measured separately for
the paretic (range: 15–21 cm) and non-paretic limbs (16–22 cm).
After normalization, the difference between median values in
relation to the median sigma value in the paretic limb increased
from∼11% (Figure 5A) to∼33% (Figure 5B; P = 0.014).

Gastrocnemius and
Subcutaneous Thickness
Different participants showed different degrees of structural
muscle adaptations following stroke. For example, MG and
subcutaneous thicknesses were similar in both limbs for
subject 1 though not for participant 5, who showed thicker
subcutaneous and muscle tissues for the paretic and non-
paretic MG, respectively (Figure 6A). Notwithstanding these
inter-individual differences, significantly thicker subcutaneous
(Wilcoxon test; P = 0.046; N = 7 subjects) and thinner MG
(P = 0.020, Figure 6B) tissues were observed in the paretic
limb. No significant correlation was observed, however, for the
paretic/non-paretic ratio values between sigma and subcutaneous

thickness (Figure 5C; skipped-Spearman r = −0.53; confidence
interval for r ranging from−1.00 to 0.63).

DISCUSSION

In this study, we combined intramuscular and surface EMGs
to investigate structural changes in MG muscle units with
stroke. Our results show action potentials of individual, postural
muscle units were represented in relatively larger skin regions
in the paretic than non-paretic MG (Figures 4, 5). Below we
discuss the possible interpretations and potential implications of
our findings.

The Surface Representation of Motor Unit
Action Potentials Changes With Stroke
Enlarged distribution of muscle units after stroke seems the
most plausible explanation to our current findings. As evidenced
by electrophysiological studies, structural changes within the
neuromuscular system may be characterized by two distinct
processes, occurring at different time periods after stroke.
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FIGURE 5 | The amplitude distribution of surface, action potentials. (A) shows

the standard deviation (sigma) of the Gaussian curves fitted to the RMS

distribution of motor unit action potentials identified from the non-paretic (white

boxes) and from the paretic (gray boxes) MG muscles. Sigma values

normalized with respect to the length of the MG superficial aponeurosis (see

Figure 1B) are shown in (B). Thick horizontal lines denote the median values.

Boxes and whiskers correspond, respectively, to the interquartile interval and

the range values. Ratios between sigma values obtained from the paretic and

non-paretic MG (ordinate) and ratios between subcutaneous thickness values

computed for the paretic and non-paretic limb (abscissa) are shown in (C).

The skipped-Spearman correlation coefficient and its confidence interval (23)

are shown within (C).

For example, a few weeks after stroke, Lukács (8) elicited
smaller compound action potentials from hand muscles in the
hemiparetic than non-paretic side. Similarly, the number of
motor neurons estimated by Arasaki et al. (5) in the hypothenar
muscles of the affected side started to decrease within the first
30 h following infarction. These findings suggest a reduction in
the number of motor neurons in the acute phase post-stroke. A
restoration process seems to commence though at chronic stages,
whereby surviving motor neurons innervate the residual muscle
fibers (6, 7), increasing the number of fibers per motor unit in
the paretic side (14). The open question is whether reinnervated
fibers distribute locally or diffusely within, and possibly beyond
the confines of, the territory of restructured units. Based on
results reported in Figures 4, 5, surface potentials of single MG
units are represented in a significantly larger proximo-distal
region in the affected than non-affected side.

The amplitude distribution of MG surface potentials is mainly
affected by two factors: the distribution of fibers within the motor
units’ territory and the subcutaneous thickness. Because of the
MG in-depth pinnation, the superficial extremity of different
MG fibers is located beneath different, proximo-distal skin sites
(e.g., Figure 4). Surface electrodes positioned closer to the distal
extremity of active fibers detect therefore greater potentials.
For this reason, the standard deviation (sigma) of Gaussian
curves fitting the amplitude distribution of surface potentials
was observed to scale with the number and location of fibers of
MG muscle units [cf. Figure 4 in (11)]. Specifically, muscle units
distributed locally were observed to provide surface potentials
with high amplitude values distributed narrowly along MG (i.e.,
small sigma values). While the possibility of quantifying the
perimeter of the territory of MG motor units with this technique
could be questionable (24), it seems to provide a clear indication
on the distribution of muscle units (25). Side difference in
subcutaneous thickness is a potential, competing cause for
obtaining greater sigma values in the paretic limb (Figures 4,
5). Because of the tissue filtering effect, the amplitude of surface
potentials decreases with the distance between intracellular
action potentials and the skin (26); i.e., the subcutaneous
thickness. Although we observed thicker subcutaneous layer in
the paretic limb (Figure 6), corroborating previous evidence
on thigh muscles (27), it unlikely explains the side differences
in sigma values between limbs (Figure 5). If this were the
case, in opposition to results shown in Figure 5C, we would
expect to observe greater sigma values for subjects with thicker
subcutaneous tissue. It seems, therefore, the wider representation
of motor unit action potentials in the paretic gastrocnemius is
more likely due to redistribution of muscle units rather than
subcutaneous thickness.

A note here is important on whether sources other than
the redistribution of muscle units could have affected their
representation in the surface EMGs. In non-paretic muscles,
larger motor units are expected to convey a greater number
of muscle fibers, spanning a presumably larger region of the
muscle physiological cross-sectional area (9). Nevertheless, there
is neurophysiological evidence of selective degeneration of the
large (high threshold) motor units chronically after a stroke (28).
Here, we could not control for side-differences in the size of
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FIGURE 6 | Differences in subcutaneous thickness between limbs. Ultrasound images recorded from the calf of two participants are shown in (A). Images in the right

and left were, respectively, taken from the paretic and non-paretic limb. The white lines superimposed on each image indicate the thickness of fat and MG tissues. (B)

shows the distribution of subcutaneous (top) and gastrocnemius (bottom) thicknesses estimated for the seven participants. Thick horizontal lines denote the median

values. Boxes and whiskers correspond, respectively, to the interquartile interval and the range values.

motor units, even because we hypothesized the size, that is the
innervation ratio, of motor units in the paretic limb had increased
after stroke (6, 8). However, motor unit action potentials were
often not observed in the paretic limb. Only after subjects were
provided with CoP feedback and asked to voluntarily transfer
their weight a few units could be appreciated in the surface
EMGs (Figure 2). Visual inspection of surface EMGs detected
from both limbs further revealed a smaller number of units in
signals detected from the paretic than non-paretic limb.

Notwithstanding the small number of units decomposed from
both limbs, two reasons suggest these units belonged likely
exclusively to the gastrocnemius. First, the representation of
motor units from soleus muscles is expectedly negligible in
differential surface EMGs collected with inter-electrode distances
as small as that used here [1 cm; (29)]. Second, false positives
resulting from the decomposition algorithm should be<5% (21),
considering the average pulse-to-noise ratio values obtained for
both limbs. Therefore, it seems reasonable to state the motor
units recruited in both limbs were the first recruitable or most
excitable units in the gastrocnemius, suggesting like-with-like
comparisons are assessed in results presented in Figure 5.

As discussed above, the enlarged representation of surface
potentials suggests that MG muscle units span a relatively larger
region in the paretic side. Advancing any mechanisms potentially
accounting for such spatial enlargement with stroke would be

currently speculative and is beyond the scope of the present
study. It is, however, worth noting that, during the reinnervation
process, the region occupied by single muscle units in the cat
MG was reported to depend on how proximally the regenerating
axon branches within the nerve (30); if branching occurs before
the main nerve trunks, the regenerating axon may establish
large territories. Despite the mechanisms accounting for the
enlargement of muscle units, here we show the action potentials
of singleMGmotor units are represented in larger proximo-distal
regions in the affected (Figure 5B) than the non-affected side.

Potential Implications of Enlarged,
Muscle Units
Impaired control of standing has been reported for stroke
survivors, as evidenced by large CoP displacements and
asymmetric weight distribution (31, 32). While the etiology of
stroke-induced, balance disorders is debatable (13), alterations
of motor unit firing properties have been reported during
standing. In stroke survivors exposed to postural disturbances,
for instance, motor units show delayed activation (15),
reduced synchronization within- and between-muscles (33)
and prolonged inter-spike intervals (16). Our results seem to
reveal a new marker of neuromuscular plasticity following
stroke, the enlargement of MG muscle units. Considering MG
contributes both to ankle plantar flexion and inversion (34, 35),
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enlarged muscle units may result in impaired regulation of force
direction, possibly affecting the control of forward-backward
and lateral body sways (36). Similarly, enlarged muscle units
may result in a more uniform distribution of intramuscular
pressure, compromising blood flow within MG (37). While
further investigation is necessary to assess how changes in muscle
unit distribution affect MG function, current results suggest
muscle units may occupy a greater proportion of MG volume in
the paretic limb of stroke survivors.

Future Perspectives and Limitations
An open question arising from this study concerns the
generalization of current findings to different populations of
muscle units and to different muscles. With the possibility of
assessing motor units from surface EMGs collected with grids of
electrodes (18), the generalization of current results to a broader
population of MG units could be tested in more demanding
and controlled conditions (e.g., isometric contractions). We,
nevertheless, specifically focused the analysis on motor units
recruited during standing, which are presumably the smallest
within MG (11). Moreover, even though the median number
of units identified here was roughly half of that reported in
previous studies on healthy subjects (11, 24), multiple surface
EMGs collected along MG were all of markedly low amplitude.
Whenever a motor unit fired during standing, its action
potentials were clearly appreciated in the surface EMGs (cf.
Figure 2). The relatively low number of motor units identified
in the present study may be a consequence of the active loading
of muscles other than MG during standing in stroke survivors.
Results presented here seem therefore to be representative of
MG motor units in stroke survivors, at least of those recruited
during standing.

One limiting issue we did not address here is whether side
differences in the surface representation of MG potentials exist in
healthy subjects. Stroke has been shown, for example, to affect the
firing rate of motor units even in the non-paretic limb, possibly
because of differences in corticospinal excitability between limbs
in stroke survivors (38). It should be noted, however, the
metric we used here is not sensitive to side differences in
the synaptic drive; the spatial representation of motor units
in the surface EMG depends on the number and location
of their action potentials and not on how frequently action
potentials are discharged. Moreover, it should be emphasized

that, irrespective of any potential (mal)adaptation that the non-
paretic limb could suffer because of e.g., long-term excessive
usage, properties such as peak torque, rate of force development,
and voluntary activation (via twitch interpolation techniques)
have been shown to differ from those observed in the paretic limb
(39, 40). Our results, therefore, adds by showing one potential
mechanism for the uneven state of the paretic related to the
non-paretic limb.
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