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Abstract. A network of virtual sensors from a set of N real sensor is derived by using a model reduction approach. Starting from the
output of a real sensor, analytical correlations are derived an used for linking the corresponding set of virtual sensors. By applying
this procedure to all real sensors, a matrix of sensors is derived. The system can monitor its health by comparing the sensor outputs
and diagnose if a failure is occurring. The application to a sensor system for a jet engine configuration is illustrated.

INTRODUCTION

The continuous expansion of intelligent systems and of multi-purpose Unmanned Aerial Vehicles (UAV) has increased
the demand and development of sensor devices with self-diagnostic and prognostic features[1–7], often working in
full-authority control systems [9]. Actual trend involves the use of Artificial intelligence in driving vehicles with
limited human directives, e.g. drones in formation flight, pathfinders and rovers in space exploration, etc. Moreover,
drones are particularly suitable to operate in hostile environments and adverse conditions, where currently the search
for human lives endangers that of rescuers.[10–12]. UAVs able to carry out long and dangerous patrols require high
power that necessarily relies on thermal engines. Very compact and light jetengines are now available on the market
at affordable cost. The management of these engines is far more complex and difficult than battery-powered systems.
These minimal power systems must be also equipped with sensor systems adequate to the challenging tasks mentioned
above. In modern Full Authority Digital Engine Control (FADEC) units the logic of self-diagnosis and management
of errors and faults is by far the functionality that requires the highest computational cost. In the micro jetengines we
consider, the main issues still remains that of the higher class engines, e.g. in flight engine relight, control of possible
instabilities, thermal issues [13, 14], but the possible control strategies must be simpler, because the power units are
reduced to a minimal set of components. To increase reliability and safety of these systems, the autonomous ability of
recognize the actual working conditions and to make the required corrections becomes an essential feature. In present
paper a procedure based on a minimal set of sensors and the corresponding self-diagnosis logics are illustrated.

MATHEMATICAL MODEL

We take a typical jetengine configuration as reference system. Its steady state conditions are a function of the ambient
conditions, of the flight speed and of the control setting. Let us now consider a set of N sensors Mi placed at different
axial positions or measuring different physical variables at the same location. Moreover, we assume that for each
engine component a real-time model is available, either based on a reduced order model or an empirical correlation.
By combining the a single sensor measure with the model equations, an estimation of the system status can be deduced.
The system conditions and the setting of controls are known. From the i-th sensor output we can therefore compute a
set of estimated values mi j for the output of j-th virtual sensor, with 1 ≤ j ≤ N and i , j. The result can be represented
as a N ×N matrix M as in Figure 1, where boxed elements mii = Mi represents real sensors, also corresponding to the
matrix trace. The remaining elements are hereby called ”virtual” sensors and are estimated row-wise, starting from
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M1 −→ m12 −→ m13 −→ m14 −→ m15

m21 ←− M2 −→ m23 −→ m24 −→ m25

m31 ←− m32 ←− M3 −→ m34 −→ m35

m41 ←− m42 ←− m43 ←− M4 −→ m45

m51 ←− m52 ←− m53 ←− m54 ←− M5


FIGURE 1. matrix representation of the sensor array. Boxes are real sensors, circle are virtual sensors. Arrows show the domain
of dependance and of influence of each element.

the the real sensor Mi . Once all the elements are computed, the j-th column of the matrix M contains the output of the
j-th sensor and the estimated output of the N-1 virtual sensors, each one deduced with a different degree of accuracy
from the output of the other real sensors. At each column of M, N values for the same variable and at the same station
is concerned. An eventual fault or failure of one of the real sensors can be then identified by comparison.

For sake of simplicity, let us assume that the temperatures T3,T4,T5 are monitored with the proposed technique.
The engine station are labeled according to Figure 2(a). The real sensors are placed at the corresponding engine axial
stations, whereas the virtual sensors output is calculated by means of simple energy and work balances between the
three stations

(ho
4 − ho

3) = ∆H(T3,T4, βc, θ) = (ho
4 − ho

b − ηbHi) f (θ) (1)

Lc(T3, βc, θ) = ho
3 − ho

2 (2)

Lt(T4, βt, θ) = ho
4 − ho

5 (3)

are reformulated as functions the the temperatures and solved according to the supposed unknown variable. The
system must anyway have the knowledge of the actual working conditions and control setup. The setting of

θ = (
T o

4

T o
2
/

T o
4

T o
2 des

is therefore known. The matrix reduced M is then

M =

 T33 T34 T35
T43 T44 T45
T53 T54 T55

 (4)

As a reminder T33 = T3 is the temperature measured by the sensors at station 3, while T34,T35 are the temperature
at station 4 and 5, respectively, deduced from the measure T33. The other elements of M are deduced accordingly.
Each column j of M is composed therefore by a real measure of the temperature T j and two estimations of it. The
straight comparison of these value allow us to make a diagnosis by the following remarks: (i) if the real and virtual
sensor outputs closely match, the system is working correctly. (ii)if the virtual sensors are each other in reasonable
close agreement and the real one is not, the real sensor may have a faults or a failure. (iii) if the real and one virtual
sensor are in close agreement and the second virtual sensor is not, then the real sensor linked of the latter failed.

NUMERICAL EXAMPLE

In the numerical example proposed, we extracted a low order model of the jetengine Pratt&Withney-J85.The model is
based on the computation of the engine operating line by using the code GSP[15]. The extracted correlations for the
Fuel-Air Ratio (FAR), for the compressor βc and turbine βt pressure ratios are shown in Figure 2 as a function of the
throttle setup θ. The virtual sensor network is computed by using the relations (1)-(3). A calibration procedure is then
applied in order to improve the virtual sensor accuracy over the operative range of the engine.
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FIGURE 2. Engine reference sections (a) and working line. Diagrams of the Fuel-A-Ratio (b), of the Compressor Pressure Ratio
βc (c) and Turbine Pressure Ratio βt as a function of the throttle setting θ.

The behavior of the system is simulated numerically as follows. At a generic throttle setting θ, the outputs of the
real sensors RS 1,RS 2,RS 3 are based on the corresponding temperatures computed by GSP. A random displacement
∆T is added to each sensor in order to simulate its precision. In order to simulate a possible failure a temperature
mismatch is introduced as

∆Ti =

{
α ∗ ∆T ∗ α ≥ 0.5
0 α < 0.5 (5)

where α is a random variable, ∆T ∗ the maximum guessed mismatch at failure. This mismatch is associated to the
sensor RS i only, where i can assume the values 1,2,3 randomly. Let us note that a failure is present only if the random
variable α ≥ 0.5.

At each computation: (i) the sensor outputs are simulated according to the described precision and failure models;
(ii) the matrix M is computed and (iii) the sensor outputs are compared in order to identify if and where a failure
happened. The system effectiveness has been tested by carrying out a parametric study. The percentage η1, η2, η3 of
detected failures of RS 1,RS 2.RS 3, respectively, are shown in Figure 3 as a function of the sensitivity setting (ξ1, ξ2, ξ3).
For each of the 10 × 10 × 10 ξ-triplets, the statistics of failures is based on 105 simulations.

CONCLUSIONS

A numerical framework for the definition of a network of virtual sensors from a set of N real sensor has been described.
The method uses a model reduction strategy in order to derive the empirical correlations which link adjacent sensors.
From the output of each real sensor a prevision of the output of all other sensors is computed.We defined each single
estimation as a ”virtual” sensor. By applying this procedure to all real sensors, a matrix is derived. After applying a
calibration for improve the virtual sensors accuracy, an eventual failure of one of the sensors is deduced by comparison.
The application to a jet engine configuration has been illustrated.
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FIGURE 3. The percentage η1, η2, η3 of detected failures of sensor RS 1 (b), RS 2 (c) and RS 3 (d) as a function of the selected
sensitivities (ξ1, ξ2, ξ3).
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