
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Low-complexity Flow Scheduling for Commodity Switches in Data Center Networks / SVIRIDOV, GERMAN; BIANCO,
ANDREA; GIACCONE, PAOLO. - ELETTRONICO. - (2019). ((Intervento presentato al convegno 2019 GLOBECOM -
IEEE Global Communications Conference tenutosi a Waikoloa, HI, USA nel Dec. 2019.

Original

Low-complexity Flow Scheduling for Commodity Switches in Data Center Networks

ieee

Publisher:

Published
DOI:10.1109/GLOBECOM38437.2019.9013612

Terms of use:
openAccess

Publisher copyright

copyright 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating .

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2743732 since: 2020-05-17T16:11:32Z

IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234930175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Low-complexity Flow Scheduling
for Commodity Switches in Data Center Networks

German Sviridov, Andrea Bianco, Paolo Giaccone
Dipartimento di Elettronica e Telecomunicazioni - Politecnico di Torino - Torino, Italy

e-mail: firstname.lastname@polito.it

Abstract—Recently proposed approaches to minimize the Flow
Completion Time (FCT) in data centers do not require any a-
priory information about the flow size, thus appearing to be both
practical and efficient. These solutions are based on a system
of multiple priority queues (PQs) at both the servers and the
switches and they may require to solve a complex algorithm to
optimally split the traffic across the different PQs. However, the
actual availability of priority queues at the switches is typically
limited, thus restricting the applicability of these approaches.

In this paper, we propose a novel approach, named NOS2,
which requires only 2 PQs at the switches while maintaining
multiple PQs at the servers, and leverages a central controller
that optimally coordinates the traffic split among the different
priority levels. We show by simulation that NOS2 is able to
achieve performance close to state-of-art solutions with sig-
nificantly smaller implementation complexity. Thus, NOS2 is
expected to provide a better trade-off between performance and
implementation complexity.

I. INTRODUCTION

In data center networks (DCNs) different types of flows have
different requirements in terms of performance metrics. Mice
flows require small flow completion time (FCT) because they
typically belong to delay-sensitive applications, such as remote
procedure calls (RPCs) or real-time interactive applications.
On the contrary, elephant flows are bandwidth sensible and
typically require large amount of bandwidth for prolonged
time. The coexistence of the two types of flows inside the data
center (DC) poses significant challenges for the performance
optimization of the respective type of flow.

Standard approaches are based on classical transport proto-
cols and on switches with buffers shared among the flows; as
a consequence, all flows are likewise treated. Thus, the FCT
of mice flows can be strongly deteriorated by the presence of
elephant flows.

Recent proposals like PIAS [1] and Homa [2] try to address
this issue by prioritizing mice flows over elephant flows in
both the servers and the DC switches. Different types of flows
are assigned a different priority, leading to a kind of “spatial
division” of flows of different lengths into different priority
queues (PQs), with highest priority assigned to mice flows.
It was shown that 8 PQs at the servers permit to achieve a
reduction in the average FCT up to a factor of 3 with respect
to traditional scheduling using a single buffer. At the same
time, the required number of PQs at the switches is typically
larger than 4. Unfortunately, even if high-end switches are
often equipped with 4 to 8 PQs, those queues are not fully
available, being often employed to separate different types of

traffic [3] such as RDMA [4], DCTCP [5] and traditional TCP-
based traffic.

In this paper, we closely approximate the performance of
PIAS and Homa with only 2 PQs in the switches, making
our approach more practical. We propose Network Optimized
Split 2 (NOS2), which employs a simple flow scheduling at
each server based on 8 PQs while maintaining only 2 PQs
in the switches. NOS2 leverages the measured DC-wide flow
distribution length (denoted as workload in the following). We
show that such a small number of PQs in switches is enough
to achieve performance similar or even better (depending on
the scenario) than when employing 8 PQs.

The remainder of the paper is organized as follows. In
Sec. II we present the relevant related work. In Sec. III we
describe the main issues related to flow prioritization in DCNs.
In Sec. IV we describe NOS2, our main contribution, whose
performance are investigated in Sec. V. Finally, in Sec. VI we
draw our conclusions.

II. RELATED WORK

The authors of [1] propose PIAS, which tries to minimize
the FCT by splitting flows among different priorities without
a precise a-priori knowledge of each flow length. The authors
provide a formulation to find an optimal split of traffic among
different PQs by exploiting information on the average DC-
wide flow length distribution. However, the proposed architec-
ture requires a large number of PQs inside switches, which is
typically not easy to obtain. Furthermore the proposed optimal-
split algorithm requires to solve a complex optimization prob-
lem, thus leading to poor reactivity in the case of sudden
changes in the workload. In [3] the authors propose a flow
prioritization scheme that exploits only two PQs at network
switches. However, differently from NOS2, the architecture
introduces a modification of the scheduling algorithm running
at the servers and requires expensive modifications of the
switch to execute the proposed prioritization mechanism.

In [6] the authors propose a scheduling algorithm, named
pFabric, and show that it is able to achieve a near optimal
FCT under realistic workloads. pFabric employs a fine-grained
flow prioritization scheme that, in the worst case, needs an
unbounded number of PQs, limiting its practical applicability.
Furthermore, it requires an a-priori knowledge of the length
of each individual flow, which is typically unknown and/or
difficult to obtain in realistic scenarios.

Flow 3

1 2 3 4 5

Flow 2 1 2 3Flow 1 1

1 2 3 4 5

1 2 3 5

1 2 3 4 5
Without scheduling

1 1 2 3 4 51 2 3

With scheduling

Flows to serve and their length
1 2 3 4 5

Fig. 1: Example of flow scheduling.

The work in [7] proposes to emulate the presence of PQs
inside the network by acting on the congestion window of
the transport protocol and giving more aggressiveness when
sending the segments of short flows. However, this system
provides marginal improvements with respect to a traditional
transport protocol, and the performance is still worse than a
system based on flow separation in different PQs.

In [2] the authors propose Homa, a credit-based transport
protocol in which receivers drive the senders by assigning
transmission credits. The credits serve a double purpose: i)
to specify which senders are allowed to transmit over the
DCN to receivers and ii) to define the network priority to
be used during the data transmission. The priority is selected
by exploiting information on the flow length distribution so
as to prioritize short flows over long ones. However, similarly
to [1], this approach requires a large number of PQs inside
switches. Furthermore, Homa requires to completely rework
the transport protocol inside each server.

III. REDUCING FCT WITH FLOW PRIORITIZATION

Flow scheduling consists in choosing a set of flows to serve
from an available pool of active flows. Depending on metric
employed for such choice, different scheduling algorithms can
be implemented. Fig. 1 depicts an example of a pool of 3
flows of different length to be transmitted over a single link.
Without any flow scheduler, all three flows will fairly share
the available link bandwidth leading to a FCT of 3, 7 and 9
for flow 1, 2 and 3 respectively, achieving an average FCT
of 6.33. On the other hand, a flow scheduler which privileges
short flows over long one, for the same pool of flows, will
lead to a FCT of 1, 4 and 10 with an average FCT of 5.
In the latter example the FCT of short flows (flows 1 and
2) is reduced considerably without affecting significantly the
performance of the long flows (flow 3).

In realistic workloads the majority of flows inside a data
center are mice flows. Indeed, measurements from [8] show
that 80% of flows are mice flows composed of less than 10MB.
Flow schedulers that privilege short flows over long ones may
lead to considerable FCT reductions for mice flows at the
expense of the elephants. Nevertheless, [8] showed that mice
flows account for less than 1% of the global DCN traffic,
thus the performance penalty of long flows is expected to
be negligible. In general, the performance of elephant flows
depends on their length used distribution, in particular from the
shape of the tail of the distribution. It is expected to observe
smaller performance degradation for shorter tails and vice-
versa.

A. Flow-size aware scheduling

In flow size-aware scheduling algorithms, the length of in-
dividual flows is assumed to be known in advance and packets
belonging to shorter flows are served at higher priority with
respect to packets belonging to longer flows. A flow maintains
the priority level for its entire lifetime. This scheduling policy,
known as Shortest Job First (SJF), has been shown to have
a dramatic benefit for the average FCT [9]. A preemptive
version of SJF, known as Shortest Remaining Job First (SRJF),
assigns priorities to each flow related to the amount of bytes
left to their completion. Flows with the least amount of missing
bytes to transfer until their completion are served with higher
priority with respect to flows requiring more bytes to transfer.
This scheduling policy is used by pFabric [6] and it has been
proved to be optimal [10] in terms of average FCT.

To implement prioritization of individual packets in real
scenarios, strict priority (SP) scheduling is adopted and packets
are stored in N separated queues. Let Q = {qp}N−1

p=0 be the
set of all queues, with p being the priority level (with 0 being
the level corresponding to the highest priority). At each time
instant the scheduler selects the highest priority queue qs ∈ Q
to serve, i.e., s = min{p : qp is not empty}.

The main limitation of flow-size aware schedulers is that
they require knowledge about the length of individual flows.
Furthermore, both SJF and SRJF require a high priority
granularity which in turns translate to a large N for the SP
scheduler.

B. Flow-size agnostic scheduling

In realistic scenarios the length of individual flows is typi-
cally unknown or difficult to be obtained without undergoing
into deep modifications of the application layer. Furthermore,
the amount of PQs available in commercial switches typically
ranges from N = 4 to N = 8 PQs, far less than the amount
of PQs required for such fine-grained scheduling policies as
SJF or SRJF.

In the absence of the knowledge about the length of
individual flows, scheduling policies based on the amount
of obtained service have been proved to be optimal. Least
Attained Service (LAS) scheduler [11] always gives priority
to flows with the least amount of attained service (transferred
bytes) leading to small FCT for mice flows as they are
prioritized over large flows. LAS is known to be optimal when
the cumulative distribution function of the flow length F (x)

is known in advance and its hazard rate h(x) = F ′(x)
1−F (x) is

decreasing [12]. Although mitigating the issue related to the
absence of information about the length of individual flows,
LAS still requires a large number of PQs as pFabric, thus
making it impractical in real scenarios.

This limitation can be overcome by employing a discretized
version of LAS, based on few queues (i.e., small N). This
solution is known as Multilevel Feedback Queue (MLFQ).
Similarly to a SP scheduler, MLFQ is composed of N queues
(namely levels) served in a strict priority manner. However,
differently from a normal SP scheduler, MLFQ permits flows
to be demoted to lower priorities using a set of demotion

thresholds Ω = {ωi}N−1
i=1 , which are based on the amount

of service (in terms of transmitted bytes) bf (t) a given flow f
has obtained up to time t. Notably, bf (t) is a per-flow counter
available in many commercial switches for data centers.

Assuming ω0 = 0 and ωN = +∞, at any given time t
the priority p of a flow f is set such that ωp ≤ bf (t) <
ωp+1. When a new flow f arrives at the transmission buffer
of a server, the flow is assigned a priority p = 0 and its
packets are stored in the highest priority queue q0. When the
amount of served bytes exceeds the first threshold, i.e., bf (t) >
ω1, the flow is demoted and assigned a lower priority p =
1. Consequently, all new packets belonging to the demoted
flow will be stored in q1. This process repeats until the flow
terminates or eventually reaches the lowest priority queue N−
1, where it remains up to completion.

The most crucial aspect in a MLFQ scheduler is the
definition of a proper set Ω of demotion thresholds. A simple
approach, derived from [6], named Equal Split with N levels
(ES-N), splits F (x) in N equal percentiles, as follows:

ωi = F−1

(
i

N

)
, i = 1, . . . , N − 1

However, this approach may lead to early flow demotion,
with mice flows quickly ending up in lower priorities together
with elephant flows. Similarly, it may lead to late elephant
demotion by keeping elephant flows mixed with mice flows for
too long in high priority queues before demoting them. This
ultimately leads to unbalanced utilization of available PQs,
and, as a consequence, to FCT deterioration.

To overcome this limitations, PIAS [1] proposes an infor-
mation agnostic scheduler able to achieve performance similar
to those of pFabric while employing N = 8 PQs and only the
knowledge about the overall DC-wide flow length distribution.
PIAS addresses the issue related to unbalanced PQs utiliza-
tion by providing a formulation for an Optimal Threshold
Assignment (OPT) so as to provide best PQs utilization and
to minimize the average FCT inside the MLFQ scheduler. The
formulation represents the MLFQ scheduler as a tandem of N
M/M/1 queues, each queue corresponding to a priority level
of the MLFQ scheduler. The service time of each queue is
made dependent on the measured average DC-wide flow length
distribution. The objective function of the OPT problem is
constructed to minimize the average queueing delay inside the
tandem of queues, thus minimizing also the average FCT.

Fig. 2 shows two alternative architectures, one based on
PIAS and the other on ES-N to compute Ω. Both architectures
employ a MultiLevel Feedback Queue (MLFQ) but the thresh-
olds in each server to serve data flows coming from upper
layers is computed either with OPT or with ES. A central
threshold controller collects statistics on the flows generated at
the servers, derives the corresponding workload and executes
the OPT (or ES) algorithm. At the same time, servers monitor
and notify the threshold controller their flow statistics, and
receive the updates on Ω.

The server, before transmitting a packet to the network, tags
the packet with a priority equal to the MLFQ level within

Fig. 2: High-level architecture of PIAS and of ES-N , with
many PQs at the servers and at the switches.

which it was enqueued. The priorities assigned by each server
must be consistent throughout the DCN, meaning that switches
must have a number of PQs equal to the number of levels of the
MLFQ employed at servers. Upon packet reception, switches
are left with the sole role of performing SP scheduling based
on the priority tag. To do so, standard mechanisms based on
IEEE 802.1p [13] can be exploited, being already available in
most of commercial DC switches.

C. Applicability in a realistic scenario

The OPT threshold assignment employed in PIAS is known
to be NP hard [14] and, to the best of our knowledge, no
proven approximation exists for N > 2. Thus, the solution can
only be found by means of heuristics, which do not provide
any guarantees on the optimality of the obtained solution and
possibly require a large amount of time to converge.

PIAS presents a major restraint in the case of sudden change
in the workload or in the case of sub-optimal solutions, which
may lead to threshold-workload mismatch, which was shown
to deteriorate PIAS performance by up to 25% [1].

For a wide range of traffic types, most of the demotion
thresholds in Ω are located after the 90th percentile of the flow
length distribution. Since the majority of realistic workloads
are heavy tailed and their empirical estimation is hard to
achieve, the estimation errors reduce the efficiency of MLFQ.
Indeed, if the tail of the workload has been underestimated,
flows may be demoted too early, leading to most flows
ending up in the low PQs too early. On the contrary, if the
tail has been overestimated, flows may never be demoted
to lower priorities, thus reducing the potential performance
gain of MLFQ. Furthermore, in the case of different servers
with different workloads, PIAS may lead to sub-optimal Ω
assignment. Due to the fact that PIAS employs the average
DC-wide flow length distribution, servers will use demotion
thresholds which are naturally mismatched with respect to
their actual fine-grained local workloads.

Despite the previously cited drawbacks, the main disadvan-
tage of PIAS is the large number of required PQs. Indeed,
although the majority of commercial switches offer up to
8 PQs, as previously discussed, most of them are typically
unavailable, because they are utilized to perform isolation of
different types of traffic.

Fig. 3: High-level architecture of NOS2, with multiple PQs at
the servers and just 2 PQs in all the switches.

IV. NOS2 ARCHITECTURE

To overcome the shortcomings of previously proposed ap-
proaches, we propose the NOS2 architecture. Our key idea
is to decouple the MLFQ system with multiple queues at the
servers from the queueing occurring at the switches, which
adopt only 2 PQs, independently of the number of queues at
the servers. The high priority queue at the switches is devoted
to mice flows and the low priority one to elephant flows.

Fig. 3 depicts the NOS2 architecture. Differently from PIAS
and ES-N , NOS2 leaves to servers the complete freedom in
managing their demotion thresholds on the basis of the locally
observed workload. However, this does not introduce any
expensive threshold computation since NOS2 involves simple
ES thresholds for MLFQ scheduler at the servers. At the
same time, to compensate for eventual performance losses due
to non-optimized thresholds at servers, demotion thresholds
inside switches are computed by the threshold controller based
on the DC-wide flow length distribution, as in PIAS.

A. Threshold controller

The central controller gathers flow statistics from the
servers, computes the DC-global flow length distribution and
computes Ω for the switches based on OPT algorithm. Since
the switches adopt only 2 queues and just one threshold is
needed (i.e., Ω = {ω1}) the complexity of OPT algorithm
is considerably lower with respect to the case of multiple
thresholds. Furthermore, in [15] it is shown that, under realistic
conditions, there exists a closed-form approximate expression
to compute the optimal value of ω1 with good accuracy. Intu-
itively, the controller must identify just the elephant and mice
flows globally in the DC and instruct the switches to enqueue
them in low priority and high priority queues, respectively.
Now, as shown in Fig. 3, a single optimal threshold ω1 is sent
to all the servers.

B. Server scheduling and tagging

At each server NOS2 employs MLFQ with simple ES-N
threshold policy based on the local estimation of the workload,
as shown in Fig. 3. ES-N introduces greater adaptability to
variable traffic patterns. Indeed, in the case of a sudden change
in workload, a new set Ω can be obtained as soon as the new
flow length distribution is obtained, without the latency due to
running complex OPT algorithm for multiple thresholds.

Fig. 4: Data center topology used for the simulations.

Higher workload adaptability comes at a cost of a perfor-
mance penalty. However, in [1] it was shown that when using
ES-8, i.e., with 8 PQs, there is a mere 10% penalty in FCT with
respect to using thresholds obtained by the OPT algorithm.
This behavior is confirmed later in Sec. V by our simulation
results which show an even smaller performance gap between
ES-8 and OPT thresholds.

As described before, the role of discriminating flows be-
tween mice and elephant flows is left to the threshold con-
troller. Given ω1, servers perform a simple packet tagging with
the use of a Tagging Engine depicted in Fig. 3. Packets are
tagged with either a high or low priority tag depending on
the amount of already transmitted bytes for the corresponding
flow.

C. Switch scheduling

As shown in Fig. 3, the switch enqueues the incoming traffic
into one of the two PQs based on the priority level specified
by the tag present in the packet and set by the servers. Then,
the 2 queues are served with a strict priority scheduling policy.
The switches do not require to maintain any per-flow state to
implement NOS2, because the optimal discrimination between
elephant and mice flows is delegated to the servers and to the
central threshold controller.

In summary, the NOS2 approach integrates a fine-grained
scheduling with multiple priority levels at each server with
a coarse-grained scheduling at the switches that simply keep
mice and elephant flows separated inside the DCN.

V. PERFORMANCE EVALUATION

In this section we analyze the performance of the proposed
approach by simulations.

A. Simulation methodology

We perform the analysis using the discrete-event simulator
NS3 [16], which provides detailed simulation models for the
Internet protocols stacks from MAC layer up to the application
layer. We consider a standard Ethernet-based leaf-and-spine
topology for the DCN, as shown in Fig. 4. The chosen
topology connects 120 servers and comprises 3 spine switches,
4 leaf switches and 30 servers per leaf switch. All servers
are connected to the leaf switches via a 1 Gbps link, while
leaf switches are connected to spine switches via a 10 Gbps
link. Thanks to this link dimensioning, the DCN provides full
bisection bandwidth.

The queueing mechanisms described in Sec. IV are im-
plemented at the output network interfaces of servers and

Fig. 5: Flow length distributions employed in simulation.

switches. We employ DCTCP as the end-to-end transport
protocol with marking thresholds and gain parameters set ac-
cording to the guidelines provided in [5], while load balancing
across the DCN is performed using ECMP.

Traffic flows arrive according to a Poisson process and the
flow lengths are randomly generated according to a given
distribution. We classify flows into mice flows (<100kB),
medium flows and elephant flows (>10MB). The destination
of each flow is uniformly chosen at random among the other
119 servers. The data center load λ is defined as the average
amount of traffic destined to the servers, normalized with
respect to the bisection bandwidth. We vary λ between 0.5
and 0.8 to simulate different loads inside the DC. We do not
show the results for λ < 0.4 since the performance of all the
considered schemes are almost identical.

We consider for our experiments two realistic, heavy-tailed
flow length distributions, depicted in Fig. 5: Data Mining
(DM) [8] and Web Search (WS) [5]. The former is com-
posed predominantly of mice flows (80%) and elephants flows
(20%). The latter instead shows a smoother transition from
mice to elephants. We consider a workload scenario in which
all servers generate traffic according to one of the two flow
length distributions (DM or WS).

We evaluate the average value and the coefficient of vari-
ation (CV) of the Flow Completion Time (FCT), for all
the flows, and, independently for each class of flows (mice,
medium and elephant). The FCT is measured from the genera-
tion at the source server of the first packet belonging to a flow
until the reception of the last packet at the destination server.
Evaluating the FCT is important to infer the performance of
typical DC delay-sensitive applications, which directly affects
the Quality of Experience perceived by the end users accessing
cloud-based applications.

We compare NOS2 with respect to the following alternative
solutions:

• ES-8: the architecture in Fig. 2 with MLFQ, N = 8 and
ES-8 threshold computation.

• PIAS: the architecture in Fig. 2 with a MLFQ, N = 8
and OPT thresholds computation. The optimal threshold
values are taken from the publicly available PIAS source
code.

• DCTCP: as a reference case, we run bare DCTCP at
servers with a single queue at servers/switches, thus

(a) Average FCT gain (b) Average CV

(c) Average FCT gain for different flow types

Fig. 6: Web Search workload

disabling completely any flow prioritization scheme.
We report the FCT gain, defined as the FCT achieved by

DCTCP divided by the FCT of the considered scheme. Thus,
a FCT gain G >1 means that the FCT is reduced by a factor
G with respect to DCTCP.

B. Performance analysis

Fig. 6a and Fig. 7a show the aggregate average FCT for the
three systems under WS and DM workloads respectively. In
both cases, the three systems behave very similarly in terms
of average FCT. We now focus on the performance analysis of
mice, medium and elephant flows. Under the WS workload,
Fig. 6c shows that, for mice flows, the best FCT is obtained by
ES-8, the worst by PIAS, with NOS2 showing an intermediate
behavior. The opposite holds for the elephant flows, while for
medium flows the FCT is almost unaffected by the adopted
scheme. On the contrary, Fig. 7c shows that, for the DM
workload, only the performance experienced by medium flows
are affected by the adopted scheme, and, in this case, the best
scheme is PIAS while the worst is NOS2, which still keeps
the FCT gain larger than one. It is worth noting that in DM
workload the amount of medium flows accounts only for 4%
of the flows, which explains why the performance gap between
the three architectures in Fig. 7a is so mild.

The explanation behind the relative performance degrada-
tion for NOS2 for medium-sized flows is that 2 PQs cannot
offer enough resolution to differentiate among all flow types.
Since the majority of flows in DM workload are either mice
or elephant, the threshold setting which optimizes the average

(a) Average FCT gain (b) Average CV

(c) Average FCT gain for different flow types

Fig. 7: Datamining workload

FCT tries to optimize those two types of flows at the price
of sacrificing the performance of medium flows. On the
contrary, the WS workload presents a higher concentration of
medium flows, which leads to the threshold being optimized
for those flows. Similar reasoning applies when it comes
to explaining the performance of elephant flows. For WS
workload, the performance for elephant flows is penalized
considerably compared to DCTCP. Although WS and DM
have a similar fraction of elephant flows, WS distribution
presents a considerably shorter tail, thus smaller average size
of elephant flows. In view of the discussion made in Sec. III,
this leads to a bigger penalty when mice flows are prioritized
over them. On the other hand, in the case of DM workload the
tail of the distribution is considerably longer, thus this effect
is less visible.

For what concerns the coefficient of variation of the FCT,
reported in Fig. 6b and Fig. 7b, the three systems perform
similarly, with NOS2 performing slightly better than ES-8
and PIAS for both WS and DM workloads. There is still a
considerable gap between the three architectures and DCTCP.
This is not surprising, since DCTCP aims at treating each flow
fairly while NOS2, ES-8 and PIAS privilege short flows at the
expense of long flows, thus increasing the variance of the FCT.

VI. CONCLUSIONS

We introduce a low complexity flow scheduling mecha-
nism, named NOS2. NOS2 exploits a fine-grained MLFQ
flow scheduling at each host, with multiple queues, while

adopts a simple strict priority scheduler at each switch with
only 2 queues. NOS2 leverages the local estimation of the
flow length distribution to set the demotion thresholds of the
MLFQ scheduler at each server. To improve the reactiveness
and reduce the computation complexity, the server demotion
thresholds are computed through the Equal Split algorithm. On
the contrary, a single demotion threshold for the switches is
adopted and thus the traffic is tagged as either high priority or
low priority when transmitted at the server. This threshold is
globally computed by the central threshold controller, which
runs a simple but optimal algorithm.

Our simulation results show that NOS2 achieves a near
identical FCT to PIAS and an ES-8 based architecture with 8
PQs in both switches and hosts. Thus, given the lower number
of queues and the simpler and more accurate computation of
the thresholds, NOS2 is shown to achieve the best tradeoff
between performance and complexity.

REFERENCES

[1] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Information-
agnostic flow scheduling for commodity data centers,” in NSDI, 2015,
pp. 455–468.

[2] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A receiver-
driven low-latency transport protocol using network priorities,” in ACM
SIGCOMM, 2018, pp. 221–235.

[3] Y. Lu, G. Chen, L. Luo, K. Tan, Y. Xiong, X. Wang, and E. Chen, “One
more queue is enough: Minimizing flow completion time with explicit
priority notification,” in IEEE INFOCOM, 2017.

[4] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn,
“RDMA over commodity Ethernet at scale,” in ACM SIGCOMM, 2016.

[5] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),”
ACM SIGCOMM CCR, vol. 41, no. 4, pp. 63–74, 2011.

[6] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pFabric: Minimal near-optimal datacenter transport,”
in ACM SIGCOMM CCR, vol. 43, no. 4, 2013, pp. 435–446.

[7] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Iqbal,
and B. Khan, “Minimizing flow completion times in data centers,” in
IEEE INFOCOM, 2013, pp. 2157–2165.

[8] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible
data center network,” in ACM SIGCOMM CCR, 2009.

[9] R. W. Conway, W. L. Maxwell, and L. W. Miller, Theory of scheduling.
Courier Corporation, 2003.

[10] L. Schrage, “A proof of the optimality of the shortest remaining
processing time discipline,” Operations Research, 1968.

[11] M. Nuyens and A. Wierman, “The foreground–background queue: a
survey,” Performance evaluation, vol. 65, no. 3-4, pp. 286–307, 2008.

[12] S. Aalto and U. Ayesta, “Recent sojourn time results for multi-
level processor-sharing scheduling disciplines,” Statistica Neerlandica,
vol. 62, no. 3, pp. 266–282, 2008.

[13] “IEEE 802.1p standard.” [Online]. Available: https://www.ieee802.org/
[14] H.-W. Jiao and S.-Y. Liu, “A practicable branch and bound algorithm

for sum of linear ratios problem,” European Journal of Operational
Research, vol. 243, no. 3, pp. 723–730, 2015.

[15] K. Avrachenkov, P. Brown, and N. Osipova, “Optimal choice of thresh-
old in two level processor sharing,” Annals of Operations Research,
2009.

[16] G. F. Riley and T. R. Henderson, “The NS-3 network simulator,” in
Modeling and tools for network simulation. Springer, 2010, pp. 15–34.

