
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

From Statistical Physics to Algorithms in Deep Neural Systems / Tartaglione, Enzo. - (2019 Jul 12), pp. 1-132.
Original

From Statistical Physics to Algorithms in Deep Neural Systems

Publisher:

Published
DOI:

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2743283 since: 2019-07-24T10:44:05Z

Politecnico di Torino

Doctoral Dissertation
Doctoral Program in Physics (31stcycle)

From Statistical Physics to
Algorithms in Deep Neural Systems

By

Enzo Tartaglione

Supervisor:
Prof. Riccardo Zecchina, Supervisor

Doctoral Examination Committee:
Prof. Raffaella Burioni, Referee, University of Parma
Prof. Marco Grangetto, Referee, University of Turin

Politecnico di Torino

2019

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Enzo Tartaglione
2019

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

To my parents

Acknowledgements

The first person I would like to thank is Riccardo Zecchina. I will never forget the
first meeting we had in which he was warning me about the complexity and the deep
problems I were about to face from the very beginning of my PhD: that speech gave
me the motivation to go in depth in the analysis of ANN problems, motivation which
was always fed by the extremely interesting talks we had as a group and typically
led by your ideas.
I would like to thank Carlo Baldassi for the discussions on more "empirical" ap-
proaches and not strictly bound to the theory, Carlo Lucibello and Luca Saglietti
for the hard work done together on the stochastic models. A very special thank to
Federica Gerace, which suffered in silence while patiently listened to my daily crazy
ideas on new learning algorithms.
I want to thank the research group at Joint Open Lab by Telecom Italia: Attilio
Fiandrotti for giving me motivation and challenge, especially while writing our NIPS
paper, Gianluca Francini for the complete support provided during my entire PhD,
and a special thank goes to Skjalg Lepsøy, for the academic and especially human
support provided.
A thank goes to my friends from outside the work: Sara D. for supporting me in my
private life during critical moments, Stefano Z. for being a real friend even with some
(many) defects, Carlo S. for the evenings at the pub and for the always interesting
talks, Flavio R., Nicolo N, Luca D. and Stefano V. for hosting me and spending
spare time together with me. A big thank goes also to all the wonderful people I
met at Collegio Einaudi in the last 9 years and to all the fellow referees from A.I.A.
Collegno.
Finally, the very final special thank goes to my parents: always present in my life,
always supporting me despite my choices might be against their will, I have been
able to go so far only thanks to you.

Abstract

Nowadays it is pretty common for people to talk about Artificial Intelligence. Con-
trarily from what it is imaginable, AI research is not focused on the realization of
“self-thinking” machines: instead, it involves the study of any algorithm, machine or
more general, artificial agent being able to perceive the environment and to react in
a “smart” way, i.e. maximizing the chance of successfully achieving its own goals
(like, for example, correctly classifying an object). In particular, great interest is
shown towards Artificial Neural Networks (ANNs) modeling, which are biological
brain-inspired. The research around ANNs started about 80 years ago, but they
received huge consideration by the research community just in the last few decades.
Empirically, their learning capability for non-trivial tasks has been acknowledged
since 1990; however there was the lack of powerful simulation tools. In the last
years, particularly thanks to the use of Graphical Processing Units (GPUs) to exploit
most of the computation (and recently the use of TPUs), almost everyone owns
a device able to simulate an ANN. For this reason, in the last few years artificial
neural networks were challenged to solve more and more complex tasks, being able,
for example, to correctly classify images in 1000 classes, to win over the world
champion of Go (with the machine named AlphaGo), to understand the human
speech etc. In order to accomplish all of these tasks, their size and complexity
scaled-up: nowadays it is common to train ANNs having more than hundred millions
of parameters. As long as the learning techniques are able to “somewhat” train the
network, the community is in general not very interested in understanding all the
learning dynamics inside the network.
I lived my PhD work like a journey, starting from the simplest possible model,
the perceptron. Such an ANN architecture shows similarities to the Ising model;
hence, analytical tools from the mechanical statistics can be borrowed to analyze
the version (solution) space of the problem aimed to be solved. From the theory, we
know that local research tools are typically destined to fail in the learning dynamics

vi

for the binary perceptron (a model with binary parameters). However, recently it
has been shown the existence of dense sub-dominant clusters of solutions for the
learning problem. Exploiting this property of the version space, a model to solve
the binary perceptron problem has been designed, in which the synaptic couplings
(the parameters to be learned) are considered being stochastic, according to a given
distribution. It was observed that this learning dynamics, even though relying on
a local-research algorithm, still finds solutions lying in the dense cluster. Such a
model was extended to more complex ANN architectures. Sadly, without some
extra heuristics borrowed from the common knowledge of deep learning, it seems
not to achieve state-of-the-art performances and it is still matter of studies. The
analysis of the version space for the perceptron model showed some geometrical
characteristics, the same for more complex architectures is however not duable
because of the complexity of the network itself. For this reason, an empirical ex-
ploration algorithm has been designed, aiming to investigate the properties of the
version space for the Tree Committee Machine (TCM). Even though from the theory
the version space should not be connected in the general case, it was empirically
observed that the algorithmically-accessible version subspace is connected. Other
works showed the same behavior for more complex architectures: this could be a hint
for understanding why the current learning algorithms still work on larger networks.
Finally, the problem of parameter reduction for deep networks (deep refers to the
great number of layers) has been explored: do we really need huge architectures
to solve the learning tasks? We have showed that a massive parameter reduction
without performance loss is possible, designing a proper regularization term which
allows us to prune parameters from the network which are not relevant to solve the
learning problem. This is done by designing an additional regularization term, which
is a biologically-inspired penalty for non-relevant synaptic couplings in our model.

Contents

List of Figures xi

List of Tables xvi

1 Introduction 1

1.1 From biological neurons to their models 3

1.2 The importance of artificial neural networks 6

1.3 Supervised learning . 8

1.3.1 Dataset . 9

1.3.2 Learning the dataset . 11

1.4 Back-propagation . 14

1.4.1 Objective function . 15

1.5 The generalization problem . 17

1.5.1 Proper data fitting . 18

1.5.2 Data augmentation . 19

1.5.3 Regularization term . 19

1.5.4 Optimizers . 21

1.5.5 Dropout . 24

1.5.6 Batch normalization . 26

1.5.7 Vanishing gradient . 28

viii Contents

1.5.8 Curse of dimensionality 29

1.6 From the simple to the complex 30

2 The perceptron problem 32

2.1 The model . 33

2.1.1 Performance evaluation . 34

2.2 Continuous perceptron . 36

2.2.1 Teacher-student . 38

2.2.2 Storage problem . 41

2.2.3 Learning algorithms . 42

2.3 Binary perceptron . 44

2.3.1 Ising model vs Ising perceptron 45

2.3.2 Storage problem . 45

2.3.3 Learning algorithms . 46

2.3.4 Dense clusters . 47

2.4 Stochastic perceptron . 49

2.4.1 Formulation . 50

2.4.2 Dynamics of learning . 51

2.4.3 Theoretical analysis . 52

2.4.4 Experimental results . 54

2.4.5 Variant: a game of scales 57

3 Feedforward networks 60

3.1 Structure of feed-forward neural networks 61

3.1.1 Tree committee machines 62

3.1.2 Fully connected networks 64

3.1.3 Convolutional networks 66

Contents ix

3.1.4 The universal approximation theorem 72

3.2 Exploring solutions in TCM . 73

3.3 Exploring the version space . 76

3.3.1 Finding the path . 78

3.3.2 Properties of the path . 79

3.4 Deep binary models . 81

3.5 Stochastic deep networks . 82

3.5.1 Extension to convolutional layers 84

3.5.2 Sampling the trajectories 85

4 Sparse networks 87

4.1 Techniques to sparsify . 88

4.1.1 Lasso regularization . 89

4.1.2 Variational dropout . 90

4.2 A biological inspiration . 91

4.3 Parameter sensitivity . 92

4.3.1 Cost function formulation 95

4.4 Sensitivity driven regularization effect to the learning dynamics . . . 97

4.4.1 Loss term vs Regularization term 97

4.4.2 Sensitivity in depth . 98

4.5 Thresholding . 100

4.5.1 T = 0 . 100

4.5.2 T > 0 . 103

4.5.3 Types of sensitivity . 103

4.6 Results . 104

4.6.1 Benefits for generalization 107

x Contents

5 Conclusion 109

References 111

List of Figures

1.1 These images represent a possible input to be fed to an ANN. While
Fig. 1.1a and Fig. 1.1b belong to the same class (dog), Fig. 1.1c is
in a different class (cat). A possible task for an ANN, for example,
could be to detect whether an image represents a dog or not 7

1.2 High-level view of how an ANN works for a classification task. For
a given input (here, a dog), it provides a response. 8

1.3 Structure of feedforward neural networks. Here we have L layers,
with L that might be a large value (in that case, we might talk about
deep learning). 10

1.4 Example of different bias-variance trade-offs in data. 12

1.5 Back propagation at work. After the forward propagation step (blue
arrow), starting from J the signal is back-propagated according to
the chain rule (orange arrows). 14

1.6 Example of overfit (green line) vs optimal learning (blue line). . . . 18

1.7 Some examples of data augmentation: rotation, tilting, squeezing. . 20

1.8 Example of dropout. During training, stochastically some neurons
are excluded from the network. At the successive training iteration,
dropout probabilities are reset. 25

1.9 Example of how batch-norm works. It takes first the output distribu-
tion for the layer, then it normalizes it and finally applies the learned
mean and variance. 28

xii List of Figures

2.1 The perceptron model. Once presented a pattern ξ µ as input, each of
its N components are re-weighted by N synaptic couplings. Then, the
obtained pre-activation potential goes through a threshold function,
producing the output yµ . 33

2.2 Projection of the phase space for the spherical perceptron. The vector
indicating the configuration is W and just the solutions lying on the
hypersphere of radius

√
N are here acceptable. 37

2.3 Projection of the phase space for the spherical perceptron in the
teacher-student scenario. Here W represents the student while T is
the teacher. When there is complete overlap between teacher and
student the orange area completely disappears, and it represents an
inverse measure than the overlap. 39

2.4 A schematic representation on how the version space Ω modifies as
α increases. It does exist a critical value αc above which the version
space no longer exists and our problem is unsatisfiable. 42

2.5 A schematic representation on how the version space Ω modifies
as α increases for the binary perceptron. Differently as seen for
Fig. 2.5, the version space is fractured in non-connected domains,
which makes the RS assumption failing. 47

2.6 Energy vs q∗ parameter for a typical learning problem in the stochas-
tic perceptron. Here α = 0.55. 53

2.7 Franz-Parisi potential for typical solutions found in the spherical,
stochastic and binary perceptron at thermo-dynamical equilibrium.
The curves for the stochastic perceptron are computed for different
q∗ values (0.7, 0.8 and 0.9): the higher it is, the more dense the
region the final solution is. Here α = 0.55, β = 20 for the stochastic
perceptron while β → ∞ for the binary and spherical perceptron. . . 55

2.8 Empirical analysis for finding-out the algorithmic critical alpha for
the stochastic perceptron model. Here all the points are averaged
over 100 samples and results are obtained for N = 1001 and N = 10001. 56

List of Figures xiii

2.9 Average energy as a function of q∗ for the empirical simulations
(GD) and expectations from the theory (eq. 2.54). If we do not make
GD slowly thermalize the assumption of thermal equilibrium is not
valid. 57

2.10 Empirical results for N = 1001. There is a significant improvement
in the algorithmic performance annealing γ 59

3.1 The structure fo a TCM with N = 9 and K = 3. It should be possible
also to learn the weights of the output layer. 62

3.2 The structure fo a one hidden layer fully-connected ANN with N = 9
and K = 3. As it is possible to see, all the hidden neurons are able to
see all the inputs. 64

3.3 Example of how a convolutional layer works. Here the filter is 2x2
and the input is 5x3. The input is indicated by green neurons while
the output is in light blue. In this case the parameters are 4 only and
the same parameter is indicated with the same color of arrow (blue,
red purple or green). It is assumed here stride 1. 70

3.4 Example of how a pooling layer works. Differently from a con-
volutional layer, there are no overlapping fields and there are no
parameters to be learnt. 71

3.5 Probability of successfully learning a classification task varying
alpha. EASGD with 2 and 4 workers (W) compared to GD and SGD. 74

3.6 Evolution of the energy landscape around SGD solution (yellow)
and Elastic-SGD (green) . 75

3.7 Typical scenario observed for two generic solutions joined by ν(t).
An energy barrier separates the two configurations. 77

3.8 Example of shape for the version space (Ω, in blue). The path tracked
by ν(t) (yellow) typically gets out Ω, but maybe a connection path
between Wa and Wb exists (green line). 77

xiv List of Figures

3.9 Typical Hessian eigenvalues scenario along Γ(t). While the error still
remains clamped to zero, the non-zero eigenvalues are all positive
and just a very small percentage of them are not zero. In this case,
for N = 300, K = 3, just three of them are non-zero values. 80

3.10 Example of Ωab for LeNet-5 with a training set of 100 images. The
x axis is a normalized distance between Wa and Wb. 80

4.1 A very intuitive diagram to give a high-level idea of Hebb’s claim.
Neighbor neurons typically influences each other, and their connec-
tion is typically stronger than far ones. As in ANNs there is no
spatial distance concept between neurons, we can still evaluate the
“usage” of a connection. 92

4.2 Sensitivity computed in LeNet-300 trained on MNIST with and with-
out our regularizer. The layer size is 784x300 (Fig. 4.2a), 300x100
(Fig. 4.2b) and 100x10 (Fig. 4.2c). The effect of the regularizer is to
increase the number of parameters having low sensitivity. However,
training without regularizer also results in having a significant slice
of low-sensitivity parameters. As we will see in Fig. 4.3, most of
the low-sensitivity parameters trained without regularization are not
close to zero. 101

4.3 Maximum between S and |w| in LeNet-300 trained on MNIST with
and without our regularizer. Here we are representing the same
parameters and the same setting as Fig. 4.2. The lowest this value
is, the most we are confident to prune these parameters, It is evident
that using our regularizer the behavior with Fig. 4.2 is very close,
meaning that we are effectively pushing towards zero the less relevant
parameters. On the contrary, without regularizer we are far from
being able to perform some efficient pruning. 102

List of Figures xv

4.4 Example of how sensitivity-based regularization works, inside a
single iteration. Given a minibatch Ξ̃, first the forward propagation
step is performed. Then, through back-propagation, gradient from
the loss function and sensitivity are computed. With these, the update
step modifies the value of the parameters: some are increased, others
are pushed towards zero. Finally, the parameters are thresholded.
At some point, entire neurons are no longer connected to the ANN
model, and can be entirely pruned away. 105

4.5 Loss on test set across epochs for LeNet-300 trained on MNIST with
different regularizers (without thresholding): our method enables
improved generalization over L2-regularization. 108

List of Tables

3.1 Confrontation of the results obtained for a 801x801x801x10 fully-
connected stochastic architecture on MNIST. The learning rate here
is fixed to 0.01 and the batch size is 1000. All the results are averaged
on 10 seeds. 84

3.2 Confrontation of the results obtained for a 201x201x10 fully-connected
stochastic architecture on a reduced MNIST (10000 samples) 86

4.1 Most commonly used activation functions in deep learning 99

4.2 Pruning a parameter: conditions to be satisfied 104

4.3 LeNet-300 network trained over the MNIST dataset 106

4.4 LeNet-5 network trained over the MNIST dataset 106

4.5 VGG16 network trained over the ImageNet dataset 107

Chapter 1

Introduction

« What Are We? Where Do We Come From? Where Are We Going?»

Being able to provide an answer to each of these questions represents an impor-
tant size of the research brought by the human kind. In particular, let us focus on the
first question. Giving an answer to it is definitely not an easy task: certainly, one of
the most fascinating objects of study is the brain.
Such an organ allows us to see, hear, learn, to elaborate thoughts... It certainly is a
center which allows us to be whatever we are. Several studies have been conducted
on the brain in order to understand which are the basic mechanisms allowing it to
work and from these, some models have been deducted.
The essential building block of the brain is a specialized cell known as neuron. The
neuron (referred, now on, as biological neuron) is a cell which receives electrical
stimuli (typically) from neighborhood cells, processes them and, eventually, pro-
duces itself an electrical spike to be propagated to other neurons.
In order to investigate how the idea of the existence took place, we need to step-back
in time, to about 200 years ago, when the cell was discovered in living creatures.
Although the cell was discovered by Robert Hooke in 1665 by the observation of
cork fragments, we need to wait until mid of the 19th century, when Matthias Jacob
Schleiden [1] and Theodor Schwann [2] gave final and concrete proofs of the exis-
tence of cells for vegetables and animals, supported by higher-quality microscopes.
At that age, it was broadly believed that the structure of the nervous system might
have a different structure and organization.
However, in 1837, Jan Evangelista Purkyně, one of the fathers of anatomy, observed

2 Introduction

the first biological neuron cells while studying the nervous tissue, and identified
them in the cerebellum. Those are a particular class of neurons: they are responsible
for coordination, and they take name from their discoverer (Purkyně neurons).
After some years, in 1860, a more accurate description of the neurons was provided
by Otto Friedrich Karl Deiters: he was able to identify for the very first time axons
and its dendrites, which are the basic elements to connect neurons [3]. The name
provided to these components was different at the age: they were called respectively
axis cylinders and protoplasmatic processes, as their function was merely speculated.
Along with this, there was a huge debate about the structure of the nervous system:

• reticularists believed that the nervous system (and, for instance, the brain)
was essentially an ensemble of connections born by stretched neurons

• neuronists, on the contrary, were more statuary on the concept of neuron as
clearly identifiable cell in the nervous system

As a result of a famous experiment, Joseph von Gerlach, in 1871, attempted to
enforce reticularists’ thesis, postulating that the entire nervous system was essentially
a unique, continuous network, what he called “protoplasmatic network”, or reticulum.
However, just two years later, the italian nobel prize winner Camillo Golgi, using the
revolutionary technique named la reazione nera [4], was able to make a distinction
between axons and dendrites, introducing a new distinction between neurons, based
on the length of their connections.

« I spend long hours at the microscope. I am delighted that I have found a new
reaction to demonstrate [...] the structure of the interstitial stroma of the cerebral

cortex. I let the silver nitrate react with pieces of brain hardened in potassium
dichromate. I have obtained magnificent results and hope to do even better in the

future.»

Anyway, Golgi was a reticularist and, even though his new technique will led to
the real structure of the neural system, he still believed that the real essence of the
nervous system relied in the connection network.
The first signals regarding the wrongness of the reticularists thesis came very soon:
in 1877 Edward Schäfer, while studying the jellyfishs, observed that they did not
have connections between nerve cells and, in 1887, Fridtjof Nansen observed the
same in more aquatic creatures [5]. These observations led to the study of the growth

1.1 From biological neurons to their models 3

of the nervous system: Wilhelm His, in the last decade of the 19th century, observed
that the growth of the nervous system was essentially consistent to the cell theory, but
the final, definitive proof was provided by the nobel-prize winner Santiago Ramón y
Cajal. He used a modified version of la reazione nera to visualize the cells composing
the nervous system:

« The special character of these cells is the striking arrangement of their nerve
filament (axon), which arises from the cell body but also very often from any thick,

protoplasmic expansion (dendrite).»

At this point, in 1891, the term neuron was used for the first time by Heinrich
Wilhelm Gottfried von Waldeyer-Hartz, definitively asserting the correctness of the
neuronists thesis.
Nowadays, thanks to the advent of the electronic microscopy, research still continues
in the biological field: it was discovered that electrochemical signals were propagated
along the nervous system, neurons were classified according to their specific function
etc. Still, neurons in the brain are extremely complex to study and is currently an
open task for biomedicine.
In the end, we can sum-up the most significant fondants of the neuron doctrine:

• The fundamental element of the nervous system is the neuron.

• Neurons are discrete entities.

• The parts a neuron is made-of are: cell body, dendrites and axons.

• Electric pulses travel from a neuron to another, from dendrites to the axon,
stepping through the cell body.

1.1 From biological neurons to their models

Once the neuron has been identified as the basic element of the entire nervous system,
a significant part of the community began proposing mathematical models of them.
The so-called biological neuron models, also referred-to as spiking neuron models,
attempted to comprehensively describe the properties of a part of the cells in the

4 Introduction

nervous system. These, in particular, under certain conditions, emit electrical pulses,
which are, then, propagated through the axons and received by neighbor neurons via
dendrites.
Spiking neurons are known to be a major signaling unit of the nervous system:
deeply understanding their behavior is the first step towards a more comprehensive
understanding of the nervous system working. Hence, characterizing them is of great
importance. It is worth noting that not all the cells of the nervous system produce
the same type of signal characterizing the spiking neuron models: for instance,
neural cells like cochlear hair cells, retinal receptor cells, and retinal bipolar cells
do not spike and they have a different behavior. Furthermore, some cells lying in
the nervous system are not even classified as neurons, but they are named as glia.
Hence, describing how the nervous system works is far from being simple and still,
a work in progress.

Talking about biological neuron models, their final goal is to accurate describe all
the electrochemical, biological processes happening in a spiking neuron. Allowing
scientists to simulate biologically-compatible models, it is possible to have a deeper
understanding on what happens to the nervous system under most of the possible
events. Through the presented work, we are not going to talk about these models:
instead, we are going to talk about a more abstract model: the so-called formal
neuron.

The formal neuron is a simplified version of the biological neuron. It does not
emit spikes: on the contrary, an output variable describes its state. Its very first
formulation appeared far in the 1943, under the so-called MCCulloch-Pitts neuron
model [6]. That moment was historical: it represented the birth of a new research
wing, which is still ongoing and represents one of the currently most-important fields
in the human progress, known as research on artificial neural networks (ANN). In
their model, McCullogh and Pitts considered neurons as bi-stable linear threshold
elements for which just two states were acceptable: active or passive. Here, the
neuron accumulates signals coming from the environment, which are weighted
according to the synaptic couplings: according to the post-synaptic potential, the
state of the neuron is decided.
Of course, such a model is hugely far form the biology behind the neuron and a lot
of objections were raised against this model. However, those were the gold ages
for the digital electronics (the Z3, the very first digital computer, was completed in

1.1 From biological neurons to their models 5

1941, the BJT was invented in 1947), and modeling a neuron as a bi-stable element
appeared to follow the technological progresses of the age.
The first simulation of artificial neural networks were conducted few years later,
in the 1950s, by a research team leaded by Nathaniel Rochester. He is nowadays
acknowledged as one of the senators in informatics history, as he projected the
IBM 701, the first commercial computer in history, and coded the very first symbolic
assembly language. This and other concurrent works on artificial neural networks
were presented in 1956 at the Dartomuth workshop, which is one of the oldest
scientific events having the artificial intelligence as main theme.
Concurrently, along with theoretical modeling, also some immediate applications
to these model were spotted by John von Neumann: he suggested that neuron
functions could be replicated using electrical devices available at the ages, like
vacuum tubes (the natural predecessors of transistors). Along this idea, Frank
Rosenblatt, a psychologist, was the main contributor for the realization of Mark 1,
the first electrical device which was able to learn. Such a device implemented
the so-called perceptron algorithm, developed in 1957 at the Cornell Aeronautical
Laboratory. It is among the earliest learning algorithms for neural networks. His
mentor, Marvin Lee Minsky, already pioneered the design of electrical ANNs (for
example, he designed SNARC, the first learning machine, in 1951), but the perceptron
received huge resonance by the community:

« Dr. Rosenblatt defined the perceptron as the first non-biological object which will
achieve an organization o its external environment in a meaningful way. It interacts
with its environment, forming concepts that have not been made ready for it by a

human agent. [...] It can tell the difference between a cat and a dog [...] Right now
it is of no practical use, Dr. Rosenblatt conceded, but he said that one day it might

be useful to send one into outer space to take in impressions for us.»

The New Yorker, 6 December 1958

However, beyond all this optimism, Minsky and Papert published a book in 1969 [7],
in which all the strengths and, sadly, weaknesses, have been unveiled. One of the
relevant weakness involves what the history then recalls it as the XOR affair. It was
proved inside the book that a single artificial neuron, in spite of the huge potential
learning capability many contemporary researchers praised on, is incapable of learn-
ing simple logic functions and, in particular, the XOR. Minsky and Papert speculated

6 Introduction

that this was an intrinsic limitation for even larger ANN models, contributing to the
so-called first AI winter. Nowadays, however, we know it was a wrong claim: some
works, in fact, proved that XOR function is learnable by more complex artificial
neural networks.
We need to jump to 1982, when John Hopfield designed a new type of neural network,
named recurrent neural network, to turn back on the interest of the community to-
wards ANNs. However, the new research boom happened in 1986, when Rumenhalt,
Hinton and Williams showed that an automatic differentiation technique, known
as back-propagation, could be effectively used to learn internal representations in
ANNs [8]. Back-propagation is a technique which was designed in 1970 by Seppo
Linnainmaa, even though at the age it was still no named. Such a self-differentiation
technique, easy to use and potentially scalable, is nowadays the fundamental base
for training ANNs.
From that moment on, thanks to the hugely-increasing computational capability
of machines (Moore’s law, GPUs [9]), and thanks to the effectiveness of back-
propagation, it is nowadays possibile to simulate larger and larger ANNs. It is not
weird, for example, to train a model made of 1 ·108 plastic connections.

1.2 The importance of artificial neural networks

Nowadays, machine learning (ML) and ANNs are commonly thought to be the
same thing. This is not entirely true: while machine learning refers to learning
some parameters for a given model in general (hence, not typically structured as an
ANN), artificial neural networks have a particular structure, high-level identifiable
as neurons connected together according to a given topology. ANNs are just a subset
of ML: genetic algorithms, decition tree learning and sparse dictionary learning are
just few example of what else ML includes. We are going to focus on ANN models
and their wide applications to the real world.
In general, it is relatively easy to write a code identifying the image of an object, for
example a dog. What comes tricky is to make the processing machine to generalize
the concept of dog itself. Let us take, for example, the three possible inputs for an
ANN in Fig. 1.1. Once a program becomes able to recognize the first dog (Fig. 1.1a),
if you are going to ask the same code to recognize the second (Fig. 1.1b), in general
there could be the following outcomes:

1.2 The importance of artificial neural networks 7

(a) A beagle (b) A labrador (c) A cat

Fig. 1.1 These images represent a possible input to be fed to an ANN. While Fig. 1.1a and
Fig. 1.1b belong to the same class (dog), Fig. 1.1c is in a different class (cat). A possible
task for an ANN, for example, could be to detect whether an image represents a dog or not

• This is not a dog: when this happens, then the algorithm was not able to
properly generalize the concept of “dog” as it will acknowledge as dog only
the first image. Such a problem is one of the most known in ANNs and is
named overfit [10].

• This is a dog: which is the correct answer to the problem.
Hence, we proceed presenting as input the image of a non-dog subject, for
example, a cat (Fig. 1.1c):

– This is not a dog: the network is properly trained detecting the proper
characteristics a dog has and is able to state whether an image contains a
dog or not, this is the target scenario.

– This is a dog: evidently something in the training has not properly
worked as a non-dog object has been identified as dog.

According to the field of application, the topology and the training procedure, in
general we acknowledge three macro-categories of learning:

• supervised: the task is to learn a function which maps an input to a desired
output from already labeled data.

• unsupervised: here the ANN learns from unlabeled, unclassified and uncatego-
rized data. The essence is here to find similarities in the data and then properly
associate new data analyzing common features to already-learned data.

• reinforcement: here the ANN learns by taking a given action. According to
a feedback reward signal, it is able to understand whether the action taken is
correct or wrong, and learns by reinforcing correct actions.

8 Introduction

Fig. 1.2 High-level view of how an ANN works for a classification task. For a given input
(here, a dog), it provides a response.

In the following, we will be focusing on the supervised learning case only.

1.3 Supervised learning

When we are performing a supervised learning task, our aim is in general to infer a
function from some labeled data which provides a desired output. Typical supervised
learning algorithms analyze data and attempt to infer a function whose final goal
is to correctly reproduce data in the training set and accurately predict new ones.
The ability of correctly predict unseen data, as we have already seen in Sec. 1.2,
is called generalization. The dataset to be learned is here organized in pairs: each
set of inputs ξ µ =

(
ξ

µ

1 ,ξ
µ

2 , ...,ξ
µ

N−1,ξ
µ

N
)

we call pattern, is associated to a desired
output σ µ = (σ1,σ2, ...,σC−1,σC) and the dataset Ξ consists in M (ξ µ ,σ µ) pairs.
A high-level picture is shown in Fig. 1.2. In that case, the input pattern ξ µ is given
by an RGB image in RN1×N2×3 (where 3 refers to the color channels) and the output
yµ can be a binary classifier (dog/non-dog) in R1 or, as we will see, it can be a
multiclass classifier with yµ ∈ RC.
In general, some steps have to be followed to solve a supervised learning task:

1. Understand the problem to be solved. A wide variety of supervised learning
problems can be investigated, and each of them is subject to some restrictions
(parameter constraint, model selection, required output).

2. Get the dataset. If a generic problem is asked to be solved, the proper dataset
best-fitting the problem has to be chosen. For example, if the aim is to
implement an OCR (optical character recognition), datasets involving written
characters have to be chosen. Even here, if the main goal is to scan book prints,

1.3 Supervised learning 9

datasets like EMNIST (extended-MNIST), which is a hand-written characters
dataset, is not the right fit for the problem.

3. Understand the shape, the content and the distribution of the dataset. According
to the problem to be solved, the input can be an image, a sound, a text, a
sequence of numbers etc. and a proper learning model has to be chosen.
Furthermore, there might be some issues with the dataset: it can be unbalanced
(for example, if the dataset is on cancer screening, the positive cases might be
lower than negative ones), data un-normalized or biased, input data might be
a sparse representation, making the learning problem harder to be solved. In
general, some data pre-processing might be required.

4. Choose the most appropriate model to train. There is a wide variety of su-
pervised learning models: SVM (support vector machines), decision trees,
k-nearest neighbors and artificial neural networks are just a few examples.
In this work, we will be focused on ANNs which are the best for image
classification.

5. Train the model. This phase is further divided in:

(a) Divide the dataset in training set, validation set (optionally) and test set.

(b) Choose the objective function to be minimized.

(c) Choose a learning optimizer.

(d) Update the parameters of the model until a given stop condition arises.

6. Evaluate the final performance.

Any ANN model here on to be explored will be structured in layers, as shown in
Figure 1.3. In order to generate the desired output, the signal is propagated from the
input to the output, in a process which is called forward propagation. We will see
that such a structure is fundamental in order to train these models.

1.3.1 Dataset

Once the model and the dataset have been chosen, we need to train it. As we have
observed in Sec. 1.2, a critical task we aim to address along with the learning process
is to make our model “properly” learning the dataset, avoiding data overfit and

10 Introduction

Fig. 1.3 Structure of feedforward neural networks. Here we have L layers, with L that might
be a large value (in that case, we might talk about deep learning).

boosting as much as possible the generalization. What happens if we use the whole
dataset for the training? Simply, we are not able to evaluate its generalization or, in
other words, the performance of the model.
Typically, three datasets are used while training a model:

• training set Ξtrain: in the early stages of learning, the model is fitted on this
partition of the dataset, using any parameter update strategy. Given a known
set of inputs ξ µ , the model produces an output yµ which is compared to the
desired output σ µ and the internal parameters W of our model are (eventually)
changed such that yµ → σ µ .

• validation set Ξval: typical model learning strategies make use of hyperparam-
eters, whose optimal value is generally a-priori unknown. In order to tune
these, it can be useful to have some data, still following the same probability
distribution of the training set. The use of the validation set, referred also
as development set (or dev set), leads to the design of sophisticated learning
strategies, like early-stopping and parameter decay.

• test set Ξtest : the final performance of the model is evaluated on the test set,
whose information has never been used for the training process: this is the
reason for which this is also named holdout set. The main goal for supervised
learning aiming to boost the generalization is to make the lowest possible error
on this partition of the dataset.

The most used dataset already comes with a default slicing: for example, the MNIST
dataset, consisting in 60k images, is pre-sliced in 50k images for the training set and
10k for the test set (hence, the ratio is 5:1), or the ImageNet dataset is divided in
1.2M images for the training set, 50k images for the validation set and 100k images
for the test set, with ratio 20:1:2. Typically, both the validation and the test set

1.3 Supervised learning 11

are smaller than the training set, but this may change according to the aim and the
application for the given supervised learning problem.
Now on, for sake of simplicity, we will refer to the training set as Ξ, dropping the
subscript train.

1.3.2 Learning the dataset

Once the learning problem has been properly investigated and the proper training set
is chosen, here comes the model selection problem. In literature, there is a broad
variety of supervised models which can be used for solving a particular problem,
each with its strengths and weaknesses. However, in order to select a model, some
potential issues can be observed and used to help the designer in the choice of the
model.

The bias-variance dilemma

This is probably the most significant issue we should take into account when facing a
supervised learning problem. If we do not take into severe consideration this possible
issue, we will not be able to properly boost the generalization for our predictive
model.
A first example providing a general overview of this problem was shown in Sec. 1.2:
learning that a given image represents a dog does not mean that our predictor is
able to properly understand which are the relevant features which represent the class
“dog”. The causes for a high error on the test set may be two:

• bias. Because of some wrong assumptions taken for the model, it is not able
to learn some meaningful relations between input features, leading to high test
error.

• variance. Our model becomes extremely sensitive to small fluctuations of the
input, over-fitting the training set and worsening the performance on the test
set.

A graphical example for the bias-variance trade-off is represented in Figure 1.4.
Models with high variance are allowed to learn more complex predictive models but
they are extremely prone to over-fitting the data; on the other hand, low variance

12 Introduction

Fig. 1.4 Example of different bias-variance trade-offs in data.

models are simpler but are not capable of getting all the correlations between the
input features, meaning in a poorer performance of the test set because of under-fit.
Properly finding a good compromise between high and low variance models is
currently a hot topic, and some approaches may be used to overcome this issue:

• a proper dimensionality choice for the internal data representation (or, in other
words, the number of internal parameters) is an approach which can be used
to tune bias and variance, through the use of a validation set.

• introduce some extra constraint for the learning rule, like regularization , helps
in preventing data over-fit for high-variance models.

• use of mixture models, in which an ensemble of models is trained, each of
which is specialized for a particular task, and is selected when needed. In this
case, low variance models can be efficiently used for learning a simple task
with no generalization loss. The trade-off, in this case, is the largeness of the
final model.

1.3 Supervised learning 13

Input space dimensionality

It might happen that for a given problem, each pattern is made of a huge collection of
data (i.e. N very large). We might be used to the knowledge of “the more the better”,
however this might make the learning process very hard to have a good generalization.
Having more input features means making the model harder to recognize the most
relevant ones. Let us assume we have an image of a dog and we surrond it with extra
pixels, containing information from a very different problem, or even white noise.
The algorithm must be guaranteed to be robust to it and to focus its attention on the
slice of the image strictly containing the dog. We will see that, even if all the input
features contain relevant information for the problem to be solved, we have to fight
with the curse of dimensionality and some dimensionality-reduction strategies have
to been adopted. Model complexity vs training data. If the function to be learned
is expected to be simple, then we are able to force our model to be high-bias and
low-variance, with a very small dataset. However, if we expect from the input model
to have very complex interactions between the input features, we can not force high
bias as we could easily incur in overfitting the data, and we have to relax the variance
for the output, working with a larger dataset. An example of this can be found in
the comparison between the MNIST dataset (60k images, divided in 10 classes of
handwritten digits, each pattern of size 784) and the ImageNet dataset (1.4M RGB
images, divided in 1k classes, each pattern of size 150k).

In general, it is hard to write a working program which specializes on the
detection of features determining whether an image belongs to a certain class or
not. The huge advantage of ANNs is that they are able to self-focus on the relevant
features of an image to identify it to the target class, without low-level programming.
Furthermore, a type of them have the capability of being space-invariants: if the
image is taken from different angulations, rotated or tilted, the network is still able
to recognize it as dog.
The training procedure of supervised learning is very simple and typically exploits a
gradient-descent (GD) conputed for an objective function J which is made of a loss
term L and an additional regularization term R.
L is a function of the desired output σ µ and the output provided by the network yµ .

14 Introduction

Fig. 1.5 Back propagation at work. After the forward propagation step (blue arrow), starting
from J the signal is back-propagated according to the chain rule (orange arrows).

1.4 Back-propagation

Back-propagation is a technique used to train most of the currently-available ANNs
to solve supervised learning problems. Thanks to it, we can theoretically train an
arbitrarily deep neural network.
In order to apply back propagation, we need four elements:

• An input ξ µ

• An ANN, made of a set of parameters W to be trained, and structured in layers

• A desired output σ µ

• An objective function J, which is proportional to the error of the network’s
output yµ when compared to the desired σ µ .

Back-propagation follows some precise steps:

1. Perform the forward propagation: the input signal is fed to the first layer of
the network and is propagated onward, until the network produces its output
yµ

2. Evaluate the loss

3. Compute the derivative ∂J
∂w for all the parameters in the network. This will

be used in gradient-descent techniques to minimize the loss, meaning in a
decrease of the network’s error and, for instance, training it.

1.4 Back-propagation 15

The derivative at point 3 is in general the core of back-propagation. We can compute
it if we use the chain rule: for example, if we wish to compute the derivative for the
parameter wi j which is the j-th parameter in the i-th layer:

∂J
∂w

=
∂J

∂yµ
· ∂yµ

∂yµ

L−1
· · ·

∂yµ

i+1

∂yµ

i
·

∂yµ

i
∂wi j

(1.1)

where yµ

i is the output of the i-th layer for the µ-th pattern. Applying the chain
rule is here possible because of the layered structure of ANNs; or better, the trained
structure must not contain any loop.
Another significant constraint for back-propagation is that the activation function φ

for the output of the neurons must be a differentiable function. Hyperbolic tangents
and ReLU1 are suitable for it and are the most-commonly used.
The derivatives can be computed layer-by-layer, in groups, thanks to the structure in
layers, fact that is computationally-friendly and which significantly contributed in
the use of this technique as base to train ANNs.

1.4.1 Objective function

The objective function J is in general the quantity we desire to minimize all along our
training. It is proportional to the error of the network; for this reason, minimizing it
results in an overall increment of the performance of the network on the training set.
In general, the objective function to be minimized takes the form

J = ηL+λR (1.2)

where L, the loss function, evaluates the error of the network, R, the regularizer term,
represents an optional additive term, η and λ are two real positive scalars. Sadly,
there are two intrinsic problems involving these networks: the vanishing gradient
and the curse of dimensionality.

1ignoring the discontinuity in zero for this

16 Introduction

Loss function

Here we can provide a wider view of the minimization of the loss function if we
provide a probabilistic overview. Assume the target yµ being distributed according
to a Gaussian distribution, depending on the input ξ :

p(y|ξ ,W) = N (y|σ ,β−1) (1.3)

where N indicates a gaussian distribution and β is defined as precision. From
eq. 1.3 we can write the log-likelihood

L =
M

∏
µ=1

N (σ µ |yµ ,β−1) (1.4)

where M is the size of the training/test set. Our optimization aim is here to maxi-
mize eq. 1.4. We can write from this the negative log-likelihood (to be minimized,
assuming the shape of an error function)

L =
β

2

M

∑
µ=1

(σ µ − yµ)2 +
M
2
[log(2π)− log(β)] (1.5)

Here the problem becomes equivalent to minimizing the term

LMSE(σ µ ,yµ) =
1
2

M

∑
µ=1

(σ µ − yµ)2 (1.6)

which is the mean squared error function, one of the earliest choices for training
ANNs. The first ANNs trained with back-propagation had J = LMSE .
Now, let us assume we are working with a binary classification task. This implies
that the target output yµ ∈ {0;1}. If we use a sigmoid activation function at the last
layer of an ANN

φ(x) =
1

1+ e−x (1.7)

with φ(x) ∈ (0;1), we can write the Bernoulli distribution

1.5 The generalization problem 17

p(σ µ |ξ ,W) = (yµ)σ µ

(1− yµ)1−σ µ

(1.8)

Taking the negative log-likelihood (to be minimized), we have the form

LCE(yµ ,σ µ) =− 1
M

M

∑
µ=1

σ
µ log(yµ)+(1−σ

µ) log(1− yµ) (1.9)

which is called binary cross-entropy loss function. Eq. 1.9 can be extended
to multi-class classification problems (hence, problems for which the class to be
distinguished are > 2). Assuming the class labels are independent, we can write

p(σ µ |ξ ,W) =
C

∏
k=1

(yµ

k)
σ

µ

k (1− yµ

k)
1−σ

µ

k (1.10)

where C is the number of classes in our model. Here we can take the negative
log-likelihood as usual. If the target vector follows a one-hot encoding2, we can
write the so-called multi-class cross-entropy loss:

LM−CE(yµ ,σ µ) =− 1
M

M

∑
µ=1

C

∑
c=1

σ
µ
c log(yµ

c) (1.11)

where yµ ,σ µ ∈ RC, yµ
c ∈ {0;1}∀c and σ

µ
c ∈ (0;1)∀c.

These are just two examples of loss functions: many more have been implemented
and can be used to train an ANN; however, most of the times, multi-class cross-
entropy is used.

1.5 The generalization problem

Now we have all the minimal ingredients to train an artificial neural network on
classification tasks. When we are minimizing the loss function, we are training our
model on the data set. Hopefully, when the gradient is zero, then the loss function
will be zero as well, and the association between target output and the inferred output

2in this case, we have a one of K mutually-exclusive class map: if the correct class is the c-th, the
target vector σ µ entries are all 0 except for the c-th which will be 1

18 Introduction

Fig. 1.6 Example of overfit (green line) vs optimal learning (blue line).

for the patterns in the training set overlaps.
However, things are not so easy. As we hinted in Sec. 1.2, we need to guarantee our
model is able to correctly classify unseen data, or better, to generalize well. Towards
this end, a number of techniques have been developed, and still lot of research around
this topic is being done nowadays. In this section, we are going to analyze more in
depth all the main techniques aiming to improve the generalization, defining what
regularization is and evidencing its effects while training a model.

1.5.1 Proper data fitting

We can provide many definitions for the “overfit” problem, but essentially it means
that the trained model learned too tightly the training set and it fails in classifying
properly unseen data (for example, in the test set). A symmetric issue, less discussed
in ANNs, is the underfit problem, where the training data are learned too loosely,
making the performance on both training and test set poor.
As an example, let us say we wish to train our model the data on Fig. 1.6. Therefore,
we have two classes, and we ask our ANN to learn the class boundary. If the data are
trained too tightly (like in the green line) we are evidently over-fitting the training
set. On the contrary, if we are training our model too loosely, we have underfit. A
proper regularization strategy aims to make the ANN learn the black boundary. In
that case, some patterns in the training set are not properly learned; however, this is
beneficial for the generalization: as it is possible to observe, some noise is present

1.5 The generalization problem 19

in the data. Such a noisy environment is a very typical scenario for real datasets
and typically is not known a-priori, making the generalization problem even more
challenging and relevant.

1.5.2 Data augmentation

One of the most used techniques aiming to improve the generalization of a deep
model involves the generation of new patterns from those already in the training set.
This generation process augments the training data, and this is why we refer to these
in general as data augmentation techniques.
In the case of deterministic algorithms, this approach was introduced in a famous
work of 1977 by Dempster et al. [11]. Here, data augmentation aim was mainly to
substitute (or fix) incomplete (or noisy) data for maximum likelihood estimation.
A few years later, such an approach became popular as well in the statistics field:
in a work by Tanner et al. [12] data augmentation was successfully used for the
computation of posterior distribution. This work gave a kick-off to statistical me-
chanics applications: an algorithm for Montecarlo simulations of the Ising and the
Potts models was proposed by Swendsen and Wang in in 1987 [13]. It introduces
extra bond variables, which empirically improve the convergence of the montecarlo
sampling. In such a frame, datat augmentation can be used both to improve the
quality of the posterior distribution (and, for instance, the generalization) and the
convergence of the training algorithms. How can we apply data augmentation to
deep models?
Let us focus, for sake of simplicity, on datasets made of images, for classification
tasks. For example, we ask our deep neural network to recognize that in the picture
there is a dog. Of course, the main information contained in the image (i.e. the
presence of the dog) does not change if we rotate the image by 90 degrees, or if we
flip it, twist, tilt etc. These are just few examples of all the transformations available
to augment an image dataset. Currently, all the deep learning libraries (like, for
example, torchvision) include many data augmentation strategies.

1.5.3 Regularization term

Regularization is a process of introducing additional constraints to any problem
(hence, not strictly related to machine learning or ANNs) to solve any ill-posed

20 Introduction

Fig. 1.7 Some examples of data augmentation: rotation, tilting, squeezing.

problem [14]. In general, the dimensionality N of the inputs is imposed by the
problem (or, in our case, the dataset) while the architecture of the network (and, for
instance, the number of trainable parameters) is a “free parameters” as it is decided by
the trainer. As observed before, for each problem there exist an optimal architecture
for a given problem, which provides the best generalization error. Sadly, having an
optimal structure and size of our neural network is not a sufficient condition to have
the best performance because of the existence of local minima and saddle points in
the loss function [15]. Here comes the effect of the regularization function: it can be
seen as a corrective factor of the loss function which helps avoiding to get stuck in
these local minima.
Of course, other techniques may be used to prevent this: stochastic gradient descent,
for example, introduces a noise which significantly helps in overcoming such a
problems, as well as dropout. However, what the regularization function can do for
us is to select a subset of “nice” minima in which the learning procedure, in the end,
lands. According to different purposes, such a term may have different forms. One
of the most-known is the so-called L2 regularization, also known as weight-decay

R(W) =
λ

2 ∑
i

w2
i (1.12)

1.5 The generalization problem 21

In the case of L= 0, this regularizer pushes all the parameters wi to decay towards
zero. The main and absolute advantage of such a regularizer is that the derivative still
depends on the parameter wi and for this reason an exact minimizer can be found in
closed form.
Actually a general form of such a regularizer is

R(W) =
λ

2 ∑
i
|wi|p (1.13)

and the case for which p = 1, used for obtaining sparse networks, is known as
lasso regularizer. Indeed, lasso regularization favors solutions having less parameters
in the system and is used for feature selection (this particular class of regularizers
will be discussed more in details in Chapter 4).
Focusing back on weight-decay, from the Bayesian perspective, it corresponds to
using a symmetric multivariate normal distribution as a weights prior:

p(W) = N
(

W
∣∣∣∣0, 1

λ
I
)

(1.14)

having

− logN
(

W
∣∣∣∣0, 1

λ
I
)

∝ − loge−λ 2∥W∥2
2 = λ

2∥W∥2
2 = R(W) (1.15)

. Currently, weight-decay is the most used regularizer for training deep architectures.

1.5.4 Optimizers

As we have previously stated, state-of-the-art training techniques in supervised
learning involve gradient-descent techniques. Assuming Ξ our training set, the
update step for a generic parameter of the network wi is

wt+1
i = wt

i −η

〈
∂L
∂wt

i

〉
Ξ

(1.16)

where we are assuming an optimization function in the form J = ηL for sake of
simplicity, η is a real positive number known as learning rate and ∂L

∂wt
i

is computed
through back-propagation (for further details see Sec. 1.4). Most of the training

22 Introduction

sets are however very large: for example, MNIST, which is one of the smallest,
contains 60k examples in the training set. Computing the average in eq. 1.16
can be extremely time-inefficient and we expect the proposed update, due to the
averaging effect, to be very small, commonly making the entire learning process
being very slow. Furthermore, automatic back-propagation engines (like the widely-
used Autograd [16], which is the core of most of the deep learning frameworks used
to perform research like pyTorch) saves all the intermediate computation results from
forward-propagation, becoming also a memory-inefficient optimizer.
A widely-used variant of gradient descent is called stochastic gradient descent
(SGD) [17] which proposes the following update step:

wt+1
i = wt

i −η

〈
∂L
∂wt

i

〉
Ξ̃t

(1.17)

where Ξ̃t ⊂ Ξ is a sampled portion of the entire training set. In a work by
Bottou et al. [17], the size of Ξ̃t is 1; hence, one pattern at a time was used to update
the entire model and this condition is called online learning. Each step of eq. 1.17
is called iteration and in each step the subset Ξ̃ changes in order to cover the entire
training set Ξ. Once the training set has been fully covered, we say a training epoch
has completed. Let us say we are in the middle of an epoch having performed
I samplings of Ξ̃. We define their union being the patterns already sampled in
the current epoch Ξsam =

⋃I
i=1 Ξ̃i. We now need to generate the new Ξ̃i+1. For

this reason, we need to perform a sampling from the set of non-sampled patterns
Ξunsam = Ξ\Ξsam and for this reason such a technique is stochastic.
The overall training procedure can however take a significant amount of time to
converge to a satisfactory solution: for such a reason, other more sophisticated
optimizations based on eq. 1.17 have been implemented and currently widely used.
The very first of these upgrades was designed by Rummelhart, Hinton and Williams
in 1986 [18] and was called momentum SGD. Differently from plain SGD, which
performs the update of the parameters just locally evaluating the state W of the
network, momentum SGD includes a memory term v which keeps the history of
the gradients computed for the previous steps. Hence, the update rule in this case
becomes

wt+1
i = wt

i −η

〈
∂L
∂wt

i

〉
Ξ̃t
+µvt

i (1.18)

1.5 The generalization problem 23

where µ is a positive real hyperparameter and

vt
i = a · vt−1

i +(1−a) ·

〈
∂L

∂wt−1
i

〉
Ξ̃t−1

(1.19)

having a ∈ [0;1]. Is was empirically observed that the use of momentum-based
techniques on ANNs can significantly reduce the simulation time favoring the escape
from saddle points and there are some hints suggesting it helps escaping from local
minima, favoring the generalization improvement [19, 20].
A famous and widely-used variant of momentum SGD was proposed by Nes-
terov et al. [21] and is known as Nesterov accelerated gradient. It essentially
uses the same information as momentum SGD, but it evaluates the gradient where
the momentum vt would push the parameters:

w̃i
t = wt

i +µvt−1
i

vt
i = a · vt−1

i +(1−a) ·
〈

∂L
∂ w̃i

t

〉
Ξ̃t

wt+1
i = wt

i −µvt
i

This technique is supposed to be much more accurate than momentum SGD: the
gradient computed on W is a local measure, and evaluating it in two different (even
if close) points may dramatically affect the dynamics of the optimization. State-of-
the-art deep networks are typically trained using Nesterov accelerated gradient.
Finally, we would like to present another optimizer which gained huge popularity in
the last few years: Adam [22]. Kingma et al. presented in their work Adam as the
combination of two other recently-proposed optimizers:

• Adaptive Gradient Algorithm (AdaGrad), proposed by Duchi et al. in 2011 [23],
suggests that each parameter should have a custom-designed learning rate
(adaptive). Such an approach boosts the convergence to solution in settings
where the gradient is typically a sparse quantity.

• Root Mean Square Propagation (RMSProp), proposed by Tielemans and Hin-
ton in 2012 [24], in which the idea of a per-parameter learning rate is further
exploited, but in a more general setting. In particular, the learning rate is tuned

24 Introduction

according to the magnitude of the recent gradients (hence, a quantity similar
to the momentum).

Both these techniques tune a per-parameter learning rate according to some consid-
erations to the gradients. What Adam does is not just focusing on the first moment
(the mean) of the gradients as in RMSProp, but it goes further, taking into account as
well the average of the second moments of the gradients (their un-centered variance):

mt+1 = β1mt +(1−β1)
∂L

∂ w̃i
t

vt+1 = β2vt +(1−β2)

(
∂L

∂ w̃i
t

)2

m̂ =
mt+1

1−β1

v̂ =
vt+1

1−β2

wt+1 = wt −η
m̂√
v̂+ ε

where ε is a small positive quantity preventing divisions to zero and β1, β2 are some
hyper-parameters to tune the effect of the two moments of the gradient. According to
the authors and to some empirical evaluation, Adam outperforms other methods for a
variety of models and datasets, while still scaling well on high-dimensional machine
learning problems. Such an optimization technique is currently being used more and
more often for training deep models and entered in the common knowledge for this
field.

1.5.5 Dropout

ANNs (and, in particular, deep networks) are complex models, containing huge num-
ber of parameters aiming to learn complex relationships between input patterns and
output. As we have already observed, however, input data are typically noisy (which
can be caused by a number of factors) and one of the final goals of ANN training is
to make a distinction between the real information identifying a class and noise. If
such a distinction is not explored, the model is prone to over-fit the data. In order
to improve the generalization, it is possible to regularize a model by averaging the
predictions coming from all the possible combinations of parameters and weighting

1.5 The generalization problem 25

Fig. 1.8 Example of dropout. During training, stochastically some neurons are excluded
from the network. At the successive training iteration, dropout probabilities are reset.

each configuration by its posterior probability for the given training set. Such an ap-
proach has been successfully explored for probabilistic matrix factorization [25] and
even applied to RNA sequencing [26]; however it is computationally inefficient and
scales badly with the model complexity. From this observation, Hinton et al. [27] and
later Srivastava et al. [28] proposed an approximation to such a technique. Dropout
fights over-fitting and provides a way of approximately combining an exponential
number of configurations for the trained ANN in an efficient way.
“Dropout” literally refers to stochastically dropping-out entire units along the training
in a neural network. Along a training iteration, when a unit is dropped, it is momen-
tarily removed and it is completely insensitive to the inputs it receives. Furthermore,
as it is temporarily removed from the network, its weights are insensitive to the
update kick coming from back-propagation. The probability of dropping-out any
unit is fully independent from that of other units, and resets after every training
iteration. An example of how dropout works can be found in Fig. 1.8. The process
of tuning such a dropout probability is a completely heuristic process and can be set
using a validation set.
An interesting motivation given by the authors about dropout comes from the biology
and, in particular, natural selection [29]. In particular, the ANN trained with dropout
learns how to still correctly classify the training set minimizing the co-dependence
of particular sub-groups of neurons, making the overall behavior of the deep model

26 Introduction

more robust and ideally focusing the entire learning process towards the relevant
features. Besides this, there could be plenty other romantic and philosophical expla-
nations regarding what is the real effect of dropout or how such a technique is related
to living beings interactions... In our context, which is the training of ANNs aiming
to boost the generalization, such a work has been highly-considered and dropout is
included as base training technique for a high number of deep models.
Besides the improvement in generalization, however, evidently such a technique
requires longer training times, and sometimes a proper choice of the dropout proba-
bility significantly affects the effectiveness of the technique. A number of variants
of the dropout technique have been proposed: one of the nowadays most used is
dropconnect by Wan et al. [30], which focuses on dropping the connections be-
tween neurons in place of the neuron themselves. We are going to see in Sec. 4.1.2
that dropout can be used also to introduce sparsity in deep models with a custom
technique called variational dropout.

1.5.6 Batch normalization

Another recently proposed technique aiming at first to boost the convergence to a
solution for deep network is batch normalization [31]. Ioffe et al. introduced such
a technique in 2015 aiming to un-bias and normalize the signal traveling between
layers.
As we are working with multi-layer architectures, we can imagine that small changes
(or perturbations) to the network parameters in the early layers may amplify changes
in the forward-propagated signal, as the network becomes deeper and deeper. This
potentially may represent a stability issue: in case each layer, for each minibatch,
need to adapt to a new signal distribution, the back-propagated signal might result
too strong. Of course, such an issue can be resolved by using lower learning rates, or
a proper initialization of the parameters; however, this can be directly tackled using
regularization techniques.
In general, at a given layer l, when the signal distribution at the input ξ of the network
varies, we say it is subject to covariate shift [32]. Artificial neural network models
typically suffer of covariate shift, especially for the signal propagated between its
layers (not just between the input and the output of a layer, but also between output
signals of different layers). In this case, we are going to refer to it as internal
covariate shift. According to its authors, batch normalization aims to minimize the

1.5 The generalization problem 27

internal covariate shift (hence, it regularizes the signal traveling between different
layers) forcing a “homogeneity” in the forward propagated signal and, for instance,
minimizing the risk of gradient explosions.
Let us say we are in an ANN model al the l-th layer, and we are forward-propagating
a signal generated by the input minibatch Ξ̃ of size M (or, in other words, such a
minibatch contains M different patterns). If we call yµ

l the vector containing all the
outputs of the neurons at the l-th layer for the µ-th patter, we can say that we have,
for Ξ̃, a mean m

Ξ̃
and a variance v

Ξ̃
for the signal

m
Ξ̃
=
〈
yµ

l

〉
µ

v
Ξ̃
=
〈(

yµ

l −m
Ξ̃

)2
〉

µ

Of course, during the forward propagation step, the signal is normalized according to

ŷ =
y−m√

v+ ε
(1.20)

In this way, however, we have signal with no average and unit variance. In order
to allow the network to learn mean and variance in a more direct way, a batch
normalization layer is here applied:

yBN = γ ŷ+β (1.21)

where β and γ are parameters to be learned using back-propagation, and are parame-
ters dependent on all the minibatches.
According to empirical results, inserting batch normalization allows to use higher
learning rates, sometimes boosting generalization, especially in deep architectures.
However, nowadays there is still a huge debate around the true effects of this tech-
nique. For example, Santurkar et al. claim that batch normalization’s main effect
does not involve internal covariate shift, but rather smoothing the overall objective
function, and that was the reason for which higher learning rates are allowable in
batch-normalized networks [33]. Many other interpretations on the effect of batch
normalization have been formulated in the last few years [34], however most of the
data scientists agree on the effectiveness of such a technique and include it in many

28 Introduction

Fig. 1.9 Example of how batch-norm works. It takes first the output distribution for the layer,
then it normalizes it and finally applies the learned mean and variance.

deep architectures, regardless the necessary increase in the computational complexity.

1.5.7 Vanishing gradient

The vanishing gradient problem is a difficulty found in training all the deep artificial
neural networks whose learning is performed using gradient-based optimization,
e.g. back-propagation. The problem is that in some cases the error signal, while
it is being back-propagated, becomes extremely small, making hard and extremely
inefficient the update of the weights.
Let us take a standard feed-forward model described in Sec. 1.3 trained with back-
propagation (Sec. 1.4). The chain rule in eq. 1.1 allows us to minimize the error of the
ANN by computing partial derivatives to all the parameters of the model, which are
then updated according to a gradient descent-based optimizer (Sec. 1.5.4). However,
typically the deepest the network is, the weakest the error signal back-propagated
to the first layers is. We have a worst-case scenario when the gradient, due to this
effect, become zero despite the loss term L is still positive. This happens because the
traditionally-used activation function used is the hyperbolic tangent or the sigmoid
function: they have the nice property of saturation; hence, there are fixed bounds for
the signal. However, if the signal is outside the linear regime, the error signal is very

1.5 The generalization problem 29

low, and it is back-propagated to the previous layers.
Let us take the case of φ(x) = tanh(x). As we know, its derivative is φ ′ = sech2(x) ∈
(0;1] and has its maximum for x = 0. Now, let us assume x ≪ 0 which is a bad guess
from the network (hence, L > 0). The error signal, arriving from the neighboring
levels given by back-propagation, according to the chain rule, is multiplied by
sech2(x)≈ 0. For this reason, the learning process becomes extremely slow and, if x
is sufficiently small, impracticable because of the numerical approximation of such a
function.
In order to overcome this problem, a number of alternative activations has been
proposed. In particular, the currently most-used is the ReLU activation:

ReLU(x) =

{
0 x < 0
x x ≥ 0

(1.22)

The derivative of such a function is ReLU′(x) = Θ(x) where Θ(x) is the step
function. If we are using this activation function to all the network, of course we are
requiring all the output of the network being positive as well as the output σ µ to be
evaluated by the loss function, and the back-propagated signal no longer suffers of
the vanishing gradient problem.
There is nowadays a large number of proposed activation functions designed to solve
the vanishing gradient problem. A trivial idea to solve the problem could have been
to work with activations whose derivative is larger than one. However, this would
lead to the opposite problem of exploding gradient.
Other approaches can be however used to solve this problem: we mention here, for
example, batch normalization (see Sec. 1.5.6).

1.5.8 Curse of dimensionality

While the vanishing gradient problem involves the depth of a neural network, the
curse of dimensionality involves the size of a single layer [35]. The highest is the
size N of a layer, the highest is the dimensionality of the data we need to deal
with. It is, indeed, not unusual in a neural network to have layers receiving data
having hundreds or thousands of dimensions. The problem is here that increasing
the dimensionality of a problem the volume of the space exponentially increases
such that all the available data for solving a problem become sparse and, hence,

30 Introduction

insufficient to cover the space.
Such a sparsity is a concrete problem because it commonly drives to data overfit
problems, which are critical in deep learning. For this reason, some approaches
are used to reduce the dimensionality of data and to properly correlate data to be
classified. Probably the most known approach for image classification is the use
of convolutional layers which process data emphasizing the desired features and
eventually reducing the dimensionality of the problem.
Other effective strategies involves the use of unsupervised techniques, ranging from
principal component analysis (PCA) to the nearest neighbor search to sophisticated
techniques involving the use of autoencoders.
Taking high dimensionality data, properly find correlations between them and finally
reducing the dimensionality provides high-quality training set than roughly reducing
the dimensionality of data and is extremely advantageous. This process and effect
goes under the name of blessing of dimensionality [36].

1.6 From the simple to the complex

In the very beginning, the research involving neural networks was essentially theoret-
ical and methodological, due to the limited simulation capabilities of the machines.
With the current massive presence of powerful computers, deep learning has become
something almost everyone can experiment.
Furthermore, thanks to the possibility of accomplishing very complex tasks with an
automatic learning procedure, this field is attracting more and more interest. Every
day more complex architectures of neural networks are designed and simulated.
However, in all this great excitement, the initial approach of starting from simple
models and incrementally increasing the complexity, has been forgotten.
During my PhD I aimed to have a methodological approach. In order to do this, first
the simplest model, the perceptron, has been explored in Chapter 2. Its similarities
to the models of statistical mechanics (the Ising model) allow a formal and grounded
analysis. A step forward towards multi-layer ANNs is done in Chapter 3. There,
some inspirations coming from the perceptron problem are applied to more complex
models, observing their behavior and empirically analyzing the version space. Then,
aiming to solve complex problems with small architecture, a sparsification technique
for deep models has been designed and introduced in Chapter 4, still having in mind

1.6 From the simple to the complex 31

some key stones learned for simpler models. Finally, in Chapter 5 the conclusions
are drawn.

Chapter 2

The perceptron problem

In this chapter we are going to talk about the simplest architecture of neural network
is the perceptron. It was proposed for the first time by Rosenblatt in 1957 while
working at the Cornell Aeronautical Laboratory [37] [38]. It was first naturally
thought to be a machine (hardware) rather than software and it was actually realized
in the “Mark 1 perceptron” [39]. In the early 60s the whole AI community was
shocked by Rosenblatt model and huge debates took place. Indeed, Rosenblatt
claimed that the perceptron was the embryo of an electronic computer that [...]
expects will be able to walk, talk, see, write, reproduce itself and be conscious
of its existence [40]. Now we know Rosenblatt was right, but for the community
those were heavy statements and this gave the kick-off to the research around neural
networks. We are going to introduce first the model in Sec. 2.1. Such a model can be
investigated using tools borrowed by the statistical mechanics: in Sec. 2.2 and Sec.
2.3 two models, the perceptron with real-value parameters (continuous perceptron)
and the perceptron having parameters with binary values (binary perceptron) are
presented, along with state-of-the-art analysis and commonly-used learning rules.
Particular emphasis is devoted to the analysis of the binary perceptron: in order to
train this model, in fact, standard GD-based learning rules are in general unfeasible.
In Sec. 2.4 we introduce our original stochastic perceptron. The stochastic perceptron
succeeds in learning binary parameters using gradient descent. Furthermore, it is able
to reach solutions lying in rare, exponentially dense solutions clusters, consequently
guaranteeing robustness for the found solution.

2.1 The model 33

Fig. 2.1 The perceptron model. Once presented a pattern ξ µ as input, each of its N compo-
nents are re-weighted by N synaptic couplings. Then, the obtained pre-activation potential
goes through a threshold function, producing the output yµ .

2.1 The model

The model proposed by Rosenblatt was very simple. Its structure is made of two
layers:

• input layer: of size N, it is the layer which receives the input pattern ξ .

• output layer: in the perceptron model is always of size 1, it collects the inputs
through N couplings or weights w and generates the output y through an
activation function φ .

Hence, the perceptron can be described by

y = φ

(
b+

N

∑
i=1

ξiwi

)
(2.1)

where b is named spiking threshold or bias. Of course, eq. 2.1 can be extended
to a multiple set of patterns. Let us say we have M different patterns and µ ∈ [1;M].
The µ-th set of input will ptoduce an output according to

yµ = φ

(
b+

N

∑
i=1

ξ
µ

i wi

)
(2.2)

34 The perceptron problem

The activation function for the perceptron problem is commonly a limited (sat-
urating) odd function. For example, binary perceptrons use the sign activation
function

sign(x) =


−1 x < 0
0 x = 0
+1 x > 0

(2.3)

while continuous perceptrons make use of the hyperbolic tangent or the sigmoid
function. It comes natural from this that the perceptron is a binary classifier in which
we aim to learn the correct class σ µ (known as label) associated to ξ µ . This is more
evident if we try to identify the decision boundary. Imposing the condition

φ

(
b+

N

∑
i=1

ξ
µ

i wi

)
= 0 (2.4)

and observing that φ is an odd function, eq. 2.4 becomes

b+
N

∑
i=1

ξ
µ

i wi = 0 (2.5)

This represents an N − 1-dimensional hyperplane dividing the phase space in
two halves. Such a model has limits. The most relevant is that it is a binary classifier,
so it can discriminate between two classes only. Furthermore, it is able to learn
linearly-separable classes only. As pointed out by Minsky and Papert, perceptrons
are not able, for example, to learn the XOR function [7]. These limitations, however,
can be overcome using more complex models of neural networks, the simplest is the
multilayer perceptron. We will discuss this in Chapter 3.

2.1.1 Performance evaluation

As we have previously observed in Sec. 1.3, the performance of a neural network is
in general evaluated through a loss function. For instance we can “count” how many
of the M patterns are properly evaluated by the network by the loss function

2.1 The model 35

ε =
1
M

M

∑
µ=1

Θ(−yµ
σ

µ) (2.6)

where Θ(x) is the heaviside function

Θ(x) =

{
0 x ≤ 0
1 x > 0

(2.7)

The lower ε is, the better we are performing and when we reach ε = 0 we have
learned all the training set. However, there is no warranty regarding the generalization
of the network: depending on the learning technique, we might need more or less
examples in our training set to have a good generalization. However, in general, the
larger the training set is, the better the generalization as well.
Our analysis will be here divided in two different learning settings:

• the teacher-student (or generalization) scenario: here we have a neural network
(student) which has to reproduce in the most accurate way a target rule σ µ =

ϕ(ξ µ) which can be generated, for example, by another neural network, named
teacher. The most relevant performance indices is here the generalization error,
evaluated on a test set.

• the storage scenario: here we try to give an answer to the question: “How
much a neural network is able to learn?”. Such an estimation is performed
feeding the network with non-correlated random input patterns and learning as
many as possible.

In the next sections we are going to present the continuous and the binary perceptron
problems. We will show that these models can be analyzed using techniques from
the statistical physics, using which we are able to better understand some of the prop-
erties of the solution space. This knowledge motivates the design of our stochastic
perceptron, in which we solve the hard binary perceptron learning problem taking
all the advantages of training continuous quantities.

36 The perceptron problem

2.2 Continuous perceptron

In the so-called continuous perceptron wi ∈R∀i. Eq. 2.2 still holds; however, learning
these parameters is easier as simple techniques like gradient-descent are applicable
and it is empirically proven they are extremely effective. For these reasons, this
model was object of many studies in the past.
A known constraint applied to the continuous perceptron is

N

∑
i=1

w2
i = N (2.8)

through which the vector of weights is normalized to a sphere having radius
√

N. For
this reason, this is known as spherical perceptron. We will see that such a constraint,
even though it is not affecting the quality of the final result, is necessary in order to
use some results from statistical mechanics and, in particular, the Gardner analysis.
We know that each classification problem has a set of some input patterns ξ µ and
their associated label yµ . In such a framework, we can work assuming a sampling
from the probability distributions P(ξ µ) and P(yµ). From here, the link to statistical
physics appears. Let us think to the ws as microscopic variables which live in the
phase space. Assuming the learning dynamics converges to a final equilibrium point,
we can say the weights are distributed in the phase space according to the Gibbs
measure

P(w) =
1

Z(ξ)
e−βε(w,ξ) (2.9)

where β = 1
T and Z is the partition function which is the sum over all the possible

configurations of w

Z(ξ) =
∫

dµ(w)e−βε(w,ξ) (2.10)

In order to compute eq. 2.10 with the spherical constraint, we can define dµ(w) as

dµ(w) =
dwδ (w2 −N)∫
dwδ (w2 −N)

(2.11)

2.2 Continuous perceptron 37

Fig. 2.2 Projection of the phase space for the spherical perceptron. The vector indicating the
configuration is W and just the solutions lying on the hypersphere of radius

√
N are here

acceptable.

which gives the fractional phase space in the hypersphere having radius
√

N. A
schematic representation can be seen in Fig. 2.2
When we let β → ∞ in eq. 2.9 we are investigating the minima of the energy function,
i.e. the solutions of our learning problem (which are occupying a subset of this space
also known as version space). In this limit, the computation of the partition function
reduces to the computation of the volume Ω of the version space

Ω =
∫

dµ(w)
M

∏
µ=1

Θ(yµ
σ

µ) (2.12)

Ω provides the information whether a solution exists (SAT, having Ω > 0) or no
solution is available (UNSAT).
In order to study analytically the properties of Ω the case of i.i.d. random patterns,
the key obstacle is to perform the average over the random patterns while computing
the partition function Z.
Z (or Ω) is an exponentially fluctuating random variable and in order to find its
most probable values we need to average its logarithm, a complicated task which
we perform by the replica method. Once this is done, the typical value of Z can be
recovered by

Ztyp ≃ eN⟨logZ⟩ξ (2.13)

38 The perceptron problem

where ⟨·⟩
ξ

stands for the average over the random patterns.
We refer to [41] for a thorough review of the replica method. Here we just remind
the reader that the replica method is an analytic continuation technique which allows
in some cases (mean-field models) to compute the expectation of the logarithm of
the partition function from the knowledge of its integer moments. The starting point
is the following small n expansion

Zn = 1+n logZ +o
(
n2) (2.14)

This identity may be averaged over the random patterns and gives the average of the
log from the averaged n-th power of the partition function

⟨logZ⟩
ξ
= min

n→0

⟨Zn⟩
ξ
−1

n
(2.15)

The idea of the replica method is to restrict to integer n and to take the analytic
continuation n → 0:

⟨Zn⟩
ξ
=

n

∏
a=1

⟨Za⟩ξ
= ∑
{W1,...,Wn}

〈
e−β ∑

n
a=1 E(Wa)

〉
ξ

(2.16)

We have n replicas of the initial model. The random patterns in the expression of the
energy disappear once the average has been carried out. Eventually one computes
the partition function of an effective system of n ·N variables with a non random
energy function resulting from the average. The result may be written formally as

⟨Zn⟩
ξ
= eN·F(n) (2.17)

where F is the expression resulting from the sum over all configurations. Once the
small n limit is taken, the final expression can be estimated analytically by means of
the saddle-point method given that N is assumed to be large.

2.2.1 Teacher-student

In this scenario, a teacher T assigns some labels σ µ to input patterns ξ µ . The student
W, which is in our case the perceptron to be trained, attempts to match its yµ to the
desired σ µ . Notice that the teacher-student scenario is general and applies to any

2.2 Continuous perceptron 39

Fig. 2.3 Projection of the phase space for the spherical perceptron in the teacher-student
scenario. Here W represents the student while T is the teacher. When there is complete
overlap between teacher and student the orange area completely disappears, and it represents
an inverse measure than the overlap.

neural network architecture. The final aim of the student (whose synaptic weights
are w) is to match as much as possible those of the teacher. In such a way, a measure
can be defined, namely the teacher-student overlap

R =
T′ ·W

∥T∥2∥W∥2
=

T′ ·W
N

(2.18)

where · indicates the scalar product and ∥ · ∥2 is the euclidean norm. R is nothing but
the cosine distance between the two synaptic coupling arrays T and W. A graphical
representation of the problem can be found in Fig. 2.3.
Recalling eq. 2.12, the volume of the version space becomes

Zts =
∫

dµ(W)
M

∏
µ=1

Θ

[(
T ·ξ µ

√
N

)(
W ·ξ µ

√
N

)]
(2.19)

Using the replica trick, we can write

40 The perceptron problem

⟨Zts⟩ = limn→0
1
n log

〈{∫
dµ(W)∏

M
µ=1 Θ

[(
T·ξ µ

√
N

)(
W·ξ µ

√
N

)]}n〉
ξ

= limn→0
1
n log

〈∫
∏

n
a=1 dµ(Wa)∏

n
a=1 ∏

M
µ=1 Θ

[(
T·ξ µ

√
N

)(
Wa·ξ µ

√
N

)]〉
ξ

(2.20)
Here we are sampling the couplings according to

P(ξ) =
N

∏
i=1

(
ξi −1

2
+

ξi +1
2

)
(2.21)

where we assume uncorrelated input patterns and

P(T) = (2πe)−
N
2 δ (T2 −N) (2.22)

in which the synaptic couplings of the teacher are uniformly distributed over the
hypersphere.
At this point we need to introduce two auxiliary variables, qab and Ra:

qab =
W′

a ·Wb

N
(2.23)

which is the overlap between two given replicas a and b and

Ra =
T′ ·Wa

N
(2.24)

is the overlap between the teacher and the replica a. The typical value for these
quantities is independent on the replica index as all the replicas play a symmetric role:
we can substitute qab = q and Ra = R. Now, it is possible to solve the saddle-point
equations under the assumption of replica-symmetry ansatz (RS solution).
In the end, the value of the overlap can be expressed as

R =
α

π

√
1−R

∫
Dt

e−
Rt2

2

H(t
√

R)
(2.25)

where H(·) =
∫

∞

x Dt is a gaussian integral and α = M
N . Eq. 2.25 is fundamental

for the description of the behavior of R as a function of α . When α = 0, we have

2.2 Continuous perceptron 41

almost no overlap (R = 0) while, for α → ∞, R → 1. This results is also intuitive:
whenever a teacher exists, the student will always be able to find a configuration
solving the problem and, in the limit of large alpha, it will recover exactly the teacher
configuration. This means that the teacher-student problem is always satisfiable
(SAT).

2.2.2 Storage problem

In the case of the storage problem, we have no longer a teacher we need to learn
from. Instead, we have a random distribution for the labels yµ . In order to ensure
that the patterns are correctly stored, we need to impose

yµW′ ·ξ µ ≥ k ∀µ (2.26)

where k is said stability. In such a context, we are looking for the so-called critical
alpha αc, which is the highest M

N ratio for which we are able to learn all the patterns.
As we have already done in Sec. 2.2.1, we can use the Gardner analysis for the
computation of the typical entropy (or volume)

Styp =
1
N
⟨logZ⟩

ξ
(2.27)

where

Z =
∫

dµ

M

∏
µ=1

Θ

(
yµ

√
N

W′ ·ξ µ − k
)

(2.28)

As done in Sec. 2.2.1, we can use the replica trick and, in the RS ansatz, we can
write the saddle-point equation

q
1−q

=
α

π

∫
Dte−

(k−t
√

q)2

1−q

[
H
(

k− t
√

q
√

1−q

)]−2

(2.29)

Here, when α = 0, also q = 0, which means that all the configurations are admissible
solutions. Of course, having no patterns to learn, any solution is here acceptable.
We are going to look for the αc such that q → 1. In such a limit, all the solutions

42 The perceptron problem

Fig. 2.4 A schematic representation on how the version space Ω modifies as α increases. It
does exist a critical value αc above which the version space no longer exists and our problem
is unsatisfiable.

collapse in the same configuration and the volume reduces to a single point.
Under the limit q → 1, eq. 2.29 becomes

1
αc

=
∫ k

−∞

Dt(k− t)2 (2.30)

Here, for k = 0, we find the maximum quantity of storable information in the spher-
ical perceptron, αc = 2. As k increases, αc decreases, as expected. αc constitutes
a phase transition point between a SAT region and an UNSAT region where no
solution exists. An idea on what happens to the version space as α increases is given
in Fig. 2.5.

2.2.3 Learning algorithms

Despite architectural simplicity, we have seen that the analysis of the solutions for the
spherical perceptron is not trivial. However, a number of learning algorithms have
been designed, some of them more effective than others. In what follows, we are
just describing two among the several possible training strategies for the perceptron
problem.

The perceptron learning rule

The most ancient learning rule we discuss is the so-called Hebb rule, introduced by
Donald Hebb itself in the 1940s which in turn is based on the much older work on

2.2 Continuous perceptron 43

classical conditioning by Ivan Pavlov from the end of the 19th century.

The Hebb rule follows a simple strategy: in particular, all the connections in
the perceptron which fire together are strengthened. The Hebb rule is general and
typically applies to systems with many-neurons: its equivalent for the perceptron
problem is known as perceptron learning rule.
Before the training begins, an initial value for the synaptic couplings W sampled
from a gaussian distribution having mean 0 and some standard deviation.
As a first step, we present to the network a pattern ξ µ . Here, the network, according
to eq. 2.1, generates an output yµ which is compared to the desired output yµ :

• if yµ = σ µ then the network has correctly classified the pattern and no modifi-
cations to W is required for the µ-th pattern.

• if yµ ̸= σ µ then the network is not correctly classifying ξ µ and some mod-
ifications of W is necessary. In this case, we push the configuration of the
network to properly classify ξ µ with the required sign provided by σ µ .

The update of W using the perceptron learning rule in the spherical perceptron can
be written as

wt+1
i = wt

i +Θ(−yµ
σ

µ)
η√
N

yµ
ξ

µ

i (2.31)

where η is a positive real number named learning rate. Using this update rule
we are minimizing the loss function

L =
M

∑
µ=1

Θ(−yµ
σ

µ)

(
−yµ W′ ·ξ µ

√
N

)
(2.32)

The ∆ rule

The Delta rule is a gradient descent-based learning rule for single-layered artifi-
cial neural networks. In particular, it is a special case of the more general back-
propagation algorithm.
This technique, differently from the perceptron rule, is not applicable to networks

44 The perceptron problem

having non-differentiable activation functions (like the sign activation). Let us
assume we wish to work with the mean squared error as our loss function:

L =
1

2M

M

∑
µ=1

(σ µ − yµ)2 =
1

2M

M

∑
µ=1

[
yµ −φ

(
W′ ·ξ µ

√
N

)]2

(2.33)

Here we could compute the derivative of the loss function with respect to the
parameter to be updated wi for a single presented pattern ξ µ :

∂Lµ

∂wi
=

[
σ

µ −φ

(
W′ ·ξ µ

√
N

)]
φ
′
(

W′ ·ξ µ

√
N

)
ξ

µ

i (2.34)

and a GD-based optimizer can be used for training the network. This technique is
easily applicable to multi-layer ANNs thanks to the chain rule, with the assumption
of using a differentiable φ(·) function.
If we wish to compare the delta rule with the perceptron rule, we can see that
while with the perceptron rule we have no clue on how far we are from the correct
configuration having just a binary signal stating whether a pattern is correctly or
incorrectly classified, in the delta rule we have an error signal which decreases
coming closer to the solution of the problem, which is a wise re-weighting of the
error signal.

2.3 Binary perceptron

The so-called binary perceptron is the usual model

yµ = sign

(
N

∑
i=1

wiξ
µ

i

)
(2.35)

but with binary weights wi ∈ {−1;+1}. Such a constraint introduces a direct simi-
larity with the Ising model, which can be recovered assuming the parameters being
magnetic couplings. This is the reason for which the binary perceptron is also known
as Ising perceptron [42].

2.3 Binary perceptron 45

2.3.1 Ising model vs Ising perceptron

The Ising model is one of the fundamental models in statistical mechanics. Its
initial purpose was to describe magnetism in the matter and is particularly useful
to describe the phase transition between paramagnetism and ferromagnetism. It is
named after Ernst Ising, who worked on this as a student of Wilhelm Lenz, in 1920.
The model consists in some coupling variables (spins) which represent magnetic
dipole moments of atomic spins. Typically, their allowable values are ± 1. Each
spin is arranged in a graph structure (typically, lattice) and is able to interact with its
neighbors through a pairwise interaction term I.
Let us consider a d-dimensional lattice, made of N different sites. For each of these
we have a spin si ∈ {−1;+1}. We define a configuration of the system an assignment
s. For any i, j adjacent sites there is an interaction term Ii, j. In general, at the i-th site
an external magnetic field hi is applied. The energy of the systems can be written as

H(s) =− ∑
(i, j)

Ii, jsis j −∑
i

hisi (2.36)

The probability distribution for the configurations s is given by the Boltzmann
distribution

P(s) =
eβH(s)

Z
(2.37)

where Z is the partition function computed at the inverse temperature β .
The Ising model can be directly mapped onto the perceptron by considering the spin
variables as the input of our system and the couplings as the parameters we aim to
learn.

2.3.2 Storage problem

Using the replica trick and the Gardner analysis it is possible to compute the critical
alpha also for the binary perceptron. The modification to be introduce is the replace-
ment of the integral over the configurations of W with a sum over all the discrete
allowable configurations. Using the RS ansatz, the quenched entropy is given by

46 The perceptron problem

Styp(α)= extrq,q̂

[
− q̂

2
(1−q)+

∫
Dz log2cosh

(
z
√

q̂
)
+α

∫
Dt logH

(
k− t

√
q

√
1−q

)]
(2.38)

where the overlap parameter q and the auxiliary parameter q̂ are computed from the
saddle-point equations

q =
∫

Dz tanh2
(

z
√

q̂
)

(2.39)

q̂ =
α

2π(1−q)

∫
Dte−

(k−t
√

q)2

1−q

[
H
(

k− t
√

q
√

1−q

)]−2

(2.40)

All the details about the presented results are extensively shown in [43]. At this
point, for k = 0, in the case q → 1, we have that q̂ ∼ α

2π(1−q)2 and we would derive

a critical value of alpha αc =
4
π
= 1.27. This value is lower than the critical value

found for the spherical perceptron (which was 2), however it is incorrect. αc = 1.27
means that we are theoretically able to map 1.27N bits (as we are working with a
binary network) in the structure of the binary perceptron which only has N bits. So,
where is the problem?
In order to find the correct result one needs to either go beyond the replica symmetry
ansatz or identify the critical capacity by looking at the value of alpha at which the
RS entropy vanishes. These two results are in fact equivalent, as discussed by Krauth
and Mézard in 1989 [44]. A careful analysis of the version space shows that in case
of the binary perceptron it is never connected.
This scenario is known in statistical physics of disordered systems as replica symme-
try breaking (RSB) scenario, where the minima of the energy function have a smaller
symmetry that the function itself. Geometrically, this corresponds to a shattering
of the version space. Using the zero-entropy solution, the critical alpha value is
αc = 0.83, which is consistent with the information theoretic bound.

2.3.3 Learning algorithms

Training a binary perceptron for a classification task is not as easy for a continuous
perceptron. As we have seen, for the spherical perceptron problem the version space

2.3 Binary perceptron 47

Fig. 2.5 A schematic representation on how the version space Ω modifies as α increases
for the binary perceptron. Differently as seen for Fig. 2.5, the version space is fractured in
non-connected domains, which makes the RS assumption failing.

is all connected, until it reaches the critical alpha. However, for the binary perceptron,
we need to find solutions for the 1-RSB ansatz, meaning in a non-connected solution
space. In particular, if we analyze the phase diagram for the binary perceptron case,
we will see that we have a spin glass phase. According to the theory for disordered
systems, this phase corresponds the existence of a large number of meta-stable states
separated by energy barriers which slow down the learning dynamics.
For this reason, algorithms performing local search are not particularly effective to
solve the Ising perceptron model.
Typical solvers for the binary perceptron model involve the implementation of
Metropolis-Hastings sampling combined with simulated annealing strategy. This
approach allows to find a solution to the learning problem; however, it results in a
very long training time and is typically algorithmically inefficient.
Another possible approach is to use the clipped Hebb rule. It consists in applying the
rule as described in sec. 2.2.3, but clipping the contribution to the learned parameters
to ±1. Similarly, it is possible as well to consider a properly-weighted perceptron
rule.
Recently, some new innovative and effective learning algorithms have been proposed.
In particular, they are based on the Belief Propagation (BP) algorithm [45]. This
powerful tool is able to compute marginals of some variables of interest (in our
case, the weights of the neural network), and are able to reach algorithmic critical
capacities around 0.75, very close to the theoretical limit.

2.3.4 Dense clusters

As we have discussed in Sec. 2.3.2, for the binary perceptron there is a massive
presence of isolated solutions, which makes typical local-search heuristics ineffective.

48 The perceptron problem

However, we have also seen in Sec. 2.3.3 that there exist at least one a class of
algorithms, based on belief propagation, that are rather effective in solving the
problem. A recent work [46] suggested that such a behavior could be explained by
the existence of rare, dense clusters of solutions (hence, solutions are no longer all
isolated) which are the weight configurations accessible by these algorithms.
To identify analytically regions having an exponential number of solutions we need to
define a new measure which counts all the configurations W solving the classification
problem around a reference solution W̃. We hereby introduce the concept of local
entropy [47]

Sloc(W̃, l) =
1
N

log∑
W

∏
µ

Θ(yµ
σ

µ)δ (d(W,W̃)− l) (2.41)

where d(·) is a function determining a distance between two synaptic coupling
configuration (it could be a Euclidean norm, or just the Hamming distance for the
binary perceptron) and l is the distance which identifies the regions inside which we
want to compute the local entropy.
A nice property of the local entropy is that it is a self-averaging quantity: if we
average it on the training set we are able to know how many typical solutions exist
surrounding our reference configuration W̃:

SFP(l) =

〈
∑
W̃

∏
µ

Θ(yµ
σ

µ)Sloc(W̃, l)

〉
Ξ

(2.42)

where SFP stands for Franz-Parisi entropy [48]. Investigating this measure, it
was observed that typical solutions for the binary perceptron are isolated (and this
confirms the failure of the RS assumption) but some solutions, in particular those
found with the abovementioned algorithms, are not isolated. This analysis shows the
existence of dense clusters of solutions which are however sub-dominant (and, for
instance, rare). The existence of dense clusters allows learning algorithms to solve
the binary perceptron problem. The analytical results have been corroborated by the
implementation of a Montecarlo strategy which proved to be effective in the search
of these dense clusters [49], or even in optimizers for deep networks [50].

2.4 Stochastic perceptron 49

2.4 Stochastic perceptron

In the previous sections we have seen the analysis of the perceptron problem, starting
from the continuous case and evolving to the Ising perceptron. It would be nice to
design a method which is computationally less expensive than the top state-of-the-art
algorithms which still lands in the dense solution regions (so, it must intrinsically
use the concept of local entropy).
Towards this end, we studied a model of stochastic perceptron. In particular, we aim
to solve the learning problem

min
W

H(W) = ∑
µ

Θ(−σ
µ

N

∑
i=1

wiξ
µ

i) (2.43)

where now the wi ∈ {−1;+1} are stochastic variables. We can re-frame this as a
log-likelihood maximization problem

max
W

L (W) = ∑
µ

logP(σ µ |ξ µ ,W) (2.44)

which can be solved using gradient descent-based techniques minimizing the loss
function −L (W). In our model we associate a family of distributions Qm(W) to
the synaptic configurations W parameterized by some variables m. Our learning
problem becomes in this way

max
m

L (m) = ∑
µ

logEW∼QmP(yµ |ξ µ ,W) (2.45)

From eq. 2.45 we are able to derive two different classes of predictors:

• σ1 = argmax
W

Qm(W)

• σ2 = argmax
W

∫
dWP(yµ |ξ µ ,W)Qm(W)

In our work [51] we decided to focus our attention on σ1.
Maximizing the log-likelihood which depends on m gives us some advantages in
the computation. In particular, many optimizing techniques commonly used in
deep learning (some examples have been discussed in Sec. 1.5.4) are applicable to

50 The perceptron problem

continuous problems, but not to the discrete ones. The stochastic perceptron model
allows learning binary synapses, working with a log-likelihood, whose parameter
are real values. The known gradient descent techniques already incorporate a sort of
knowledge of local entropy (see Sec. 1.5.4); hence, thanks to our model, we are able
to make use of the nice properties of the solution space in the binary perceptron.

2.4.1 Formulation

In the optimization problem introduced in eq. 2.45 we randomly extract the configu-
ration for the weights W according to

Qm =
N

∏
i=1

[
1+mi

2
δwi,+1+

1−mi

2
δwi,−1

]
(2.46)

where δa,b is the Kronecker delta. Of course the model is valid for mi ∈ [−1;+1]∀i
and mi, named magnetizations, are our control parameters. Extracting the configura-
tion from eq. 2.46, according to the hamiltonian formulation in eq. 2.43, we choose
to use the probability

P(yµ |ξ µ ,W) = Θ

(
yµ

N

∑
i=1

wiξ
µ

i

)
(2.47)

Hence, the log-likelihood we aim to maximize reads

L (m) = ∑
µ

logΘ

(
yµ

N

∑
i=1

wiξ
µ

i

)
Qm (2.48)

Here we can make the assumption of having large N. From the central limit theorem,
for N → ∞, the weighted sum over the N synaptic couplings becomes gaussian-
distributed, reading

L (m) = ∑
µ

logH

−
yµ

∑
N
i=1 wiξ

µ

i√
∑

N
i=1(1−m2

i)(ξ
µ

i)2

 (2.49)

2.4 Stochastic perceptron 51

where

H(z) :=
∫

∞

x
dz

e−
z2
2

√
2π

If the input is binary having ξ
µ

i ∈ {−1;+1}∀i,µ , eq. 2.49 becomes

L (m) = ∑
µ

logH

−
yµ

∑
N
i=1 wiξ

µ

i√
∑

N
i=1(1−m2

i)

 (2.50)

At this point, we are able to use any of the GD-based techniques to maximize eq. 2.50.
In particular, we will minimize −L (m). As previously observed, the validity limit
for our model is mi ∈ [−1;+1]∀i; hence, for the update step, we need to bound all
the mi to their validity region:

mt+1
i = clip

(
mt

i +η
∂L (mt)

∂mt
i

)
(2.51)

where t indicates the update time step, η is the learning rate and clip is the non-linear
operator

clip(z) =


−1 z <−1
z −1 ≤ z ≤+1
+1 z > 1

2.4.2 Dynamics of learning

During the simulation time, it was observed that the training error was progressively
approaching zero when the squared norm of the magnetization was approaching 1.
Let us say we have a control parameter

q∗ =
1
N

N

∑
i=1

m2
i (2.52)

q∗ is a global indicator of the degree of certainty of the network: when q∗ → 0 the
sampling is almost random, having almost all mi ≈ 0 while, when q∗ → 1, almost all
mi ≈±1 and Qm concentrates around some particular configuration.

52 The perceptron problem

2.4.3 Theoretical analysis

It is possible to perform an analysis regarding the equilibrium properties of our
stochastic perceptron model. We can write the partition function

Z =
∫

Ω

N

∏
i=1

dmiδ

(
N

∑
i=1

m2
i −q∗N

)
eβL (m) (2.53)

where δ is the delta function selecting solutions for the given q∗ value, β is an
inverse temperature, L (m) is the log-likelihood in our model (eq. 2.49) and Ω is
the version space which, in our case, is Ω ∈ [−1;+1]. As already observed, for the
binary perceptron the RS-ansatz is unstable for large values of β ; for this reason, as
already seen in Sec. 2.2.1, we are supposed to break the replica symmetry. However,
we are mainly interested in studying real cases in which the temperature of our
system is not zero. Towards this end, we can study the stability of the saddle-point
equations as a function of the control parameter q∗.

Energy of the binarized configuration

The aim of our model is to obtain a configuration for the W, which is a binary
configuration. In particular, we would like to keep the error of the so-obtained
network as low as possible. The error of the network is a kind of final energy and we
would like to find a solution for the zero-temperature configuration (which in our
case is the binary one) with the lowest possible energy. Here we can write

E = lim
N→∞

1
αN

E

[
∑
µ

〈
Θ

(
−σ

µ
N

∑
i=1

sign(mi)ξ
µ

i

)〉]
(2.54)

where the thermal average is computed over m. Notice that eq. 2.54 depends also
on q∗ and β , which appears in the thermal average formula. Using the usual replica
technique it is here possible to compute the average energy as a function of q∗. As
we see in Fig. 2.6, we have evidence that the energy approaches 0 as q∗ → 1. The
theoretical curve is here compared with two simulations performed using SGD. What
we can observe here is that the speed (for instance, the learning rate η) plays an
important role in the convergence to lower energy configurations. The difference
between the curves can be explained by two factors:

2.4 Stochastic perceptron 53

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500
 0

 0.1

 0.2

 0.3

 0.4

 0.5
E q

*

training epoch

E
q*

Fig. 2.6 Energy vs q∗ parameter for a typical learning problem in the stochastic perceptron.
Here α = 0.55.

• Non-equilibrium dynamics: the theoretical computation assumes a dynamics
moving from an equilibrium state to another, while SGD does not have this as
constraint. However, reducing the learning rate, or even forcing the system
to find a thermal equilibrium for a fixed q∗ value makes the empirical energy
curve getting closer to the theoretical one.

• Finite size effect: our theoretical formulation assumes N → ∞; however, em-
pirical results are obtained for a finite N, even though large.

Geometry of the solution space

As we have already stated in Sec. 2.3.4, in the binary perceptron the greatest number
of solutions are isolated. However, a subdominant number of them concentrates in
a dense, connected region [46]. It was observed that just this kind of solutions are
accessible by the state-of-the-art algorithms. What we aim to show here is that the
binary solutions found with the stochastic perceptron are typically inside these dense
regions. In order to do this, what we can do is literally to count all the solutions to
the learning problem at a fixed distance (in the binary case it is a Hamming distance

54 The perceptron problem

d). We can here use the approach introduced by Franz and Parisi in their work [48].
Let us define a constrained partition function

ZFP(d,m) = ∑
W

∏
µ

Θ

(
yµ

N

∑
i=1

wiξ
µ

i

)
δ

(
N(1−2d)−

N

∑
i=1

sign(mi)wi

)
(2.55)

in which the sum os over all the possible binary configurations. The Franz-Parisi
entropy is

SFP(d) = lim
N→∞

1
N
E⟨logZFP(d,m)⟩ (2.56)

We have compared a typical solution found with the stochastic perceptron model
to typical solutions found with the binary model and the spherical perceptron model.
As it is possible to see in Fig. 2.7, the solution found by the stochastic perceptron
model is in a dense solution region contrarily to the typical solutions found by the
other models.

2.4.4 Experimental results

The stochastic perceptron was designed such that it could be trained using sim-
ple, general optimization techniques like stochastic gradient descent, which has as
strength the hidden knowledge of performing a sort of local entropy optimization.
For this reason, the cost function to be minimized contains a loss term

L =− 1
Mb

Mb

∑
µ=1

logH

−
σ µ

∑
N
i=1 miξ

µ

i√
∑

N
i=1 1−m2

i

 (2.57)

where Mb is the size of the minibatch. We still have to remember the clip in the
update of the magnetizations as stated in eq. 2.51. The performance of the network
has to be evaluated through the binarized configuration of the network

Ŵ = sign(m)

2.4 Stochastic perceptron 55

 0

 0.05

 0.1

 0.15

 0.2

 0 0.02 0.04 0.06 0.08 0.1 0.12

S
(d

)

d

stochastic
binary

spherical

Fig. 2.7 Franz-Parisi potential for typical solutions found in the spherical, stochastic and
binary perceptron at thermo-dynamical equilibrium. The curves for the stochastic perceptron
are computed for different q∗ values (0.7, 0.8 and 0.9): the higher it is, the more dense
the region the final solution is. Here α = 0.55, β = 20 for the stochastic perceptron while
β → ∞ for the binary and spherical perceptron.

56 The perceptron problem

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74

P
ro

b
.
S

u
c
c
.

α

N=1001

N=10001

Fig. 2.8 Empirical analysis for finding-out the algorithmic critical alpha for the stochastic
perceptron model. Here all the points are averaged over 100 samples and results are obtained
for N = 1001 and N = 10001.

Hence, for us, the effective training error is evaluated through Ŵ, being

Ê =
1
M

N

∑
µ=1

Θ

(
−σ

µ
N

∑
i=1

Ŵiξ
µ

i

)
(2.58)

Empirically it was observed that the algorithmic critical alpha α∗
c ≈ 0.63 (see

Fig. 2.8). As found from the theoretical computation, this value is below the theoreti-
cal critical capacity αc = 0.83, as for higher values no typical solutions can be found.
Many state-of-the-art algorithms have a critical alpha value between 0.6 and 0.74; so,
we are in this range. However, most of the algorithms reaching these capacities are
computationally expensive and extremely complex, while our stochastic perceptron
relies on a very simple and complexity-friendly training strategy.
Here we can further analyze the behavior of the average energy (error) as function of
q∗. From the first simulations we observed that the behavior was different from the
one we expected from eq. 2.54 (as we can see in Fig. 2.9). However, when we allow
the empirical learning to find the best energy for a fixed q∗ annealing the parameter
more slowly, we get closer to the theoretical curve.

2.4 Stochastic perceptron 57

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.7 0.75 0.8 0.85 0.9 0.95 1

tr
a
in

in
g
 e

rr
o
r

q*

GD
GD slow

static

Fig. 2.9 Average energy as a function of q∗ for the empirical simulations (GD) and expecta-
tions from the theory (eq. 2.54). If we do not make GD slowly thermalize the assumption of
thermal equilibrium is not valid.

Some variants to our approach were also attempted: for example, instead of
updating the magnetizations directly, an attempt in optimizing the fields hi defined as

hi := tanh−1(mi)

was performed, as well as the use of different optimizers, with no significant change.
An extension to deep network has been also done, which will be discussed in Sec. 3.5.

2.4.5 Variant: a game of scales

At this point we could be satisfied with our results. However, as already pointed-out,
there are some other techniques of learning for the binary perceptron which are
performing better. Of course they are more complex and the lack of performance
derives from the computational efficiency and being a trade-off... What if, instead,
we just need to do some adjustment to our rule?
As previously described in eq. 2.57, we are minimizing a loss function which

58 The perceptron problem

describes the behavior of our stochastic perceptron. The log-likelihood was obtained
applying the central limit theorem for the case N → ∞. Assume now to introduce a
factor γ in eq. 2.57 such that

L =− 1
Mb

Mb

∑
µ=1

logH

−
σ µ

∑
N
i=1 miξ

µ

i√
γ ∑

N
i=1 1−m2

i

 (2.59)

with γ ∈ (0;∞). This factor scales the variance in the denominator: with γ → 0 the
loss in eq. 2.59 becomes

Lγ→0 =− 1
Mb

Mb

∑
µ=1

logΘ

(
σ

µ
N

∑
i=1

miξ
µ

i

)
(2.60)

Here, for all the correct predictions, the argument of the Θ function is positive
and the contribution to the loss is zero; however, for the incorrect prediction, the
argument of the theta function is negative, and L → ∞. In such a condition, we are
not allowing any error of the network and we are amplifying the loss penalty. We are
in a deterministic case: the sampling distribution is reduced to a dirac delta centered
to the value of mi. On the other hand, for the case γ → ∞,

Lγ→∞ =− log(0.5) (2.61)

in this case, regardless the value of the magnetizations, it is like we are spreading
the sample probability in the range (−∞;+∞) and the uncertainty is at its peak. Of
course, having γ = 1, we recover the standard model in eq. 2.59.
Introducing this parameter allows us to have a further control to the global scale of
the variances of our algorithm and, according to the simulations in Fig. 2.10, we
have a meaningful boost in the performances.
What is this telling us? We think that globally we should take care of this annealing,
as also intuitively in the early stages of training the uncertainty is greater than in the
last ones.

2.4 Stochastic perceptron 59

Fig. 2.10 Empirical results for N = 1001. There is a significant improvement in the algorith-
mic performance annealing γ .

Chapter 3

Feedforward networks

In Chapter 2 we have presented the perceptron from a theoretical point of view and
from an algorithmic one. In particular, we have seen its closeness to the Ising model
and, thanks to results and tools borrowed from the statistical physics, we have been
able to perform exact computations on the maximum performances such a model
can reach and how the state-of-the-art performs in terms of optimization and final
performance. A fundamental result obtained from such an analysis was involving the
geometry of the solution space: in the case of the continuous perceptron the solution
space resulted all connected and, for this reason, any decent learning algorithm is
able to find optimal solutions. However, the Ising perceptron problem is much harder
as the solution space is in general not connected. In particular, it was shown the
existence of some dense, sub-dominant clusters of solutions, in which there are the
only algorithmically-accessible solutions.
Tn this chapter we are going to talk about the natural extension of the perceptron
problem to multi-neurons architectures. These, in particular, are named feed-forward
neural network because of their hierarchical structure: neurons are grouped in layers
and the output signal from a lower layer is forwarded to the successive one [52].
We will see some of the most-used architectures, some theoretical computations
performed and empirical investigations on the solution space inspired from the theory.
In Sec. 3.1 we provide an overview on the structure of feed-forward neural networks:
tree-committee machines, fully-connected networks and convolutional networks
(which are the state-of-the-art architectures used for classification tasks) are presented.
Then, in Sec. 3.2, we show our attempt to boost the generalization of simple feed-
forward neural networks using a heuristic algorithm inspired by the replica trick. In

3.1 Structure of feed-forward neural networks 61

Sec. 3.3 we pioneer in exploring the version space for high-dimensionality learning
problems, using a heuristic approach. Interestingly, the solution sub-space for the
solutions found using SGD seems to be a convex connected volume. Finally, in
Sec. 3.5 we extend the stochastic perceptron model to deep networks after reviewing
state-of-the-art approaches in Sec 3.4.

3.1 Structure of feed-forward neural networks

We have already seen that the main components for training a neural network
attempting to learn a classification task are

• some parameters W to be learnt

• a training set Ξ, made of a set of M input patterns ξ having dimensionality N,
associated to a desired output y

• a topology of the network, involving how the connections are set in the network
and the desired activation function φ appearing as the output of the network

Regarding the topology of a neural network, we can define three different types
of layers depending on their positioning in the network:

• input layer: it is the very first layer and it is a layer with no parameters to be
learned, it simply forwards the input pattern ξ µ to the successive layer

• output layer: it is the very last layer of the network and provides the output yµ .

• hidden layer(s): it is any layer between the input and the output layer, its name
comes from the fact that it not directly visible from the output [53]

According to this hierarchy of layers, the perceptron model has no hidden layers,
the input layer has size N and the output layer’s size is 1. The size of hidden layers
and output layers depends on the classification task we are deciding to learn: for
example, if we decide to learn a distinction between 3 different classes we could set
the size of the output layer to 3 and y can be represented by a one-hot coding. We will
see that in the case of deep networks the activation of the output layer is a soft-max
function which normalizes the C possible outputs to 1, making yµ a probability.

62 Feedforward networks

Fig. 3.1 The structure fo a TCM with N = 9 and K = 3. It should be possible also to learn
the weights of the output layer.

3.1.1 Tree committee machines

The tree-committee machine is certainly one of the easiest feed-forward neural
networks. It is made of 1 hidden layer of size K and input layer of size N and an
output layer of size 1. Its name comes from the fact that each of the K hidden units
belonging to the hidden layer receives as input an exclusive subset of input of size N

K
and appears to have a tree structure as it is possible to see from Fig. 3.1. The output
layer takes the K outputs of the hidden layer and commonly acts like a majority
voting. Hence, the output yµ is generated:

yµ = φ2

[
K

∑
j=1

w j,2φ1

(
N/K

∑
i=1

wi,1ξ
µ

i, j

)]
(3.1)

where ξi, j indicates the i-th input destined to the j-th neuron.

The storage problem

Let us assume for our problem we have φ1(·) = φ2(·) = sign(·) and w j,2 = 1∀i.
Eq. 3.1 becomes

yµ = sign

[
K

∑
j=1

sign

(
N/K

∑
i=1

wi,1ξ
µ

i, j

)]
(3.2)

3.1 Structure of feed-forward neural networks 63

assuming to have an odd value for K. From the model in eq. 3.2 we can say that
a certain configuration of the network W is allowing the network to successfully
perform the classification in the training set if

M

∏
µ=1

Θ(yµ
σ

µ) = 1

Hence, we are able to write the expression for the volume of the version space

Ω(ξ ,y) =
∫ K

∏
j=1

dµ(w j)
M

∏
µ=1

{
yµsign

[
K

∑
j=1

sign

(
N/K

∑
i=1

wi,1ξ
µ

i, j

)]}
(3.3)

where w j represents the subset of parameters belonging to the j-th hidden neuron
and

dµ(w j) =
N/K

∏
i=1

dw j,i√
2πe

(3.4)

From here the standard replica trick can be used and a calculation of the typical
Styp = logΩ(ξ ,y) in the RS ansatz can be performed (the same procedure we have
done in Sec. 2.2.1). In the end we find the expression

1
αc

= K
∫

∞

0
Dt t2

K−1
2

∑
j=0

(
K −1

j

)
[H(t)]K−1− j[1−H(t)]k (3.5)

Hence the result depends on our choice of K. The found values of the critical
alpha for the tree committee machines are 4.02, 5.78 and 7.31 for K values 3, 5,
7. Such a result is extremely relevant: even though the number of parameters in
our architecture is constant (N), depending on the number of neurons (hence the
topology) the learning capability changes.
However, if we perform a stability analysis on the saddle-point equations, we find
that we have instabilities for α < αc; so, the results found working with the RS
ansatz are out of their validity region and we should proceed, like we did for the
binary perceptron, with the replica symmetry breaking. Replica symmetry breaking
can be implemented in an iterative fashion, following the Parisi’s scheme [54]. The

64 Feedforward networks

Fig. 3.2 The structure fo a one hidden layer fully-connected ANN with N = 9 and K = 3. As
it is possible to see, all the hidden neurons are able to see all the inputs.

simplest level of RSB is the so-called one-step RSB (1-RSB), in which the space of
minima is divided into many similar clusters. The critical alpha this way found for
K = 3 is approximately 3.0, and still having a increasing trend for K → ∞. Notice
that in this limit K still grows to infinity slower than N.

3.1.2 Fully connected networks

We have seen in Sec. 3.1.1 the tree committee machine architecture. For such an
architecture, every neuron in the hidden layer has its own exclusive subset of the
inputs. If we define a matrix of weights wTCM

1 ∈ RK×N we might say that, for the
tree committee machine, we have

N/K

∑
i=1

wi,1ξ
µ

i, j∀ j ↔ wTCM
1 ·ξ µ = a1

where

wTCM
1 =


w1,1 . . . w1,N

K
0 . . . 0

0 . . . 0 w2,N
K +1 . . . 0

...
...

...
...

0 0 0 0 . . . wK,N



3.1 Structure of feed-forward neural networks 65

and a1 is called activation. For the tree committee machine, a1 ∈ RK,M, where
M is the number of patterns simultaneously fed to the network. As we see, wTCM

1 is
a sparse matrix having just N non-null entries of the matrix. If we decide to allow all
of the entries having non-null value we will have

wFC
1 =


w1,1 . . . w1,2 . . . w1,N−1 w1,N

w2,1 . . . w2,2 . . . w2,N−1 w2,N
...

...
...

...
wK,1 . . . wK,2 . . . wK,N−1 wK,N


Hence, any of the K hidden neurons will be able to receive all the N input data

∀µ . As all the possible connections between layer l and layer l +1 are taken into
account, this kind of layer is named fully-connected. A sketch of the architecture is
in Fig. 3.2.
This structure can be easily extended to have multiple layers, of any size: for example,
if we have a fully-connected neural network having L learnable layers:

• the layer l = 0 is the input layer and has no learnable parameters.

• if the input layer has N neurons and the first layer size is K1 the layer l = 1
is the first hidden layer having N ×K1 learnable parameters +K1 learnable
biases.

• the layer l = 2 takes as input the output of layer l = 1; hence, the total number
of learnable parameters is in this case K1 ×K2 +K2 being K2 the size of the
second hidden layer.

• coming to the end of the network, the layer l = L is said output layer bot
its structure is always fully-connected. Contrarily to the TCM case, here the
output layer has learnable parameters which are, as usual, Kl−1 ×Kl +Kl .

Another name fully connected networks are also known is multi-layer perceptron
(or MLP). Indeed, if we take any neuron not belonging to the input layer, the basic
structure is the one of the neuron. This observation made most of the research in the
early years focusing on the perceptron model, as it is the basic brick used to build
complex artificial neural networks.
Towards this end, a theoretical analysis, similar to the one done for the perceptron

66 Feedforward networks

model and as well done for the TCM, has been done.
Let us take a fully connected network having L = 2 and w2 = 1 (hence, the output
layer has no learning parameters and is just a majority vote, like for the TCM case).
In the TCM case we know each of the K hidden neurons would be specialized: each
will learn something different, because they would have an exclusive subset of the
inputs. In the case of fully-connected network; however, all the hidden neurons take
the same inputs. This might be a problem, as for low α regimes the network can
behave as a perceptron, and all the K units might learn exactly the same solution
space partitioning. We expect that, at a certain alpha α∗ < αc, the neurons begin
to specialize and start having different behaviors. Furthermore, we might have the
same solution for K! permutations of te hidden neurons, which introduces an extra
order parameter in the theoretical computation. This behavior introduces algorithmic
difficulties which we will investigate.

3.1.3 Convolutional networks

Nowadays, one of the most widely used architectures of neural networks is the
so-called convolutional neural network (CNN). It is also known as the shift invariant
or space invariant neural network because it relies on the concepts of weight-sharing
architecture and translation invariance.
This class on neural networks was inspired by the biology: in fact, they are an
attempt of modeling the topology of the animal visual cortex. Hubel and Wiesel, in
the 1960s, published a work in which they studied the cat and the monkey visual
cortex [55] [56]. They found that the neurons in such a region were stimulated by
very small regions of the visual field. Let us say that the region which provides the
stimulus to a given neuron in the visual cortex is its receptive field. This behavior
was observed in all the visual cortex’s neurons; furthermore, it has been observed
that many of these had overlapping receptive fields. In the end, all the receptive
fields were placed such that they covered the entire visual space.
These observations have been modeled in the so-called CNNs, inspiring first the
well-known LeNet-5 [57].

3.1 Structure of feed-forward neural networks 67

Differences with fully-connected architectures

It was empirically observed that multi-layer perceptron architectures are extremely
useful for image recognition (and, for instance, classification). However, because of
their extremely high connectivity between nodes (if we have the number of neurons
N in the same order of magnitude of the neurons in the network K, we have O(N2)

parameters per layer), they suffer from the so-called curse of dimensionality (please
refer to Sec. 1.5.8), which represents an obstacle to the learning process. In order to
give an estimate of how relevant this problem is, let us take for example images from
the ImageNet dataset. A standard image is large 224x224x3 (it is large 224x224
pixels and then it has 3 color channels), hence each neuron in the first layer would
have approximately 150k parameters.
Most importantly, in fully-connected architectures, all the in-coming information is
treated exactly in the same way: no spatial correlation is taken into account which,
we know, is fundamental for image processing problems. An evolution of fully-
connected architecture for image classification problems is here necessary.
Convolutional neural networks address the problems of spatial correlation and curse
of dimensionality with the following characteristics:

• principle of locality: from the knowledge from the biology, each neuron has
its weights (receptive field) which focuses on a small portion of the input
(visual space). Then, several layers of “convolutional neurons” are stuck such
that, like in a tree structure, all the inputs are combined together. Of course,
the size of the receptive field is relevant: the smallest it is, the most we are
focusing on details of the image. Furthermore, the hidden neurons are spatially
organized as well, and they are placed in as many dimensions as the input is
(hence for the images we will have a 3D organization1, for movies it will be
4D and so on...), highly exploiting the locality principle of the information.
The parameters belonging to the convolutional neuron is named filter.

• weight sharing: each neurons has its own receptive field whose size is smaller
than the visual space. In order to entirely cover it, each filter is replicated. All
of these units share the same parameters and in the end they form the feature
map. The weight sharing and, hence, replicating the units, has two main

1recalling that the number of colors in an image (namely, the channels) is a dimension as well

68 Feedforward networks

effects: significantly reduce the number of required parameters and allowing
the detection of meaningful features regardless their spatial positioning (hence,
having translation invariance).

It was empirically observed that this topology of network, having way less parameters
of fully-connected architectures, achieves better generalization performances for
image classification tasks. Thanks to their scaling capabilities, nowadays they
represent the basic structure of the most complex and most used artificial neural
networks.
Convolutional neural networks are mainly divided in two parts, depending on the
task they have to accomplish:

• feature extraction: here the features are extracted and then fed to the next part
of the network, and this happens with proper distinction between two different
kind of layers:

– convolutional layers: here the true convolution operation happens

– pooling layers: here a proper sub-sampling happens

• classification: here the classification problem is solved, not anymore starting
from the raw input, but from the features extracted. Here, fully-connected
layers are the most used.

Convolutional layer

Certainly, the convolutional layer is the most important part of a CNN. It is a learnable
layer which extracts the most relevant features from the input, exploiting the spatial
correlation between data and making the classification task easier to be solved for
the successive fully-connected layers.
Every convolutional neuron has its own filter or kernel, having its receptive field
which progressively is shifted through all the input. The output of this layer has a
smaller dimensionality of the input and each entry is computed as the dot product
between the corresponding receptive field and the kernel. Let us make a toy example.
Assume our input is ξ ∈ R4×4

3.1 Structure of feed-forward neural networks 69

ξ =


ξ1,1 ξ1,2 ξ1,3 ξ1,4

ξ2,1 ξ2,2 ξ2,3 ξ2,4

ξ3,1 ξ3,2 ξ3,3 ξ3,4

ξ4,1 ξ4,2 ξ4,3 ξ4,4


and the kernel of the first neuron is w1 ∈ R2×2

w1 =

[
w1,1 w1,2

w2,1 w2,2

]

We expect the output to be
y = φ(a1) (3.6)

where φ(·) is a generic activation function and a1 is the activation

a1 =

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3


How exactly each activation is computed? Let us take, for example, the entry

a1,1:

a1,1 = ∑ ξ̃1,1w1

where ξ̃1,1w1 is a dot product, the sum is among all the elements and ξ̃1,1 is the
receptive field which, in our case, is

ξ̃1,1 =

[
ξ1,1 ξ1,2

ξ2,1 ξ2,2

]

Hence, we can explicitly write the expression:

a1,1 = ξ1,1w1,1 +ξ1,2w1,2 +ξ2,1w2,1 +ξ2,2w2,2

For all the other activations, the receptive field is just shifted by a quantity which
typically is 1, having

70 Feedforward networks

Fig. 3.3 Example of how a convolutional layer works. Here the filter is 2x2 and the input is
5x3. The input is indicated by green neurons while the output is in light blue. In this case
the parameters are 4 only and the same parameter is indicated with the same color of arrow
(blue, red purple or green). It is assumed here stride 1.

a1,2 = ξ1,2w1,1 +ξ1,3w1,2 +ξ2,2w2,1 +ξ2,3w2,2

and so on. The shift S of the receptive field is called stride and in our case S = 1
An example of how a convolutional filter works can be found in Fig. 3.3.
Typically, a frame of zeros is added around the entire input, transforming, for example
ξ ∈ R(4+P)×(4+P) into

ξ̂ =



0 0 0 0 0 0
0 ξ1,1 ξ1,2 ξ1,3 ξ1,4 0
0 ξ2,1 ξ2,2 ξ2,3 ξ2,4 0
0 ξ3,1 ξ3,2 ξ3,3 ξ3,4 0
0 ξ4,1 ξ4,2 ξ4,3 ξ4,4 0
0 0 0 0 0 0


where P (in our case 1) is called padding. There are some reasons to use padding:

for example, to have the output of the same size of the original input.
In general, we can say that the final size of the activations coming from a convolution
having an input ξ of size N ×N, a kernel K ×K, stride S and padding P, is

3.1 Structure of feed-forward neural networks 71

Fig. 3.4 Example of how a pooling layer works. Differently from a convolutional layer, there
are no overlapping fields and there are no parameters to be learnt.

size(a) =
(

N −K +2P
S

+1
)
×
(

N −K +2P
S

+1
)

(3.7)

Pooling layer

The so-called pooling layer can be inserted after a convolutional layer and is a way
to down-sample an image. In practice, what is done in pooling is:

1. Take the input ξ arriving from the convolutional layer

2. Divide ξ in non-overlapping regions. Let us say for sake of simplicity, these
are squared regions ξ̃ of size K ×K (a typical value of K is 2)

3. Apply a sub-sampling function ϕ(ξ̃). Such a function produces 1 output per
ξ̃ .

The graphical sketch of how pooling layer works can be found in Fig. 3.4. Several
choices for ϕ(·) are available. For example, one of the most popular in the early
2000 was the average pool

72 Feedforward networks

ϕ
AV G(ξ̃) =

〈
ξ̃

〉
(3.8)

However, the widely, by measure most-used, is max-pool, which outputs only
the maximum of the input:

ϕ
MAX(ξ̃) = max(ξ̃) (3.9)

Max-pool is nowadays the most used pooling function because it empirically
provides the best results.
Of course, pooling is a sub-sampling transformation which reduces the dimensional-

ity of the problem from RN1×N2 to R
N1
K1

×N2
K2 and for this appears to be very useful for

the feature extraction problem.

3.1.4 The universal approximation theorem

In all the excitement coming from the possible effectiveness of multi-layer artificial
neural networks, a question rises: is it possible, for this kind of networks, to properly
approximate any required behavior? Of course we know this to be true for the
teacher-student scenario (whenever a teacher exists, at least one student should exist),
but what happens when a teacher is not guaranteed to exist?
The universal approximation theorem states that a feed-forward network, having one
hidden layer with a finite number of neurons K, is able to approximate continuous
functions under some assumptions on the activation function [58].
Assume φ(·) being a continuous, bounded and strictly-increasing function. Let In

be an n-dimensional hypercube [−1;1]n, the space of continuous functions of In is
C(In), given any ε > 0 and any y ∈ C(In) there exist N, w2,i,bi ∈ R and w1,i ∈ Rn

such that we can define

F(ξ) =
K

∑
i=1

w2,iφ

(
bi +

N

∑
j=1

w1,i, jξ j

)
(3.10)

which is an approximation of any f function which is in general independent of
φ , in other words,

3.2 Exploring solutions in TCM 73

|F(ξ)− f (ξ)|< ε (3.11)

Such a structure recalls a TCM (see Sec. 3.1.1) with the difference that here we
are actually learning the output layer and that we have overlapping input fields.
This theorem provides a more analytical understanding why deep learning is nowa-
days successful and gives us more interest in understanding the basic mechanisms
allowing the learning to proceed smooth.

3.2 Exploring solutions in TCM

The theoretical results shown for the binary perceptron model ignited the possibility
of boosting the generalization in more complex artificial neural network models.
In particular, the great discovery of the existence of dense solution clusters [46]
gave some hints on the possibility of having a direct translation of those promising
results also for deep architectures. Towards this end, some heuristic approach for
training the tree committee machine attempting to maximize the entropy needed to
be attempted.
Recently, a work by Zhang et al [59] indirectly went down such a path. The aim of
its elastic averaging SGD, however, was different: boosting the convergence speed
of learning.
Let us assume we have P different ANN models, trained on the same problem Ξ.
Assume, as well, that stochastic gradient descent is the optimizer here used. The
proposed update step for the i-th neuron belonging to the p-th ANN, is

wi,p := wi,p −η
∂L

∂wi,p
− γ(wi,p − ŵi) (3.12)

where η and γ are two positive hyper-parameters and ŵi is the average point of the
same i-th parameter computed for all the P models (we call here replica):

ŵi =
〈
wi,p
〉

p (3.13)

The main result shown by the work involved the faster convergence to the result.
However, there are some interesting similarities to the replica trick which is used
for the Gardner analysis: the same system is split in replicas, and in the end of the

74 Feedforward networks

Fig. 3.5 Probability of successfully learning a classification task varying alpha. EASGD with
2 and 4 workers (W) compared to GD and SGD.

process they collapse to one, single configuration. This is supposed to allow a much
more satisfactory exploration for the energy landscape (or in other words, the loss
function). Could we use it to boost the performances for artificial neural networks?
Some attempts have been performed towards this end. In particular, a tree committee
machine has been tested with the Elastic-SGD approach, aiming to increase the
algorithmically-accessible storage capacity. Figure 3.5 compares EASGD to standard
SGD and to the solution reached with full gradient descent. Even though some
improvement in the performances is observed, it is still not a completely satisfactory
one. From another point of view, there have been recently in the literature some hints
regarding the nature of local minima: a work by Lin et al [60] suggests that solutions
in flat, wide minima generalize better than solutions in narrow ones. Figure 3.6 shows

3.2 Exploring solutions in TCM 75

Fig. 3.6 Evolution of the energy landscape around SGD solution (yellow) and Elastic-SGD
(green)

the dynamic evolution of the energy landscape surrounding a solution obtained for
the same training problem by SGD and elastic-SGD. It is evident that elastic-SGD
chooses a wider, flat minima than the one chose by the standard SGD approach. This
was a hint suggesting that EASGD favors this class of solutions, and most likely
boosts generalization.
An equivalent formulation to EASGD has been formulated by Chaudhari et al.
with his Entropy-SGD [50]. He showed, indeed, that Entropy-SGD improves the
generalization on datasets like MNIST and CIFAR-10 (or, at least, approaches state-
of-the-art performances obtained using bunch of heuristics).
From this exploration we have learned that, probably, focusing on the optimization
technique before understanding the version space we deal with (which is typically
different from the perceptron problem one) might not be the best approach, even if
we are driven by inspirations from the theory. In the next section we are going to
deal with a more grounded levels: we are exploring the version space, aiming to find
some hints on basic properties which could inspire some deeper understanding of
deep models.

76 Feedforward networks

3.3 Exploring the version space

We would like here to explore more in depth how the solution space to a given
training problem Ξ is partitioned. Of course, if we want to perform an empirical
analysis, then our analysis will be restricted just to the algorithmically-accessible
volumes of solution. For the continuous perceptron problem, it is theoretically
demonstrated such a space being connected: for that, if we have a configuration Wa

and a configuration Wb, both solving the same classification problem Ξ, then we
know there exists a continuous path Γa,b ∈ Ω (where Ω is the version space) which
connects Wa to Wb.
As we have observed in Sec. 3.1.1, the solution space for more complex architectures
like TCMs appears to be in general not connected. What we are attempting to see
here is whether the algorithmically accessible subspace (which we will indicate as
Ωacc ⊂ Ω) is or is not connected.
An article by Goodfellow et al. in 2014 [61] attempted to investigate such a point. In
particular, given two solutions Wa and Wb it was drawn a straight line

ν(t) = (Wb −Wa)t +Wa (3.14)

having t ∈ [0,1] and was plotting the number of errors found along ν(t).
Goodfellow et al. observed that, in general, there is always a potential barrier

separating the two solutions and in general ν(t) lies in outer regions than Ω (see
Fig. 3.7). These experiments were performed on deep architectures and, as already
evidenced in the theoretical analysis (Sec. 3.1.2), if there are overlapping receptive
fields then there are symmetric equivalent configurations of the network we need to
take care of. Hence, the result reached by such a work is not completely satisfactory
and, for this reason, we are going to work on this problem with tree committee
machines, which do not have the problem of taking into account symmetries.
According to our findings, the scenario described by Goodfellow et al still applies to
TCMs. However, the design of ν(t) is somehow very strict and is not a sufficient
condition to state whether a solution exists or not: we are going to implement a
heuristic approach to explore the solution space in a more satisfactory way.

3.3 Exploring the version space 77

Fig. 3.7 Typical scenario observed for two generic solutions joined by ν(t). An energy
barrier separates the two configurations.

Fig. 3.8 Example of shape for the version space (Ω, in blue). The path tracked by ν(t)
(yellow) typically gets out Ω, but maybe a connection path between Wa and Wb exists (green
line).

78 Feedforward networks

3.3.1 Finding the path

The main idea is to relax the trajectory ν(t) in such a way it, in the end, will
completely lie in Ω (typical scenario pictured in Fig. 3.8). However, in order to do
this, we need some geometrical information about Ω we do not have a-priori as it
depends on the choice of the training set Ξ. We are, however, able to compute the
gradient ∀t, which might help us to remain in Ω. From this observation, we take a
different approach.
Assume we are initializing a given neural network W∗ to Wa. We require W∗ to
cross some meta-states which still belong to Ω in order to reach the final state Wb. In
order to accomplish this, we still need to locally minimize the energy of our system
(in our case, the value of the loss function) but we are subjected to an elastic force
which is proportional to the distance from the target configuration Wb

∆W∗ = γ(Wb −W∗) (3.15)

with γ ≪ 1. If we just applying eq. 3.15, by construction, W∗ will reconstruct ν(t)
just with a different parametrization. Of course, we might apply GD steps combined
to these elastic coupling. The introduction of the energy minimization step, however,
can potentially obstacle us. When the elastic force becomes comparable to the
gradient (it may happen, especially when we are beyond the half of our path), it is
possible to get stuck in a local minima. Also, what can happen is that, because of the
particular shape of the zero errors region, we may be blocked in some hypercorners
(we remember that, by our choice, the input patterns ξ

µ

i ∈ {−1;+1}∀i), driven by
the loss function minimization. In order to overcome this problem, as the boundary
of this region is shaped by hyperplans, it makes sense to impose a norm constraint
on out trajectory:

n(W∗) = ∥Wb∥2 −
∥Wb∥2 −∥Wa∥2

∥Wb −Wa∥2
∥Wb −W∗∥2 (3.16)

Here we are imposing a linear constraint to the norm of W∗, which is function
of the distance from Wb. The trajectory this way obtained is no longer a straight
trivial line ν(t) but is a more complex path Γ(t). If the learning rate and the elastic
coupling parameters are properly tuned, we observed that, in general, solutions for
Ωacc are connected ones. Recently a similar work was published on more complex

3.3 Exploring the version space 79

architectures suggesting that for real problems (hence, the patterns are correlated)
the algorithmically-accessible subspace of the version space is connected [62].

3.3.2 Properties of the path

As seen, we do not expect Γ(t) being a straight-forward path. If such a path for “far”
solutions is found, then we certainly are interested in finding properties for it. All the
properties we are able to inspect are necessarily related to the loss function. In order
to do this, we can inspect the shape of the binary cross entropy along Γ(t). However,
that would be a 1-dimensional information and, for this, not completely satisfactory.
What can be more informative here is the Hessian, computed for all the points along
the trajectory.
If we wanted to compute it in an efficient way, we could proceed as

∂ 2L
∂W 2 =

∂

∂W
∂L
∂W

=
∂

∂W
∇L . (3.17)

Hence, as we already have the gradient for a given point, by locally perturbating the
weights we can obtain a good approximation for the Hessian. However, thanks to
the simple structure of our TCM, it is possible to compute the exact Hessian for all
the points. Assuming our loss is a binary cross-entropy

L =− 1
M

M

∑
µ=1

[σ µ logyµ +(1−σ
µ) log(1− yµ)] .

The computation and analysis of the eigenvalues of the Hessian, from which we
can deduct the local shape of the landscape (in this case, of the solution space) is
a straightforward step. According to empirical simulations, a typical scenario is
sketched out in Fig. 3.9: along the entire zero-energy path the eigenvalues of the
Hessian are all positive and are higher in values. This means that we are climbing the
loss function and that we are in non-typical solutions for the computed loss function,
even though we still are in the version space. An idea for further work here could be
to boost the learning by focusing on the search of these particular regions.
Experiments on LeNet-5 solutions trained on a reduced partition for the MNIST
dataset (100 and 1000 examples) and on the full MNIST dataset have also been
conducted. Here η = 0.1, γ = 0.001 and Nepochs = 5. The software here used is
PyTorch 1.1 with CUDA 10. In spite of the higher dimensionality and complexity

80 Feedforward networks

Fig. 3.9 Typical Hessian eigenvalues scenario along Γ(t). While the error still remains
clamped to zero, the non-zero eigenvalues are all positive and just a very small percentage of
them are not zero. In this case, for N = 300, K = 3, just three of them are non-zero values.

of the model, also in this case it has always been possible to find a Ωab path in S.
The solutions for the training problem were obtained using SGD with learning rate
0.1 with mini-batches of size 100 and 1000 with different initialization seeds (using
the Xavier initializer). A typical observed behavior is shown in Fig. 3.10. Working

(a) Loss along Ωab (b) Error [%] along Ωab

Fig. 3.10 Example of Ωab for LeNet-5 with a training set of 100 images. The x axis is a
normalized distance between Wa and Wb.

3.4 Deep binary models 81

on LeNet-5 with the MNIST dataset, it is possible to evaluate the behavior of the
generalization error (or, in other words, the error on the test set) along Ωab. It is
here interesting to observe that in general, moving through Ω, both the training and
test loss have not a monotonic or bitonic behavior but a more complex behavior has
typically been observed (an example is in Fig. 3.10(a)). Furthermore, observing the
test set error, it shows a similar behavior to the test set loss, but not locally exactly
the same(Fig. 3.10(b)).

3.4 Deep binary models

In the community, it is known that state-of-the-art deep neural networks suffer of
over-parametrization, and one common guess is that, along the training, signals suffer
from high redundancy. We have observed that all the typical learning strategies,
because of this, are as well prone to over-fit data, and a possible solution to this
problem is to introduce some extra learning constraints (regularization). In order
to prevent this, a possible strategy is to prune all the redundant parameters in the
network: in such a way, the architecture of the deep model is expected to become
much simpler ideally at the same performance. Such a possibility will be explored in
Chapter 4, which is entirely devolved to sparse networks.
Another similar approach is to reduce the quantity of bits necessary to represent a
parameter of the network. Since now, whenever he have talked about real numerical
parameters, we assumed to have a 32 bits floating point representation for each of
the parameters. Do we really need such a precision?
Recent works suggests that few bits are necessary to successfully learn an artificial
neural network model [49] and this opens the doors to bit-precision minimizing
techniques (or, in other words, quantization). Many examples can be provided
around this topic, but the most fascinating and interesting goal is to have full binary
deep neural networks. Nowadays, a typical ANN model, in order to be simulated,
typically requires a CPU (or, in any case, a powerful processing unit) because of the
operations between non-binary variables. However, all the electronics is still based
on binary logic: having deep models which run with binary variables only would
allow the design of extremely efficient electronics devices with huge advantages
from many sides. However, solving problems with binary variables, as we have
observed in Chapter 2, is far from being trivial.

82 Feedforward networks

Nowadays, the state-of-the-art top-performance approach to train deep binary model
is BinaryNet by Courbariaux et al. [63]. It certainly shows relevance for the perfor-
mance achieved; however it uses an ensemble of techniques like:

• train real value parameters and then binarize them: the entire work trains real-
value parameters, whose sign is extracted during forward propagation. This
allows the entire framework to ideally run with back-propagation algorithms.

• different sign function derivative: as it is known, the derivative of the sign
function (which is the neuron activation for BinaryNet) is a dirac delta; hence,
back-propagation should not fit sign activations and typically some relaxation
should be required. In BinaryNet, it is assumed an hard hyperbolic tangent as
derivative of the sign activation.

• Adam optimizer is used.

• batch normalization layers are used.

• dropout is used.

Sadly, it is really difficult to try explaining a model which makes use of so many
heuristics (even if it is the state-of-the-art). In the next section an extension of
the stochastic perceptron model for deep architectures is shown. Differently from
BinaryNet, the use of heuristics is limited and the model is grounded.

3.5 Stochastic deep networks

As we have seen in Sec. 2.4, a new learning rule for training the binary perceptron
was proposed. According to the empirical observations, it resulted being effective to
solve the problem exploiting the concept of having stochastic synapses.
Those encouraging results suggested an extension to more complex architectures.
Let us consider a binary multi-layer perceptron model

τ
l = sign

(
Wl · τ l

)
(3.18)

3.5 Stochastic deep networks 83

where Wl is a binary weights configuration, l ∈ [1;L] and L is the number of
learnable layers. Of course here τ0 = ξ µ and τL = yµ . Optionally, it is possible to
include the presence of biases in the model

τ
l = sign

(
Wl · τ l +bl

)
(3.19)

where bl is a vector of continuous variables. According to the plant presented
for the stochastic perceptron, Wl are made of independent random variables wl

i ,
having mean ml

i and variance (1−ml
i) (such an approach has successfully already

been applied [64]). In such a framework, the output of the l-th layer τ l represents a
sampled trajectory for our system, which is a random variable itself. Let us keep it
fixed for a moment (or better, let us take into account one sample for it only).
We could here make the same factorized approximation as made for the stochastic
perceptron in eq. 2.49, but analyzing it layer-by layer as done in eq. 3.19. Element-
by-element it becomes:

al
i = 2H

(
−

∑ j ml−1
i j al−1

j +bl−1
i

∑ j 1− (ml
i j)

2(al
j)

2

)
−1 (3.20)

where al−1
i is the mean of the pre-activation of the l −1-th layer and which is

al−1
i ∈ [−1;+1]∀i, l. With this framework we are ready to use forward propagation

steps and to train MLP on a real-case problem. As loss function we could here
use a cross-entropy function with the insertion of a soft-max layer. An example of
simulation results is shown in Tab. 3.1: a number of heuristics have been simulated
for a 3 hidden fully-connected stochastic architecture solving the MNIST dataset.
We have attempted to use the dropout heuristics and the Adam optimizer. We see
that the best performance is obtained using Adam + applying dropout to the input
(which can be considered as input pre-processing). Beyond this point, we noticed
that using a standard ReLU-activated network in place of our sign activation and real
value synaptic couplings, the final performance using the same heuristics is around
1.3% of error in the best case. This evidences the benefits of our technique, which is
marginally deteriorating the performance of the network, even if we are using binary
synaptic couplings and activation functions.

84 Feedforward networks

Table 3.1 Confrontation of the results obtained for a 801x801x801x10 fully-connected
stochastic architecture on MNIST. The learning rate here is fixed to 0.01 and the batch size
is 1000. All the results are averaged on 10 seeds.

Method input dropout dropout binary error[%]
SGD 0 0 1.82±0.0002
SGD 0.2 0 1.6±5 ·10−5

SGD 0.2 0.3 1.5±1 ·10−4

Adam 0.2 0 1.47±1 ·10−4

3.5.1 Extension to convolutional layers

The above derivation was computed for multi-layer perceptron models. However,
state-of-the-art models typically include convolutional layers. How our model
translates to convolutional layers? Let us take a toy model in which we have an
input τ0 ∈ R3×3 and a filter W ∈ R2×2 having associated the averages m ∈ R2×2.
Remembering that we are working with random variables having mean mi and
variance 1−m2

i we will have as mean

E1,1 = m1,1τ1,1 +m1,2τ1,2 +m2,1τ2,1 +m2,2τ2,2 (3.21)

and under the assumption of stochastically-independent variables, variance

V1,1 = (1−m2
1,1)τ1,1 +(1−m2

1,2)τ1,2 +(1−m2
2,1)τ2,1 +(1−m2

2,2)τ2,2 (3.22)

and so on for the other terms from the convolution. As we have observed, the
operations described in eq. 3.21 and eq. 3.22 are essentially convolutions in which
we have as variable the means in eq. 3.21 and the variances in eq. 3.22.
Here we might attempt to apply the usual gaussian approximation having in the end

τ1,1 = 2H
(

E1,1

V1,1

)
−1 (3.23)

However, in convolutional layers there always is the insertion of a pooling layer.
Of course, for our model the use of max-pool does not make much sense as we are

3.5 Stochastic deep networks 85

propagating means and variances, while the average pool is definitely applicable. In
such a frame, the sequence of forward propagation steps to be performed are:

• convolutional layer

• pooling layer

• activation

Our results are not very satisfactory: while our technique is able to reach about
0.78% of accuracy for the binary configuration, other proposed heuristics, like
BinaryNet [63], are able to achieve performances in the order of 0.65%, and such
a difference is more evidence scaling up to more complex architectures and more
difficult training sets. We think the problem with convolutional layers is that the
gaussian approximation no longer holds (each filter has a very limited number of
synapses in these models, for example, in LeNet-5 each neuron in the first layer has
25 synaptic couplings only), making the empirical results sub-optimal.

3.5.2 Sampling the trajectories

Another possibility is here to sample the trajectories. Here, we are no longer able
to perform a usual full back-propagation because, as output for each layer, we will
sample a given number of trajectories according to the probability distributions
derived from the pre-activation values a as computed in eq. 3.20. Hence, for the
forward step, the forward steps to be followed in each layer will be:

1. Perform the usual forward-propagation step till the a value is computed

2. According to the value of a acting as probability of having a positive sign,
extract the trajectories

Once arrived at the output layer, we will have a given number of sampled trajectories.
Here we are supposed to weight each of the sampled trajectories according to the
exactness of the final obtained results. Towards this end, we compute

ρ
µ,ζ =

∏i H(yµ

i ℘
µ,ζ
L,i)

∑s ∏i H(yµ℘
µ,s
L,i)

(3.24)

86 Feedforward networks

Table 3.2 Confrontation of the results obtained for a 201x201x10 fully-connected stochastic
architecture on a reduced MNIST (10000 samples)

Method learning rate Batch size MC iters dropout binary error[%]
SGD 50 100 N/A 0 6.02±0.21
SGD 10 100 N/A 0.5 5.04±0.21
Adam 0.01 50 N/A 0 4.98±0.28
MC 0.1 1000 80 0 4.9±0.09

where

℘
µ,s
L,i =

∑ j mL
i jτ

L−1,s
j +bL

i

∑ j 1− (mL
i j)

2(τL−1,s
j)2

(3.25)

which is the product of all the output error components (where the energy used is the
H function).
The results here obtained with small architectures are quite encouraging and promis-
ing (Tab. 3.2). We are here comparing SGD-based approach with or without dropout,
Adam-based optimization and Montecarlo sampling (MC) on a reduced training set
from MNIST. We see that MC performance, on the average of 10 different training
seeds, is the best and is also the more robust having the least variance of all the other
techniques.

Chapter 4

Sparse networks

Nowadays, the whole deep learning community is hunger of solving more and more
complex tasks. From easier classification tasks like MNIST [65], the community
toggled to more complex tasks like CIFAR-10, arriving to the challenging ImageNet:
a database of 1.4M of images divided in 1000 classes. In order to solve these ever
complexity-increasing problems, deep learning researchers decided to dramatically
increase the size of the networks, from the few thousands parameters of the earlier
models to hundreds of millions or even billions of parameters for the most recent
architectures.
We have several ways to measure the complexity of an artificial neural network: for
example, we can measure it as the number of parameters (weights and biases) the
network can learn. We have already seen in Sec. 3.1.3 the difference between a fully-
connected and a convolutional layer: the first typically has more parameters than
the second (because convolutional neural networks have shared weights); however,
talking in terms of computational complexity, convolutional layers are more expen-
sive than fully-connected (because of the convolution). Furthermore, the theory for
smaller ANNs suggested that an optimal architecture for solving a particular problem
Ξ exists, and might boost the final performance in terms of generalization [66] [67].
Because of this, many regularization techniques are required to prevent over-fitting.
For these reasons, recently there has been a huge race for introducing sparsity in
artificial neural network models to reduce the total number of parameters required,
still holding a good generalization performance. In this chapter we first introduce
state-of-the-art sparsification techniques in Sec. 4.1. Then, starting from Sec. 4.2, we
present our sensitivity-based regularization, a novel approach to introduce sparsity

88 Sparse networks

without affecting the performance in deep neural networks. It has been inspired by
the biological principle of pruning all the less-used neural connections. Empirical
results show that such a technique performs better than state-of-the-art heuristics
for fully-connected architectures, and shows promising results also on convolutional
ones [68].

4.1 Techniques to sparsify

As we previously introduced in Sec. 1.4.1, all the continuous networks problems are
solved using gradient descent-based techniques evaluating a given objective function
J, typically shaped as the sum of two contributions:

• loss function: this term is responsible for learning the training set, and is
proportional to the number of errors the neural network is performing.

• regularization function: it is responsible for introducing some extra constraints
to the learning problem, typically aiming to prevent over-fitting.

J can be successfully, headless minimized assuming:

• all the parameters are real values.

• all the activation functions used in our deep model are differentiable.

• both loss function and regularizer term are differentiable functions in the work
domain.

• the hyper-parameters scaling loss function and regularizer term are properly
set.

• no loops are introduced in the deep model (in order to successfully use back-
propagation).

• the input is a bounded quantity.

All of these conditions are typically satisfied in a standard deep learning problem,
apart from properly setting the hyper-parameters. In particular, if we write the
objective function as

J = ηL+λR (4.1)

4.1 Techniques to sparsify 89

even if we assume to use the vanilla stochastic gradient descent (SGD, see eq. 1.17),
giving an exact, a-priori estimation for the optimal η and λ is impossible, as it
depends on factors like

• training set.

• artificial neural network model (connectivity, size, type of layers).

• initialization for the parameters.

For this, typically the use of a validation set besides the training set to tune the
hyper-parameters is required. Thanks to this empirical approach, it was observed that
in the early stages of training, the dominant term in the objective function should be
the loss. According to this observation, typically η ≫ λ . It was further observed that,
for deep models, after some initial epochs, for better generalization performance,
the learning rate η should be decayed. This is known as learning rate scheduling
and typically acts independently from the standard regularization techniques (like
dropout and weight decay). Some of the regularization techniques we are going to
show here as a side effect slightly deteriorates the generalization performance and
require the ANN model to be pre-trained using a different objective function.

4.1.1 Lasso regularization

Also known as least absolute shrinkage and selection operator (or L1 regularization),
this is probably the most ancient techniques used to introduce sparsity in a trained
model. It is a special case of eq. 1.13, reading

R(w) = ∑
i
|wi| (4.2)

Its use is extremely broad: from the optimization of any regression model to the
geophysics. Unlike weight decay, it is not necessarily improving the generalization
for a training model, as it can definitely worsen it. However, it performs extremely
well in problems for which there are very few co-variate parameters. Sparsification
via L1 regularization has been used also to attempt explaining the relevant structure
of a deep model, unsuccessfully.
However, most of the main deep learning frameworks include it as a standard

90 Sparse networks

regularizer. The reason for it is very simple: computational efficiency. Given the
parameter wi, the update for just the regularization term reduces to

wi := wi −λ sign(wi) (4.3)

Hence, R does not even need to be back-propagated. We quote here that the optimal
best R for sparsification should be the chimeric L0 regularizer

R(w) = ∑
i
|wi|0 (4.4)

Essentially, eq. 4.4 counts how many parameters are left in the architecture: mini-
mizing it results in introducing sparsity. Sadly, it is a non-differentiable function,
and can not be used for back-propagation. Many attempts to relax such a regularizer
have been done, some in a general way, and others focusing on convolutional layers;
however, it is in general acknowledged lasso regularization to be a fair approximation.

4.1.2 Variational dropout

We have already introduced the dropout technique [27] aiming to boost generalization
in artificial neural networks in Sec. 1.5.5. Also named as Bernoulli or Binary dropout,
it consists in stochastically pruning some neurons during the forward propagation
phase during the training phase. In a successive work, it was further observed that
having a gaussian dropout for the parameters works as well [28]. Such a result is
extremely important: multiplying some inputs by a gaussian noise is equivalent to
have a gaussian noise on the parameters themselves. From this observation, it comes
possible to use the so-called re-parametrization trick [69] to have a suitable model
for forward propagation. In particular, the observed, sampled parameter θi of the
network is

θi = wi(1+
√

αε) (4.5)

where ε is a gaussian distribution with mean 0 and unitary standard deviation and α

is in general the hyper-parameter tuning the dropout probability. Here, α was earlier
introduced as an hyper-parameter, modeling the dropout probability; however, in
their approach, they consider α a per-parameter variable, tuned using a variational
approach (hence, at that point, it indicates whether a parameter is included or not in

4.2 A biological inspiration 91

the network). It was observed that variational dropout boosts sparsification while
still holding good generalization performances.

4.2 A biological inspiration

Ideally, it would be nice being able to combine both the nice sparsity property of the
lasso regularizer (and, maybe, boost it) and all the generalization benefits coming
from L2 regularization. Several works attempted to tackle such a problem from a
mathematical point of view but no one gave an exhaustive reply to such a problem.
Let us think for a moment biologically, borrowing some useful knowledge from the
world of unsupervised learning theory.

« Let us assume that the persistence or repetition of a reverberatory activity (or
"trace") tends to induce lasting cellular changes that add to its stability.[. . .] When

an axon of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one

or both cells such that A’s efficiency, as one of the cells firing B, is increased» .

This is a famous quote, being the base of the so-called Hebb theory, by Donald
Hebb, who wrote in 1949 a book named The Organization of Behavior, a milestone
in the neural network learning, theory and formulation [70]. Such an idea is used
for associative memories and, for this reason, out of our scope. However, it is not
necessarily true that a valid concept can not be used successfully inspire solutions to
similar problems, even out of the original scope: we have also seen that it was an
inspiration for the perceptron learning rule (see Sec. 2.2.3).
Assume we have a given neural network and that we associate a performance esti-
mator Ai we name activity to each of the parameters of the neural network, defined
as

Ai =
〈
|ξ µ

i |
〉

µ
|wi| (4.6)

Such measure indicates how much a given connection is “used” during the forward
propagation step: if the average of the input

〈
|ξ µ

i |
〉

Ξ
is low, then the value of the

weight wi can be penalized as the activity of the connection is very low (Fig. 4.1).
The same happens if the wi itself is low: we are implicitly assuming a loss function
L is pushing the neural network towards configurations which solve the given classi-
fication task and if a given weight remains or is low then it might be a good “guess”

92 Sparse networks

Fig. 4.1 A very intuitive diagram to give a high-level idea of Hebb’s claim. Neighbor neurons
typically influences each other, and their connection is typically stronger than far ones. As in
ANNs there is no spatial distance concept between neurons, we can still evaluate the “usage”
of a connection.

it will not affect the final outcome of the network. However, such a statement is not
in general correct as we have no global knowledge of how a parameter is influencing
the final outcome of the network...
From such an observation, it comes natural to think on the design of a penalty
term for any weight wi of the network depending on how a parameter effectively
influences the output.

4.3 Parameter sensitivity

In the previous section we have explored the possibility of having a local estimator
for the activity of each parameter in a deep model. However, we were not entirely
convinced on the effective use of it in order to regularize the network: in order to
have a better estimator on the effectiveness of the possible pruning of a parameter,
we should have at first an estimate on how much a perturbation for a given parameter
would affect the outcome for the trained ANN.
Hence, what we are asking here is to check the perturbation of the k-th neural
network’s output ∆yk for a corresponding perturbation of the tested parameter wi

∆yk ≈ ∆wi
∂yk

∂wi
(4.7)

4.3 Parameter sensitivity 93

Here, recalling that an ANN model has C different outputs, we can sum over all the
contributions

C

∑
k=1

αk |∆yk|= |∆wi|
C

∑
k=1

αk

∣∣∣∣∂yk

∂wi

∣∣∣∣ (4.8)

where αk > 0 is a scale factor. From eq. 4.8, we define sensitivity of the artificial
neural network output with respect to the i-th parameter as

S(y,wi) =
C

∑
k=1

αk

∣∣∣∣∂yk

∂wi

∣∣∣∣ , (4.9)

The sensitivity plays a key role in the evaluation of the importance of the examined
parameter in the generation of the current outcome. Of course, it is a local measure:
it both assumes all the other parameters being constant and (eventually) it is evaluated
on a particular minibatch (hence, it is an averaged quantity).
However, it still provides some useful information aiming to sparsify the network: if
the sensitivity is small, then a small change of such a parameter, to be driven towards
zero, results in a very small perturbation for the output of the network. In such a
sense, it can be seen like a confidence estimator: the higher it is, the less we are
supposed to modify it. As it is possible to imagine, sensitivity can be computed using
the standard back-propagation approach; hence, it is a proper suit for deep models.
However, we would like to have an estimator of how confident we are in modifying
the parameter without introducing perturbations in the system: towards this end, we
define the insensitivity function S̄

S̄(y,wi) = 1−S(y,wi) (4.10)

whose range is (−∞;1]. Having S̄ < 0 ⇔ S > 1 results in an atypical condition: the
derivative for a particular parameter is higher than one. In such a case we like to call
output super-sensitive to such a parameter.
In our context we are definitely not interested in sparsifying those parameters, in
particular because they result being extremely meaningful to the generation of the
output. We aim to focus on the parameters whose output is sub-sensitive to, or in
other words, for which ∑k αk|∆yk|< ∆w.
So, here we define a bounded insensitivity

S̄b(y,wi) = max
[
0, S̄ (y,wi)

]
(4.11)

94 Sparse networks

having S̄b ∈ [0,1].
A parameter showing small sensitivity (or high bounded insensitivity) may be con-
fidently pushed towards zero. We can accomplish this subtracting to it the product
between the same parameter and its insensitivity, properly scaled by some hyper-
parameter λ .
We can decide to perform such an operation together with the optimization for
the loss function (in our case, we decided to use vanilla SGD). At the t-th update
iteration, the i-th weight update rule will be

wt
i := wt−1

i −η
∂L

∂wt−1
i

−λwt−1
i S̄b(y,wt−1

i) (4.12)

According to the chain rule, we can factorize the derivative of the loss function as

∂L
∂wi

=
∂L
∂y

∂y
∂wi

(4.13)

which is a scalar product between the derivative of the loss L to the output elements
y and the derivative of y to the parameter.
By the Hölder inequality, we have that∣∣∣∣ ∂L

∂wi

∣∣∣∣≤ max
k

∣∣∣∣ ∂L
∂yk

∣∣∣∣∥∥∥∥ ∂y
∂wi

∥∥∥∥
1
. (4.14)

If we assume the loss function L being the multi-class cross-entropy + the softmax
function, we know that

max
k

∣∣∣∣ ∂L
∂yk

∣∣∣∣≤ 1 (4.15)

having in the end ∣∣∣∣ ∂L
∂wi

∣∣∣∣≤ ∥∥∥∥ ∂y
∂wi

∥∥∥∥
1
. (4.16)

We emphasize that the term
∥∥∥ ∂y

∂wi

∥∥∥
1

is equivalent to the sensitivity assuming αk =

1∀k.
If the derivative with respect to the loss is large, then by eq. 4.16 also the sensitivity
must be large. A large sensitivity results in a small (or even null) bounded insensi-
tivity. Hence, a large gradient from the loss function implies a small regularization
correction term. This typically happens in the early stages of training, when the loss
contribution should be more relevant than the regularization term, or in other words,

4.3 Parameter sensitivity 95

whenever ∂L
∂wi

is large. On the other hand, whenever the loss function is close to a
minimum, then the contribution coming from the loss is minimal, but the sensitivity
might be large or small, according to the ANN and the training set.

4.3.1 Cost function formulation

The update rule showed in eq. 4.23 provides some extra constraints to the learning
problem, typical of regularization methods.
Since eq. 4.23 specifies how a parameter is updated through the derivative of R,
we can integrate the update term to get what is the regularization term we aim to
minimize.
Towards this end, we define the overall regularization term as a sum over all parame-
ters

R(θ) = ∑
i

Ri (wi) (4.17)

and integrate each term over wi

Ri (wi) =
∫

wiS̄b(y,wi)dwi. (4.18)

In this derivation we are dropping the index i for convenience. First, we make explicit
S̄b

R =
∫

wΘ
[
S̄(y,w)

][
1−

C

∑
k=1

αk
∂yk

∂w
sign

(
∂yk

∂w

)]
dw

= Θ
[
S̄(y,w)

]∫ [
w−w

C

∑
k=1

αk
∂yk

∂w
sign

(
∂yk

∂w

)]
dw

= Θ
[
S̄(y,w)

][w2

2
−
∫

w
C

∑
k=1

αk
∂yk

∂w
sign

(
∂yk

∂w

)
dw

]

As we are here working with positive quantities (S̄b), we can use Fubini-Tonelli’s
theorem

R = Θ
[
S̄(y,w)

][w2

2
−

C

∑
k=1

αk

∫
w

∂yk

∂w
sign

(
∂yk

∂w

)
dw

]
(4.19)

Now the part of eq. 4.19 to be solved is

96 Sparse networks

R1 =
∫

w
∂yk

∂w
sign

(
∂yk

∂w

)
dw

Let us integrate by parts:

R1 =
w2

2
∂yk

∂w
sign

(
∂yk

∂w

)
−
∫ w2

2
∂ 2yk

∂w2 sign
(

∂yk

∂w

)
dw

If we apply another step:

R1 =
w2

2
∂yk

∂w
sign

(
∂yk

∂w

)
− w3

6
∂ 2yk

∂w2 sign
(

∂yk

∂w

)
+
∫ w3

6
∂ 3yk

∂w3 sign
(

∂yk

∂w

)
dw

Applying infinite steps of integration by parts we have in the end

R1 = sign
(

∂yk

∂w

)
∞

∑
m=1

−1m+1 wm+1

(m+1)!
∂ myk

∂wm (4.20)

Merging eq. 4.20 to eq. 4.19 we get the final R formulation

Ri (wn,i) = Θ
[
S̄(y,wi)

] w2
i

2
·

[
1−

C

∑
k=1

αksign
(

∂yk

∂wi

)
∞

∑
m=1

−1m+1 wm−1

(m+1)!
∂ myk

∂wm
i

]
(4.21)

Notice that eq. 4.21 is absolutely general and is valid for any kind of network
and activation.
Now, let us suppose that all activation functions are rectified linear units (ReLU).
Their derivative is the step function; the higher order derivatives are therefore zero.
This results in dropping all the m > 1 terms in eq. 4.21. Thus, the regularization term
for ReLU-activated networks reduces to

Ri (wi) =
w2

i
2

S̄(y,wi) (4.22)

The first factor in this expression is the square of the weight, showing the relation to
L2 regularization (see eq. 1.12).
The other factor is a selection and damping mechanism. Only the sub-sensitive
weights are influenced by the regularization in proportion to their insensitivity.

4.4 Sensitivity driven regularization effect to the learning dynamics 97

4.4 Sensitivity driven regularization effect to the learn-
ing dynamics

In this section we are going to discuss the impact of the update term to the learning
dynamics of a generic neural network. We recall that, in our work, the relative impact
of the correction term in the update rule (dropping index i for convenience)

wt := wt−1 −η
∂L

∂wt−1 −λwt−1S̄b(y,wt−1) (4.23)

is determined by the magnitude of the insensitivity.

4.4.1 Loss term vs Regularization term

From eq. 4.23 we would like here to analyze the case for which

η

∣∣∣∣ ∂L
∂w

∣∣∣∣> λ
∣∣wS̄b(y,w)

∣∣
If we assume we have no super-sensitive parameters (S(y,w) ≤ 1 ⇔ S̄(y,w) ≥ 0),
S̄b = S̄, we can write

η

∣∣∣∣ ∂L
∂w

∣∣∣∣> λ |w| S̄(y,w) (4.24)

Making S̄ explicit, we have

η

∣∣∣∣ ∂L
∂w

∣∣∣∣> λ |w|

[
1−

C

∑
k=1

αk

∣∣∣∣∂yk

∂w

∣∣∣∣
]

(4.25)

If we assume αk ≤ 1∀k we can write

C

∑
k=1

αk

∣∣∣∣∂yk

∂w

∣∣∣∣≤ C

∑
k=1

∣∣∣∣∂yk

∂w

∣∣∣∣= ∥∥∥∥ ∂y
∂w

∥∥∥∥
1
⇔

[
1−

C

∑
k=1

αk

∣∣∣∣∂yk

∂w

∣∣∣∣
]
≥ 1−

∥∥∥∥ ∂y
∂w

∥∥∥∥
1

Hence, we can write eq. 4.25 as

η

∣∣∣∣ ∂L
∂w

∣∣∣∣> λ |w|

[
1−

C

∑
k=1

αk

∣∣∣∣∂yk

∂w

∣∣∣∣
]
≥ λ |w|

(
1−
∥∥∥∥ ∂y

∂w

∥∥∥∥
1

)
(4.26)

98 Sparse networks

According to Hölder’s inequality, we can write∣∣∣∣ ∂L
∂w

∣∣∣∣≤ max
k

∣∣∣∣ ∂L
∂yk

∣∣∣∣∥∥∥∥ ∂y
∂w

∥∥∥∥
1
. (4.27)

So, we can substitute eq. 4.27 in eq. 4.26, having

max
k

∣∣∣∣ ∂L
∂yk

∣∣∣∣∥∥∥∥ ∂y
∂w

∥∥∥∥
1
>

λ

η
|w|
(

1−
∥∥∥∥ ∂y

∂w

∥∥∥∥
1

)
(4.28)

which is equivalent, under the assumption maxk

∣∣∣ ∂L
∂yk

∣∣∣> 0, to

∥∥∥∥ ∂y
∂w

∥∥∥∥
1
>

λ

η
|w|

maxk

∣∣∣ ∂L
∂yk

∣∣∣+ λ

η
|w|

(4.29)

From eq. 4.29 we see that, in the early stages of training, as commonly λ ≪ η , it

is easy to have
λ

η
|w|

maxk

∣∣∣ ∂L
∂yk

∣∣∣+ λ

η
|w|

≈ 0 as the error of the network is high; hence, the

regularization term allows the network to learn.

4.4.2 Sensitivity in depth

Now, we are going to discuss our choice of S and what we are expecting from such a
parameter. In particular, we are going to investigate which is the expected sensitivity
range at each training step.
According to

S̄b(y,wi) = Θ
[
S̄(y,wi)

]
S̄ (y,wi) (4.30)

S̄ ∈ [0;1]. However, we are lower-bounding it to be positive. Assuming we are
working with the unbound insensitivity

S̄(y,wi) = 1−S(y,wi) (4.31)

we are here interested in investigating the case for which

C

∑
k=1

αk

∣∣∣∣∂yk

∂wi

∣∣∣∣> 1

4.4 Sensitivity driven regularization effect to the learning dynamics 99

Table 4.1 Most commonly used activation functions in deep learning

Activation (f (x)) d
dx f Range (d

dx f)

ReLU(x) Θ(x) {0;1}
tanh(x) sech2(x) (0;1]

x 1 {1}
ex

k+ex
kex

(k+ex)2 (0; 1
4]

Let us inspect the single k-th output

Sk(y,wi) =

∣∣∣∣∂yk

∂wi

∣∣∣∣
Its value is computed using the chain rule

∂yk

∂wi
=

∂xN,k

∂wi
=

∂xN,k

∂xN−1

N−1

∏
j=n+1

(
∂x j

∂x j−1

)
∂xn

∂wi
(4.32)

We know that
∂x j

∂x j−1
= f ′(x j)B(w j) (4.33)

where B(w j) is the linear part of the function g j.1 For convenience, we report
some commonly used activation functions in deep learning in Table 4.1. In such
a framework, 0 ≤ f ′(x j) ≤ 1∀ j. This is a very relevant observation: S̄ value for
parameters in layer n are not amplified by activation functions, but they strongly
depend on the values of the parameters in layers j > n.
In deep learning it is very common to have weight distributions with almost zero-
mean and standard deviation being very small (this depends on the network: the
larger it is, the smaller the deviation is). According to eq. 4.32 and to eq. 4.33, not
only it is extremely unlikely that S̄ < 0 (and in such a case, y is super-sensitive to w),
but most of the parameters of the network have very low sensitivity. For example, if
we take a LeNet-300 trained on MNIST we can see that the sensitivity (computed
without boundaries) for the network trained, with and without our regularizer, is
enclosed in [0,1] (Fig. 4.2). Notice that for the network trained without regularizer
(no pruning), having low sensitivity doesn’t necessarily mean we can prune all those
parameters. In order to show this more evidently, we refer to Fig. 4.3 in which

1xn = fn [gn (xn−1,wn)]

100 Sparse networks

we plot max{|w|,S(w)} which is a good estimator of how many parameters we are
confident to prune.

4.5 Thresholding

In this section we are going to analyze the cases for which a parameter will be pruned
from our network. In particular, We will make a distinction between applying or not
applying a threshold T .

4.5.1 T = 0

According to eq. 4.23, we will have a parameter exactly set to zero if

wi −η
∂L
∂wi

−λwiS̄b(y,wi) = 0 (4.34)

Let us investigate some cases.

S = 0

Having S = 0 is equivalent to say S̄b = 1. For this reason, eq. 4.34 becomes

wi −η
∂L
∂wi

−λwi = 0

However, from Hölder’s inequality (eq. 4.27), we also know that ∂L
∂wi

= 0, reading

wi −λwi = 0

The only solution is here to have λ = 1, which however is not a common choice.

S ≥ 1

In this case we have S̄b = 0. Hence, the condition is

wi −η
∂L
∂wi

= 0

4.5 Thresholding 101

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 0.01 0.02 0.03 0.04 0.05

pa

ra
m

et
er

s

S

Layer 1

w/ regularizer

NO regularizer

(a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 0.01 0.02 0.03 0.04 0.05

pa

ra
m

et
er

s

S

Layer 2

w/ regularizer

NO regularizer

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.1 0.2 0.3 0.4 0.5

pa

ra
m

et
er

s

S

Layer 3

w/ regularizer

NO regularizer

(c)

Fig. 4.2 Sensitivity computed in LeNet-300 trained on MNIST with and without our
regularizer. The layer size is 784x300 (Fig. 4.2a), 300x100 (Fig. 4.2b) and 100x10 (Fig. 4.2c).
The effect of the regularizer is to increase the number of parameters having low sensitivity.
However, training without regularizer also results in having a significant slice of low-
sensitivity parameters. As we will see in Fig. 4.3, most of the low-sensitivity parameters
trained without regularization are not close to zero.

102 Sparse networks

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 0.01 0.02 0.03 0.04 0.05

pa

ra
m

et
er

s

max(S, |w|)

Layer 1

w/ regularizer

NO regularizer

(a)

 0

 5000

 10000

 15000

 20000

 25000

 0 0.01 0.02 0.03 0.04 0.05

pa

ra
m

et
er

s

max(S, |w|)

Layer 2

w/ regularizer

NO regularizer

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.1 0.2 0.3 0.4 0.5

pa

ra
m

et
er

s

max(S, |w|)

Layer 3

w/ regularizer

NO regularizer

(c)

Fig. 4.3 Maximum between S and |w| in LeNet-300 trained on MNIST with and without our
regularizer. Here we are representing the same parameters and the same setting as Fig. 4.2.
The lowest this value is, the most we are confident to prune these parameters, It is evident that
using our regularizer the behavior with Fig. 4.2 is very close, meaning that we are effectively
pushing towards zero the less relevant parameters. On the contrary, without regularizer we
are far from being able to perform some efficient pruning.

4.5 Thresholding 103

or, in other words, it collapses to standard SGD and the parameter will be pruned if
the loss term pushes it towards zero.

0 < S < 1

This is the most general case. Here, eq. 4.34 reads

wi =
η

1−λ S̄b(y,wi)

∂L
∂wi

which states we need an exact ratio between gradient loss and sensitivity to make wi

exactly zero (and this ratio depends also on the learning rate η and on λ). Hence, it
appears natural to fix a threshold below which wi is considered pruned

4.5.2 T > 0

Here we are going to introduce our threshold. In a general way, we say we are
pruning a given parameter wn,i if∣∣∣∣wi −η

∂L
∂wi

−λwiS̄b(y,wi)

∣∣∣∣< T (4.35)

Hence, we will prune all those parameters satisfying

η
∂L
∂wi

−T

1−λ S̄b(y,wi)
< wi <

η
∂L
∂wi

+T

1−λ S̄b(y,wi)
(4.36)

A summary of the conditions to be satisfied to prune a parameter (depending on
the value of its sensitivity) can be found in Table 4.2.

4.5.3 Types of sensitivity

According to eq. 4.9, we have the degree of freedom in choosing αk values. In our
framework, we have proposed two choices for such a parameter.

104 Sparse networks

Table 4.2 Pruning a parameter: conditions to be satisfied

Sensitivity Condition on wi Additional conditions

S < 0 ∄
S = 0 |wi|< T

(1−λ) λ ∈ [0;1)

∀wi λ = 1

|wi|< T
(λ−1) λ ∈ (1;+∞)

0 < S < 1 Eq. 4.36 λ ∈ [0;1]; η ∈ [0;+∞)

S ≥ 1 η
∂L
∂wi

−T < wi < η
∂L
∂wi

+T η ∈ [0;+∞)

If we assume all of the k outputs having the same “relevance” (all αk =
1
C) or

better, the same weight for the computation of the sensitivity, we say we are using an
unspecific formulation for the sensitivity:

Sunspec(y,wi) =
1
C

C

∑
k=1

∣∣∣∣∂yk

∂wi

∣∣∣∣ (4.37)

Another choice we might have involves the use of the desired output vector y.
For classification tasks, it corresponds to the one-hot vector in which “1” refers to
the correct class while “0” to all the others. In this case, we have what we name
specific sensitivity:

Sspec(y,y,wi) =
C

∑
k=1

yk

∣∣∣∣∂yk

∂wi

∣∣∣∣ (4.38)

An high-level representation of how sensitivity works is shown in Fig. 4.4.

4.6 Results

In this section we provide some experimental results using the sensitivity-based
regularization method on different supervised image classification tasks. For each of
the trained networks we also provide a sparsity measure as long as the corresponding
memory footprint, assuming for all the conduced experiments, single-precision
floating point parameter representation.

The first tests have been entirely conduced on some basic playground: MNIST [71]
(60k training images and 10k test images) on two toy architectures: LeNet-300 and

4.6 Results 105

Fig. 4.4 Example of how sensitivity-based regularization works, inside a single iteration.
Given a minibatch Ξ̃, first the forward propagation step is performed. Then, through back-
propagation, gradient from the loss function and sensitivity are computed. With these, the
update step modifies the value of the parameters: some are increased, others are pushed
towards zero. Finally, the parameters are thresholded. At some point, entire neurons are no
longer connected to the ANN model, and can be entirely pruned away.

LeNet-5.
Intentionally, no particular heuristics has been used for our experiments, in order to
isolate the real benefits of the sensitivity-based approach towards other heuristics.
For such a reason, vanilla SGD is the optimizer we decided to use. We further
emphasize that no other sparsity-promoting method (like dropout or even batch
normalization) has been used to produce the presented results.
In table 4.3 we show the results of the experiments over the LeNet-300 network
(fully-connected architecture made of 300-100-10 neurons) in two different learning
stages: in order to compare our results with some other concurrent results, we al-
lowed some performance degradation. |θ |

|θ ̸=0|
is the compression ratio, namely the ratio

between the number of parameters in the original architecture and those remained
after the sparsification process (the higher, the better).
The most similar work we compare with belongs to Han et al. [72]: they sparsify
using L2 regularization together with other heuristics aiming to introduce sparsity.
We consider their results a good reference as our formulation can be interpreted as a
reshape of L2 regularization for ReLU-activated networks.
Our method proudly achieves in this setting twice the sparsity of [72] (27.8x vs.
12.2x compression ratio) still showing a comparable error.
In the bottom-half of the same table we still refer to the same network, further trained
and allowing errors compared with other state-of-the-art results [73–75]. Even here,

106 Sparse networks

Table 4.3 LeNet-300 network trained over the MNIST dataset

Remaining parameters |θ |
|θ̸=0|

Top-1
FC1 FC2 FC3 Total error

Han et al. [72] 8% 9% 26% 21.76k 12.2x 1.6%
Proposed (Sunspec) 2.25% 11.93% 69.3% 9.55k 27.87x 1.65%
Proposed (Sspec) 4.78% 24.75% 73.8% 19.39k 13.73x 1.56%

Louizos et al. [76] 9.95% 9.68% 33% 26.64k 12.2x 1.8%
SWS[73] N/A N/A N/A 11.19k 23x 1.94%

Sparse VD[74] 1.1% 2.7% 38% 3.71k 68x 1.92%
DNS[75] 1.8% 1.8% 5.5% 4.72k 56x 1.99%

Proposed (Sunspec) 0.93% 1.12% 5.9% 2.53k 103x 1.95%
Proposed (Sspec) 1.12% 1.88% 13.4% 3.26k 80x 1.96%

Table 4.4 LeNet-5 network trained over the MNIST dataset

Remaining parameters |θ |
|θ ̸=0|

Top-1
Conv1 Conv2 FC1 FC2 Total error

Han et al. [72] 66% 12% 8% 19% 36.28k 11.9x 0.77%
Prop. (Sunspec) 67.6% 11.8% 0.9% 31.0% 8.43k 51.1x 0.78%
Prop. (Sspec) 72.6% 12.0% 1.7% 37.4% 10.28k 41.9x 0.8%

Louizos et al. [76] 45% 36% 0.4% 5% 6.15k 70x 1.0%
SWS [73] N/A N/A N/A N/A 2.15k 200x 0.97%

Sparse VD [74] 33% 2% 0.2% 5% 1.54k 280x 0.75%
DNS [75] 14% 3% 0.7% 4% 3.88k 111x 0.91%

our method performs the best; so, apparently sensitivity-based approach works well
on fully-connected architectures.

In table 4.4 we show performances obtained on LeNet-5.
Here, when we compare our method to Han et al, we still achieve far better sparsity
(51.07x vs. 11.87x compression ratio) for comparable error. An interesting observa-
tion is regarding the sparsity levels between convolutional and fully-connected: the
layer initially having the most parameters (fc1) is the most sparsified. However, here
Sparse VD obtains the top performances. We speculate that a possible explanation
to this is that the currently-presented formulation for the sensitivity does not take
into account the parameter sharing effect on the convolutional layers: in this way,
particularly for conv1, the sensitivity is highly over-estimated and sparsity can not
be properly achieved.

4.6 Results 107

Table 4.5 VGG16 network trained over the ImageNet dataset

Layer Layer size Han et al. Sunspec Sspec

conv1_1 2K 58% 97.80% 96.35%
conv1_2 37K 22% 90.47% 80.87%
conv2_1 74K 34% 87.81% 81.49%
conv2_2 148K 36% 84.96% 81.41%
conv3_1 295K 53% 83.44% 77.68%
conv3_2 590K 24% 81.92% 71.81%
conv3_3 590K 42% 80.85% 69.25%
conv4_1 1M 32% 71.07% 62.03%
conv4_2 2M 27% 62.96% 51.2%
conv4_3 2M 34% 62.34% 51.91%
conv5_1 2M 35% 60.47% 57.09%
conv5_2 2M 29% 59.66% 57.08%
conv5_3 2M 36% 59.63% 47.75%

fc6 103M 4% 1.08% 1.13%
fc7 17M 4% 6.27% 8.35%
fc8 4M 23% 35.43% 14.81%

Total size 138M 10.35M 11.34M 9.77M
Top1 error 31.50% 31.34% 29.29% 30.92%
Top5 error 11.32% 10.88% 9.8% 10.06%

Finally, we run an experiment on the deep VGG-16 [77] over the ImageNet [78]
dataset. VGG-16 is a 13 convolutional, 3 fully connected layers deep network having
more than 100M parameters, while the ImageNet dataset consists of 224x224 24-bit
colour images, divided in 1k different classes.
In this case we decided to skip the initial training step: the open-source keras
pretrained model [77] has been used as a starting configuration.
According to the empirical results we show in table 4.5, our method achieves a 1.08%
minimization in Top-5 error (9.80% vs 10.88%) under a comparable sparsification
tha Han et al’s. This results is extremely important: we are evidently able to improve
the generalization of a deep model introducing sparsity!

4.6.1 Benefits for generalization

Last, we investigate how our sensitivity-based regularization term affects the network
generalization ability, which is the ultimate goal of regularization. As we focus on
the effects of the regularization term, no thresholding or pruning is applied and we

108 Sparse networks

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0 200 400 600 800 1000

L
o
s
s
 t
e

s
t

epoch

SGD
SGD+L2

SGD+Sensitivity
SGD+L1

Fig. 4.5 Loss on test set across epochs for LeNet-300 trained on MNIST with different
regularizers (without thresholding): our method enables improved generalization over L2-
regularization.

consider the unspecific sensitivity formulation in eq. 4.37. We experiment over four
formulations of the regularization term R(θ): no regularizer (λ = 0), weight decay
(L2 regularization), L1 regularization, and our sensitivity-based regularizer. Fig. 4.5
shows the value of the loss function L (cross-entropy) over training. Without regular-
ization, the loss increases after some epochs, indicating sharp over-fitting. With the
L1-regularization, some over-fitting cannot be avoided, whereas L2-regularization
prevents over-fit. However, our sensitivity-based regularizer is even more effective
than weight decay regularization, achieving lower error. As seen from eq. 4.22, our
regularization factor be interpreted as an improved L2 term with an additional factor
promoting sparsity proportionally to each parameter insensitivity.

Chapter 5

Conclusion

In this work, the classification problem for artificial neural networks has been widely
investigated. In order to do this, the very first analysis has been conducted on the
perceptron, the simplest, golden model, reviewing state-of-the-art theoretical results
and limits of algorithmic approaches.
Regarding the perceptron model, starting by observations from the theoretical ap-
proach and from some empirical results, a new way of training a binary perceptron,
namely the stochastic perceptron model, was studied. It has been shown that such a
model provides new and innovative insights in the world of optimization for binary
neural networks.
Successively, the world of one hidden-layer neural networks has been explored. The
theoretical analysis of the version space is here not straightforward because of the
increasing complexity of the examined models. For such a reason, an heuristic
approach for version-space exploration, inspired by the theory, has been designed:
interesting properties regarding the accessible solution subspace were observed.
Furthermore, an extension of the stochastic perceptron model for deep architectures
has also been designed. However, it was empirically observed that such an approach
stays below the state-of-the-art heuristic approaches for convolutional neural network
topologies.
Finally, the problem of the parameters minimization in deep networks has been
tackled. In particular, a regularization term from an update rule, inspired by the
Hebb principle, has been proposed. It was observed that deep networks are able to
save their performance using just a minimal part of the original parameters, which

110 Conclusion

recovers a theoretical concept observed for smaller networks: it is supposed to exist
an optimal ANN architecture for a given learning problem.

References

[1] Matthias Jakob Schleiden. Beiträge zur Phytogenesis. 1838.

[2] Theodor Schwann. Mikroskopische Untersuchungen über die Übereinstimmung
in der Struktur und dem Wachstum der Tiere und Pflanzen. BoD–Books on
Demand, 2013.

[3] Otto Deiters. Untersuchungen über die Lamina spiralis membranacea: ein
Beitrag zur Kenntniss des inneren Gehörorgans. Henry et Cohen, 1860.

[4] Paolo Mazzarello. Il Nobel dimenticato: la vita e la scienza di Camillo Golgi.
Bollati Boringhieri Torino, 2006.

[5] Ortwin Bock. Cajal, golgi, nansen, schäfer and the neuron doctrine. Endeavour,
37(4):228–234, 2013.

[6] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133,
1943.

[7] Marvin Minsky and Seymour A Papert. Perceptrons: An introduction to
computational geometry. MIT press, 2017.

[8] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning
representations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[9] Jason Sanders and Edward Kandrot. CUDA by example: an introduction to
general-purpose GPU programming. Addison-Wesley Professional, 2010.

[10] Igor V Tetko, David J Livingstone, and Alexander I Luik. Neural network
studies. 1. comparison of overfitting and overtraining. Journal of chemical
information and computer sciences, 35(5):826–833, 1995.

[11] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the Royal Statistical
Society: Series B (Methodological), 39(1):1–22, 1977.

[12] Martin A Tanner and Wing Hung Wong. The calculation of posterior distribu-
tions by data augmentation. Journal of the American statistical Association,
82(398):528–540, 1987.

112 References

[13] Robert H Swendsen and Jian-Sheng Wang. Nonuniversal critical dynamics in
monte carlo simulations. Physical review letters, 58(2):86, 1987.

[14] Peter Bühlmann and Sara Van De Geer. Statistics for high-dimensional data:
methods, theory and applications. Springer Science & Business Media, 2011.

[15] Donald F Specht. A general regression neural network. IEEE transactions on
neural networks, 2(6):568–576, 1991.

[16] Dougal Maclaurin, David Duvenaud, and Ryan P Adams. Autograd: Effortless
gradients in numpy. In ICML 2015 AutoML Workshop, 2015.

[17] Léon Bottou. Online learning and stochastic approximations. On-line learning
in neural networks, 17(9):142, 1998.

[18] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. nature, 323(6088):533, 1986.

[19] Robert Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When
does sgd escape local minima? arXiv preprint arXiv:1802.06175, 2018.

[20] Léon Bottou. Stochastic gradient learning in neural networks. Proceedings of
Neuro-Nımes, 91(8):12, 1991.

[21] Yurii Nesterov. A method for unconstrained convex minimization problem
with the rate of convergence o (1/kˆ 2). In Doklady AN USSR, volume 269,
pages 543–547, 1983.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[23] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121–2159, 2011.

[24] Tijmen Tieleman and Geoffery Hinton. Rmsprop gradient optimization. URL
http://www. cs. toronto. edu/tijmen/csc321/slides/lecture_slides_lec6. pdf, 2014.

[25] Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factor-
ization using markov chain monte carlo. In Proceedings of the 25th interna-
tional conference on Machine learning, pages 880–887. ACM, 2008.

[26] Hui Yuan Xiong, Yoseph Barash, and Brendan J Frey. Bayesian prediction of
tissue-regulated splicing using rna sequence and cellular context. Bioinformat-
ics, 27(18):2554–2562, 2011.

[27] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan R Salakhutdinov. Improving neural networks by preventing co-adaptation
of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

References 113

[28] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 15(1):1929–1958,
2014.

[29] Adi Livnat, Christos Papadimitriou, Nicholas Pippenger, and Marcus W Feld-
man. Sex, mixability, and modularity. Proceedings of the National Academy of
Sciences, 107(4):1452–1457, 2010.

[30] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regular-
ization of neural networks using dropconnect. In International conference on
machine learning, pages 1058–1066, 2013.

[31] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[32] Hidetoshi Shimodaira. Improving predictive inference under covariate shift
by weighting the log-likelihood function. Journal of statistical planning and
inference, 90(2):227–244, 2000.

[33] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry.
How does batch normalization help optimization? In Advances in Neural
Information Processing Systems, pages 2483–2493, 2018.

[34] Jonas Kohler, Hadi Daneshmand, Aurelien Lucchi, Ming Zhou, Klaus Neymeyr,
and Thomas Hofmann. Towards a theoretical understanding of batch normal-
ization. arXiv preprint arXiv:1805.10694, 2018.

[35] Richard E Bellman. Adaptive control processes: a guided tour, volume 2045.
Princeton university press, 2015.

[36] David L Donoho et al. High-dimensional data analysis: The curses and bless-
ings of dimensionality. AMS math challenges lecture, 1(2000):32, 2000.

[37] Frank Rosenblatt. The perceptron, a perceiving and recognizing automaton
Project Para. Cornell Aeronautical Laboratory, 1957.

[38] Frank Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386, 1958.

[39] John C Hay, FC Martin, and CW Wightman. The mark-1 perceptron-design
and performance. In Proceedings of the institute of radio engineers, volume 48,
pages 398–399, 1960.

[40] Mikel Olazaran. A sociological study of the official history of the perceptrons
controversy. Social Studies of Science, 26(3):611–659, 1996.

[41] A Engel and Christian Van den Broeck. Systems that can learn from examples:
Replica calculation of uniform convergence bounds for perceptrons. Physical
review letters, 71(11):1772, 1993.

114 References

[42] JF Fontanari and R Meir. The statistical mechanics of the ising perceptron.
Journal of Physics A: Mathematical and General, 26(5):1077, 1993.

[43] Andreas Engel and Christian Van den Broeck. Statistical mechanics of learning.
Cambridge University Press, 2001.

[44] Werner Krauth and Marc Mézard. Storage capacity of memory networks with
binary couplings. Journal de Physique, 50(20):3057–3066, 1989.

[45] Judea Pearl. Reverend Bayes on inference engines: A distributed hierarchical
approach. Cognitive Systems Laboratory, School of Engineering and Applied
Science . . . , 1982.

[46] Carlo Baldassi, Alessandro Ingrosso, Carlo Lucibello, Luca Saglietti, and
Riccardo Zecchina. Subdominant dense clusters allow for simple learning and
high computational performance in neural networks with discrete synapses.
Physical review letters, 115(12):128101, 2015.

[47] Carlo Baldassi, Alessandro Ingrosso, Carlo Lucibello, Luca Saglietti, and
Riccardo Zecchina. Local entropy as a measure for sampling solutions in
constraint satisfaction problems. Journal of Statistical Mechanics: Theory and
Experiment, 2016(2):023301, 2016.

[48] Silvio Franz and Giorgio Parisi. Effective potential in glassy systems: theory
and simulations. Physica A: Statistical Mechanics and its Applications, 261(3-
4):317–339, 1998.

[49] Carlo Baldassi, Federica Gerace, Carlo Lucibello, Luca Saglietti, and Riccardo
Zecchina. Learning may need only a few bits of synaptic precision. Physical
Review E, 93(5):052313, 2016.

[50] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Bal-
dassi, Christian Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina.
Entropy-sgd: Biasing gradient descent into wide valleys. arXiv preprint
arXiv:1611.01838, 2016.

[51] Carlo Baldassi, Federica Gerace, Hilbert J Kappen, Carlo Lucibello, Luca
Saglietti, Enzo Tartaglione, and Riccardo Zecchina. Role of synaptic stochas-
ticity in training low-precision neural networks. Physical review letters,
120(26):268103, 2018.

[52] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural
networks, 61:85–117, 2015.

[53] Terrence J Sejnowski, Paul K Kienker, and Geoffrey E Hinton. Learning
symmetry groups with hidden units: Beyond the perceptron. Physica D, 22(1-
3):260–275, 1986.

[54] Marc Mézard, Giorgio Parisi, Nicolas Sourlas, Gérard Toulouse, and Miguel
Virasoro. Replica symmetry breaking and the nature of the spin glass phase.
Journal de Physique, 45(5):843–854, 1984.

References 115

[55] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex. The Journal of physiology,
160(1):106–154, 1962.

[56] David H Hubel and Torsten N Wiesel. Receptive fields and functional archi-
tecture of monkey striate cortex. The Journal of physiology, 195(1):215–243,
1968.

[57] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural networks,
3361(10):1995, 1995.

[58] Kurt Hornik. Approximation capabilities of multilayer feedforward networks.
Neural networks, 4(2):251–257, 1991.

[59] Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with
elastic averaging sgd. In Advances in Neural Information Processing Systems,
pages 685–693, 2015.

[60] Henry W Lin, Max Tegmark, and David Rolnick. Why does deep and cheap
learning work so well? Journal of Statistical Physics, 168(6):1223–1247, 2017.

[61] Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively character-
izing neural network optimization problems. arXiv preprint arXiv:1412.6544,
2014.

[62] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred A Hamprecht.
Essentially no barriers in neural network energy landscape. arXiv preprint
arXiv:1803.00885, 2018.

[63] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks: Training deep neural net-
works with weights and activations constrained to+ 1 or-1. arXiv preprint
arXiv:1602.02830, 2016.

[64] José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropa-
gation for scalable learning of bayesian neural networks. In International
Conference on Machine Learning, pages 1861–1869, 2015.

[65] Y. LECUN. The mnist database of handwritten digits.
http://yann.lecun.com/exdb/mnist/.

[66] Marwan Jabri and Barry Flower. Weight perturbation: An optimal architecture
and learning technique for analog vlsi feedforward and recurrent multilayer
networks. IEEE Transactions on Neural Networks, 3(1):154–157, 1992.

[67] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture
search: A survey. arXiv preprint arXiv:1808.05377, 2018.

116 References

[68] Enzo Tartaglione, Skjalg Lepsøy, Attilio Fiandrotti, and Gianluca Francini.
Learning sparse neural networks via sensitivity-driven regularization. In Ad-
vances in Neural Information Processing Systems, pages 3878–3888, 2018.

[69] Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the
local reparameterization trick. In Advances in Neural Information Processing
Systems, pages 2575–2583, 2015.

[70] Donald O Hebb. The organization of behavior: A neurophysiological approach,
1949.

[71] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278 –
2324, November 1998.

[72] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and
connections for efficient neural network. In Advances in Neural Information
Processing Systems, pages 1135–1143, 2015.

[73] Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for
neural network compression. arXiv preprint arXiv:1702.04008, 2017.

[74] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout
sparsifies deep neural networks. arXiv preprint arXiv:1701.05369, 2017.

[75] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for
efficient dnns. In Advances In Neural Information Processing Systems, pages
1379–1387, 2016.

[76] Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse
neural networks through l_0 regularization. arXiv preprint arXiv:1712.01312,
2017.

[77] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[78] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. Imagenet large scale visual recognition chal-
lenge. International Journal of Computer Vision, 115(3):211–252, December
2015.

