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Summary

The research activity presented in this thesis has been carried out within a PhD
Project in Apprenticeship in collaboration with COMAU, co-funded by Regione
Piemonte. The topics addressed in such a context are mainly related to Smart
Factories and Industry 4.0, and are included in a wider research activity aimed
at the conversion of standard production lines (e.g., in automotive context) into
smart factories, without changing the initial layout of the line [47]. This means
that the introduction of new kinds of machinery and devices is not expected; any
changes should be compatible with the current production line, avoiding too inva-
sive, setup phases. In this scenario the research activity was divided into two main
fields of research: 1) the development of a new programming paradigm, and 2) the
development of advanced service algorithms.

The first topic aims at providing an offline programming methodology, which
allows to (re-) program the robotic cell in a flexible way. The new approach should
be able to provide the fast reprogramming of the production line, with possible
relocation of machinery and resources, on the basis of the current conditions. Even
if such approach is less flexible than the Flexible Manufacturing Systems, it is easily
applicable to standard production lines.

The goal of the second topic is to develop advanced functionalities to be imple-
mented in standard industrial manipulators. Also in this case the idea is to avoid
deep changes in the robotic cell. In this way industrial robots that were initially
developed to perform, more or less, the same activity for all their life, now they
could be used in different contexts, and for new kinds of applications.

In order to keep the discussion about such topics clear and well divided, the
thesis has been organized into three parts: Part I) Automatic Task Oriented Pro-
gramming, Part II) Advanced Robotic Service Algorithms, and Part III) general
conclusions.
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Part I

Automatic Task Oriented
Programming

1





Chapter 1

Introduction to robot
programming

Programming complex manufacturing systems (see Figure 1.1), like robotic cells,
can be a very hard work. Nowadays in the industrial scenario there are two main
robot programming methodologies [76]: Online programming and Offline program-
ming (OLP).

Figure 1.1: Example of an automotive welding application

Online programming is the classic programming approach, in which the pro-
grammer, using the Teach Pendant, moves the robot to each significant point,
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1 – Introduction to robot programming

choosing both position and orientation of the end-effector, and storing the corre-
sponding information (i.e., the teaching phase); such operation is repeated for each
robot involved in the process. It is easy to imagine that this approach is time-
consuming, because of the possible very high number of points to be manged, as
well as the necessity of both avoiding collisions with other robots (whose work-
points could be not known, yet), and with the environment, and achieving good
performance of the process, usually in terms of cycle time. In practice such kind
of approach leads to a Trial & Error methodology, in which each point already
saved could be subsequently modified in order to avoid a collision, or to improve
the performance of the process; points and trajectories of each robot are then it-
eratively modified several times before reaching a good trade-off between process
accuracy and cycle time. Such approach is suitable for uncomplicated process onto
a simple work-piece, but sometimes is the only available methodology especially
for small enterprises. Online programming is usually performed by hard skilled
programmers, that must be prepared on several aspects:

• decomposition of the whole process into a sequence of simple sub-tasks;

• assignment of each sub-task to the available machinery, like robots, taking into
account both the physical constraints (e.g., degrees of freedom, operational
area) and the compatibility between the specific sub-task and the adopted
machinery;

• definition of the trajectories of all the involved robots, taking into account
possible limitations of the robots, as well as avoiding collisions;

• optimization of the process in some way. The cycle time is usually minimized
in several industrial contexts, but other criteria could be taken into account
(e.g., energy consumption);

• writing of the program to be run in the specific control unit.

Programs structure is defined by the programmer in order to properly sequence/
synchronize the sub-tasks composing the whole required process; it can be very
complicated on the basis of the complexity of the required application.

Offline robot programming is based on the usage of 3-D CAD data, in order to
generate and simulate robot programs. Such approach is quite different from the
classic one, where all the programming phases were made by hand; here there is a
higher level of automation of the programming process, given by the possibility to:
1) define/import the 3-D model of the robot cell, 2) define the trajectories of the
robots, and 3) simulate the plant. The main advantage of such approach is that pro-
gramming does not require actual robots, so that this phase can be done earlier, and
can be also repeated while the line is producing. A second benefit is that programs
are more flexible, since they can be easily modified. The further advantage is about
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1 – Introduction to robot programming

the plant simulation, which is also very important in order to achieve faster (re-)
programming of complex robotic lines, as well as the possibility to check the results
of a priori programming, thus avoiding possible programming errors and improving
the quality of the process itself. Also in this case programmers must be very skilled,
since they have to perform almost the same activities; nevertheless the writing of
the source code could be no longer required, in fact OLP softwares often support
code generation. Such additional feature slightly change the role of the robotic line
programmer, whose activity is no more concerning the writing of the source code,
but is only focused about the technological processes and the related robotic issues.
Very interesting works can be found about such kind of programming approach;
in [70], [72],[71]a common 3-D CAD package is used to import information about
the robotic cell into a more advanced robot programming interface, helping the
programmer to define the task and to create the corresponding program. CAD
models can be used as source of data for robot programming, as stated in [32], thus
process information can be included in the CAD models (e.g., in [79] an automatic
robot welding programming is proposed), and used within a OLP methodology to
define the programming of the whole robotic cell. The main drawback of such kind
of methodology is that when the CAD model does not reproduce exactly the real
scenario, it is not possible to obtain satisfactory performance; such a problem can
be solved by eliminating or minimizing the errors between the real scenario and the
virtual one, e.g., using sensory feedback as proposed in [73]. Offline programming
is suitable to compute the robot paths for typical industrial tasks, using the 3-D
information of the work-piece, e.g., for welding [57], thermal spraying [27], and
finishing [49]. Such approach can be adopted to define cooperative tasks, as well;
e.g., [36] proposes the motion planning of two robots for a cooperative operation,
in which both position and posture must be coordinated. OLP approach can be
interfaced with other systems in order to improve its performance; e.g., in [10] an
OLP platform has been integrated with a three-dimensional vision system able to
provide part recognition and pose estimation of the objects in the robotic cell.

Nowadays robot programming methodologies are moving toward smart solu-
tions, able to understand the human body language in order to make the pro-
gramming process of complex tasks more comfortable, in particular for soft skilled
programmers. Within such a scenario the programmer becomes the teacher of the
manufacturing system, that learns the task observing or reproducing the operations
performed by the human operator. Such approach is usually called Programming
by Demonstration (PbD) or Learning from Demonstration (LfD) [6], but it can be
found with different names in literature. Two main methodologies can be adopted
to teach the task to the robotic system. The first one is based on the demonstra-
tion of the task; in this case there are two common approaches: i) teleoperation,
where the robot can be guided by the teacher (e.g., using joystick or speech dialog
), and ii) shadowing, where the robot mimics the teacher’s demonstrated motions
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1 – Introduction to robot programming

in order to perform the task; regardless of the type of the adopted approach, sen-
sors information of the robot is stored during the teaching process. A second LfD
approach is based on the imitation of the task; in such a case external sensors are
used to observe the tasks (e.g., wearable sensors applied on the programmer or
vision systems recording the procedure) and to store the related information. Such
approach is still in development, and mixed approaches can also be found, e.g., in
[67] where different complementary approaches, like PbD, Feedback and Transfer,
are all exploited together, and in [5] where a different PbD framework is proposed,
in which demonstration is provided once, while additional task information is pro-
vided explicitly. In [33] teaching is instead achieved by using the spatial language
to describe a set of predefined kinds of movements, in this way the user is not re-
quired to interact with the robot. Such approach seems to be border line in the field
of PbD, but it provides information that can be very interesting for a task based
programming approach. Also very interesting is the management of the teaching
information, which can be encoded into sequence of predefined symbols, represent-
ing elementary actions that are exploited to obtain a generalized task structure,
e.g., a hierarchy structure [95], or a topological task graph [4]. However such ap-
proaches require the specification of all the parts of the whole process (although
they are performed by demonstration), so that there is no separation between the
actual required tasks (e.g., a welding task) and any other intermediate parts of the
process (e.g., free movements).

A more recent approach exploits Augmented Reality (AR) to program robots
[59],[75],[89]. Such a methodology is quite new and despite its potential is not fully
explored, it could be an important innovation in the programming of production
systems [29]. AR can be seen as a middle way between the online and the offline
programming [76]; it can be combined with offline programming, exploiting CAD
models of the robotic cell to create the virtual environment. Using programming
devices (e.g., tablet) the programmer can carry out the teaching process in the
virtual robotic cell. Important advantage are introduced with respect to the classic
approach, like no needs of the physical robots (since virtual robots are used), the
possibility of easily programming large robots (such as airplane washing robots)
and collision-free paths [21].

Current trend of manufacturing companies is to move towards wider markets,
involving the production of various products in order to meet quickly the customer
demand. Such a phenomenon is leading towards two main technical solutions, to
make standard production lines more flexible. Different schools of thought can be
found, based on: 1) Flexible Manufacturing Systems (FMS), where the production
line is able to adapt its production process to possible market variations, and 2)
OLP, where, using offline software tools, production line can be reprogrammed
on the basis of new market conditions. The two approaches are very different;
the first one is off-course more adaptive, but it requires the usage of intelligent
systems inside the production line, able to change their behavior on the basis of
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1 – Introduction to robot programming

external information. This means that, in general, is not possible to convert a
classic production line into a flexible one, without making heavy changes to the
line itself. In the second case OLP is a not reactive approach (in fact the human
operator decides by himself when the line must be reprogrammed), nevertheless it
allows to obtain a new production process compliant with current market condition,
using the same production line. In practice, using OLP the intelligent part of the
system is centralized in the offline tool, instead of distributed into smart machinery
(e.g., robots, AGV).

Automatizing the programming process through a OLP approach (AOLP) is
quite complicated, since different issues must be taken into account at the same
time, like: i) to fulfill physical constraints of the robotic cell (e.g., to avoid colli-
sions), ii) to obtain the required performance (e.g., cycle time) and iii) to carry out
the required task. An approach in which the programmer defines the sequence of
sub-tasks using high level tools (e.g., CAD software), so ignoring the issues related
to physical constraints, task sequencing or performance optimization, makes the
programming process accessible to soft skilled programmers, mainly experienced
about the process issues only. The overall objective of the research activity (car-
ried out in collaboration with COMAU S.p.A.) is to develop an automatic offline
task-oriented programming approach suitable for generic robotic cells, which can
be used by soft skilled programmers during the programming of the required appli-
cation. The approach must be intended as a new kind of programming approach,
supporting the programmers only during the initial programming phase; flexible
manufacturing systems are out of the scope of such a research, even if possible
physical changes of the robotic cell (e.g., the failure of a machinery) could be possi-
bly managed using such a task oriented approach to quickly reprogram the robotic
cell. Starting from some basic information about the robotic cell and the required
tasks, the goal of the task-oriented programming is to provide the planning of all
the movements and actions to be performed by each machinery inside the robotic
cell. The proposed goal has been reached by a three step approach given by: i)
the definition of a model including both the process and the environment, ii) the
definition of all the feasible work-flows, and iii) the choice of the best work-flow
according to some criteria.

The greatest efforts in such a work have been devoted to define a task model
able to represent a generic industrial task and to automatize the programming
process; certainly several further issues are related to such a research activity, but
while some of them have been already studied and a lot of material can be found
in the state of the art, about task modeling, to the best of the authors’ knowledge,
there is no previous approach in literature with exactly the same objectives of the
proposed one, even if some related paradigms and guidelines about task modeling
can be found. In [8] four main elements (Resource, Skill, Process and Product) are
used to obtain both a task model and a world model, in which the Skill element
is defined by means of five main actions (i.e., move, connect, compare, store and
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change). The proposed five main actions seem to be too specific to allow a high
abstraction level, even if they could be exploited to define a set of virtual actions.
In [77] three models are built: i) Process model, ii) Workcell model and iii) Object
model; CAD information is also used to set the geometrical constraints and the
assembly steps, as well as to store information about dimensions and polygon mesh
of the involved objects, which are used to implement furthers checks (e.g., collision
avoidance). In this work however no procedure is proposed to automatically map
the tasks into corresponding robot actions or to automatically choose the robots
involved in the tasks.
In [51] product CAD models and technological knowledge are exploited to obtain
assembly features and build the assembly tasks. A description of all the geometrical
parts by means of the triangle meshes (without using any CAD information) are
also exploited to carry out a collision avoidance check. On the whole, such a work
allows an automatic verification of the plan feasibility from the technological and
geometrical point of view, and of the stability, but it does not address the case of
cooperating multiple robots.
In all the discussed works [8], [77] and [51], CAD models are used to import a
set of information that is employed to build the internal models and to define the
geometrical constraints.
In [24] the task model is obtained as a set of assembly features, which are used
to define an elementary skill. Through a specific graphical user interface the user
can easily “write” a program by creating new skills and composing them properly.
Such a work proposes an interesting solution for a possible user-friendly interface,
but it does not include any automation in the task definition, which is fully defined
by the user.
In [94] the authors proposed an interesting subdivision of the task planning into
two phases: i) the target task is divided in simpler tasks (called primitive tasks),
and ii) each primitive task is divided in simple paths using a heuristic algorithm.
Such an approach could be used as starting point to define a hierarchical model of
the task.

A second important activity was devoted to the definition of all the possible
work-flows carrying out the required process. Typically a work-flow is modelled as
a net of nodes having different meanings. Usually work-flow models include a task
node defining a specific action, as well as nodes defining different relations between
the tasks, e.g., choice, merge, fork, synchronization and sequence, as highlighted in
[37], [83], [56]. According to such criteria, the proposed Work Flow Model (WFM)
includes specific blocks allowing to split or join the work-flows, so to define the
parallel or the execution in mutual exclusion of generic task blocks. In addition, the
WFM is characterized by a recursive structure that allows to extend the model itself
by introducing more complex blocks. The formal verification of a WorkFlow-net
(WF-net) is also an important issue, in order to avoid possible structural conflicts
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in the process model, e.g., deadlock and lack of synchronization; the choice of a
work-flow model suitable for a process verification is then essential. In case of
WF-nets, a set of graph reduction rules can be exploited to identify structural
conflicts in the process, as proposed in [84]; other approaches (e.g., [3]) are based
on the usage of Petri Nets (PN) theory and tools to verify work-flow graphs. As
highlighted in [2] and [86], PN are a very suitable tool to map work-flows (e.g.,
in [93] an application for production systems is reported), thanks to their formal
semantic, the property to be state-based, and the abundance of the related analysis
techniques; also their formalism can be used to model the available resources, as
illustrated in [25]. Possible conversion between a work flow model, like the WFM,
and an equivalent PN can also be achieved, if necessary; e.g., in [19] an AND/OR
graph is converted into a PN. The proposed WFM is suitable for conversion into PN,
but it can be also adopted for the inclusion of the modeled robotic task in an overall
process, by the imposition of some high level goals during the programming phase
(e.g., the reduction of possible bottlenecks). Some bottleneck detection approaches,
like the one proposed in [14], can be very suitable if applied to a work-flow model
characterized by a recursive structure, as the proposed one. In fact, such a factory
performance diagnostics, based on the computation of a proper metric called Overall
Throughput Effectiveness (OTE), can be carried out recursively to all the levels of
the work-flow model as presented in [46], where such an approach has been tested
for a real industrial application.
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Chapter 2

Task Analysis

Defining the features of a specific task involved in an industrial application is
the starting point to find a generalized description of a generic task, and hence
its implementation by means of a unified tool. Such a goal can be achieved by
studying different types of industrial applications, in order to find a set of mini-
mal actions defining a generic task; however the differences between some types of
tasks could make difficult to obtain a unified modeling. The analysis of the tasks is
then focused to: i) find the set of common features among all the tasks, ii) define
procedures to translate non common features in a standard form. The most impor-
tant industrial applications as listed in the websites of the main robot constructors
(e.g., ABB, COMAU and KUKA) are: Arc and spot welding, Assembly, Cosmetic
sealing, Foundry, Handling and Packaging, Laser welding/cutting, Machine tend-
ing, Plasma cutting and Water jet, Polishing and deburring, Press brake bending,
Interpress, Processing machining, Painting.

The tasks show at least four different characteristics: i) tasks requiring a path,
ii) tasks working on a single point of the work-space, iii) tasks involving only the
motion of the work-piece, and iv) tasks needing further elaborations to obtain a
work-path. On the basis of such criteria the full list of tasks can then be organized
in four classes:

1. Tasks requiring a path:

• Arc welding,
• Cosmetic sealing,
• Polishing deburring,
• Laser welding cutting,
• Plasma cutting/Water jet.

2. Task working on a single point of the work-space:
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• Spot welding.

3. Tasks involving only the motion of the work-piece:

• Machine tending,
• Handling,
• Processing machining,
• Press brake bending,
• Interpress,
• Foundry.

4. Tasks that need further elaborations to obtain a work-path:

• Assembly,
• Packaging,
• Painting.

Analyzing the proposed classification, it can be seen that most of the tasks
belong to the first and third categories; if the spot welding task is managed as a
task requiring a path, whose starting and final points are coincident, it could be
included in the first category as well. The fourth category defines a set of tasks that
need some pre-elaborations in order to obtain the paths defining the whole process,
e.g., in the painting process the paths are often defined by a specific elaboration
of the shape of the work-piece, taking into account the features of the specific tool
used for the application.
The analysis highlights that two main types of tasks can be defined: i) the Standard
tasks (i.e. those belonging to the first and third category), which can involve both
processes carried out on a specific path or those simply devoted to carry the work-
piece, and ii) the Special tasks, which need some pre-elaboration. Such a result
imposes some requirements on the tool that is going to be developed to generate the
whole task, like the inclusion of a standardization layer handling the pre-elaboration
of the Special tasks, so that the same structure of input values can be maintained
for all the types of tasks. Such an approach allows to develop a general task
model unrelated to the specific task. A second important requirement is related to
the necessary simultaneous ability to manage tasks belonging to the first and the
third classes. The task model must handle cases in which a real machine (e.g., a
manipulator) performs a process along a predefined path using a specific tool (i.e.,
the worker of the process), as well as processes in which the machine is equipped
with a proper gripper, using which it is able to carry the work-pieces from a point to
another one of the work-space (i.e., the positioner of the process) in order to either
allow some worker to perform its task or to simply pick or place the work-piece at
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predefined points.
Further requirements rise in the applications that involve structural modification of
the work-piece, as in the following tasks, in which the physical characteristics of the
work-piece (could) change: i) arc welding ii) spot welding, iii) laser welding cutting,
iv) plasma cutting/water jet v) processing machining, vi) press brake bending, and
vii) interpress.
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Chapter 3

Proposed approach

The proposed approach has been developed taking into account different fac-
tors, e.g., issues dealt with by other works in the state of the art, results of the
tasks analysis, and constraints related to the context in which the methodology
will be applied. Works analyzed in the literature highlight the need to model both
the environment (i.e., the robotic cell in our case), and the process, and to save
their internal states while computing the automatic programming; in this way it is
possible to know the configuration of the robotic cell at each step of the required
process. The task analysis presented in Chapter 2 also showed that a unique man-
agement of the input data is possible if a proper pre-processing phase is applied.
In general it is also possible that the process can be defined in different ways in the
given robotic cell, since in practice different robots could be able to perform the
same sub-task of the process; a proper optimization procedure it is then required
to choose the best way to perform the process. The task analysis also showed the
necessity to model different kinds of machinery, like workers (e.g., robots that per-
form a process on the work-piece using their tools) and positioners (e.g., robots that
move the work-piece using a suitable gripper). Finally a proper collision free path
planning module is also necessary to guarantee the movements of each machinery
involved in the process in absence of collisions. In terms of functional blocks, the
proposed Task-Oriented Programming methodology can be represented as in Fig-
ure 3.1, where it can be noticed the presence of a pre-elaboration block, a process
model block, and an optimization block. The path planning has been included in
the optimization block, since its result is required to compute a set of performance
indices, used in the optimization process.

The complete functionality should also include a high level layer providing the
input data, and a low level layer that generates the user programs using the outputs
of the CORE functionality (Figure 3.1). A possible work flow is represented in
Figure 3.2, in which the proposed Task-Oriented Programming Approach has been
included in the overall three-steps programming process.
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Figure 3.1: Architecture of the Task Oriented Programming

Figure 3.2: The three steps of the programming methodology

CAD Design In this step the programmer designs the robotic cell using a CAD
software tool as represented in Figure 3.3; in this way the physical characteristics
of the robotic cell (e.g., cell dimensions, robot characteristics, robot location, etc.)
are available through a proper description file (e.g., a xml file). In such a phase the
programmer also includes information about the process, which can be related to
both physical characteristics, like the path of an arc welding task, and functional
features, e.g., the correct sequencing tasks in the overall process. Even if the Task-
Oriented Programming approach aims at automatizing the programming process,
some information cannot be deducted; for this reason it is important that the
programmer includes functional characteristics of the process in the description
file. Functional characteristics, like the correct sequencing of the tasks, are in fact
related to the specific application, and depend on unpredictable factors, e.g., in
a spot welding application of a car door, it could be needed to weld some points
before others. Such kind of decisions are left to the programmer in the CAD Design
phase. Since the methodology has been developed to be task-oriented, only process
movement are actually designed by the programmer in this phase.

Task-Oriented Programming In this step the description file previously ob-
tained is used as input of the proposed Task-Oriented Programming approach,
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Figure 3.3: CAD Design of both the robotic cell and the process

which exploits such information to define the movements of all the machinery in-
volved in the process. The approach builds the model of the process, taking into
account both the physical characteristics of the robotic cell and the functional char-
acteristics of the process, in order to provide one feasible solution. The model is
exploited to both define the movements (including non-process ones) of the machin-
ery, and to optimize the process itself. The Automatic Programming is achieved
by applying the four phases, shown in Figure 3.4.

Figure 3.4: The four phases of the Automatic Programming methodology

The first two phases (i.e., Mapping and Merging) allow to build a process model,
called High Level Model (HLM), taking into account both physical characteristics
of the robotic cell and functional characteristics of the process. The third phase
(i.e., Searching Algorithm) elaborates the HLM providing all the feasible work-
flows carrying out the required process in the given robotic cell; such work-flows
are defined by means of a specific model, denoted as Work Flow Model (WFM).
The last phase (i.e., Optimization) applies an optimization process to the WFM
in order to select the best work-flow according to some criteria (e.g., cycle time or
energy consumption).

Deploy into the robotic line Aim of this step is the creation of the user pro-
gram, written for a specific industrial controller (e.g., PDL2 programming language
for the COMAU controller), implementing the movements generated using the Task
Oriented Programming methodology. The output of this step is then the source
code of the user program.
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The proposed work was mainly focused on the development of the CORE func-
tionality of the Task-Oriented Programming approach, and in particular the great-
est efforts were made to automatize the building of the process model. The discus-
sion does not address some issues, like the CAD design phase and the generation
of the programs. The pre-processing and path planning are not managed, as well,
since several works in the state of the art already deal with such kind of issues.

3.1 Task Modeling
The main goal of the task model is to provide a unified structure of a generic

task, which allows to obtain the whole sequence of actions defining it. The High
Level Model (HLM) is based on the assumption that each task can be divided
into a sequence of four basic steps (or by a subset of them): i) picking of the
work-piece, ii) positioning of the work-piece within a sub-set of the working-area
compatible with the execution of the task, iii) working, iv) placing of the work-
piece. In order to perform such steps, the model must include entities defining
the points for picking and placing the work-piece, as well as entities defining a
class of objects able to grip the work-piece and to carry it within the work-space,
and further entities corresponding to objects equipped with a proper tool for the
execution of the process. On the basis of such hypothesis and the requirements
discussed in Section 2, five main classes of entities are introduced: Buffers, Virtual,
Positioners, Workers and Objects, whose roles are detailed in Table 3.1.

Table 3.1

Entities Role
Buffers Real objects used to store the work-piece
Virtual Virtual elements used to define synchronization

and physical connections
Positioners Real objects able to grip the work-piece
Workers Real objects able to perform a specific process

(e.g., a manipulator equipped with a proper tool)
Objects Real objects that need to be processed

(i.e., the work-piece)

An addition element, called PATH, defines the geometrical trajectory along
which the processing has to be performed, with the addition of some features rela-
tive to the processing itself (i.e., the number of the involved work-pieces, the type
of tool to be used, etc.). The HLM of the task uses the listed entities and the PATH
elements (described in detail in Section 3.1.1) and takes into account the main as-
pects of its definition, i.e., the sequence of sub-tasks defining the user process and
the physical constraints (e.g., the distance between robots inside the robotic cell),
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merging two different models: i) the Spatial Constraints Graph (SCG) discussed in
Section 3.1.2, and ii) the Functional Link Graph (FLG) detailed in Section 3.1.3.

3.1.1 Model Entities
The formal description of the five classes of entities is given hereafter by using

italic fonts with the first letter capitalized for the classes, uppercase bold fonts for
the entities, and lowercase italic fonts for the features, after the description of the
main features of the PATH element.

PATH Such an element corresponds to the minimum task that can be executed
by a machinery, so that it could be just a portion of the whole task; complex tasks
can be obtained by a proper sequence of simple PATHs

Main features:

⋄ starting frame: frame placed at the beginning of the path defining the starting
position and attitude;

⋄ end frame: frame placed at the end of the path defining the final point and
attitude;

⋄ cartesian path: curve to be followed during processing;

⋄ id_work: identifier of the type of work involved (it is related to the type of
tool to be used);

⋄ asbly_ref: represents the number of work-pieces that are involved in the same
path (processing); it is used when the processing affects different work-pieces,
e.g., during the welding of two pieces;

⋄ action_type: joining, splitting, none; it indicates whether the processing mod-
ifies the physical structure of the work-pieces, e.g., during welding two pieces
could be joined but during a cutting process the work-piece can be split;

⋄ sync_ref: defines a possible connection between the PATH and the V_SYNC
node, which will be introduced later.

Buffers They are defined through five class features and three logical entities.

Class features:

⋄ buffer frame (BF): represents the reference frame of the buffer with respect
to a common frame;
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⋄ n connect frame (CF): defines n frames referring to the BF, each of which
represents a possible location of the work-piece;

⋄ cf_status: keeps the buffer states;

⋄ size: corresponds to the number of objects the buffer can keep;

⋄ delay: represents a time delay, which can be used to model a waiting time
between the placing phase of the work-piece and the subsequent picking one
(if present).

Logical entities:

◦ IN (I): represents an input buffer for the process, i.e., a place where the
work-piece can be picked by an object equipped with a proper gripper in or-
der to start the process.

◦ OUT (I): represents an output buffer for the process, i.e., a place where the
work-piece can be placed at the end of the process.

◦ In_Out (I_O): represents a buffer that can be used to store a work-piece
during the execution of a task; it does not represent the starting or final point
of the process but an intermediate one, so allowing the possible splitting of
the task into sub-tasks that can be executed by different machineries. Such
an entity can also be useful when the process implies the placing of the work-
piece, e.g., when it is necessary to perform some measurements on the work-
piece after a portion of the process. Sometimes such a procedure involves the
usage of a specific instrument, which implies to place the piece in a predefined
point; such a point can be modeled using the I_O entity.

Virtual This class includes two logical entities used in the definition of complex
tasks.

Logical entities:

◦ Virtual_SYNC (V_SYNC): it defines a synchronization between differ-
ent tasks; it is used when there are portions of different processes (i.e., tasks
carried out on different work-pieces) that must be synchronized; such an en-
tity is then used to connect parts of the model needing a synchronization in
order to obtain its mapping.
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◦ Virtual_Assembly (V_ASBLY): such an entity is used to manage a phys-
ical connection between different work-pieces; its usage will be discussed more
extensively in future works.

Positioners During a process the positioner must take the work-piece from the
input buffer and carry it into the common working area of all the machines involved
in the process. During the working the positioner can slightly move the work-piece
in order to facilitate the processing; finally, when the task is finished, it places the
work-piece in the proper output buffer. The Positioners are defined through five
class features and only one logical entity given by the Positioner (P) itself.

Class features:

⋄ positioner frame (PF): represents the reference frame of the positioner with
respect to a common frame;

⋄ n connect frame (CF): defines n frames, one for each gripper, attached to the
positioner (concept of virtual application point);

⋄ n gripper type (GT): identifies the type of gripper for each CF;

⋄ dof: defines the number of degrees of freedom of the positioner in the Carte-
sian space;

⋄ wa: defines the working-area of the positioner.

Workers They include manipulators equipped with the required tool, and are
defined through four class features and only one logical entity, given by the Worker
(W) itself.

Class features:

⋄ worker frame (WF): represents the reference frame of the worker with respect
to a common frame;

⋄ tool type (TT): identifies the type of tool attached to the worker;

⋄ dof: defines the number of degrees of freedom of the worker in the Cartesian
space;

⋄ wa: defines the working-area of the worker.
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Objects They represent the work-pieces that must be processed, as defined by a
set of PATH structures as shown in Figure 3.5. The object is a passive entity (i.e.,
it cannot perform any action alone), so that it is always connected to an entity able
to keep it or carry it (e.g., Positioner or Buffer).

Figure 3.5: Structure of the object entity

The Objects are defined through five class features and only one logical entity,
given by the Object (OBJ) itself.

Class features:

⋄ object frame (OF): represents the reference frame of the object with respect
to the frame of the entity on which it is connected (i.e., the WF or the BF).
Such a frame is used as a common base for all the other frames of the object;

⋄ n connect frame (CF): defines n frames with respect to OF, one for each
possible coupling point of the object (i.e., the position that must be reached
by a positioner in order to grip the object);

⋄ and_or_flag: defines whether the coupling points must be all gripped at the
same time (AND) or if only one coupling point is available (OR);

⋄ gripper_id: identifies the type of gripper required for each CF;

⋄ task queue (TQ): represents a queue containing the list of tasks to be per-
formed, so defining the order of execution. The TQ is characterized by:

– input buffer (I): represents the input buffer of the task;
– output buffer (O): represents the output buffer of the task;
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– sync_ref: defines a possible connection with a V_SYNC node;
– sub-task queue (STQ): represents a queue containing the list of Sub-

Tasks (ST), each of which is composed by a set of PATH structures
(minimum action executable by a worker) which can be performed in
parallel execution. The STQ establishes the precedence of execution of
the paths; its structure can be defined as:

∗ path frame (PF): represents a reference frame defined with respect
to OF, which is used as basis for the frames present in the PATH
structure;

∗ PATH: as already defined.

The defined entities can be connected according to two criteria: i) the type of
task they can perform, ii) their level of interaction, that can be related to the actual
distance between the real objects; such a distance defines in some way whether a
pair of objects (and hence of entities) can interact each other in order to perform a
task. The possible relationship between a pair of entities can be defined by using a
specific graph, in which each edge determines the presence of such a relation; two
different data structures are then used to specify the two types of relationships:
i) the Functional Link Graph defining the functional relations, and ii) the Spatial
Constraints Graph defining a possible interaction between entities, as detailed in
the next subsections.

Remark 1 In the proposed approach a general task is composed by a queue of
tasks that properly sequences the operations (e.g., in automotive context a possible
general welding task could be composed by three welding processes executed in a
specific order by three different work-stations). Each task can be further divided
into an ordered sequence of sub-tasks that allows a further level of abstraction in
the task definition (e.g., each welding process could be composed by four welding
sub-tasks, one for each car door). Finally a sub-task is composed by a set of
basic processes (called PATH) possibly performed in parallel execution, where each
PATH represents the minimum processing block assignable to a worker entity. The
whole assigned task can be built as a succession of four basic steps, in which the
“working” step represents the execution of a particular PATH.

3.1.2 Spatial Constraints Graph
The SCG defines the links between entities that are able to interact (in a phys-

ical sense) in order to carry out a task; only the entities that can have a spatial
constraint belong to the Buffers, Positioners and Workers classes. The relation-
ship between entities is defined by using both rough input information and their
elaboration provided by a devoted Environmental Constraints block; possible links
could then be defined on the basis of different information, e.g., the existence of
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common working areas, or the manipulability indices of the involved workers. The
spatial links are defined on the basis of some rules:

1. Worker entities can be linked only to Positioner entities

2. Buffers entities can be linked only to Positioner entities

3. A pair of entities can be linked only if the spatial constraints are satisfied

4. Positioners can be linked with others Positioners only if explicitly required

By the application of such rules, the SCG of a generic robotic cell can be built;
a possible example of a SCG is shown in Figure 3.6, where the nodes corresponding
to entities of the model have been divided on the basis of the belonging class, so
highlighting the allowed connections.

Figure 3.6: Example of definition of a Spatial-Constraints-Graph

The SCG basically defines the entities which are able to interact with each
other, but taking into account their role in the model; for this reason some specific
connection must be forbidden:

1. between a Worker and a Buffer: a worker cannot take an object but it can
simply perform a process on it;

2. between two Worker entities: two workers cannot directly interact each
other, they can only work on a work-piece connected to a positioner, so that
they are allowed to interact with a Positioner entity;

3. between two Buffers: buffers are passive entities which simply contain (or
keep) an object, so that they cannot interact each other.

The only entity allowed to be connected to any type of entity is the Positioner;
in fact it interacts with the buffers in order to pick and place the objects, and
also with the workers to keep the work-piece during processing. The connection
between positioners is also allowed; such a link defines a possible flying exchange
of the work-piece between two positioners without using any intermediate buffer.
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3.1.3 Functional Link Graph
The Functional Link Graph defines the relation between a PATH and the avail-

able workers, so to have a connection between the PATH and each worker having
the characteristics required to perform the corresponding task. For each object
entity a FLG is then built by using the related set of PATH and worker entities
(see Figure 3.7).

Figure 3.7: Possible example of a Functional Link Graph

The FLG takes into account different scenarios that could be actually present
in a real robotic cell: i) several workers could be able to perform a particular task,
ii) some tasks (or sub-tasks) could be synchronized and iii) some work-pieces could
be physically modified during the process.

The first scenario was addressed by allowing the connection of a path with
multiple workers; e.g., in the FLG in Figure 3.7 PATH1 is connected to W1, W2
and W3, corresponding to the set of available workers able to perform the task
defined by PATH1.

The second scenario involves the possibility to synchronize Tasks, Sub-Tasks
or PATHs belonging to different objects. Such a problem has been managed by
introducing a proper link (i.e., sync_link), which is used to connect the tasks need-
ing synchronization with the V_SYNC entity (Figure 3.8). The V_SYNC then
groups the set of actions that have to be synchronized, so that some constraints
must be respected in order to preserve the correctness of the whole model: 1) each
Task, Sub-Task or PATH can have only one sync_link (tasks that are executed at
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different time instances cannot be synchronized), 2) the sync_link must be defined
so to avoid deadlocks in the process. A general rule is to avoid the synchronization
of operations whose time sequence has been already constrained, e.g., two Sub-
Tasks of the same object could not be synchronized because they are performed
in serial execution by definition. A further example is shown in Figure 3.9, where
the proposed set of sync_link defines the synchronization between PATH1.1 and
PATH2.2 and between PATH2.1 and PATH1.2. Despite the synchronized paths
belong to different objects, in such a case the proposed cross synchronization im-
plies two conflicting constraints in the temporal execution of the involved paths; in
fact the execution of PATH1.1 is subject to synchronization with PATH2.2, which
can be executed only after PATH2.1, but the latter is waiting for the execution of
PATH1.2 (due to the sync_link) that cannot be performed because the execution is
stopped waiting for PATH1.1. In order to allow different types of synchronization,
the V_SYNC includes a table containing for each node whether the operation
must be synchronized with respect to its beginning, its end or both, so that it
could be possible for instance to synchronize the beginning of a Task with the end
of a Sub-Task.

Figure 3.8: Using V_SYNC entities in a FLG in order to synchronize different
parts of the process

The third scenario takes into consideration possible physical variations of the
work-pieces. In fact, while some kinds of mutation do not influence the model of
the process, like changes of the color or shape of the work-piece, some others could
imply the change of the model, so to maintain its consistency with respect to the
process (e.g., during a cutting process). Three possible actions on the work-piece
are then introduced and stored in the action_type field of the PATH structure: i)
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Figure 3.9: Example of a possible deadlock caused by an incorrect usage of the
V_SYNC entities between two FLG models

joining, ii) splitting, iii) none; specific actions on the model are eventually performed
on the basis of the value assumed by action_type.

When the action is of joining type, a new object entity, which properly merges
the features of the starting objects, must be created; such an object inherits the
uncompleted Tasks and Sub-Tasks of the starting objects, and could change some
physical properties eventually stored for low level operations. On the contrary,
when the action is of splitting type the starting object could be divided into a
number of new objects, depending on the characteristics of the required process
and on the number of positioners the work-piece is connected to. However not all
the actions of splitting type, imply the creation of a new object; two main cases can
be taken into account:

• rejection: if during a cutting process the cut part of the work-piece is not
connected to a positioner, it will be discarded; in such a case the creation of a
new object is not required, but a simple update of the physical features of the
starting object could be eventually necessary (e.g., shape, weight, inertia).
The rejection case can be recognized by analyzing the geometrical charac-
teristics of the required process, the number of positioners connected to the
work-piece and the positions of its CF.

• division: if during a cutting process the cut part of the work-piece is connected
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to a positioner, it continues to be part of the process, so that a new object
entity is then required. A division occurs whenever the cut is performed
between two CFs actually used by two positioners, so that the cut part of the
work-piece is kept by a positioner.

Finally if the process is neither of joining nor splitting type the starting object
entity is kept; the three possible types of processes can then be summarized as in
Table 3.2.

Table 3.2: Effects of the three types of actions on the HLM

Action Effect on the HLM
joining Decrasing of the number of object entities
splitting(rejection) Number of object entities unchanged
splitting (division) Increasing of the number of object entities
neither joining nor splitting Number of object entities unchanged

Each part of a process is classified using the field action_type of the PATH
structure; such a field is set up over the pre-elaboration phase of the starting infor-
mation, during which both the geometrical paths and the tools required to perform
the tasks are already known. Such information is important to reconstruct the
feasible sequence of operations making the whole process, through a developed al-
gorithm. In fact, the structure of the HLM should be dynamically changed in order
to take into account changes on the number of work-pieces during the execution.
In particular a task of joining type requires the fusion of different objects, so that
its features are actually related to each involved object. In order to model such a
situation, the connection of a PATH with different objects is allowed (asbly_ref >
1), which in practice means that the task affects all the involved work-pieces that
must be properly aligned in order to perform the task (e.g., in Figure 3.10 PATH2
belongs to both ST1.2 and ST2.1, and hence to OBJ1 and OBJ2). A devoted algo-
rithm has to properly merge the features of the objects involved in the joining task,
so to obtain a final unique object, whose task queue is filled by a combination of
the residual task of the involved objects. On the contrary, a task of splitting type
could require the creation of new object entities; in such a case when the splitting
task is analyzed by a proper algorithm, one or more new objects are created, each
of which is composed by a set of tasks taken by the starting one on the basis of
simple geometrical analysis.
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Figure 3.10: Definition of a possible joining action between two sub-tasks belonging
to different FLG models

3.1.3.1 Complex blocks management

In the task modeling approach developed so far, a punctual correspondence
between each real object and a single logical entity was assumed: for example, a
Buffer entity was defined for each collection point or box for the work-pieces, as well
as a Positioner entity was introduced for each robot able to perform a positioning
action.

In some cases, the structure of the process includes complex parts that cannot
be modeled by a single entity, or some external machinery, which contributes to
the execution of the process itself, but that is not part of the robotic cell. Typi-
cal examples are given by measurement or quality control stations, which possibly
introduce a delay in the process execution, or machinery devoted to specific mate-
rial processing (e.g., an hydraulic press). Such stations and machinery cannot be
considered as simple Buffers, in particular in case of mutually exclusive stations
that can alternatively perform the same operation on the work-pieces. In this kind
of situation, standard Buffer entities could be used to model such elements, but
associating to them also a predefined delay, and giving the user the possibility to
explicitly define the exact sequence of the stations.

A general, convenient solution is here proposed, considering such parts of the
process as complex blocks, which are modeled as complex entities obtained by the
connection of some fictitious standard blocks. Figure 3.11 sketches the case of a
measurement machinery M1, represented using a dashed line to define it as a special
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block; M1 is converted into the queue of three (fictitious) standard blocks: the
Worker WM1, considered as able to perform the measurement task, the Positioner
PM1, for the virtual positioning of the work-piece to be measured, and the Buffer
BM1, collecting the workpieces. This solution allows to let the measurement action
become a proper task, with the possibility to include priority constraints, if any,
as well as to set mutually exclusive constraints in case of more machines, or even
constraints about the capability of only some stations to perform specific actions.

Figure 3.11: Modeling of a complex block

If the complex block does not include a working action, only Positioners and
Buffers are used, e.g., to represent a net of conveyors in a packaging process.

3.1.4 High Level Model
The High Level Model is a model representing the features of both the process

and the robotic cell; it is built after the definition of a SCG model representing
physical relations between the entities, and a set of FLG models defining the relation
between the tasks of a specific work-piece and the available workers. The HLM is
then built by fusing the SCG and the n FLGs (one for each object) so obtaining an
overall model, which can be used to define all possible sequences of basic operations
that must be performed to implement the required process. As highlighted in
Figures 3.6 and 3.7 both the SCG and FLG models include links to Worker entities,
so that the two independently developed models are actually connected by the set
of workers. The final model shown in Figure 3.12 is then completed by adding a link
between each object entity and the input buffer of the corresponding process. Such
an action is necessary because OBJ is a passive entity, so that its own reference
frames are relative to those of the entity it is connected to (i.e., a Buffer or a
Positioner). A possible algorithm during the building of the overall process should
then change properly the link of the object entities in order to keep the consistency
with the current situation in the real cell, e.g., when the work-piece must be picked
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by a particular positioner the link must be placed to the corresponding entity.
The scrolling algorithm (that will be described in Section 3.2.1) represents a very
important part of the generation of all possible work-flows defining the required
process, which can be built by exploiting some feature of the HLM. In particular
its most important property is that each transition of the graph can be directly
mapped into one of the four steps defined in Section 3.1.1, each of which corresponds
to a real action performed by a specific machine (represented by the corresponding
entity).

Remark 2 At this level of abstraction the goal is to find a general structure
that allows to build a task by the correct sequencing of a set of basic steps. For this
reason extensive details about robot features, motion and timings as well as possible
ways to define the optimization problem, are not considered here. Just some basic
information about Cartesian movements, frames and working-areas necessary to
define physical constraints (e.g., to define the workers able to perform the task)
are included in the model (e.g., the PATH structure includes the cartesian path in
which the process must be performed). However a sort of time relation between
tasks, sub-tasks and PATHs has been introduced by means of the synchronization
node, which imposes some tasks, sub-tasks or PATHs to wait for others.

3.2 Work Flow Modeling
The work-flows given by different sub-tasks can be modeled using a set of prede-

fined blocks, which impose the cause-effect condition between the sub-tasks. Given
a generic work-flow, a possible model should take into account at least two kinds
of relations: i) tasks carried out in series, and ii) tasks carried out in parallel. It is
also important to introduce a synchronization relation taking into account possible
interdependence between different sub-tasks. In order to include also the possibil-
ity to model different alternative ways to perform the same task, it is necessary
to introduce a further type of relation, modeling sub-tasks carried out in mutual
exclusion. The proposed model, called Work Flow Model (WFM), is based on five
basic blocks:

• AND_Split: defines sub-tasks carried out in parallel

• OR_Split: defines sub-tasks carried out in mutual exclusion (alternative ways
to define the same task)

• AND_Join: imposes the synchronization between parallel tasks

• OR_Join: allows to join alternative work-flows
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Figure 3.12: Overall HLM model

• TASK: defines a recursive block that can both include other basic blocks or
a basic task.

A basic task corresponds to the workings (i.e., a real action) carried out by a
specific machinery; it includes the sequence of instructions specific for the target
machinery (e.g., path planning of a manipulator), and hence it must be defined on
the basis of the actual available machineries and of the specific application to be
modelled. For the proposed application, devoted to the programming of robotic
cells mainly constituted by industrial manipulators, four basic tasks are defined:

• TASK_pick(P, B, OBJ): defines the picking action of the work-piece (OBJ)

• TASK_place(P, B, OBJ): defines the placing action of the work-piece (OBJ)

• TASK_exec(P, W, PATH, OBJ): defines the actions carried out by the Worker
in order to execute the sub-task described by a specific path (PATH)
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• TASK_flypass(Pi, Pj, OBJ): defines the passage of the work-piece between
two Positioners (Pi and Pj)

More complex blocks can be obtained composing the basic blocks of the WFM.
In order to improve the level of recursivity of the model, a set of second level TASK
blocks are then introduced:

• TASK_parallel: is defined by one AND_Split block and one AND_Join
block, both connected to a set of n TASK blocks

• TASK_mutex: is defined by one OR_Split block and one OR_Join block,
both connected to a set of n TASK blocks

• TASK_st_exec: is defined by one TASK block followed by n OR_Join blocks

The meaning of TASK_parallel and TASK_mutex is quite evident.
TASK_st_exec is included to define the beginning of a new sub-task, as shown in
Figure 3.13 where a possible example is reported.

AND_Split

TASK1

TASK2

TASK3

AND_Join

OR_Split

OR_Split

TASK4

TASK5

OR_Join TASK6 OR_Split

TASK7

TASK8

TASK8

TASK10

OR_Join

OR_Join

TASK_parallel

TASK_mutex

TASK_st_exec

Figure 3.13: Example of a WFM composed by both basic and complex blocks

3.2.1 Automatic conversion HLM → WFM
The building of the WFM can be automatically obtained by the application

of a proper algorithm to the HLM. The algorithm allows to scroll the HLM and
to translate each transition into a corresponding block of the WFM using a set of
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rules. For sake of simplicity the section firstly describes the scrolling algorithm and
then the translation rules.
The algorithm here proposed is applicable to HLMs including one OBJ entity.

The pseudo-code illustrated in Algorithm 1 defines the main passages of the
proposed scrolling algorithm.

Algorithm 1 HML_search(HML)
1: function HML_search(HML)(wfmh, stack)
2: while exists next sub-task do
3: subtask ← get_NextSubTask()
4: path_marking(subtask)
5: for all starting_state ∈ current_states do
6: DFS(G, starting_state, final_states)
7: append(next_current_states, final_states)
8: end for
9: current_states ← next_current_states

10: clear(next_current_states);
11: end while
12: end function

Figure 3.14 shows the HLM already presented in Figure 3.12, with the addition
of some passages of the algorithm highlighted in different colors. From the figure it
is evident that the algorithm is based on two different flows, executed alternately,
represented in blue and red, respectively.

The blue flow starts from the OBJ entity, and runs always in the upper part
of the graph (i.e., the one highlighted in the dashed blue box) corresponding to
the Functional Link Graph (FLG) of the HLM; the red flow starts from a specific
position, corresponding to the current state of the robotic cell (i.e., the current
entity which the OBJ is connected to), and runs always in the lower part of the
graph (i.e., the one highlighted in the dashed red box), corresponding to the Spatial
Constraints Graph (SCG) of the HLM. At each step the blue flow gets the next
sub-task, extracts the corresponding PATH elements and marks them properly
(corresponding to the functions get_NextSubTask and path_marking in Algorithm
1, respectively); in practice the first flow defines the goals of the second one. In
the example of Figure 3.14 the blue arrows show that the flow firstly extracts the
task T1 from the task queue and then the sub-task ST1 from the sub-task queue;
subsequently PATH1 and PATH2 are marked.

The red flow starts from the current state (during the first cycle it corresponds
to the input Buffer of the task) and applies a Depth First Search algorithm (DFS)
in order to find the PATH elements marked during the last iteration of the blue
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OBJ
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Flow 1

Flow 2

Figure 3.14: Example of HLM with some steps of the scrolling algorithm

flow. Since, depending on the graph topology, different ways to find the marked
PATHs can exist (i.e., there are different ways to carry out the sub-task), the search
algorithm tests all the possible graph paths; once all attempts are carried out, the
red flow finishes its iteration and the blue one can make the next iteration by
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marking the PATH elements belonging to the subsequent sub-task.
The example of Figure 3.14 shows that the red flow, starting from the input

Buffer B1, scrolls the graph reaching the Worker W1, which is connected to PATH1.
From a conceptual point of view, the transitions B1 −→ P1 and P1 −→W1 allow to
carry out the working defined by PATH1. Next steps (not reported in Figure 3.14)
allows to reach W2 and hence to carry out the working defined by both PATH1
and PATH2.

Such an algorithmic cycle is repeated until all the sub-tasks are tested; if another
task exists the procedure is repeated, otherwise a last cycle is carried out, during
which the output Buffer must be found, if it is possible. In the proposed example,
when the red flow finishes the iteration related to ST2 (i.e., the one that aims at
finding PATH3), since ST2 is the last sub-task and since there are not further tasks
(only task T1 has been defined), the blue flow triggers the last iteration. In such
a phase the red flow, starting from the current state, scrolls the graph until the
output buffer B3 is reached.

During the running of the red flow, the current state of the robotic cell is
updated whenever the flow visits a Buffer or a Positioner entity (i.e., the only ones
able to grip the work-piece); when the solution of the current iteration is found,
the last state is stored (append function in Algorithm 1), and it will be used in the
subsequent iteration as starting point.

Remark 3 It is important to notice that the red flow provides a solution of
the i-th iteration only when it finds the set of transitions that allows to visit all
the marked PATH elements. Since the PATH elements can be connected only to
Workers and Workers only to Positioners (as discussed in Section 3.1.2), when the
algorithm performs a transition from a Positioner to a Worker and then to a PATH
element, the OBJ (and hence the work-piece) is still connected to the Positioner
entity. For this reason when the red flow finds the last marked PATH, the cur-
rent state is always given by a Positioner entity. The only exception is when the
algorithm performs the last iteration, which terminates when the output Buffer is
reached.

The translation of the HLM into the equivalent WFM is obtained by the appli-
cation of a set of rules (see Table 3.3) applied during the transitions between the
nodes of the HLM. For each row of the table a brief description is given:

1. When the procedure starts, it is necessary to define different parallel work-
flows, one for each OBJ entity of the HLM.

2. When the first flow extracts a new sub-task, a corresponding TASK_st_exec
block must be included in the WFM in order to take into account possible
multiple ways to perform the sub-task.

36



3.2 – Work Flow Modeling

3. The transition Buffer → Positioner corresponds to the picking of the work-
piece from the buffering position.

4. The transition Positioner → Buffer corresponds to the placing of the work-
piece into the buffering position.

5. The transition Positioner → Positioner corresponds to the passage of the
work-piece between two different positioners.

6. When the second flow visits a buffer, different possible work-flows can arise
(it depends on the graph topology), so that an OR_Split block is introduced
in the WFM.

7. When the second flow visits a Positioner, all the marked PATH elements di-
rectly reachable (i.e., those connected to the Workers linked to the current
Positioner) must be executed in parallel. A TASK_parallel block is then
added to the WFM, where the TASK_parallel has a number of parallel flows
equal to the number of reachable marked PATH. For each parallel flow a
TASK_mutex is also included to take into account the possibility that differ-
ent Workers could be able to perform the same PATH.

(a) If not all the marked PATH elements are reachable passing from the
current Positioner, it is necessary to test new paths in order to complete
the sub-task (i.e., to find the remaining marked PATHs). An OR_Split
block is then included in the WFM.

8. The transition Worker → PATH element corresponds to the execution of a
specific task described by the PATH element itself. A TASK_exec block is
then properly included in the WFM.

Table 3.3: Translation rules

# Transition/condition HLM WFM block
1 Start of the procedure AND_Split
2 Entry to a Sub-Task TASK_st_exec
3 Transition Buffer → Positioner TASK_pick
4 Transition Positioner → Buffer TASK_place
5 Transition Positioner → Positioner TASK_flypass
6 Entry to a Buffer OR_Split
7 Entry to a Positioner TASK_parallel

n TASK_mutex
7.a If not all the PATH element can be executed OR_Split
8 Transition Worker → PATH TASK_exec
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Because of the presence of the OR_Split blocks, the translation of the HLM into
the equivalent WFM can provide a number of work-flows that grows exponentially
as the number of Buffer and Positioner entities increases. However Remark 3 states
that, except for the last iteration, only Positioner entities can be used as final
states of the red flow. Since the red flow provides all possible work-flows defining
the sub-task, Remark 3 can be reinterpreted as: each sub-task may have different
final states (one for each alternative work-flow), which in the worst case are equal
to the number of Positioners included in the HLM. For this reason in the transition
between two consecutive sub-tasks, there may be more then one starting state of
the red flow, and all of them must be tested. Even if this involves an exponential
growth of the WFM, thanks to the property that the possible final states are always
the same (i.e., the Positioner entities), the exponential explosion can be at least
limited as shown in Figure 3.15.
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Figure 3.15: Sketch of a WFM obtained from a HLM with three Positioners called
P0, P1 and P2

Complexity Analysis

A simple analysis, related to the scrolling algorithm only, has been carried out
to approximately compute the asymptotic complexity in the worst case. Since
the core of the proposed algorithm includes two nested algorithmic flows, and the
internal one (i.e., the red one) is the most expensive one, the worst condition occurs
when the internal flow is repeated the highest number of times. Since such a value
corresponds to the number of the involved sub-tasks, the worst case is actually
achieved when the number of sub-tasks is the maximum allowed for a specific set of
PATH elements, and hence when each sub-task is composed by exactly one PATH
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element. In such a case the external flow (i.e., the blue one), responsible for marking
the PATH elements, has a constant complexity O(1), since only one PATH element
is included in the sub-task (the management of the task and sub-task queues, both
included in the function get_NextSubTask of Algorithm 1, is neglected, since at
each iteration only one extraction is performed). The red flow scrolls only the part of
the HLM corresponding to the SCG in order to find the marked PATHs. Leaving out
the particular composition of the SCG (given by Buffers, Positioners and Workers),
it always corresponds to a not oriented connected graph G(V, E) (V denotes the
vertices and E the edges, as in Figure 3.16); possible vertices not connected to
the main graph are simply ignored by the algorithm, since they correspond to
machineries or other objects of the robotic cell that cannot physically interact whit
the other ones.

W1 W2 W3 W4

P1 P2

B1 (I) B2 (I_O) B3 (O) 1

2

654

3

7

8

9

SCG G(V,E)

Figure 3.16: Graph G(V, E) corresponding to the SPG of the proposed example

During each iteration, the DFS algorithm is applied in order to find the marked
PATH elements; in general the complexity of a DFS is given by O(n + m) when
adjacency lists are adopted, where n = |V | and m = |E|. The DFS is repeated for
each starting state (given by Positioner entities only), so that the complexity can
be rewritten as O(n) · O(n + m), supposing a very restrictive (and in general not
realistic) condition in which all the nodes are Positioners. For each iteration, the
two algorithmic flows are executed in series, so that the total complexity is given by
O(1) + O(n) ·O(n + m). Each iteration is also repeated for each sub-task included
in all the sub-task queues; since the worst case occurs when the total number
of sub-tasks is equal to the number of PATH elements k, the overall asymptotic
complexity is then given by O(k) + O(k) ·O(n) ·O(n + m), that can be written as
O(k + k · n2 + k · n ·m). In general, in a not oriented graph the number m of edges
is between n− 1 and n · (n− 1)/2, so that, in the worst case, the overall complexity
can be approximated as O(k · n ·m).
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3.3 Case Study
A possible case study is herein presented in order to show the whole flow that

allows to map a real robotic cell into the corresponding HLM model, and then
computing the WFM. The proposed application involving the welding of car doors
is composed by two phases: i) the car door taken from the collection point #1 must
be welded according to a set of user-defined paths and then placed in the collection
point #2 , ii) the car door taken from the collection point #2 must be welded (using
a different tool with respect to the first welding process) according to a further set
of paths and placed in the collection point #3. The whole process can be defined by
a mix of information about the process and the features of the robotic cell, which
must be both provided by a high-level layer (e.g., a CAD software) which also
provides all the geometrical features of the robots, the environment, the work-piece
and the paths. The proposed robotic cell is composed by three collection points
and six robots; in particular there are four robots equipped with a welding tool
and two robots with a specific gripper for car doors; all the elements (i.e., robots
and collection points) can be remapped into the corresponding entities as listed in
Table 3.4, and then used to define the SCG model.

Table 3.4: Mapping of the the real objects into the corresponding model entities

Real object Model entity
Collection point #1 Buffer B1
Collection point #2 Buffer B2
Collection point #3 Buffer B3
Robot 1 Worker W1
Robot 2 Worker W2
Robot 3 Worker W3
Robot 4 Worker W4
Robot 5 Positioner P1
Robot 6 Positioner P2

Figure 3.17 represents a sketch of the proposed robotic cell, where the colored
regions define the working-areas of each robot. As highlighted in the figure, some
robots cannot interact with each other; the building of the SCG model must then
be performed avoiding their connection so preserving the actual set of feasible
interactions. In the current example a simplified set of spacial constraints are
taken into account, so that the SCG is made up using the building rules reported
in Section 3.1.2 with the intersection between the working-areas as unique spatial
constraint.

The set of constraints imply that: i) P1 can be connected only to B1, B2,
W1, W2 and W3, ii) P2 can be linked to B2, B3 and W4. According to the
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Figure 3.17: Sketch of the robotic cell of the case study

adopted spatial constraint P1 and P2 could be connected with each other as well,
but it is supposed that their connection is not explicitly required (fourth rule for the
building of the SCG). The SCG model representing the proposed scenario is shown
in Figure 3.6, in which the buffer entity representing the input (I) for the process
and the one representing the output (O) must be specified in the input information,
whereas further buffers present in the model are imposed to be of type I_O; their
actual usage for the definition of the whole work-flow is however mandatory only if
explicitly requested.
For the realization of the unique FLG model (in fact only one work-piece is present),
the sequence of tasks forming the whole process must be defined; such information
must then be passed as input to the task model in order to create the task queue
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of the object entity. In the proposed example the first sub-process is composed
by two welds, respectively defined in PATH1 and PATH2, whereas the second one
is composed by one weld whose features are stored in PATH3. The corresponding
FLG is then defined as shown in Figure 3.7, in which the task connected to the only
object entity is composed by two sub-tasks, where ST1 is connected to PATH1 and
PATH2, whereas ST2 is linked to PATH3. The FLG is then completed by adding
the connection between each path and the proper workers; in particular PATH1
and PATH2 can be performed only by W1, W2 and W3 (i.e., the only workers
with the proper welding tool), while PATH3 can be carried out by W4, which owns
the welding tool of the other type. The final HLM model is then shown in Figure
3.12 where the additional link connecting OBJ to the input buffer B1 has been
included.

Applying now Algorithm 1, the first flow extracts the sub-task ST1 given by
PATH1 and PATH2, so that a new TASK_st_exec is defined; the second flow,
starting from the input Buffer, scrolls the HLM in order to find the way to carry
out PATH1 and PATH2. At the end of the first iteration the WFM in Figure 3.18
is obtained, where the final state is given by the positioner P1; no further states
are found.

TASK_st_exec

TASK_pick(P1, B1) OR_Join 
P1 

TASK_parallel
TASK_mutex

TASK_mutexAND_Split AND_Join

OR_Split
TASK_exec(P1, W1, PATH1)

OR_Join
TASK_exec(P1, W2, PATH1)

OR_Split
TASK_exec(P1, W1, PATH2)

OR_Join
TASK_exec(P1, W2, PATH2)

Figure 3.18: TASK_st_exec block corresponding to the ST1

The second iteration starts by extracting the PATH elements belonging to ST2
(i.e., PATH3) and defining a further TASK_st_exec. The second flow starts from
P1 (the current state) and scrolls the HLM to find a Worker connected to PATH3.
The WFM resulting from such iteration is represented in Figure 3.19, where un-
necessary blocks have been neglected to preserve the clarity of the figure (e.g., the
TASK_parallel automatically generated during the transition from B2 to P2 is
omitted since it includes only one work-flow).
Once all the sub-tasks and tasks have been extracted, a third TASK_st_exec is
defined and the last iteration is triggered. During such a phase the algorithm,
starting from the current state P2, looks for the output Buffer. The WFM block
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TASK_st_exec

TASK_place(P1, B2) TASK_pick(P2, B2) TASK_exec(P2, W4,PATH3) OR_Join 
P2 

Figure 3.19: TASK_st_exec block corresponding to the ST2

corresponding to such a last iteration is represented in Figure 3.20.

TASK_st_exec

TASK_place(P2, B3) OR_Join 
B3 

Figure 3.20: TASK_st_exec block defining the last iteration

The three TASK_st_exec blocks of Figures 3.18–3.20 must be intended as con-
nected to each other, in order to preserve the actual cause-effect relations.
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Chapter 4

The optimization phase

At the end of the third phase of the proposed Automatic Programming method-
ology (see Figure 3.4), the WFM of whole the process is provided, containing all
the feasible, and alternative, work flows carrying out the process itself. The goal of
the fourth phase (i.e., the Optimization one) is to find the best work flow accord-
ing to some criteria, e.g., the cycle time or the energy consumption. The WFM,
as shown in Figure 3.13, is provided in a form that is equivalent to an AND/OR
graph. Such kind of notation, which is quite known, allows to represent sub work
flows executed both in parallel and in mutual exclusion. In particular the OR nodes
branch the work flows, providing alternative ways to carry out the same sub pro-
cess. AND/OR graph is very known in the state of the art, and various algorithms
to efficiently solve such an optimization problem can be found (e.g., AO* algorithm
[1]). In order to actually apply such a kind of algorithm it is needed to define a
set of performance indices, to be used to weight the graph. A way to obtain them
is to use a robot simulator, e.g., the ORL robot simulator [66], [11], for COMAU
robots. The ORL simulation environment allows to load a specific COMAU robot
and carry out the motion simulation by applying a specific position target; it is
also possible to change the motion performance of the robot by acting on a specific
variable, called override (OVR), which defines the applied velocity as a percentage
of the maximum allowed. The obtained simulation is very accurate, since it exploits
the same motion algorithms used by the COMAU controller C5G. Using such an
environment it is possible to simulate the tasks, and computing the correspond-
ing (theoretical) values of cycle time or of energy consumption; such values can
be then used within the optimization process to weight the graph. After that the
optimization algorithm can be applied, providing the best work flow.

A second possibility is to translate the WFM into a corresponding Petri Net
(PN). PN is a very suitable tool to model and to plan the task sequence of robots
[81], [80], and in general of manufacturing systems. Such approach is feasible, in
fact other works in the state of the art build a PN starting from an AND/OR
graph[19]; synthesis procedure able to build a PN starting from a graph [18] can
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be found, as well. The Activity-Oriented Petri Net proposed in [25] also shows
that PN can be adopted to model the process as a set of tasks (activities) properly
connected (as in the WFM), taking into account constraints given by possible shared
resources; furthermore there is a lot of known theories to analyze the PN, e.g., in
order to avoid dead locks of the process [39]. The possibility to optimize a PN is
also feasible; different works can be found in the state of the art exploiting PN to
solve optimization problems like Assembly Line Balancing Problems (ALBP) e.g.,
in [53], [54], and in [26], where Activity-Oriented Petri Net are adopted.

The optimization of the robotic cell has been treated to far as it were the only
element of a production system (local optimization). Nevertheless, a different ap-
proach can include further elements in the optimization process, concerning the
efficiency of whole the production line (and not only of the portion of which has
been programmed using the proposed approach), in order to find an overall solu-
tion reducing possible bottlenecks of the plant. The possibility of integrating the
proposed Automatic Programming methodology with a production efficiency tool
allows to mange such kind of situations, making the robotic line part of a larger
production process, so obtaining a final solution that optimizes the process with a
global vision of the production line.

4.1 Integration with a production efficiency tool
This section shows how to include a production efficiency tool in the proposed

programming methodology. Such tool is used in this context to optimize the overall
process in a broader sense; it gives important information about the process itself,
that the user can exploit to eventually modify the tasks execution in order to
improve the performance of the process, minimizing possible bottlenecks. The
section gives the basics about the adopted production efficiency tool, and then
shows how to obtain an overall architecture of the system.

4.1.1 Basics of scalable production efficiency tool
The association of the WFM to a performance improvement method allows

to approach the new visions in robotics that consider planning and acting as an
inseparable, continuous and multiscale problem [35]. The present methodology
gives a viable technique to cope with the new issues in robotic production planning
and scheduling. The key of the method relies in a proper abstraction of the basic
Overall Equipment Effectiveness (OEE) definition as a result of three efficiency
factors

OEE = Aeff × Peff × Qeff (4.1)
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where: Aeff is the availability efficiency that describes the deleterious effects of pro-
duction stoppages, breakdowns, setups and adjustments; Peff is the performance
efficiency that describes the productivity loss caused by reduced speed, minor stop-
pages, and idling; Qeff is the quality efficiency, which takes into account the losses
of production due to defects and rework. By considering the OEE of a productive
unit as the rating of the achievement of a goal, the three factors capture separately
the major aggregated aspect of even complex phenomena, through a suitable map-
ping with a cause-effect model of the physical evolution. The better the accuracy of
the mapping, the best the strength of this OEE key performance indicator (KPI)
is. At this point, several units can be coordinated to collaborate to a common
superior parent goal, which is associated to an abstract entity that sees the units as
its children. The four fundamental structures in which the children are coordinated
(according to [68],[69]) are series, parallel, assembly, and expansion, as shown in
Figure 4.1.

Figure 4.1: The four fundamental structures

The performance of any of the four coordinated structures of the children is in
turn assessed by the OTE KPI that is obtained from a function of the OEE and
the Qeff of any of the children (see for example [15], [16] for complete expressions).
The new parent abstraction can then be in turn a descendant of a similar structure
at a higher level. In this case the OTE of the superior entity will depend recur-
sively from the OTE of the descendant. This modelling and abstraction continues
open-ended in a bottom-up and top-down manner whilst recursively matching the
granularity of the production problem depending on the knowledge context. The
overall production goal is decomposed into a hierachy of goals and subgoals. At
each level of the hierarchy a parent entity aggregates and monitors the achieve-
ment of the goals of its children. The kind of aggregation of the information from
the parent depends on the attribution of one of the 4 fundamental structures in
Figure 4.1, as a communication topology between the children and their assigned
sub-goals. This constitutes a typical holonic vision, in which the entities are hier-
archically participating into a holarchy, a semi-autonomous organization that aims
at a same shared global goal [65]. The organization of the children connection at
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each level of the hierachy has been defined as internal coordination [65] or implicit
coordination [31] in the multiagent systems context. Furthermore, the use of recur-
sive relationships in the functional structuring of the holarchy helps in the design
and development of the computing agents that are usually associated to the holons
[38],[17]. As discussed in [78], the recursive properties enable the adoption of a frac-
tal scheme of computing that is fundamental when the number of the entities and
the levels of the tree is huge and with limited computing resources. The holarchy
of a production process can be represented as a hierachical tree as in Figure 4.2.

Figure 4.2: An example of tree-based relationship between parent and children
structures

Having obtained such a tree structure, the iteration of the computing of the
process bottlenecks programmes a list of possible step-by-step actions to be applied
on the leaf nodes of the tree, towards a sub-optimal monotonic improvement of the
system’s performance (see [15] and [16]). Only one improvement action at time must
be performed on the system, depending on a knowledge-based policy that takes
into account human or artificial reasoning about the actual effects on the physical
system. Note that the improvement actions programmed by the algorithm might
not produce the theoretical expected effect in the environment, if the OEE model
is not accurate enough. Nevertheless, the rate between the expected improvement
and the actual one can be used as a measure for the triggering of the refinement of
selected parts of the model or of the whole hierarchy. The overall advantage with
respect to other methods is the minimum amount of refinement actions that render
the system barely viable.

4.1.2 The proposed architecture
The WFM defined in Section 3.2 is a convenient tool for the planning and

scheduling of a production. The status and the progress of a production process can
be monitored, assessed or replanned basing on the quality, rates of accomplishment,
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contingency states of the actions in the work flow. In this sense, WFM constitutes
an opportunity for abstraction and aggregation of the production system’s infor-
mation, which reduces and simplifies the high dimensional and multivariate search
space for the otherwise computationally hard problem of planning and schedul-
ing. As described in Section 3.2, a task in the WFM is defined with a bottom-up
approach from the HLM of the task, which contains informational details on the
actual performance possibilities of the task, when planned in time, due to the in-
stantaneous availability of resources and other physical and timing constraints. In
this representation, there is the opportunity for a task in the workflow to be as-
sociated to a set of aggregate indicators that can be used from a planner and a
scheduler to decide the contribution and the role to the overall performance of the
task. If the task is a sub-task of some other composite task, made of tasks, split,
and join elements of the flow model, then the problem becomes recursive and can
be handled with the OTE recursive methodology. Such a methodology is applied
seamlessly to the control of the workflow model of the robotic production process
when the WFM topology is easily associable to the structures of Figure 4.1; the
mapping and the interpretation of the task structures and the abstract system tree
is in this case natural and straightforward.

Many concurrent interpretations and topologies can be simultaneously attributed
to a WFM. In general the problem of the mapping between WFM and recursive
OTE is open and manifold. Nonetheless, as in [69], where the topology and the
interpretation of the production layout was well-determined and fixed, also here
the well-determinate topology of a WFM can be usually exploited to establish an
automatic generation of the OTE systems’ tree. In the following Sections 4.1.3
and 4.1.4 we will describe how a simple WFM can be interpreted and managed in
association to the recursive OTE methodology to obtain an effective control of the
WFM, while in Section 4.1.5 the automatic algorithm generating the OTE systems’
tree starting from a WFM is presented.

4.1.3 Computation of the efficiency parameters
The efficiency parameters Peff , Qeff , Aeff , introduced in Section 4.1.1 are now

interpreted and computed in the scenario of a generic robotic cell; their definitions
will be given in a general case applicable both in a completely off-line (simulated)
context and in a possible implementation with feedback from the real plant.

The performance efficiency Peff is considered as related to the cycle time re-
quired to execute the given task; the parameter has to be defined so that:

• its values are between 0 and 1;

• the unitary value corresponds to the ideal (not necessarily reachable in prac-
tice) minimum cycle time, whilst the zero value to an extremely high (unde-
sirable) cycle time.
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The quality efficiency Qeff is used to take into account the energy consumption
associated to the way the task is executed, with the aim to balance the search
for a high performance efficiency (which would let the robot move at very high
velocities) with the necessity of limiting the energy consumption, if possible, while
guaranteeing anyway satisfying performances for the whole process. As for Peff ,
the values of Qeff must be between 0 and 1, with the unitary value denoting the
best situation, i.e., the one corresponding to a very low energy consumption.

The availability efficiency Aeff is finally related to the expected number of
working hours of the machinery, or equivalently to the number of cycles, carried
out without any interruption due to faults or planned maintenance interventions.
The values of Aeff , too, have to be between 0 and 1, with the unitary value cor-
responding again to the best condition, in which a very high number of cycles is
performed without interruption.

Different mathematical expressions can be considered for the three efficiency
parameters so to guarantee the desired behavior for them. The adopted solution
is based on the use of a sigmoid function, whose properties are briefly recalled
hereafter, before the formal definition and computation of Peff , Qeff , and Aeff .

4.1.3.1 Sigmoid function

The sigmoid function is real-valued, monotonic, and constrained by two hori-
zontal asymptotes, which limit its values in the (0,1) range, making it suitable for
our purposes. Its basic expression

sig(x) = 1
1 + e−x

(4.2)

can be generalized, introducing four parameters that allow to scale, translate and
reverse its shape, if necessary, by re-defining it as:

sig(x) = a

1 + b e−cx
+ d (4.3)

where a determines the amplitude of the function, d its minimum value, and b a
possible horizontal translation; the introduction of c has a twofold objective: (i) to
vary the slope of the function by changing the module of c, and (ii) to make the
function increasing or decreasing as x→∞, by changing its sign.

In order to avoid that the efficiency parameters values collapse to 1 or 0 in very
good or bad situations, only a portion of the sigmoid function is actually employed
in their computations, eliminating the initial and final parts almost coincident with
the asymptotes, i.e., only a proper percentage p% of the function is used (e.g.,
p% = 90%), denoting with xmin and xmax the limit values of x corresponding to
such a portion.

The four parameters a, b, c, d have to be set to suitably define Peff , Qeff , and
Aeff . Since all the three efficiency parameters vary between 0 and 1, it follows that
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a = 1 and d = 0 must necessarily hold for all of them. The other two coefficients,
b and c, are instead used to adapt the sigmoid function to the specific behavior
of each efficiency parameter, according to some guidelines that allow to determine
general expressions for them.

A linear translation along the x axis is achieved by imposing:

b = ec xc (4.4)

where xc is such that sig(xc) = 0.5, and is simply given by xc = (xmax + xmin) /2.
The sign of c must be discussed and imposed with reference to the specific

behavior of each efficiency parameter as a function of the independent variable
chosen to model it (i.e., what is x for such a parameter and if it increases or
decreases as x→∞).

The absolute value of c, defining the function slope, must be computed so to
normalize the function itself between 0 and 1 in the adopted range corresponding
to xmin ≤ x ≤ xmax. This property is guaranteed imposing:⎧⎨⎩sig(xmin) < d + a−∆

sig(xmax) > d + ∆
(4.5)

where ∆ indicates the difference between the asymptotic value and the adopted
bound (see Figure 4.3), given by:

∆ = a
(1− p% · 0.01

2

)
(4.6)

Figure 4.3: The adopted sigmoid function

Equations (4.5) provide an upper and a lower bound for c, given by:

cmax :=
ln( a

∆ − 1)
xc − xmax

cmin :=
ln( a

a−∆ − 1)
xc − xmin

(4.7)
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However, since xc was chosen as (xmax + xmin) /2, the values of cmax and cmin are
always equal to each other for every pair of vales xmax and xmin. Any of the
expressions in (4.7) can be then used to compute c.

4.1.3.2 Computation of Peff

The cycle time values associated to the tasks connected to Assembly and Ex-
pansion blocks are assumed to be available. The performance efficiency Peff is then
modeled by using the sigmoid function (4.3):

• considering the cycle time as independent variable x,

• defining a proper usage percentage p% of the sigmoid (e.g., 90%),

• setting xmin and xmax equal to the minimum and maximum cycle times values,
respectively,

• imposing c < 0, so to let Peff tend to 1 for decreasing values of the cycle
time.

4.1.3.3 Computation of Qeff

The energy consumption values associated to the tasks connected to Assembly
and Expansion blocks are assumed to be available. The quality efficiency Qeff is
then modeled by using the sigmoid function (4.3):

• considering the energy consumption as independent variable x,

• defining a proper usage percentage p% of the sigmoid (e.g., the same adopted
for Peff , i.e., 90%, or a different one),

• setting xmin and xmax equal to the minimum and maximum energy consump-
tion values, respectively,

• imposing c < 0, so to let Qeff tend to 1 for decreasing values of the energy
consumption.

4.1.3.4 Computation of Aeff

Information about the probability of machinery breaking or fault with reference
to the number of working hours is assumed to be available, as well as the cycle
time values associated to the tasks connected to Assembly and Expansion blocks
(as for Peff ). The expected number of cycles without interruption, ncycles, can then
be computed in millions of cycles as:

ncycles = 10−6
(

brkhours

cycletime

)
(4.8)

52



4.1 – Integration with a production efficiency tool

where brkhours is the expected number of hours without breakages or faults, and
cycletime is the cycle time expressed in working hours of the machinery.

The availability efficiency Aeff is then modeled by using the sigmoid function
(4.3):

• considering ncycles as independent variable x,

• defining a proper usage percentage p% of the sigmoid (e.g., the same adopted
for Peff , i.e., 90%, or a different one),

• setting xmin and xmax equal, respectively, to the minimum and maximum
number of cycles without breakages or faults,

• imposing c > 0, so to let Aeff tend to 1 for increasing values of ncycles.

4.1.4 Case Study
A case study is presented in order to evaluate the performance of the proposed

architecture. The case study involves three main steps: i) the automatic generation
of the WFM starting from some input information, including the definition of the
robotic cell and a formal description of the required process, ii) the translation
of the WFM into a corresponding OTE systems’ tree, and iii) the usage of the
recursive OTE methodology on the OTE systems’ tree.

The proposed application is a typical pick&place task carried out inside the
robotic cell showed in Figure 4.4.

The cell is composed by two COMAU industrial robots, both equipped with
a proper gripper: i) a Racer 7 - 1.4, and ii) a NJ4 110 - 2.2, which have been
intentionally chosen with very different characteristics, so to empathize the work
of the OTE methodology. As highlighted in Table 4.1, the Racer 7 is a small size
robot with a low load capacity, but a very high performance in terms of velocity; on
the contrary NJ4 110 - 2.2 has a maximum payload about fifteen times higher, but
it is slower and has a higher energy consumption, due to its greater joints torque.

Inside the robotic cell there are also: a ball, which is the only work-piece for the
given case study, and two boxes (that are used as collection points for the work-
piece), the first one containing the work-piece at the beginning, and the second one
in which the work-piece must be placed at the end of the application.

In order to build the HML corresponding to the required application, informa-
tion about the robots (including the tools), the robotic cell, the work-piece, and the
process are needed. Simple XML files (created specifically for such an application),
containing information about the robots, the ball and the boxes, are used. The
definition of a generic pick&place application is quite simple in the domain of the
HML, since it does not require any machining on the work-piece, but just to move
it. The task is then described by three pieces of information: 1) the work-piece
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Figure 4.4: Representation of the proposed robotic cell obtained using Blender

involved in the process, 2) the collection point containing the work-piece at the
beginning of the process, and 3) the collection point in which the work-piece must
be placed; for the proposed case study the process is then described by the ball,
box1 and box2. Using the rules described in Section 3.1.3, the real objects imported
from the XML files are mapped into the corresponding HML entities, as reported
in Table 4.2.

Physical constraints are computed starting from the input information, and
used to build the HML showed in Figure 4.5. The WFM is then obtained by
the application of the algorithm described in Section 3.2.1. As shown in the up-
per part of Figure 4.6, two types of basic TASKs are used in the WFM (i.e.,
TASK_pick and TASK_place), describing the actions of picking and placing of
the work-piece, including the planning of the Cartesian trajectory to be followed.
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Specification Racer 7 - 1.4 NJ4 110 - 2.2
Number of axes 6 6
Maximum wrist payload (kg) 7 110
Maximum horizontal reach (mm) 1436 2210
Torque on axis 4 (Nm) 13 796
Torque on axis 5 (Nm) 13 609
Torque on axis 6 (Nm) 7.5 284
Speed Axis 1 220°/s 170°/s
Speed Axis 2 250°/s 125°/s
Speed Axis 3 300°/s 165°/s
Speed Axis 4 550°/s 200°/s
Speed Axis 5 550°/s 165°/s
Speed Axis 6 600°/s 265°/s
Robot weight (kg) 180 685

Table 4.1: Comparison between some technical specifications of a COMAU Racer
7 - 1.4 and of a COMAU NJ4 110 - 2.2

Cell objects HML entity HML symbol
ball Object1 OBJ1
box1 Buffer1 (input) B1
box2 Buffer1 (output) B2
Racer 7 - 1.4 Positioner1 P1
NJ4 110 - 2.2 Positioner2 P2

Table 4.2: Mapping between real object and HLM entities

The TASK blocks also include some parameters defining the elements involved in
the task, e.g., TASK_pick(OBJ1, P1, B1) means that Positioner1 picks the Object1
from the Buffer1.

The WFM is translated into a OTE systems’ tree by converting the OR_Split
block and the connected TASKs into an expansion structure, and converting the
OR_Join and the connected TASKs into an assembly structure. The expansion
and the assembly structures are then included into a series. The lower part of
Figure 4.6 shows the so obtained OTE systems’ tree; the corresponding mapping
between WFM blocks and sub-systems is reported in Table 4.3.

The three efficiency parameters (Peff , Qeff , Aeff ) required by the recursive
OTE performance improvement method are computed through sigmoid functions
as detailed in Section 4.1.3. The information necessary for setting xmin and xmax

for each of them is collected by using the simulator ORL already introduced in
Section 4.
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OBJ

P1 P2

B1 (I) B2 (O)

Figure 4.5: HLM corresponding to the proposed case study

WFM block Sub-system
OR_Split e1
TASK_pick(OBJ1, P1, B1 e2
TASK_pick(OBJ1, P2, B1) e3
OR_Join a1
TASK_place(OBJ1, P1, B1) a2
TASK_place(OBJ1, P2, B1) a3

Table 4.3: Mapping between WFM blocks and sub-systems

In order to compute the parameters xmin and xmax, for each sub-system corre-
sponding to a TASK block (i.e., e2, e3, a2, a3) the planned Cartesian trajectory
is simulated for different override values, and two performance indices, i.e., the
cycle times and the energy consumptions, are computed and stored for each OVR
value. The sub-systems belonging to the same expansion or assembly structure
are regrouped, and the values of their efficiency parameters are normalized with
respect to the performance indices of all the sub-systems belonging to the same
structure. For example Peff is computed for e2 and e3 taking into account the
cycle times of both of them, since they belong to the same expansion structure; the
parametrization of the sigmoid function is then obtained by considering the values
of cycle times related to both e2 and e3, and imposing xmin equal to the overall
minimum value, and xmax to the maximum one; p% is chosen equal to 90, whereas
sign(c) is set negative (see Section 4.1.3.2).

The procedure to parameterize Peff for a2 and a3 is similarly carried out, since
they belong to the same assembly structure, as well as the computation of Qeff

for the two groups of subsystems, i.e., e2–e3 and a2–a3, on the basis of the energy
consumption values, as detailed in Sections 4.1.3.2 and 4.1.3.3.

Also the third efficiency parameter, Aeff , is computed and similarly normalized
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Figure 4.6: Conversion of the WFM into a corresponding OTE systems’ tree

for the two groups of subsystems, on the basis of the expected number of cycles
without interruption given in (4.8), with brkhours set to tens of thousands of hours,
corresponding to several years of work without failures on average (see Section
4.1.3.4).

By the physical mapping interpretation obtained for the three parameters Peff ,
Qeff , Aeff through the sigmoid functions (see section 4.1.3), a relationship between
OEE and one controlling aggregate OVR parameter is obtained. In Table 4.4 are
shown as an example the mappings that allow to associate a physical meaning to
a desired level of the OEE. These relations are then used to implement the actions
that lead to improvements in the robotic cell.

Using the proposed parametrization, each efficiency parameter provides values
between 0 and 1, thus evaluating the performance of a specific sub-system in relation
to the other sub-system belonging to the same structure.

Note that, purposely for the specific example, it has been adopted a modeling
of the OEE(Aeff , Peff , Qeff ) mapping in a non separable nor closed form as in
the ideal case of (4.1). The separability of the variables depends mostly on the
interpretation. When the modeling using a simple interpretation is not accurate
enough, a new lower level can be spawn (new nested structure of sub-tasks) and
so the granularity of the variables in the modeling grows; the granularity trades off
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with the amount of information needed to each variable to accurately model the
underlying physical phenomena. In general, the suggested approach is lazy; lazy
modeling is to specify a coarse but viable model at first and then refine only if the
improvement process identifies the need to improve the model’s accuracy. In spite
of the residual complexity hidden in the first viable model, using the aggregate
information provided by OTE/OEE performance improvement method, it is still
possible to apply corrective actions that improve the global performance.

OVR OEE Peff Qeff Aeff
5 0.002373 0.050000 0.949396 0.050000
10 0.032889 0.520679 0.947217 0.066686
15 0.062474 0.748820 0.943398 0.088436
20 0.090746 0.831579 0.937623 0.116385
25 0.122705 0.869900 0.929369 0.151777
30 0.159908 0.891087 0.917938 0.195495
35 0.202648 0.904352 0.902234 0.248362
40 0.249161 0.913284 0.880994 0.309672
45 0.296687 0.919710 0.852103 0.378578
50 0.340411 0.924528 0.813456 0.452636
55 0.374676 0.928322 0.761521 0.529999
60 0.391369 0.931306 0.694636 0.604974
65 0.386457 0.933745 0.612748 0.675447
70 0.355854 0.935776 0.514637 0.738923
75 0.305617 0.937458 0.411205 0.792808
80 0.241367 0.938928 0.306432 0.838903
85 0.175596 0.940198 0.213112 0.876370
90 0.119554 0.941334 0.140056 0.906815
95 0.074960 0.942260 0.085648 0.928832
100 0.044663 0.943146 0.050000 0.947112

Table 4.4: Mapping between OV R, OEE, and the Aeff , Peff , and Qeff factors
composing the OEE for the specific example interpretation of the picking task of
the NJ110 - 2.2 unit, corresponding to the e2 subsystem.

With the modeling here adopted, the technique consists in simulating all the
sub-systems (using the ORL simulator) by setting at the first step the robot over-
ride to 50%, and then using the corrective actions (always in terms of velocities)
computed and suggested by OTE performance improvement method, to adequately
modify the override value and then perform a new monitoring of the status. Such
an approach is iterated until the OTE recursive methodology finds its best solution.
Figure 4.7 shows the evolution of the OTE with respect to improvement iterations
for two different policies, favoring higher Peff and Aeff , or a higher Qeff . Actually,
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by referring again to Table 4.4, it can be seen that a new target OEE can be reached
by different combinations of Aeff , Peff , and Qeff . The selection is then driven by
preferring an OEE obtained with higher Qeff (so the focus is on energy efficency),
or one of the other parameters (Peff and Aeff ). In our case, the choice of Aeff or
Peff remains indistiguishable. An example of the actions selection biased towards
Qeff is in Table 4.5. The Selected column shows the choice made at each iteration
with respect to the possibly multiple alternatives. The sequence of the selected
actions produces the improvement of Qeff , as shown by the red line in Figure 4.7.

Figure 4.7: OTE evolution using actions that favor higher Peff and Aeff (in blue),
or higher Qeff (in red)
.

As better explained in [15] and [16], the improvement can rely on other degrees
of freedom beyond OEE.

Iteration Sub-system Aeff Peff Qeff OVR Selected
1 a3 0.091562 0.75169 0.94343 15 1
1 a3 0.93347 0.9434 0.085098 95 0
2 e2 0.53673 0.94309 0.93955 55 1
3 a2 0.083577 0.86661 0.94828 15 1
3 a2 0.90868 0.95 0.76458 100 0
4 a3 0.12064 0.834 0.9376 20 1
4 a3 0.93347 0.9434 0.085098 95 0
5 a2 0.13645 0.91498 0.94469 25 1
5 a2 0.90868 0.95 0.76458 100 0
6 a3 0.15733 0.87191 0.92931 25 1
6 a3 0.91174 0.94245 0.13894 90 0

Table 4.5: Selection of implemented actions, for the higher Qeff preference case.
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4.1.5 Automatic conversion of the WFM into a subsystems’
tree

In Section 4.1.4 a case study has been presented, in which the conversion be-
tween WFM and subsystems’ tree (Table 4.3) was performed by hand, so leading to
an overall architecture not fully automatized. An automatic conversion is then de-
scribed hereafter based on a set of translation rules. In the first part of this section
some propaedeutic definitions and notations are presented; then, the topological
structure of the WFM is analyzed in order to find a set of features and recurrent
structures that can be exploited to define the translation rules. Such a topological
view of the WFM allows to define the translation rules adopted by the algorithm,
whose features are detailed in the last part of the section.

4.1.5.1 Propaedeutic definitions and notations

The necessary definitions and features of the complete and rich notation intro-
duced in [13] are recalled hereafter; the reader is invited to refer to [13] for details
and some extended examples.

The four fundamental system structures collected in Table 4.6 express the topol-
ogy of the structural relation between entities that are siblings in the Holonic Man-
agement Tree (HMT), which is topologically equivalent to a tree. The number n
of cells in the structures is defined as the degree of the structure. In the case of
assembly and expansion structures the cells marked as a and e are called head cells.

Table 4.6: nth degree fundamental structures

Series Parallel Assembly Expansion

In order to conveniently manage the expressions of the HMT, it is useful to have
a tool notation that lets feasible the handling of possibly large trees of systems of
systems in shorthand. A system in the HMT is denoted by S

(l)
X,tag(n), where l is

the level of the HMT (and hence the position of the system in the tree), n is the
degree of the structure associated to the system, and X is a place-holder for one
of the following symbols S, P , A, and E, to denote respectively the four kind of
structures, namely series, parallel, assembly, and expansion. The subscript field
tag can be optionally added to denote and conventionally identify the system. If
n = 1 the corresponding system is said ground system. It corresponds to a leaf of
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the HMT. If n > 1 the system is said composite, and it is itself a sub-tree. The
degree of a HMT is equal to the maximum degree of its systems.

To represent the trees of systems, with adding denotation of the structural
relation, the Newick format is used [74]. A slight extension of the original Newick
notation is adopted to better denote the intra-level relation in the case of assembly
or expansion structures. With such a format, the HMT can be represented by
a sequence of printable characters instead of graphs. The best way to explain
this notation is by a few examples. The first example is the tree of an expansion
structure in which a machine A is feeding production material to three production
lines B, C, and D with a proportion of 15, 30 and 55 percent, respectively. A is the
head cell of this expansion. B, C, and D are the other three cells of this 3rd degree
structure that can be associated to a tree in Newick notation as: A(B : 0.15, C :
0.3, D : 0.55). If the structure were an assembly, having A as head cell, the notation
would have been the following: (B : 0.15, C : 0.3, D : 0.55)A. If the system were
a series, or a parallel, the notation would have been simpler, as no information is
needed for the edges and the head, and it would have resulted in (B, C, D). Note
that the parentheses in this notation enclose the sub-tree of a tree node. Figure 4.8
shows the basic structure included in a generic work flow, as will be detailed in
Section 4.1.5.2.

XX_Split

.

.

.
XX_Join

EXPANSION PARALLEL ASSEMBLY

SERIES

work-flow 1

SERIES

work-flow k 

Task 1

Task k

Task e1 

.

.

.

Task ek 

Task a1 

.

.

.

Task ak 

Figure 4.8: Basic structure included in the work flows

Supposing for sake of simplicity that all the task nodes are basic tasks, in
such a structure, the WFM can be instantiated with a HMT having the following
expression:
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S
(l)
S (3)≜

(
S

(l+1)
E (k), S

(l+1)
P (k), S

(l+1)
A (k)

)
≜

(
S

(l+2)
XX_Split(1)

(
S

(l+2)
T ask e1(1), · · · , S

(l+2)
T ask ek

(1)
)

,(
S

(l+2)
T ask 1(1), · · · , S

(l+2)
T ask k(1)

)
, (4.9)(

S
(l+2)
T ask a1(1), · · · , S

(l+2)
T ask ak

(1)
)

S
(l+2)
XX_Join(1)

)

In (4.9) the HMT has been arbitrarily chosen of kth degree and supposed starting
at level lth of a bigger tree. Note that three levels of detail of the tree are expressed
in (4.9). In Figure 4.9, the same tree of (4.9) is graphically represented.

Figure 4.9: HMT for the basic structure

4.1.5.2 Conversion algorithm

Analyzing the topological properties of a generic WFM, five main features can
be highlighted in order to define the translation rules:

1. The WFM is composed by a sequence of “sub-WFMs”, called Sub-Tasks,
properly connected as in Figure 4.10.

2. Each Sub-Task is characterized by a specific number of incoming and outgoing
flows, and denoted as m : n, where m is the number of incoming flows, and n
is the number of outgoing flows. Three main types of Sub-Task can be then
distinguished in the general structure of a WFM reported in Figure 4.10:
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Sub-Task 1

cloud of  
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OR_joint
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OR_joint
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Figure 4.10: General structure of the WFM

• 1 : N , as the first Sub-Task
• N : N , as the Sub-Tasks in the middle of the series
• N : 1, as the last Sub-Task.

The special case 1 : 1 occurs when just one Sub-Task is present in the WFM.

3. A Sub-Task includes one or more work flows (denoted as cloud of work-flows
in Figure 4.10), each one composed by a sub-net of WFM blocks. Such a
sub-net is in turn defined by a set of Basic Structures properly connected by
Split-type blocks (see Figure 4.11). Split-type blocks branch the work flows,
so introducing a new way to perform the Sub-Task, as highlighted in Figure
4.11, in which the i-th cloud of work-flows starts with one incoming work flow
and ends with three outgoing flows.

4. The Basic Structure is defined by: one Split-type block, from which several
work flows (denoted by the Task blocks in Figure 4.8) can start, and one
Join-type block, where the work flows join again.

5. A set of OR_Join blocks included in the WFM are used as connection points
between the i-th Sub-Task and the (i + 1)-th one. All the outgoing flows
of the i-th Sub-Task converge into such OR_Join blocks, and the incoming
flows of the (i + 1)-th Sub-Task start from the same OR_Join blocks. They
will be then denoted as initial nodes and final nodes, respectively.

The automatic conversion process, together with its translation rules and func-
tions, is developed on the basis of such features. First of all, thanks to features 1)
and 2), a fixed translation rule can be adopted to map the main structure of the
WFM into the corresponding subsystems’ tree.
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Figure 4.11: General structure of the work flow

Let wfm(n, m1, · · · , mn) be the WFM composed by n Sub-Tasks, each one
composed by mi work flows (where mi corresponds to the number of initial nodes
of the i-th Sub-Task). The sequence of Sub-Tasks can be translated into a series of n
subsystems, corresponding to: (i) 1 expansion for the 1 : N Sub-Task, (ii) 1 assembly
for the N : 1 Sub-Task, and (iii) n − 2 parallels, covering the N : N Sub-Tasks in
the middle of the sequence (e.g., two parallel subsystems would be generated for
the WFM in Figure 4.10). Each parallel also includes mi series, one for each work
flow composing the i-th Sub-Task. The definition of the expansion and the assembly
subsystems at the zero level of the subsystems’ tree can be however redundant, since
they also arise when the translation rules are applied to the internal work flows of
the Sub-Tasks (as it will be discussed in the remaining of the Section). The adopted
translation rule replaces then the expansion and the assembly subsystems with two
series.

Translation rule 1. Given the WFM wfm(n, m1, · · · , mn), the level zero of the
subsystems’ tree is obtained as:

S
(0,0)
S (n) ≜

(
S

(1,0)
S (3), S

(1,0)
P (m2), · · · , S

(1,0)
P (mn−1), S

(1,0)
S (3)

)
(4.10)

where the parallel subsystem of the i-th Sub-Task is given by:

S
(1,0)
P (mi) ≜

(
S

(2,0)
S (3), · · · , S

(2,0)
S (3)

)

Feature 4) highlights that in a generic WFM there exists a fixed structure prop-
erly repeated in the model (see Figure 4.8); such a characteristic has been exploited
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to design a translation process based on the usage of a fixed translation rule, prop-
erly applied whenever such a recurrent structure is found in the WFM. Let bs(k)
be a basic structure composed by one Split-type block, one Join-type block, and k
complex Task blocks (each one recursively defining a generic work flow); the Split-
type block can be mapped into an expansion, the Join-type block into an assembly,
and the Tasks blocks into k series, which are all included into a parallel subsystem
(see Figure 4.8).

Translation rule 2. Given the Basic Structure bs(k) the corresponding subsystems’
tree is obtained as:

S
(l,0)
S (3) ≜

(
S

(l+1,0)
E (k), S

(l+1,0)
P (k), S

(l+1,0)
A (k)

)
(4.11)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S
(l+1,0)
E (k) ≜

⎛⎝S(l+2,0)
e0 (1)

(
S(l+2,0)

e1 (1), · · · , S(l+2,0)
ek

(1), S(l+2,0)
ek

(1)
)⎞⎠

S
(l+1,0)
A (k) ≜

⎛⎝(
S(l+2,0)

a1 (1) · · · , S(l+2,0)
ak

(1), S(l+2,0)
ak

(1)
)

S(l+2,0)
a0 (1)

⎞⎠
in which the optional tag has not been used, but the following mapping between each
WFM block and the corresponding subsystem is adopted:

WFM block Subsystem
XX_Split S(l+2,0)

e0 (1)
XX_Join S(l+2,0)

a0 (1)
Taskei S(l+2,0)

ei
(1)

Taskai S(l+2,0)
ai

(1)

whereas
S

(l+1,0)
P (k) ≜

(
S

(l+2,0)
S (·) · · · , S

(l+2,0)
S (·)

)
in which the degrees of the series structures are not known (symbol (·) is adopted to
represent this situation), since they refer to a complex Task block not explored yet.
As in the case of the Translation rule 1, the unknown structures will be defined in
the subsequent phases.

Application example: scrolling the WFM in Figure 4.8, the Translation rule
2 is applied when the XX_Split block is found. In this phase, the structure of the

65



4 – The optimization phase

subsequent complex Tasks (i.e., Taski) is not known yet, so that also in this case
the parallel structure is defined as:

S
(l+1,0)
P (k) ≜

(
S

(l+2,0)
S (·) · · · , S

(l+2,0)
S (·)

)
(4.12)

A third type of translation is defined and applied when a basic Task block (i.e.,
a Task block representing a basic action) is found. In such a case the following rule
is adopted:

Translation rule 3. Given a basic Task, the corresponding subsystems’ tree is
obtained as:

S
(l,0)
X (1)

where X, i.e., the structure type, is inherited from the the parent subsystem.

Application example: if a basic Task is found while scrolling Task1, the
parallel structure (4.12), is properly updated as:

S
(l+1,0)
P (k) ≜

(
S

(l+2,0)
S (1), · · · , S

(l+2,0)
S (·)

)
where

S
(l+2,0)
S (1) ≜ S

(l+3,0)
s1 (1)

Feature 3) is well sketched in Figure 4.11, in which both bs(k) structures and
branching of work flows are present. In order to generalize the translation process,
whenever a Split-type block is found in the WFM, each outgoing flows is analyzed,
and the Translation rule 2 is applied when a basic structure is found. The assembly
subsystem in (4.11) will be actually exploited when the Split-type block belongs to a
bs(k) structure, whereas it will be a pending node when a corresponding Split-type
block does not exist.

The overall automatic conversion process is then composed of three main phases:

1. Initialization: in the main algorithm (whose pseudo-code is reported in
Algorithm 2), the Translation rule 1 is applied in order to define the structure
of the subsystems’ tree. Subsystems already defined at this level (i.e., l = 0)
do not represent the leafs of the tree; they will be properly defined in the
subsequent phase.

2. Translating: in Algorithm 3 each Sub-Task is scrolled starting from its initial
nodes. The Translation rule 2 is applied whenever a Split-type block is found,
whereas Translation rule 3 is adopted when a Task block is found (see the
pseudo-code in Algorithms 4–6). Translation rules are not applied to the
Final nodes, which are just used to understand when the work flow of a given
Sub-Task ends.
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3. Cleaning: Pending nodes are finally removed in the final phase, in which the
specific cleaning Algorithm 7 is applied.

The important goal of the translation algorithm is to associate each block of
the WFM with the correct location in the subsystems’ tree. This is achieved by
using a memory stack approach, where the current location in the subsystems’
tree is kept by a proper sequence of push and pop operations in the stack. Also
the algorithm manages some special cases in which translation rules could not be
applicable as they are, e.g., when in a Basic Block one of the flows outgoing the
starting XX_Split node has less than three Task blocks (as in Figure 4.8, if the Task
a1 were not present); in such a case it should be not possible to correctly create the
expansion subsystem. The algorithm manages such a situation by adding a dummy
node that is called NOP.

The notations adopted in the Algorithms 2 - 7 are reported in Table 4.7, while
the main functions included in them are summarized in Table 4.8.

Table 4.7: Description of the notations used in the translation algorithm

Notation Description
wfm denotes the nodes belonging to a WFM (e.g., wfmh)
next represents the child block of a WFM block, having only one

output (e.g., wfm→ next)
next[i] represents the child blocks of a WFM block, having several

outputs(e.g., wfmh → next[i]); i corresponds to the i-th child
hmt denotes the nodes belonging to a HMT (e.g., hmtbss)
childa represents the assembly child subsystem of the current HMT

(e.g., hmtbs → childa)
childe represents the expansion child subsystem of the current HMT

(e.g., hmtbs → childe)
childp[i] selects one child of a parallel subsystem (e.g., hmtbs →

childp[i])
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Table 4.8: Description of the functions adopted in the translation algorithm

Function Description
InitStack() : Stack Handle Provides a new stack
GetStack() : HMT Handle Provides the first element of the stack
Push() Inserts a new element (handle to a node

of the HMT) on the top of the stack
Pop() Removes the first element from the

stack
InitHmt() : HMT Handle Provides a void HMT
ConnectHmt(Dst, Src) Connects the source HMT to the desti-

nation one
Rule2Hmt() : HMT Handle Provides an empty HMT
SubSystemHmt(Type, N ) : HMT
Handle

Provides the handle to a new subsys-
tem of the type defined in the first
parameter (e.g., serial,parallel, assem-
bly, expansion, cell, NOP); the second
parameter defines the system degree.
When the subsystem is of type cell or
NOP, the second parameter is always
1, since they are leafs of the HMT

GetNextHmt(HMT Handle) : HMT
Handle

Provides the next subsystem of the cur-
rent HMT node

RemoveNodeHmt(HMT Handle) Removes the HMT node provided as
input, preserving the integrity of the
overall HMT

GetSubTask(WFM Handle, i) : Sub-
Task Handle

Provides the handle to the i-th Sub-
Task of the given WFM

GetDimention(ST Handle) : Integer Provides the dimension (i.e., the num-
ber of clouds of work flows) of the given
SubTask

ColorNode(WFM Handle) Colors the WFM node provided as in-
put
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Algorithm 2 Conversion Algorithm
1: function Translate(wfm, n)
2: stack = InitStack;
3: hmth = InitHmt(void); ▷ hmth = head
4: hmtc = SubSystemHmt(’series’, 1); ▷ hmtc = current
5: ConnectHmt(hmth, hmtc);
6: if n > 2 then
7: hmtp = SubSystemHmt(’parallel’, n− 2);
8: ConnectHmt(hmtc, hmtp);
9: end if

10: for i := 1 to n do
11: hmtc = hmth

12: st = GetSubTask(wfm, i);
13: mi = GetDimention(st);
14: if (1 < i < n) then
15: hmtn = SubSystemHmt(’series’, mi);
16: ConnectHmt(hmtp → child[i], hmtn);
17: hmtc = hmtp

18: end if
19: for j := 1 to mi do
20: if n hmtc == hmth then
21: head = hmtc;
22: else
23: head = hmtc → child[i];
24: end if
25: Push(stack, head);
26: TranslateHmt(st→ initNode[i], stack);
27: end for
28: end for
29: Cleaning(hmth)
30: end function
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Algorithm 3 Translating
1: function TranslateHmt(wfmh, stack)
2: if (wfmh is a final node) then
3: return ;
4: end if
5: if (wfmh is a Split-type block) then
6: ManageSplit(wfmh, stack)
7: end if
8: if (wfmh is a Join-type block and is not colored) then
9: ManageJoin(wfmh, stack)

10: end if
11: if (wfmh is a Task-type block) then
12: ManageTask(wfmh, stack)
13: end if
14: return ;
15: end function
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Algorithm 4 ManageSplit
1: function ManageSplit(wfmh, stack)
2: hmth = GetStack(stack);
3: hmtbs = Rule2Hmt;
4: ConnectHmt(hmth, hmtbs);
5: hmtc = SubSystemHmt(’cell’, 1);
6: ConnectHmt(hmtbs → childe, hmtc);
7: if (wfmh is colored) then
8: Pop(stack)
9: end if

10: ColorNode(wfmh)
11: for i := 1 to number of children of wfmh do
12: ColorNode(wfmh → next[i])
13: Push(stack, hmtbs → childa)
14: Push(stack, hmtbs → childp[i])
15: Push(stack, hmtbs → childe)
16: TranslateHmt(wfmh → next[i], stack)
17: Pop(stack)
18: Pop(stack)
19: Pop(stack)
20: end for
21: if (wfmh is colored) then
22: Push(stack, hmth)
23: end if
24: end function

Algorithm 5 ManageJoin
1: function ManageJoin(wfmh, stack)
2: hmth = GetStack(stack);
3: hmtc = SubSystemHmt(’cell’, 1);
4: ConnectHmt(hmth, hmtc);
5: Pop(stack)
6: ColorNode(wfmh)
7: TranslateHmt(wfmh → next, stack)
8: Push(stack, hmth)
9: end function
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Algorithm 6 ManageTask
1: function ManageTask(wfmh, stack)
2: if (wfmh is colored) then
3: hmth1 = GetStack(stack);
4: hmtc = SubSystemHmt(’cell’, 1);
5: ConnectHmt(hmth1, hmtc);
6: pop(stack)
7: if (wfmh → next is a Task-type block) then
8: hmth2 = GetStack(stack);
9: Pop(stack)

10: if (wfmh → next is not a final node) then
11: hmth3 = GetStack(stack);
12: hmtc = SubSystemHmt(’NOP’, 1);
13: ConnectHmt(hmth3, hmtc);
14: end if
15: end if
16: ColorNode(wfmh → next)
17: TranslateHmt(wfmh → next, stack)
18: if (wfmh → next is not a Task-type block) then
19: Push(stack, hmth2)
20: end if
21: Push(stack, hmth1)
22: else
23: hmth1 = GetStack(stack);
24: if (wfmh → next is a Join-type)
25: && (wfmh → next is not a final node) then
26: Pop(stack)
27: end if
28: hmth2 = GetStack(stack);
29: hmtc = SubSystemHmt(’cell’, 1);
30: ConnectHmt(hmth2, hmtc);
31: if (wfmh → next is a final node) then
32: Pop(stack)
33: end if
34: ColorNode(wfmh → next)
35: TranslateHmt(wfmh → next, stack)
36: if (wfmh → next is Join-type but not final node)
37: ∥ (wfmh → next is a final node) then
38: Push(stack, hmth1)
39: end if
40: end if
41: end function
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Algorithm 7 Cleaning
1: function Cleaning(hmth)
2: if hmth == NULL then
3: return 0;
4: end if
5: n_childs = 0;
6: while childi = GetNextHmt(hmth) do
7: n_childs ++;
8: N = Cleaning(childi)
9: if N == 1 && hmth is not a leaf then

10: childchildi
= GetNextHmt(childi)

11: ConnectHmt(hmth, childchildi
)

12: RemoveNode(childi)
13: end if
14: end while
15: return n_childs ;
16: end function
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Part II

Advanced Robotic Service
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Chapter 5

Service algorithms for industrial
robots

Industrial robots are usually provided with the minimum equipment necessary to
perform the typical industrial applications, like arc/spot welding, painting, manip-
ulation, pick and place etc., for which a good position control (both in the joint and
the Cartesian space) is only required. For this reason the only available real sensors
are usually encoders and current sensors. Implementing service algorithms in the
robot controller is possible despite the limited number of information (sensors read-
ings) available; studying the possibility of using such a few information to design
new service algorithms, actually implementable in an industrial controller, is then
very important to add new features to the robot, or even to convert standard in-
dustrial manipulators into robot suitable for the usage in other contexts, like smart
factories or collaborative applications. In order to achieve such a purpose, service
algorithms can adopt physical models of the robotic manipulators to compute the
required physical quantities, e.g., the robot dynamic model can be adopted to com-
pute the theoretical torques applied on each robot joint. The performance of such
algorithms are logically conditioned by the quality of the adopted physical models,
so that the usage of accurate ones becomes of considerable importance. Several
works can be found in the state of the art concerning the development of sensor-
less algorithms, where the term sensor-less in such a context is used to highlight
that the procedure uses only information provided by the proprioceptive sensors of
the robot (i.e., without the insertion of "external" sensors, like force/torque ones or
cameras).

Collision detection and post-collision management are different issues, which can
be properly combined to achieve interesting robotic applications, e.g., manual guid-
ance, which is a good way to define user-friendly robot programming approaches
(like programming by demonstration [55]), and collision reaction strategies that can
avoid/reduce possible mechanical damage to the robot.

Collision Detection (CD) algorithms are usually based on the idea of applying
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a threshold to a signal (the collision signal) that varies according to the external
forces applied on the robot. The threshold can be constant or time varying, but
in any case the main issue is to obtain a proper collision signal. Specific sensors
(that are usually not included in standard industrial robots), like force sensors, can
be used to obtain a measure of the force applied on a specific point of the robot
structure, or torque sensors to measure the torques applied on the robot joints.
Accurate physical models of the robot are usually exploited to clean the signal
from the force/torque components due to the dynamics of the robot, so obtaining a
collision signal actually corresponding to the applied external forces/torques. The
sensors already included in the robot, like the motor encoders and the current
sensors, can be alternatively used to obtain an estimate of the torques applied on
the robot joints, or in general a signal that varies according to the external forces
applied on the robot. The Collision Detection and Manual Guidance approaches
based on this kind of solution have the advantage that no extra sensors are required
for their implementation. Various techniques can be found in literature. Initially
CD methods were designed to detect collisions in production systems, where robots
could accidentally hit other objects/robots, due to programming errors or to the
presence of unforeseen objects. In [91] a collision detection scheme based on a
disturbance observer system has been presented, in which collisions are detected
by setting up a set of thresholds for every joint. In [44] the authors presented
a collision detection scheme with adaptive characteristics, based on a Finite State
Machine (FSM) (whose states are a priori labeled as safe or unsafe), processing both
real and dynamically modeled joint currents. Once an unsafe state is detected,
a time varying threshold is applied to detect a collision. Statistical time series
methods have also been developed to achieve detection and identification of faults
in an aircraft skeleton structure [85]. The main advantage of those methods lies
in their ability to use data to build mathematical models that represent the true
dynamical system. Even if applied to a different context, such methodologies have
been exploited later to develop robot collision detection procedures based on fuzzy
identification [28].

Some studies [90] introduced the notion of human pain tolerance to set an
acceptable pain level for a human; such level can be used as a threshold for CD al-
gorithms to reduce the impact force, so allowing their adoption in a Human-Robot
Collaboration (HRC) context. Different methodologies have been then developed
with the purpose to be suitable for HRC applications. In [90] the difference be-
tween the dynamic model torques and the actual motor torques is used to obtain
a reliable detection scheme. A more general approach was presented in [58], where
the robot generalized momentum is exploited to define two functions: σ(t) and r(t),
being σ(t) the collision detection signal, whose value raises when a collision occurs
and rapidly returns to zero when the contact is lost. Information about the force
direction or the link on which the collision took place is provided by r(t), called
collision identification signal. A closed control architecture was proposed in [34],
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using only motor currents and joint positions in order to define suitable thresholds
for the detection scheme, while in [48] authors tried to refine such approach, by
preventing or greatly reducing the probability of false alarms using an appropriate
band pass filter with a changing frequency window, so to facilitate the distinction
between collisions and false alarms. Computationally efficient methods based on
fuzzy identification and time series modeling [28] can also be found, whose adoption
does not require the explicit knowledge of the robot dynamic model. A training
phase is however necessary, but offline training procedures are available.

Several works can be found on robot Manual Guidance (MG) methodologies,
as well. In [64] the authors proposed an approach based on the adoption of
force/torque sensors to implement a control scheme that imposes a specific ve-
locity profile according to the sensor measures. A lot of classical control schemes
can also be found, like force control [87], impedance control [41] and admittance
control [9], [30], as well as more advanced methodologies like adaptive admittance
control schemes [92] and variable impedance control schemes [40]. A further in-
teresting approach based on the adoption of vision systems is presented in [62];
in this case the robot motion is obtained using the images provided by a camera.
Sensor-less methodologies (i.e., that do not use force/torque sensors) can also be
mentioned, like the ones based on the adoption of an observer of external forces
[58] to achieve manual guidance.

Other interesting service algorithm are related to the identification of the pay-
load parameters [52][20]. Such a functionality is very important to let the robot
control work properly, thanks to correct and accurate information provided by the
manipulator dynamic model. The Payload Check functionality, through a payload
identification, may alert the user if the declared payload is different from the real
one.

In Chapters 6, 7 and 8 three different sensor-less service algorithms are proposed:
1) a Collision Detection procedure, 2) a post-collision reaction/manual guidance al-
gorithm, and 3) a Payload Check functionality. All the proposed service algorithms
exploit the values provided by the robot dynamic model, and then benefit from the
adoption of an accurate model.

The robot dynamic model can be expressed in the following form:

M(q)q̈ + C(q, q̇)q̇ + τf (q̇) + g(q) = τ (5.1)

where M(q) is the inertia matrix, C(q, q̇) includes the centrifugal and Coriolis ef-
fects, g(q) is the gravity torque vector, τf (q̇) is the joint friction torque vector, and
τ is the vector of the applied joint torques. Supposing that the model structure is
correct, the main source of errors is due to the estimated values of the model param-
eters; while some parameters can be estimated very well, since they can be directly
measured (e.g., the mass of the links) or can be computed using FEM methods,
some others, like the friction parameters, cannot be directly measured. Friction
modeling is a very well-known problem in robotics, especially at low velocity [12],
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and different kinds of friction models, of different complexities, can be found, each
of which providing different performances in terms of friction torque estimation. In
the industrial context, friction modeling could be critical, since custom solutions
for the specific robot are generally avoided; the possibility of developing a general
scheme for friction modeling and identification can be then very important in such
a scenario.

Several researches can be found in literature proposing different kinds of friction
models, both dynamic and static (see e.g., [7], [60]; the influence of particular
elements like load and temperature have been also analyzed [50], [88], but the
friction identification process is generally handled with reference to a specific robot
and/or in a laboratory context. Some adaptive solutions have been proposed [63] or
based on friction observers [82], but unfortunately their experimental application
is often limited to simple systems and/or in a laboratory context. In the industrial
scenario it would be very useful to have a general friction estimation tool, able
to perform the off-line estimation of the friction values using a standard set of
data acquisitions, so that the operator can easily update the friction model when
necessary.

An important part of the work about service algorithms was then devoted to
improve the friction model, and to provide a set of generic procedures to carry out
both data acquisition ad parameter identification phases. Chapter 9 provides the
main results of the work carried out about friction modeling.

80



Chapter 6

Collision Detection

The goal was the development of a virtual collision sensor, easily applicable
to various types of manipulators (i.e., both low-payload and high-payload robots,
and/or with different kinematic structures), neither requiring specific customiza-
tions, nor inserting further, ad hoc sensors beyond the standard ones generally
equipping any industrial robot. The virtual collision sensor must contribute to
guarantee the mechanical integrity of the robot and the cell, and the correct exe-
cution of the working process, avoiding false collision alarms that would stop the
production cycle. Moreover, it should correctly work without the necessity of a
too long warm up phase, before reaching a good level of reliability in detecting an
actual collision. In such a case, in fact, any stop of the normal activity of the robot
could lead to a loss of accuracy and the need to warm up again.

DC-motors are considered as actuators, and the only available real sensors are
supposed to be:

• the encoders, mounted on the motor shafts

• the current sensors, providing the currents absorbed by the motors.

The information provided by the encoders will not be actually employed by the
virtual sensor: it would be useful, in fact, only to estimate the joint torques on the
basis of the robot dynamic model, which is a solution that has been discarded just
to avoid any dependence of the collision detection procedure on the characteristics
of the specific robot.

The only actual assumption, which the proposed collision detection approach
will rely on, is the availability of the estimates of the motor currents, used inside the
original robot controller. Such estimates are computed on the basis of an internal
dynamic model of the manipulator, whose structure and parameters are not known.
This assumption is quite realistic, independently of the particular control scheme
adopted. Let I(t) = [Ii(t)], i = 1, ..., n, be the vector of the measured currents
of the robot motors, where n is the number of joints, and let IDM(t) = [IDM,i(t)],
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i = 1, ..., n, be the vector of the currents estimated by the robot dynamic model.
Such vectors are assumed to be available to the virtual collision sensor; on the basis
of this information only, the virtual sensor will have to continuously update the n-
dimension Collision vector (as in the scheme reported in Figure 6.1), collecting a
logical variable for each joint; when at least one of such variables becomes TRUE,
a collision is detected, and a proper stopping procedure will be immediately applied
to the robot.

Figure 6.1: Virtual collision sensor scheme.

6.1 The proposed approach for collision detec-
tion

The virtual collision sensor action is based on the computation of the current
residue vector R(t) = [Ri(t)], i = 1, ..., n, given by:

R(t) = I(t)− IDM(t) (6.1)
where the estimated current vector IDM(t) is assumed to have been computed by
the internal robot dynamic model in absence of any collision, i.e., the complete
expression of IDM(t), if available, would be of the following type:

IDM(t) = K−1
I (M̂(qd)q̈d + n̂(qd, q̇d)) (6.2)

where qd(t), q̇d(t), and q̈d(t) are the reference joint position, velocity and acceleration
vectors, respectively, M̂(·) is an estimate of the robot inertia matrix, n̂(·) includes
the estimates of the torques due to centrifugal and Coriolis effects, friction and
gravity, and KI is the diagonal matrix of the conversion coefficients KI,i of the
motors (from current to torque).

In the ideal case, i.e., if the internal dynamic model were able to exactly replicate
the behavior of the robot, the current residue R(t) would be zero in absence of any
collision. In a real case, some model error is always present, so that the current
residue is expected to be small, but never identically zero. When a collision occurs,
the current residue immediately grows, because in this case the measured motor
currents include also the effects of the torques applied to the joints due to the
collision forces.
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The working mode of the collision detection procedure is based on the com-
parison of the current residue R(t) with a proper smart threshold, positive-value,
vector function S(t) (including a varying threshold Si(t) for each joint), according
to the following collision detection conditions:{

If |Ri(t)| > Si(t) then Collisioni = TRUE
If |Ri(t)| ≤ Si(t) then Collisioni = FALSE

(6.3)

where the threshold varying function is defined as:

S(t) = m̂err(t) + Collbias(t) (6.4)
The first term, m̂err(t), represents an estimate of the absolute value of the model
error in absence of collisions., which is determined using the current residue R(t)
computed inside the virtual collision sensor as in (6.1), while the second term
in (6.4), Collbias(t), represents the sensitivity of the virtual sensor; its entries are
positive and are given by the current values corresponding to the minimum collision
torque that the virtual sensor should be able to detect on each joint.

The ability of the proposed virtual sensor of detecting collisions, avoiding false
alarms, does not depend on the actual quality of the robot dynamic model (which
is unknown), but on the capacity of the virtual sensor itself of computing a reliable
estimate m̂err(t) of the model error. Considering the adopted expression (6.4)
for the threshold function S(t), the absence of any collision at time t is correctly
detected on the i-th joint by the second condition in (6.3) if

∆merr,i(t) ≤ Collbias,i(t) (6.5)
where

∆merr,i(t) = |Ri(t)| − m̂err,i(t) (6.6)
Inequality (6.5) shows that small values can be adopted for Collbias,i, i.e., a fine
sensitivity of the sensor can be achieved, if ∆merr,i(t) is sufficiently small, otherwise
Collbias,i must be increased to avoid false collision alarms.

Different approaches can be followed to define Collbias(t), e.g., in [42] its values
were assumed to be constant for all the joints, leaving the user the possibility
of changing it, if necessary, while in [44] an automatic learning and adaptation
process has been applied to enhance the robustness of the procedure and the speed
in detecting a collision, as well as to cope with possible slow variations of the robot
behavior. Details about the automatic adaptation of the sensor sensitivity can be
found in [44] and recalled in Section 6.2.
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6.1.1 Model Error Estimation
By the direct analysis of the behavior of the motor currents during any move-

ment of a robot, independently of the specific manipulator and the specific (un-
known) internal dynamic model providing IDM(t), it experimentally results that:

• in the motion phases in which IDM(t) is almost constant (or it is varying very
slowly), the residue R(t) shows a similar behavior, i.e., it is almost constant
or slowly varying;

• when IDM(t) rapidly varies, also the residue does, possibly reaching very high
values for some joint.

The two situations indicate that when the current is almost constant, i.e., when the
corresponding torque applied to the joint is almost constant, the dynamic behavior
of the system is intrinsically easier to be reconstructed by the internal dynamic
model, whatever it is. On the contrary, when the robot is in an acceleration or
deceleration phase, i.e., when the currents are rapidly varying, the model error
automatically tends to grow, because more complex dynamic effects are acting on
the robot, and their estimation is typically and reasonably more difficult. Such
observations lead to the opportunity of estimating the model error using different
algorithms in the two situations, which will be denoted as steady state and unsteady
state, respectively. Figure 6.2 shows a small portion of a real work cycle carried out
by a NJ4 110 robot employed in an automotive production line, highlighting the
different behavior of the current residue during the steady state (white background)
and the unsteady one (blue background).

Figure 6.2: Behavior of the current residue of the second joint of a NJ4 110 in the
steady (white background) and unsteady (blue background) states
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6.1 – The proposed approach for collision detection

Steady state During the steady state, the model error for the i-th joint can
be simply estimated on the basis of an average process, considering the maximum
values reached (in absolute value) by the residue during such a steady state time
interval, denoted by Tss, from the time instant tss, at which the FSM enters the
steady state, up to the current time instant t. The process starting at time tss can
be expressed as:

ERRss,i(t) = 1
N + 1

⎛⎝|Ri(tss)|+
∑

τ∈Tss

errss,i(τ)
⎞⎠ (6.7)

where |Ri(tss)| is the last residue value obtained before the transition to the steady
state, errss,i(·) is the function containing the maximum values reached by |Ri(t)|
during the steady state until the current time instant t, whilst N is the number
of samples of the function in the same interval. The usage of |Ri(tss)| has been
introduced in order to allow a more rapid settling of the values provided by the
average process, so to avoid too small values of ERRss,i(t) at the very beginning of
the steady state.

The model error for the i-th joint is then computed by sampling ERRss,i(t)
with a proper sampling time Ts, so obtaining a model error defined as:

m̂err,i(t) =
{

ERRss,i(t) t = k Ts

ERRss,i ((k − 1)Ts) t ∈ [(k − 1)Ts, k Ts)
(6.8)

As shown in (6.8), m̂err,i(t) is actually updated only at time instants t = k Ts.
A proper choice of Ts is necessary to allow the correct detection of collision. In
particular Ts cannot be too small, otherwise it could not be possible to properly
distinguish the residue and the model error during the steady state, in which both
IDM,i(t) and Ii(t) change very slowly (and the residue as well) in absence of col-
lisions. On the contrary Ts cannot be too high, otherwise the actual variation of
the residue could not be correctly captured. From a data driven analysis of the
collision timing, Ts has been set equal to 0.2 s.

Unsteady state During an unsteady state, two functions, computed during every
unsteady state, are combined to estimate the model error for the i-th joint as

m̂err,i(t) = δ esterr,i(t) + (1− δ) errus,i(t) (6.9)
where errus,i(t) is the function containing the maximum values reached by |Ri(t)|
during an unsteady state, esterr,i(t) is computed on a predefined number of residue
samples, saved in a buffer, and δ ∈ [0, 1] weighs the contributions of the two terms.
In particular, esterr,i(t) is given by:
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esterr,i(t) = ERRus,i(t) + 3 ·
√ 1

N

∑
τ∈Tus

(
ERRus,i(τ)− errus,i(τ)

)2
(6.10)

where Tus is the time set in which the currents are in the unsteady state, and

ERRus,i(t) = 1
N

∑
τ∈Tus

errus,i(τ) (6.11)

Figure 6.3 shows the behavior of the two model errors for the first joint of the
NJ4 110. The phases in which IDM(t) is in steady state are highlighted by a cyan
background. The black line, corresponding to the estimate of the model error in
the steady state, is applied only in such cyan phases, whereas the model error in
blue is applied in the rest of time; such a solution allows to considerably improve
the sensitivity of the algorithm, which can adapt its behavior on the basis of the
actual working conditions.

Figure 6.3: Comparison between m̂err,1(t) computed for steady state and for un-
steady ones.

The change of the parameter δ modifies the behavior of m̂err,i(t) for the unsteady
states. When its value is decreased, the model error is more influenced by the max-
imum value reached during the whole elaboration, so obtaining a procedure more
reliable in terms of false collisions but less rapid to adapt its behavior to the new
trend of the residue (i.e., the blue line in Figure 6.3 remains close to the maximum
reached value). On the contrary, when δ is increased, the model error estimation
becomes more reactive so improving the sensibility of the algorithm (i.e., the blue
line in Figure 6.3 remains close to the residual values). In the experimental tests δ
was set to 0.5.

The transition between the steady state estimation and the unsteady one is
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performed without any particular management; despite this choice leads to dis-
continuities in the computation of the threshold (6.4), such an approach does not
cause any functional anomaly in practice, so that it can be adopted to keep the
computational burden low in the real time implementation of the virtual sensor.

6.1.2 Monitoring of the currents behavior through a FSM
The trend of the currents I(t) and IDM(t), i.e., the inputs of the virtual sensor,

are monitored to distinguish:

• steady and unsteady states, to apply the most suitable model error estimation
algorithm;

• unsafe and safe states, i.e., situations in which collisions might actually occur
or not, so to perform the collision detection test only in the unsafe ones, thus
enhancing the efficiency of the virtual sensor implementation.

The monitoring action is performed implementing a five-states FSM for each
joint, after having applied a proper filtering action to both I(t) and IDM(t). Such
a filtering action, which is mandatory for the measured current, is applied as-it-is
to the estimated one, too, so to avoid any time delay between them. A low-pass
filter with 10− 20 Hz bandwidth can represent a satisfactory solution in general.

The five states of the FSM of the i-th joint, which is reported in Figure 6.4 with
a sketch of the currents behavior in the various states (Ii(t) in red and IDM,i(t) in
blue) are:

• Steady state, in which the estimated current IDM,i(t) is almost constant or
very slowly varying (as in the phases having white background in Figure 6.2);
this state is recognized by computing the first and the second order time
derivatives of IDM,i(t), which must tend both to zero. It is worth to be noted
that IDM,i(t) is not affected by noise, since it is provided by the internal robot
dynamic model on the basis of the reference joint trajectory, so that the time
derivative computation can be made without any numerical problem.

• Moving state, in which the current values of Ii(t) and IDM,i(t) vary rapidly
but remaining synchronous, as in Figure 6.5; this state is distinguished by
the previous one monitoring the time derivative of both Ii(t) and IDM,i(t),
denoted as dp_Ii(t) and dp_IDM,i(t), respectively: when they start to increase
in absolute value, the steady state is abandoned, and the FSM switches to
the moving state. The synchronicity of the currents is detected by comparing
dp_Ii(t) and dp_IDM,i(t), as detailed in Subsection 6.1.3.

• Reversing and Reversing_DM states, in which only one of the two currents,
Ii(t) or IDM,i(t), changes its trend, i.e., the sign of its time derivative changes;
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two states of reversing type are used to distinguish the two possible cases, i.e.,
which of the two currents is changing its trend, as sketched in Fig. 6.4.

• Impulse state, in which sudden impulses of Ii(t), which are not present in
IDM,i(t) occur (see Fig. 6.6); this state is recognized by monitoring the error
between the time derivatives of the currents.

Figure 6.4: FSM scheme with sketch of the currents behavior in the various states
(Ii in red and IDM,i in blue).

The two reversing states and the impulse one, in which the measured and the
estimated currents are not accordingly varying, are surely unsafe states, in which
the anomalous currents behavior may be due to a collision. The moving and the
steady states should correspond to the standard working conditions of the robot, in
which acceleration/deceleration phases alternate with constant velocity ones, but
only the moving state can be surely considered as safe; in fact, the steady one is
recognized on the basis of the estimated current behavior only, so that for the sake
of robustness it is convenient to handle it as a potentially unsafe state.

6.1.3 Monitoring of the currents time derivatives
In all the states but the steady one, the time derivatives of both the measured

and the estimated currents have to be computed and monitored. The noise that
inevitably affects the measured current lets the pure numerical computation of its
derivative unsuitable for our purposes. The insertion of a filter with a narrow
or very narrow band has to be avoided, because it could lead to unacceptable
delays in detecting changes of the current signal trend, and hence in detecting a
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Figure 6.5: Examples of the behavior of Ii(t) and IDM,i(t) during the moving state.

Figure 6.6: Examples of the behavior of Ii(t) and IDM,i(t) during the impulse state.

possible collision. The adopted solution is based on the dynamical estimation of
the noise affecting dp_Ii(t), via the statistical computation of the error between
the time derivatives of the two currents (since IDM,i(t) is not affected by noise,
also its time derivative is not). Such a result is used to define an upper bound
Thmax and a lower bound Thmin of dp_Ii(t), as shown in Figures 6.7 - 6.10, where
the solid red lines indicate the Thmax and Thmin bounds; the green line and the
blue one represent dp_Ii(t) and IDM,i(t), respectively, and the solid black line their
difference, computed as dp_Ii(t) - dp_IDM,i(t).

In particular, the FSM is in moving state if one of the two following situation
occurs: i) the difference between dp_Ii(t) and dp_IDM,i(t) is within the noise limits
(see Fig. 6.7), ii) dp_Ii(t) and dp_IDM,i(t) are both over the limits but they have
the same sign (see Fig. 6.8). However, when the first case occurs, if a very rapid
impulse of the current values brings the error to overcome a further much higher
bound (dashed red lines in Fig. 6.9), the FSM changes its state into impulse. As in
the second case of the moving state, for the reversing and the reversing_DM states,
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Figure 6.7: Moving state: the time derivative error is within the noise limits.

Figure 6.8: Moving state: both the time derivatives are outside the limits but
having the same sign.

the error between dp_Ii(t) and dp_IDM,i(t) and their signs are both monitored, but
in this case the change of the FSM occurs when the error is over the limits and the
signs of the time derivatives are different (see Fig. 6.10).

Remark 1. The insertion of the filtering action on the measured and estimated
currents, and the estimation of the model error through average processes would
determine an initial, transient phase in the computation of S(t), in which the
collision detection could be not fully reliable. This is not a problem in practice,
since the duration of such a time interval is generally smaller than the waiting phase
that is usually set by the robot constructors after the launch of the "drive-on" state,
in which the motors are active and the manipulator is ready to perform the assigned
task. In the COMAU case the duration of this phase is of some ms; such a time
interval is more than sufficient to achieve a reliable value of the threshold function,
so that the virtual collision sensor will be properly working also at the beginning
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Figure 6.9: Impulse state. The highest bounds (dashed red lines) are overcome by
the time derivative error.

Figure 6.10: Reversing state. In the highlighted region (dashed magenta line) the
time derivatives have different signs

of the robot motion.

6.2 Automatic learning and adaptation of the sen-
sor sensitivity to collisions

The adoption of a constant vector Collbias in the definition (6.4) of the threshold
function has allowed satisfactory results for a wide class of manipulators, employed
in different robotic applications, simply keeping the same values (heuristically de-
termined) in all the implementations; some results are reported and discussed in
Section 6.4. Despite this, significant differences have been noted with reference
to the actual ability of all the joints of detecting a collision and/or to the speed
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in detecting it. The adoption of a unique, constant Collbias vector can result in
quite different levels of sensor sensibility with respect to the specific behavior of
each robot, with no possibility of taking into account possible slow variations in
the robot behavior as time goes by.

An automatic learning and adaptation process of the sensor sensitivity has been
developed to cope with such problems, under the assumption that the whole motion
process of the robot is cyclic, as in any industrial application. The goal is to
determine the “best” Collbias term for the specific robot application through a
learning phase, and to subsequently apply it enabling a slow adaptation phase, in
which further small variations of the robot behavior are automatically taken into
account. In this context the learning process is aimed at automatically finding a
customized value for the Collbias term for the specific installation of the virtual
sensor, while the subsequent adaptation process introduces small or very small
corrections to such a term, in order to avoid any false collision detection caused by
slow changes of the residue values, e.g., due to temperature variations.

In the proposed learning and adaptation process, an initial, constant Collbias0

vector is assumed to be available (somehow heuristically determined), and employed
as Collbias in the threshold function S(t) used in the collision test, if the user does
not request to adapt it. The entries of such a vector are generally sufficiently
high to limit/avoid the risk of false collision detection during the standard, correct
execution of the robot moving cycle. A learning Bias Estimation block is introduced
(and kept always active), which executes a parallel collision test, still defined as in
(6.3), but adopting a different threshold function, denoted as SIdent(t), whose i-th
entry is defined as:

SIdent,i(t) = m̂err,i(t) + CollIdent,i(t) (6.12)
in which m̂err,i(t) is still computed as in (6.8) and (6.9) in the steady and unsteady
states, respectively, while CollIdent,i(t) is going to be updated as in the activity
diagram reported in Figure 6.11, starting from CollIdent,i(0) = 0. This initial choice
intentionally leads to a virtual (false) collision detection by the Bias Estimation
block, when the collision condition |Ri(t)| > SIdent,i(t) holds for the i-th joint.
No collision actually occurs, but such a condition is used to update CollIdent,i(t)
imposing

CollIdent,i(t) = |Ri(t)| − m̂err,i(t) (6.13)
i.e., equal to the minimum value which would allow to avoid a false collision de-
tection, if used in the main collision test. The minimum duration of the learning
process is set accordingly to the characteristics and duration of the whole motion
that the robot cyclically repeats (e.g., a pick-and-place cycle). At least an entire
cycle must be monitored during the learning phase to obtain a reliable estimate of
the minimum CollIdent,i(t) (denoted as Coll

(0)
Ident,i) that should be adopted, but a
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longer learning time can be imposed for the sake of robustness; for example in the
experimental tests reported and discussed in Section 6.4 a learning time of three
cycles is considered.

Figure 6.11: Activity diagram of the Bias Estimation block for the i-th joint

Further actions are performed by the Bias Estimation block, when a virtual
(false) collision is detected, to initialize a possible subsequent adaptation process,
which actually starts only if and when the user requests it. It must be underlined
that even if the Bias Estimation block is always active, and hence CollIdent,i is
continuously updated, no change is introduced in (6.4) in the main collision test
until the user’s request. Such a request determines the immediate application of
the new bias value (as soon as the minimum learning time has passed), and the
start of a slow adaptation of Collbias,i by defining:

Collbias,i(tadapt) = Coll
(k)
Ident,i + e(−tadapt/τa)

(
Coll0,i − Coll

(k)
Ident,i

)
(6.14)
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where tadapt is a time variable that is set to zero by the Bias Estimation block each
time it detects a virtual (false) collision, Coll

(k)
Ident,i indicates the value of Collident,i

updated for the k-th time by such a block after the start of the adaptation process
(k = 0 corresponds to the value that directly substitutes the original Collbias0,i),
and τa is the time constant of the adaptation process. τa must be much greater
than the typical values of collision detection times, so to avoid a too rapid increase
of the bias term that could prevent the correct detection of a real collision; since
the collision detecting times are expected to be of the order of some tens of ms,
τa must be chosen so to have a rise time of Collbias,i of some minutes or tens of
minutes. The Coll0,i parameter in (6.14) is used to force the application of the new
bias term at the end of the learning phase, and to define the initial condition of
any further adaptation process. In particular, the immediate application (after the
user’s request) of the first bias term Coll

(0)
Ident,i, provided at the end of the learning

phase, is simply achieved by imposing:

Coll0,i = Coll
(0)
Ident,i (6.15)

This implies that the adaptation function (6.14) will actually change the Collbias,i

value only when the Bias Estimation block provides a new, updated estimate
Coll

(k)
Ident,i, with k > 0. Each time this happens, this new value is automatically

used in (6.14), while the Bias Estimation block imposes:

Coll0,i = Collbias,i

tadapt = 0 (6.16)

as indicated in the activity diagram reported in Figure 6.11. These assignments
make the adaptation process (6.14) restart from the current Collbias,i value and
let it tend to the new Coll

(k)
Ident,i. Such a value will be actually, slowly reached,

according to the settling time imposed by τa, only if in the meanwhile no further
updated value Coll

(k)
Ident,i is provided by the Bias Estimation block, otherwise the

adaptation process will restart again, imposing the convergence of Collbias,i to such
a new value.

Remark 3. If the user never asks for the adaptation of the Collbias term,
tadapt remains always equal to zero and the original Collbias0 vector is indefinitely
maintained in the threshold function (6.4) used in the collision test (6.3).

A FSM included in the virtual collision sensor handles the entire learning and
adaptation process, guaranteeing in particular that the adaptive expression (6.14)
of Collbias,i(t) is actually used in the collision test only if a sufficient learning time
has passed (corresponding to one process cycle or more, according to the user
preferences, as previously discussed). This condition is ensured simply maintaining
tadapt = 0 until the established learning time has passed and a first reliable Coll

(0)
Ident,i
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6.2 – Automatic learning and adaptation of the sensor sensitivity to collisions

value has been computed. The FSM (sketched in Figure 6.12) uses four states to
manage the learning and adaptation process through three main services:

• Init, corresponding to the user’s request of a new learning and adaptation
process of Collbias. It sets to zero all the entries of Collident and the time
variable tadapt; such a variable will remain locked to zero until the beginning
of the adaptation phase, enabled by the subsequent Adapt service.

• Set: It allows the direct application of the new Coll
(0)
Ident vector estimated

during the learning phase, from which the slow adaptation process will start.

• Adapt: it lets the adaptation process (6.14) start, unlocking the time variable
tadapt, so that the vector Collbias in (6.4) becomes a slow function of time.

Figure 6.12: FSM for the sensor sensitivity adaptation.

The sequence of operations performed in the four states of the FSM can then
be summarized as follows:

1. IDLE: The FSM remains in the IDLE state until an adaptation request is
received. The values of the CollIdent vector are continuously updated by the
Bias Estimation block, but their values do not affect Collbias and the threshold
function (6.4) actually used in the collision test. The user can send a request
(AdaptReq) using a specific instruction to be inserted in the user program.

2. INIT: The FSM launches the Init service, so that the Bias Estimation process
restarts from CollIdent = 0 (any previous value of CollIdent is discarded).

3. LEARNING: The FSM remains in the LEARNING state until the imposed
learning time has passed and a reliable Coll

(0)
Ident vector has been determined

by the Bias Estimation block. When such a waiting phase is over (Learnin-
gEnd), while leaving the LEARNING state the Set service directly applies
the new Coll

(0)
Ident vector.
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4. ADAPT: The FSM launches the Adapt service and then comes back to IDLE,
leaving the Bias Estimation block and the adaptation law (6.14) both active.

A complete cycle involving the initialization (init), learning, set and adapting
phases is shown in Figure 6.13; it highlights the great difference in behavior of the
threshold function before and after the set instant. The figure compares the current
residue (in absolute value) Ri(t), the identified threshold function SIdent,i(t) and the
threshold function actually applied in the collision test, defined as αSi(t), where
the Si(t) function given in (6.4) is multiplied by a factor α, slightly greater than
1, to avoid possible problems in the practical implementation, as discussed in the
next section.

Figure 6.13: Example of a cycle involving init, learning, set and adapting phases.

6.3 Whole structure of the virtual collision sen-
sor

The virtual collision sensor is not aware of the robotic structure of the whole
system, so that it simply works checking the current values of each joint one by
one. The global virtual sensor is then composed by a cycle in which each joint
is tested by the Virtual collision sensor block; when a collision occurs a collision
event is raised, so that a properly post-collision handling can be carried out. As
shown in Figure 6.14, the call of the Virtual collision sensor block is preceded by
an initialization phase, in which the parameters related to the activation and the
timing of the adaptation phase are read and used for the subsequent update of the
memory (Update Memory block).

During such a phase the object called Collision Detection State, containing the
state of the algorithm, is used together with the new input values (e.g., current
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6.3 – Whole structure of the virtual collision sensor

Figure 6.14: General activity diagram of the collision detection procedure

values and adaptation parameters) in order to define the inputs for the collision
detection procedure (i.e., the object called Collision Detection Inputs).

The flowchart representing the Virtual collision sensor block was already pre-
sented in [42] but here some modifications are introduced in order to implement the
learning and adaptation of the sensor sensitivity. The work-flow of the new Virtual
collision sensor block (Figure 6.15) is presented using the graphical representation
provided by the activity diagrams, which allows to define additional characteristics
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like the parameters involved in the activities and the sets of activities that can be
executed in parallel (fork/joint statement).

Figure 6.15: Activity diagram of the virtual collision sensor block

The first part of the activity flow (i.e., from the starting block to the FSM) is
not changed from a conceptual point of view; the input values are pre-elaborated
(e.g., applying a filtering action on the input signals) and the first and second order
time derivatives of Ii and IDM,i are computed. The time derivatives are then used
by the subsequent three blocks (which can be executed in parallel) to evaluate if Ii

and IDM,i change their trend and to detect when IDM,i enters in a steady condition.
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6.3 – Whole structure of the virtual collision sensor

The FSM works as shown in Figure 6.4, monitoring the behavior of the current
signals.
The rest of the activity diagram has been slightly changed to introduce the new fea-
tures; in particular a specific block (called Computes Collbias) computing Collbias,i(t)
using (6.14) is introduced; such an activity is performed in parallel execution with
respect to the computation of the model errors (carried out by the so called Com-
putes m̂err(t) block, reported in Figure 6.16). The Computes Thresholds block per-
forms the computation of the two thresholds S(t) and SIdent(t), using respectively
the equations (6.4) and (6.12).

Figure 6.16: Activity diagram of the Computes merr,i(t) block

The last two activities are performed in parallel; the first one computes CollIdent,i

as shown in the activity diagram in Figure 6.11, whereas the second one carries out
the collision test (Collision check block, see Fig. 6.17) with small differences with
respect to the basic version proposed in [42]. The adaptation phase is based on a
parallel updating of CollIdent,i(t) without stopping the robot.

It must be noted that the procedure properly works only if Si(t) is always greater
then SIdent,i(t), in particular after the end of the learning phase when the subsequent
set action is performed; in fact if such a condition does not hold, whenever the Bias
estimation block detects a (false) collision, the Collision Check block would detect
it as well, because in practice they would perform the same test with the same
threshold. In order to avoid this kind of problem, the threshold really applied in
the collision test (6.3) is slightly increased (see the example reported in Fig. 6.18)
substituting Si(t) with:
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Figure 6.17: Activity diagram of the Collision Check block

Scoll,i(t) = αSi(t) (6.17)
where α is slightly greater then 1, just to let the threshold function used in the
Collision Check block be always different from the one used in the Bias Estimation
block.

Remark 4. The usage of the coefficient α does not lead the procedure to
become insensitive to real collisions; in fact, after the application of the new bias
through the Set service, the threshold function decreases drastically with respect to
its initial value, so that the α coefficient cannot produce in practice an increase of
the threshold function sufficient to let it reach values greater then the initial ones
(see Fig. 6.13). In the worst case in which CollIdent is equal to Collbias,0 the system
would have a worsening of its sensibility of about (α−1)% with respect to the basic
version.
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Figure 6.18: Behavior of threshold functions and current residue during the adap-
tation phase for the second joint of a NS12 manipulator

6.4 Experimental results
Experimental tests are carried out in order to compare the performances of the

basic version of the procedure proposed in [42] with the one including the sensitivity
learning and adaptation process. The experiments are performed on a COMAU NS
12 by imposing real collisions in some predefined positions of the work-space. The
movements are defined using the programming language (i.e., the PDL2) of the
COMAU control system (called C5G), through which four different programs has
been created, that repeat the movement between a starting and a final point and
vice versa, cyclically. The collisions tests are carried out for different types of
movement, i.e., when the robot is moving linearly in a plane parallel to the floor
(left → right), and when the robot is moving linearly along a line perpendicular
to the floor (top → bottom). For both cases the collisions are imposed in different
points of the workspace by placing an obstacle (a cardboard box of about 15 kg)
along the line of movement of the robot just during the motion. In order to highlight
the behavior in different conditions some of the collision points are chosen in the
central part of the workspace, i.e., near the robot base (denoted as NR in Tables
6.1 and 6.2), whereas some others are taken close to the frontier of the workspace
(EOS in Tables 6.1 and 6.2). Figure 6.19 shows the Cartesian paths of the tool
center point of the robot, highlighting the trajectory in four cases (i.e., top →
bottom EOS, top → bottom NR and left → right EOS, left → right NR), where
the Cartesian point (0,0,0) denotes the base of the robot. Figure 6.20 points out
the Cartesian velocity profile, underling that the robot moves cyclically between
the starting and final point until the cardboard box is placed in the trajectory, so
causing the subsequent collision, and hence the stop of the robot. For the sake of
completeness, the joints velocities are also reported in Figure 6.21.

For each point of collision two tests are performed: i) using the basic version of
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Figure 6.19: Cartesian path of the robot tool center point in the four considered
cases.

Table 6.1: Comparison between the collision Detection Times (DT) of the basic
version and the adaptive one

Performed tests DT Adapt DT Basic Average reduction %
top → bottom EOS 0,026 0,106 75,5
top → bottom NR 0,024 0,186 87,1
left → right EOS 0,010 0,044 77,3
left → right NR 0,010 0,046 78,3

the algorithm proposed in [42], ii) using the adaptive virtual sensor; in the case of
the basic version, the collision detection is enabled with the standard thresholds,
whereas for the adaptive virtual sensor an initial learning phase of three cycles is
performed before the collision. The obtained results show a very large decrease of
the time required to detect the collision when the adaptive version is used, in par-
ticular the detection time of the basic version can be reduced between 56% and 87%
(see Table 6.1). A second important improvement is related to the number of axes
able to detect the collision; as shown in Table 6.2 for this particular experiment, in
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Figure 6.20: Cartesian velocity of the robot tool center point in the four considered
cases.

Table 6.2: Comparison of the number of axes which are able to detect the colli-
sion using the basic collision detection procedure and the proposed virtual sensor,
including the learning and adaptive functionalities

Ax
Performed tests 1 2 3 4 5 6

Basic

top → bottom EOS _ • _ _ _ _
top → bottom NR _ _ _ _ • •
left → right EOS • _ _ _ _ _
left → right NR • _ _ • _ _

Adaptive

top → bottom EOS _ • • • • •
top → bottom NR _ • • _ • •
left → right EOS • _ • • • •
left → right NR • • • • • •

which the collision with a cardboard box could be difficult to be detected because
of its low stiffness, the basic algorithm is able to detect it with no more then two
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(a) Axis 1. (b) Axis 2.

(c) Axis 3. (d) Axis 4.

(e) Axis 5. (f) Axis 6.

Figure 6.21: Velocity of all the axes of a Comau NS-12 in the four considered cases:
1) left → right EOS (blue line), 2) left → right NR (red line), 3) top → bottom
EOS (green line), and 4) top → bottom NR (black line)

axes, whereas the adaptive version detects the collision with almost all joints (and
in some cases just with all of them), thus enhancing the robustness of the collision
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detection process.

Further tests have been carried out, with the adaptation process disabled (i.e.,
in the configuration that is commonly used in all the plants in which COMAU
robots are used all over the world), on two kinds of robots having quite different
characteristics: i) COMAU SMART Arc4 (Figure 6.22) with maximum payload of
12 kg and ii) COMAU NJ4 110 (Figure 6.23) with payload up to 110 kg.

Figure 6.22: SMART5 Arc 4

The experiments made using the SMART Arc4 are carried out moving the
robot at its maximum velocity, and programming it to firstly perform some critical
movements (involving all the joints), and then to finally impact a cardboard box
using the first joint only. As a result of the test, we observed that the collision
detection system did not detect false collision during the first part of the experiment,
while the collision imposed during the final movement is correctly detected in about
40 ms, as shown in Figure 6.24, and highlighted to the user through a red Alarm
warning displayed in the Teach Pendant screen (Figure 6.25).

A video of this test is available in [22]; the behavior of the manipulator is showed
both with and without the obstacle, highlighting the effect of the collision detection
system. In particular, when the collision occurs, the manipulator stops immediately
and returns in a safe position.

The heavyweight robot is then used in the subsequent tests, applying the same
collision detection procedure without any modification. In particular, the NJ4 110
in Figure 6.23 with a payload of 90 Kg is used to perform various collision tests. In
the first part of the test, the robot is monitored during some typical work-cycles, like
spot-welding, and no false collisions are detected. The collision test is implemented
using a wooden pallet; collisions are performed both at high velocity and at low
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Figure 6.23: SMART5 NJ4 110

Figure 6.24: Behaviour of current I compared with IDM related to the first joint of
a SMART Arc4 during a collision.

velocity, and during both the acceleration phase and the deceleration one (a brief
video of such a test is available in [23]).
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Figure 6.25: Collision detection warning.

In particular, one of the collision experiments implemented using the NJ4 110
is made during the acceleration phase, limiting the joints velocity to 40% of the
maximum value allowed. The movement is programmed in order to involve all
the joints and to hit the wooden pallet with the test-mass mounted on the tip of
the manipulator. In this case, the collision is detected by all the joints but with
different collision times, as reported in Table 6.3; in particular the most reactive
has been the fifth joint, which has detected the collision in 46 ms, as highlighted in
Figure 6.26.

Table 6.3: Timetables for collision detection during different experiments

Model joint 1 joint 2 joint 3 joint 4 joint 5 joint 6
SMART5 Arc 4 40 ms - - - - -
SMART5 NJ110 82 ms 66 ms 60 ms 50 ms 46 ms 48 ms

In general, the collision tests give different results from the detection time point
of view, if they are performed in different conditions (high/low velocity, accelera-
tion/deceleration phase, different compliance of the obstacle used), so that different
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Figure 6.26: Behaviour of current I compared with IDM related to the fifth joint of
a NJ4 110 during a collision.

collision detection times can be obtained. For instance, if during a collision the ma-
nipulator is moving at very low velocity, the residue value grows up very slowly and
the time detection increases, whereas it decreases if the robot is moving at high
velocity, thanks to the quick growth of the residue value in this case. This intrin-
sic asymmetric behavior increases the time detection during those phases that are
less dangerous (at low velocity), but allows to improve the time detection during
the critical phases (at high velocity). Therefore, the timing reported in Table 6.3,
concerning different experimental conditions cannot be directly compared, since
different work conditions are involved in the tests.

During the experimental tests a wide range of manipulators are used, both
heavyweight and lightweight, but only the most representative results are reported
in the thesis for space reasons. It is important to underline that the collision detec-
tion procedure is implemented to all the manipulators without any modification:
no variation of any parameter (e.g., Collbias or the filter bandwidth) or in the FSM
was introduced; the corresponding software was written only once and used for all
the robots.
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Chapter 7

Payload Check

The Payload Check algorithm aims at detecting a wrong declaration of the
payload by the user. In order to perform such test, it should be necessary to have
a measure of the error between the payload actually mounted on the robot and
the declared one. In order to obtain the requested virtual measure, a cascade of
three virtual sensors is needed: i) a joint torque sensor, ii) a force sensor and iii)
a payload balance sensor. In such a context the term virtual is used to highlights
that the system does not have any specific sensor measuring the payload of the
robot; a set of virtual sensors are then exploited, which provides an estimate of the
required measures by applying specific algorithms and/or physical models of the
robotic system.

Joint torques sensor The real torque τI,i applied to each joint, in order to per-
form a particular movement, is related to the current absorbed by the corresponding
motor. Such a relationship, in the simplest case, can be expressed through a linear
model, in which the constant parameter corresponds to the motor constant. In this
case a torque measure can be easily computed in the control system as:

τI = KI · I(t) (7.1)

where τI is the computed applied torque vector, I is the vector containing the motor
currents provided by the real sensors, and KI is the diagonal matrix of the motor
constant values, as in (6.2).

Force sensor The force sensor will provide an estimate of the vector F of external
forces applied on the End-Effector (E-E), starting from the torques τF correspond-
ingly applied to the joints, using the well-known static equation of a robot:

τF = JT (q) F (7.2)
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where q is the joint position vector, J(q) is the robot Jacobian matrix, and F =
[fx fy fz Nx Ny Nz]T is the generalized force vector, defined with respect to an
inertial reference frame, having the z-axis orthogonal to the floor.

As already discussed in Section 5, in absence of any external force, the dynamic
model of a manipulator can be expressed as in (5.1), in which some model pa-
rameters, like the matrices M(q) and C(q, q̇), can be estimated very well, while
some others, e.g., the payload parameters, could be wrongly defined since they are
usually provided by the user, so leading to following situation:

g(q) /= ĝ(q) (7.3)

In such a case it is possible to highlight the consequences of the wrong payload
declaration considering:

g(q) = ĝ(q) + gerr(q) (7.4)
Equation (7.4) implies that a wrong declaration of the payload introduces a per-
manent error between the real torque τ required by the robot to perform a specific
movement and the corresponding torque τ̂ computed using the dynamic model of
the manipulator. If no model error is present, the difference between τ and τ̂ , de-
fined as the residual torque τres, is simply equal to the error introduced during the
(wrong) definition of the payload:

τres(q) = g(q)− ĝ(q) := gerr(q) (7.5)

Such residual torques can be computed as:

τres = τI − τ̂ (7.6)

with τ̂ = M̂(q)q̈ + Ĉ(q, q̇)q̇ + τ̂f (q̇) + ĝ(q) and τI provided by the joint torque sensor
as in (7.1).

If the robot is not in a singular configuration, the virtual force sensor computes
the generalized forces Fres virtually corresponding to the residual torques τres from
(7.2) as:

Fres =
(
JT (q)

)−1
τres (7.7)

This result would be correct if the only errors in the computation of τ̂ were due
to the gravity term because of a wrong declaration of the payload. In practice the
estimates of all the robot dynamic model matrices and of the friction torques differ
from their true values, (i.e., M(q) /= M̂(q), C(q, q̇) /= Ĉ(q, q̇) and τf (q̇) /= τ̂f (q̇))
thus leading to an overall torque model error vector, and consequently to a residual
torque τres given by:

τres(q, q̇, q̈) = τmodel_err(q, q̇, q̈) + gerr(q) (7.8)

where

τmodel_err = (M(q)− M̂(q))q̈ + (C(q, q̇)− Ĉ(q, q̇))q̇ + (τf (q̇)− τ̂f (q̇)) (7.9)
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Such a result implies a worsening in the quality of the estimation of the forces
applied on the E-E, which are affected by an error that changes on the basis of the
operational condition, since τmodel_err is a function of q, q̇ and q̈.

Moreover, the force estimate provided by the virtual force sensor can be con-
sidered as feasible only if it is relative to a robot configuration sufficiently far from
any singularity. In fact, in a neighborhood of a singular configuration, numerical
problems may lead to a force vector whose components tend to become too high,
so destroying the actual information content of the measure. Such a problem is ad-
dressed introducing a threshold (to be experimentally evaluated) on the reciprocal
of the conditioning number of the Jacobian matrix, which is given by:

indexcond = λmin

λmax

(7.10)

where λmin and λmax are respectively the minimum and the maximum eigenvalue
of JT . If the robot configuration is such that this requirement is not satisfied, the
computed force value is discarded.

Payload Balance The Payload Balance and the Payload Check algorithms are
very simple and could be merged into a single algorithm; they were separated in
our implementation in order to make the output of the Payload Balance available
for different purposes, too.

The Payload Balance uses the output of the force virtual sensor to obtain a
“measure” of the forces F applied on the E-E. The third component of such a
vector contains the force along the z-axis (i.e., the force component aligned with
the force of gravity), so that the payload error can be easily computed as:

payload_error = fz/g (7.11)

where g is the gravity acceleration. The value returned by the Payload Balance
block is just the payload_error without any further elaboration; the choice to re-
turn rough values as output is justifiable because at this level the final application
is still unknown.

7.1 The proposed Payload Check algorithm
The main goal of the Payload Check algorithm is to provide a fault indicator

which alerts the user that the payload is not properly declared. To obtain such a
service, it uses the payload_error in (7.11), but such a value is rough, so that a
cleaning phase is required. In fact, payload_error should be ideally constant, but,
as shown in (7.8), the τmodel_err term introduces further non constant errors that
degrade the final estimation; in order to find the correct value, the DC component
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should be then computed. However, such a computation involves the usage of a fil-
ter with a bandwidth very tight, which is difficult to implement in a real controller,
because it would lead to numerical problems, also with a too high raise time. For-
tunately, the requirements of any real application specify a maximum time within
which the result must be available; a proper filtering action can then be introduced
in order to provide a stable result within an acceptable time, which is one hour from
the start of the procedure in the worst case, according to COMAU requirements.
From the theoretical point of view a low-pass filter with a bandwidth of about
0.002 Hz would be a good solution, but such a filter implemented in the COMAU
controller unfortunately may give numerical problems, caused by too small values
of the filter parameters. For this reason the actually adopted solution is based on
an average with a very high number of samples N (about 250000), which behaves
in a very similar way to the proposed filter. The results showed in Figures 7.1 and
7.2 are referred to a COMAU NJ4 175, but very similar results have been obtained
for all the robots used in the experimental tests.

Figure 7.1: Estimation of the payload error using the lowpass filter (blue, solid line)
and as average (red, dashed line)

Figure 7.1 compares the behavior of the filter and the average solution, showing
their equivalence; such a result is further highlighted in Figure 7.2, which shows
that the difference between the values computed using the two methods has an
order of magnitude of 10−3. The final result is still affected from model errors,
but their effects are quite low, thanks to the properties of the proposed filter (or
average); further analysis will be presented in Section 7.2.

In order to limit the usage of too much memory, necessary to keep a very large
buffer of N elements, the computation of the average was implemented as:

payload_error = payload_error ·N + payload_error

N + 1 (7.12)
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Figure 7.2: Difference between the values returned by the filter and as average.

so that only one memory location is necessary for the calculation.
The payload check algorithm applies a threshold to payload_error in order to
detect the fault situation; the check can be formalized as:⎧⎨⎩payload_error > threshold, fault detected

payload_error ≤ threshold, payload ok
(7.13)

with
threshold = P · payloadmax (7.14)

where P is a percentage and payloadmax is the maximum payload applicable to
the robot. In order to avoid false detections in the worst case, the percentage was
experimentally set to 50%.
When the faulty situation is detected, the Payload Check generates an event, which
can be caught by a fault handler that carries out a specific management.
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7.2 Experimental results
The Payload Check procedure was tested on a wide range of COMAU manip-

ulators (see www.Comau.com), starting from lightweight robots with a maximum
payload of few kg up to heavyweight ones, carrying payloads up to 470 kg. The
procedure was also tested on manipulators with a various number of Degrees of
Freedom (DoF) and different kinematic chains, possibly with single or double closed
loop chains, or having the standard anthropomorphic structure with a spherical or
hollow wrist.

The tests were performed using the standard program realized to carry out the
“run-in” of new robots. Such a program moves the robot for four hours imposing
both single joint movements and complex movements involving all the joints. The
experiments led to good results if related to the proposed application; the procedure
was able to find an estimation of the payload error within one hour as shown in
Figure 7.3, where it is reported the behaviour of the payload_error over a period
of 10000 seconds for a COMAU NJ 130 with a payload of 130 kg mounted on the
flange and a declared payload equal to 0 kg. For this experiment the procedure

Figure 7.3: Behavior of the filtering action and the average during the transient.

should reach 130 kg of error, and the fault must be detected when payload_error
overcomes 65 kg; thanks to the accuracy of the dynamic model of this manipulator,
the fault condition is reached after about 414 seconds, much earlier than the maxi-
mum time required. Figure 7.4 highlights the steady state behavior of the payload
error; due to the model errors, it shows an oscillatory component with a mean value
of 129.6 kg and a standard deviation of 0.31 kg, i.e., there is a relative mean error
of 0.31% and the returned values are placed around the mean value with an error
of about ±1 kg.

The presented results are valid, as in the case of the NJ 130, for manipulators
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Figure 7.4: Behavior of the filtering action and the average after the transient.

whose dynamic model fits very well the real dynamic of the manipulator; in other
cases worse results were obtained, but in general the relative mean error was always
under the 6.5%. It is also fundamental that the movement imposed by the robot
run-in program keeps it often quite far from singular configurations, otherwise
too many payload_error values generated during the motion should have to be
discarded, with a consequent worsening of the time necessary to detect the actual
wrong payload declaration.
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Chapter 8

Post-collision reaction and
Manual Guidance

In order to give to the human operator the possibility to directly guide the mo-
tion of a non-collaborative manipulator during the programming phase, a manual
guidance approach has been developed. After an overall analysis of the available
state-of-the-art solutions for collision detection and manual guidance, the proposed
approach is illustrated in this chapter, reporting some experimental results con-
firming its validity.

8.1 Sensor-less approach to Manual Guidance
A sensor-less methodology implementing virtual sensors to manage both col-

lision detection and manual guidance sessions is proposed. Such an approach is
defined as sensor-less since no external sensors are required; only information pro-
vided by the proprioceptive sensors, typically included in industrial robots, is used,
i.e., position of the joints and current absorbed by the motors. The methodology
includes: (i) a monitoring phase, which detects if a collision occurred, and distin-
guishes if it was due to an accidental impact with the environment, during a non
collaborative application, or determined by an intended human-robot contact, and
(ii) a post-impact phase, which imposes an appropriate reaction strategy: a MG
algorithm when an intended human-robot contact is detected, or a CD reaction
when an accidental collision occurs. The proposed procedure requires heuristic ap-
proaches to choose suitable values for some of the involved parameters, which must
be customized for the specific robot to which it is applied. Experimental application
of the procedure was made using the COMAU Racer 7 - 1.4; the choices about pa-
rameters, even if experimentally developed in a particular case, can provide useful
guidelines and suggestions for the application to other manipulators.

The finite state machine shown in Figure 8.1 manages all the phases of the
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developed procedure; it is composed of the following four states:

1. Monitoring: where the currents are monitored and decision parameters are
updated. No orders are given to the robot for the position adjustment in this
state.

2. Manual Guidance: where a manual guidance contact is detected and move-
ment corrections are accordingly sent to the robot.

3. Collision Reaction: where a collision is detected and a reaction strategy is
adopted to stop or move the robot back to a safe position.

4. Waiting: void state imposing the waiting of 1 s.

Waiting Monitoring 

Manual
Guidance 

Collision
Reaction 

mg_exit

mg_enter

cr_enter

cr_exit

after 1s

Figure 8.1: Basic state diagram for the state machine.

The algorithm starts from the Monitoring state, which is referred to the normal
operation of the robot during which no interactions occur. When a MG interaction
is detected (i.e., condition mg_enter is satisfied), the system moves to the Manual
Guidance state, and the MG interaction is enabled until condition mg_exit is met.
At this point, the system moves to the Waiting state, where a 1 s delay is imposed
before returning to the Monitoring state. The same operation occurs in the case
of collision detection. Whenever condition cr_enter is met, the system moves to
the Collision Reaction state and performs the programmed reaction strategy,
before returning to the Monitoring state when condition cr_exit is satisfied.

8.1.1 Monitoring state
The goal of the Monitoring state is to detect whether a collision occurred,

and to distinguish if it is due to the interaction between the user and the robot
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8.1 – Sensor-less approach to Manual Guidance

or to an accidental collision, i.e., to verify if one of the conditions mg_enter and
cr_enter is satisfied. In a sensor-less context, such a goal can be reached exploiting
the information included in the residual current vector (6.1). Using the matrix KI

of conversion coefficients of the motors (see equation (6.2)), it is possible to obtain
the vector of residual torques as:

τres(t) = KI ·R(t) (8.1)
In the absence of external forces applied to the robot, (8.1) highlights the error

between the real measured torque and the value provided by the adopted dynamic
model. Even if such an error cannot be canceled, it can be sufficiently reduced using
an accurate robot dynamic model, as well as constraining the movements of the
robot within the validity region of the model, e.g., applying low accelerations when
a rigid body model is adopted. It must be underlined that, in a Manual Guidance
session, accelerations are kept low for safety reasons, and hence the assumption
must not be considered as restrictive in such conditions, in which equation (8.1)
then provides a good estimate of the torques applied by motors to counteract the
external forces applied on the robot.

When the state machine in Figure 8.1 is in the Monitoring state, R(t) and
τres(t) are computed, and both conditions mg_enter and cr_enter are evaluated at
the same time, in order to deduce the nature of the interaction between the robot
and the environment.

8.1.1.1 Condition mg_enter

The detection of the condition mg_enter is achieved by comparing: (i) the
vector of the estimated Cartesian forces applied on the end-effector Fmg(t) with a
pair of varying threshold vectors Th1H(t) and Th1L(t), and (ii) the vector Fmg, s(t)
of the estimated Cartesian forces slopes with a constant threshold vector Th1s.
In practice, such conditions are based on the assumptions that when a physical
interaction is underway, both the Cartesian forces detected on the end-effector and
their slopes increase in absolute value; such a double check approach allows to make
the detection procedure more reliable, so avoiding possible false detections, leading
the robot to move in an arbitrary and haphazard manner.

In such a sensor-less context, the vector of Cartesian space forces Fres(t), applied
on the end-effector, could be obtained as:

Fres(t) =
(
J(q)T

)−1
τres(t) (8.2)

where J is the Jacobian matrix, and q is the joint position vector. In order to
detect only MG-type interactions, and to clean up the signal as well, a proper fil-
tering action is required for τres(t). Observing the behavior of the residual torques
while MG and CD interactions are experimentally imposed (e.g., intentionally hit-
ting the end effector, throwing an object on it, pulling the manipulator in a smooth
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way or guiding it rapidly), it can be noticed that unexpected collisions produce
significantly higher frequency spikes than in the manual guidance case. A low-pass
filter can then be properly designed, analyzing the frequency spectrum of the force
signal while MG and CD interactions are applied to the robot. Such a filter is
then applied to each component of the residual current vector in (6.1), so obtaining
the low-pass filtered residual current vector Img(t), which is used to compute the
estimate of the residual torques as:

τmg(t) = KI · Img(t) (8.3)
Using relation (8.2), replacing τres(t) with τmg(t) given in (8.3), it is possible to

obtain the vector Fmg(t), representing a good estimate of the external Cartesian
forces on the end-effector as:

Fmg(t) =
(
J(q)T

)−1
τmg(t) (8.4)

The slope of Fmg(t) is then computed as:

Fmg,s(tk) = Fmg(tk)− Fmg(tk−1)
T

(8.5)

where T is the adopted sampling time, and tk is the time instant defined as
k · T . Vectors Fmg(t) and Fmg,s(t) are both used in the following set of conditions
that are simultaneously tested to detect the mg_enter condition:

⎧⎨⎩∃ ax ∈ [1, 3] : Fmg(ax)(t) > Th1H(ax)(t) ∨ Fmg(ax)(t) < Th1L(ax)(t)
∃ ax ∈ [1, 3] : |Fmg,s(ax)(t)| > Th1s(ax)

(8.6)

where ax is chosen between 1 and 3, since only forces along x, y and z axes are
taken into account, while vectors Th1H(t) and Th1L(t) are defined as:⎧⎨⎩Th1H(ax)(t) = F̄ N

res(ax)
(t) + 4σF(ax)(t)

Th1L(ax)(t) = F̄ N
res(ax)

(t)− 4σF(ax)(t)
(8.7)

where F̄ N
res(t) is the mean of the last N samples of Fres(t) and σF (t) is its

standard deviation. The term 4σF (t) was inserted in the thresholds definition to
include 99.99% of the data inside them.

8.1.1.2 Condition cr_enter

The detection of the condition cr_enter is obtained by comparing the vector of
filtered residual currents Icd(t) with a varying threshold vector Thcd(t), as detailed
hereafter. Thresholds for collision detection are chosen time-varying in order to
avoid false detections or missed collisions.
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As highlighted before, CD and MG interactions produce a quite different behav-
ior of the force signal, which can be analyzed using its frequency spectrum. In case
of unintended collisions between the robot and the environment, high frequency
spikes of force are produced, which can be detected and separated from MG sig-
nals, using a proper high-pass filter. The filter is then applied to each component
of the residual current vector in (6.1), so obtaining the high-pass filtered residual
current vector Icd(t).

Condition cr_enter is then defined as:

∃ j ∈ [1, n] : Icd(j)(t) > Thcd(j)(t) (8.8)
in which n is the number of joints of the robot, Icd(j)(t) is the high pass filtered

residual current for the j-th joint, whereas Thcd(j)(t) is a variable threshold defined
as proposed in [34], in which the following structure has been adopted:

Thcd(j)(t) = kcdc(j)
+ kcdv(j)

|q̇j(t)|
q̇j,max

+ kcda(j)

|q̈j(t)|
q̈j,max

(8.9)

where q̇j and q̈j denote the velocity and the acceleration of the j-th joint, respec-
tively; the positive coefficient kcdc(j)

is chosen heuristically for each joint, to cover
the high-pass filtered currents in no-motion conditions (q̇ = 0, q̈ = 0), while kcdv(j)

and kcda(j)
are chosen imposing, to the j-th joint, the maximum velocity (q̇j,max)

and the maximum acceleration (q̈j,max), so to set Thcd(j)(t) as an upper bound of
the motor currents with some margin. In this way, during the standard operation
of the robot, the motor currents cannot overpass the thresholds.

8.1.2 Manual Guidance state
The goal of this state is the imposition of the Cartesian movement of the end-

effector defined by the human operator through the forces he/she applies on the
robot. The MG session finishes when condition mg_exit is satisfied. The conversion
of the Cartesian forces Fmg into the corresponding Cartesian positions is achieved
through a proportional estimation using the theory of elasticity (only translations
are taken into account) as:

∆pmg = K−1
mg · Fmg (8.10)

where Kmg is a diagonal matrix containing the stiffness parameters for the three
main directions. Such compliance matrix is properly set up to impose a specific
behavior as a reaction; its values depend on the maximum safe speed of the robot
as well.
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8.1.2.1 Condition mg_exit

Condition mg_exit is verified through a checking process in which: (i) the esti-
mated vector of the Cartesian forces Fmg(t) is compared with a pair of time varying
threshold vectors Th2H(t) and Th2L(t), and (ii) the mean of the estimated vector of
Cartesian force slopes Fmg,s(t) is compared with a constant threshold vector Cflat.
In practice condition mg_exit is satisfied when force signals are within the bounds
and flattened.

The flatness of the signal is monitored considering a window of Nmg samples,
in which the average of Fmg,s(t) should be lower than a pre-determined constant
vector Cflat in order to fulfill the flatness condition. The absolute value is also used
here to include the cases of a negative slope. The values of Cflat are critical to
be determined; a high value would cancel the flatness condition, while low values
would keep the system in the Manual Guidance state.

Condition mg_exit is satisfied when:⎧⎪⎪⎨⎪⎪⎩
Th2L(ax)(t) < Fmg(ax)(t) < Th2H(ax)(t) ∀ ax ∈ [1, 3]⏐⏐⏐⏐⏐ 1

Nmg

∑Nmg

k=1

(
Fmg,s(ax)(t− k − 1)

)⏐⏐⏐⏐⏐ < Cflat(ax) ∀ ax ∈ [1, 3]
(8.11)

where Th2H(ax)(t) and Th2L(ax)(t) depend on the magnitude of the force applied
to the TCP, and they are computed as:

⎧⎨⎩Th2H(ax)(t) = Th1H(ax)(t) + cth2 · |∆FmH(ax) | for ∆FmH(ax) > 0
Th2H(ax)(t) = Th1H(ax)(t) for ∆FmH(ax) ≤ 0

(8.12)

⎧⎨⎩Th2L(ax)(t) = Th1L(ax)(t) + cth2 · |∆FmL(ax)| for ∆FmL(ax) < 0
Th2L(ax)(t) = Th1L(ax)(t) for ∆FmL(ax) ≥ 0

(8.13)

in which cth2 is a pre-determined coefficient between 0 and 1, properly chosen
to adjust the exit from the Manual Guidance state. ∆FmH(ax)(t) and ∆FmL(ax)(t)
represent the difference between the maximum force increase after the collision and
the thresholds Th1H(ax)(t) and Th1L(ax)(t), respectively, and are defined as:{

∆FmH(ax)(t) = max(Fmg(ax)(t))− Th1H(ax)(t) ∀t ≥ tc (8.14)

{
∆FmL(ax)(t) = max(Fmg(ax)(t))− Th1L(ax)(t) ∀t ≥ tc (8.15)

where tc is the instant at which the interaction is detected.

In practice, when the MG session is not started yet, both upper and lower
levels of Th2 are equal to the upper and lower levels of Th1, respectively, since
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Fmg(t) < Th1H(t) and Fmg(t) > Th1L(t). When the MG session starts, only one
between Fmg(t) > Th1H(t) and Fmg(t) < Th1L(t) is satisfied depending on the
direction of the change; as a consequence, only one between Th2H(t) and Th2L(t)
is updated in (8.12) and (8.13), while the other one is kept at the same level. In
this way, moving the arm in a certain direction will not automatically produce the
same sensitivity in the opposite direction.

8.1.3 Collision Reaction state
In this state the system imposes a proper reaction strategy in order to move the

TCP back, following the same direction of the collision force with a proportional
magnitude. The collision peak can be isolated by applying a proper low-pass filter
to the external force vector Fres(t) given in (8.2). The so obtained low-pass filtered
force vector Fcr(t) is then used to monitor the behavior of the force peak and to
compute a proportional displacement in the Cartesian space using the theory of
elasticity, previously exploited for the MG algorithm. The displacements to be
imposed along the x, y and z axes, collected in vector ∆pcr(t), are computed as:

∆pcr(t) = K−1
cr · Fcr(t) (8.16)

Experimental tests were carried out on different robots to analyze the force
signal during collisions. They showed that in all types of collisions the peak after
an impact is attained in the subsequent 40 ms, so a good solution can be to extract
the information about the direction and magnitude of the impact from the filtered
force vector during this time interval.

The algorithm starts reacting directly after entering the Collision Reaction
state. It attenuates the effect of the impact by applying a velocity profile composed
of three phases:

• Phase 1: the robot position is changed according to (8.16). Such a manage-
ment is applied in the first 40 ms, acquiring the following information: (i) the
time instant t1in which the collision is detected, (ii) the force applied in t1, i.e.,
Fmg(t1), (iii) the time instant t2 in which the force peak is reached, and (iv)
the force applied in t2, i.e., Fmg(t2). Using such information, the time interval
between the collision detection and the force peak ∆t = t2− t1 and the differ-
ence between the collision force and the force peak ∆Fcr = Fmg(t2)−Fmg(t1)
are computed.

• Phase 2: a constant-speed is applied for a predefined time interval (160 ms
was chosen for our implementation), by imposing at each time instant the
displacement obtained using relation (8.16), replacing Fcr(t) with Fmg(t2).
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• Phase 3: the stop strategy is applied. Each motor is stopped applying a
deceleration profile of Ndec samples, computed as:

Ndec = asPcr + bs (8.17)

where as and bs are two parameters defining the type of linear relation between
the deceleration time and the variable Pcr, whereas Pcr can be defined in
different ways; in particular three alternative strategies have been tested:

– Strategy 1: Pcr = (∥K−1
cr ∆Fcr∥/∆t) (i.e., the stop interval Ndec is a

linear function of the slope of the impact force)

– Strategy 2: Pcr = ∥K−1
cr ∆Fcr∥ (i.e., the stop interval Ndec is a linear

function of the impact force)

– Strategy 3: Pcr = 0 (i.e., the stop interval Ndec is constant and equal
to bs)

8.1.3.1 Condition cr_exit

The exit condition is automatically satisfied ones the collision reaction manage-
ment is ended, i.e., the robot has been stopped.

8.1.4 Waiting state
The system imposes a 1 s wait before returning to the Monitoring state. In

this state no movement is imposed to the robot to stabilize motor currents and to
calculate decision parameters based on a no-motion situation.

8.2 Experimental results
The proposed methodology has been implemented in the real industrial con-

troller C5G of the COMAU robots, and several MG sessions and collision reaction
tests have been carried out. The monitor functionality of the C5G controller has
been used to perform data acquisition during MG and CD sessions. The following
results are relative to a MG session carried out using a COMAU Racer 7 - 1.4;
the data are directly provided by the C5G controller within a proper log file. The
following experimental choices were made.

Monitoring State The matrix KI of conversion coefficients of the motors, as
well as the other robot information necessary to compute the Jacobian matrix J(q)
(Section 8.1.1) are taken from the characterization file of the Racer 7 - 1.4.
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Condition mg_enter : The current vector Img(t) suitable to check for MG
condition are obtained by filtering the residual current using a low-pass filter (Sec-
tion 8.1.1.1). An IIR low-pass filter with cutting frequency at 2 Hz has been then
chosen for each joint. The structure of the adopted filter for the j-th joint is given
by:

Img(j)(tk) = a1 · Img(j)(tk−1) + a2 · Img(j)(tk−2) + b1 ·R(j)(tk)
where the following values have been adopted for the three parameters: a1 =
−1.95083889 , a2 = 0.95145506 , b1 = 0.00061616. Thresholds Th1H(t) and Th1L(t)
in (8.7) have been computed with N = 500, whereas Th1s in (8.6) has been heuris-
tically set to 40 N/s, in order to remove false detections while leaving an acceptable
level of sensitivity.

Condition cr_enter : The currents values Icd(t) for CD are obtained by
applying a high-pass filter to the residual currents (Section 8.1.1.2). The digital
Chebyshev filter with a cutting frequency of 10 Hz proposed in [34] has been adopted
in this case, for each joint. The structure of the adopted filter for the j-th joint is
given by:

Icd(j)(tk) = c1 · Ires(j)(tk) + c2 · Ires(j)(tk−1) + c3 · Ires(j)(tk−2) + c4 ·R(j)(tk−3) (8.18)

where the following values have been adopted for the four parameters: c1 =
−0.239207 ,c2 = −0.6262528 , c3 = 0.6262528 , c4 = 0.239207. The thresholds
Thcd(j)(t) in (8.9) have been obtained using the values reported in Table 8.1.

Joint
Parameter 1 2 3 4 5 6

kcd,c(A) 0.45 0.4 0.25 0.05 0.05 0.05
kcd,v(A) 0.2 0.2 0.1 0.04 0.03 0.02
kcd,a(A) 0.02 0.04 0.03 0.02 0.01 0.01
q̇max(rad/s) 0.05 0.06 0.09 0.32 0.32 0.36
q̈max(rad/s2) 0.003 0.004 0.0045 0.01 0.01 0.01

Table 8.1: Parameters of the varying threshold function Thcd(t) in the experimental
implementation.

Manual Guidance state The compliant matrix Kmg in (8.10) has been heuris-
tically set up, in order to provide an adequate feedback to the human operator
during MG sessions. After multiple tests the value 300N/mm has been adopted for
the stiffness along every axis.
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Condition mg_exit : The condition to exit from Manual Guidance state
is defined in (8.12), (8.13) (8.11), for which the best experimental results were
obtained using the following parameters: Nmg = 50 samples, cth2 = 0.7 and Cflat =
120N/s for each axis.

An IIR low-pass filter at 25 Hz has been adopted to filter external forces. The
structure of the adopted filter for the ax-th Cartesian axis is given by:

Fcr(ax)(tk) = d1Fres(ax)(tk) + e1Fcr(ax)(tk−1) + e2Fcr(ax)(tk−2) (8.19)

where the following values have been adopted for the three parameters: d1 =
0.07288762, e1 = 1.46396303, e2 = −0.532685065.

Collision Reaction state For the computation of the robot displacements in
(8.16), feasible results have been obtained using the value 120N/mm (or greater)
for all the components of the stiffness matrix Kcr. The three reaction strategies
have been implemented using the values reported in Table 8.2.

Strategy 1 Strategy 2 Strategy 3
as 7500 281 any
bs -250 -62 500

Table 8.2: Values of as and bs for the three reaction strategies experimentally
applied.

As illustrated in the previous section, the collaboration session starts when at
least one of the forces is greater than its threshold and when one of the force slopes
achieves a predefined level.
Figures 8.2 and 8.3 show a manual guidance session, predominately on the x di-
rection. The force Fmg(1)(t) (i.e., the external force along the x direction) starts
decreasing at time t = 15.8 s, and the slope along x overpasses its threshold of
40N/s; however, the detection happens when the Fmg(1)(t) overpasses Th1L(1) at
around t = 16.1 s. The plot in magenta is relative to a Flag showing the transition
between states; it is 0 if the system is in the Monitoring state, and different from
0 if it is in the Manual Guidance state.
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Figure 8.2: First plot from the top: filtered forces (solid blue) and Th1 on the x-
axis (dotted blue); middle plot: filtered forces (solid orange) and Th1 on the y-axis
(dotted orange); lowest plot: filtered forces (solid yellow) and Th1 on the z-axis
(dotted yellow). All the three plots include the transition Flag (magenta).

Figure 8.3: Forces slope on the x-axis (blue), forces slope on the y-axis (orange),
forces slope on the z-axis (yellow), transition Flag (magenta), slope threshold (dot-
ted violet).

The behavior of Th2(t), given in(8.12) and (8.13), is shown in Figure 8.4 after
entering in the Manual Guidance state. A force is detected on the xz plane.
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When the force signals along axes x and z overpass their Th1(t) thresholds, Th2(t)
starts updating its value following closely the change in the force signal. Once the
maximum of the force signal is reached, Th2(t) conserves its value at the same level
until the end of the MG session. On the y-axis the force signal does not overpass
Th1(t), so Th2(t) remains equal to Th1(t).

Figure 8.4: First plot from the top: filtered forces (solid blue) and Th2 on the x-
axis (dotted blue); middle plot: filtered forces (solid orange) and Th2 on the y-axis
(dotted orange); lowest plot: filtered forces (solid yellow) and Th2 on the z-axis
(dotted yellow). All the three plots include the transition Flag (magenta).

After force signals go below their Th2(t) thresholds and become flat, the system
returns to the Monitoring state. Figure 8.5 shows the force behavior at the end of
the collaboration session. Force signals on the x-axis and on the z-axis go between
their Th2 limits at 7.85 s. After such time instant, all the three signals are smaller
than their thresholds but the system does not exit MG session until the three force
slopes go below the slopes threshold at t = 8.1 s, as shown in Figure 8.6.

The video in [61] shows the behavior of the Racer 7 - 1.4 during CD and MG
sessions. In the first part of the video, a post collision reaction is shown, while
Strategy 2 with stiffness K = 120N/mm is adopted.

Different collisions are applied on the end-effector and on random points of links
4 and 5, obtaining acceptable reactions of the robot. It can be also noticed that
the reaction was very good in terms of direction and safe moving away from the
collision position.

The second part of the video shows a MG session. In particular (from 00:44 to
00:55), the ability of the low-pass filter to discard all high frequency components
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Figure 8.5: First plot from the top: filtered forces (solid blue) and Th2 on the x-
axis (dotted blue); middle plot: filtered forces (solid orange) and Th2 on the y-axis
(dotted orange); lowest plot: filtered forces (solid yellow) and Th2 on the z-axis
(dotted yellow). All the three plots include the transition Flag (magenta).

Figure 8.6: Forces slope on the x-axis (blue), forces slope on the y-axis (orange),
forces slope on the z-axis (yellow), transition Flag (magenta), slope threshold (dot-
ted violet).

resulting from a fast impact and keeping all low frequency signals resulting from a
normal MG interaction is highlighted.

In the third part, a second MG session is shown. In this case, at the end of the
session (at 02:05) a force on link 2 is applied, showing a slightly greater difficulty
in moving the robot since a smaller leverage is applied.

In the final part of the video, a series of MG sessions are tested with a delay of 1
s between each couple of them. Forces are applied not only to the end-effector, but
also to different parts of the robot. Although applying forces to the end-effector is
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more accurate, collisions applied on other parts of the robot gave very good results
in terms of movement direction, exiting the MG session and stopping the robot
after the dissipation of the applied force.
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Chapter 9

Friction modeling

Some upgrades and extensions have been developed to the results of [45], where
the authors proposed two possible friction models (static and dynamic), within
a general framework for the identification of friction for industrial manipulators
to be integrated in the robot software architecture. The insertion of pre-computed
friction values for compensation in the robot control scheme, on the basis of a previ-
ously identified model, is the simplest and lightest solution from the computational
point of view, but it is obviously not able to deal with possible variations. The aim
of the considered work is twofold: (i) the development of a general friction identi-
fication framework, including both data acquisition and identification procedures;
(ii) the insertion of the so estimated friction model for compensation purposes in
the robot control scheme. The developed friction estimation framework is gen-
eral enough to be used for different manipulators without a specific customization,
keeping the computational burden as low as possible, and providing a good friction
reconstruction at low and very low velocity in view of possible applications in a
HMI scenario. The static model proposed in [45] is used as starting point for the
proposed framework, with the insertion of a rough approximation of the hysteretic
behavior of friction directly in the implementation of the software module.

The developed procedure improves the basic identification solution given in [45],
exploiting sub-optimal research methods to handle the nonlinear parameters of the
model. Strong points of the developed framework are: (i) the capacity of automati-
cally recognize friction behaviors representable by a simpler model (e.g., in absence
of the Stribeck effect), and (ii) the automatic definition of a proper validity range
of the model, so to correctly handle what happens for velocities very close to zero,
avoiding an undesirable friction overcompensation in the robot control scheme.

The adopted static model [45], describes the friction of a robot joint as the sum
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of four mathematical functions of the joint velocity v:

τf (v) = τs
2
π

arctan(v Kv) + τsc
2
π

arctan(v δ)

+ τv v +
(
τnlv v2) 2

π
arctan(v Kv)

(9.1)

where τs is the static torque, τsc is the difference between the Coulomb friction
torque and the static one, τv is the coefficient of the viscous friction, the op-
erator 2

π
arctan(v Kv) is an approximation, continuous in time, of the sign func-

tion, whereas the operator 2
π
arctan(v δ) defines the nonlinear characteristic of the

Stribeck effect through parameter δ.
Analyzing equation (9.1) it is clear that, if the parameters of the nonlinear terms
(Kv, δ) are fixed, the identification becomes a pure Linear In Parameters (LIP)
problem, which can be solved using the Least Squares (LS) method as:

θ =
(
ΦΦT )−1Φ Tf (9.2)

where

Φ =
[

2
π
arctan(v Kv), 2

π
arctan(v δ), v, v2 2

π
arctan(v Kv)

]
θ =

[
τs, τsc, τv, τnlv

]T
(9.3)

and Tf and v are two column vectors belonging to Rm, the first containing the
experimental friction measurements at the corresponding velocity values listed in
the second one:

Tf = [τf,1, τf,2, ... , τf,m]T

v = [v1, v2, ... , vm]T (9.4)

In [45], the authors proposed a very simple method to derive a rough estimation
of the parameter δ, and also suggested to simply choose a sufficiently high value
for the compress factor Kv, in order to achieve a good representation of the sign
function. Hence a more robust and general procedure based on two main phases
Rading and data pre-processing and Parameters identification is developed (Figure
9.1), starting from the acquired data of Tf and v [43].

In real applications the friction model (9.1), as proposed in [45], should not be
applied as it is for compensation purposes, because the range of model validity is
not verified. For the simulation tests and the experimental implementation, the
standard model is then converted into a new one, which properly handles friction
at velocity values outside the validity range of the identified model. A limit value
is used in the definition of the following limiting function, which deals with the
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Figure 9.1: Overall scheme of the friction identification procedure.

computation of friction values for velocities smaller then vlim in absolute value,
leaving unchanged the torque values identified in the validity range:

flim(v) =
⎧⎨⎩1 if |v| ≥ vlim

| v
vlim
| if |v| < vlim

(9.5)

Such a function (9.5) is applied to the part of (9.1) representing the friction trend
at low velocity, so that the model for the real implementation becomes:

τfa(v) = flim (v)
(

τs
2
π

arctan(v Kv) + τsc
2
π

arctan(v δ)
)

+ τv v +
(
τnlv v2) 2

π
arctan(v Kv)

(9.6)
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The proposed model cannot catch the dynamic behavior of friction, since it is
purely static; however, small arrangements can allow to capture the main dynamic
aspects. The measurement of friction torques can differ appreciably if acquired
during the deceleration phase or in the acceleration one; in fact, when the motor
starts the movement, a higher friction peak occurs that is no more present in the
stopping phase. Such an effect, mainly due to the hysteretic behavior of friction, can
be roughly reproduced using two different friction models: one for the acceleration
phase and another for the deceleration one. During the acceleration of the motor,
friction is represented using the standard model (9.6), but during the deceleration
the initial friction peak is cut down changing the effect of the nonlinear parameter
δ, which is responsible for such a behavior. In the deceleration model (9.7), δ is
multiplied by a factor which steps it up of three orders of magnitude, thus removing
the peak and consequently the Stribeck effect:

τfd
(v) = flim (v)

(
τs

2
π

arctan(v Kv)

+ τsc
2
π

arctan(v (1000δ))
)

+ τv v +
(
τnlv v2) 2

π
arctan(v Kv)

(9.7)

A proper procedure allows the correct switch between the two models, avoiding any
discontinuity.

Experimental tests were carried out on the COMAU Smart NS12, available in
the lab of Politecnico di Torino, integrating the software modules of the developed
procedure in the standard C5G controller. The goal was to compare the original
COAMU friction model to the new model in terms of current reconstruction.
Results reported in [43] show that the quality of the current reconstruction is en-
hanced for all the joints, apart from the fourth one, for which the adopted perfor-
mance indices remain practically the same. This is justified by the fact that friction
does not show any Stribeck effect for such a joint, so that the original Coulomb
+ viscous model was already suitable. For the other joints, showing a significant
Stribeck effect, substantial improvements are achieved for both indices; in partic-
ular the greatest enhancements are obtained for the third joint in the first test,
with a reduction of 39% for RMSE and of 28% for the mean value. Such improve-
ments have been of considerable importance in order to obtain satisfying results
from service algorithms based on the usage of the robot dynamic model, like the
ones discussed in Chapters 6, 7 and 8. Reducing the model error, and hence the
residual current, allowed to obtain a more reliable Collision Detection procedure,
free from possible false collision warnings, as well as a better identification of the
payload parameters in the Payload Check algorithm. The Manual Guidance and
the Post-collision reaction algorithms benefit from such improvements, as well, pro-
viding better results in terms of accuracy of the measurement of the external forces
applied to the robot.
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Part III

Conclusions
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The research activity carried out during the PhD, from a broader point of view,
was focused on the conversion of standard robotic lines into Smart Factories, reduc-
ing as much as possible the introduction of new components or machinery. The goal
was then the adoption of new software features directly applicable to the available
machinery. Even if such a concept could be applicable also to new plants, where
other kinds of ad-hoc choices can be made, it is very convenient for old produc-
tion lines, in order to avoid any expensive stop of the production to convert the
line to the Smart Factories standards. The possibility to convert the line without
expensive replacements of machinery is obviously preferred. On the basis of such
an idea, the research activity was then focused on two main aspects: i) the pro-
gramming approach of complex robotic lines, and ii) innovative service algorithms
implementable in standard industrial robots.

About the first topic, an automatic task-based programming approach has been
developed, which exploits a high level layer (e.g., 3D CAD software) to define
the information about both the robotic cell and the required tasks. The work
was mainly devoted to the definition of a proper task model taking into account
physical and functional constraints of the application, and to the automation of
the programming process itself; as a final result a four phases methodology was
developed, providing as output the sequence of tasks performing the required ap-
plication. Such an approach, requiring as main skill the ability to model the robotic
cell and the tasks using the high level layer (CAD software), allows even soft skilled
programmers to program complex robotic cells. A second important feature of the
proposed methodology is the faster programming speed, which allows to reprogram
the robotic cell on the basis of new business requirements, if necessary. This feature
is very important for old plants, where the introduction of Flexible Manufacturing
Systems is not feasible; in fact, despite the proposed approach is less responsive
than FMS, it allows to introduce a good level of flexibility even in this kind of
production systems. In this sense, also possible machine failures can be easily man-
aged, by fast reprogramming the robotic cell on the basis of the machinery actually
available (e.g., robots) after the failure.

The second research topic was about the introduction of service algorithms into
standard industrial robots without using external sensors, but only employing the
ones already included in the standard robot setup. All the developed algorithms
need the estimate of the motor torques, which is computed using the robot dynamic
model. An important part of the research activity was then devoted to the definition
of a friction model having specific characteristics to be a good trade off between the
model accuracy and the constraints given by its implementation into a real-time
industrial controller. A standardized machine independent methodology for data
acquisition and parameter identification has been also developed, in order to make
the selected friction model actually usable in the industrial context. On the basis of
such a more accurate robot dynamic model, three main algorithms were developed
for: i) collision detection, ii) payload identification, and iii) manual guidance and
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post collision reaction.
The collision detection algorithms are very important in industrial context, also

for not collaborative applications. They are in fact usually employed to detect
collisions between the robot and the environment, in order to stop the robot be-
fore suffering mechanical damages. However such kind of service algorithms can be
used also to detect other types of anomalous conditions, whose effects are similar
to those of collisions. A typical example can be found in arc welding applications,
where sometimes the tip of gun sticks to the work-piece; in such a case the col-
lision detection algorithm can detect the anomalous situation and stop the robot
before damaging the tip of the gun or the work-piece itself. The main problem
with the collision detection algorithms is due to the possibility to detect false col-
lisions, provoking the unnecessary stop of the overall robotic line. The developed
collision detection algorithm exploits its internal finite state machine to improve
the detection rate of real collisions; furthermore, the usage of a set of time variable
thresholds allowed to keep a good accuracy in detecting real collisions, so obtaining
good values of detection time.

The online payload identification procedure has been developed to be an im-
portant tool for the user to evaluate the goodness of the payload mass parameter
declared in the control software. Payload parameters are, in fact, usually set up
by the user, which could set wrong values by mistake, so leading to different kinds
of problems, e.g., a worse dynamic behavior of the robot, and the deterioration of
the accuracy of the robot dynamic model. The possibility to warn the user when
an anomalous payload parameter has been set up can be very important to avoid
malfunctions of the robot or of other service algorithms.

The algorithm for manual guidance and post collision reaction provides two
different services: i) the possibility to move the robot by hand, making the robot
compliant with the external forces applied to it, and ii) the introduction of a proper
management of the post collision phase in order to reduce possible risks. From
a practical point of view such services can be exploited by the user to have an
alternative programming methodology (based on hand guidance) and to reduce the
impact force during the collision, also avoiding that the robot continues to apply a
force to the environment after the collision.

All the developed service algorithms were actually implemented in a real in-
dustrial controller and tested in a realistic environment. The basic version of the
Collision Detection procedure and the Payload Check were fully inserted in the con-
trol software of Comau robots and applied to factories and production lines all over
the world. The results obtained with the Collision Detection procedure led to the
inclusion in the list of the five finalists of the 2017 euRobotics Technology Transfer
Award at the European Robotics Forum, held in Edinburgh in March 2017.

Table 9.1 reports the full list of my publications
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M. Indri, L. Lachello, I. Lazzero, F. Sibona and S. Trapani. "Smart Sensors Appli-
cations for a New Paradigm of a Production Line". In: Sensors 19.3 - 650 (2019).

M. Indri and S. Trapani. “Using Virtual Sensors in Industrial Manipulators for
Service Algorithms Like Payload Checking”. In: Advances in Service and Industrial
Robotics. Cham: Springer International Publishing, 2018, pp. 138–146. isbn: 978-
3-319-61276-8.

M. Indri and S. Trapani. “Programming robot work flows with a task modeling
approach”. In: IECON 2018 - 44th Annual Conference of the IEEE Industrial Elec-
tronics Society. Oct. 2018, pp. 2619–2624. doi: 10.1109/IECON. 2018.8591629.

M. Indri, S. Trapani, A. Bonci and M. Pirani. “Integration of a Production Ef-
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industrial robots". In: Sensors 17.5 (2017), p. 1148.
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