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Design and Analysis of Majority Logic Based
Approximate Adders and Multipliers

Weiqiang Liu, Senior Member, IEEE, Tingting Zhang, Emma McLarnon,
Maire O’Neill, Senior Member, IEEE, Paolo Montuschi, Fellow, IEEE and Fabrizio Lombardi, Fellow, IEEE

Abstract—As a new paradigm for nanoscale technologies, approximate computing deals with error tolerance in the computational
process to improve performance and reduce power consumption. Majority logic (ML) is applicable to many emerging nanotechnologies;
its basic building block (the 3-input majority voter, MV) has been extensively used for digital circuit design. In this paper, designs
of approximate adders and multipliers based on ML are proposed; the proposed multipliers utilize approximate compressors and a
reduction circuitry with so-called complement bits. An influence factor is defined and analyzed to assess the importance of different
complement bits depending on the size of the multiplier; a scheme for selection of the complement bits is also presented. The proposed
designs are evaluated using hardware metrics (such delay and gate complexity) as well as error metrics. Compared with other ML-based
designs found in the technical literature, the proposed designs are found to offer superior performance. Case studies of error-resilient
applications are also presented to show the validity of the proposed designs.

Index Terms—majority logic, approximate adder, approximate multiplier, complement bits, approximate compressor, image
processing.

F

1 INTRODUCTION

A S one of the main obstacles to attain high performance,
power dissipation is increasingly been investigated for

IC design. Approximate computing is a promising tech-
nique to reduce power consumption and improve perfor-
mance of circuits and systems by introducing computa-
tional errors for error-tolerant applications, such as mul-
timedia signal processing, machine learning and pattern
recognition[1-2].

Approximate computer arithmetic circuits based on
CMOS technology have been extensively studied. De-
signs of approximate adders, multipliers and dividers for
both fixed-point and floating-point formats have been pro-
posed [3-6]. Error metrics such as the mean error distance
(MED), the normalized MED (NMED) and the relative MED
(RMED) [7] have been proposed to analyze the errors intro-
duced in the operations of approximate arithmetic circuits.

As CMOS is approaching its technology limitations,
emerging nanotechnologies have been proposed at the end
of the so-called Moore’s Law, such as Quantum-dot Cellular
Automata (QCA) [8-9], nanomagnetic logic (NML) [10], and
spin-wave devices (SWD) [11]. All of these technologies rely
on majority logic (ML) as digital design framework; this is
different from conventional Boolean logic. The majority gate
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performs a multi-input logic operation (Fig. 1); the logic
expression of the 3-input majority gate (voter, MV) is given
by:

F = M(A,B,C) = AB +BC +AC (1)

M

A

B

C
F

Fig. 1. Majority gate (3-input voter).

It is expected that significant improvement in power
consumption could be achieved by applying approximate
computing also to emerging nanotechnologies. However,
approximate designs of CMOS circuits cannot be directly
applied due to the underlying different logic; few designs
of ML based approximate circuits have been studied [12-15].
[12] has proposed a 1-bit approximate full adder (AFA), but
no multi-bit designs suitable for practical applications have
been outlined. Several ML-based AFAs have been proposed
in [13]; 1-bit as well as multi-bit AFAs are considered. For
an approximate multiplier (AM), [14] has proposed a 4:2 ap-
proximate compressor based on truth table manipulation for
designing an approximate multiplier for image processing.
[15] has proposed two 4:2 approximate compressors based
on the 1-bit AFA of [12].

In this paper, both ML-based AFAs (MLAFAs), and ML-
based AMs (MLAMs) are designed. For the MLAFA, multi-
bit MLAFAs are designed by combining 1-bit MLAFAs.
Moreover, a 2-bit MLAFA with a higher accuracy is de-
signed based on logic reduction. For the MLAM, a 2× 2 de-
sign with complement bits is proposed. Furthermore, com-
plement bit selection is analyzed as function of the size of
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a multiplier; a so-called influence factor is introduced to as-
sess the importance of different complement bits. Few ML-
based approximate compressors (MLACs) are designed by
MLAFAs or K-Map simplification; then they are employed
in the reduction circuitry. Error analysis and a hardware
evaluation are presented to validate the proposed designs.
Case studies with the proposed approximate adders and
multipliers for image processing are also provided as part
of this assessment.

This paper has been extended significantly from its
previous conference version [13]. The main differences are
summarized as follows:

(1) A new 2-bit MLAFA is proposed based on truth table
reduction; it can be used for multi-bit approximate adder
design;

(2) A 2× 2 MLAM is proposed and complement bits are
introduced;

(3) A novel analysis for selecting complement bits is
presented;

(4) MLACs based on K-Map simplification and 1-bit
MLAFAs are proposed;

(5) Exact as well as approximate pipelined reduction
circuits for 4× 4 and 8× 8 MLAMs are proposed;

(6) Case studies are provided for image processing as
application using the proposed MLAFAs and MLAMs.

The paper is organized as follows: Section 2 reviews re-
lated works and error metrics. Designs of ML based approx-
imate full adders are presented in Section 3 (together with
evaluation and application). Section 4 presents the design
of approximate multipliers by introducing complement bits
and approximate compression which utilizes approximate
compressors and approximate adders. The application of
the proposed approximate multipliers to image processing
and comparison with previous designs are also presented in
Section 4. Section 5 concludes this paper.

2 RELATED WORKS

2.1 ML-based Approximate Designs

2.1.1 ML-based Approximate Full Adder
A 1-bit MLAFA (MLAFA1) has been proposed in [12] (Fig.
2). The inputs are given by A, B, C while S and Cout

are the outputs. MLAFA1 generates the output S as the
complement of Cout; it introduces 2 errors (among the 8
input combinations) when computing the output S (Table
1), but saving two majority gates and one inverter. The
circled entries in the truth table denote the instances in
which the outputs of MLAFA differ from the exact full adder
(EFA). The equations for the carry out and the sum are as
follows:

Cout = M(A,B,C) (2)

S = Cout (3)

2.1.2 ML-based Approximate 4:2 Compressor
As part of a multiplier, a compressor plays an important
role. Let the inputs be P5, P4, P3, P2, P1 and the outputs be
Sum, Cout, Carry; the implementation of a 4:2 compressor
consists of two serially connected 1-bit full adders[16].

M

ABC

S

Fig. 2. The schematic diagram of MLAFA1[12].

Using a truth table, [14] has proposed an approximate
4:2 compressor (MLAC1) (Fig. 3(a)). In MLAC1, the Carry
output has the same logic with the input P5 in 24 out of 32
cases, and similarly, Cout has the same value as P4 in 24 out
of 32 cases. So Sum output is modified to reduce the error.
The equations for the outputs are as follows:

Cout = P4 (4)

Carry = P5 (5)

Sum = M(P2, P3,M(P4, P5, P1)) (6)
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(a) (b) (c)

Fig. 3. Schematic diagrams of 4:2 MLACs: (a) MLAC1 [14], (b) MLAC2
[15] (two 1-bit MLAFAs), and (c) MLAC3 [15] (one 1-bit MLAFA and one
1-bit EFA).

[15] has proposed two MLACs (Fig. 3(b) and Fig. 3(c)).
Fig. 3(b) employs two 1-bit MLAFA1s [12] to substitute the
two 1-bit EFAs, so resulting in 12 errors out of 32 cases; to
improve the accuracy, the 1-bit MLAFA1 replaces one of the
two EFAs in MLAC3. MLAC3 requires a 5-input majority
gate; the proposed designs are all based on 3-input majority
gates, therefore MLAC3 is not considered for comparison in
the paper.

2.1.3 Error Metrics
As approximate computing introduces errors, metrics are
required to evaluate the accuracy of approximate circuits.
In this paper, we evaluate approximate designs by the
Normalized Mean Error Distance (NMED), and the Maxi-
mum Absolute Error (MAE). The NMED is the normalizing
Mean Error Distance. The Mean Error Distance (MED) is
defined as the average of the Error Distance (ED) which
is the absolute difference between the approximate and the
accurate results across all possible inputs. MAE is defined as
the maximum absolute error. The definitions of ED, MED,
NMED, and MAE are as follows:

ED = |(ExR−ApR)| (7)
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MED =

∑
ED

N
(8)

NMED =
MED

MAX
(9)

MAE = max{ED} (10)

where ExR, ApR, N and MAX denote the accurate result,
the approximate result, the counts of all possible inputs and
the maximum value of the result, respectively.

3 ML BASED APPROXIMATE FULL ADDER

In this section, a new 1-bit MLAFA (MLAFA2) is proposed;
it is also compared with the 1-bit EFA and the previous 1-
bit MLAFA1 of [12]. Moreover, 2-bit MLAFAs are proposed
by utilizing two methods: the first method merges the pro-
posed and the previous 1-bit MLAFAs; the second method is
based on a truth table reduction process for the 2-bit design.
Multi-bit MLAFAs are also designed by cascading the pro-
posed designs. Both designs and corresponding errors are
evaluated and assessed. A case study for image processing
is also provided.

3.1 Proposed 1-bit MLAFA
A new 1-bit MLAFA, namely MLAFA2 is proposed (Fig. 4).
Consider Table 1, Cout is nearly the same as C except two
cases out of the 8 input cases. Therefore, in Eq. (11), C can
be approximately made equal to Cout.

Cout = C (11)

The approximate output Cout can be substituted into the
exact expression of S to obtain the approximate S as follows:

S = M(Cout,M(A,B,C), C) = M(A,B,C) (12)

TABLE 1
Truth Table of 1-bit MLAFAs

Inputs EFA MLAFA1[12] MLAFA2
A B C Cout S Cout S Cout S

0 0 0 0 0 0 1© 0 0
0 0 1 0 1 0 1 1© 0©
0 1 0 0 1 0 1 0 1
0 1 1 1 0 1 0 1 0
1 0 0 0 1 0 1 0 1
1 0 1 1 0 1 0 1 0
1 1 0 1 0 1 0 0© 1©
1 1 1 1 1 1 0© 1 1

The MED and NMED of MLAFA2 are given by:

MEDMLAFA2 =
1

8
(0+1+0+0+0+0+1+0) = 0.25 (13)

NMEDMLAFA2 =
MEDMLAFA2

3
= 0.083 (14)

A comparison in terms of number of majority gates
(MV), number of inverters (INV), NMED, MAE, delay (D)
and delay of carry (Dcarry) between EFA, MLAFA1 [12]
and the proposed MLAFA2 is reported in Table 2. When
considering ML based nanotechnologies, delay (as assessed
in this paper) is normalized by the number of majority
gates only (so, the delay for the inverters is not included

M

ABC

S

Fig. 4. The schematic diagram of proposed MLAFA2.

because it is often very small compared to the ML gate)
[17]. Compared with EFA, MLAFA2 saves two majority
gates, one inverter and one delay. MLAFA2 decreases the
delay of carry to 0, compared with MLAFA1 [12], which can
reduce the length of the critical path for large scale designs.
Although the proposed MLAFA2 incurs a large error for
Cout (which could be propagated to the higher bits), the
combination of MLAFA1[12] and MLAFA2 introduce fewer
errors than only cascading MLAFA1[12]. This is verified
next.

TABLE 2
Comparison of 1-bit MLAFAs

Types of 1-bit Adders MV INV D Dcarry NMED MAE
EFA 3 2 2 1 0 0

MLAFA1[12] 1 1 1 1 0.083 1
MLAFA2 1 1 1 0 0.083 1

3.2 Proposed 2-bit MLAFAs

In this section, 2-bit MLAFAs are proposed by using two
methods. The first designs merge the proposed MLAFA2
and MLAFA1 (hence the hybrid nature); the second method
designs the 2-bit MLAFA using a truth table reduction
process. The inputs to the 2-bit adder are given by A = a1a0,
B = b1b0, Cin, while S = s1s0, and C2 are the outputs.

3.2.1 Hybrid 2-bit MLAFA based on MLAFA2

By cascading two 1-bit MLAFAs (MLAFA1 and MLAFA2),
four different combinations are considered for the 2-bit
MLAFAs; they are shown in Fig. 5(a)-(d). MLAFA1 cas-
caded with MLAFA1 results in the 2-bit MLAFA11 de-
sign. Similarly, MLAFA2 cascaded with MLAFA2 results in
the MLAFA22 design. MLAFA12 consists of MLAFA1 and
MLAFA2, in which MLAFA1 is used to compute the least
significant bits (LSBs); in MLAFA21, MLAFA2 is used to
compute the LSBs.

M

M

a1b1

a0b0Cin

C2 s0

s1

MM

a1b1 a0b0Cin

C2

s0s1

M

M

a1b1

a0b0Cin

C2

s0

s1

M

M

a1b1 a0b0Cin

C2

s0s1

M M M

M

a1 b1a0b0 Cin

C2

s0s1

(a) (b) (c) (d) (e)

Fig. 5. Schematic diagrams of proposed 2-bit MLAFAs: (a) MLAFA11,
(b) MLAFA22, (c) MLAFA12, (d) MLAFA21, and (e) MLAFA33.
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3.2.2 2-bit MLAFA from Truth Table Reduction

For two operands A and B, there are four possible combi-
nations. Under an assumed Gaussian distribution for image
processing, A = 00 or B = 00 and A = 11 or B = 11 are
not considered to ensure a low complexity by using a truth
table. The reduced truth table is shown in Table 3. The exact
expressions for the outputs in these eight cases are given
in Eqs. (15)-(17); the schematic diagram is illustrated in Fig.
5(e), this design is hereafter referred to as MLAFA33.

C2 = M(A1, B1, Cin) (15)

s0 = M(M(A0, B0, Cin),M(A0, B0, Cin), Cin)

= M(M(A1, B0, Cin),M(A0, B1, Cin), Cin)
(16)

s1 = C2 (17)

TABLE 3
Reduced Truth Table of 2-bit MLAFA

Inputs MLAFA33
A B

Cin C2
S

a1 a0 b1 b0 s1 s0
0 1 1 0 0 0 1 1
0 1 1 0 1 1 0 0
0 1 0 1 0 0 1 0
0 1 0 1 1 0 1 1
1 0 1 0 0 1 0 0
1 0 1 0 1 1 0 1
1 0 0 1 0 0 1 1
1 0 0 1 1 1 0 0

3.2.3 Comparison and Discussion

The proposed 2-bit approximate hybrid adders based on
MLAFA1 and MLAFA2 introduce errors for 14 of the 32
input cases; the design based on truth table reduction gen-
erates errors for 16 of the 32 input cases. The MAE and
NMED of these MLAFAs are provided in Table 4. MLAFA22
shows the best performance in delay; the errors due to
the inverters have more significance in a multi-bit design.
Moreover, hybrid MLAFAs designed by cascading two of
the same type of 1-bit MLAFAs have larger errors than
cascading two different types of 1-bit MLAFAs. Consider
the number of required gates, MLAFA12 requires one less
inverter than MLAFA21; in terms of delay, MLAFA21 incurs
in 1 less delay than MLAFA12.

For MLAFA33, two additional majority gates are needed
than other 2-bit MLAFAs; however, the NMED is decreased
by 10% compared with MLAFA12 and MLAFA21.

TABLE 4
Comparison of 2-bit MLAFAs

Types of 2-bit Adders MV INV D MAE NMED
MLAFA11 2 2 2 3 0.107
MLAFA22 2 1 1 3 0.107
MLAFA12 2 1 2 2 0.089
MLAFA21 2 2 1 2 0.089
MLAFA33 4 2 2 2 0.080

3.3 Proposed Multi-bit MLAFAs
In this section, multi-bit MLAFAs are considered (including
4-bit and 8-bit designs) by cascading 2-bit MLAFAs.

3.3.1 Proposed 4-bit MLAFAs
Consider a 4-bit MLAFA with inputs given by A =
a3a2a1a0, B = b3b2b1b0, Cin and outputs given by S =
s3s2s1s0, C4. Similar to the proposed hybrid 2-bit MLAFAs,
4-bit MLAFAs can be designed by cascading two 2-bit
MLAFAs (MLAFA12 and MLAFA21).

Table 5 shows that the proposed designs require fewer
gates than an EFA, but at the cost of a reduced accu-
racy. An improvement of up to 50% in delay is achieved.
Although MLAFA1221 has advantages in terms of the
reduced number of gates and delay, its MED/NMED is
the largest. MLAFA2121 and MLAFA2112 have the same
MED/NMED, but MLAFA2121 has less delay. Compared
with MLAFA2112, MLAFA1212 requires one less inverter
with a reduction in MED. Therefore, MLAFA2121 is the best
design which contributes to a reduction of 67% in majority
gates and delay. Moreover, the schemes in which two of
the same type of the proposed 2-bit MLAFAs are cascaded
have better performance than cascading different types of
MLAFAs.

MLAFA33 is employed to control the introduced error
into the most significant bits (MSBs), as shown in Fig. ??(e)-
(f). From Table 5, the designs using MLAFA33 decrease
the NMED below 0.084 at a small hardware utilization.
Improvements of up to 50% in delay and majority gates can
be achieved compared with the exact counterparts.

TABLE 5
Comparison of 4-bit MLAFAs

Types of 4-bit Adders MV INV D MAE NMED
CFA4[18] 12 8 6 0 0
RCA4[19] 12 4 7 0 0

MLAFA1212 4 2 3 10 0.091
MLAFA2121 4 3 2 10 0.092
MLAFA2112 4 3 3 10 0.092
MLAFA1221 4 2 2 10 0.175
MLAFA1233 6 2 3 9 0.083
MLAFA2133 6 3 3 10 0.081

3.3.2 Proposed 8-bit MLAFAs
Consider an 8-bit MLAFA with inputs A =
a7a6a5a4a3a2a1a0, B = b7b6b5b4b3b2b1b0, Cin and outputs
S = s7s6s5s4s3s2s1s0, C8. 8-bit MLAFAs are designed by
cascading two 4-bit MLAFAs by using MLAFA1212 and
MLAFA2121.

The comparison results are presented in Table 6. The
proposed designs significantly reduce the number of gates
and delay but at a decrease in accuracy. In terms of
gates, MLAFA1212-1212 and MLAFA1212-2121 require one
less inverter than the other adders; MLAFA2121-2121 and
MLAFA1212-2121 incur in a smaller delay than the other
adders. Compared with MLAFA2121-2121, MLAFA1212-
1212 is superior; the design is also better than the other two
designs, resulting in an improvement of 67% in majority
gates and 50% in delay. So the designs whose LSBs are
processed by MLAFA1212 show considerable advantages.
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For a higher accuracy, we take advantage of MLAFA33
to substitute the MSBs of MLAFA1212-1212, whose NMED
is the smallest. From Table 6, MLAFA33 improves the ac-
curacy by decreasing the NMED to approximately 0.08.
MLAFA1212-1233 (with a reduction of 58% in majority
gates as well as 50% in delay) and MLAFA1212-3333 (with
a reduction of 50% in majority gates as well as 50% in
delay) are superior to other designs. Moreover when more
than 2 MLAFA33 are used, the MAE increases. There-
fore, MLAFA1212-3333 and MLAFA1212-1233 are superior
to other designs. As for those applications which have
relatively low error-tolerance, exact adders can substitute
MLAFA33 in MLAFA1212-3333 or MLAFA1212-3333, with
relatively smaller errors.

TABLE 6
Comparison of 8-bit MLAFAs

Types of 8-bit Adders MV INV D MAE NMED
CFA8[18] 24 16 10 0 0
RCA8[19] 24 8 11 0 0

MLAFA1212-1212 8 4 5 170 0.090
MLAFA2121-2121 8 5 4 170 0.092
MLAFA2121-1212 8 5 5 170 0.091
MLAFA1212-2121 8 4 4 170 0.092
MLAFA1212-1233 10 5 5 149 0.082
MLAFA1212-3333 12 5 5 145 0.081
MLAFA1233-3333 14 5 5 169 0.080
MLAFA3333-3333 16 5 5 170 0.080

3.4 Image Processing Application with MLAFAs

The proposed 8-bit MLAFAs are applied to image pro-
cessing when adding two of the same images pixel by
pixel and combining them into a single output image. To
evaluate the perceived quality of the output, the structural
similarity (SSIM) [20] and Peak Signal to Noise Ratio (PSNR)
[21] are calculated for each image. The SSIM index takes
a decimal value between -1 and 1, and the value of 1 is
reached only when the two inputs are the same. The PSNR
is the logarithm of the squared error between the original
image and the processed image relative to the square of the
maximum value of the signal; its unit is dB. The greater the
PSNR value is, the less distortion it represents.

The obtained results are shown in Fig. 6 and Table 7. As
the number of MLAFA33 used increases, the SSIM or the
PSNR increases. MLAFA1212-3333 and MLAFA1212-1233
are the best designs for 8-bit MLAFAs. If a higher accuracy
is required, exact adders can substitute the MSBs, which can
increase SSIM to over 0.9.

TABLE 7
Image Processing Results of 8-bit MLAFAs

Types of 8-bit Adders SSIM PSNR(dB)
MLAFA1212-1212 0.2969 28.69
MLAFA1212-1233 0.7314 32.03
MLAFA1212-3333 0.8085 32.30
MLAFA1233-3333 0.8087 32.31
MLAFA3333-3333 0.8090 32.31

(a) (b) (c)

(d) (e) (f)

Fig. 6. Image processing of 8-bit MLAFAs: (a) original, (b) MLAFA1212-
1212, (c) MLAFA1212-1233, (d) MLAFA1212-3333, (e) MLAFA1233-
3333, and (f) MLAFA3333-3333.

4 ML BASED APPROXIMATE MULTIPLIERS

The designs of ML based approximate multipliers are stud-
ied in this section based on 2 × 2 MLAMs. The so-called
complement bit is introduced through a selection scheme to
compensate errors.

Consider Fig. 7 and the proposed design flow of n × n
MLAMs. The multiplicand an−1an−2an−3an−4 · · · a3a2a1a0
and the multiplier bn−1bn−2bn−3bn−4 · · · b3b2b1b0 are first
divided into N/2 modules (each of 2 bits as a unit); then,
these modules are substituted into the expression to cal-
culate the partial product, while at the same time, selec-
tively adding the compensation bits as per the size of the
multiplier. Next, for efficient compression, a partial product
reduction (PPR) circuitry which uses exact or approximate
compression is employed. This depends on the distribution
of the generated partial products (PPs) and the compensa-
tion bits, such that the PP of two rows (or a carry in the
lowest order) can be obtained. Finally, the final product can
be calculated by the final exact adder.

4.1 2× 2 MLAM
By mapping the 2 × 2 AM design [22] into ML (as per Eq.
(18)-(20)), out1 requires three majority gates, which is two
more than out0 and out2.

out0 = M(A0, B0, 0) (18)

out1 = M(M(A1, B0, 0),M(A0, B1, 0), 1) (19)

out2 = M(A1, B1, 0) (20)

Therefore, this should be further improved; furthermore,
with an increase of design scale, errors will increase substan-
tially, so unacceptable in most cases. Taking these issues into
account, the initial expression is split into two parts (i.e. Eq.
(21) and Eq. (22)), one is employed as the out1 of the 2 × 2
MLAM, the other is used as a compensation bit (denoted as
4). In this paper, we just take one case into consideration.
The other case follows the same rules.

out1 = M(A0, B1, 0) (21)

4 = M(A1, B0, 0) (22)
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Fig. 7. Proposed design flow of n× n MLAMs.

By considering the 2 × 2 MLAM as a module, larger
multipliers can be constructed by dividing the operands into
several units (Fig. 8), where4 represents a complement bit.
Fig. 8 shows the operations of the 4 × 4 and 8 × 8 MLAMs
with all complement bits that need to be further reduced.

AH

BH

AL

BL

2-bit

Χ 

2-bit

AL     BL AH     BL 

AL     BH AH    BH 

(a)

AH1

BH1

AH0

BH0

AL1

BL1

AL0

BL0Χ 

AL0  Χ BL0

AL0  Χ BL1

AL0  Χ BH0

AL0  Χ BH1

AL1  Χ BL0

AL1  Χ BL1

AL1  Χ BH0

AL1  Χ BH1

AH0  Χ BL0

AH0  Χ BL1

AH0  Χ BH0

AH0  Χ BH1

AH1  Χ BL0

AH1  Χ BL1

AH1  Χ BH0

AH1  Χ BH1

A

2-bit 2-bit2-bit 2-bit

(b)

Fig. 8. PP generation and complement bit generation of MLAMs: (a) 4×4
MLAM, and (b) 8× 8 MLAM.

4.2 Complement Bit Selection

Too many compensation bits will lead to a larger overhead
when calculating the subsequent compression; however,
too few compensation bits will cause the final result to

lose accuracy. Therefore, a tradeoff must be assessed when
selecting an appropriate number of compensation bits.

When selecting the compensation bits and to control the
error within a reasonable bound, the compensation bits for
the lowest weight are ignored. Moreover, the MSB result
will be affected by the LSBs, and the hardware overhead for
the MSB compensation bit is not less than the LSB compen-
sation bit. Therefore, when the MSB compensation bits are
removed, the LSB compensation bits are also ignored.

In this paper, the complement bits are denoted as C2i
x,

where 2i represents the weight of the complement bit and
x denotes the signed number of the complement bit if
multiple complement bits exist under the current weight. If
only a single bit exists for the same weight, the superscript
is defaulted; for example, C23

1 denotes the weight of the
complement bit (23), and 1 is its number (i.e. C23

1 and C23
2

for two items for the same weight).
To measure the importance of each complement bit C2i

x

as well as to determine the ignored items, an influence factor
denoted by PC2i

x
n is defined; this is required to show the

impact of a complement bit on the final NMED. For an n×n
MLAM, it can be expressed as follows:

PC2i
x
n =

N × 2i

2n × 2n × (2n − 1)× (2n − 1)
(23)

where 2i denotes the weight of the complement bit; n
denotes the size of the multiplier; N denotes the number
of cases that the output (4) is 1 when traversing all possible
cases (as a function of n). Only when the inputs are both
1, 4 is effective ( and equal to 1). Except the two inputs of
4, there are 2(n−1) × 2(n−1) possible cases for the inputs of
multipliers. Thus, the equation can be written as Eq. (24).

N = 1× 2(n−1) × 2(n−1) = 2(2n−2) (24)

Consequently, Eq. (27) can been further simplified into
Eq. (25).

PC2i
x
n =

2i−2

(2n − 1)
2 (25)

The influence factor PC2i
x
n has the following properties:

Property 1. For C2i
x1 and C2i

x2 of different signed numbers
but under the same weight and same size of multiplier,

PC2i
x1

n = PC2i
x2

n

Proof. From Eq. (24), the value of PC2i
x
n is independent of

x. Therefore, PC2i
x
n remains constant when only x changes.

Property 2. For C2i1
x1 and C2i2

x2 of different weight but same
size of multiplier,
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PC
2i1

x1
n

PC
2i2

x2
n = 2i1

2i2

Proof. From Eq. (24),
PC

2i1
x1

n

PC
2i2

x2
n = 2i1−2

2i2−2 = 2i1

2i2

Property 3. For different size of multipliers, as n1×n1 multiplier
and n2 × n2 multiplier respectively,

(2n1 − 1)
2 × PC2i

x1
n1 = (2n2 − 1)

2 × PC2i
x2

n2

Proof. From Eq. (24),
PC

2i
x1

n1

PC
2i

x2
n2

= (2n2−1)2

(2n1−1)2

Property 4. For same size of multiplier, if i1 < i2 < i3 · · ·
< im−1 < im,

PC
2i1

x1
n < PC

2i2
x2

n · · · < PC
2
im−1

xm−1
n < PC2im

xm
n

Proof. From Property 2,
PC

2i1
x1

n

PC
2i2

x2
n = 2i1−i2

if i1 < i2, then
PC

2i1
x1

n

PC
2i2

x2
n < 1

Thus, PC2i
x
n increases with an increase of i.

Property 5. For different size of multipliers, if n1 < n2 < n3 · · ·
< nm−1 < nm,

PC2i
x1

n1 > PC2i
x2

n2 · · · > PC2i
xm−1

nm−1 > PC2i
xm

nm

Proof. From Property 3,
PC

2i
x1

n1

PC
2i

x2
n2

= ( 2
n2−1

2n1−1 )
2

if n1 < n2, then
PC

2i
x1

n1

PC
2i

x2
n2

> 1

Thus, PC2i
x
n decreases with an increase of n.

Assume that the number of ignored compensation bits
is p; as PC2i

x
n of different complement bits are mutually

independent and linearly superposed, the NMED of a n×n
approximate multiplier is given by:

NMEDn×n = PC21

n + PC23
1
n + PC23

2
n + · · ·︸ ︷︷ ︸

p

(26)

For a 4 × 4 multiplier, there are four complement bits
which can be selected (denoted as C25 , C23

1, C23
2, C21 );

similarly, an 8 × 8 multiplier has 16 items, including C213 ,
C211

1, C211
2, C29

1, C29
2, C29

3, C27
1, C27

2, C27
3, C27

4, C25
1,

C25
2, C25

3, C23
1, C23

2, C21 . Based on Property 2, the items
of different signed numbers but under the same weight and
size of multiplier share the same value. Table 8 shows the
value of the influence factors when n=4 and n=8.

In Fig. 9, the NMED increases as p increases. For dif-
ferent size of multipliers, the largest value of the NMED

1 2 3 4
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0.06

N
M

E
D

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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0.06

N
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E
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(b)

Fig. 9. Complement bit selection (NMED vs p): (a) 4× 4 MLAM, and (b)
8× 8 MLAM.

due to the complement bits is nearly the same. The increase
of weight will ultimately increase the NMED; so, when the
weight of the compensation bits remains unchanged, the
NMED will increase linearly. For a 4× 4 multiplier, when p
changes from 3 to 4, the NMED increases sharply; for an 8×8
multiplier, when p is smaller than 10, the NMED increases
slowly but when p is larger than 10, the NMED increases
rapidly.

Similar to the above analysis, the expression for MAE
can be found. Another influence factor denoted by EC2i

x
n is

defined; this is required to show the impact of a complement
bit on the final MAE. For an n×n MLAM, it can be expressed
as follows:

EC2i
x
n = 2i (27)

The MAE of a n× n approximate multiplier is given by:

MAEn×n = EC21

n + EC23
1
n + EC23

2
n + · · ·︸ ︷︷ ︸

p

(28)

In Fig. 10, the MAE increases as p increases. Same as
the analysis of the NMED, for a 4 × 4 multiplier, when p
changes from 3 to 4, the MAE sharply increases; for an 8× 8
multiplier, when p changes from 10 to 11, the MAE sharply
increases.

Various approximate compression schemes are studied
in the next section for the design of the PPR circuitry so that
it can be designed with suitable complement bits to meet
specific accuracy constraints.

4.3 Design of MLACs

In this section, few approximate 4:2 compressors are de-
signed based on 1-bit MLAFAs (the inputs are P5, P4, P3,
P2, P1 and the outputs are Sum , Cout, Carry) and a K-
Map simplification (the inputs are P5, P4, P3, P2, P1 and the
outputs are Sum, Carry), respectively.
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TABLE 8
The Value of Influence Factor when n=4 and n=8

n PC
21

x
n PC

23
x
n PC

25
x
n PC

27
x
n PC

29
x
n PC

211
x
n PC

213
x
n

n=4 2.22× 10−3 8.88× 10−3 3.56× 10−2 - - - -
n=8 7.69× 10−6 3.07× 10−5 1.23× 10−4 4.92× 10−4 1.97× 10−3 7.87× 10−3 3.14× 10−2
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Fig. 10. Complement bit selection (MAE vs p): (a) 4× 4 MLAM, and (b)
8× 8 MLAM.

4.3.1 MLACs based on 1-bit MLAFAs
In 4:2 compressors, there are two full adders, referred to
as models 1 and 2 from upside to downside (as defined in
[16]). 1-bit MLAFAs are used to replace the exact versions.
Six different designs are investigated by employing through
various combinations of MLAFA1 and MLAFA2 (Fig. 11).
For MLAC21, module 1 utilizes MLAFA2 while the other
uses MLAFA1. MLAC11 has been proposed in [15]; there
are two schemes when MLAFA2 is employed as module
2. So, MLAC22-1 and MLAC12-1 employ the input of the
compressor as Carry and use its negation to calculate Sum,
while MLAC22-2 and MLAC12-2 employ the output of
module 1 as Carry.

M
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P3P2

Carry

Sum

outC

M

M
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P3P2

Carry

Sum

outC
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M
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P5P4
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M

M
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(a) (b) (c) (d) (e) (f)

Fig. 11. Schematic diagrams of proposed approximate 4:2 compressor:
(a) MLAC11 (MLAC2 [15]), (b) MLAC22-1, (c) MLAC22-2, (d) MLAC12-
1, (e) MLAC12-2, and (f) MLAC21.

4.3.2 MLAC based on K-Map Simplification
To further decrease the hardware complexity, an additional
MLAC, namely MLAC4, is proposed; this circuit uses 2

outputs (rather than 3) for the final result. The design of this
MLAC is accomplished as per the following 3-step process:

Step 1: Approximation on the number of outputs. Use 2
outputs to denote the results so the binary 11 is employed
to represent results larger than 11.

Step 2: Approximation of the expression for the K-map
in Step 1. Depending on the properties of the majority
logic, simplified equations can be found by introducing few
errors.

Step 3: Computing the error distance by combining Step
1 and Step 2.

TABLE 9
K-Map of Proposed MLAC4 after Step 1

P5 P4

P3 P2 P1 000 001 011 010 110 111 101 100

00 00 01 10 01 10 11 10 01
01 01 10 11 10 11 11© 11 10
11 10 11 11© 11 11© 11© 11© 11
10 01 10 11 10 11 11© 11 10

TABLE 10
K-Map of Proposed MLAC4 after Step 2

P5 P4

P3 P2 P1 000 001 011 010 110 111 101 100

00 00 01© 10 00© 10 10© 10 01©
01 10© 10 11 10 11 11© 11 10
11 11© 11 11© 11 11© 11© 11© 11
10 10© 10 11 10 11 11© 11 10

In Step 1, an approximate K-Map is found (Table 9); this
step introduces 6 errors due to the shortened bit length.
The final expression can be then obtained after further
simplification in Step 2; this is shown in Table 10, leading
to 7 additional errors, as in Eq. (29) and Eq. (30). Fig. 12
gives the schematic diagram.

Carry = M(M(P3, P2, P1),M(P5, P4, 1), 1) (29)

Sum = M(M(P3, P2, P1), P5, P4) (30)

4.3.3 Comparison and Discussion of MLACs
A comprehensive comparison of these MLACs is provided
in Table 11. The designs based on 1-bit MLAFAs are similar,
in terms of majority gate consumption and delay. In terms
of NMED, the MED of MLAC2 [15], MLAC22-2, MLAC12-1
are 25% smaller than the remaining designs and their MAEs
are 50% smaller than the remaining designs; moreover, the
carry chain delays of MLAC22-2 and MLAC12-1 are shorter
than MLAC2 [15]. The delay of MLAC12-1 is the shortest.
The overall delay can be reduced by connecting the output
to the input of the next units. Therefore, MLAC22-2 and
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Fig. 12. The schematic diagram of proposed MLAC4.

MLAC12-1 show the best overall performance among these
MLACs based on MLAFAs. Compared with the exact de-
sign, the proposed designs save 67% of majority gates, 50%
of inverters, 50% of delay and 67% of carry chain. MLAC1
[14] requires no delay for carry chain; and a reduction of up
to 25% in NMED can be achieved by the proposed designs.

For the design based on K-map simplification, compared
with the above designs, the delay is slightly smaller and the
error (NMED and MAE) is slightly larger; although MLAC4
requires two additional 3-input majority gates compared
with the proposed MLACs based on 1-bit MLAFAs, it uses
no inverter and only generates two outputs. Moreover,
compared with the exact design, it saves 33% of the majority
gates, all inverters, 50% of the delay and 33% of the carry
chain.

4.4 Design of MLAMs with Proposed PPR Circuitry

During compression, this design uses the distribution of the
PPs for compression to shorten the length of the critical
path. By using a pipeline, an efficient design of the PPR
circuitry is studied for 4 × 4 and 8 × 8 MLAM designs
with different number of added complement bits for exact
and approximate compression, respectively, to obtain only
2 rows (or a carry in the lowest order). In particular for an
8× 8 MLAM design in addition to the approach mentioned
above, there is yet another structure in which 4× 4 MLAMs
are used to design 8× 8 MLAMs.

4.4.1 4× 4 MLAMs
A. Exact Compression (EC)
1-bit adders are used for PP compression. Four different
compression schemes are presented depending on the num-
ber of complement bits (which require one stage of com-
pression as shown in Fig. 13). The PPs within the solid line
represent an arithmetic unit. The number of complement
bits does not affect the critical path. Independently of the
selection of the complement bits, a 4-bit adder is required to
compute the final result. The difference between these four
schemes is the number of 1-bit adders used for compression.
Fig. 13(a) and Fig. 13(b) require four 1-bit adders in Stage 1;
Fig. 13(c) needs three while Fig. 13(d) needs only two.

B. Approximate Compression (AC)
To further reduce hardware and delay, the proposed
MLAFAs and compressors can be utilized in the reduction
circuitry. In Fig. 14(a) and Fig. 14(c)-(e), the exact adders

(a) (b)

(c) (d)

Fig. 13. Exact PPR circuitry design for 4 × 4 MLAMs: (a) MLAM-EC
(p=1), (b) MLAM-EC (p=2), (c) MLAM-EC (p=3), and (d) MLAM-EC
(p=4).

can be changed to approximate adders for approximate
compression; the PPs circled by dotted lines indicate the
approximate arithmetic units.

The proposed compressors are employed when p is
1; an approximate compressor whose inputs come from
the output of 1-bit MLAFA, is shown in Fig. 14(b). When
considering the delay, the PPs on the right side of the middle
line are better compressed by the arithmetic circuits (they
have the same delay as the left compression circuits). Two
1-bit EFAs (rather than a 2-bit MLAFA) are selected to better
control the errors; if an approximate compressor with 2
outputs is employed, a 3-bit half adder is required for the
final result. Otherwise, a 3-bit full adder is required when
using an approximate compressor with 3 outputs. However
when p increases, the errors increase; consequently, a further
approximation is proposed for larger values of p. When p
is 4, Fig. 14(f) shows another method for compression (i.e.
to replace one of the 1-bit MLAFAs of lower weight with a
2-bit MLAFA).

(a) (b) (c)

(d) (e) (f)

Fig. 14. Approximate PPR circuitry design for 4× 4 MLAMs: (a) MLAM-
AC1 (p=1), (b) MLAM-AC2 (p=1), (c) MLAM-AC (p=2), (d) MLAM-AC2
(p=3), (e) MLAM-AC1 (p=4), and (f) MLAM-AC2 (p=4).

C. Comparison and Discussion of 4× 4 MLAMs
Table 12 gives the comparison between various PPR cir-
cuitry designs and the exact designs from [23-24]. The pro-
posed MLAFA2, MLAC22-2, MLAC21 or MLAC4 are used
for approximate compression; approximate compression re-
duces the accuracy but it decreases the hardware overhead
compared with an exact compression. Approximate com-
pression is less pronounced when p is larger. For example,
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TABLE 11
Comparison of 4:2 MLACs

Types of Compressor MV INV D Dcarry MAE NMED
Exact compressor 6 4 4 3 0 0

MLAC1 [14] 2 2 2 0 2 0.1

1-bit MLAFAs based

MLAC2[15] 2 2 2 2 1 0.075
MLAC22-1 2 2 2 1 2 0.1
MLAC22-2 2 2 2 1 1 0.075
MLAC12-1 2 2 2 1 1 0.075
MLAC12-2 2 1 2 1 2 0.1
MLAC21 2 2 2 2 2 0.1

K-map simplification based MLAC4 4 0 2 2 3 0.087

TABLE 12
Comparison of 4× 4 MLAMs

Types of 4× 4 Multiplier MV INV D NMED(10−3) MAE

Exact Multiplier

4× 4 Array I based[23] 52 24 14 0 0
4× 4 Array II based[23] 64 32 14 0 0
4× 4 Wallace based[24] 52 24 10 0 0
4× 4 Dadda based[24] 52 24 12 0 0

Approximate Multiplier

Exact
compression

4× 4 MLAM-EC (p=1) 39 16 8 2.22 2
4× 4 MLAM-EC (p=2) 38 16 8 11.10 10
4× 4 MLAM-EC (p=3) 34 14 8 19.98 18
4× 4 MLAM-EC (p=4) 30 12 8 55.58 50

Approximate
compression

4× 4 MLAM-AC1 (p=1) 31 12 7 28.61 40

4× 4 MLAM-AC2 (p=1) MLAC4 35 11 7 18.89 18
MLAC22-2 33 13 7 14.44 12

4× 4 MLAM-AC (p=2) 30 12 7 34.65 48
4× 4 MLAM-AC (p=3) 28 11 7 36.52 54
4× 4 MLAM-AC1 (p=4) 26 10 7 59.76 66
4× 4 MLAM-AC2 (p=4) 24 9 7 61.59 66

TABLE 13
Comparison of 8× 8 MLAMs Using 4× 4 MLAMs (Note that items include PPs and complement bits)

Types of 8× 8 Multiplier Items Production PPR Circuitry Final Adder D NMED MAEMV INV MV INV (10−2)

Exact
compression

4× 4 MLAM-AC1 (p=1) 124 48 24 16 11 21 2.7 11560
4× 4 MLAM-AC2 (p=1)-MLAC22-2 132 52 24 16 11 21 1.3 3468

4× 4 MLAM-AC (p=2) 120 48 24 16 11 21 3.2 13872
4× 4 MLAM-AC (p=3) 112 44 24 16 11 21 3.5 15606
4× 4 MLAM-AC2 (p=4) 96 36 24 16 11 21 5.8 19074

Approximate
compression

4× 4 MLAM-AC1 (p=1) 124 48 8 8 11 20 3.1 13602
4× 4 MLAM-AC2 (p=1)-MLAC22-2 132 52 8 8 11 20 1.9 6572

4× 4 MLAM-AC (p=2) 120 48 8 8 11 20 3.4 14334
4× 4 MLAM-AC (p=3) 112 44 8 8 11 20 3.6 17110
4× 4 MLAM-AC2 (p=4) 96 36 8 8 11 20 5.8 19226

when p is 1, approximate compression significantly affects
the NMED and the MAE; however, when p is 4, approx-
imate compression increases the NMED by 7.5% and the
MAE 24% only. As mentioned previously, when p is 4, the
use of 4 × 4 MLAM-AC2 (p=4) results in a modest NMED
and MAE increase. This implies that for an application that
can tolerate relatively large errors, a larger approximation
can be used.

When p is equal to 1, the proposed MLACs show excel-
lent performance so improving the overall accuracy while
adding just few majority gates. When comparing 4 × 4
MLAM-EC (p=3) with 4 × 4 MLAM-AC2 (p=1), although
more complement bits are needed for 4 × 4 MLAM-AC2
(p=1), they not only introduce fewer errors, but also incur
in less hardware overhead and delay. Compared with the
exact designs from [23-24], the proposed design significantly
reduces the hardware overhead and delay. For example,

4×4 MLAM-AC2 (p=1) which uses MLAC22-2 saves at least
37% of the number of majority gates, 46% of the number of
inverters and 50% of delay.

4.4.2 8× 8 MLAMs
A. 8× 8 MLAMs Using 4× 4 MLAMs
8 × 8 MLAMs can be designed using 4 × 4 MLAMs as a
module, so generating 4 rows of PPs. Independently of the
selection of the complement bits and PPR circuitry, 4 × 4
MLAMs generate an 8-bit result. Therefore, the PPs can be
compressed by utilizing eight 1-bit full adders to generate
2 lines requiring an additional 11-bit full adder. To further
reduce the hardware, these eight 1-bit full adders can be
replaced by approximate adders too.

Four 4 × 4 MLAMs are used so 4 × 4 combinations
(based on the number of complement bits) are possible;
however, as in Section 4.2, complement bits of the MSBs
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TABLE 14
Comparison of 8× 8 MLAMs Using 2× 2 MLAMs with Different Number of Complement Bits (Note that items include PPs and complement bits)

Types of 8× 8 Multiplier Items Production PPR Circuitry Final Adder D NMED MAEMVs FAs HAs
8× 8 MLAM (p=16) 48 23 6 10 18 5.54× 10−2 14450
8× 8 MLAM (p=15) 49 24 5 10 18 2.41× 10−2 6258
8× 8 MLAM (p=14) 50 26 4 10 18 1.62× 10−2 4210
8× 8 MLAM (p=13) 51 26 4 10 18 8.31× 10−3 2162
8× 8 MLAM (p=12) 52 27 3 10 18 6.34× 10−3 1650
8× 8 MLAM (p=11) 53 28 4 10 18 4.37× 10−3 1138
8× 8 MLAM (p=10) 54 29 3 10 18 2.41× 10−3 626
8× 8 MLAM (p=9) 55 32 4 9 18 1.91× 10−3 498
8× 8 MLAM (p=8) 56 34 2 9 18 1.42× 10−3 370
8× 8 MLAM (p=7) 57 34 3 9 18 9.30× 10−4 242
8× 8 MLAM (p=6) 58 35 3 9 18 4.38× 10−4 114
8× 8 MLAM (p=5) 59 36 2 9 18 3.15× 10−4 82
8× 8 MLAM (p=4) 60 36 3 9 18 1.92× 10−4 50
8× 8 MLAM (p=3) 61 37 2 9 18 6.91× 10−5 18
8× 8 MLAM (p=2) 62 38 2 9 18 3.84× 10−5 10
8× 8 MLAM (p=1) 63 39 1 9 18 7.69× 10−6 2

can be omitted or reserved for the LSBs in this scheme, as
reduction of hardware is not the primary objective. Only
the cases of using the same type of 4 × 4 MLAM with
approximate compression are presented because they have
better performance according to the previous discussion; so
4×4 MLAM-AC2 (p=1) using MLAC22-2 and 4×4 MLAM-
AC2 (p=4) are selected.

As shown in Table 13, when p is more than 3, approxi-
mate compression has little influence on the NMED; when p
is equal to 1, the multiplier with approximate compression
made of 4× 4 MLAM-AC2 (p=1) shows better performance
than the one with exact compression made by 4×4 MLAM-
AC1 (p=1) in terms of NMED, MAE, hardware as well as
delay. Compared with the multiplier with the exact com-
pression made of 4×4 MLAM-AC (p=2) or 4×4 MLAM-AC
(p=3) with approximate compression made of 4×4 MLAM-
AC1 (p=1), the latter has better performance than all other
cases.

B. 8× 8 MLAMs Using 2× 2 MLAMs
Compared with using 4 × 4 MLAMs as a module, the
design using a 2 × 2 MLAM as a module can generate all
PPs at once, so requiring fewer clock cycles in execution.
Depending on the selection of the complement bits, different
PPR circuitry designs are proposed (Fig. 15). Only 1-bit
adders are considered in all cases. From Table 14, the NMED
and the MAE are consistent with the analysis above. Ry
decreasing p, the required hardware increases; when p is
larger than 10, the compression just needs 3 stages. Else, 4
stages are necessary for compression; however, the delay is
not affected by the number of complement bits.

As discussed, the approximate PPR circuitry using the
proposed MLAFA2 and MLACs is assessed at p=10. Com-
pression is analyzed using MLACs with 3 outputs and the
new design using MLACs with 2 outputs (Fig. 16). The
red connecting line denotes the critical path in the first
compression stage.

Table 15 shows the comparison of 8× 8 MLAMs with an
approximate PPR circuitry design. Compared with an exact
compression as discussed previously, hardware and delay
have been significantly reduced. Approximate compression

not only results in a smaller delay, but also in a saving of
more than 13% in the number of majority gates with only
a small loss in accuracy. Furthermore, the use of MLAC4
not only reduces the required hardware, but it also incurs in
a smaller inaccuracy because a smaller number of approx-
imate operations is performed, so showing the best overall
performance.

TABLE 15
Comparison of 8× 8 MLAMs Using 2× 2 MLAMs with Approximate

PPR Circuit (p=10) (Note that items include PPs and complement bits)

Types of 8× 8
Multiplier

Items
Production

PPR
Circuitry Final

Adder D NMED MAE
MV AFAs ACs

MLAC4 based 54 16 5 10 16 0.0267 9120
MLAC22-2 based 54 18 7 10 16 0.0318 9476
MLAC12-1 based 54 18 7 10 16 0.0346 9820

C. Comparison and Discussion of 8× 8 MLAMs
The best designs are selected and compared with the exact
designs from [23] (Table 16). The 4 × 4 MLAM-AC2 (p=1)
using MLAC22-2 reduces by at least 25% the number of
majority gates, by 27% the number of inverters and by 33%
the delay, compared with the exact designs. The designs
based on 4 × 4 multipliers are not as good as the designs
using 2 × 2 multipliers. As for the designs using 2 × 2
multipliers, a significant decrease of hardware is achieved
without incurring in large errors. The MLAC4 based design
using 2×2 multipliers reduces the number of majority gates
by up to 48%, the number of inverters by up to 67%, and the
delay by up to 47%; the MLAC22-2 based design using 2×2
multipliers reduces the number of majority gates by up to
50%, the number of inverters up to 53%, and the delay up
to 47%.

To further verify the feasibility of the proposed designs
using QCA as an emerging technology, a MLAC4 based
approximate multiplier design has been implemented using
QCADesigner (multi-layer crossing is used and the follow-
ing parameters have been used for the coherence vector
simulation engine: Number of Samples: 128000; Conver-
gence Tolerance: 0.00001; Radius of Effect: 55 nm. The rest
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TABLE 16
Comparison of 8× 8 MLAMs

Types of 8× 8 Multiplier MV INV D NMED(10−2) MAE

Exact Multiplier

8× 8 Array I based[23] 232 112 30 0 0
8× 8 Array II based[23] 256 128 30 0 0
8× 8 Wallace based[23] 256 128 44 0 0
8× 8 Dadda based[23] 232 112 47 0 0

Approximate Multipliers

Using 4× 4 Multipliers
(Approximate Compression)

MLAM-AC2 (p=1) MLAC22-2 173 82 20 0.0191 6572
MLAM-AC (p=2) 128 56 20 0.0342 14334

Using 2× 2 Multipliers(p=10)
(Approximate Compression)

MLAC4 based 120 36 16 0.0267 9120
MLAC22-2 based 116 52 16 0.0318 9476

(a) (b)

(c) (d)

(e) (f)

Fig. 15. Exact PPR circuitry design for 8×8 MLAMs: (a) p=16, (b) p=12,
(c) p=10, (d) p=8, (e) p=4, and (f) p=1.

(a)

(b)

Fig. 16. Approximate PPR circuitry design for 8 × 8 MLAMs: (a) MLAC
(2 outputs) based (p=10), and (b) MLAC (3 outputs) based (p=10).

of the parameters are set as the default values). Table 17
shows the comparison between the 8-bit MLAC4 based
approximate multiplier design and the latest CMOS based
approximate multipliers (using 45nm technology) [25]; note
that there is no direct comparison between majority logic
based arithmetic circuits and non-majority based arithmetic
circuits.

4.5 Image Processing Application with MLAMs
The proposed 8×8 MLAMs are applied to image processing;
the multipliers are used to multiply the same two images
on a pixel basis so combining the two input images into a
single output image. In this section, the impact of MLAMs is
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TABLE 17
Results of 8× 8 Approximate Multipliesr (majority based design vs

CMOS based design)

Types Delay Area (µm2)
MLAC4 based 20 clock zones 19.57

R4ABM1(p=8)[25] 0.58 ns 581.7
R4ABM2(p=8)[25] 0.58 ns 538.6

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 17. Image processing of 8 × 8 MLAMs with different numbers of
complement bits: (a) p=2, (b) p=4, (c) p=6, (d) p=8, (e) p=10, (f) p=12,
(g) p=14, and (h) p=16.

assessed with different numbers of complement bits as well
as the proposed MLACs and approximate PPR circuit.

4.5.1 8× 8 MLAMs with Different Numbers of Complement
Bits
As shown in Fig. 17, when the number of complement bits
changes, the generated image will not change dramatically.
Table 18 show that even when p is equal to 16, the processed
image retains a high quality (the SSIMs are all above 0.95
and the PSNRs are all above 45dB). Although small changes
occur for a different value; when p changes from 10 to 12,
then a relatively sharp decrease of the SSIM occurs. To en-
sure a reasonable accuracy using approximate compression,
it is better to choose a value for p smaller than 10. This is
consistent with the discussion in Section 4.2.

4.5.2 8× 8 MLAMs with PPR Circuitry
A. 8× 8 MLAMs Using 4× 4 MLAMs
When 4 × 4 MLAMs are used as a module to assemble
8 × 8 MLAMs, the results of the PSNR, and SSIM indi-
cate that there is no significant difference between exact
compressions and approximate compressions (Fig. 18 and
Table 19). Therefore, approximate compression and a value

TABLE 18
Image Processing Results of 8× 8 MLAMs with Different Numbers of

Complement Bits

Value of P SSIM PSNR(dB)
2 1 69.93
4 0.9999 62.61
6 0.9997 60.04
8 0.9994 56.17
10 0.9990 54.74
12 0.9954 51.77
14 0.9861 48.47
16 0.9597 45.08

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 18. Image processing of 8 × 8 MLAMs using 4 × 4 MLAMs as a
module: exact compression based (a) 4× 4 MLAM-AC1 (p=1), (b) 4× 4
MLAM-AC2 (p=1)-MLAC22-2, (c) 4×4 MLAM-AC (p=2), (d) 4×4 MLAM-
AC (p=3); approximate compression based (f) 4 × 4 MLAM-AC1 (p=1),
(g) 4 × 4 MLAM-AC2 (p=1)-MLAC22-2, (h) 4 × 4 MLAM-AC (p=2), (i)
4× 4 MLAM-AC (p=3), and (j) 4× 4 MLAM-AC (p=4).

TABLE 19
Image Processing Results of 8× 8 MLAMs Using 4× 4 MLAMs as a

Module

Types of 8× 8 Multiplier SSIM PSNR(dB)

Exact
Compression

MLAM-AC1(p=1) 0.8880 37.40
MLAM-AC2 (p=1)-MLAC22-2 0.9782 48.36

MLAM-AC (p=2) 0.8868 36.67
MLAM-AC (p=3) 0.8718 36.36
MLAM-AC2 (p=4) 0.8623 35.68

Approximate
Compression

MLAM-AC1(p=1) 0.8879 37.48
MLAM-AC2 (p=1)-MLAC22-2 0.9753 47.52

MLAM-AC (p=2) 0.8802 36.54
MLAM-AC (p=3) 0.8632 36.32
MLAM-AC2 (p=4) 0.8472 35.44

of p smaller than 3 are preferred to further reduce the
required hardware. Accordingly, the proposed MLACs can
be utilized in image processing applications for reduced
delay and power dissipation at a low inaccuracy with a
SSIM of up to 0.97 and a PSNR of up to 48dB.

B. 8× 8 MLAMs Using 2× 2 MLAMs
The use of 2 × 2 MLAMs as a module for 8 × 8 MLAMs
as an approximate compression designs shows excellent
performance, with a SSIM of at least 0.89 and the PSNR

(a) (b) (c)

Fig. 19. Image processing of 8 × 8 MLAMs using 2 × 2 MLAMs as a
module: (a) MLAC4 based, (b) MLAC22-2 based, and (c) MLAC12-1
based.

TABLE 20
Image Processing Results of 8× 8 MLAMs Using 2× 2 MLAMs as a

Module

Types of 8× 8 Multiplier SSIM PSNR(dB)
MLAC4 based 0.9759 47.33

MLAC22-2 based 0.9614 45.17
MLAC12-1 based 0.8971 41.31
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of at least 41 dB (Fig. 19 and Table 20). When comparing
the MLAC22-2 and MLAC12-1 based designs, MLAC22-
2 improves by 7% in terms of SSIM and 9% in terms of
PSNR. The MLAC4 based design is superior to others with
improvements in SSIM and PSNR, so consistent with the
original image. Compared with other designs, the utiliza-
tion of a 2 × 2 approximate multiplier as a module and
the proposed approximate compression result in the best
performance.

5 CONCLUSION

This paper has proposed the design of MLAFAs and
MLAMs. ML based 1-bit, 2-bit and multi-bit AFAs have been
proposed. These designs show considerable savings in delay
and number of gates while only incurring in a modest loss in
accuracy. Compared with EFAs, the proposed designs result
in an improvement of at least up to 50% in delay and up to
50% in the number of majority gates for the 4-bit and the
8-bit schemes.

Moreover, by combining multiple approximate tech-
niques (such as including the proposed MLACs and approx-
imate PPR circuitry) with the so-called complement bits, ML
based multi-bit AMs have been proposed. An influence fac-
tor has been defined to measure the importance of different
complement bits; selection of the complement bits has also
been pursued by an in-depth analysis. In comparison with
exact designs, the proposed designs save at least 37% of
majority gates, 46% of inverters as well as 30% of delay for
the 4 × 4 MLAMs and at least 48% of majority gates, 53%
of inverters as well as 47% of delay for the 8 × 8 MLAMs,
while incurring in a modest loss of accuracy.

The proposed approximate adders and multipliers have
been shown to be good for applications requiring low
inaccuracy and high speed. Error analysis and hardware
comparison results have also been provided. Case studies
of error-resilient applications have shown the validity of the
proposed designs.
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