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Abstract: In order to cope with the increase of the final user traffic, operators and vendors are pushing
towards physical layer aware networking as a way to maximize the network capacity. To this aim,
optical networks are becoming more and more open by exposing physical parameters enabling fast
and reliable estimation of the lightpath quality of transmission. This comes in handy not only from
the point of view of the planning and managing of the optical paths but also on a more general picture
of the whole optical network performance. In this work, the Statistical Network Assessment Process
(SNAP) is presented. SNAP is an algorithm allowing for estimating different network metrics such as
blocking probability or link saturation, by generating traffic requests on a graph abstraction of the
physical layer. Being aware of the physical layer parameters and transceiver technologies enables
assessing their impact on high level network figures of merit. Together with a detailed description of
the algorithm, we present a comprehensive review of several results on the networking impact of
multirate transceivers, flex-grid spectral allocation as a means to finely exploit lightpath capacity and
of different Space Division Multiplexing (SDM) solutions.

Keywords: open optical networks; SNAP; network design; flex-grid; multi-rate transceivers; SDM

1. Introduction

The IP traffic forecasts [1] show that the final user will rule the traffic increase. The drawing
forces of this trend are the extensive diffusion of personal data sharing applications and multimedia
applications, such as video streaming, enabled by the development broadband access technologies.
Such a scenario will strongly change the traffic model for core networks as it will become more
and more unpredictable and fluctuating. On the other hand, telecommunications operators aim to
continue exploiting the already installed equipment at least until 2025 [2] because of the large CAPEX
investments on fiber links done at the beginning of the 2000s [2]. In this context, it is crucial to maximize
the capacity deriving from the physical layer enabling flexible network loading [3]. To pursue such
results, an accurate assessment of potentialities and criticalities of the network physical layer is an
indispensable request.

This leads to the need for defining and evaluating metrics for the performance evaluation of
the whole optical network, rather than focusing only on the quality of transmission (QoT) of the
point-to-point optical link. In addition, the availability of flexible transponders, whose rate can be
adapted based on the available QoT, makes room for a lot of optimizations in the context of the elastic
paradigm implementation in Dense Wavelength Division Multiplexing (DWDM) systems networks
[4]. These optimizations enable to finer tune the average traffic an optical network can support. The
delivered traffic on a given physical topology and transponder technology can be thus considered as a
network performance metric. In addition, another higher level network performance metric can be
linked to the probability that a connection request between two nodes of the network is accepted or
refused. Hence, in the planning and managing of an optical network, it is crucial to foresee the blocking
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probability of a connection request, given certain traffic conditions. In both cases, the awareness of
the physical layer of the network is a key feature to provide reliable performance metrics estimations
aimed at the planning, upgrade and orchestration of an optical network.

In this paper, we review several studies on the physical layer impacts on the network performance.
To perform the aforementioned studies, we propose what we call a Statistical Network Assessment
Process (SNAP). This methodology is based on the waveplane-based routing and wavelength
assignment (RWA) [5,6] and performs a loading of the network through a Monte Carlo algorithm
(MCA) [7] in which at each iteration corresponds to a different realization of the set of lightpath (LP)
allocation requests. The set of traffic requests between two nodes of the network can be finite and given
a priori or the network can be progressively loaded generating data connection requests according to a
certain probability distribution until a stop criterion. Furthermore, SNAP is able to work on topologies
completely unloaded or partially loaded by pre-existing legacy traffic.

In our analysis, we consider as propagation impairments the amplified spontaneous emission
(ASE) noise generated by the optical amplifiers and the fiber nonlinear propagation effects treated
as a noise-like disturbance called nonlinear interference (NLI). The propagation impairments are
directly linked to the physical structure of the network and set its performance through the available
QoT of the single LPs [8–17]. Here, we will always assume networks operating according to the
Locally-Optimized-Globally-Optimized (LOGO) strategy [18–20], meaning that each link works at its
optimum transmitted power [16,21], which minimizes the NLI. Given a description of the network
topology and transmission technologies, SNAP is capable of evaluating several metrics such as statistics
of the average bit-rate per LP < Rb,λ > for all possible LP demands arrangement, blocking probability
(BP) vs. allocated traffic and average load of each link. Such statistical characterization can be used
to derive general and statistically effective assessment of the network performance. We remark that
suggesting optimal routing and wavelength solutions is out of the scope of this paper. The primary
goal of SNAP is the statistical benchmarking of the physical layer to identify strengths and weaknesses
under a given- or progressive-traffic loading of networks.

The paper is organized as follows: In Section 2, we give a general overview of how the physical
layer can be effectively and efficiently abstracted to the network layer; Section 3 gives an accurate and
detailed description of the SNAP algorithm in case the traffic load is given or progressive. In Section 4
and Section 5, we report several results obtained using the given traffic and progressive traffic loading,
respectively. In Section 6, we draw some conclusions about our investigation.

2. Network Abstraction in Open Optical Networks

As mentioned earlier, the main goal of SNAP is to provide a tool to statistically evaluate
disadvantages and advantages of the physical layer of reconfigurable optical networks. To the present
day, the tendency of vendors and operators is to expose the physical characteristics of the network
elements together with telemetry data by opening the optical networks. This allows for building
software-based reliable estimations of diverse quality of transmission metrics enabling physical layer
aware design and management of optical networks. In particular, among the figures of merit, as shown
in [22,23], we take into account the signal-to-noise ratio (SNR), which is defined as:

SNR =
Pch

PASE + PNLI
, (1)

where Pch is the channel power, PASE is the ASE noise power generated by all the optical amplifier
along the path and PNLI is the overall equivalent NLI power due to the fiber spans.

2.1. From the Physical Layer to the Graph Representation

Starting from Equation (2), it is possible to decompose the overall noise disturbances in the
contributions introduced by each Line System (LS) in the network as PASE, LS and PNLI, LS, i.e., the
overall ASE noise and NLI introduced by a LS. Here, the LS is intended as the sequence of fibers and
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amplifiers connecting two adjancent network nodes. It is then possible to get the relation between the
overall SNR of a LP and the signal degradation introduced by each LS as follows:

SNR =
Pch

∑LS PASE, LS + PNLI, LS
=

(
∑
LS

PASE, LS + PNLI, LS

Pch

)−1

=

(
∑
LS

iSNRLS

)−1

, (2)

where iSNRLS is the SNR degradation introduced by a LS and it is defined as:

iSNRLS =
PASE, LS + PNLI, LS

Pch
. (3)

In such a way, it is possible to estimate the SNR of an optical path in the network just by summing
up all the SNR degradation of each LS. The network can be described by graphs whose nodes are
the reconfigurable optical add-drop multiplexers (ROADMs) (the network nodes) and the edges are
the LSs connecting the network nodes. Hence, given a graph describing the network topology, it is
possible to abstract the physical layer just by weighting each edge with the corresponding LS SNR
degradation iSNRLS, which is evaluated by means of a quality of transmission estimator (QoT-E)
module considering the ASE and NLI impairments with proper analytic models. The resulting graph
representation can be used to have a quick and accurate estimation of the SNR experienced by a
specific LP or to address the routing algorithm. It should be underlined that the weighting can be
based on various quality metrics such as the latency. However, in the following investigations, the
selected quality metric will always be the SNR degradation.

The main requirement to obtain such physical layer abstraction is that the NLI model in the QoT-E
should assume the incoherent accumulation, i.e., a model capable of disjointing the NLI contribution of
each fiber span. Another strong requirement is the independence from modulation format used. To do
so, we use the incoherent GN (IGN) model [16] to evaluate propagation performances. The IGN model
is suitable for physical layer impairment aware networking scenarios within some limitations—e.g.,
for low span loss. In Section 5.3, we prove the IGN to be sufficiently reliable for networking studies
[24] in estimating the NLI efficiency among the available GN model versions [16,18,19,21].

2.2. Routing Strategies

Given the network physical layer abstraction, in general, the routing, spectral and wavelength
assignment (RSWA) problem has to be solved according to a certain strategy. This means to assign the
optical path and wavelength to a connection request. The spectrum assignment problem is actually
solved in case flexible-grid spectral allocation method is used. If fixed-grid is used, only the channel
wavelength has to be assigned and we call it simply an RWA problem. Flexible/fixed-grid will
be discussed in Section 5. As an RWA strategy, first we compute the routing space and then the
wavelength assignment. The routing space is computed using the Dijkstra algorithm [25] on the
weighted graph representing the network abstraction. SNAP can make use of several weights such
as iSNR, the latency, the LS’s length or the number of hops. For each node pair, kMAX shortest paths
are computed. Regarding the wavelength assignment, we adopt a modified version of the waveplane
method [5], which is based on a multilayer graph made of Nch planes, called waveplanes, where Nch is
the number of spectral slot (λs). In waveplanes, each edge of the graph corresponds to a single λ on
the corresponding LS. Then, the RWA works as follows:

1. For each traffic request, the kMAX shortest paths are explored;
2. For each of the selected paths, all the waveplanes are scanned until a suitable working LP to

accommodate the request. LP selection is done by considering the weights of the edges of the
available optical paths;

3. Whenever a demand is allocated, the edges of that waveplane corresponding to the LP are
labelled as busy;
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4. If a request cannot be allocated, it is counted as rejected and the RWA moves to the next request.

The adopted RWA is a first-fit wavelength assignment with routing based on a weighted
kMAX-shortest-path. Hence, a kMAX-best-SNR based routing policy implies that kMAX paths between
a pair of nodes with highest SNR are considered as suitable paths for LPs.

3. SNAP: Statistical Network Assessment Process

In this section, we describe in detail the SNAP algorithm. SNAP has been introduced in [24]
and used in [7,26–33]. An extensive discussion on the application of SNAP can be also found in [34].
SNAP is an algorithm that carries out statistical benchmarking of reconfigurable optical networks
performance with physical layer awareness. The SNAP algorithm is briefly described by means of
pseudocode in Table 1. SNAP is a Monte Carlo based algorithm whose set of input parameters can be
roughly divided in the description of the crude network hardware and in the description of the way
we want to feed and use it, as detailed in the following:

1. Description of the Network Topology and Physical Layer: a set of network nodes and their relative
connectivity matrix describe the network topology. Beyond this logical description, the set of
physical parameters describing the hardware composing the network must be provided. For
example, a network node could be physically characterized simply as the ROADM loss and
the noise figure (NF) of the amplifier recovering its loss or even by a more complex model
characterizing its filtering effect. As for the optical fiber links connecting the nodes, we take
into account the fiber type (with its physical parameters such as length, attenuation coefficient,
dispersion and effective area) and the inline amplifiers NF. This data is then used to estimate the
QoT metric of each LP, such as the SNR degradation, via the model of choice [16]. However, note
that it is also possible to provide directly the graph and the weights of its edges.

2. Spectral Information and Network Management Strategies: This set of parameters describes how the
network hardware should be operated. This includes:

• Spectral Information: the description of the transceivers generating and receiving the data
signals to inject into the network. This involves the used spectral region (C-Band, L-Band,
Multiband, etc.), fixed or flexible-grid spectral allocation, grid size, fixed or multi-rate
transmission, symbol rate, FEC overhead and pre-FEC target BER;

• Power Control Plan: this defines the power management strategy used for transmission along
the optical paths, such as the LOGO strategy for SNR optimization;

• Routing and Spectrum/Wavelength Assignment (RSWA) algorithm: This describes how the
optical paths between a nodes pairs are evaluated and ranked and spectral slots assigned to
LPs, i.e., the routing policy. For example, a shortest link or lowest latency routing could be
adopted as well as best-QoT routing.

3. Traffic Model Description: The traffic loading the network is given as a set of LP allocation requests
between two network nodes. In addition, pre-existing legacy traffic loading the network is
supported. A certain number of Monte Carlo realizations NMC to run over must be set due to
the stochastic nature of the traffic requests in order to provide reliable network statistics. This
tuning will be shown once in Section 5.1 by looking at the convergence of the average bit-rate
per LP, so that results are indeed probability density functions (PDFs) of targeted metrics. As
described in the following, SNAP supports two models for traffic loading, identified as given
traffic or progressive traffic analyses.

• Given Traffic Analysis: as described in the left-side pseudocode of Table 1, we define a traffic
matrix D, whose elements Dl,m may represent either a connection request or a data-rate
request between nodes l and m. In the former case, Dl,m represents the number of LPs to be
established between nodes l and m. In the latter, it is a transport request between nodes l
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and m of groomed traffic of size RG that the physical layer should be fulfilled according to the
transceiver technology (fixed- or multi-rate) and spectral allocation strategy (fix- or flex-grid).
For example, a D matrix such that Dl,m = 1 ∀ l, m and Dl,m = 0 for l = m represents an
any-to-any connectivity case, i.e., each node can request a LP to each of the other nodes
except to itself. At each Monte Carlo iteration, the randomness of the LP requests lies in the
order in which the Dl,m elements are picked up. For each Dl,m the algorithm tries to allocate
a LP, i.e., a suitable wavelength and optical path according to the RSWA strategy. If the LP
allocation is successful, the corresponding bit-rate Rb,n is collected, n being the index of the
n-th allocated LP at the i-th Monte Carlo iteration. Otherwise, the missed allocation counter
is incremented. After all the Dl,m’s are processed by the RSWA algorithm, the network
loading loop terminates, so that the network reaching the saturation state is not assured.
Hence, this analysis is aimed at deriving static metrics by looking at the network status after
each loading loop. The loading loop is repeated for each Monte Carlo iteration and static
metrics are finally calculated from the obtained PDFs.

• Progressive Traffic Analysis: with respect to the right-side pseudocode of Table 1, in this
case, LP alllocation requests are issued indefinitely with the progressive loading loop on
i-th Monte-Carlo iteration. Traffic requests Dl,m are generated according to a probability
mass function in the space of the source/destination nodes, expressing the probability that a
connection request between nodes l, m might occur. In SNAP, we assume that this probability
distribution is uniform among the nodes at each iteration i, so that the connection request
probability is equal to 1/[Nnodes(Nnodes − 1)] and constant for each nodes pair, Nnodes being
the number of network nodes generating and receiving traffic. As for the given traffic case,
LP allocation requests can be either connection requests or data-rate requests. In turn, the
grooming size RG can be fixed and defined at the logical level or generated from a certain
probability distribution. Similarly to the given traffic case, if an LP can be allocated for
the issued Dl,m request, the corresponding bit-rate Rb,n is calculated; otherwise, the missed
allocation counter is incremented. Here, however, the network loading loop terminates at
network saturation, i.e., when Nm subsequent requests for connections are blocked. Hence,
progressive traffic analysis is suitable for both static and dynamic metrics estimation, since
statistics at a certain network load level or at network saturation can be obtained. The
loading loop is repeated NMC times and, in the end, performance metrics are obtained from
the obtained PDFs.

As previously mentioned, the SNAP algorithm generates a different random realization of the
network load evolution at every i-th iteration of the MCA; then, the average bit-rate per LP Ri

b,λ is
computed by averaging over the bit-rates achieved by each allocated LP as follows:

Ri
b,λ =

1
NL,i

NL,i

∑
n=1

Rb,n [Gbps], (4)

where NL,i is the number of allocated LPs during the i-th Monte Carlo run and Rb,n is the bit-rate of
the n-th allocated LP.

For both given and progressive-traffic analyses, several networks metrics can be computed and
stored at each i-th Monte Carlo run. This can be generalized to different performance metrics. Thus, it
is possible to investigate:

• Average bit-rate per LP Ri
b,λ of Equation (4);

• Spectral saturation: the spectral occupation of each node-to-node fiber connection;
• Blocking information: the number of blocked demands for each node or link;
• Acceptance information: the number of demands accepted in each node.
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Alternatively, network statistics versus the loading evolution can be calculated, thus obtaining dynamic
metrics of the network conditions:

• Blocking Probability: the probability of demand j + 1 being blocked after demand j. BP can be
considered the Quality-of-Service (QoS) figure of merit of the network under progressive loading;

• Total allocated network traffic: obtained as the sum of the number of allocated LP requests up to the
j-th demand. Selecting a target QoS, one can evaluate the average maximum traffic supported by
the network at that target QoS;

• Link saturation: the number of the allocated LPs in the overall available bandwidth in each
network link.

It is worth noting that the two network loading strategies presented here come in handy for
different use cases. Given traffic loading provides static network metrics. The metrics are static in
the sense that they are useful when we we want to study the network performance in a steady state
where it is loaded with a fixed and known traffic and not pushed to its saturation limits. Conversely,
progressive traffic loading delivers dynamic metrics, in the sense that they allow us to look at the
evolution of the statistical performance of the network, such as the total allocated capacity, without
having any knowledge of the actual traffic matrix. The capacity is then evaluated as the network is
loaded with increasing traffic in time and can be thus linked to a certain BP.

As for the RSWA algorithm, here we will always adopt a first-fit wavelength assignment with
a kMAX-best-SNR based routing policy. It is worth noting that, while we are aware that it is not the
optimal strategy, it is still possible to implement diverse RSWA strategies following the pseudocode
in Table 1 in order to conduct further studies in order to assess the impact of different algorithms on
network performance. For example, progressive traffic loading could be employed in order to estimate
the gains and losses in network capacity vs. BP passing from standard first-fit wavelength assignment
to more sophisticated approaches.

Table 1. SNAP algorithm for given traffic and progressive traffic loading.

Given Traffic Algorithm

NMC ← Number of Monte Carlo Iterations
D ← Traffic Matrix between the network nodes
for i← 1 to NMC do

Nc = 0 . Number of Missed LP Allocations
Scramble Dl,m LP allocation requests order randomly
for all LP request in D do;

Pick up a LP request Dl,m
Try to allocate Dl,m according to RSWA strategy
if LP allocation successful then

Compute Rb,n of allocated LP
Store network status

else if LP allocation unsuccessful then
Nc = Nc + 1

end if
end for
Store Monte Carlo iteration results

end for
Compute the static metrics

Progressive Traffic Algorithm

NMC ← Number of Monte Carlo Iterations
Nm ←Missed allocations threshold
Generate traffic requests between network nodes PDF
for i← 1 to NMC do

Nc = 0 . Number of Missed LP Allocations
while Nc < Nm do . Network Saturation

Pick up a LP request Dl,m from pdf
Try to allocate Dl,m according to RSWA strategy
if LP Allocation successful then

Compute Rb,n of allocated LP
Store network status

else if LP Allocation unsuccessful then
Nc = Nc + 1

end if
end while
Store Monte Carlo iteration results

end for
Compute the dynamic metrics

4. Given Traffic Results

As a first SNAP analysis, we review the results presented in [7]. Here, we have derived the
average bit-rate per LP < Rb,λ > by means of given-traffic investigation as static metric for the network
physical layer. Here, we have compared the networking figure of merit of the three typical fiber types of
Table 2, together with the adoption of multi-rate transceiver based hybrid and pure modulation formats.
The analysis has been done on the Pan-EU COST network depicted in Figure 1a. An any-to-any
connectivity matrix has been considered as a traffic model with kMAX-best-SNR based routing policy
Section 3. We have heuristically estimated that NMC = 5000 Monte Carlo runs are needed to obtain
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a reliable network statistics estimation. The < Rb,λ > obtained averaging the PDF of the lightpath
rates obtained by the MCA is adopted as a unique static network performance metric. The multi-rate
transceiver based on pure modulation formats, i.e., polarization multiplexed-quadrature amplitude
modulation of cardinality M (PM M-QAM) constellations, delivers a finite and discrete set of rates,
determined by the maximum cardinality of the constellation M supported by the available QoT of
the selected LP. On the other hand, the hybrid multi-rate transceiver exploits Time Division Hybrid
Modulation Formats (TDHMFs) [35,36], enabling adjusting with continuity the delivered rate to the
available QoT of the considered LP. For both options, we assume to employ only on modulation formats
with squared constellations, (PM-BPSK, PM-QPSK, PM-16-QAM, PM-64-QAM), where data flows of
the four quadratures are independent. Hence, for pure modulation formats, the spectral efficiency
varies in the discrete set of [2, 4, 8, 12] bit per symbol (BpS) according to the QoT and corresponding to
a delivered net bit-rate of [50, 100, 200, 300] Gbps. TDHMF transceivers instead allow for adapting the
BpS with continuity from 2 to 12 and to tune their rate from 50 to 300 Gbps, depending on the SNR
degradation of the selected LP. On the digital signal processing (DSP) side units, we assume to manage
a gross data symbol rate Rs,g = 32 GBaud per LP, corresponding to a net symbol rate Rs = 25 GBaud
per LP due to protocol and Forward Error Correction (FEC) overhead assumed to be of 28%. Thus,
LPs are assumed in-service on the selected paths if the pre-FEC BER ≤ 4× 10−3, then the transceiver
rate is scaled accordingly with the given SNR [36]. For each fiber-type, Figure 1b shows the average
Rb,λ enabled by PM-M-QAM and TDHMF obtained for the COST topology.

Table 2. Physical parameters of PSCF, SMF and NZDSF fiber types considered.

Fiber
Type

Loss
αdB [dB/km]

Dispersion
D [ps/(nm · km)]

Effective Area
Aeff [µm2]

NZDSF 0.220 3.8 70

SMF 0.200 16.7 80

PSCF 0.167 21.0 135

(a)
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]

(b)
Figure 1. (a) Pan-EU COST topology—28 nodes, 41 links, 637 km average link length, 2.98 average
node degree; (b) average bit-rate per LP using different fiber types and multi-rate transceivers (adapted
from [26]).

As for the merit of fiber types, the performance hierarchy observed for point-to-point
transmission [21] is still valid at the network level: for both transceiver technologies, the
best-performing PSCF is followed by SMF and NZDSF, with the NZDSF always showing nearly
a 30% of rate penalty with respect to SMF due to the small dispersion and effective area enhancing
nonlinear effects. Comparing the two options for multi-rate transceivers, TDHMF provides always
better performance than PM-M-QAM. Its relative < Rb,λ > advantage over PM-M-QAM is 20%, 26%,
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28% with PSCF, SMF, NZDSF, respectively. This advantage is explained by the capability of TDHMF to
exploit the available QoT more effectively when the physical layer does not allow for achieving the
maximum rate because of the poor quality of the fibers in larger networks. In a more general picture,
these first results show how SNAP can be employed to push further the capacity of the optical network
by planning transponder upgrades to flexible transponders in topologies offering low QoT paths.

5. Progressive Traffic Results

In this section, we review the results obtained loading the network with progressive traffic. First,
in Section 5.1, we show some preliminary results on the convergence of the MCA [7,28] and we review
the general impact of NLI as previously approached in [28] in Section 5.2. Afterwards, in Section 5.3,
we compare the average Rb,λ per LP obtained by using a QoT-E based on three different models (GN,
incoherent-GN (IGN), enhanced-GN (EGN) [37]) for the physical layer impairment evaluation taking
into account fixed and multi-rate transceivers as already presented in [24]. In Section 5.4, we reexamine
the work of [26] presenting further results on the fixed and hybrid rate transceivers impact. Then, we
revise [29] on the effects of fixed and flexible grid as spectral allocation methods in Section 5.5 and as a
final study, in Section 5.6, the benefits of different SDM solutions have been reviewed as done in [31].

5.1. Preliminary Results on SNAP Algorithm Convergence

As a first investigation, we have tested SNAP in progressive traffic loading on the Pan European
network topology [24] of the EU project “IDEALIST” [38] depicted in Figure 2a. Links are assumed to
be uniform in terms of fiber and erbium doped fiber amplifier (EDFA) types. As fiber pairs, we consider
SMF parameters as in Table 2, with nonlinear index coefficient n2 = 2.5× 10−20 m2/W corresponding
to a nonlinear coefficient γ = 1.27 1/W/km. ROADMs are assumed to introduce 10 dB of routing
loss fully recovered by an EDFA with 5 dB of noise figure at the node output without any further
filtering impairment. Span lengths are not uniform and they are obtained from the topology data
in [38]. On the transmitter level, we transmit a maximum of Nch = 80 LP (wavelengths) per fiber over
the 4 THz of C-Band on the 50 GHz ITU-T grid. As in Section 4, flexible-rate transponders based on
pure PM-M-QAM or on TDHMFs are adopted and operating at the same gross symbol rate Rs,g, net
symbol rate Rs and pre-FEC BER. First, the convergence of the MCA, i.e., the number of Monte Carlo
iterations NMC needed to obtain statistically stable results, has been verified. To this aim, the PDF
of the average bit-rate per LP given by Equation (4) obtained with NMC = 105 and NMC = 106 has
been estimated. As for the routing policy, we set kMAX-best-SNR with kMAX = 4. PDFs are reported
in Figure 2b together with a Gaussian fit for TDHMF. Due to the central limit theorem, the average
Rb,λ PDF converges towards the Gaussian distribution with respect to the LP allocations, so its average
value can be used as a figure of merit in the comparison of different implementations of the physical
layer. This can be explained with the fact that Rb,λ is in fact computed as a sum from a large set of
random bit-rates, whose stochasticity is mainly caused by network blocking and routing strategy.
Hence, increasing kMAX , i.e., exploring a larger routing space; thus, expanding the variability of the
allocation process leads to the increase of the Rb,λ variance. It can be observed that, for NMC = 105, the
algorithm has already converged since the curves perfectly match. Moreover, independently from the
LP allocation order, the considered network topology delivers nearly 250 Gbps per LP on average. This
means 5 BpS per polarization, larger than the 4 BpS of a pure PM-16-QAM. In addition to the Rb,λ PDF,
we report in Figure 2c the average bit-rate per LP < Rb,λ > versus the number of missed allocations
Nm required to stop the Monte Carlo iteration at NMC = 105. The resulting < Rb,λ > saturates from
Nm ≥ 2000. In light of this evidence, we safely set NMC = 105 and Nm = 5000 to obtain the results
presented in the next section.
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Figure 2. (a) Pan-EU IDEALIST topology—49 nodes, 68 bidirectional fiber links. Edge labels are then
lengths of each fiber pair in km; (b) PDF of < Rb,λ > showing the convergence of the Monte Carlo
algorithm obtained with kMAX = 4 and TDHMF; (c) < Rb,λ > vs Nmusing TDHMF. MCA converges
for Nm > 2000 (adapted from (a) [7]; (b,c) [24]).

5.2. Network NLI Penalty Assessment with Pure/Hybrid Modulation Formats

Once calibrated NMC for SNAP to converge, we evaluated the impact of nonlinearities on the
average bit-rate per LP that the IDEALIST network of Section 5.1 can support [24]. With such a purpose,
we set the transmitted power per channel on each link Pch to:

Pch = Pch,opt + ∆P dBm, (5)

being the power offset ∆P ∈ [−3,+3] dB. Pch,opt is the optimized launch power per span according to
the LOGO principle by means of IGN model. Further investigations on the nonlinear modeling are
presented in the next subsection. Each Monte Carlo analysis was performed both including the NLI
effect and excluding it by setting PNLI,LS = 0 to zero in Equation (3). Figure 3 reports < Rb,λ > versus
∆P for each of the two modulation strategies, both considering and neglecting NLI, with kMAX = 4.
The pure-format curves displays an < Rb,λ > = 224 Gbps at optimum launch power, while TDHMF
has a 12% advantage allowing to reach < Rb,λ > = 250.6 Gbps as already shown in Figure 2b. As
previously explained in Section 4, the considerable TDHMF advantage is due to its ability to better
exploit the available SNR on LPs, at the cost of an increased complexity of the DSP, i.e., an increased
CAPEX for node equipment. Although elastic, the pure format approach allows a coarse granularity
in SNR vs. BpS. In fact, to move from PM-QPSK to PM-16-QAM [39], nearly 6 dB of SNR increase is
required. For comparison, the graph also shows what happens when neglecting NLI, showing that
< Rb,λ > tends to saturate at the maximum possible rate Rb,λ = 300 Gbps, corresponding to the use
of PM-64-QAM on all LPs. Neglecting NLI would thus overestimate < Rb,λ > of 8% at the optimum
power, but this error would grow up to 20% if we operate at ∆P = +1 dB. These results have shown
that an accurate estimation of the NLI is necessary since inaccuracies in the QoT lead to substantial
under/overestimation of the network capacity metric.
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Figure 3. < Rb,λ > versus ∆P for the two considered modulation strategies. Solid lines include ASE
and NLI, dashed lines include ASE only (adapted from [24]).

5.3. QoT-E Layer Analysis

As shown in Section 5.2, NLI estimation in the QoT-E layer of SNAP is a crucial point when
evaluating network capacity. There, NLI estimation was accomplished using the IGN model, which
has been proved to deliver accurate and reliable results [23]. However, different versions of the model
exist in literature trading off between accuracy and computational complexity.

In this section, we have compared the network metrics obtained in Section 5.2 by using the IGN
with other versions of the model [24]. Given the set of LPs allocated using the IGN model in Section 5.2,
we re-evaluated the LP SNR and the corresponding Rb,λ also using the coherent GN model [40].
Moreover, for the pure modulation format case, we evaluated also the correction factor required by
the EGN model, which is considered to be the most accurate version among the so-called GN based
models [37].

Using the NLI efficiency obtained with the GN and EGN models, we re-evaluated the SNR for
each LP and re-assigned the corresponding Rb,λ. Due to the high computational effort needed to
evaluate NLI efficiency using GN and EGN models, such a process was performed only for the first 100
Monte Carlo realizations. The computation required around 26 h using a 12-core CPU, to be compared
with the approximately 3 s needed on the same machine using the IGN model (Figure 4b). In Figure 4a,
we report the resulting < Rb,λ > for the pure format approach for the three different NLI models with
the performance loss for coherent GN and EGN model with respect to the IGN model. As the GN
model overestimates NLI with respect to the IGN, a lower < Rb,λ > is obtained for GN. The EGN
model instead yields, as expected, results that are closely comparable with the IGN ones. In particular,
by using a GN model, < Rb,λ > is estimated to be around 2% smaller than the one obtained with
IGN. For EGN, this loss reduces to less than 0.2%, thus the similarity between GN and EGN model is
evident. However, it is worth noting that the NLI efficiency has been re-obtained with GN and EGN a
posteriori. Other than not computationally convenient, these models could not be used in real time
because they lack the incoherent accumulation over fiber spans, which has been assumed in Section 2.
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Figure 4. NLI models comparison in terms of (a) < Rb,λ >; (b) required computational time (adapted
from [24]).

5.4. Network Impact of Fixed and Hybrid Rate Transceivers

In this section, we present the results obtained with the SNAP algorithm by progressively loading
with traffic the Pan-EU COST network [26] of Figure 1a, where node-to-node links were assumed to
be uniform and made of amplified SMF fiber pairs. Here, we targeted the estimation of the dynamic
metrics already mentioned in Section 3 such as BP and Link saturation. While in the previous results
the traffic requests were exploiting the whole capacity offered by the optical path, here we load the
network with data-rate requests between a node pair with grooming size RG, of 100 Gbps or 200 Gbps.
We have compared the performance delivered by the two grooming rates RG together with the the
merit of a multi-rate transceiver based either on PM-M-QAM pure modulation formats and a fixed-rate
transceivers based on PM-QPSK and PM-16-QAM, delivering respectively 100 Gbps and 200 Gbps per
LP. Pre-FEC BER has been set to 4× 10−3 as in Section 4. We assume that the multi-rate transceiver
is able to split the traffic on two or more LPs when the available LPs’ QoT is not enough to meet the
considered traffic-grooming size. In order to observe performance down to a BP of 0.1%, NMC = 104

was estimated to deliver sufficiently accurate dynamic metrics. As exit conditions from the network
loading loop, we set Nm to be greater than the 50% of the total requests, with a minimum of 5000
generated requests.

The behavior of BP vs. the average total allocated network traffic for both grooming values and
transceivers technologies is shown in Figure 5a. The BPalways grows as the network is progressively
loaded with random requests. However, the RG = 200 Gbps/fixed-rate transceiver curve is not shown
since a very small fraction of LPs had enough QoT to enable PM-16-QAM transmission, leading to
large BP, larger than 50%, even for limited traffic. Looking at the curves, we can identify two regimes
vs. BP. For BP below 1%, 100 Gbps grooming always performs better than 200 Gbps grooming. At
low BP, the large unoccupied wavelength availability makes the LP assignment dominated by the
QoT, while 200 Gbps requests are more likely to be blocked because of their larger SNR requirements.
Above BP of 1%, the ranking is reversed with 200 Gbps grooming delivering larger throughput. Now,
an LP request is more likely to be blocked due to the lack of wavelengths instead of its QoT constraint.
However, 200 Gbps requests carry twice the traffic of the 100 Gbps requests, thus resulting in a larger
allocated traffic and reversing the ranking. In addition, Figure 5b shows the average saturation for
RG = 200 Gbps and multi-rate transceivers with bars for each link of the Pan-EU network. Here, we
have obtained the static metric at QoS-BP of 1%, but the dynamic link saturation vs. the network
loading can be easily obtained from SNAP. Here we can observe some critical facts about the network.
The shorter links of the northern area connecting Hamburg, Amsterdam, Berlin and Copenhagen are
more congested since they carry a large amount of traffic, while the most peripheral links are less used
do to their larger SNR degradation, thus they should be improved at the physical layer. These kind of
studies allow for unveiling crucial aspects on the effect of physical layer on networking performances,
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enabling physical layer-driven network upgrade and design strategies. See [26], where some possible
upgrades derived from these progressive-traffic analyses are presented.
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Figure 5. (a) average blocking probability vs. average total allocated network traffic; (b) average link
spectral load at BP = 1%. The thicker the lines, the more saturated the links (adapted from [26]).

5.5. Fixed vs. Flexible Frequency Grid Comparison

In this section, we use SNAP to evaluate metrics for networks already partially loaded by LP
to satisfy legacy traffic demands and compare the performance of fixed and flexible frequency grids
as spectral allocation methods to exploit the residual bandwidth for future requests. Legacy traffic
is assumed to be spectrally distributed in the 4 THz C-Band so that available residual bandwidth
is a continuum. Here, the Italian network depicted in Figure 6a has been analyzed. The topology
is composed of G.652, G.653 and G.655 amplified fiber pairs. In addition, 18 dB of loss introduced
by ROADMs are compensated by an EDFA with 5 dB of NF at each node output. We consider
as residual bandwidth percentage (RBP) ∈ [75%, 50%, 25%] with respect to the total bandwidth.
The residual bandwidth is employed using multi-rate transceivers with pure modulation formats
on the 37.5 GHz grid for fixed-grid approach and a maximum of 5 ITU-T spectral slots per LP
12.5 GHz wide for flex-grid, as summarized in Figure 6b. We have carried out MCA with NMC = 5000
realizations. For each realization, residual spectrum is progressively loaded with given grooming sizes
RG ∈ [20, 40, 100] Gbps. We use a kMAX-best-SNR routing up to kMAX = 50 and LOGO as control
plan. Furthermore, here we perform bitrate overprovisioning: when a LP is assigned, if the requested
grooming size RG is smaller than the available rate Rb,λ of the LP, the residual capacity (Rb,λ − RG) is
left for future requests. The figure of merit considered here is the BP against the overall allocated traffic
per spectral unit (T). T has dimensions (BpS/Hz), thus representing the spectral efficiency, enabling
a fair ranking for fix-/flex-grid spectral allocations methods in the considered scenarios. Figure 7
always shows a flex-grid gain over fix-grid, but it decreases at larger grooming rates. In fact, when
RG gets bigger, a LP occupies a larger spectral region comparable to the fixed-grid approach. In this
case, the flex-grid advantage occurs on LP with larger QoT for which high cardinality modulation
formats, such as PM-16QAM and PM-64QAM can be employed to carry the groomed traffic in fewer
slots. Moreover, the BPshows two regimes against T: in the first phase; LP allocations saturate the
residual bandwidth so that the BP increases rapidly; then, it grows slower because further requests are
allocated exploiting bit-rate overprovisioning. The BP threshold for the regime change grows with
the grooming size because the residual bandwidth for overprovisioning is consumed faster, while it
gets smaller at larger RBP because the use of overprovisioning triggers later. It is in any case smaller
for the flex-grid method because of the more efficient use of the bandwidth allowing for allocating
more lightpaths.

In Figure 8, we targeted the normalized network traffic at a maximum acceptable blocking
probability BPmax = 1%, similarly as in [41]. Trivially, Talways grows with RBP, with a larger
increment of the flex-grid approach, which exploits more efficiently the larger available bandwidth.
At RG = 20 Gbps grooming (Figure 7c), the flex-to-fix gain is in fact 2.5 at 25% RBPand enlarges
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to 3.3 for RBP of 75%. Going to larger grooming rates increases the absolute traffic but limits the
flex-to-fix gain because of network saturation. At RG = 40 Gbps (Figure 7d), grooming the flex-to-fix
gain is constant to 2.5 for each RBPand saturates to nearly 1.3 at 100 Gbps grooming for all RBP.
Hence, while the absolute traffic for fixed-grid increases with the same ratio of the increasing grooming
sizes, the flex-grid approach is instead limited by saturation but exploiting smaller grooming rates
more efficiently.

Fiber Type

G.652
G.653
G.655

(a)

MODULATION
Fixed Grid
Net Rate 
𝑹𝒃 [Gbps]

Flex Grid Net Rate 𝑹𝒃 [Gbps]
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(b)
Figure 6. (a) description of the spectral-allocation techniques and flexible transceiver rates; (b) Italian
network topology; 44 nodes, 3.36 average node degree (adapted from [29]).
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Figure 7. Upper row: blocking probability against the total traffic per residual spectral unit for
(a) fix-grid and (b) flex-grid spectral uses. Blue, red and yellow lines refer to RG of 20, 40, 100 Gbps,
respectively. Dotted, dash-dotted and dashed lines refer to 25%, 50% and 75% of residual bandwidth
percentage RBP, respectively. Lower row: total traffic per residual spectral unit T at BPmax = 1% for
fix- and flex-grid and different RBP for RG of (c) 20 Gbpsl; (d) 40 Gbps; (e) 100 Gbps (adapted from
[29]).
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Figure 8. (a) German topology—17 nodes, 26 links, 207 km average link length, 3.06 average node
degree; (b) BP vs. Total Allocated Traffic per Core varying the SDM cardinality (3 orange, 5 blue, 7
green) and SDM solutions: SCMCF w/o NLM (dotted), SCMCF (solid), UFR-CCC (dash-dotted) and
UFR-InS (dashed); (c) relative gain respect to SCMCF w/o NLM on the Total Allocated Traffic per Core
varying the SDM cardinality and scenarios at BP = 10−2 (adapted from [32]).

5.6. Networking with Different SDM Solutions

In order to cope with continuously growing capacity demand, a lot of effort has been put on SDM
solutions investigations [3,42]. In this section, we use SNAP to evaluate the networking performances
delivered by different SDM techniques. As SDM techniques, here we will compare the uncoupled fiber
ribbons (UFR) and the strongly coupled multi-core fibers (SCMCF) together with several switching
techniques for them [43].

UFRs are considered simply as a set of independent SMF whose nonlinear impairments are the
same of single SMF and where independent switching (InS) [44] can be implemented. Here, however,
we will apply the core continuity constraint (CCC) [45] switching technique also in UFRs. In SCMCF,
the strong coupling between the cores enables nonlinear distortion mitigation (NLM) of the signal, thus
improving the SNR and providing point-to-point capacity gain [46,47] when comparing to UFRs with
the same SDM cardinality, i.e., number of fibers equal to the number of cores. The SNR improvement
from NLM ∆SNR is derived according to the theory as [47]. However, SCMCFs require joint switching
(JoS) implementation [44] due to the strong core coupling. This means that the add/drop of a channel
and the LP allocation on a particular wavelength must be done on the same route and in all the
cores [46,47]. Hence, while SCMCFs improve QoT, the need for JoS requires the implementation of
advanced techniques of routing for space and spectrum assignment (RSSA) [44]; it reduces the total
allocated traffic at a given BP [48]. Here, we do not consider advanced RSSA algorithms; we study
only the NLM and switching techniques impact instead. From the fiber side, UFRs and SCMCFs
have the typical SMF parameters as in Table 2. Span is 100 km, whose loss is recovered by EDFAs
with 5 dB of NF. In addition, 18 dB of ROADM loss at each node is recovered by an addition EDFA
with 6.2 dB NF. We rely on flexible TDHMF transceivers transmitting up to Nch = 96 channels per
fiber per core in the 50 GHz fixed grid, able to adapt their bit-rate Rb,λ continuously vs. the SNR. The
symbol rate is Rs = 32 32 Gbaud, FEC overhead is 28%, and pre-FEC target BER is set to 4× 10−3.
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Control plan is set to the LOGO strategy. RSWA adopts first fit principle for spatial assignment and
kMAX-best-SNR strategy with kMAX = 25 for routing, thus enhancing path diversity and mitigate
wavelength contention. We also perform bitrate overprovisioning as in Section 5.5. SNR degradation
is evaluated according to the IGN model and full spectral load. The analysis has been carried out on
the German topology of Figure 8a by using SNAP with NMC =25,000 realizations.

Traffic requests are generated from an any-to-any uniform distribution. SDM solutions are
compared at their optimum grooming rate better fitting the physical layer QoT and maximizing the
BP vs. total allocated traffic. Varying the SDM cardinality in [3, 5, 7], we have considered the following
combinations of SDM and switching techniques:

• UFR with CCC,
• UFR with InS,
• SCMCF with JoS and NLM,
• SCMCF with JoS and without NLM.

The last one is equivalent to an uncoupled crosstalk-free multicore fiber with JoS. As the network
is loaded, we calculate the total allocated traffic normalized to the SDM cardinality, i.e., divided by
the number of cores, in order to obtain a fair comparison between the SDM solutions and switching
techniques. Figure 8b show the BP against the total allocated traffic per core. The overlapping of the
SCMCF w/o NLM curves implies that JoS has no effect in the capacity per core varying the SDM
cardinality. All the other cases, instead, show significant performance gains increasing the SDM
cardinality, enabled by NLM for SCMCF and by the switching flexibility allowed by CCC and InS for
UFRs. However, the cardinality gain slows down passing from five to seven cores and, for low to
moderate BP, the NLM-enabled enhancement cannot cope with the flexibility offered by UFRs with
InS and CCC. Focusing on the UFR switching techniques, the less restrictive InS shows a gap of 1.35%,
1.7% and 1.7% with respect to CCC for three, five and seven cores, respectively. As a static metric
targeting BP = 10−2, we have reported as vertical bars in Figure 8c; the total traffic gain of UFRs and
SCMCF with respect to the SCMCF w/o NLM taken as reference. NLM enables a gain 7%, 14% and
17% per core for three, five and seven cores, respectively. However, the gains enabled by UFRs are
fairly larger: 23%, 28% and 32% per core in the case of CCC and by 25%, 32%, 35% per core in case of
InS. Focusing on UFRs, InS delivers the best performance. However, the CCC penalty with respect
to InS is between 1% and 2%, i.e., fairly small. Nevertheless, since InS implementation in ROADMs
constitutes a huge complexity cost, the use of UFRs with CCC can be a nice trade-off to optimize
network performances.

6. Conclusions

In this work, we have shown how the SNAP algorithm can be a powerful tool to get a network
performance estimation with physical layer awareness. We have explained in detail the algorithm
workflow and the concept of physical layer abstraction with a graph. After some details on the
importance of a proper and convenient QoT estimation, we have presented an extensive set of
applications showing how the use of multi-rate or hybrid transceivers impact the network capacity.
Furthermore, a comparison between fixed and flexible spectral allocation methods has been done.
Finally, the advantages and disadvantages of different SDM solutions have been studied. These results
show that SNAP can be used as a handy tool to address the network design and to properly address
the network upgrades to improve the overall performances.
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