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Hybrid Integration Scheme for the Evaluation of
Strongly Singular and Near-Singular Integrals in

Surface Integral Equations
J. Rivero, F. Vipiana, Senior Member, IEEE, D. R. Wilton, Life Fellow, IEEE,

and W. A. Johnson, Senior Member, IEEE

Abstract—The accurate and efficient evaluation of surface
source integrals is a key step in obtaining reliable solutions of
electromagnetic problems using integral equation formulations.
In this paper, we propose to combine two of the most extensively
used schemes to efficiently evaluate strongly singular and near-
singular source integrals, such as those arising in the K oper-
ator. In the proposed approach, singularity subtraction is first
applied to remove the most dominant singular part; singularity
cancellation, using the radial-angular variable transformation, is
then employed to treat the remaining integrand. The method is
compared to other common numerical schemes to demonstrate
its effectiveness.

Index Terms—Integral equations, moment methods, singular
integrals, numerical analysis.

I. INTRODUCTION

The rigorous solution of radiation and scattering problems
using surface integral equation formulations solved via the
Method of Moments (MoM) requires the accurate and efficient
numerical evaluation of singular and near-singular double
surface integrals. Here, we focus on the numerical solution
of the double integrals involving the gradient of the Green’s
function, usually called strongly singular and near-singular
integrals, whose kernel has a singularity of the kind 1/R2

[1]. This double surface integral operator, widely known also
as the K operator [2], arise in both the Magnetic Field Inte-
gral Equation (MFIE), the Combined Field Integral Equation
(CFIE) for perfect electric conductor (PEC), as well as in
the commonly used formulations for penetrable bodies (di-
electrics, homogenized metamaterials, plasmonic bodies, etc.)
such as the classical Poggio-Miller-Chan-Harrington-Wu-Tsai
(PMCHWT) formulation and other combined formulations.

The evaluation of the source surface integral has been tra-
ditionally accomplished by applying well-known “singularity
subtraction” integration schemes [3], [4]. The basic idea of a
singularity subtraction integration scheme is to subtract from
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the integrand terms that have the same asymptotic behavior as
the integrand at its singularities. The remaining (smoothed)
integrand is then numerically evaluated using a standard
quadrature scheme. Then, the subtracted singular terms are
integrated analytically and added back into the final result.
Usually, the singularity subtraction integration schemes are
able to provide low-to-medium accuracy (up to 7-8 correct
significant digits for the MFIE) with only a few quadrature
sample points, thanks to the dominant contribution of the
exactly integrated analytical part. However, the maximum
attainable accuracy is limited by the numerical evaluation of
the regularized integral, which may still contain lower order
singularities of either the unbounded or bounded type, as is
especially true for the K operator on curvilinear domains [5].

A more recent approach, alternative to the singularity sub-
traction scheme, employs the so-called “singularity cancella-
tion” method [6]–[9]. In singularity cancellation schemes, the
singularities are cancelled through a proper sequence of vari-
able transformations; the resulting integral is then evaluated
numerically with a standard quadrature scheme. Singularity
cancellation schemes are basically independent of the basis
function kind and order, and of the integration domain shape
and curvature. Moreover, it is possible for well-designed
schemes to achieve machine precision by merely increasing
the quadrature order. However, in the low-to-medium accuracy
regime, more sample integration points are generally needed
than in the singularity subtraction scheme [5]. Finally, for
the MFIE (or K operator), a complex subdivision of the
integration domain is often required to accurately evaluate the
contribution of a principal value integral [8]. We remark that
machine precision accuracy for computations in a production
code is both unnecessary and expensive. But the ability to
generate good reference values and not to be limited by
the attainable precision are strong reasons for desiring high
accuracy. Furthermore, some types of problems benefit from
simply increasing the accuracy. These include, for example,
the computation of mode dispersion diagrams for waveguiding
structures, the validation of implementations of higher order
bases, and countering effects of ill-conditioning. Problems
requiring large dynamic ranges, such as the computation of
low sidelobe levels in antenna or scattering patterns also
benefit from higher accuracy.

Usually, in the MoM, a two step procedure is used to
evaluate source and testing moment integrals. In the first, the
source integral is treated rather carefully, and in the second,
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the resulting source integral is assumed sufficiently smooth
that it can be integrated (tested) numerically using a standard
low-order quadrature scheme. Recently, however, a number
of methods have emerged for dealing simultaneously with
the two surface integrals for the various kernels encountered
in the MoM [10]–[15]. These methods are mainly based on
applying the divergence theorem to both the source and test
surface integrals, together with an appropriate reordering of the
obtained radial and contour integrals. Though promising, these
methods are currently still in development; they also require
significant changes to existing MoM code implementations,
and hence are not yet in wide use.

In this paper, we propose a novel integration scheme,
called the hybrid integration scheme in the following, that
properly combines the singularity subtraction and cancellation
approaches so as to minimize the number of quadrature points
for low-to-medium accuracy, while still being able to reach
machine precision as the number of quadrature points is
increased. The proposed hybrid integration scheme is easily
applied to flat and curvilinear (quadratic) triangular integration
domains, and for observation points near or on the integration
surface or edges. The present paper is partly inspired by a
comment on how to treat the remaining 1/R singularity after
subtracting higher order singularities, mentioned in [16] for
the case of flat triangular domains.

The paper is organized as follows. Sect. II describes the
proposed formulation for the evaluation of the gradient of
the Green’s function present in the MoM discretization of
the MFIE for planar triangles. In Sect. III, the extension to
curvilinear triangles is detailed. Numerical results are then pre-
sented in Sect. IV. Finally, Sect. V contains the conclusion and
perspectives. Preliminary results for the proposed approach
were presented in [17].

II. THE HYBRID INTEGRATION SCHEME

The aim of this paper is to develop an accurate and efficient
evaluation of strongly singular and near-singular integrals, e.g.
those present in the source integral of the MFIE, discretized
via the MoM. Such integrals have the form

In(r) =

∫∫
T ′

∇e−jkR

4πR
×Λn(r

′)dS′

=

∫∫
T ′

Λn(r
′)(1 + jkR)e−jkR × R

4πR3
dS′, (1)

where k is the wavenumber, R = r − r′, R = |R|, r is an
observation point, r′ is a source point on the triangle T ′, and
Λn is the n-th basis function as, e.g., a Rao-Wilton-Glisson
(RWG) basis function [18]. A RWG basis function, Λn(r

′) is
defined on the triangle T ′ as

Λn(r
′) =

ρn
hn

=
r′ − rn
hn

, (2)

where rn is the triangle vertex associated with the considered
n-th basis function, and hn is the corresponding triangle
height, as shown in Fig. 1. We observe that the integral in
(1) has an asymptotic behavior of 1/R2 as R→ 0.

In this work, we propose a novel hybrid integration scheme
able to evaluate singular and near-singular integrals of the

Fig. 1. Integration domain and relevant geometrical quantities.

kind in (1) that combines the advantages of the singularity
subtraction and cancellation methods mentioned in Sect. I.

In the proposed approach, we first write (1) as

In(r) = −
1

4π

∫∫
T ′

Rn ×Λn
(1 + jkR)e−jkR

R3
dS′, (3)

observing that Λn×R = Λn×(Rn−ρn) = −Rn×Λn since,
by (2), Λn ∝ ρn. Then, we subtract the term Rn × Λn/R

3

from the integrand of (3), and add its surface integral to the
result, obtaining

In(r) = IRn (r) + IR
3

n (r), (4)

where

IRn (r) = −
1

4π

∫∫
T ′

Rn ×Λn
(1 + jkR)e−jkR − 1

R3
dS′ (5)

IR
3

n (r) = − 1

4π

∫∫
T ′

Rn ×Λn(r
′)

1

R3
dS′. (6)

A most important feature of (6) is that it can be evaluated
analytically as in [3]. To guard against the cancellation error
that can occur for small kR, we replace the exponential
function in the kernel of (5) by its appropriately truncated
Maclaurin series expansion in kR, and cancel the leading static
term analytically rather than rely on numerical cancellation.

In contrast to (1), which has a 1/R2 singularity, the integral
(5) has only a 1/R behavior as R→ 0, and can be evaluated
by the radial-angular singularity cancellation scheme presented
in [19]. It is worth noting that the radial-angular transform
appears to be among the most effective singularity cancellation
schemes [20].

In order to apply the radial-angular transform, the obser-
vation point r is projected onto the triangle T ′ plane, as
illustrated in Fig. 2a. The triangle T ′ is then split into three
sub-triangles about the projected observation point. Fig. 2b
shows one sub-triangle with a local reference system and
with the origin at the projected observation point. If the
observation point is off the surface but with its projection in
T ′, the dominant contributions are generally additive. But if
the projected observation point is exterior to T ′, those sub-
triangles that are fully exterior to T ′ have negative contribu-
tions whose dominant contributions should exactly cancel, and
can induce cancellation errors for large triangle/observation
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point separations. Thus as we move further from the triangle,
we should simply do the smooth integrals numerically.

Fig. 2. Application of the singularity cancellation scheme via triangle
splitting; (a): original triangular domain split into three sub-triangles; (b):
one sub-triangles and corresponding relevant geometrical quantities.

Then, the integral (5) can be rewritten as

IRn = IT1n + IT2n + IT3n , (7)

where

ITin =

∫ h

0

dy

∫ x
U

x
L

dxgn(x, y) (8)

with xU = y cot(φU ) and xL = y cot(φL); φU and φL are
the minimum and maximum aperture angle of the considered
sub-triangle respectively, as shown in Fig. 2b, h is the height
of the sub-triangle along the y axis, and gn(x, y) represents
the integrand of (5). Applying the radial-angular transform,
(8) becomes

ITin =

∫ u
U

u
L

du

∫ v
U

v
L

dv gn[x(u, v), y(u, v)]J (u, v), (9)

where

u = ln tan
φ

2
with φ = arctan

y

x

v = R =
√
x2 + y2 + z2, (10)

the integration limits are

uL,U = ln tan
φL,U
2

vL,U = |z|,
√
z2 + (h coshu)2, (11)

and the Jacobian is

J =
R

coshu
. (12)

Using the radial-angular transform, the Jacobian (12) exactly
cancels the static part of the kernel 1/R, and maps the sub-
triangle into a (almost) rectangular domain, so that Gauss-
Legendre integration quadrature schemes of low order can be
used to get high accuracy evaluations [19].

III. EXTENSION TO CURVILINEAR TRIANGLES

The proposed integration scheme (Sect. II) can be easily
extended to the case when the definition domain T ′ of the
basis function Λn(r

′) is a curvilinear triangle. For simplicity,
and without loss of generality, here we illustrate the approach
for a quadratic triangle.

First, the integral (1) is rewritten in area coordinates ξ =
(ξ1, ξ2, ξ3), with ξ1 + ξ2 + ξ3 = 1,

In(r) =
1

4π

∫ 1

0

dξ2

∫ 1−ξ2

0

dξ1Λn(r
′(ξ))

(1 + jkR(ξ))e−jkR(ξ) × R(ξ)

R(ξ)3
J (ξ), (13)

where R(ξ) = r− r′(ξ), R(ξ) = |R(ξ)|, and, for a quadratic
triangle, the point r′(ξ) on the curvilinear triangle can be
written in area coordinates as

r′(ξ) = r020 2 ξ2

(
ξ2 −

1

2

)
+ r011 4 ξ2 ξ3

+ r110 4 ξ1 ξ2 + r002 2 ξ3

(
ξ3 −

1

2

)
+ r101 4 ξ1 ξ3 + r200 2 ξ1

(
ξ1 −

1

2

)
(14)

In (14), rijk with i, j, k = 0, 1, 2 are the coordinates of the six
points that identify a curvilinear (quadratic) triangle, as shown
in Fig. 3a, according to the multi-index notation introduced in
[21]. We note that the mapping is from the parametric space
of Fig. 3b to the curvilinear space of Fig. 3a.

Moreover, the extension to curvilinear triangles of the RWG
basis functions can be easily written in area coordinates as

Λn(r
′(ξ)) =

ξn+1`n−1(ξ)− ξn−1`n+1(ξ)

J (ξ)
, n = 1, 2, 3,

(15)
where the index arithmetic is performed modulo 3, J (ξ) =
|`1(ξ)× `2(ξ)| and `n are the tangent triangle vectors

`n(ξ) =
∂r′(ξ)

∂ξn−1
− ∂r′(ξ)

∂ξn+1
, n = 1, 2, 3, (16)

with `1 + `2 + `3 = 0.
Then, we consider a flat triangle, T ′T , tangent to the curvi-

linear one at the projection of the observation point onto the
curvilinear triangle, r0 = r′(ξ0), as shown in Fig. 4. We
notice that the definition of the tangent triangle is related to
the chosen observation point r, i.e. there is a different tangent
triangle for each observation point r. The three vertices of the
tangent triangle T ′T can be expressed as

r0n = r0 + ξ0n−1`n+1(ξ0)− ξ0n+1`n−1(ξ0), n = 1, 2, 3, (17)

where ξ0 = (ξ01 , ξ
0
2 , ξ

0
3) is the area coordinate vector of the

projected observation point r0, and `n(ξ0) are the element
tangent vectors (16) evaluated at ξ0, and which are also edge
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Fig. 3. (a): curvilinear triangle and relevant geometrical quantities; (b):
curvilinear triangle mapped in the area coordinate domain.

Fig. 4. Curvilinear triangle and corresponding flat tangent triangle at the
projected observation point r0.

vectors of the tangent triangle. We further observe that the
defined tangent triangle T ′T has both the same area coordinates
and the same Jacobian at the tangent point ξ0 as the curvilinear
one T ′. Finally, due to (17), the curvilinear RWG basis
functions (15), at the tangent point r0, are the same as the
(ordinary) RWG basis function (2) defined on the tangent
triangle [22].

As for the flat case (Sect. II), to smooth the singularity of
the integral (13), we subtract and add a term with the same
dominant asymptotic behavior as the integrand:

In(r) = IRn (r) + IR
3

n (r) (18)

where

IRn (r) =
1

4π

∫ 1

0

dξ2

∫ 1−ξ2

0

dξ1
[
Λn(r

′)(1 + jkR)e−jkR

× R

R3
J (ξ)− Fn (r̃

′(ξ))J (ξ0)
]

(19)

IR
3

n (r) =
1

4π

∫ 1

0

dξ2

∫ 1−ξ2

0

dξ1Fn (r̃
′(ξ))J (ξ0) (20)

Fn(r̃
′(ξ)) = −Rn ×Λn (r̃′(ξ))

1

|r− r̃′(ξ)|3
, (21)

with Rn = r− r0n (17) and r̃′(ξ) = ξ1r
0
1 + ξ2r

0
2 + ξ3r

0
3.

In (18), the subtracted and summed term is of the same
form as in the case of a flat triangular integration domain
(4), but, here, it is evaluated on the flat tangent triangle T ′T ;
in fact, the points r̃′ are the area coordinate points ξ mapped
onto the flat tangent triangle. Hence, we are not introducing an
approximation in the evaluation of the initial integral defined
over a curvilinear domain. I.e., though the subtracted and
added term only approximates the integrand, the singularity is
removed because the approximation becomes asymptotically
exact as the kernel singularity is approached. In this way, the
integral (20) can be easily rewritten as

IR
3

n (r) = − 1

4π

∫∫
T ′
T

Rn ×Λn(r̃
′)

1

|r− r̃′|3
dS′. (22)

observing that J (ξ0) is simply twice the area of the flat
tangent triangle T ′T . Hence, the integral (22) is basically the
integral (6) defined over the tangential triangle T ′T , and can
be analytically evaluated as in [3].

By contrast, the integral (19) is still defined over the initial
curvilinear domain, and exhibits an asymptotic behavior 1/R
for R→ 0; it can be evaluated by applying the radial-angular
transform. In order to apply the radial-angular transform to
a curvilinear integration domain, the associated flat tangent
triangle T ′T is divided into sub-triangles about the projected
observation point, and the radial-angular transform is applied
to each tangent sub-triangle (as described in Sect. II). The
quadrature sample points, obtained in (u, v) coordinates (10),
may be mapped back to the tangent sub-triangle, and then back
to the simplex (in ξ coordinates), as shown in Fig. 3b. Finally,
the simplex quadrature sample points in ξ coordinates may be
mapped to the initial curvilinear integration domain via (14).
The procedure is graphically described in Fig. 5.

IV. NUMERICAL RESULTS

In order to analyze the accuracy of the proposed hybrid
integration scheme, we analyze the convergence behavior of
the integral (1) for different observation points r for both flat
and curvilinear integration domains.

The proposed integration scheme, labelled in the following
as “RA-1”, is compared with the fully numerical singularity
cancellation scheme in [8], devoted to strongly near-singular
integrals and labelled as “SC”, and with a standard singu-
larity subtraction scheme for integrals of the kind in (1),
labelled as “SS” [3]. The quadrature rules used to integrate
the difference integrands are Gauss-Legendre (GL) for the
SC scheme, Gauss-Triangle (GT) [23] for the SS scheme
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Fig. 5. Pictorial description of the procedure to apply radial-angular transform
to a curvilinear integration domain.

(using a binary/dyadic division of the triangle for more than
166 points), and for the RA-1 scheme GL and Ma-Rokhlin-
Wandzura [24]–[26] with square root weighting (MRWsqrt) .
In the case of the RA-1 scheme, if the observation point lies
in the triangular integration domain, the GL quadrature rule is
used; otherwise (i.e., observation point not in the plane of the
(tangent) triangle), a MRWsqrt quadrature rule is used for the
radial integration and a GL quadrature is used for transverse
integration in the radial angular scheme [19].

The reference values are obtained applying the RA-1
scheme and using the highest order available for GL and
MRWsqrt quadrature rules, with 166 and 128 sample points,
respectively. The reference values are evaluated in quad pre-
cision, and they are accurate to no less than 16 significant
digits.

In all the reported numerical results, the integration domain
is a triangle with maximum edge of about λ/5 (where λ is
the working wavelength), and the chosen basis functions are
RWG basis functions (2) on flat triangles or their extension to
curvilinear (quadratic) triangles (15). The integral evaluation
accuracy is measured in terms of the number of correct
significant digits of the computed integral,

SDn,α(i) = − log

(∣∣∣∣∣Irefn,α − In,α(i)Irefn,α

∣∣∣∣∣+ δ

)
, (23)

where α is the considered integral component (tangential or
normal to the integration domain at r0), Irefn,α and In,α(i) is
the α-component of the evaluated integral with the highest
available number of quadrature sample points (reference)
and with i quadrature sample points, respectively. The term
δ = 10−16 is inserted in (23) to limit the precision claim to
16 digits (double precision). In all the following graphs, the
obtained SDn,α(i) are reported with respect to the number
of quadrature sample points per dimension, i.e., equal to

√
i

since we are performing a 2-D surface integral. We do not
include timing analyses since, as verified, run-times are mainly
dominated by the number of sample points in each scheme.

Fig. 6. No. of correct significant digits versus the no. of quadrature sample
points per dimension; case of a flat triangle with observation point λ/100
off the triangular surface projected close to the triangle centroid (inset); (a):
integral tangential component; (b): integral normal component.

Figure 6 shows the accuracy in the evaluation of the integral
(1) in the case of a flat integration domain, and with the
observation point r placed at a distance of λ/100 from the
triangular surface and projected close to the triangle centroid
(see the inset of Fig. 6). The obtained number of correct
significant digits with respect to the number of quadrature
sample points per dimension confirms the expected behavior of
the different integration schemes. The singularity subtraction
scheme (solid red line with plus sign) shows fairly good accu-
racy for a low-to-medium number of quadrature sample points,
and converges slower to machine precision with respect to the
other schemes . The singularity cancellation scheme (dash-
dotted blue line with filled square) nearly reaches machine
precision as the number of quadrature points increases, but,
for a low-to-medium number of quadrature points, its accu-
racy is significantly below the performance of the singularity
subtraction scheme. The proposed hybrid integration scheme
(dashed magenta line with hollow circles), on the other hand,
displays low-to-medium accuracy with only about one digit
less accuracy than the singularity subtraction scheme (up to 7-
8 digits), but converges faster to machine precision (16 digits)
than the singularity cancellation and singularity subtraction
schemes.

Figure 7 reports, for the same triangle as in Fig. 6, the
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Fig. 7. No. of correct significant digits of the integral normal component
versus the no. of quadrature sample points per dimension; case of a flat triangle
with observation point on the triangular surface at around the triangle centroid
(inset).

Fig. 8. No. of correct significant digits versus the no. of quadrature sample
points per dimension; case of a flat triangle with observation point λ/100
off the triangular surface projected on one triangle edge (inset); (a): integral
tangential component; (b): integral normal component.

integral evaluation accuracy when the observation point is on
the triangular surface close to the triangle centroid (inset of
Fig. 7). In this case, only the normal component of the integral
is non-vanishing, and the singularity cancellation scheme is not
applicable because it requires a finite distance between the
observation point and the integration domain. The behavior
of the proposed hybrid integration scheme is similar to the
previous case, i.e. it is comparable with the singularity sub-
traction scheme up to 7-8 significant digits and is able to reach
machine precision at faster pace. This result demonstrates the
consistency of the proposed integration scheme for the limiting
case of an observation point exactly on the surface of the
triangle.

A case of special interest is that of an observation point
close to the integration domain edges or projecting directly
onto an edge (see the inset of Fig. 8). This case is often
critical for numerical integration schemes, and leads to an
integral with a bounded normal component, but with higher
order singularities [24]. As shown in Fig. 8, in this case, the
accuracy of the singularity cancellation scheme [8] is limited
to around 8 significant digits, because the disc, that is one of
the sub-domains into which the initial integration domain is
divided, is not a full disc, losing the advantage of symmetry.
Instead, the proposed hybrid integration schemes improves
both achievable accuracy and convergence compared to the
previous case.

Fig. 9. No. of correct significant digits of the integral normal component
versus the no. of quadrature sample points per dimension; case of a flat triangle
with observation point on one triangle edge (inset).

Finally, we consider the case of an observation point directly
on the triangle edge, as shown in the inset of Fig. 9. In this
case, the exact contribution integral (6) is unbounded and,
hence, its contribution has been excluded from the results
reported in Fig. 9. Nevertheless, the accuracy of the proposed
hybrid integration scheme is fully analogous to that reported
in Fig. 8, demonstrating that the fully numerical part of the
scheme is stable even when the observation point is on an
edge of the integration domain.

To demonstrate the applicability of the proposed hybrid
integration scheme to curvilinear (quadratic) triangles, in
Figs. 10–13, we report the same analyses done for flat integra-
tion domains, for the case of curvilinear domains (see inset of
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Figs. 10–13). We observe that, in the implemented singularity
subtraction scheme, in the case of a curvilinear integration
domain, the asymptotic terms for R → 0 [3] are analytically
evaluated on the corresponding flat tangent triangle, in an
analogous way as for the proposed hybrid integration scheme
(19), (20).

Fig. 10. No. of correct significant digits versus the no. of quadrature sample
points per dimension; case of a curvilinear triangle with observation point
λ/100 off the triangular surface projected close to the triangle centroid (inset);
(a): integral tangential component; (b): integral normal component.

Figure 10 shows the convergence of the integral (1) for
a curvilinear triangular domain with the observation point
chosen at a distance of λ/100 from the triangular surface;
the observation point projection lies close to the centroid
of the triangle (see the inset of Fig. 10). The behaviors of
the proposed hybrid integration scheme and the singularity
cancellation scheme are similar to those shown in Fig. 6 for
the flat triangle. On the other hand, the singularity subtrac-
tion scheme shows significantly poorer convergence, probably
because the subtracted and added asymptotic terms are not
able to sufficiently smooth the integrand for accurate numerical
integration on the curvilinear domain.

Figure 11 illustrates the case of an observation point on the
curvilinear triangular surface, close to its centroid. Here, as
for the planar case, it is not possible to use the singularity
cancellation scheme [8], because it requires a finite distance
between the observation point and the integration domain.
Therefore, only the proposed hybrid integration and singularity

Fig. 11. No. of correct significant digits versus the no. of quadrature sample
points per dimension; case of a curvilinear triangle with observation point
on the triangular surface at around the triangle centroid (inset); (a): integral
tangential component; (b): integral normal component.

subtraction schemes are compared here. The behaviour of the
hybrid integration scheme is similar to that for the corre-
sponding flat case (see Fig. 7), even though here both integral
components are present since the tangential one is no longer
zero; moreover, it outperforms the singularity subtraction
scheme.

In Fig. 12, the case of a curvilinear triangle with an obser-
vation point projected onto a triangle edge is reported. As in
the case of flat triangles (see Fig. 8), the accuracy achieved by
the singularity cancellation scheme is limited due to the radial
half-disc integration issue. By contrast, the proposed hybrid
integration scheme is able to reach machine precision merely
by increasing the number of quadrature sample points, and
with better accuracy than the singularity subtraction scheme.

Finally, to demonstrate the stability of the proposed hybrid
integration scheme, in Fig. 13, we analyze a limiting case in
which the observation point is on the edge of the curvilinear
triangle. In this case, as for the flat triangle, the analytical
integration (6) is infinite, and therefore only the numerical
integral is reported in the graph. The convergence behavior is
similar to that of previous case, demonstrating the stability
of the hybrid integration scheme as the observation point
approaches the integration surface.
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Fig. 12. No. of correct significant digits versus the no. of quadrature sample
points per dimension; case of a curvilinear triangle with observation point
λ/100 off the triangular surface projected on one triangle edge (inset); (a):
integral tangential component; (b): integral normal component.

V. CONCLUSION AND PERSPECTIVES

We have proposed an integration scheme that properly com-
bines the singularity cancellation and singularity subtraction
schemes for the evaluation of surface integrals involving the
gradient of the Green’s function, such as appear in the MoM
discretization of the MFIE. The proposed method consists of
the subtraction of one asymptotic term, to reduce the order
of the kernel singularity as R → 0, and, together with an
appropriate variable transformation, evaluating the remaining
singular or near-singular integrand numerically. The method
is simple to implement, and its numerical behavior replicates
the desirable features of the two schemes on which it is based,
i.e. it exhibits good accuracy for a low-to-medium number of
quadrature sample points and rapid convergence to machine
precision as the number of quadrature points is increased. It is
demonstrated that the method applies to both flat and curvilin-
ear (quadratic) triangles and for observation points close to or
exactly on the integration surface or edges. The next step of the
research activity is to apply the proposed approach to higher
order basis functions. Moreover, the method would benefit
from the implementation of an optimization algorithm for
the numerical integral to automatically select the appropriate
number of points for a given precision, as proposed for the
radial-angular scheme applied to 1/R singularities in [19].

Fig. 13. No. of correct significant digits versus the no. of quadrature sample
points per dimension; case of a curvilinear triangle with observation point
on the triangle edge (inset); (a): integral tangential component; (b): integral
normal component.
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