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Abstract

This dissertation addresses two research questions: 1) spatially identify
dissipations in mechanical systems and 2) actively control the dissipation spatial
distribution. Dissipation is here intended as the transformation of mechanical
energy in another form of energy, irrecoverably lost.

In structural dynamics dissipations are usually known as the effects of
damping. The inverse problem of damping identification and modelling is still not
completely solved in literature, with huge space for research, while inertial and
elastic properties of mechanical systems are well understood.

The thesis focusses on direct spatial damping identification for enhanced
damping layouts. A brief explanation of the keywords is required to fully
understand the thesis aims: “Direct” means using straightway experimental
measures of the system behaviour, acquired with standard techniques to make the
procedure feasible in all the contexts; “Spatial” stands for damping matrices
identification, to be distinguished from damping identification in terms of modal
properties; “Damping Identification” focus the attention on the inverse problem of
extrapolate the dissipations properties from real structures, in particular: to
identify the most accurate damping model able to describe the dissipations in the
system, to localise the dissipation sources within the structure and to quantify
their dissipation levels; finally “Enhanced Damping Layouts” suggests
improvements of the dissipation level and distribution, i.e. the damping layout,
imposing the desired dynamic behaviour to the system, without changing its
structural design.

The identification of the damping matrix is achieved by a novel damping
matrices identification method, called Stabilised Layers Method. The presented
method belongs to the receptances based methods, it can identify “physical” linear
viscous and structural damping matrices of a mechanical system using standard
experimental frequency response functions and the system geometry, which is
usually known.

The Stabilised Layers Method identifies non-classical damping matrices,
introducing non-proportional and localised damping sources. Non-classical




Abstract

damping matrices have the advantage of representing better the system behaviour
than classical proportional damping, although it introduces a complication in the
mathematical model.

The damping matrices identified using Stabilised Layers Method are the
closest to the real dissipation distribution in the system, among the infinite
energetically equivalent possible identification solutions.

The Stabilised Layers Method is also extended to the identification of systems
with a localised amplitude dependent damping nonlinearity.

The design of systems vibrational behaviour and damping layout in different
working condition is achieved applying real time active control on the already
identified system. The system desired behaviour is assigned, without changing the
structural design, using real time active control. Two different control strategies
are experimentally implemented to assign the desired poles to the system. The
control laws not only allow to change the damping distribution, but also to assign
convenient natural frequencies to the system. The first control strategy is state
space feedback linearisation, which requires an accurate identification of the
system model. The other strategy is a receptances based version of the feedback
linearisation, which allows to obtain the same results requiring only the
experimental open loop response of the system.

The Stabilised Layers Method is validated against experimental applications.
A simple three degrees of freedom test-rig is identified in several configurations,
to assess the robustness of the method. The identified results are very close to the
reference values. The Stabilised Layers Method is applied to the identification of
damping distribution of an industrial body in white car chassis. The identified
damping distribution is realistic, and the quantification of suspensions system
damping is perfectly aligned with the reference values.

The extension to nonlinear damping identification is applied in the
experimental identification of a nonlinear magnetic damping test-rig. The
nonlinear damping force identification results agree with the literature knowledge.

The damping layout of the already identified three degrees of freedom system
is experimentally modified using input-output feedback linearisation control. The
desired dynamic behaviour is assigned to the system validating both the classical
feedback linearisation applied to non-smooth nonlinear system and the
receptances based feedback linearisation.
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Chapter 1

1. Introduction

Vibration theory [1-3] is a particular branch of dynamics focused on cyclic
oscillations. Vibrations are defined as the fluctuation of an element around an
equilibrium position.

Vibrations of mechanical systems are of interest and widely studied in several
engineering industrial application: automotive (suspension systems [4], engine
vibration [5], noise vibration and harshness problems (NVH) [6], disc brakes
squeal [7]), tooling machine vibrations [8], railway dynamics [9] and structural
health monitoring [10] are some example.

In aerospace engineering the vibration problem are of fundamental
importance, e.g. cabin noise [11] and flutter instability control [12] are widely
studied.

In civil engineering the main application of vibration are earthquake problems
[13] or skyscraper and bridges wind-induced vibrations [14].

Recently, vibrations are more and more considered with regards to energetic
aspects, in this sense a large branch of research, the so called energy harvester
[15], is trying to harvest the energy of residual vibrations, both in micro and
macro scale, and convert this energy in a usable form.

The main features of a vibrating system are natural frequencies and mode
shapes, which are related to inertia and elastic elements [16,17]. Inertia and elastic
forces have been known for a long time: Hooke [18] in 1679 described elastic
forces and few years later, in 1687, Newton defined the inertial forces [19].

An additional mechanism is always present in real systems, the so-called
damping. Damping is responsible for the energy removal from systems in forms
of radiation and dissipation; a definition of damping is provided by Gaul in [17]:
“Energy dissipating property of materials and members undergoing time
dependent deformations and/or displacement. Damping is primarily associated
with the irreversible transition of mechanical energy into thermal energy.”.
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The first attempts to study dissipation are related to Poisson [20], Stokes [21]
and Maxwell [22] almost two hundred years later than elastic and inertial forces.
Damping has been always seen as a mystery and the related forces are considered
complicated and unknown [23], since several mechanisms contribute to
dissipations and often they are quite complicated to understand.

Although the damping forces are generally small compared to inertial and
elastic forces, their effects have great influence on the dynamic response of
systems [17]: displacement amplitude decay, finite vibration amplitude and phase
shift when the excitation is close to system resonance frequency and requirement
to continuously provide external energy to maintain forced vibration amplitude.

The first mathematical definition of viscous damping is due to Lord Rayleigh
[24], his model of damping relates the dissipations in a structure to only the
velocity field and it is just a particular case of the general Rayleigh dissipation
function. The two most known models for linear damping representation are the
viscous and structural damping models. Viscous model relates the damping force
to the velocity, and it is in phase with it, while in the structural damping model the
damping force is proportional with the displacement but in phase with the
velocity. A lot of other damping models exists, as may be found in [25]. Bishop in
[23] admits some degree of incompleteness of the damping mathematical theory,
which sacrifices the accuracy in representing the physical behaviour of the system
in order to preserve the mathematical linearity of the problem. He underlines that
any usable mathematical model can give a good approximation of the damping
forces, and among all the different possible solutions/models the engineer should
select the most suitable case by case. This leads to the loss of correlation between
the mathematical damping model and the real dissipations in physical systems.

Usually, the simplest proportional viscous damping model is fitted to
experimental measured response of the system, thus, assuming light damping. In
this way a dissipation sources equivalent to the real one is included in the system
model to consider the main damping effects, but most probably it is not correlated
with the real system.

In recent years an increasing demand for not only identification and modelling
of damping but also optimisation of damping level and distribution in the
structures to comply with working conditions is more and more required [26]. The
damping layout should be optimised according to the case of whether vibrations
should be avoided or amplified.

In mechanical, aerospace and civil engineering the focus often is in
suppressing or attenuating as much as possible the vibrations, to improve system
performance; hence a certain level of damping is desirable, for example to reduce
structure-borne noise [27], decreases vibration levels [28], increase fatigue life
[29] or optimise automotive differential [30].

In other cases instead, system vibrations are desirable for example to
maximise efficiency of mechanical gearbox power transmission [31] or in the
sound engineering, which is strictly correlated with structural vibration [32]. In
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this field vibrations are fundamentals for the proper functionality of the many
musical instruments [33] (for example diapason or violin) and speakers. Structural
vibrations are exploited to generate acoustics waves to achieve noise reduction or
design the acoustic power of musical instruments and speakers.

Moreover, the recent trends are going toward the use of nonlinear system to
support the growing necessity for better performing and at the same time lighter
systems. The optimal damping distribution in nonlinear system could become
even more difficult to be achieved.

1.1 Main contributions

The main original contributions achieved by this Ph.D. are here summarised.

Spatial damping matrices identification.

A novel spatial damping identification method is presented, called Stabilised
Layers Method (SLM). The main aim is to identify and fit non-classical viscous
and structural damping models, considering the physical property of the system.
This is achieved by using the usually known physical connectivity of the system
to identify the dissipation layout which is the closest to the real damping spatial
distribution in the system.

Experimental validation of the Stabilised Layers Method.

The developed identification method is experimentally validated against a
three degrees of freedom (DOFs) test rig in several configurations and a body in
white (BIW) car chassis with good results.

Nonlinear damping force identification.

The SLM is extended for the identification of system with a single nonlinear
damping force acting on a known location. The nonlinearity is identified in
frequency domain using sinusoidal input describing function approximation. The
coefficients of the nonlinear force are identified together with the linear damping
viscous and structural damping matrices.

Experimental validation of the SLM for nonlinear damping identification.

The latter method is validated against a test-rig with a localised nonlinear
magnetic damping acting on the system. The coefficients of the amplitude-
dependent polynomial nonlinearity are identified and in good agreement with
literature values.

Design of vibrational behaviour and damping layout via real time control in
non-smooth nonlinear systems.

The desired damping distribution is imposed to non-smooth nonlinear system
using active control laws. The system behaviour is modified as convenient
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without changing the system structure or optimising the damping material
distribution. Once the system is identified in terms of dissipations and a reliable
model is build, classical input-output feedback linearisation is used to compute
and apply in real time the input force required to achieve the desired dynamics. A
receptances based variant of the partial input-output feedback linearisation is
implemented to achieve the same results when the system identification is not
accurate.

1.2 Organisation of the thesis
The thesis is organised as follow:

e Chapter 2: Vibration theory for single degree of freedom (SDOF) and
multi degrees of freedom (MDOF) mechanical system is briefly
reported. Viscous and structural damping effects on the system
behaviour are highlighted in terms of time and frequency domain
responses. A brief introduction to a standard method for pole
placement in linear mechanical system is presented.

e Chapter 3: A comprehensive literature review on frequency response
function (FRF) based spatial damping identification and active control
method for linear and nonlinear systems are presented. A review of the
damping matrix identification methods based on experimental FRF or
from identified system modal parameters is presented, because this is
the nature of the SLM proposed in this dissertation. The review of
active control strategy is focused on state space feedback linearisation
pole placement via method of receptance and their combination,
because the extension of these methods to non-smooth nonlinearities
will be applied to design the systems vibrational behaviour in the
following chapters.

e Chapter 4: The SLM for the identification of linear viscous and
structural non-classical damping matrices is presented. The
representation of these matrixes via “Layers” is introduced and
combined with an FRF-based identification method. Finally, a novel
stabilisation diagram for the identification of the optimal solution is
presented.

e Chapter 5: Some methods to improve the identification of the damping
matrices from experimental data are presented, together with solutions
for damping matrix identification from incomplete spatial measures
and optimised reconstruction of FRF.

e Chapter 6: A three DOFs configurable lumped parameters test-rig is
presented. The different configurations of the test-rig, including non-
classical viscous damping and non-smooth nonlinearities, are
introduced. On this system both direct spatial damping matrix
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identification and real time control to assign the desired vibrational
behaviour will be performed.

Chapter 7: The SLM is validated against the identification of the non-
classical damping configuration of the three DOFs test-rig. The
viscous damping matrix of the system is identified in ten different
configurations of damping levels and distribution. The experimental
application validates the SLM and provide an assessment of its
robustness.

Chapter 8: The SLM is applied in the identification of the damping
distribution of a body in white (BIW) car chassis with front and rear
suspension system. The structure is tested in three different
configurations, to maximise/minimise the suspension effects. The
focus is on the non-classical damping effect of the global chassis
modes and on the suspension damping identification.

Chapter 9: The SLM is extended to the identification of nonlinear
damping forces in MDOF systems with a single nonlinearity. The
required measures and the implementation of the algorithm are
presented. This nonlinear version of the SLM is tested against
damping identification from noisy numerically-generated data of a
five DOFs system with a relative damping nonlinearity.

Chapter 10: The SLM for nonlinear damping identification is
experimentally applied for the identification of a three DOFs system
with linear viscous damping and a localised magnetic damping
nonlinearity. The identification is performed for two levels of
magnetic damping and compared to the reference values.

Chapter 11: In this chapter the non-smooth nonlinear version of the
three DOFs system already identified in Chapter 7 is experimentally
linearised using input-output feedback linearisation. The desired
damping layout is assigned to the controllable DOF. Several levels of
damping layout are assigned, together with the desired natural
frequency.

Chapter 12: The same results already achieved in Chapter 11 are
obtained using a receptances based feedback linearisation control law,
which do not require the system model. Preliminary tests of the system
are necessary to obtain the describing function approximation of the
nonlinearity and the open loop response of the system, which are
required for the linearisation and pole placements.

Chapter 13: The main conclusions drawn from the work presented in
the previous chapters are reported. In addition, insights are given
regarding the interesting topics for future developments.







Chapter 2

2. Vibrations and control
of mechanical systems

Dynamic studies the relations between the forces applied to a body and its
motion. Most of the engineers’ efforts are focused on analysis and prediction of
dynamics behaviour of physical system. Vibrations are an omnipresent type of
dynamics concerning the oscillation around an equilibrium point.

The prediction of systems behaviour needs a mathematical model of the
analysed system; usually it is the simplest model able to catch the main features of
the systems. The model contains the physical properties of the system, which are
called model parameters. For mechanical systems the parameters are mass,
stiffness and damping. They describe respectively inertial, elastic and dissipative
properties of systems.

Usually physical systems are continuous, with distributed physical properties,
however in many cases it possible to build a simple model replacing the
continuous properties with lumped parameters. The mathematical models can be
divided into two classes: discrete (lumped) and continuous models.

Another classification subdivides systems into SDOF and MDOF systems,
depending on the number of variables need to describe the system motion.

Vibrating systems can be also classified with respect to their behaviour. Two
main types of systems exist: linear and nonlinear system. A system is said to be
linear when the effects superimposition principle holds, otherwise it is nonlinear.
Usually the classification between linear and nonlinear system depend on the
range of operation: a linear model can describe quite well a system if the working
condition stay in certain range, a classical example is the small amplitude
oscillations.

Systems can be also classified in passive and active systems. The first group
of system respond to excitations with their own dynamics, while the second group
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of system include sensors and actuators to change their dynamics according to
working condition. These systems are usually known as controlled system.

This chapter focuses on discrete linear systems model for mechanical systems,
for both SDOF § 2.1 and MDOF § 2.2 systems. In particular, the dynamics of
undamped and damped system is described, focusing on different model of
damping. A brief description of active systems control and pole placement is
given in § 2.3. The theory presented in this Chapter can be found in many text
books, such as [1-3,34-36].

2.1 SDOF systems

A SDOF model can be used to describe simple systems where only a variable
is enough to predict the motion and behaviour of the physical system. Physical
systems are always non-conservative, therefore include dissipations. A brief
overview on the dynamics of ideal conservative SDOF systems is presented in
§ 2.1.1, and the relevant effects of linear and most used dissipation models are
described in § 2.1.2 and § 2.1.3; finally a hint on other models of damping is
givenin § 2.1.4.

2.1.1 Undamped systems

The model of a SDOF undamped mechanical system is sketched in
Figure 2.1, where m and & are respectively the mass and stiffness parameters of
the model, f(s) and x,(¢) are respectively the external load and the base

excitation.

1w

m

Jx@

k
b, (1)

Figure 2.1 - Undamped SDOF system model.

The equation of motion of the system sketched in Figure 2.1 can be obtained
using the classical free body diagram [19] or the Lagrange approach [37]

mi(t)+kx(t)= f(1)+kx, (1) (2.1)
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where x(¢) and (r) are the displacement and acceleration of the system induced

by the external load f(¢) and the base excitation x, ().

Free vibrations

The free vibration response of the system, i.e. the behaviour of the system
when it is perturbed from its equilibrium condition, is obtained from the
homogenous equation related to Eq. (2.1):

mi(t)+kx(¢)=0 (2.2)

Eq. (2.2) is a second order ordinary differential equation (ODE), therefore two
initial conditions are necessary to find the complete solution.

{f(o):x° 2.3)

The initial conditions in Eq. (2.3) are fundamentals to check that the spring is
working in the range where it is linear, thus the linear model is able to predict the
physical system response. Eq. (2.2) with two initial condition in Eq. (2.3) possess
a unique solution [38] of the form in Eq. (2.4) and the trivial solution x(¢)=0

which is not of interest.
x(1) = Xe" (2.4)

where X is the oscillation amplitude and s is a complex variable associated with
the frequency of vibration. Deriving two times Eq. (2.4), substituting in Eq. (2.2)
and solving for the poles s of a system result:

s=ta 2.5)
P L2 2.6)
m

where 1 is the imaginary unit and @, is the system angular natural frequencys, i.e.

the frequency at which the system vibrates once in motion.
The general solution becomes:

x(t)=Ae’ " + A, (2.7)

where 4, and 4, are arbitrary complex constant to be determined by the initial

conditions. Finally, the solution of the system is:
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x(t)=xocos(a)nt)+w—°sin(a)nt) (2.8)

n

The response of an SDOF undamped system, with f =o,/(27)= 2 Hz,
changing the initial conditions x, and v, is shown in Figure 2.2.
The initial conditions influence the total initial amount of energy E,, in the

system, which does not change in the time evolution because no dissipations are
acting. The total amount of energy in the system is given by:
1 2 1 2
Emt :EK +EE =§mv0 +Ekx0 (29)

where E, and E, are respectively the kinetic and elastic energy of the system.

The amplitude of the oscillation X in Eq. (2.4) can be computed as:

2
Y
X =[x+ 2 (2.10)
a)Vl
1.5
Pt ir\‘ 1“ ———X,= 1 mm, Vo= -10 mm/s \‘
1k i —X,=1mm, v,= 0 mm/s /5

Displacement x [mm]
o

0 0.5 1 1.5
Time £ [s]

Figure 2.2 - Free response of a SDOF undamped system.
Harmonic excitation

For linear systems the harmonic excitation response is important, because
often periodic vibrations in mechanical devices are induced by rotating machines,
motors and other devices. It is common to approximate this excitation as a
harmonic excitation of the form:

1 (t)=F,sin(Qxt) (2.11)

where F| is the excitation amplitude and Q is the excitation frequency and the

base is fixed, i.e. x,(7)=0.

10
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The solution of Eq. (2.1) under these hypotheses is unique and possess a
general solution x(¢), given in Eq. (2.8), related to the homogeneous system in

Eq. (2.2) and a particular solution x, (¢) which follows the forcing function:
x,(¢)=Xsin(Cx) (2.12)

where X is the amplitude at the steady state.
The sum of general solution x(¢), given in Eq. (2.8), and particular solution

x,(t), given in Eq.(2.12), is still a solution of the differential equation. The

general time domain response of the harmonically forced system is:

x(t)=x, cos(a)nt)Jrisin(a)nt)+Xsin(Ql) (2.13)
o

n

For undamped system both the homogenous and particular solution are
present in the entire system response. The frequency domain response of the
system, it means amplitude X and phase ¢ of the response at each excitation
frequency Q, called inertance FRF H , can be obtained deriving and substituting
Eq. (2.12) in the equation of motion. The inertance FRF for an undamped SDOF
system results to be:

H(r)=£=X£= = 2.14)

F Q 2 1_r2
-0 1—| 22
k w

where X, is the static response of the system subjected to a static load F;, and

o

r=QJw, is the ratio between the excitation frequency and the system natural

frequency.
Amplitude and phase of the receptance FRF H result to be:

|H(r)|=ﬁ (2.15)

¢(r)=tan1( 0 2) (2.16)

—-r
Some considerations of the SDOF undamped inertance FRF in Figure 2.3 are:

e when the excitation approaches null frequency lin(}|H (r)|=1 and the phase

¢ =0°, which is he system static response;
e when r<1, ie. Q<aw,, the phase ¢=0°: the system response is in phase with

the excitation;

11
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e when r=1,ie. Q=aw,, the FRF amplitude |H(r)| = and the phase ¢=-90°,
this is the system resonance;
e when r>1, i.e. Q>aw,, the phase ¢=-180°: the system response is in

quadrature with respect the excitation;

e when the excitation frequency approaches infinite 1im|H (r)| =0, the response

r—o

amplitude vanishes.

N
o
N

Magnification X/Xst [-]
=)

107

Phase ¢ [°]

0 05 1 15 > 25 3
Frequency ratio r [-]
Figure 2.3 - Receptance FRF A of a SDOF undamped system.
Base excitation

The base excitation is typical of system in which the excitation is given from
the base motion and no direct forces are applied to the system, i.e. f()=0 in

Eq. (2.1). It is interesting to study the response of the system when the base
excitation is harmonic.

x, (1) = X, sin(Qr) (2.17)

where X, is the amplitude of the harmonic base excitation.
Performing the coordinate transformation y(7)=x(7)-x,(¢), the equation of

motion Eq. (2.1) can be rewritten as:
my (1) +ky(t) =m%, (t) (2.18)
and therefore
my (1) +ky (1) =mQ’x, (¢) (2.19)

Assuming null initial conditions, the solution of Eq. (2.19) is of the type:

12
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y(t)=Ysin(Qxr) (2.20)

Substituting Eq. (2.20) in Eq. (2.19) it is possible to evaluate the system FRF.
The FRF is in this case called relative transmissibility 7. and evaluates the ratio

between the system response amplitude Y and the excitation amplitude X, .

=7 (2.21)

The relative transmissibility of a SDOF undamped system in amplitude and
phase is shown in Figure 2.4.

-
o
N

Magnification Y/Xbo [-]
=)

1072 :
_ 25 3
°. 0 :
NS
% SO e
©
& -180 :

0 0.5 1 15 2 2.5 3

Frequency ratio r [-]

Figure 2.4 - Relative transmissibility 7. of a SDOF undamped system.

Some considerations on the relative transmissibility 7. in Figure 2.4 are:

e when r<<l, ie. Q<<a,, the relative motion y is proportional to the

n?o

amplitude of the acceleration X,,Q°. The system works as an
accelerometer;

e when r>>1, i.e. Q>>aw,, the amplitude of the relative motion is the
same amplitude of the base displacement. In the latter case the mass is
rested in absolute reference system, while the base moves: this is the
concept of the seismograph.

The absolute transmissibility 7, transfer function can be computed as:

T (r)41=— (2.22)

1-72

X Y+X,
X,

b0

b0

The absolute transmissibility 7, has the same behaviour of the inertance FRF
H in Eq. (2.14) and Figure 2.3.

13
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2.1.2 Viscous Damped systems

The model of a SDOF viscous damped mechanical system is sketched in
Figure 2.5, the viscous damper is now added to model dissipation and ¢ is the
viscous damping coefficient.

The equation of motion of the system sketched in Figure 2.5, can be obtained
using the classical free body diagram [19] or the Lagrange approach [37].

mix (1) +cx(t)+kx(t) = f(¢)+hkx, (t) (2.23)

where x(¢) is the velocity of the mass induced by the external load f(¢) and the

base excitation x, (7) and all the other variables are already defined in § 2.1.1.

11
R

k§ ljc b, (@)

Figure 2.5 - Viscous damped SDOF system model.

Free vibrations

The free vibration response of the system is obtained from the homogenous
equation related to Eq. (2.23):

mii (1) + ci(1) + ku(1) =0 (2.24)

Two initial conditions are necessary to find the general solution of the second
order ODE Eq. (2.24), as for the undamped case.

{’f (0)=% (2.25)

The initial conditions in Eq. (2.25) are useful to check that, in addition to the
spring, also the damping is working in the range in which it is linear; thus it is
correct to use a linear model to predict the physical system response. Eq. (2.24)
with two initial conditions in Eq. (2.25) it is known to possess a unique solution
[38] of the form in Eq. (2.4) and the trivial solution x(z)=0.

14
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x(1) = Xe" (2.26)

where X is the oscillation amplitude and s is a complex variable associated with
the frequency of vibration. Deriving two times Eq.(2.26), substituting in
Eq. (2.24) and solving for the poles s of a system, it result:

81, =—Co, £, —1 (2.27)
where o, is defined as in Eq. (2.6) and

C

=50
o, =01-¢° (2.29)

¢ 1s the damping ratio and @, is the system damped natural frequency,

(2.28)

existing only if 0<¢ <1 , i.e. the frequency at which the damped system vibrates

once in motion.
The solution of Eq. (2.24) is clearly influenced by the value of the damping
ratio ¢ . There are three cases of interest, analysed in the following.

Underdamped
For underdamped systems 0<¢ <1 Eq.(2.24) has two complex conjugate

poles s, :

S, =—C, tio\1-° (2.30)
The solution of Eq. (2.24) is:
x(t)=e " (Acos(w,t)+ Bsin(w,t)) (2.31)

where 4 and B are constant of integration in Eq. (2.32), to be found from the
initial conditions in Eq. (2.25):

A=x,, B=SZNT% 2.32)
a)d
Another representation of the solution is
x(t)=Xye " sin(w,t +¢) (2.33)

where X, and ¢ are the initial amplitude and phase in Eq. (2.34), to be find from
initial conditions in Eq. (2.25).

15
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X = \/(gwnxo TV )2 + (xowd )2 ., p=tan” (&] (2.34)

0
@y gw,x, +v,

The response is a decreasing oscillation at the damped natural frequency w, .
The two solutions Eq. (2.31) and Eq. (2.33) are the same, the two expressions are
only two different way of write the same quantity: Eq. (2.31) empathises the
sinusoidal and co-sinusoidal contribution, Eq. (2.33) focus the attention on the
sinusoidal response with a phase delay with respect to the excitation.

The response of an underdamped SDOF system with f, =@, /(27)=2Hz,

initial conditions x, =1 mm v, =1 mm/s and different levels of damping ratio ¢

is shown in Figure 2.6.

]
.
1

Displacement x [mm]

Time t [s]
Figure 2.6 - Free response of underdamped SDOF system.
Critically damped

In critically damped systems ¢ =1 and Eq. (2.24) has two coincident negative
real poles s, ,.

Si2 = —Co, (2.35)
The solution of Eq. (2.24) in this case becomes:
x(t)=e" [(a)nxo +v0)t+x0] (2.36)

Critical damping ratio separates oscillator and non-oscillatory motion, it is the
case with minimum damping in which there are not oscillations.

The behaviour of a critically damped system with f, =w,/(27)=2Hz is
shown in Figure 2.7, the initial displacement x, is kept constant and the initial

velocity v, changes.

16
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o -
o - N

Displacement x [mm]
=} o
N [o)]

———-X,= 1 mm, Vo= -10 mm/s

—_—x,= 1 mm, Vo= 0 mm/s

\ - -
- = X5 1 mm, Vo= 10 mm/s

0.6 0.8 1

Time ¢ [s]

Figure 2.7 - Free response of a critically damped SDOF system.

Overdamped

In overdamped system ¢ >1 and Eq. (2.24) has two real negative poles s, , .

5t =(—g’i 2 —1)% (2.37)
The solution of Eq. (2.24) becomes:
x(1)= Ae(igﬂ/ﬁ)w"t + Be({i\/ﬁ)w"t (2.38)
where 4and B are constant to be determined by the initial condition.
(—§+\/ﬁ)a)nxo +v, (—(—\/ﬁ)a)nonrvo
= , - (2.39)

An example

response of a

B =
20, -1

system with natural

20,¢ -1

frequency with

f, =@,/(27)=2Hz and different level of damping ratio ¢ is shown in Figure 2.8.
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Figure 2.8 - Free response of SDOF system response changing damping ratio.
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Harmonic excitation

A viscous damped SDOF system with harmonic excitation as in Eq. (2.11)
and fixed base, i.e. x,(7)=0, is considered. The solution of Eq. (2.23) under these
hypotheses is unique and possess a general solution which depends on the
damping ratio ¢ level. The solution is Eq. (2.31) if underdamped, Eq. (2.36) if it

is critically damped and Eq. (2.38) if it is overdamped system. The particular
solution follows the forcing function:

X, (1)=Xsin(Qt +¢) (2.40)

where X and ¢ are the amplitude and the phase shift at the steady state. The sum

of two solutions is still a solution and the general time domain solution of the
harmonically forced system for underdamped systems becomes:

x(t)=e" [Acos(a)dt) + Bsin(a)dt)] + X sin(Qr +¢) (2.41)

where 4 and B are integration constant defined in Eq. (2.32).
The homogenous response vanishes for large time; hence the steady state
solution is represented by the particular solution x,(z) only. The frequency

domain response of the system can be obtained deriving two times Eq. (2.40) and
substituting in the equation of motion Eq. (2.23). The receptance FRF H for a
viscous damped SDOF system is expressed in Eq. (2.42) and the related amplitude
and phase in Eq. (2.43) and Eq. (2.44). The bode diagram of the SDOF damped
system response for several damping ratio ¢ is shown in Figure 2.9.
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Figure 2.9 - Receptance FRF H of a SDOF system changing damping ratio.
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X X 1 1
H(I")ZEZX—StZ ' Q Q 2214_124}_,9 (242)
k 1+12§w—(wJ
[ (r) = 212 (2.43)
\/(1—r2) +(2¢7)
¢(r)=—tan™ (12_41; j (2.44)

Some considerations on the SDOF viscous damped system inertance FRF H
are:

e when the excitation approaches null frequency 1ir101|H (r)|:1 and the phase

¢ =0°, this is the system static response;

e when r<l1, ie. Q<w

n?o

the phase 0°<¢<—-90°: the system response follows
the excitation but with a delay depending of the damping ratio ¢ ;

e when r=1 , ie. Q=0

nd

the FRF amplitude is finite, there are no more
discontinuity point and the phase ¢=-90°, this is the system resonance;

e when r>1, i.e. Q>w,, the phase —90°< ¢ <—180°: the system response is out
of phase with respect the excitation and with a delay;

e when the excitation frequency approaches infinite 1im|H (r)| =0 , the response

r—o

amplitude vanishes.

It is interesting to identify the peak frequency @ of the damped FRF and the
maximum magnification factor M, :

d=w1-2¢7 (2.45)

M o= (2.46)

N

Eq. (2.45) gives also the condition for the existence of the peak in the damped
FRF H, which is the positiveness of the radicand. The damped system FRF
presents a peak up to a defined value of damping ratio ¢, given in Eq. (2.47). If
the damping ratio is higher, the FRF H is monotonically decreasing with
excitation frequency Q.

1
‘< (2.47)
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2. Vibrations and control of mechanical systems

Base excitation

The response of the damped system when the base excitation is harmonic and
no external forces are applied to the system, i.e. f(#)=0 in Eq.(2.23), is here

studied.

x, (1) = X, sin(Qx) (2.48)

Performing the coordinate substitution y(¢)=x(¢)—x,(¢), the equation of the

motion, given in Eq. (2.1), can be rewritten as:
my(t)+cy(t)+ky(t)=-m, (¢) (2.49)
and therefore
my () +cp (1) +ky(t) = mQ’x, (¢) (2.50)
Assuming null initial condition the solution is of the type:
y(t)=Ysin(Qr +9) (2.51)

Substituting Eq. (2.51) in Eq. (2.50) it is possible to evaluate the system
relative transmissibility FRF 7. : it evaluates the ratio between the system relative

response amplitude and the excitation amplitude.

= 2.52
o 1+i287 -7 ( )

The amplitude |Tr (r)| and phase shift ¢ of the latter transfer functions are:

2

L,(r)= . 2 2.53)
\/(l—rz) +(2§r)
=—tan”' 2r
#(r) =t (1_#) (2.54)

It is interesting to identify the peak frequency & of the damped FRF 7. in

Figure 2.10 and the maximum magnification factor M, :

= (2.55)

M- (2.56)
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Figure 2.10 - Transmissibility FRF 7. of a SDOF system.

In the relative transmissibility 7, the peak frequency @ increases with
damping ratio ¢ .
The existence of the peak in the damped relative transmissibility FRF 7. can

be obtained from Eq. (2.55), in particular the radicand has to be positive. The
damped FRF has a peak until a defined value of damping ratio ¢, given in

Eq. (2.57). If the damping ratio is higher the FRF is monotonically increasing with
frequency.

1
‘< (2.57)

2.1.3 Structural damped systems

The ideal stress-strain curve for linear materials does not imply dissipations,
however in a real engineering material dissipation exist due to internal planes
slide relative to one another and molecular bounds are broken, causing the
conversion of strain energy in thermic energy, that will irreversibly lost. This
creates a hysteresis loop is created in the force displacement diagram. The area of
the hysteresis loop represents the energy dissipated for each cycle. This type of
dissipation is called structural damping. The model of a SDOF system with
structural damping is shown in Figure 2.11, where d is the structural damping
coefficient.

It has been shown experimentally that the energy dissipated for each cycle in
structural damped system is independent of the frequency, contrary to the viscous
damping, and proportional to the square of the amplitude.

L, =rcQA? (2.58)
L =aX’ (2.59)
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2. Vibrations and control of mechanical systems

where L,, L, are respectively the dissipative work of viscous and structural

damping forces and « is a constant of the material.

1w

x@

m
R

Figure 2.11 - Structural damped SDOF system model.

An equivalent viscous damping coefficient can be obtained to model the
hysteresis phenomena. The equivalent viscous damper ¢, has to dissipate the

same amount of energy of the structural one, hence L, =L, and c,, results to be:
c =— (2.60)

The equation of motion Eq. (2.23) of the equivalent SDOF system becomes:
m)'é+%5c+kx=foe"9’ (2.61)

where the system is excited with a harmonic excitation necessary to perform the
hysteresis cycle. This model is valid only if the system is forced perform a cycle,
otherwise the hypothesis is no more valid. At the steady state the solution will be
of the form of the forcing function and the velocity can be written as:

X =ix (2.62)
Substituting Eq. (2.62) in Eq. (2.61)
mi+(k+id)x = fe” (2.63)

where d =a/ 7 in the structural damping coefficient. Eq. (2.63) is the equation of
motion of the system in Figure 2.11.

It is important to highlight again that this model is valid only for harmonic
excitation, since the response of the system to driving frequency Q is necessary in
the definition of Eq. (2.63). Only harmonic excitation or base excitation can be
studied. The model can’t be used for the free response of the system.
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2.1. SDOF systems

Harmonic Excitation
The response of the system in Eq. (2.63) at the steady state will be of the form
x(t)= X"’ (2.64)

Deriving Eq. (2.64) and substituting in Eq. (2.63), the receptance FRF H
becomes:

X
- (2.65)

where 7 =d/k is called structural damping factor.

The equivalence between the structural damping factor 7 and the damping ratio

¢ is:

n:zgé} (2.66)

n

and because often 7 is experimental evaluated at the resonance:
n=2¢ (2.67)

The amplitude |H (r)| and phase ¢ of the receptance FRF H in Eq. (2.65) :

|H(r)| = — (2.68)
(1 -7 ) +n’
j (2.69)
— 10° :
e ==1=0 %
X — =10 %
X - - 7=30 %
C = o,
o) 0 n=50% | |
1 | 7=70.7 %
e 7=100 % |
S
=
10—2 .

= 25 3
< 2
@ -90
®©
& -180

1.5 25 3

Frequency ratio r [-]

Figure 2.12 - Inertance FRF H of a structural damped SDOF system.
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2. Vibrations and control of mechanical systems

Some consideration on structural damped system FRF H in Figure 2.12 are:

e when r=0 the amplitude of the response H(O):l/\/1+772 #1 1S no more
unitary and the phase ¢(0)=tan™'(17)=0 also when a static load is applied.

This delay is due to the model which is wrong if a cycle is not followed.
e when r — o the amplitude of the response vanishes;
e The peak is always present for whatever values of structural damping factor 7.

The peak of the FRF and the magnification factor A, are:

b=a, (2.70)
2.71)

In the structural damping model, the peak frequency @ does not change with
the structural damping factor 77, while the magnification factor M, changes.

The comparison between the FRFs of a viscous and structural damped system
with equivalent dissipation levels, as in Eq. (2.67), is shown in Figure 2.13. For
low dissipation values the two models are quite similar in amplitude M, and

small differences in the phase ¢ are present. For high level of dissipation viscous

and structural models are quite different in both amplitude M, and phase ¢, and

only in the resonance condition they are equivalent.

102 7102
@ @ (=75 %
§ § —n =150 %
c c
210° 21
[ ©
Qo Qo
£ £
(o)) [
© ©
=102 210"
S s
g -%0 8
2 180 2.
o o
0 1 2 3
Frequency ratio r [-] Frequency ratio r [-]

Figure 2.13 - Comparison between viscous and structural damped system with
equivalent dissipation: £ =5%, n=10% (left) and £ =75%, n=150% (right).

Base Excitation

The equation of motion of a SDOF structural damped system with excitation
coming from the base is:

it () + (k +id ) x(1) =k, (1) 2.72)
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2.1. SDOF systems

Performing the coordinate substitution y(¢)=x(¢)—x,(¢), the equation of the

motion Eq. (2.72) can be rewritten as:
my (1) +(k+id)y(t)=-m5, (¢) (2.73)
Considering harmonic excitation of the type:
x, = X, (2.74)
and assuming null initial condition the solution is of the type:
y(t)=Ysin(Qr +¢) (2.75)

Deriving Eq. (2.75) and Eq. (2.74) and substituting in Eq. (2.73) it is possible
to evaluate the system relative transmissibility FRF 7.

Y r?

T.(r)= = 2.76
’(}") Xbo 1+i77_f"2 ( )
Therefore, the amplitude |7 | and phase shift ¢ becomes:
}"2
(1 —r ) +n’
¢=—tan1( ] zj (2.78)
I-r
The peak frequency @ and the maximum magnification factor M, are:
=0 \1+7° (2.79)
2
M, = iR/ (2.80)

n

The peak frequency @ is always present in the relative transmissibility FRF
T., since no limitations have to be assumed in the definition of Eq. (2.79). The

transmissibility 7. FRFs for several damping ratio 7 are shown in Figure 2.14.
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Figure 2.14 - Transmissibility FRF 7 of a structural damped SDOF system.

2.1.4 Other forms of damping

A real mechanical system is generally subjected to other forms of damping
such as aerodynamics drag, radiation damping or anelastic damping.

All these models result to be nonlinear and therefore exact close form
solutions of the equation of motion with these forms of damping do not exist.

The periodic motion of systems presenting these forms of damping can be
developed considering an equivalent viscous damping coefficient. The equivalent
viscous damping coefficient can be obtained from the viscous damping coefficient
which dissipates the same amount of energy of the considered damping form.

For harmonic motion of the form:

x(1)= X sin(Qx) (2.81)

the energy dissipated over one cycle due to the generalised damping force F,

results:

2 2z

q Q
AE = [ F,xdt = | F,XQcos(Qt)d (2.82)
0 0

Comparing Eq. (2.82) to the energy dissipated by a viscous damper Eq. (2.58)
, the equivalent viscous damping coefficient c,, results:

_AE
‘= ax

(2.83)

The damping in a system could be eventually the sum of viscous, structural
and all the equivalent damping coefficient. Usually viscous damping is
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2.2. MDOF systems

predominant for small amplitude, while for large amplitude of vibration the
structural damping can becomes important.

Aerodynamic drag

Aerodynamic drag force is defined as the force of the wind or air resistance
pushing in the opposite direction to the motion of the object. It acts in all real
systems; however, its effect is often ignored. The identification and modelling of
drag force is a fluid dynamic problem. For high Reynolds number this force can
be written as:

F, =C,xlx| (2.84)

where C, is a coefficient depending on the shape on the body shape.

For moderate Reynolds number the drag force can be expressed as:
Fy=Cpili]” (2.85)

where 0<a<1.
In both cases the equation of motion is nonlinear.

Anelastic damping

Anelastic damping is typical of viscoelastic materials, e.g. rubber. They obey
to a constitutive equation in which stress is related to stress and strain rate. For
this reason, they present phase lag as viscous damped system.

Usually these materials are modelled using Kelvin-Voigt model [39], where
as a spring is in parallel with a damper.

Radiation damping

This damping occurs when a body vibrates in the free surface between two
fluids. Pressure waves are radiated outward by the vibration, this means a part of
energy is transferred from the body to the fluid [17].

2.2 MDOF systems

The number of DOFs N necessary for describing the vibrational behaviour of
a system represents the number of kinematically independent coordinates
necessary to predict the motion of each particle in the system. Although the
analysis of MDOF system is significantly more difficult and time-consuming than
SDOF analysis, it is necessary to model real system. Real systems are continuous
and possess infinite number of DOFs. Continuous system requires the solution of
partial differential equations, which are much more difficult to solve with respect
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2. Vibrations and control of mechanical systems

to MDOF systems, especially when the geometry is complex. Therefore, the
approximation of MDOF systems, i.e. to use a finite number of DOFs, is a good
compromise to model mechanical systems.

2.2.1 Undamped systems

The equation of motion of an undamped MDOF system can be derived from
Newton’s laws [19] or Lagrange approach [37] analytically or from commercial
finite element (FE) codes.

M + Kx = f (2.86)

where x, X e R" are respectively the generalised displacements and accelerations
of the N DOFs, M,K e R are respectively the mass and stiffness matrices of

the system. These matrices are real and symmetric. The mass matrix M is strictly
positive definite, while the stiffness matrix K is positive semidefinite, to allow
rigid deformations. f e R™ is the generalised force vector.

Moreover, if the mass matrix M is diagonal and K is not diagonal the
problem is statically coupled, vice versa the problem is dynamically coupled.

Eigenproblem
Considering an invariant conservative MDOF system with no external load:
M + Kx =0 (2.87)

Looking for a synchronous solution, where all the N DOFs move with the
same time domain law g(¢) and amplitude X :

x=X,g(t) (2.88)

Deriving two times Eq. (2.88) and substituting in Eq. (2.87), it results:

MX, g (1)+KX,g(t)=0 (2.89)
XoMX, g (1) + X KX g(1)=0 (2.90)

where M is positive defined, therefore it results:

(1) . XiKX,

=—w <0 2.91
g(t) XgMXO ¢ ( )

Substituting Eq. (2.91) in Eq. (2.90), it becomes

g(1)+w’g(1)=0 (2.92)
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2.2. MDOF systems

The time domain law g(¢) can be obtained from Eq. (2.92). It is clearly an

oscillatory function and Eq. (2.88) can be written as:
x =X, e (2.93)
Deriving two times Eq. (2.93) and substituting in Eq. (2.87)

(K-o;M)X, =0 (2.94)

The trivial solution X;=0 is the static undeformed condition, the others

interesting solutions are:
[K-oiM|=0 (2.95)

Eq. (2.95) is the system characteristic equation, which possess N solution in

w. , called eigenvalues of the systems. The eigenvectors are then evaluated as:

n

(K-} M)o, with r=1,...N (2.96)

n,r

The eigenvalues o;, € R, its positive root w,, is called natural frequency of
the system. The eigenvector @, e R is called mode shapes. Natural frequency
,, and mode shape ¢, are characteristics of the " vibration mode.

The spectral matrix AeR™ and modal matrix ¢eR"" are defined
colleting all the eigenvalues @;, and eigenvectors ¢, as in Eq.(2.97) and in
Eq. (2.98).

A:diag[a)nﬂl,a)nyz,---, a)n,N] (2.97)
*=[0,0,...0,] (2.98)

Fundamental characteristics of the modal matrix ¢ are the so called M-

orthogonality and K-orthogonality [1-3]:

¢' Mg = m (2.99)

o' Ko= k (2.100)

where m_ and k, are knows respectively as modal mass and modal stiffness.
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2. Vibrations and control of mechanical systems

Eigenvector normalisation

Eigenvector normalisation is necessary to define univocally the modal matrix
¢ . A useful normalisation for real eigenvectors is the unitary modal mass

normalisation:

o =% (2.101)

where @ is the " eigenvector unitary modal mass normalised. The result of this
choice is a simplification of Eq. (2.99) and Eq. (2.100):

O'M®D=1 (2.102)
O'M®=A (2.103)

Real modal analysis

Modal analysis is a mathematical tool very useful to solve MDOF system,
because it let to uncouple the equation of motion. In particular considering an
undamped and unforced system like in Eq. (2.87) it is possible to apply the direct
modal transformation:

x=®n (2.104)

where @ is the modal matrix and neR"™ are the displacements in modal

coordinates, which are the set of coordinates describing the system with
uncoupled equations.

Substituting Eq. (2.104) in Eq. (2.87) and pre-multiplying by ®” it is possible
to obtain N decoupled SDOF equations:

i, + o ,n =0 with r=1,...,N (2.105)
The uncoupling effect of the real modal analysis is shown in Figure 2.15.
Lt
m;

ks ki

> X, S Asz Rca]IUigunpmh]cm El 4[.}2 A]i?g
mi ‘AL m2 [K-e'Mlx, =0 1 1 ‘ 1 ‘

™ e

< < = =< =<
ki. = k‘._; = @, = @, ;3 >

Figure 2.15 - Real modal analysis of MDOF undamped system.
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2.2. MDOF systems

Free response

The free response a MDOF system with a set of non-null initial conditions,
given in Eq. (2.106), can be solved using the modal analysis.

0)=
{’_‘( )=% (2.106)
The direct modal transformation Eq. (2.104) can be again exploited:

XZ‘D‘I:Z‘D/L (2.107)

r=1

Eq. (2.105) is a SDOF undamped system in modal coordinates, its solution 77,
is like Eq. (2.7), therefore Eq. (2.107) becomes:

X= Z(I)rnr = Z(I)r (A, cos(a)n,rt) +B, sin(a)n’rt)) (2.108)
r=1 r=1
where A4 and B. in Eq.(2.109) depend on the initial conditions in modal
coordinates:
T —-1
4 -'M'x,, B -2MP Vo (2.109)
o,

n,r

An example of the free response of a system with N =3 is shown in
Figure 2.16.

The system parameters are M = diag([O.l 0.2 0.3]) K= tridiag([—z 4 —2])

and initial conditions x, =[1 0 —1]" mm v,=[0 1 0] mm/s.

Displacement x [mm]

Time t [s]

Figure 2.16 - Free response of a MDOF system
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2. Vibrations and control of mechanical systems

Harmonic excitation
The equation of motion of a MDOF system forced with a harmonic excitation
is:

Mi + K x=f,e” (2.110)

where f, is the amplitude vector of harmonic forces acting on different DOFs and

all in phase.
Using the direct modal transformation Eq. (2.104) and pre-multiplying
Eq. (2.110) times ®"

O'M®Pij+ ® ' K®Pn=>0fe (2.111)
Eq. (2.111) represents a set of N uncoupled equations in modal coordinates:

(- + @], )7, =®f,e™  with r=1,..N (2.112)

The solution of Eq. (2.112) in modal coordinated is harmonic and therefore

N
x(1) =X, = 1,,®,e (2.113)
r=1
N O,
X, =)~ _Qz (2.114)

r=1
The receptance FRF H of a MDOF system is defined as:

X.
/0 (2.115)

fk f,=0,Vizk

H), (Q) =

The receptance is computed applying a single force of the k" DOF and no
input on the other DOFs.
Using Eq. (2.114) to compute X, , the j" component of X, when a force f,

is applied on the k" DOF, and substituting in Eq. (2.115), the receptance FRF
H,, results:

u CD ',r(I)k,r
H,  (Q)= ;—w{, o (2.116)
and the complete receptance matrix
X
H(Q)= — 2.117
( ) ;a)z, _QZ ( )
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Figure 2.17 - Receptance matrix H of an undamped system

The receptance matrix H of the same example system used in the previous
paragraph is shown in Figure 2.17.

The receptance FRFs H of an undamped MDOF system, as in Figure 2.17,
possess the same characteristics of a SDOF undamped system. The response is
infinite at the resonance frequencies ®,, and vanishes in the anti-resonance

frequencies. The phase is —90° in the resonance and in phase or out of phase with
respect to the excitation for other frequencies €2 .

2.2.2 Proportional viscous damping

Modal analysis is a quite powerful tool in the case of undamped system,
because lets to uncouple the equations of motion. However, real systems have
always a certain amount of dissipation:

Mx+Cx+Kx=f (2.118)

where C is the viscous damping matrix.

The simplest model of damping is proportional viscous damping, which let to
uncouple the equation of motion.

The requirements for proportional viscous damping were theorised by
Caughey and O’Kelly [40]:

KM'C=CM'K, MK'C=CK'M, MC'K=KC'M (2.119)

The second and third expressions in Eq. (2.119) can’t be used if the stiffness
K and damping C matrices are singular, i.e. if the system possesses rigid body
motions. Eq.(2.119) is the generalization of the well knows Rayleigh [24]
proportional viscous damping matrix C:
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2. Vibrations and control of mechanical systems

C=aM+ K (2.120)

where a and g are the viscous damping proportionality coefficients.

When proportional viscous damping is used the eigenvectors of the undamped
system, given in Eq. (2.94), uncoupled also the damped system equation on

motion Eq. (2.118). The modal viscous damping matrix C result to be:

C=0'CO=| 20 (2.121)

r n,r

where ® is the modal matrix of the undamped system, normalised to unitary
modal mass.

The system equation of motion in Eq. (2.118) is uncoupled from real modal
analysis and in modal coordinates becomes:

5, + 20w, 7+ o n=0withr=1,.,N (2.122)

The uncoupling effects of real modal analysis on a MDOF proportionally
damped system are shown in Figure 2.18.

X
o P

k= He k= He _
< _ X < d| )I‘{cal clgcllpmblc!m n n n
1 2 [K-o'M)x, =0 1 2 3
‘ m; ‘ I m, Bk - 1 Bl 1 | i 1 i
k< | . k<2 e, wi< 24w wy? IZ_': 120w, wi< H26ws

Figure 2.18 - Real modal analysis on MDOF proportionally damped system.

Free response

The free response a MDOF proportional viscous system with a set of non-null
initial conditions, given in Eq. (2.106), can be solved using the direct modal
transformation Eq. (2.104).

N
x=(I)1]=z(I)r77r (2.123)

r=l1

where 7, can be computed from Eq. (2.122) and it represents a SDOF damped

th

system. The solution for the »” modal coordinated depends on the damping ratio

¢, . In particular when 0<¢ <1, 7, is described with Eq. (2.31) with integration
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2.2. MDOF systems

constant in Eq. (2.32); when ¢, =1, 5, is described with Eq. (2.36) and finally if
¢ >1, Eq. (2.38) and Eq. (2.39) are used.
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Figure 2.19 - Free response of a MDOF proportionally damped system:
modal coordinates (left) and physical coordinates (right).

The free response of the system in § 2.2.1 with added viscous damping is
shown in Figure 2.19. The proportional viscous damping coefficients are set to «
=0.05 and g =0.01. The time domain evolution of the system in modal

coordinates 77,, in Figure 2.19 (left), represents three uncoupled damped SDOF
systems, while the physical coordinates x,, in Figure 2.19 (right), are the

composition of the modal coordinates.
Harmonic excitation

The equation of motion of a MDOF system forced with a harmonic excitation is:

Mx +Cx + Kx =f,e (2.124)

where f, is the amplitude vector of harmonic forces acting on different DOFs and
all in phase.
Using the direct modal transformation Eq. (2.104) and pre-multiplying by @

O'MPij+ P CON+ P KPn=df,e” (2.125)

For proportional viscous damping the undamped system eigenvector
diagonalise also the damping matrix C, as in Eq.(2.121), hence Eq. (2.125)
represents a set of N uncoupled equations in modal coordinates.

(- +i2¢,0,, + @], ), = ®]f,e™ (2.126)

The solution of Eq. (2.126) in modal coordinated is harmonic and therefore
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2. Vibrations and control of mechanical systems

N
= 1,,@,e% (2.127)
r=l1
N T
X, =y 24P (2.128)

,,a) +1i24 -0’

r n,r

The receptance FRF H of a MDOF proportionally viscous damped system is
defined in Eq. (2.115). Using Eq. (2.128) to compute X, , the ;" component of

X, when a single force f, is applied on the " DOF and substituting in
Eq. (2.115), the receptance FRF H,, results:

N CD . (D
Z > (2.129)
r= a)n +12§iwnr _Q
The complete receptance matrix H can be computed as:
4l o P’
H(Q)= il 2.130
( ) ; a)rir + izé/ra)n,r - Qz ( )

The receptance FRFs H of the example system in § 2.2.1 are shown in
Figure 2.20 for increasing values of stiffness viscous damping proportionality
coefficient S . The blue dashed lines represent the undamped configuration.
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Figure 2.20 - Receptance matrix H of a proportionally damped system.

2.2.3 Non-classical viscous damping

Non-classical viscous damping is the more general case of viscous damping.
It includes localised dampers, thus damping matrix C that do not respect the
Eq. (2.119). This case is the most common in real structures, but it is
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mathematically more difficult to solve, since the damping matrix is not
diagonalised from the eigenvectors of the undamped system:

®'Co=C (2.131)

where C is not diagonal.
Real modal analysis does not uncouple the equation of motion Eq. (2.124) and
it must be treated by Foss’s method [41]:

c M|, [K 0 f,) o [x
O ) e

and in compact form:
Ay+By=Fe” (2.133)

where A,BeR*" are symmetric matrices, FeR*"' and y e R*™'. Eq. (2.133)

is a first order differential equation with 2N DOFs.
Complex eigenproblem
Considering the homogenous equation related to Eq. (2.132)
Ay+By=0 (2.134)
the solution of Eq. (2.134) will be of the type:
y=Y,e" (2.135)
where s € C . Deriving Eq. (2.135) and substituting in Eq. (2.134) it results:

(sA +B)Y, =0 (2.136)

Eq. (2.136) is an eigenproblem. The trivial solution y,=0 1is the static

undeformed condition, the others interesting solutions are given by the zeros of
the characteristic equation:

A +B|=0 (2.137)

which possess 2N solutions in s, called eigenvalues or poles of the system. The
poles s can be real or complex conjugated. The eigenvectors are then evaluated
as:

(s,A+B)0®, =0 with r=1,...,2N (2.138)
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The eigenvectors ®, € C*"' are the mode shapes of the system. They will be
also real or complex and conjugated depending on the corresponding pole s, . The

complex spectral matrix SeC*”*" and modal matrix @ e C*"*" are defined
colleting all the eigenvalues and eigenvectors:

S =diag[s,, sy, ..., S,y] (2.139)
0=[0,0,,...,0,,] (2.140)

Eq. (2.140) can be written also as:

o-| 2 (2.141)
6A &'A

where @ eC™" and A eC™" are the modal matrix and spectral matrix of the
problem in Eq. (2.124) with non-proportional viscous damping. They can be
obtained solving the eigenproblem of the second order formulation, which is
computationally very expensive. A very useful property of the modal matrix @ is
the so-called A and B orthogonality:

0'AO=| (2.142)

@'BO=| » (2.143)

Some interesting considerations on the complex eigenvector @ of the original
problems can be summarised substituting Eq. (2.141) in Eq. (2.143).

©'MOA + AO'MO + 0" CO = diag(a,) (2.144)
O"MOA+AO"MO+O7CO=0 (2.145)
AO@"MOA - 0'KO = diag (b, ) (2.146)
A'O"MOA-O"KO=0 (2.147)

Relationships analogous to Eq. (2.144)-(2.147) also hold for the complex

conjugates pairs. These relationships show that O cannot uncouple the original
problem, because it is not able to diagonalise together M, C and K matrices.
The eigenvectors are not energetically independent since the energy dissipated by
one mode depends on the other modes.
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Eigenvector Normalisation

Eigenvector normalisation and sorting are necessary to define univocally the
modal matrix @ . Several ways to sort and to normalise the mode shapes of the
complex modal matrix @ exist. In this thesis the following choices are adopted.

The mode shapes are collected in the modal matrix in complex conjugated
pairs. The eigenvector corresponding to positive imaginary part of the eigenvalues
before the complex conjugated, in ascending values of the eigenvalues. The rigid
body motion eigenvectors are the first, followed by the eigenvectors related to
underdamped modes and finally overdamped modes.

The rigid body motion and overdamped modes are normalised at unitary
modal constant a, =1

| (2.148)

Underdamped modes are normalised to a, =2i3(s, ):

0
Tr—m./21\s(sr) (2.149)

th

where q,, 1s the modal constant related to ®, and ¥, is the " normalised

eigenvector. This normalisation minimises the imaginary part of the eigenvector,
therefore most of the information are contained in the real part. Moreover, for
proportional viscous damping system it is equivalent to the unitary modal mass
normalisation. The result of this choice is a simplification of Eq. (2.142) and
Eq. (2.143):

YAY = 2i3(s, ) (2.150)
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2. Vibrations and control of mechanical systems

*rbxrb

Y'BY = —2i3(s,)s, (2.151)

oxo _|

where rb is the number of rigid body motion and o is the number of overdamped
modes.

Complex modal analysis

Modal analysis can be applied also in the case of non-proportional viscous
damping to uncouple the equation of motion in fist order form, given in
Eq. (2.133). Considering an undamped and unforced system, given in Eq. (2.134),
it is possible to apply the complex direct modal transformation:

y =" (2.152)

where ¥ is the normalised complex modal matrix and neR*" are the modal
coordinates.

Substituting Eq. (2.152) in Eq. (2.87) and pre-multiplying by ¥ it is possible
to obtain 2N decoupled SDOF equations:

n.—sn =0withr=1,..,2N (2.153)

The effect of classical modal analysis on a nonproportional damped system
are shown in Figure 2.21. The real eigenvector are not able to diagonalise the non-
classical damping matrix.

X;
s B
k 3 k f _ C, [ - "_1._'

= e i [ ¢ ¢ | /.
X, X: (k-o/K)X, -0 112 2 23 3
m, ‘ 1’ m, 1’ ' 1 _f; = 1 | Ln;— i - N
| ; ' |

Figure 2.21 — Effects of real modal analysis on non-proportional damped system.

A representation of the uncoupling effect of complex modal analysis is given
in Figure 2.22. The representation first representation is not a usual mechanical
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representation, because the inertial element is no more visible, because it is hidden
in the complex value of the stiffness. The oscillatory motion is given by the
complex part of the stiffness, which has a positive real part in underdamped
system. In overdamped system, the stiffness will be real and positive; therefore,
the motion is monotonically decreasing to null displacement and velocity. The
combination of complex conjugates poles gives again N uncoupled oscillatory
system with modal mass, modal stiffness and modal damping.

ms I LXJ iﬂ 1 Alj}z AL” 3

k3 k; =~ G Complex -5y E 55 C S L "S53 1
e (X, ot X, eigenproblem ——— g
= i 1 m 2¢ A :: if?a Lﬂs ins
! 2 =)
k} 3 [ ki‘:':' 'Sdf : | 'SS_'Z'- 4 -56 :::, =

L
m;

= £l Complex eigenproblem
k< kS e o | | ’7 |

< 4 1 1 1

I X [ I X; IIIIIIII" | |

m, } J— m, J— = L e L
ETR |51,z|2 = | |53,4|2j3f: | 55,6l < --I-|
< M < — ; 3

ki‘*"' | kz'*'."' -2R(s; ;) -2R(s3,4) -2 R(Ss,s)

Figure 2.22 - Complex modal analysis uncoupling effect.
Free response

The free response a MDOF non classical viscous damped system with a set of
non-null initial conditions, given in Eq. (2.106), can be solved using again the
direct modal transformation:

X= [INXN 0N><N]y (2.154)

2N
x=[Ly Oy ]¥n=[L., 0.,.]>¥n (2.155)
r=1
The solutions 77, came from Eq. (2.153), they are oscillatory functions:
n,=1,0e"" (2.156)

The amplitude 77,, comes from the initial conditions:

N :T_lyo (2.157)
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_ ¥/ Ay,
a

I3

(2.158)

ro

The response of the example system in § 2.2.1 with an added localised
damper on the first DOF, ¢, =0.5 Ns/m is shown in Figure 2.23.
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Figure 2.23 - Free response of a MDOF non-classical viscous damped system.
Harmonic excitation
The equation of motion of a MDOF system forced with a harmonic excitation

is given in Eq. (2.133). Using the complex direct modal transformation, given in
Eq. (2.152), and pre-multiplying Eq. (2.133) by ¥’

Y'A¥Y0+ P BY n="Fe (2.159)
Eq. (2.159) represents a set of 2N uncoupled equations in modal coordinates:
f]r - Srﬂr = ‘I’Z:FOeiQt (2' 1 60)

The solution of Eq. (2.160) will follow the excitation:

1, =n, e (2.161)
¥'F,

= 2.162

7707 ar (iQ_Sr) ( )

The solution of Eq. (2.133) in modal coordinated is harmonic and therefore

2N ]
X(1)=[Tyy  Opn |2 ¥, 77,06 (2.163)

r=1

The receptance FRF H of a MDOF system is defined in Eq. (2.115) and the
response of the j* DOF v, can be obtained as:
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The receptance FRF H

H,, (@)

and the complete receptance matrix H :

2N T
y, =S LEY, (2.164)
Sa (iQ-s,)
results to be:
2N ; k
=y — L 7 withl1<jk<N 2.165
r=1 ar (iQ-Sr) " J ( )
2N P !
H(Q)=) Lt 2.166
( ) ;ar(iQ—Sr) ( )

where HeC"™ . It is interesting notice that if the response is measured in
N+1<j<2N, it represents the velocity and therefore the computed FRF will be

directly a mobility FRF. The receptance FRFs of the example system in § 2.2.3,

with increasing values of ¢, , are shown in Figure 2.24.
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Figure 2.24 - Receptance matrix H of 3 DOF non-classically damped system.

It is interesting to notice that the damped natural frequencies @,, of the non-

classically damped system in

o, of the undamped system,

Figure 2.24 can be higher than the natural frequency
while for proportional damped system it is never the

case. This phenomenon depends on the topology of the damping matrix and the

mode separation. A good approximation of the i damped natural frequency w,;

of the a non-proportional damped system can be obtained through second order

perturbation analysis as [42]:
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@o'co, )
0, =, 1—8_22i (a); _w'z) _8‘;22 (@', ) +o(s) (2.167)
J=Lj#r j i

n,r n,j n,i

th

where @, is the " natural frequency of the undamped system and ¢ is the

perturbation. The damped natural frequency of the non-classically damped system
w, . will be lower than the natural frequency of the undamped system ,, when:

. (@co) (oo

1fz

o o - o) 4w}

n,r n J n,r

>0 (2.168)

If »=N Eq.(2.168) is always verified, therefore the damped natural
frequency of the last mode of the damped system a,, is lower than the

corresponding undamped system natural frequencies. If »=1,..,N -1 Eq. (2.168)
could be not verified; in that case the damped natural frequencies of the non-
proportionally damped system ®,, will be higher than the corresponding natural

frequency of the undamped system, hence also the natural frequency of the
damped system will be higher.

2.2.4 Structural damping

The extension to N DOF of the structural damping leads to an equation of
motion of the type:

Mi + (K +iD)x = f e (2.169)

Although the eigenproblem has not physical meaning, because the free
behaviour of a structural damped system can’t be studied, it is useful to compute
eigenvalues and eigenvectors of the system to uncouple the equation o motion and
simplify the study of the harmonic forced case.

If the structural matrix D is proportional to mass M and stiffness K
matrices, the modal matrix of the undamped problem @ diagonalise also the
structural matrix D . It is the same concept of proportional viscous damping.

When the structural damping is not proportional, it is not necessary to solve
the problem in first order form. The solution is of the type:

X=X,e" (2.170)
Deriving two times Eq. (2.170) and substituting in Eq. (2.169)

(M +K+iD)X, =0 (2.171)
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The eigenproblem in Eq.(2.171) gives N eigenvalues §. €C and
eigenvectors ¥, € C™. Applying the direct modal transformation and pre-

multiplying Eq. (2.169) by ¥’ , a set of N uncoupled equations are found:
i i, + (K, +id, ), = ', (2.172)

where 7., k,,d, e C. These coefficients are related by:

g, = e 1 2.173)
mr
Eq. (2.173) can be also written as:
s, =@; (1+ip,) (2.174)

where & €R and &, — w, when g =d /(@ )—>1.
Normalising the eigenvectors ¥, to unitary modal mass the receptance FRF

is in this computed as:

Xy yp!
H(Q)= rer
( ) ;Sr'QZ

(2.175)

The response of a MDOF structural damped system lost property of SDOF
structural damped system, where the peak frequency f =7, is invariant with
respect to the structural damping ratio 7. In MDOF structural damped systems the

peaks frequencies fw move increasing the damping ratio 7. Generally, the peak

frequency f is lower than the respective undamped natural frequency f,,

n

however also in this case the natural frequency of the damped system can results
higher with respect the undamped system. Performing the second order
perturbation analysis of a structural damped system, a good approximation of the
" damper natural frequency s, is:

e 22 (q)fDQ)z_ i M +ols') (2.176)
d,r n.r (Oj ; 4(03: J=1j#r (a)’?' B a)j"] ) |

where w,, is the r" natural frequency of the undamped system and ¢ is the
perturbation. The damped natural frequency of the structural damped system «,,

will be lower than the natural frequency of the undamped system o, , only when:
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T 2
v, <o, if 407, 3 (‘I’L‘I’")) <(opa ) 2.177)

2
j:l/'¢”(a) _a)ﬂj

n

The same considerations already done for non-proportional viscous damped
systems, holds also in the cases of non-proportional structural damped system.

The receptance FRF of the example system of § 2.2.1, with a localised
structural damper acting of the first DOF is shown in Figure 2.25, for increasing
values of the structural damping coefficient. The first and second damped peaks

frequencies f are higher than the related undamped natural frequencies fn,

because Eq. (2.177) does not hold in this case.
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Figure 2.25 - Receptance matrix H of a 3 DOF structural damped system.
2.3 Vibration control

The mechanical systems models, given in § 2.1 and § 2.2, describe the
dynamic behaviour of mechanical systems. Correct values for mass damping and
stiffness can be chosen when a specific response of the system is required, but it is
not always the case that all the requirements can be achieved together and
therefore the designer must make compromises to reconfigure the structure or to
add additional components. This possibility is known as passive control, which
depends only on fixed change in the physical system parameters. Passive vibration
control can move some poles to the desired location, but also all the other poles of
the system will be affected by the modification and could be moved in undesirable
locations. Another possibility is active control of mechanical system, which uses
external adjustable or active devices, the actuator, to provide a tool for shaping
and controlling the system response. Active control requires an external energy
source, while passive control does not. Active control can be performed using to
different strategies. A simpler strategy is open loop control, which need only an
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actuator to amplify/reduce the response of the system. The most used strategy is
instead close-loop control which requires actuators and sensors to measure the
system responses. It can change the dynamic response of the system by means of
a control low, a relationship between the sensors measured quantities and the
actual input to the system. The description of the control theory to the structural
vibration is described in many text book, i.e. [34,36,43,44]. A brief overview of
the close loop pole placement method for active control of structural vibration is
given in the following paragraph.

2.3.1 Pole placement

One of the most common aims in vibration control is selective pole
assignment, which means the possibility of moving a set of system poles in the
desired locations. The general pole placement method in first order problem [45],
using Achermann’s formula [46], is difficult to be implemented in structural
problem, because the matrices are often very large and the computation of all the
eigenvalues and eigenvectors can be not performed accurately. Although a lot of
research for automatic system control is presented in state-space formulation, the
implementation of pole placement method is easier using the second order
equation of motion of a mechanical system.

Close loop feedback control is performed providing an input to the system
u (t) eR:

MX + Cx + Kx = gu(¢)+f (2.178)

where g e R™ is the input DOF selection vector.

The control force is a linear combination of position and velocity of the
system and it can be written as:

u(t)=c x+ec/x (2.179)

where ¢,,c, e R™ are the position and velocity vector matrices. Eq. (2.179) is
known as state feedback control low, because the input u(¢) is proportional to the

system states, both position and velocity. It can be seen also as a proportional
derivative (PD) controller.

Substituting Eq. (2.179) in Eq. (2.178) the equation of motion of the close-
loop control system can be found:

M +(C—ge] )x+(K-ge) )x=f (2.180)

The equation of motion is generally no more symmetric due to generally non-
symmetric changes in the damping and stiffness matrix. Passive modifications are
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always symmetric and affect all the poles of the system, while active control allow
non-symmetric changes which let to selective assign pole to the system, without
affecting the other poles, provided that the system is controllable, i.e.:

rank(sizM+siC+K|g):N 1<i<2N (2.181)

More detail on controllability and observability of close loop mechanical
system can be found in [47,48]. Although systems can be controlled to assign the
desired dynamics, the stability of close loop systems becomes very important in
close-loop system, because the feedback gains could destabilise a system which is
originally stable.

The problem of pole and eigenvector assignment, which is called eigen-
structure assignment, has been treated in many paper and textbooks, i.e. [49,50], it
consist in find out the coefficients of the gain matrices to assign the desired poles.
The pole placement method was formulated for mechanical system active control
in [51], extended to continuous system in [52] and to gyroscopic system in [53].

The method can assign the desired location of a set of poles without affecting
the others.

Let’s suppose that the first m systems poles s, should be reallocated to a

prescribed set of desired poles s,,. Remembering the definition of the spectral

matrix S and the modal matrix ¥ defined respectively is Eq. (2.139) and
Eq. (2.148), it is possible to define a subset of the spectral matrix A, and modal

matrix U, related to the poles which are wished to be changed:

A, =diag([s,,s,,]) (2.182)
U =[¥Y - V¥,] (2.183)

The position ¢, and velocity ¢, feedback gain matrices are computed as:

c, =MU,Ap (2.184)
¢, =-KUp (2.185)

where the vector p e R™ is defined as:

S, =8 <8, =S,
Tl d,i i d,j i i=1,"',m (2.186)

b=
P =
J#*
The implementation of the control law in Eq. (2.179), with the position and
velocity matrix chosen as in Eq. (2.184) and Eq. (2.185), guarantees the location
of the desired set of poles, without affecting the other poles.
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The system in § 2.2.3 with the same initial conditions is used to provide an
example of active control pole placement. The system is non-classically damped
with a lumped damper acting on the first mass ¢, =0.06 N/(m/s). The open loop

poles of the system are:

51, =-0.022+i2.364, 5,, =-0.050+14.475, 5., =-0.228+i6.899  (2.187)

It is desired to mode the first complex and conjugate couple of poles in the
new location defined in Eq.(2.188), without changing the other poles and
providing a single control input on the first degree of freedom, which means

g=[1 0 0.
Sua=-0.007+i14; @,,,=022Hz ¢, ,=0.005 (2.188)
The feedback gain vector are computed using Eq. (2.184) and Eq. (2.185):
c,=[0.364 1246 1.607] ;c,=[0.003 0.0030 0.048] (2.189)
The receptance FRF of the passive system and actively controlled close loop

system are shown in Figure 2.26. The first peak is moved in the desired location,
while the other peaks are not altered.
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Figure 2.26 — Inertance FRF of the open and close loop system.

The poles of the close loop system result to be:

51, =-0.007 £i1.4, 5,, =-0.050+14.475, 5, =-0.228+i6.899  (2.190).

The time domain responses of the passive and controlled system are shown in
Figure 2.27. The responses of the close loop start from the same initial conditions
and then evolve with less damped because the desired pole is almost undamped.
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The control force u(t), necessary to control the system, computed using
Eq. (2.179), shown in Figure 2.28.
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Figure 2.27 — Free response of open and controlled system.
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Figure 2.28 — Input force required for pole placement.
2.4 Conclusions

Classical models used to describe the dynamics and vibrational behavior
mechanical systems were presented in this chapter. The complexity of the model
depends on the systems and on the dynamics properties that is necessary to
predict. Both SDOF and MDOF model are introduced, with particular focus on
the effects of viscous and structural proportional and non-proportional damping.
The usual effect of damping is to reduce vibration amplitude and peaks frequency.
The last properties are not always true for non-proportional damped system, in
which the damped natural frequency can also increase with respect to the
undamped natural frequency. The result of first order perturbation analysis can
predict when this happen using the undamped system properties and the non-
proportional damping matrix layout.
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Damping is generally used to reduce vibration amplitude. Damping
distribution can be properly designed to obtain the desired behavior of the system
using passive system modification. Not always all the requirements can be
achieved using only passive modification and therefore active control strategies
are necessary to achieve better result. Classical pole placements in MDOF linear
mechanical system is presented. A closed form formulation to compute the
proportional and derivative control gain of a close loop PD control is presented.
The method can assign desired poles without changing the other poles of the
system, which is a result impossible to obtain using only passive modifications.
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Chapter 3

3. Review of passive damping
matrix identification and active
vibration suppression methods

The identification of the model parameters to predict the behaviour of real
systems is known as the inverse problem related to numerical - experimental
correlation of systems dynamics behaviour. In § 2 the parameters of the presented
models were given as known, however in real system not all the parameters are
known, and the unknown ones should be identified to build up the system model.
Also, the computation of the close loop control gains necessary to achieve desired
system behaviour generally requires the structural matrix of the system, which
should be identified.

While inertial and elastic properties of mechanical system are well understood
and there are a lot of well-developed method to identify and model them, such as
FE [54,55], dissipation properties remain obscure and tends to be modelled on the
basis of ad hoc assumptions.

The exact identification, localisation and quantification of dissipation sources
in mechanical system remain an unsolved problem. Better understanding the
spatial distribution of dissipation sources is a desirable objective and potentially
very useful design tool to improve the efficiency of many mechanical systems,
both with passive modification or with active solutions.

Damping identifications methods based on measured FRF are presented in
§ 3.1, the importance of damping identification for system passive or active
control is introduced in § 3.2 as a prelude for a brief review in § 3.3 of vibration
suppression in linear and nonlinear system using active control methods.
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3. Review of passive damping matrix identification and active vibration
suppression methods

3.1 FRF based damping matrix identification

Several different methods have been developed during the years for spatial
damping matrix identification, but usually they have been validated by one-off
application. The damping identification methods already presented in literature
are based on several technique and physical properties. Large reviews of the most
used methods can be find in [56-59].

Damping model identification methods can be subdivided into two main
groups: identification of modal models or spatial models.

Modal models identification methods identify the modal property of the
system, while spatial models identification methods are capable to identify the
matrices of the system in physical coordinates. The identification of modal models
or spatial models of a system depend on the identification purpose: the spatial
model of a system provides the localisation and quantification of the dissipation
sources, while usually are not able to represent high frequency system behaviour;
modal models can provide good frequency domain models of the real system, but
losing information on the dissipation distribution [60].

In this paragraph a review of the FRF based methods for direct non-
proportional viscous and structural spatial models identification is presented. The
word “direct” stands for identification from experimental measures without
previous knowledge of the system, and “FRF based” stands for experimental
measures in frequency domain. The methods can be subdivided into two different
groups: 1) FRF methods, 2) modal parameters method.

The methods belonging to the first group identifies the damping matrix
directly from the experimental frequency response matrix (FRM), while the ones
belonging to the second group identify the spatial damping matrix from the
previously identified modal properties of the system.

3.1.1 Chen-Ju-Tseui’s method

Chen, Ju and Tsuei presented in 1996 a method for estimate the mass M,
stiffness K and non-classical viscous damping C matrices in a mechanical
system [61,62]. The method can identify the matrices directly from measured
FRM. The non-classical viscous damping matrix C is identified separately from
mass M and stiffness K matrices. The identification procedure is based on the
concept of normal FRM H" (Q)e R™", which is defined as the undamped FRM

underlying the damped system [63,64].
The normal FRM H"(Q) is defined as in Eq. (3.1) and the transformation

matrix G(Q)eR™" between damped FRM H(Q)eC"™ and normal FRM
H" (Q) is defined in Eq. (3.2).
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HY ()= (H(Q)+ 3(H(0)(%(H(0)) ' 3(H (@) 6D

G(Q)=-3(H(Q))(R(H(Q))) (32)

The non-classical viscous damping matrix CeR"" is obtained with a least
square approach from normal FRM H" (Q) and transformation matrix G(Q):

+

QIHN (Ql) G(Ql)
C= : : (3.3)
QKHN(QK) G(QK)

where K is the number of spectral lines considered in the identification.
More detail on this method can be find in § 4.2.

3.1.2 Lee-Kim’s Method

Lee-Kim’s method [65] identifies viscous C and structural D spatial
damping matrices of a system directly from system experimental FRM. It is based
on the definition of dynamic stiffness matrix (DSM) Z(Q) e C"", it is the inverse

of the FRM H(Q).
2(Q)=[H(Q)]" =(-’M +K)+i(QC+D) (3.4)
where M,K,C,De R™ are respectively the mass, stiffness viscous damping and

structural damping matrices and Q is the frequency of a spectral line. The
damping matrices of the system are then related to the FRM:

3([r(@)]")-0c+D (3.5)

Eq. (3.5) can be written in matrix form as:
C -1
fol I]M -3([H(e)]) (3.6)

The damping matrices C and D can be obtained in a least square sense
inverting Eq. (3.6) for several spectral lines . contained in the measured

frequency range:
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Q1 1
LC)} QI I S([H(?tﬂ') 3.7)
Q1 1] s([H(QK)T)

Eq. (3.7) implies that the viscous C and structural D damping matrices are
constant with respect to the excitation frequencies Q,. The choice of the spectral

lines frequencies Q. influences the solution.

3.1.3 Arora’s Method

Arora proposes in 2009 [66,67] an identification method, based on modal
updating, capable to identify non proportional structural damping matrices D in
mechanical system. In 2014 he proposes a direct spatial identification method
[68,69] for structural damping in mechanical system based on the concept of
normal FRM H"(Q) [63,64]. This method is the extension of Chen-Ju-Tseui’s

method § 3.1.1 to structural damping identification.
The structural damping matrix is obtained with a least square solution as:

+

R(H(Q)) | | 3(H(Q))H" ()
D= : : (3.8)
R(H(Q,)) | | I(H(Q))H" ()

where K is the number of spectral lines used and H"(Q) the normal FRM
defined in Eq. (3.1). More detail on this method are presented in § 4.2.

3.1.4 Instrumented variable method

This instrumented variable IV method was applied for the first time to
structural dynamics parameters estimation by Fritzen [70]. It is based on the
optimisation of a cost function, i.e. the error between the experimental FRM
H*" (Q)eC"™" and the numerical FRM evaluated from the identified system

matrices. The method needs theoretically an infinite number of spectral lines,
which is practically impossible in real applications. To overcame this problem a
study of the most suitable regions where the spectral lines should be chosen is
provided in [71]. The IV method was also extended to continuous frequency
domain in [72].

The basic idea of the IV method consists in minimise the error E e C*":
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E=H™ (Q)(-Q’M +iQC+K) -1 (3.9)

Eq. (3.9) can be written separating real and imaginary part of Eq. (3.9):

M
[-’H iQH H| C |=I+E (3.10)
K

The mass M, stiffness K and damping C matrices can be evaluated from
Eq. (3.10) with a least square approach, but the estimation will be affected from a
non-negligible error due to the bias effect of the noise contained in the
experimental FRM H*? (Q), details can be found in [70-72].

IV method proposes to solve the problem multiplying Eq. (3.10) by an
instrumented variable W eC"", which is uncorrelated with the error and has
maximum correlation with the input data. These two properties are summarised
as:

plim(lWTE) =0, plimGWT [—QZH iQH HJJ notsingular (3.11)

> >

where plim is the probabilistic limit.
The estimation is now not affected by a bias due to the experimental noise.
Pre-multiplying Eq. (3.10) by W' it becomes:

M Cc K]'=(W'[-0H iQH H]) W'I (3.12)

The choice of the instrumental variable W is the open to the user. In [70] in is
suggested to use a instrumented variable as the reconstructed FRM from the
identified M, C and K matrices in an iterative procedure. The first guess for the
instrumented variable can be constructed from the least square solution of
Eq. (3.10), while for the next iteration it can be constructed from the structural
matrices identified at precedent step. This method can be seen as an iterative
version of the Lee-Kim method in § 3.1.2, but in this case it is necessary to
identify mass M, stiffness K and damping C matrices together.

3.1.5 Adhikari’s method

Adhikari presented in 2001 a method [73] to identify non-classical viscous
damping matrix C starting from the measured FRM H(Q). The method is valid

for system with light non-proportional damping because it is based on the results
of perturbation theory for complex modes [24,74].
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The identification of the spatial damping matrix through this method requires
the identification of the modal parameters of the system from experimental modal
analysis (EMA): complex poles s, , (natural frequency o,, and damping ratio ¢,

), and complex mode shapes ¥, .
The complex eigenvector ¥, of a non-proportional damping system is
computed from the undamped system eigenvector @®, using second order

perturbation theory [74] as:

N ®CD,
Y =0 +i ) Lo, (3.13)
k=1,k=j (a)n,/' - a)n,k)

where @, is the real eigenvector of the undamped or classically viscous damped
system, C is the non-proportional damping matrix and N the number of DOFs.
The experimental identified complex mode shape ¥, can be written as:

¥, =R(Y,)+i3(¥,) (3.14)

r

where R(¥,)=®, and 3(¥,)=L,.
The imaginary part L, e R"' can be expressed as a linear combination of the

real parts @, :
Lr zzéqu)k’ Bkj ﬁ (315)
=1 ()

where R is the number of identified modes.
The error ¢ in the representation of imaginary part V, is:

R
e=L - B.® 3.16
r g = r
k=1

The error ¢ should be minimised with an appropriate choice of the matrix
B e R™ . It is proved in [73] that the B matrix minimising the error is given by:

B=(0'®) o'L (3.17)

where L=3(y) is the real modal matrix associated with the undamped or

proportionally damped system. The non-proportional modal viscous damping

matrix C=®"C® , which is non-diagonal, can be computed from Eq. (3.15) as:
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. B, (0, —
C,g.:cpicq)jz—"f( / ’k), k# j (3.18)
o, ; .

C, =®7C®, =23(s))
The spatial non-proportional viscous damping matrix is the computed as:
c=(o) Co’ (3.19)

where (e)" denote the pseudo-inverse matrix.

The identified spatial damping matrix is not mandatory symmetric, symmetry
preserving method are also presented in [75]. The identification could result in a
non-symmetric damping matrix C when the FRM does not respect the Maxwell
reciprocity theorem, this is due to errors in the measure or non-viscous damping
mechanism in the system.

3.1.6 Phani-Woodhouse’s method

Srikantha Phani and Woodhouse presented in [58] and experimentally
validate in [76] a hybrid method for non-proportional viscous damping matrix C
identification. The method requires both experimental FRM H(Q) and
experimental identification of modal parameters: real modal matrix @, spectral
matrix A and damping ratios ¢, .

The method is called matrix perturbation method because it is based on the
approximation of complex eigenvectors with a first-order perturbation theory
starting from proportionally damped system eigenvectors [77].

The DSM of a MDOF mechanical system can be written as:

[H(Q)] =-0’M+iQC+K (3.20)

where H(Q) can be obtained experimentally. Pre and post multiplying Eq. (3.20)

by the real modal matrix @, identified from the experimental FRM and unitary
modal mass normalised and inverting:

O 'H(Q)® " =(-QT+IQC+A) (3.21)

where 1 is the identity matrix, C is the non-diagonal modal damping matrix and
A is the spectral matrix obtained from experimental identification of the natural

frequencies. C is not diagonal because it can’t be diagolised by the real modal
matrix P .
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The viscous damping matrix in modal coordinates C is the sum of a diagonal

matrix C, e C"" and a coupled matrix C, e C"*":;
C=C,+C, (3.22)

The diagonal portion of the damping matrix C, is obtained from
experimentally identified natural frequencies @, and damping ratios £, as in
Eq. (2.121). Defining the FRM in modal coordinatesH,, (Q):

H,(Q)=-Q1+iQC, + A (3.23)
Eq. (3.21) becomes:
@ 'H(Q)® " =(A(Q)+OC, ) (3.24)

The inversion of Eq. (3.24) right hand side can be approximated to the leading

order term in C, :
® 'H(Q)0 " =(H,(Q)+C,) ~[H,(Q)] " +[H,(@)]'¢,[H,(@)]" (3.25
The non-diagonal matrix C, can be evaluated from Eq. (3.25):

& - H,(Q)-H, (Q)(Pg;H(Q)(D‘THm (Q) (326
1

Finally, the spatial non-proportional viscous damping matrix is obtained as:
C=0'Co’ (3.27)

Eq. (3.27) gives a frequency dependent viscous damping matrix if evaluated
frequency by frequency or a least square solution if a set of Eq. (3.26) is used for
damping matrix evaluation.

3.1.7 Lancaster’s method

The method proposed by Lancaster in 1961 [78] lets to identifies mass M,
stiffness K and non-classical damping C matrices of a system from the identified
system modal parameters poles s; and complex eigenvectors ¥, .

The method is based on a normalisation of the complex eigenvector ¥, such
that:
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(Ms* +Cs +K)W, =0 (3.28)

where ¥, is the normalised eigenvector.

The eigenvector normalisation required in Eq. (3.28) is proved [79] to be:
¥’ (2Ms, +C)¥, =0 (3.29)

The matrices of the system can be computed as:

M =(¥AY AW ) (3.30)
K=—(¥A7 ¥ A ) (3.31)
C=-M(¥A™W + ¥ AP )M (3.32)

where A and W are respectively the spectral matrix and the modal mass
normalised as in Eq. (3.29), ¢ in the complex conjugated and e” is the
Hermitian.

The method presupposes the normalisation of the experimental evaluated
eigenvectors with respect to the mass M and damping C matrices, which are the
object of the evaluation.

Pilkey proposes an iterative approach to circumvent this problem [80]. In his
method also the mass matrix is given as known, it can be computed from FE
codes or identified from experimental test using other methods. The iterative
method starts from an initial guess of the damping matrix C and it normalises the
eigenvectors to satisfy Eq. (3.29). The damping matrix can be now computed
using Eq. (3.32). The procedure can be repeated until the identified damping
matrix C converges.

Bajri¢ et al. [81] recently propose an improved Lancaster method to have an
explicit solution, avoiding the iterative solution. The method is based on the first
order equation of motion of viscous damped mechanical system. The method

requires the mass matrix M and the eigenvectors @ as defined in Eq. (2.141).
The spatial damping matrix can be then identified as:

C=M(0AO'0'-0'A’)(6'A"-0A0'0) (3.33)

3.1.8 Okuma-Shi-Oho’s method

Okuma, Shi and Oho presented in [60] an iterative method to identify spatial
structural matrices of a mechanical system starting from system FRM H(Q) and

the set of measured point coordinates. The main aim of this method is to provide
spatial matrices of the system: 1) with number of DOF higher with respect to the
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number of natural frequencies in the frequency range of interest and 2) capable to
reproduce the system dynamics also in condition different with respect to the
boundary condition used in the identification process. The method requires the
modal analysis of the system in free-free boundary condition and the
identification of experimental natural frequencies «

n,r?

damping ratios ¢, and
mode shapes @, , defines as target modal parameters. The identification of mass
M and stiffness K matrices are required to identify non-proportional viscous
damping matrix C. The method is an iterative procedure. Physically connectivity
are used to fix the zeros entries in the mass M and stiffness K matrices. The first
guess of that matrices are obtained using Eq. (3.34) and Eq. (3.35), in which
matrices are computed from the six rigid body motion of the system. The

definition of the mass matrix of a rigid system M, is known:
[ m sym |
m
T m
o, MP = Mr[gid = (3-34)

: : -mz, my, .

mz, —mx, Ay 1 »w

—my g mx g I zx 1 zy Izz

where M is the spatial mass matrix to be identified, m is the translational mass of

the system, (xg, yg,zg) are the centre of gravity coordinates and

1..1,,1.,1,1.,1, are the inertia around the reference system axis and the

xx2Tyy 2T zzd T xy? T xz?
products of the moment of inertia.
The stress on the structure due to the rigid body motion are null for definition,
therefore the stiffness matrix can be computed using:

Ko, =0 (3.35)

where K is the stiffness matrix to be identified.

The mass M and stiffness K matrices are improved to become respectively
definite and semi-definite positive, using the sensitivity analysis of the matrices
eigenvalues with respect to the matrices elements. Then the target modal
properties are reached using the sensitivity analysis of the system eigenvalues and
eigenvectors. The viscous damping matrix C 1is identified starting from the
stiffness matrix K multiplied by a coefficient «, which is obtained by a least
square procedure with respect to the target damping ratio values. Finally, the
resulting viscous damping matrix C is formulated as:

62



3.1. FRF based damping matrix identification

r n,r

C=0" 20 o P (3.36)

resulting in a full non-proportional matrix.
3.1.9 Leuridian-Brown-Allemang’s method

The method was presented in 1982 by Leuridian et al. [82]. The method aims
to identify mass M, stiffness K and viscous damping C matrices of a system
from the frequency domain responses:

(-Q’M+iQC+K)x, , =F, (3.37)

L]

where x;, and F,; are respectively the response and the force vectors at

frequency €2, in the measurement ;. In Eq. (3.37) the parameters to be estimated

occurs as element of the matrices. Eq. (3.37) is reorganised using constraints of
symmetry, matrix bandwidth and known matrices element:

[CLS]  U=[VLS]

iJ iLJ

(3.38)

where [CLS] is a complex matrix containing information on system responses,
frequency and constraints, [VLS] is complex vector containing information of the

input force and known elements and U is the vector of the unknown matrices
elements.

Eq. (3.38) can be solved in a least square sense using a set of frequencies and
a set of measurements:

[CLS|U =[VLS] (3.39)

where [CLS] and [VLS] include all the frequency and all the measures. The

solution of Eq. (3.39) with a pseudo inverse of the right hand side makes the
condition number of the problem the square of the [CLS] matrix condition

number. Hence, the solution of Eq. (3.39) is obtained though the Householder
transformation:

[TC]U=[TV] (3.40)

where TC is an upper triangular matrix with the same condition number of
[CLS]

In this method the estimation is linear and does not imply single input data.
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3.1.10Link’s method

The method proposed by Link in 1985 [83] is an extension of the ISSPA
(Identification of structural System Parameters) [84,85]. It can identify the viscous
damping matrix reduced to the measured DOFs C. .

The equation of motion in frequency domain is rearranged separating real and
imaginary part of accelerations and excitation force and pre-multiplying by M™":

AK” -QBD” + Q'R(P)M ' =@ (R(U] )T +A)=R,
. (3.41)
BK” +QAD” +@’3(P)M ' =@ (3(U]) 1" +B)=R,

where T is the geometric transformation matrix correlating the rigid body
displacement of the structure with respect to the base excitation; the other
matrices are defines as:

% (o) %(m,) AT =R(X)
X= , N (3.42)
f(o) o 5(e,)] B TI)
K=M'K,C=M'C (3.43)
fila) (@) ih, (@) iy, (@) i, (o)
P=| R O O B : : (3.44)
fl(a)m) fp (a)m) iibx(a)m) iiby<a)m) iin(a)m)

The matrices K and C" can be identified from Eq. (3.45)-(3.47), details in
[83].

K’ =1K"=(2,2,+1) (2,2, +Z,) (3.45)

o |[LCT =
Cl= - =(2,Z2,+1) (z,Z,-Z,) (3.46)
Z,=B'QA,, Z,=B!Q"'A, Z =BQ'R,, Z,=B'R, (3.47)

where I_ is the identity matrix of dimension equal to the measured DOFs,
A, = [A | —Qﬂ%(f’)} , B, = [B | QS(IA’)} e refers to only the measured DOFs and e

is the pseudo-inverse.
The left and right eigenproblem can be now solved to get left Y and right X_

eigenvectors and natural frequencies €2 :

KY=YQ, K'X =X 0} (3.48)
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The left eigenvector Y and the right X. produces different modal masses
matrix, respectively M, and M o

From the orthogonality condition of left and right eigenvector:

Y'X, =M, (3.49)
Y'MY =M, (3.50)

The right eigenvector X_ can be normalised such that:
Y'MY=Y"aX_ =Y"X_ (3.51)
and the normalisation constant & for each eigenvector can be found from:

a,=(aa,) aTY,, 2, =M'X_, (3.52)

Ji?
where M' comes from Eq. (3.46). The modal damping matrix C is computed as:
c=X'cy (3.53)

The modal damping matrix C is in general non-diagonal, the relative spatial
damping matrix C, reduced to the measured DOFs can be computed as:

C.=YC'Y=XC/'X! (3.54)

In Eq. (3.54) it is no more necessary to compute the pseudo inverse of the left
eigenvectors matrix, but using the relation in Eq. (3.51) the right eigenvector are
directly used to identify the non-proportional damping matrix.

3.1.11 Minas-Inman’s method

The method proposes by Minas and Inman in 1991 [86] is based on the
previous knowledge of mass M and stiffness K from FE formulation, reduced to
the experimentally measured DOFs.

The modal parameters poles s,, natural frequencies o, ,, damping ratios &,

and mode shapes ¥, are experimentally identified from FRM H(Q).

The eigenproblem of the system can be written as:

CY, =—i(s3M+K)\Pr =f (3.55)
S

r

where C is the non-classical viscous damping matrix to be identified. Eq. (3.55)
is valid for each experimentally identified mode.
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The complex conjugate transpose of Eq. (3.55) is:

Y C=f (3.56)

,GU=b (3.57)

1
(S .-
< <
S— SN
-

1l
1
(S

'-‘1* *'-h*

where U contains all the unknown element of the damping matrix C, assumed
symmetric.
Eq. (3.57) can be written for all the identified modes r=1,...,R, where R are

the number of experimentally identified modes

U=|: (3.58)

and solved with a least square approach.
3.1.12Local equation of motion method

Ablitzer et al. presented in 2014 [87] a spatial identification method for the
structural damping ratio 7 of simple geometry structures. It is based on the

knowledge of the analytical formulation of the equation of motion in continuous
domain. The method was developed for thin plate in [87] and extended for beams
in [57]. The method is proved [57] to works quite well with respect to the all
others method but it is useful only for very simple structures, in which the
continuous equation of motion can be formulate in close form.

The equation of motion of an isotropic thin plate in the harmonic regime is:

o*w(x,y o*w(x,y) o'w(x,y
D[ 8564 = ax(zyz L a(y4 )—PhQZW(x,y)=f(x,y) (3.59)

where D is the flexural stiffness, o the density, % the thickness, € the
excitation angular frequency, w(x, ) the transverse displacement and f(x,y) the

excitation force per unit of area.
The flexural stiffness is defined as

CE(1+ing)k

D= () (3.60)
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where E is the Young modulus, 7 is the structural damping ratio and v the
Poisson ratio.
In a point (x,y) where no excitation is applied Eq. (3.59) becomes:

o*w(x,y o'w(x,y) o'w(x,y
D[ 6&4 )+2 6x(2y2 )+ 65/4 )—thzw(x,y)zo (3.61)

(3.62)

The properties in a general point (x,,y,) of the plate space can be computed
from Eq. (3.61) :

D 0?2 w(x, ) 363
IRt 6

Xo>Yo

which is a complex number. The term V*w(x,,,) is the numerical approximation
of the differential in Eq. (3.61), using discrete steps Ax and Ay .

The properties can be computed point by point. The structural damping ratio
and Young modulus in a generic point (x,,y,) can be evaluated from Eq. (3.61)

and Eq. (3.60) as:

D 12(1-v*)
= < — h — .
nxoa)’n ‘S[ph ]Xo’yo (,D )xn,yo Eh3 (3 64)
D 12(1-v?)
E =R|— ) o ,
( o ] (Oh),y,— 7 (3.65)

Brumat et al. [57] extended the method to beams, identifying structural
damping ratio 77, Young modulus £ and viscous damping coefficient ¢,

¢AQZ~ Wx
= R . 3.66
T E.1 {V4W(xo)] (30
PAQY’ W,
E = R 0 3.67
X0 I [V4W(XO)J ( )
E I
y =lnlgl M (3.68)
¢ Q Viw(x,)

where y, in the damping per unit of length in the location x,. The discrete

viscous damping coefficient can be obtained as:

¢, =V A (3.69)
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3.1.130ther methods

Several other methods can be found in literature. Prandina et al. [88,89]
present a spatial damping identification method based on energetic approach.
Roamer and Mook [90] identify the system matrices from noise time domain data.
Beliveau [91] proposed a method to identify structural matrices from modal
information using a Bayesian approach. Boltezar and Slavic proposes [92-94] an
identification method of damping based on Wavelet transform. Dalenbring [95]
estimates structural damping functions and its parameters from modal models of
the system and experimental FRFs. Ibrahim [96] proposes a method to identify
non proportional viscous damping matrix from modal properties and a
mathematical model of the system to be updated. Mondal et al. [97] propose a
method for non-proportional viscous damping matrix identification using a
gradient based FE modal updating. Several other method to identify spatial
damping matrices using model updating have been proposed by Friswell [98],
Ewins et al. [99], Imregun [100,101] and Pradhan and Modak [102].

3.2 Damping identification for vibration design

Damping represents a mathematical tool to model energy dissipation in the
systems, hence it is commonly exploited to design the dynamic behaviour of
systems. In fact, the vibrational response of mechanical systems to dynamic
excitation is governed by damping, as discussed in § 2.1.2. A system can oscillate
for long time or just for a small transitory depending on the amount of damping.
In most of engineering applications it is desired to suppressing or attenuate as
much as possible vibrations. Damping matrix identification can be useful to
design and add optimised damping layouts in passive systems. The additional
damping can be designed to have desired damping ratio values ¢, .

Damping ratios ¢, of MDOF proportional viscous damping systems can be
defined as [34]:

£ =2 n) (3.70)

where C, is the mass normalised damping matrix of the system Eq. (3.71),

" eigenvalues of the mass normalised proportional viscous

1

2,(C,) represent the i

damping matrix C and @, is the i” undamped natural frequency of the system.

C,=M"cM"? (3.71)
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Damping ratio ¢, directly gives an indication on the system responses evolution

of the system, i.e. oscillatory or not if the system is respectively underdamped or
overdamped.

Eq. (3.70) is no more valid when non-classical damped system are considered.
The extension of Eq. (3.70) to non-classical damped system, i.e. system in which
does not hold Eq. (2.119), was presented in [103]. Non-classical damping matrix
is not diagonalised by the eigenvector of the undamped system and therefore it is
not possible to directly predict the system evolution. In these cases, the non-

diagonal damping ratio matrix Z can be defined as:
Z=C)"c,c” (3.72)
where C,, is the critical damping ratio matrix defined as:
C_ =2M "KM (3.73)

The eigenvalues ¢ of the damping ratio matrix Z are not the damping ratio

of the system, however they can be used as indices to predict the system
behaviour, as for viscous damping system.

It would be useful a design technique to define the damping matrix so that all
or a set of poles would possess the desired damping ratio, starting from the

damping ratio matrix Z and back to the damping matrix C. However, since
generally CM 'K is not symmetric, eigenvalues ¢* do not represent the damping

ratio of the poles, and therefore is not always possible to predict the desired
passive damping matrix. This is the reason way active vibration control becomes
necessary in the design the system behaviour. Pole placement already introduced
in § 2.3.1 is one of the methods useful for linear system. A review of active
control techniques for vibrations suppression in linear and nonlinear system are
presented in the next chapters.

3.3 Vibration suppression by active control

The growing demand for increased performance of mechanical and aerospace
systems with reduced weight and fewer emissions leads to research initiatives that
aim to exploit the characteristics of nonlinear systems. While the control of linear
systems is well understood, most engineering systems behave nonlinearly, at least
to some degree, and require the application of a nonlinear controller if the system
is to behave according to design requirements. Non-smooth nonlinearities such as
bi-linearity and free-play are commonplace in joints and connections, but difficult
to treat because of the abrupt changes in dynamic behaviour that occur as parts
come into contact and separate.
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Vibration of mechanical system can be controlled to behave as desired using
passive modification, which are always symmetric system, or using active control
strategies which allow to obtain not self-adjoint system. The desired control law
introduced in § 2.3, can be designed according to any design rule, therefore it can
act also non-symmetrically. Usually in mechanical system the input is a force and
the relative control law is design as a linear combination of the states to maintain
the linearity of the system. Automatic control theory [104] states that the dynamic
of controllable systems can be regulated assigning the poles of the system and
using a single input force. The basic algorithms for pole assignment in first order
systems are given in [105,106]. The desired dynamics can be also assigned using
multiple input to the system [107] which ensure robustness of the controller with
respect to the system parameters [108]. A closed-form solution for the partial pole
in linear vibrational system was derived in [51], the solution is presented in § 2.3.
The control problem is slightly more complicated when both poles and
eigenvectors should be assigned, i.e. eigensystem assignment [49,109-113].
Control laws to assign both poles and zeros to a transfer function were presented
in [114,115]. Pole placement for damped vibration was developed in [116].
Eigensystem assignment methods were also developed considering vibration
confinement [117], state tracking control [118] and model updating [119].

Pole placement by receptance method for mechanical system was developed
in [120,121]. Receptance method is a frequency domain method which let to
control a system without the necessity of system matrices, contrary to all the
methods presented before which requires the structural matrices of the system. A
robust eigenvalues assignment method by receptance method was presented in
[122]. Receptance method was applied for poles assignment [123—125]. Method
of receptance was also applied for the control of nonlinear [126] systems, while
methods for the control of nonlinear system in literature are usually developed in
time domain: sliding mode control, backstepping and feedback linearisation [127—
129],

This paragraph focuses pole placement by method of receptance in linear
system, state space feedback linearisation in non-linear system and finally a
receptance based feedback linearisation method, which are the base of the active
control strategies applied in § 11 and § 12.

3.3.1 Method of receptances

The method of receptances was introduced by Mottershead and Ram in [120]
for single input system and extended to MIMO system in [121]. It is an active
control strategy for linear systems. The method of receptance has several
advantages: it is not necessary to evaluate or to know the structural M, C,K

matrices, there: is no requirement for model reduction or for the use of an
observer to determine unmeasured state variables and it is not necessary to place a
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sensor (or an actuator) at every degree of freedom of the system. The number of
sensors is determined precisely by the number of pairs of complex-conjugate
poles to be exactly assigned and, in principle, all the poles of the system can be
assigned using a single actuator. The pole placement using a single actuator is
obtained by receptance method exploiting a rank-one modification based on
Sherman-Morrison formula [130]. Being a rank-one modification can’t be used in
MIMO control.

In this chapter the theory of method of receptance for single and multiple
input control is introduced.

Single input control

The quadratic eigenvalues problem concerning the open loop system in
Eq. (2.124) is:

(ssM+5C+K)¥, =0 i=1,..2N (3.74)

while the eigenproblem associated with a PD close loop control in Eq. (2.178)
becomes:

(siM+s5, C+K)¥,, =g(s,cl +c ¥ (3.75)

cl,i

where s, is i desired pole, ¥, is the i close loop eigenvector and ¢, and ¢,

cl,i
are respectively the velocity and displacement gain vector of the PD control,
already introduced in Eq. (2.179).

Assuming a partial pole assignment of the first p poles, distinct from the

open loop pole od the system without changing the remaining poles:

i=p+1,..,2N (3.76)
and substituting Eq. (3.76) in Eq. (3.75) and comparing with Eq. (3.74), it results:
g(sicf+c§)‘l’,.=0 i=p+1,...,2N (3.77)
and since the selection vector g=0:
(sl +¢))¥, =0 i=p+1..2N (3.78)

Eq. (3.78) in matrix from becomes:
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Sp+1\P;+l \P;H C
: : { V}zo (3.79)
T T c[’
S2N‘Pp+l Tpﬂ
or in compact form:
C
Q{ ' } =0 (3.80)
c
P
The first p equations of Eq. (3.75) give:
) -1 T, .T
¥, =(s; M+5,C+K) g(s, el +¢c))¥,, (3.81)

where the dynamic stiffness matrix Z(sd’l.)z(sj’l.M +Sd,l-C+K) is invertible since
the desired poles s,; are distinct from the close loop pole s, .

Defining the vector r, e C* as:
r,=H(s)g (3.82)
Eq. (3.81) becomes:

¥, =r(s,)(s,cl +¢))¥,, i=l..p (3.83)

cl,i

Since the eigenvectors can be scaled arbitrary, it is possible to choose a proper
scaling of the close loop eigenvectors ¥, ; so that:

(s,.cl +¢)¥, =1 i=1..p (3.84)
and substituting Eq. (3.84) in Eq. (3.83):
‘I’C,’i:r(sd’i) i=l...,p (3.85)
and Eq. (3.85) back again in Eq. (3.84):
(sg.el +¢))r(s,,)=1 i=L....p (3.86)

Eq. (3.86) in matrix form becomes:
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. {c} (3.87)
. . =€ .
T cP

cv
PLJ =0 (3.88)

Collecting together the p equations deriving from the assigned poles in
Eq. (3.88) and the 2N -p equations deriving from the unchanged poles in

Eq. (3.80), the position ¢, and derivative ¢, vector for the pole placement can be

[ZHE}Z{E} (3.89)

Using this method, it is no more necessary to evaluate the system matrix to
derive the proportional and derivative gain vector for active pole placement.

computed:

Multi input control

The method of receptances can be extended to the case of multiple input
control, therefore when more actuators act together on the structure.
The MIMO close loop eigenproblem result to be:
(s;M+5, C+K)¥,, =G(s,,Cl +C))¥,,, (3.90)

i

where G eR™ is the selection matrix ,M is the number of actuators and
C;,C, e R™ are the gain matrices for PD control, defined as:

G= [gl A Y ], Cv = [cv,l cv,M]’ Cp :I:cp,l cp,M:I (391)
The MIMO eigenproblem in Eq. (3.90) can be written as:
(Sj,iM +5,,C+ K)Tcl,i = [g1 (Sd,icf,l + c,Ta,l ) tet 8y (Sd,ich',M + CZ,M )]\Pcl,i (3.92)

For the p pole to assign Eq. (3.92) becomes:

¥, = H(Sd,i )|:g1 (Sd,icf,l + c,T:»,l ) Tt 8y (Sd,icf,M + CZ,M ):|\Pcl,i (3.93)
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and denoting:

r(s,,)=H(s,,)g, (3.94)
i =1,....M
a, (Sd,j) = (sd,‘,cf’,. + ci,,-)‘l'cz,_, Jl Ll (3.95)
Eq. (3.93) can be written as:
¥, =« (Sd,i )rl (Sd,i ) Ta, (Sd,i )1‘2 (Sd,i) Tty (Sd,i)rM (Sd,i) (3.96)
Recasting Eq. (3.95) in matrix form it becomes:
cv,l
sd"/‘I’fl’j ‘I’Zj . : a, (Sd,j)
- W = : (3.97)
T T cp,l
Sd,j‘I’cl,j ‘Pcl,j a, (Sd‘j)
C,u
or in compact form:
Py=a, j=p+1--2N (3.98)

For the unchanged 2N — p poles, generalising the single input case it results:

ivv,dl

by (s,cl, +¢), ) +etby (sel, +¢), ) [¥,=0 i=p+L.2N  (3.99)

and in matrix form:

ol g (3.100)

or in compact form as:

Qy=0 j=p+l,--2N (3.101)
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For complete the pole placement by the method of receptance the procedure
consist in choose arbitrarily a, (Sd,i) i=l...,p j=L..,M and compute ¥,

using Eq. (3.96) and then compute the PD control gain matrices C, and C, using

both the relations related to the assigned poles Eq. (3.98) and unchanged poles
Eq. (3.101):

Pl CV,I al
P G |12 (3.102)

Qp+1 cpl 0

_Q2N B cp M 0

3.3.2 State space feedback linearisation

Standard input-output feedback linearisation relates to smooth nonlinearities
in the system or in the input, which means that there are no non-differentiable
points in the nonlinear characteristic.

The method has found application in numerous engineering fields including
the following: robotics, to control the trajectory and the body posture of a mobile
robot [131-134]; electric motors, to stabilise the position and velocity of the rotor
and to control the voltage [135-141]; in fuel cells, to control the pressure of
hydrogen and oxygen [142]; and in actuation systems with valve nonlinearities
[143,144]. In aerospace engineering the technique is used to control drones [145—
147] and to suppress wing flutter [148,149]. In [150] wing flutter was
experimentally suppressed using feedback linearisation with a model including a
real-time aeroelastic states estimation.

More recently, in [151] feedback linearisation was experimentally applied to
achieve precise beam-tip position control in a nonlinear two DOFs flexible-beam
sensor. A similar position control application was presented in [152], where
feedback linearisation is applied to ensure accurate path following of a space
manipulator in the presence of joint flexibilities, which also had the effect of
mitigating vibrations transmitted to the spacecraft supporting the manipulator.

Although feedback linearisation is a well-known technique in the control
community, it is not widely applied in vibration problems. It has the advantage of
transform a nonlinear system model in the equivalent linear system, thereby
enabling the avoidance of the complicated mathematics associated with nonlinear
problems.

Feedback linearisation can be applied in two different ways: the “input-state
linearisation”, where the full state equation is linearised and “input-output
linearisation”, where the emphasis is on linearising the input-output map even if
the state equation is only partially linearised.
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This paragraph is focused on the input-output linearisation theory, which is
numerically and experimentally implemented in § 11.

Usually in the control textbook the method is approached from a first-order
equation of motion of the system [127,128], and repeated differentiations of the
state using the Lie-algebra notation [153] are needed.

The classic theory of feedback in second order form was simplified from Jiffri
et al. in [148] in the cases of application to nonlinear structural or aero-elastic
vibration nonlinear problem, showing that the Lie-algebra is not necessary in the
case of structural systems. The same theory can be found in first order form in
[154].

Feedback linearisation theory is briefly introduced in the following, both
using first and second order form.

The equation of motion of elasto-mechanical or aeroelastic nonlinear systems
is second order from can be written as:

M5 + Cx + Kx +f,, (x,X) = Bu(¢) (3.103)

where M, C,K e R are respectively the mass, stiffness and viscous damping
matrices, x,X,XeR" are the displacements, velocity and acceleration vectors,
f,(x,x)eR" is the nonlinear force depending on displacements x and velocity
X, u(r)e R is the vector of physical input applied to the nonlinear system and

BeR" is a selector matrix to localise the application DOFs of the M inputs.
N is the number of DOFs of the system (or the number of measured DOF, i.e. the
number of sensors) and M is the number of actuators.

Feedback linearisation is an exact method; it let to cancel the whole open loop
dynamic and it results in a set of independent linear SDOF systems.

Eq. (3.103) can be written as:

& =f(x,%)+Gu(r) (3.104)
where f(x,x)e R™ and G e R™ are:

f(xX)=Px+®x+Qf,, ¥ =-M'K,0=-M"'C,Q=-M"
" (3.105)
¥, ®,0ecRYY

G=-M'B (3.106)
The equation of motion Eq. (3.103) in first order formulation becomes:
v="1(v)+Gu(?) (3.107)

where v,veR*™, f(v)eR*™ and G eR*"™" are defined as:
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v={z} (3.108)

~ [0 I]v
L(V)—{[w <I>]v+9fn,} (3.109)
g:{(ﬂ (3.110)

The physical input u(¢z) is designed to neutralize the effect of the

nonlinearity. This can be achieved in full or partially: in the first case is called
complete input-output feedback linearisation, the second case is known as partial
input-output feedback linearisation.

Complete input-output linearisation

The complete input-output feedback linearisation lets to linearise globally the
system. It is possible only if the number of sensors and actuators is the same of
the system dimension, N =M .

The aim is to provide a physical input to the system u(z) so that the complete

open-loop dynamics or only the nonlinearity is cancelled out and replaced by the
desired dynamics.

Second order form

The physical input u(z) is chosen so that it cancels out the nonlinearity:
u(t)=G"'[u(t)-f(x,x)] (3.111)

where 1 () e RY="" is the virtual input.

Substituting Eq. (3.111) in Eq. (3.104) the nonlinearity is removed from the
system and also the linear open loop dynamic is cancelled:

X, u,
Sl (3.112)
Xy Uy

The result is a linearised system of independent, second-order, SDOF
equations. This is a special case in which the original coordinates x and the
linearised one z are the same:x=z.

77



3. Review of passive damping matrix identification and active vibration
suppression methods

The choice of the artificial input u() depends upon the control objective. For

example, the assignment of a pair of complex conjugate poles in each of the
SDOF system in Eq. (3.112) to avoid resonance (Pole Placement [155]).

Whatever the control objective is, it will be result in the determination of the
gains defined in terms of negative feedback as:

in(t)=-[e, vil{x xl}r
: (3.113)

T

iy ()==[ey vylixy )

where ¢, and v, 1<i<M = N are control gains.
If the physical input u(z) is chosen so that only the nonlinearity (not the

entire open loop dynamics) is cancelled out, then Eq. (3.111) would be replaced
by:

u(1)=G™"'(u(r)-Qf,) (3.114)

and the linearised system would remain coupled:

X
_ X,
U Su Y S Vi vt Giv Viy X
_ 2
i Cot Vo G Vit Coy V.
2 21 21 2 2 v Yov | .
Jr=- : . S ) A (3.115)
Uy Svi Vv Sv2 Va2 0 Sw VY X
N
Xy

where ¢, and v,; 1<i,j<M =N are control gains. There are a greater number

of control gains in Eq. (3.115) then in Eq. (3.113), which means that there is more
control flexibility. The great number of gains might be used, for example, to
assign the poles and eigenvectors.

First order form

In first order formulation the complete input-output feedback linearisation is
performed choosing the displacement as output variables:

y=[I 0]v (3.116)

When the complete dynamics of the system is cancelled out, as in Eq. (3.111),
the j” 1< j< N linearised system in first order formulation results in:
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Aoja =V =X, =V,

Koy =Y =% =V, = Vin

7.(2‘1'-1 _ 0 1 o 0]_
{7.(2] }_|:0 OH Xa; }-’_L}u/’(l‘) (3.118)

7,()=-[c, vz, 2.} (3.119)

(3.117)

where ¢, and v, 1<i<M =N are the same control gains of Eq. (3.113) and g is

the vector of linearised coordinates. The complete linearised system result in:

= Ay +Biu(r) (3.120)

where
A(2j-1,2j)=1,1< j<N all the other entries 0 (3.121)
B(2/,j)=1,1<j<N all the other entries 0 (3.122)
u(t)=G(u(t) £y, ) (3.123)

The transformation matrix T which maps the linearised coordinates yx in the

original one v is:
x=Tv,T(2j-1,/)=T(2/,j+N)=1,1<j<N all the other entries 0 (3.124)

The relation between the linearised coordinate in second order form z and in
first order form y, is given by:

z, =4, With 1<j<N (3.125)

Partial input-output linearisation

Partial input-output feedback linearisation linearise only some DOFs of a
system, therefore there is a part which remains nonlinear. The number of actuators
M is fewer than the number of DOFs N, M <N .

Second order form

Eq. (3.104) can be rewritten as:
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X, fl(x,)'c) &1 0 &im

.. . t

Xy _ Ju (X,X) N Evmi 7 8mMm ulz( ) (3.126)
Xy Sua (x’x) vy 7 Bmam u, (Z‘)

Xy fN(x’x) | & 7 8nm |

or in compact form

{XZMN} B {fiMN( Zxxl)} * {G(ZJ“ (¢) (3.127)

where in this case G e R"" . The coordinate transformation T which maps the
nonlinear system from the original coordinate set x into the new linearised
coordinates z may be expressed as:

{z, z, - ZM}Tz{x1 X, e xM}T (3.128)

which is the same of the complete input-output feedback linearisation, with the
exception that it is valid for only M DOFs, because there are only M <N
actuators.

The bottom portion of the Eq. (3.126) is defined as internal dynamics.

Further N-M z coordinates are needed. These are chosen as coefficients of
the orthonormal basis of the null space of G’ so that:

T

o x ) =Vizg, oz} (3.129)
where VeR"™™ ™) s the transformation matrix and satisfy the following
properties:

Vv =l v V'G=0 (3.130)

(N—M)x(

Finally the transformation matrix T which maps the nonlinear system from
the original coordinate set x into the new linearised coordinates z may be
expressed as:

I 0
Z:|:VT }x (3.131)
where Ie R is an identity matrix and 0eR"*"™) is a zero matrix.

The actual input u(z) which eliminates the nonlinearity can be expressed as:
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u(t)=G [u(r)-f, (x,%)] (3.132)

The substitution of Eq. (3.132) into the upper portion of Eq. (3.127) leads to
M independent linear second-order systems:

Z X L_ll([)
Al |m0) (3.133)
Z, X, i (1)

The artificial input u(s) can be computed as in Eq. (3.113), but only for the

N —M first M coordinates.
The remaining coordinated can be computed from Eq. (3.129):

Zyn o E) =V %) (3.134)
Now substituting Eq. (3.127) in Eq. (3.134):

ZMH fl(Z,Z) ul
Por=v7 : +V'G{ (3.135)

Zy Sy (Z, z ) Uy
and remembering the proprieties of the matrix V in Eq. (3.130):

2M+1 ﬁ(Z,Z)
: =v7 :

: : (3.136)
Zy Sy (Z,i)

V4

Eq. (3.136) ensures uncontrollability of the nonlinear internal dynamics.
The stability on the system is determined by the zero dynamics, obtained by
setting to zero in Eq. (3.136) the external coordinates (z, --- z,,) of the partially

linearised system in Eq. (3.133).

The stability of the zero dynamics is a necessary condition to apply the partial
feedback linearisation; when the zero dynamics, generally nonlinear, are found to
be globally stable, then the desired control behaviour is unaffected by the
nonlinearity confined to the internal dynamics.

First order form

The same procedure can be applied in first-order form, when M <N . Only
2M states of the first order system are linearised. The remaining 2(M — N) states

constitute the so-called internal dynamics, which is uncontrollable.
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Partial feedback linearisation is stable only if the internal dynamics is stable,
this can be check be studying the stability of the zero dynamics, which is the
internal dynamics where all the controllable states are set to zero [127].

The transformation matrix of the partially linearised states T, e R*"*" is

obtained as in the complete input-output feedback linearisation, Eq. (3.124), for
the first 2M states. The global transformation matrix T must be non-singular,
thus the internal dynamics coordinates is orthogonal to G .

1=Tv (3.137)

The latter conditions are satisfied by a transformation matrix T having the
following structure:
T,
T=/0 I 0 (3.138)
0 ker(G)

where the null 0 and identity I matrices are of appropriate dimensions and

ker(G) e R™ ™" is the null space of matrix G defined as:
Gker(G)=0 (3.139)

The relation between the linearised coordinates in first ¥ and second order

form z partial input-output feedback linearisation is the same presented in
Eq. (3.125) for the linearised coordinates.

3.3.3 Feedback linearisation via method of receptances

The classical feedback linearisation method, already described in § 3.3.2,
requires the numerical model of the system. It is generally applicable to under-
actuated systems and, by an application of a linear transformation, the system is
separated into two parts. An artificial input is applied to the first part that renders
it linear and enables classical linear control methods, such as pole placement, to
be applied. The second part generally remains nonlinear and is rendered
uncontrollable by the transformation. The stability of the second part is
guaranteed when the zero dynamics are stable. The dynamics of the second part
with the controlled coordinates set to zero and subject to arbitrary disturbance.

The method of receptances, presented in § 3.3.1 is an active control method
that makes use of measurements acquired directly from the test structure and
therefore eliminates the necessity of evaluating the system mass M, damping C
and stiffness K matrices.
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The theory of feedback linearisation by the receptance method was recently
presented in [156], and it is here briefly summarised for purposes of
completeness.

Considering the equation of motion of a nonlinear system as in Eq. (11.11), it
can be written in Laplace domain ‘s’ as:

[Z(s)]x(s)+F, (X.s)=Bu(s) (3.140)

where Z(s)e C™" is the DSM of the underlying linear system, F, (X,s)e C™" is

the sinusoidal input DF approximation [157] of the nonlinearity undergoing limit
cycle oscillation of amplitude X, BeR"" is the force distribution matrix and
u(s)eC"" is the vector of input. N is the number of DOFs and M is the number

of actuators.
Eq. (3.140) can be re-written in compact form as:

Z,(X,s)x(s)=Bu(s) (3.141)

where Z,(X,s)eC"™" is the nonlinear DSM under limit cycle oscillation of

amplitude X.
Finally, the problem can be written using the receptances formulation as:

x(s)=H, (X,s)Bu(s) (3.142)

where H,, (X,s)e C"™" is the nonlinear FRM at constant amplitude of oscillation

across the nonlinearity and it is defined as:
zZ,(X.s)=[H,(X;s)]" (3.143)

The outputs y e R"" of the partial input-output feedback linearisation are

chosen as M displacement states:

y=X, (3.144)
where x, e R" is the first part of the displacement vector x:

(3.145)

x=[x1 xz]

The system in Eq. (3.140) can be partially linearised using a transformation
matrix T between the linearised z coordinates and nonlinear one x and an input
vector u(¢) appropriate to cancel out the open loop dynamics and assigned the

desired dynamics.
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z=Tx (3.146)

The transformation matrix T is defined with the purpose of separating the
system into two parts, controllable and uncontrollable, known as normal form.

10
T:{V,[ } (3.147)

xN

where T is the identity matrix of dimension M , 0e R” ™" is the null matrix and

VeR"™ is a matrix following the properties:
VIB=0, V'V=I (3.148)

Substituting Eq. (3.142) in Eq. (3.146) the system can be written in linearised
coordinates z as:

2(s)=Tx(s)=(TH, (X,s)T")TBu(s) (3.149)

H,(Z,s)=TH, (X,;s)T" (3.150)

where H,,(Z,,s)eC"" is the nonlinear FRM and Z,=TX is the amplitude of

oscillation of limit cycle in the new set of coordinates z. The force distribution
matrix B can be written as:

B:{B'} (3.151)

where B, e R"* and B, e R"™)" are respectively the upper and lower portion of

the distribution matrix B.
Remembering the definition of the transformation matrix T in Eq. (3.147)
and the properties of the matrix V in Eq. (3.148), Eq. (3.149) can be re-written as:

2(s) :ﬁn,(zo,s)[Bl‘:)(S)} (3.152)

and using partitioning consistent with that in Eq. (3.145) and Eq. (3.151):

&(S)}{Eﬁm(zms))u (ﬁ”I(ZO’S))u]{BIU(S)} (3.153)

0

Inverting Eq. (3.153) leads to,
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o [0, (857

((ﬁnz(Zo,s))fl) ((I:‘I