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Abstract – This paper describes a test procedure to investigate the performance of a micro wind turbine with 

horizontal-axis. A 3D model of a rotor with five blades has been designed by a MATLAB software; its airfoil is 

optimized to efficiently work at low wind speed. The rotor is coupled to an electric generator and this equipment 

is tested in a wind tunnel. An anemometer is used to measure and set the desired wind speeds. Electric quantities, 

i.e., voltage, current and power, are acquired by a digital multimeter. A variable resistance is used to change the 

operating point of the generator. Preliminary results are reported that refer to the application of the proposed test 

procedures to a wind turbine with a 0.2 m2 swept area. 
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 I. INTRODUCTION 

The critical point in the operation of micro wind turbines is the coupling with an adequate commercial electrical 

generator. Actually, micro commercial generators are generally designed to efficiently work at high rotational speed 

(some thousands of revolutions per minute). A bladed rotor, designed to work at low speed, cannot achieve its maximum 

performance, when coupled with this kind of commercial generator. In case of high power wind turbines, a gearbox 

converts the low rotor speed into a high-speed [1]. Nevertheless, in case of micro scale wind generators, it is not an 

efficient and cost-effective solution.  

This paper proposes a test procedure in order to quantify the performance of micro wind generators, with good 

accuracy. The procedure has been applied to a micro wind turbine with horizontal axis. Its airfoil is optimized by a 

MATLAB software to efficiently work at low speed; then, a prototype is built by a 3D printer. The turbine is characterized 

by a rotor with five blades and a swept area of 0.2 m2. The Betz’s law [2] sets a threshold for the conversion of wind 

energy into mechanical energy. 

 

Fig. 1. The 3D model of the wind rotor under test 

The coefficient of power is the appropriate parameter with a maximum value of 0.593. According to the mentioned 

Betz’s law, at standard sea level (15 °C, 101.3 kPa), the theoretical maximum power of this device is PBetz ≈250 W at a 

wind speed of 15 m/s. The rotor is directly coupled to a permanent magnet synchronous generator (PMSG) with rated 

power of 400 VA and speed of 3000 rpm. The 3D model of the rotor with five blades is shown in Fig. 1. 



 II. DESCRIPTION OF THE PROCEDURE 

The procedure for the measurement of wind turbine performance is carried out as follows. 

First, the wind turbine is placed in a wind tunnel and the incident wind speed is regulated and set at the desired value. 

Then, the mechanical energy produced by the blades drives the PMSG. It supplies a resistive load, in which the resistance 

is changed to obtain different working points, starting from open-circuit condition. The physical quantities under 

measurement are: the wind speed Uwind, the rotor speed ω, voltage V and current I. Data are stored in a Personal Computer 

(PC) and then elaborated. 

The wind power Pwind(W) is a cubic function of the wind speed Uwind and is a quadratic function of the blade length 

(here defined radius R of the rotor), assuming the standard air density ρ𝑎𝑖𝑟=1.225 kg/m3. To compare the performance of 

different wind turbines, it is advisable to define their global efficiency in terms of aerodynamic and electrical conversions, 

according to [3]. 

 𝑃𝑤𝑖𝑛𝑑 =
1

2
𝜌𝑎𝑖𝑟𝜋 ∙ 𝑅2 ∙ 𝑈𝑤𝑖𝑛𝑑

3        

The Tip Speed Ratio λ is the ratio between the speed at the tip of the blade ω·R and the incident wind speed Uwind: 

 𝜆 =
𝜔∙𝑅

𝑈𝑤𝑖𝑛𝑑
            

The global efficiency η is calculated starting from the electric power Pel produced by the PMSG and the value of Pwind: 

 𝜂 =
𝑃𝑒𝑙

𝑃𝑤𝑖𝑛𝑑
 

The global efficiency can be partitioned in two contributions: the first parameter ηel is the electrical efficiency of the 

PMSG, while the second parameter Cp,mech is the coefficient of power, i.e., the ratio between the extracted mechanical 

power Pmech and Pwind. 

 𝜂 = 𝐶𝑝𝑚𝑒𝑐ℎ
∙ 𝜂𝑒𝑙 

 𝐶𝑝𝑚𝑒𝑐ℎ
=

(𝑃𝑒𝑙+𝑃𝑙𝑜𝑠𝑠)

𝑃𝑤𝑖𝑛𝑑
=

𝑃𝑚𝑒𝑐ℎ

𝑃𝑤𝑖𝑛𝑑
 

For the sake of simplicity, the losses Ploss in the conversion of mechanical power into electrical power are partitioned 

into three contributions: 

 𝑃𝑙𝑜𝑠𝑠 = 𝑃𝑐𝑜𝑝 + 𝑃𝑖𝑟𝑜𝑛 + 𝑃𝑓𝑟𝑖𝑐  

The copper losses Pcop are due to Joule effect in the armature windings of stator. They depend on the square of three-

phase current in the stator windings and on the coils’ resistance Pcop=3RcoilsI2. The iron losses Piron are a result of magnetic 

hysteresis and eddy currents. The friction losses Pfric are due to friction in the bearings. 

At nominal conditions, the copper losses are Pcop=3RI2
nom, while both iron and friction losses are assumed equal to 

half of the copper losses: 

 𝑃𝑖𝑟𝑜𝑛,𝑛𝑜𝑚 = 𝑃𝑓𝑟𝑖𝑐,𝑛𝑜𝑚 = 0.5 ∙ 𝑃𝑐𝑜𝑝,𝑛𝑜𝑚 

In operating conditions, the iron losses Piron are considered proportional to the ratio between the measured voltage V 

and its nominal value Vnom:  

 𝑃𝑖𝑟𝑜𝑛 = 𝑃𝑖𝑟𝑜𝑛,𝑛𝑜𝑚 ∙ (
𝑉

𝑉𝑛𝑜𝑚
)

2

 

The friction losses Pfric are proportional to the ratio between the angular speed ω and its nominal value ωnom:  

 𝑃𝑓𝑟𝑖𝑐 = 𝑃𝑓𝑟𝑖𝑐,𝑛𝑜𝑚 ∙ (
𝜔

𝜔𝑛𝑜𝑚
)

2

 



 III. INSTRUMENTATION AND MEASUREMENT CIRCUIT 

The instrumentation, used to measure wind speed, rotor speed and electric parameters, is described below. 

 A hot wire anemometer (manufacturer: Lutron) is placed in front of the blade rotor in order to measure and set the 

desired wind speed Uwind (accuracy: 5% of reading). 

 An encoder is utilized to measure the speed of the rotor ω. 

 A digital power meter (manufacturer: Yokogawa) is connected to the output of the PMSG in order to measure 

voltage V, phase current I and the generated power Pout, (typical uncertainties of 0.1%, 1% and 1.1%, 

respectively). 

Three variable resistances in star connection (with a maximum resistance of 100 Ω) represent the load of the circuit. 

They are used to change the operating point of the system at constant wind speed. Fig. 2 shows the scheme of the electrical 

circuit. 

 

 

Fig. 2. Single-phase equivalent circuit of the test. 

 IV. COMPONENTS OF THE SYSTEM 

The first component of the generator is a 3D printed wind turbine, whose shape is optimized to better work at low 

wind speed. The airfoil is designed to reduce the Laminar Separation Bubbles (LSB) phenomena, that result in excessive 

drag, inconsistent lift and noise [4]. 

The turbine is realized by a 3D printing procedure known as Fused Filament Fabrication [5]. It consists of the 

deposition of a stream of material, which immediately hardens to form a thin layer. A filament of thermoplastic is fed 

into an extrusion nozzle, which heats the material and apply it to the previous layer. For example, the nozzle moves 

upward in the working area and it creates another layer, repeating the process until the object has built up. The micro 

wind-turbine is 3D printed by using polylactic acid (PLA), that is a biodegradable plastic derived from renewable 

resources, such as corn starch [6]. Its melting temperature is between 180 and 220 °C and the density of the wire used to 

build the blade is 1.25 g/cm3. The weight of the prototype can vary with the infill density: in the case study, the wind 

turbine is realized with an infill density of 50% and the weight of a single blade is ≈70 g; the weight of the complete wind 

rotor is ≈470 g. 

As shown in Fig. 3, the hub of the turbine is made to join the five blades and the other components; the nose is 

connected in the front, while the flange is fixed in the back. The external diameter of the hub is 60 mm and it is the best 

compromise between low aerodynamic interference and mechanical resistance. Five screws (ø 5 mm and length of 60 

mm) are used to assemble the nose, the hub and the flange [7]. 
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Fig.3: Details of the mechanical connections 

 

A permanent magnet generator is an electric machine in which the rotating magnetic field, as well as the inductor flux, 

is created by permanent magnets, instead of being originated by current passing through coils. These magnets are placed 

on the rotor. As well known, this rotating field can be generated also by windings placed in the stator slots, as in the case 

of asynchronous machine in Doubly Fed Induction Generator for wind power [8]. In the synchronous machine the 

frequency of the induced voltage in the stator is proportional to the angular speed of the rotor by the number of pole pairs. 

Since an external excitation circuit is missing in a PMSG, slip rings and contact brushes are avoided. A disadvantage is 

that the air gap flux cannot be controlled, so the voltage regulation is not easy. 

The specifications of the PMSG used in the case study are shown in Table I. The wind tunnel used for the test is a 

closed return typology: a scheme of this type of tunnel is visible in Fig. 4. 

Table 1.  Specifications of the PMSG 

Torque (Nm) 1.271 

Power output (W) 400 

Speed (rpm) 3000 

Current (A) 2.7 

Max current (A) 8.1 

Resistance (Ω) 4.7 

Weight (kg) 5 

Pole pairs 8 

 

It consists of a series of air vanes and an open test section, where the prototype is installed. Air is moved by fans from 

the end of the test section back to it, passing by the vans. The test section of the wind tunnel used in this work has a 

diameter of 70 cm, which represents a limit for the size of the prototypes that can be tested. The length of test section, is 

1.75 m and the axis of the tunnel is placed at 1.1 m from the beginning. Turbulence effects are high due to important solid 

blockage that changes the velocity distribution as well as the coefficient of power. For the sake of simplicity, these effects 

are not considered in this work. 

 
Fig.4: The closed return wind tunnel 



 V. RESULTS AND DISCUSSIONS 

The most interesting results are the efficiency η-λ curves for different wind conditions. In addition to the η diagram, 

the Cp,mech is shown in order to evaluate the losses due to the PMSG generator. The maximum value of η is ≈30%, while 

the Cp,mech reaches ≈ 40% with losses around 10%. Fig. 5 shows the diagram of quantities η and Cp,mech obtained by the 

interpolation and the linear regression of the experimental data, corresponding to wind speeds in the range 9−13 m/s.  

Fig. 6 shows the Pmech-ω curves in the abovementioned wind speed range. It is possible to notice that the locus of 

maximum power points is a cubic function of rotor speed ω as the wind speed increases. The green line represents this 

locus of maximum power extracted from the wind turbine. With Uwind≈8.7 m/s, the maximum power output is Pel≈15 W 

and ω≈760 rpm; with Uwind=13 m/s, the maximum power Pel≈68 W is extracted at ω≈1100 rpm. 

 

Fig. 4. The η and Cp,mech curves as a function of  

 

 
Fig. 6. The Pmech-ω curves as a function of wind speed 

 

The cut-in speed is higher than conventional values (around 4 m/s). It is due to the high weight of the wind rotor with 

respect to the size of the swept area. Thus, the system has a high inertia. At low wind speed, the turbine cannot win the 

resistive torque and does not start. There are different solutions: the first consists of the print of a bigger turbine with a 

higher swept area; otherwise, another electric generator should be used. On the contrary, in case of the realization of 

another turbine with a lower weight, the resistance to the centrifugal force and flection could not be guaranteed. In a future 

work, the best compromise between the mechanical resistance of the material and the weight of the rotor will be 

investigated. 

 VI. CONCLUSIONS AND FUTURE WORKS 

This paper describes a procedure to test the performance of a micro wind turbine with horizontal-axis. A 3D printed 

prototype of turbine is connected to an electric generator and it is tested in a wind tunnel. Thanks to a set of variable 

resistance, the working point of the generator is varied and its performance is investigated at different wind speeds. In the 

case study, it is verified a fair performance of the tested turbine, directly coupled with a PMSG. Actually, the maximum 

value of the system efficiency is η ≈30%. 
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Authors are working to apply the procedure to the rescaled rotor shown in Fig. 7 with a swept area of 0.64 m2 and 

PBetz≈780 W (at wind speed =15 m/s). It will be installed in a bigger wind tunnel, with respect to that one used to test the 

procedure on the smaller prototype. The system will be upgraded by using torque meters: it will be possible to distinguish 

between mechanical and electric losses and verify the theoretical estimation of losses in the electric generator. The blades 

will be made studying the optimal compromise between the resistance to mechanical stress of materials and the total 

weight of the wind turbine. The goal is the reduction of the inertia and of the cut-in wind speed. 

 
Fig. 7: 3D models of the five blades rotors 
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