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ABSTRACT
Energy Performance Certificates (EPCs) provide interesting infor-
mation on the standard-based calculation of energy performance,
thermo-physical and geometrical related properties of a build-
ing. Because of the volume of available data (issued as open
data) and the heterogeneity of the attributes, the exploration of
these energy-related data collection is challenging. This paper
presents INDICE (INformative DynamiC dashboard Engine), a
new data visualization framework able to automatically explore
large collections of EPCs. INDICE explores EPCs through both
querying and analytics tasks, and intuitively presents the output
through informative dashboards. The latter include dynamic and
interactive maps along with different informative charts allow-
ing different stakeholders (e.g., domain and non-domain expert
users) to explore and interpret the extracted knowledge at dif-
ferent spatial granularity levels. The objective of INDICE is to
create energy maps useful for the characterization of the energy
performance of buildings located in different areas. The exper-
imental evaluation, performed on a real set of EPCs related to
a major Italian region in the North West of Italy, demonstrates
the effectiveness of INDICE in exploring an EPC dataset through
different data and knowledge visualization techniques.

1 INTRODUCTION
Nowadays large volumes of energy-related data are continuously
collected in different domains. To reduce wasteful energy con-
sumption, several orthogonal applications (e.g., buildings, IoT-
based devices, wireless networks) increased their policy priority
on energy efficiency. According to the U.S. Department of En-
ergy, in industrialized countries more than 40% of total energy is
consumed in buildings [14]. In the last few years many efforts
have been devoted to improve building energy efficiency with dif-
ferent final goals: (i) facilitating proactive energy-saving services
[32], (ii) characterizing data streams of energy consumption of
individual residential consumers in buildings [5–7], (iii) charac-
terizing heating energy demand through the analysis of energy
performance certificates of buildings [4, 9, 11], and (iv) reducing
emissions and energy consumption for buildings [20].
© 2019 Copyright held by the author(s). Published in Proceedings of the Workshops
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To enhance the effectiveness of data and knowledge explo-
ration, a variety of data visualization techniques have been pro-
posed. In [22, 23, 26] the authors exploited choropleth maps to
analyze the energy consumption and the electricity consump-
tion per unit area, respectively. Instead, in [21], the authors used
dynamic simulations of building energy consumption and build-
ing information to develop urban energy maps with high spatial
resolutions. However, all the above works proposed static maps
to analyze the average values of some features of interest. The
exploitation of dynamic and navigable maps tailored to the anal-
ysis of energy-related data has not been proposed so far. The
authors in [24] propose an interactive 3D visualization to analyze
the Linking Open Data (LOD) cloud adopting the metaphor of
urban area. The visualization is interactive, meaning that the
user can enlarge any part of the model, modify the perspective,
change the shape of the buildings and their positioning, view all
the connections or only those belonging to a specific data set. A
parallel research effort has been devoted to explore and summa-
rize geolocated time series data through maps [8]. Moreover, a
great research effort has been done in [17], in which the authors
propose a city energy model based on the requests and need for
visualization from a group of energy consultants. Their proposed
model offers stakeholders a powerful tool for evaluating both the
current state and future scenarios.

This paper presents INDICE (INformative DynamiC dashboard
Engine), a data visualization framework generating interactive
and navigable dashboards through the analysis of a set of Energy
Performance Certificates (EPCs). An EPC is a legal requirement
when constructing, selling or renting a building, and it provides
interesting information on the calculated standard energy perfor-
mance, thermo-physical and geometrical properties of existing
buildings. The multi-tiered framework INDICE has been pro-
posed to effectively deal with large collection of EPCs. With
respect to the other works, our framework brings together many
different analysis techniques to help non-expert users make sense
of Energy Performance Certificates. Indeed, after a pre-processing
step, cluster analysis allows discovering groups of EPCs with sim-
ilar features. To summarize the energy performance of buildings
at different granularities, INDICE generates informative dash-
boards tailored to different energy stakeholders, combining both
a rich set of interesting knowledge and ease of use.

The proposed informative dashboards exploit different kinds
of energy maps to show data and knowledge at different spatial



granularity levels. The proposed visualization techniques allow
different energy stakeholders to easily capture the high-level
overview of heating energy demand at a city level, and drill-
down the knowledge to the single apartment. Moreover, in order
to analyze the energy efficiency of different buildings through
the most interesting attributes under analysis, INDICE includes
cluster-markers which dealing with the problem of representing
multiple variables at the same time.

As a case study, a real collection of EPCs related to a major
Italian region, in North West Italy, was analyzed. Preliminary
experimental results show that the proposed approach is effective
in visualizing a manageable set of human-readable knowledge
for each end-user thought dynamic and interactive maps.

The next sections of the paper are organized as follows. Sec-
tion 2 introduces an overview of the INDICE system with a thor-
ough description of its main building blocks. Section 3 discusses
the preliminary experimental results obtained on a real data col-
lection and Section 4 draws conclusions and presents the future
development of this work.

2 THE INDICE ANALYTICS SYSTEM

Figure 1: The INDICE framework

INDICE (INformative DynamiC dashboard Engine) has been
tailored to analyze any collection of EPCs. The analysis of this
kind of data is challenging, due to the large number of attributes
characterizing each energy performance certificate. The exploita-
tion of this high dimensional data is burdensome due to the high
variability and dimensionality of data. INDICE combines different
techniques to effectively visualize a rich set of knowledge items
for a variety of energy stakeholders. The overall architecture is
shown in Figure 1. INDICE includes three main building blocks,
each one addressing one of the main steps of the knowledge-
extraction process: (i) Data pre-processing, (ii) Data selection and
analytics, and (iii) Data and Knowledge visualization. In the fol-
lowing, a detailed description of each building block is given.

2.1 Data Pre-processing
The INDICE pre-processing phase aims at smoothing the effect of
possibly unreliable data. It performs two tasks which have been
proved to be crucial in real-world geospatial data: (i) geospatial
coordinates cleaning and (ii) outlier detection and removal.

2.1.1 Geospatial data cleaning.
This pre-processing step is crucial when the final aim is to dis-
play data and knowledge through maps. INDICE includes an
ad-hoc strategy to clean geospatial attributes, including address,
house number, ZIP Code, latitude and longitude. Since the ad-
dress attribute is usually collected as a free text field, it often
contains numerous typos and input errors, which require care-
ful analysis to be correctly fixed. To clean the above-mentioned

attributes, INDICE includes a multi-step algorithm to correctly
reconstruct and correct the wrong information. Specifically, it
compares the available addresses with a referenced street map
that is usually available for each city. The referenced street map
should contain all the detailed information on streets, including
street names, house numbers, ZIP Code and geolocation (i.e.,
latitude and longitude). Given a city under analysis, INDICE au-
tomatically downloads the referenced street map if it is available
online.

The referenced street map is exploited by INDICE to verify the
reliability of the addresses in the dataset under analysis to correct
errors in the address field and at the same time reconstruct miss-
ing or incorrect information in the attributes ZIP Code, house
address, latitude and longitude. Specifically, the developed algo-
rithm compares each string in the dataset with the ones in the
referenced street map. For each couple of addresses Levenshtein
distance [19] is computed to evaluate the similarity between two
character strings, in terms of the minimum number of modi-
fications (insertions, deletions and substitutions) necessary to
transform the first string into the second one. The similarity
computed from Levenshtein distance takes values in the range
[0-1], where 0 indicates total dissimilarity and 1 equality of the
compared strings. Given a user-defined threshold ϕ, the refer-
enced address (the most similar to the address under analysis)
replaces the original one if Levenshtein similarity between the
two addresses is greater than or equal to ϕ. When the association
to a referenced address is not possible, i.e., Levenshtein simi-
larities are below ϕ, a geocoding request is sent via the Google
Geocoding APIs1. The latter is a reliable service providing a tex-
tual address to reconstruct the whole address in a consistent way.
However, INDICE exploits the Google Geocoding service only
when the association cannot be resolved through the referenced
street map due to a limit on the number of free requests.

2.1.2 Outlier detection and removal.
An outlier is an extreme value that deviates from other obser-
vations on data. It may occur either when the collected value
does not fit the model under study or when some error happens
during the data collection phase. To address this issue, INDICE ex-
ploits three approaches: (i) univariate outlier detection, (ii) mixed
univariate analysis, and (iii) multivariate outlier detection. In-
dependently of the above adopted strategies, values labelled as
outliers are not considered in the subsequent steps of analysis.

Univariate outlier. INDICE integrates three methodologies
to automatically detect outliers and remove them for the subse-
quent analytics steps: (i) the graphic boxplot method, (ii) the para-
metric generalized Extreme Studentized Deviate (gESD) method
[27] and (iii) the non-parametric Median Absolute Deviation
(MAD) [15]. The boxplot [31] (aka whiskers plot) is a conve-
nient way of visually displaying a data distribution through its
quartiles. The frequency distribution of each variable is summed
up through a few numbers (i.e. median, quartiles, min and max
values). The median summarizes the central tendency of the dis-
tribution, while the quartiles give an indication of the variability
through the interquartile difference. The minimum and maxi-
mum values provide not only information about extremes but
also on the possible presence of data with abnormal characteris-
tics w.r.t. the other points, plotting them individually. For each
variable, the analyst can manually remove the outliers (i.e., the
values smaller and greater than the minimum and the maximum)
through value filters.
1https://developers.google.com/maps/documentation/geocoding/intro



The gESD method [27] is used to detect one or more outliers
in a univariate data set. This test needs a parameter which is
the upper bound on the number of potential outliers. INDICE
tests the null hypothesis that the data has no outliers versus the
alternative hypothesis that there are at most k outliers (for some
user specified value of k). Given the upper bound, k , the gESD
test essentially performs k separate tests: a test for one outlier, a
test for two outliers, and so on up to k outliers. In INDICE the
number of outliers is determined by finding the largest value
r (with r ≤ k), such that the corresponding test gives a value
higher than the critical one.
Lastly, in statistics theMADmethod[15] is a robust measure of
the variability of a univariate sample of quantitative data. Calcu-
lating the MAD is straightforward, as it only involves finding the
median of absolute deviations from the median. It is calculated
by taking the absolute difference between each point and the
corresponding median, and then calculating the median of those
differences. As proposed in [16], INDICE uses the score of 3.5 as
cut-off value. This means that every point with a score above 3.5
is considered an outlier.

The users can exploit all the different univariatemethodologies
and/or choose the most suitable one. If a non-expert user does
not know how to deal with these outlier detection techniques,
she can use default configurations, as described below.

Expert-driven univariate analysis. Because some non-
expert users may be interested in analysing EPC collections,
INDICE suggests the univariate outlier detection method mostly
used by domain experts in the past interactions with INDICE.
Specifically, by collecting and storing expert user (e.g., energy
scientists) INDICE configurations, the non-expert users can re-
ceive interesting and effective suggestions to properly deal with
noisy data. In the current version of INDICE, only relevant at-
tributes describing the building thermo-physical characteristics
(e.g., Aspect Ratio, Average U-value of the vertical opaque enve-
lope and Average U-value of the windows) and the efficiency of
the heating subsystems (e.g., Distribution Subsystem Efficiency
and Generation Subsystem Efficiency) have been considered. In
this way, if a non-expert user does not know which univariate
analysis technique should be used, she can use a configuration
adopted by previous INDICE expert users, since their choices
are automatically stored as default configurations for non-expert
users.

Multivariate outlier detection. For the multivariate outlier
detection, INDICE integrates the DBSCAN algorithm (Density-
Based Spatial Clustering of Application with Noise) [12] to auto-
matically identify outliers. Specifically, DBSCAN detects clusters
based on a density reachability concept, where clusters with
higher-density regions are separated by lower-density regions.
DBSCAN requires two user-defined parameters (i.e., minPoints
and Epsilon). To properly specify these input parameters INDICE
plots the k-distance graph and automatically estimates a good
value for each parameter. As proposed in [10], INDICE runs sev-
eral times the k-distance plot for different values of minPoints,
and selects minPoints when the curve stabilises, and Espilon as
the elbow point of the stable curve.

2.2 Data selection and analytics
The knowledge visualization step is preceded by a data selection
and analytics phase. Since each energy performance certificate
includes a large number of features characterized by a great vari-
ability, in order to extract accessible knowledge and implement

data mining algorithms (e.g., cluster analysis, association rules)
data have to be properly transformed and peculiar attributes
have to be selected. Several techniques have been used to reduce
the complexity of the datasets under analysis and discover effec-
tive and hidden knowledge, interesting and readable by all the
different stakeholders involved in the analysis. This component
includes two innovative engines: (i) the query engine and (ii) the
data analytics engine.

2.2.1 Querying engine.
To select and explore the dataset under analysis, INDICE im-
plements a query engine that lets the user focus on the single
attributes of the energy performance certificates. Possible stake-
holders may be citizens, public administration and energy scien-
tists. Each of them could be interested in different characteris-
tics of the dataset under analysis. For each stakeholder, INDICE
produces the best possible representation to highlight the main
interesting facets of the results. Citizens could be interested in the
energy analysis of the buildings related to a specific area of the
city, or in the geometric features that characterize the buildings
belonging to the same intended use. The citizens may want to
discover areas of the city with more performing buildings, to buy
a flat that performs well in terms of energy efficiency. The public
administration may be instead being interested in identifying ar-
eas where to promote and invest for energy renovations. Energy
scientists could use INDICE to explore and characterize through
supervised and unsupervised techniques groups of building with
similar properties to perform benchmarking analysis. Based on
the target of each stakeholder, the system is able to automatically
propose to the specific end-user an optimal set of interesting
reports and graphical representations, with the possibility to set
manually the subset of features and parameters for the queries
to which she is interested in.

2.2.2 Data analytics engine.
To extract meaningful and interesting knowledge items from data,
INDICE includes different supervised and exploratory algorithms
to automatically analyze feature subsets. INDICE integrates the
K-means clustering algorithm [18] to create groups of buildings
with similar thermo-physical and energy properties, and associ-
ation rule mining [1] to extract interesting correlations among
features.

K-means algorithm. The partitional K-means cluster algo-
rithm [18] is exploited by INDICE to identify groups of EPCs
characterized by similar properties. To measure the similarity be-
tween EPCs, the Euclidean distance is computed. The K-means al-
gorithm, which is the most popular clustering algorithm, divides
the input dataset into K groups, where K is defined a-priori. The
average of all the energy certificates in each cluster represents
the centroid (representative point) of each group of buildings.
First, the algorithm chooses randomly K initial centroids. Then,
each point is assigned to the closest centroid and the centroids are
recalculated. The previous steps are repeated until the centroids
no longer change. K-means is able to identify a good cluster set
in a limited computational time. INDICE analyses the trend of
the SSE (saReadum of squared error) quality index to evaluate the
cluster cohesion [30] and automatically identify possible good K
values. The SSE is computed as the total sum of squared errors
for all objects in the collection, where for each object the error is
computed as the squared distance from the closest centroid. As
done in [30], in INDICE the K value is chosen as the point where
the marginal decrease in the SSE curve is maximized (aka elbow
approach).



Association rules. One of the most powerful exploratory
techniques in data mining aiming at finding interesting correla-
tions among data is represented by association rule discovery [1].
An association rule is expressed in the formA → B, whereA and
B are disjoint and non-empty itemsets, (i.e., A ∩ B = ∅). A is also
called rule antecedent and B rule consequent. Since association
rules extraction operates on a transactional dataset of categorical
attributes, a discretization step is needed to convert the original
continuously-valued measurements into categorical bins. The
discretization adopted in INDICE are described in [11]. The used
technique involves creating a decision CART (Classification And
Regression Tree) [2] for each variable, using as response variable
the annual primary energy demand normalized on the floor area.
The tree splits are used as bins in the discretization process. To
select only a subset of interesting rules, constraints on various
goodness measures are used. INDICE includes four well-known
quality indices: i) support, ii) confidence, iii) lift, and iv) conviction.
The rule support is the percentage of transactions that contain
both antecedent and consequent; confidence is the conditional
probability that the consequent is true under the condition of the
antecedent; lift [30] measures the correlation between the an-
tecedent and the consequent; conviction [3] measures the degree
of implication of a rule. Default thresholds are set by INDICE
however the end-user could change the default values to analyze
at different granularity level the extracted rules.

2.3 Informative dashboard

Figure 2: Example of choropleth and scatter map at single
certificate (Upper Left) and neighbourhood level (Upper
Right), and Cluster-marker maps at district (Bottom Left)
and city levels (Bottom Right).

The aim of this component is to visualize and make the infor-
mation and the extracted knowledge easy to be interpreted at
different levels of detail. To this extent, INDICE includes interac-
tive and navigable dashboards tailored to different use cases, pro-
viding both domain specific information and high-level energy
demand overviews. Indeed, the dashboards can be customized for
each end-user, providing deep targeted knowledge for domain
experts and human-readable informative contents for non-expert
users. Besides displaying charts and diagrams, which are typical

of statistics and generally difficult to interpret, since the geo-
localized EPC data lend themselves very well to be visualized
on maps, INDICE proposes several techniques to explore and
visualize the knowledge extracted from EPCs.
The dashboards include (i) geospatial maps, including traditional
maps as choropleth and scatter maps and a new type of map
named cluster-markermap, (ii) frequency distribution plots, (iii) as-
sociation rules, and (iv) correlation matrices. These visualization
techniques are jointly exploited by INDICE to graphically show
the extracted knowledge at different spatial granularity levels
such as city, district, neighbourhood, or housing unit (e.g., cer-
tificates belonging to the same building).

Geospatial maps. In INDICE, three geospatial maps have
been integrated: (i) choropleth maps, (ii) scatter maps, and (iii)
cluster-marker maps. These energy maps are related to each other,
as each user can switch from one view to another, simply by
changing the analysis zoom (i.e., drill down in the energy map)
or introducing the knowledge of the cluster-markers. In choro-
pleth maps each area (at different zoom levels) is colored ac-
cording to the average value of the considered variable for the
area under analysis. The scatter maps report a point and its
corresponding value for each EPC (and so residential unit) con-
tained in the selected area. Cluster-marker maps, similarly to
the choropleth maps, aggregate multiple certificates coloring the
dynamic markers according to the average of the values of the
aggregated points. While the first two geospatial maps (i.e., choro-
pleth and scatter maps) are useful for analyzing single variables,
the cluster-marker visualization faces the problem of represent-
ing multiple variables at the same time. Specifically, exploring
a single variable at coarse granularity levels could lead to flat
and poor representative maps. To this extent, INDICE includes
cluster-markers to introduce a new feature to the maps, in order
to analyze the energy efficiency of several buildings through
various attributes. The cardinality of the corresponding cluster
affects the size of the marker and is reported inside the marker.
These maps have been used together, ensuring in a single solution
different levels of detail depending on the zoom degree selected
by the user. Figure 2 shows examples of analysis results at differ-
ent granularity levels, visualizing various information features
on the maps. In the upper part of Figure 2, a set of attributes
(i.e., the Average U-value of the vertical opaque envelope and the
Average U-value of the windows, see Section 3 for further attribute
details) extracted from the EPCs by means of the querying engine
has been displayed. The choropleth map shows the average value
of the attributes for the selected area together with the scatter
marker of each single point, visualized at neighbourhood and
housing unit zoom levels, respectively. The users can navigate
the map and check the attribute values for each certificate by
clicking on the markers. In the bottom part of Figure 2, the in-
formation obtained through the data analytics engine (e.g., the
identification of the areas characterized by lower and medium
energy performances) has been visualized at district (Left) and
city (Right) levels. The cluster-markers show the cardinality of
each cluster, together with the average value of an independent
response variable chosen in the analytic process.

Frequency distributionplots. For a given area, the frequency
distributions (e.g., quartiles or deciles) of the features selected
for the visualization task are reported. A frequency distribution
of data can be shown in a table or graph/diagrams. Some com-
mon methods include frequency tables, histograms or bar charts.
These distributions can refer to single attributes or to aggregate
information extracted from the analytic task, hence to groups of



similar certificates according to the subsets of attributes selected
for the analysis. INDICE provides a setting panel to select one or
more distribution visualizations, including the description of the
main statistical indices. For numeric data, INDICE includes count,
mean, standard deviation and the three quartiles (i.e., median, first
and third quartiles), while for categorical attributes, the count,
the most common value’s frequency (i.e., mode) and the top-k
frequent values are reported. The end-user can select a response
variable against which to color the attribute distributions.

Association rules. INDICE discovers correlations in terms
of association rules. However, to ease the manual inspection of
the most interesting correlations, INDICE defines templates to
characterize the attributes and represent the association rules
using a tabular visualization. By sorting on quality indices, only
the top-k rules that satisfy all constraints may be displayed. Rules
can be extracted at different granularity levels, e.g., for each city,
neighbourhood or downstream of the clustering algorithm.

Correlation matrices. To reduce the complexity of the anal-
ysis and remove correlated attributes from the analytic process,
INDICE proposes correlation matrices to analyze the dependence
between variables. For each pair of numerical attributes X and Y,
the framework computes the Pearson correlation coefficient [28],
defined as ρX ,Y =

cov(X ,Y )
σX σY where cov(X ,Y ) is the covariance

between X and Y , σX is the standard deviation of X and analo-
gously σY for Y . Each coefficient value is translated into a gray
level in the black-and-white scale to represent the correlation
intensity in a plot matrix. When the selected set of attributes has
no evident linear correlation, it is eligible for the analytic task.

3 PRELIMINARY EXPERIMENTAL RESULTS
INDICE has been experimentally evaluated on a real collection
of building energy performance certificates. The EPCs are issued
in the years between 2016 and 2018 for buildings and flats lo-
cated in Piedmont, a major Italian region. This dataset has been
collected and openly released by CSI Piemonte (the Information
System Consortium)2 and regulated by the Piedmont Region au-
thority (Sustainable Energy Development Sector). The dataset
includes approximately 25000 energy certificates, each one char-
acterized by 132 features, including energy and thermo-physical
attributes, divided into 89 categorical attributes and 43 quantita-
tive attributes.
INDICE has been developed in Python [29], including the scikit-
learn library [25] (for the analytic tasks) and folium library [13]
(for visualization purposes).

3.1 Case study
To evaluate the effectiveness of INDICE, we focus on a case study
having as stakeholder the public administration (PA). The re-
sults are obtained by tailoring the analysis to the city of Turin
and selecting the EPCs related to the housing units of type E.1.1
(buildings used as permanent residence). To clean the geospatial
coordinates, in the specific address, house number, ZIP Code, lat-
itude and longitude for each EPC, INDICE applies the algorithm
proposed in Section 2. This algorithm compares the addresses
in the EPC dataset and the addresses in an open dataset3 pro-
vided by the municipality of Turin, containing the city roads,
with street names, house numbers, ZIP Code and geolocation
(i.e., (latitude, longitude)). This database was used to verify the
reliability of the addresses in our dataset. In our case study, if
2http://www.csipiemonte.it/web/it/
3https://www.sciamlab.com/opendatahub/dataset/c_l219_260

Figure 3: Correlation matrix between pairs of numerical
attributes

the PA user is interested in discovering which areas of a city are
more energy consuming and which are more efficient, she could
select the following subset of attributes, which characterize the
thermo-physical properties of each building: Aspect Ratio (S/V),
Average U-value of the vertical opaque envelope (Uo ), Average U-
value of the windows (Uw ), Heat surface (Sr ) and Average global
efficiency for space heating (ETAH). The Aspect Ratio represents
the geometric shape of a building. Uo and Uw measure the heat
loss through the opaque and the transparent elements of the
building, respectively. The lower the thermal transmittance of
the building envelope, the lower the heat flow that is transmitted
through the elements themselves. The Heat surface corresponds
to the heated floor area. Lastly, the ETAH index takes into ac-
count all the thermal losses of each subsystem, including the
generation, distribution, emission and control subsystems. The
PA user may be interested in discovering groups of buildings
with homogeneous thermo-physical properties. To address this
task the K-means clustering algorithm can be applied.

Before clustering, the correlation between the considered nu-
merical attributes is checked. In Figure 3, the correlation plot
matrix between the considered attribute pairs is reported. Dark
squares represent high linear correlation between the two vari-
ables, while light squares represent low correlation. All the vari-
ables considered in the analysis are weakly correlated (i.e., there
is no evident linear association between variable pairs). Hence,
the results obtained from the five attributes selected for the clus-
tering phase (i.e., S/V, Uo , Uw , Sr and ETAH) and the response
variable Normalized primary heating energy consumption (EPH),
allow the extraction of non-trivial knowledge from data. Figure
4 shows the results obtained by the data analytics engine for
the features described above. From the charts reported in the
dashboard, the analyst can explore the frequency distribution of
a specific attribute, as the response variable EPH, or its distribu-
tion in the cluster set detected by INDICE. Moreover, interesting
correlation rules4 can be extracted and visualized using a tabular
representation. In this way, every end user, independently of
her expertise degree, can detect the attributes which influence
most the energy performance of buildings and find out the ge-
ographical areas for which a certain set of rules apply. Driven

4The discretization used for the dynamic dashboard is as follows. 4 classes for
the Average U-value of the windows (i.e., Low = [1.1, 2.05], medium = (2.05, 2.45],
High = (2.45, 3.35] and Very high = (3.35, 5.5]); 3 classes for the Average U-value
of vertical opaque envelope (i.e., Low = [0.15, 0.45], medium = (0.45, 0.65], High =
(0.65, 1.1]; 3 classes for the Average global efficiency for space heating (i.e., Low =
[0.20, 0.60], medium = (0.60, 0.80], High = (0.80, 1.1].



Figure 4: Interactive dashboard visualizing, at district level, the result of the data analytics engine.

by the extracted knowledge, the PA user may support and in-
centive renovation policies targeting specific low performance
neighborhoods, or identifying groups of similar EPCs.

4 CONCLUSIONS AND FUTUREWORKS
This paper presents INDICE, a new data visualization framework
that analyzes EPC collections at different granularity levels. Af-
ter a preprocessing step, INDICE extracts interesting and hidden
knowledge for different end-users. Informative dynamic dash-
boards have been presented to show useful information, at dif-
ferent geospatial levels and with enriched map representations
(e.g., the cluster-marker map).

As future work we plan to integrate in INDICE other analytics
techniques (both supervised and unsupervised) to provide a more
flexible and enhanced analysis. Furthermore, the analysis process
should be empowered by an automatic tool suggesting appropri-
ate analysis configurations for the considered datasets. To this
aim, we are currently planning to release our framework INDICE
in order to have real feed-backs from end-users (e.g., citizens,
energy experts, public administration). In this way, we could im-
prove the choices of the default configurations, but also include
and integrate further representations to improve the visualization
of the extracted knowledge.
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