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Abstract 

As a development of the classical pendulum vibration absorber, bidirectional pendulum TMDs (BTMDs) 

have been recently proposed, capable to resonate with the main structure along both its horizontal 

directions by virtue of their optimally designed three-dimensional (3D) pendulum surface. To provide 

BTMDs with the required energy dissipation capability, two damping mechanisms based on respectively 

axial and tangential friction were invented as an alternative to ordinary viscous dashpots. The first one 

consists of a vertical axial-friction damper connecting the BTMD to the main structure. The second one 

consists of a tangential friction spatially variable along the pendulum surface in proportion to the modulus 

of the surface gradient vector. Both mechanisms are fundamentally characterized by a nonlinear but 

homogeneous first-order model which makes their effectiveness independent from the excitation level. 

This paper compares the two friction paradigms with the classical viscous one. To this purpose, first a 

unifying fully nonlinear 3D model is established through Lagrangian mechanics, then an optimal design 

method is proposed, based on either H∞ or H2 norm minimization criteria. Extensive numerical 

simulations are performed to show the pros and cons of the three damping options and of the two 

optimization approaches. Results demonstrate that the three types exhibit a similar performance against 

unidirectional excitation but that the axial-friction type loses most of its effectiveness under bidirectional 

excitation whenever the pendulum surface is axial- or nearly axial-symmetrical, because of the insurgence 

of a peculiar rotational motion which virtually deactivates the friction damper. Results also show that the 

H∞ design criterion is more robust than the H2 design criterion, and that both criteria outperform previous 

simplified approaches proposed in the literature. It is concluded that, once properly designed and until 

stroke demand does not exceed their intrinsic stroke limitations, BTMDs are an effective vibration control 

strategy, which can be implemented through a variety of damping options, and that the two homogeneous 

friction mechanisms, and particularly the tangential one, are promising paradigms to provide amplitude-

independent damping to engineering pendular systems.  

 

Keywords: structural vibration control; tuned mass dampers; bidirectional pendulum systems; Lagrangian 

mechanics; homogeneous friction damping; wind mitigation. 

 

1 Introduction 

Passive tuned mass dampers (TMDs) are a mature strategy of structural vibration control, widely applied 

in civil and mechanical engineering [1]. The most elementary scheme of a TMD consists of a single-

degree-of-freedom (SDOF) linear oscillator attached to the main structure, capable of absorbing and 

dissipating vibratory energy from one structural target mode through frequency tuning and damping 

optimization. According whether their restoring force is elastic or gravitational, TMDs are mainly 

classified in the translational and pendulum categories, and the pendulum category is further distinguished 

into the “supported” and the “hanging” pendulum types, depending whether the mass of the absorber is 

constrained to move along a physical curved recess or suspended through ropes or bars. In the last decade, 

supported pendulum TMDs have increasingly attracted the attention of the research community, because 

of their compactness, durability and versatility of shape. They include a variety of configurations, such as 

the ball pendulum [2,3], the rolling and sliding pendulums (with single or double concavity) [4,5] and the 

rocking pendulum. In [6] a novel rolling ball damper is proposed for controlling wind turbines, made of 

multiple steel balls rolling in a spherical concavity and dissipating through rolling friction and impact. In 

[7] a novel unbalanced rolling pendulum TMD is presented, where the gravitational restoring force is 
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produced by the unbalanced distribution of mass within the rolling body. In [8] a track nonlinear energy 

sink (NES) is proposed, whose specially shaped, smooth and symmetric track profile provides the desired 

essentially nonlinear restoring force which is typical of NESs. In [9] an asymmetrical variant of the said 

track NES is introduced, in which the smooth track nonlinearity combines with a discontinuous impact 

nonlinearity. In [10] an interesting application is presented of a rolling ball pendulum embedded in hollow 

slabs of civil structures. 

As an alternative to the pendulum schemes listed above, which are all either two-dimensional (2D) (i.e. 

constrained along a planar vertical profile) or three-dimensional (3D) but axial-symmetrical (i.e. 

constrained along a surface of revolution), bidirectional pendulum TMDs (BTMDs) have also been 

proposed which can be tuned to the main structure along both horizontal directions even when the 

corresponding structural target frequencies are different, by virtue of an optimally designed (generally 

non-axial-symmetrical) 3D pendulum surface. This concept has been implemented in two main variants, 

respectively belonging to the supported and to the hanging pendulum types. The first variant is the rolling-

pendulum BTMD introduced in [11]. In this case, the 3D pendulum surface is realized by a special 3D 

rolling-pendulum bearing, made of two identical concavities symmetrically facing each other and 

sandwiching a rolling ball. By varying the shape of the two concavities and the radius of the rolling ball, 

any 3D surface can be obtained. The second variant is the hanging-pendulum BTMD proposed in [12]. In 

this case, the 3D pendulum surface is realized by a special Y-shaped arrangement of the suspending 

cables. By varying the length of the vertical cable and/or of the inclined cables, any toroidal surface can be 

obtained. 

In these two variants of BTMDs, energy dissipation is produced either by classical horizontal viscous 

dampers [11] or by an original arrangement of a vertical axial-friction damper [12]. A third damping 

option has been very recently proposed for supported BTMDs by the same author, consisting of a 

tangential rolling- or sliding-friction spatially variable along the pendulum surface in proportion to the 

modulus of the surface gradient vector [13]. Both the axial-friction and the tangential-friction mechanisms 

mentioned above are fundamentally characterized by a nonlinear but homogeneous first-order model. 

Therefore, in the small-displacement domain both friction types ensure the BTMD an equivalent damping 

ratio and an effectiveness which are independent from the amplitude of motion [14], contrary to what 

happens when a constant friction acts in the direction of motion of the absorber, in which case the 

equivalent damping ratio becomes inversely proportional to the amplitude and the effectiveness becomes 

amplitude-dependent [15,10].  

Focusing on bidirectional pendulum TMDs of the supported type, this paper compares the two friction 

paradigms, respectively called the homogeneous-axial BTMD (HA-BTMD) and the homogeneous-

tangential BTMD (HT-BTMD) and jointly denoted as the homogeneous BTMD (H-BTMD), with the 

classical viscous paradigm, here named the viscous BTMD (V-BTMD). To this purpose, first a unifying 

fully nonlinear 3D BTMD model is derived through Lagrangian mechanics, then an optimal design 

methodology is proposed. Extensive numerical simulations of the optimally designed devices mounted on 

SDOF and multi-degree-of-freedom (MDOF) structures are finally performed under stationary force input, 

revealing the respective pros and cons of the three damping options. Main contributions of this paper are 

as follows: (i) establishing a common modelling framework, representative of all three existing BTMD 

types, by combining contributions from previous studies; (ii) presenting a common BTMD design 

procedure, rigorously valid for SDOF linear structures under low-amplitude harmonic or white-noise force 

excitations but extendable to more general cases, whose main novelty resides in the solution, never 

attempted before for H-BTMDs, of an H∞ or H2 norm minimization, here numerically performed for 

various design scenarios; (iii) showing the superior robustness of the H∞ optimal solution over the H2 

optimal solution, and the greater effectiveness of both solutions over existing simplified optimization 

criteria; (iv) evaluating the optimal BTMDs in a variety of cases, for different structural features and 

excitation levels; (v) proving, both analytically and numerically, the superior 3D performance of the HT-

BTMD over the HA-BTMD, this latter exhibiting, in axial- or nearly axial-symmetrical cases, a peculiar 

(so far undocumented), insufficiently-damped rotational mode which drastically reduces its mitigation 
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capabilities; (vi) showing, on the other hand, the substantial equivalence of the V-BTMD and of the HT-

BTMD in a variety of design situations.  

The remaining of this paper is organized as follows: in Section 2 the fully nonlinear 3D model of a BTMD 

of either viscous, axial-friction or tangential-friction damping types is derived; in Section 3 an optimal 

design method is presented for the three types; in Section 4 the three alternatives are compared in the 

small-displacement domain; in Section 5 the three alternatives are compared in the large-displacement 

domain; in Section 6 a case study is illustrated; in Section 7 conclusions are drawn.  

 

2. The BTMD unifying analytical model  

This section establishes the fully nonlinear 3D model of a BTMD accounting for: (i) one or more viscous 

dampers connecting it to the supporting structure; (ii) an axial-friction damper connecting it to the 

supporting structure; (iii) a variable tangential friction acting along the pendulum surface; and (iv) a fail-

safe bumper connecting it to the supporting structure. The general modelling framework, based on 

Lagrangian holonomic mechanics, is the one already used by other authors in [12] and by the same author 

in [13]. However, no tangential friction is considered in [12] and no axial friction in [13]. Also, the fail-

safe bumper is here modelled as in [13] rather than in [12]. This framework differs from the one, based on 

Appell’s non-holonomic dynamics, adopted in [11], specifically accounting for the rotational motion of 

the rolling sphere, here instead neglected. By merging contributions from [12] and [13], this section 

proposes a unifying model simultaneously representing all possible dissipation mechanisms currently 

available for BTMD applications.  

 

2.1 The pendulum kinematics  

The BTMD model is schematized in Figure 1. It consists of a point mass 𝑚 subject to gravity 𝑔 and 

constrained to move along a generic 3D differentiable concave-up surface. The surface is minimum in O, 

where it is rigidly connected to the structural support. The BTMD rotational inertia is neglected for 

simplicity. The motion of 𝑚 along the surface is opposed by four possible mechanisms, namely: (i) the 

viscous damper connecting 𝑚 to the support in A; (ii) the vertical axial-friction damper connecting m to 

the structure in B; (iii) the tangential friction acting along the surface; and (iv) the fail-safe bumper 

connecting 𝑚 to the support in C. Because the rotations of the structural support are assumed negligible, 

the surface as well as points A, B and C purely translate together with the support in O.  

Denoting by 𝑢, 𝑣 and 𝑤 the coordinates of 𝑚 with respect to the local reference system 𝑥𝑦𝑧 fixed to the 

support in O, the pendulum kinematic constraint is defined by the surface equation 𝑤 = 𝑤(𝑢, 𝑣) = 𝑤(𝐪), 

and the relative displacement of 𝑚 (w.r.t. its support) is given by r = [𝑢, 𝑣, 𝑤]𝑇 = [𝐪𝑇 , 𝑤(𝐪)]𝑇, where 𝑢 

and 𝑣 are the two independent coordinates, 𝑤 is the dependent coordinate and 𝐪 = [𝑢, 𝑣]𝑇 is the absorber 

degree-of-freedom vector. For simplicity, 𝑥 and 𝑦 are taken parallel to the two structural target 

modeshapes, assumed mutually orthogonal in plan. The versors associated with 𝑥, 𝑦 and 𝑧 are 𝐢̂, 𝐣̂ and 𝐤̂. 

The absolute acceleration of the structural support is 𝒂 = [𝑎𝑥 , 𝑎𝑦, 𝑎𝑧]𝑇 = [𝒂ℎ
𝑇 , 𝑎𝑧]𝑇 and the relative 

velocity of 𝑚 is ṙ =
𝜕𝐫

𝜕q
q̇ = Jq̇, where J =

𝜕𝐫

𝜕q
= [

𝜕𝐫

𝜕u
    

𝜕𝐫

𝜕v
] = [𝐈, ∇𝑤]𝑇 is the Jacobian matrix of the kinematic 

transformation and ∇𝑤 =  
𝜕𝑤

𝜕q
 is the surface gradient vector.  

 

2.2 The details of the dissipative mechanisms  

Four dissipative mechanisms are included in the model. The first three mechanisms, i.e. viscous damping, 

axial friction and tangential friction, although assumed mutually exclusive in the following sections, are 

here modelled together. The fourth mechanism, i.e. the fail-safe bumper, introduced to prevent excessive 

BTMD strokes, is always present but operates only in the large-displacement domain. For brevity, only 

one viscous damper (arbitrarily oriented) is supposed in deriving the model, despite multiple viscous 

dampers are generally admitted and at least two are indeed required if both target modes need mitigation. 

The four said mechanisms are modelled as follows. 
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2.2.1 Viscous damping 

As shown in Figure 1, the viscous damper has damping coefficient c, undeformed length 𝑙𝑐0 and deformed 

length 𝑙𝑐. Denoting by 𝐜̂0 and 𝐜̂ respectively the undeformed and deformed versors coaxial with the 

damper (oriented from A to 𝑚), its undeformed and deformed position vectors are respectively 𝐥𝑐0 =
𝑙𝑐0𝐜̂0 and 𝐥𝑐 = 𝑙𝑐𝐜̂ = 𝐥𝑐0 + 𝐫, and the damper axial elongation is 𝑠𝑐 = 𝑙𝑐 − 𝑙𝑐0. Its axial elongation rate is 

then 𝑠̇𝑐 = (
𝜕𝑠𝑐

𝜕q
)

𝑇
q̇ or equivalently 𝑠̇𝑐 = 𝐜̂𝑇 ṙ = 𝐜̂𝑇Jq̇ , this latter expression representing the projection of ṙ 

on 𝐜̂. Denoting as 𝑓𝑐 = 𝑐𝑠̇𝑐 the axial force in the damper, 𝐟𝑐 = −𝑓𝑐𝐜̂ is the viscous force vector acting on 

𝑚.  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 1. Schematic axonometric view of the BTMD in its deformed position. 

 

2.2.2 Axial friction  

As shown in Figure 1, the friction damper has slip force p, undeformed length 𝑙𝑝0 and deformed length 𝑙𝑝. 

For simplicity, a rigid-plastic (dry) friction model is adopted. Admitting for now that the friction damper 

might be arbitrarily oriented, and denoting by 𝐩̂0 and 𝐩̂ its undeformed and deformed coaxial versors 

(oriented from B to 𝑚), its undeformed and deformed position vectors are 𝐥𝑝0 = 𝑙𝑝0𝐩̂0 and 𝐥𝑝 = 𝑙𝑝𝐩̂ =

𝐥𝑝0 + 𝐩, and its axial elongation is 𝑠𝑝 = 𝑙𝑝 − 𝑙𝑝0. Its axial elongation rate is then 𝑠̇𝑝 = (
𝜕𝑠𝑝

𝜕q
)

𝑇

q̇ or 

equivalently 𝑠̇𝑝 = 𝐩̂𝑇 ṙ = 𝐩̂𝑇Jq̇. Denoting as 𝑓𝑝 = sign(𝑠̇𝑝) 𝑝 the axial force in the damper, 𝐟𝑝 = −𝑓𝑝𝐩̂t is 

the axial-friction force vector acting on 𝑚.  

 

2.2.3 Tangential friction  

As schematized in Figure 1, the 3D pendulum surface presents a tangential-friction coefficient spatially 

varying as 𝜇 = 𝜇(𝑢, 𝑣) = 𝜇(𝐪). For simplicity, an isotropic rigid-plastic friction model is assumed, with 

equal static and kinetic friction coefficients. The tangential-friction force value is:  

 𝑓𝜇 = 𝜇(𝐪)𝑁 (1) 

lp0   

lc0   

w(u,v) 

x y 

z 

A 

B 

C 

O c 

lc   

lp   

kr   

cr   

wr - w 

u 
v 

w 

m 

(u,v) 

r 

p 
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and the tangential-friction force vector acting on 𝑚 is 𝐟𝜇 = −𝑓𝜇 𝐭̂, where 𝑁 is the modulus of the normal 

reaction force vector 𝐍 at the contact point and 𝐭̂ is the tangent versor, given by 𝐭̂ = 𝟎 if ṙ = 𝟎 and by 

𝐭̂ = ṙ ‖𝒓̇‖⁄ = Jq̇ √q̇𝑇J𝑇Jq̇⁄   if ṙ ≠ 𝟎. 

Although the unifying model now under construction accepts in principle any friction pattern, here the 

attention is focused on the friction law recently proposed in [13], defined by: 

 𝜇(𝐪) = ‖𝛍𝟎∇𝑤‖ (2) 

which describes a friction coefficient varying along the surface as the modulus of the surface gradient 

vector ∇𝑤 pre-multiplied by the diagonal friction matrix: 

 𝛍𝟎 = [
𝜇0𝑥 0

0 𝜇0𝑦
] (3) 

where 𝜇0𝑥 and 𝜇0𝑦 are the tangential-friction damping ratios along 𝑥 and 𝑦. If 𝜇0𝑥 = 𝜇0𝑦 = 𝜇0, the 

friction matrix becomes 𝛍𝟎 = 𝜇0𝐈 and Eq. (2) becomes: 

 𝜇(𝐪) = 𝜇0‖∇𝑤‖ (4) 

which indeed describes a friction coefficient proportional to the modulus of the surface gradient vector. As 

show in [13], for a tangential-friction BTMD obeying Eq. (2), necessary and sufficient condition for the 

re-centring of the absorber is that max(𝜇0𝑥 , 𝜇0𝑦) < 1. This condition becomes 𝜇0 < 1 if 𝜇0𝑥 = 𝜇0𝑦 = 𝜇0. 

 

2.2.4 Viscoelastic bumping   

As shown in Figure 1, the bumper has stiffness 𝑘𝑟, damping coefficient 𝑐𝑟 and initial clearance 𝑤𝑟. The 

bumper reacts along 𝑧 if 𝑤 > 𝑤𝑟, applying to 𝑚 the bumper force vector 𝐟𝑟 = −𝑓𝑟𝐤̂, where 𝑓𝑟 = 0 if 

𝑤 ≤ 𝑤𝑟 and 𝑓𝑟 = 𝑘𝑟(𝑤 − 𝑤𝑟) + 𝑐𝑟𝑤̇ if 𝑤 > 𝑤𝑟, with 𝑤̇ = ∇𝑤𝑇q̇. Although the elastic term due to 𝑘𝑟 

rigorously prevents 𝑓𝑟 from being wholly non-conservative, still the bumping mechanism will be here 

termed dissipative for brevity.  

 

2.2.5 The combination of the four dissipative mechanisms  

The total dissipative force applied to 𝑚 by the four mechanisms is given by 𝐟𝑑 = 𝐟𝑐 + 𝐟𝑝 + 𝐟𝜇 + 𝐟𝑟. By 

applying Newton’s 2nd Law to the mass 𝑚 subjected to (i) its static weight 𝒘 = −𝑚𝑔𝐤̂, (ii) the normal 

reaction force 𝐍 at the contact point, and (iii) the total dissipative force 𝐟𝑑, the dynamic equilibrium 

equation results as 𝒘 + 𝐍 + 𝐟𝑑 = 𝑚(𝒂 + 𝐫̈), where 𝒂 + 𝐫̈ is the absolute acceleration of 𝑚. Denoting 

respectively by 𝛌𝒅 = 𝑚(𝒂 + 𝐫̈) and by 𝛌𝒔 = −𝒘 the dynamic and the static interaction forces exchanged 

between the BTMD and its support, and by 𝐑 = 𝐍 + 𝐟𝜇 the total reaction force vector at the contact point, 

the same equilibrium equation provides 𝐍 = 𝛌𝒔 + 𝛌𝒅 − 𝐟𝑑, which completely defines 𝑓𝜇 in Eq. (1). 

 

2.3 The fully nonlinear 3D model of the absorber  

The equation of motion of the absorber is here derived by applying the following Euler-Lagrange equation 

to the mass 𝑚 [12,13]: 

 
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕q̇
) −

𝜕𝑇

𝜕q
+

𝜕𝑉𝑔

𝜕q
+ 𝑸𝑖 + 𝑸𝑒 = 𝟎 (5) 

where 𝑇 =
𝑚

2
ṙ𝑇 ṙ is the kinetic energy; 𝑉𝑔 = 𝑚𝑔𝑤 is the gravitational potential energy; Q𝑖 = −J𝑇𝐟𝑑  is the 

generalized internal force due to the total dissipative force 𝐟𝑑 (representing the projection of 𝐟𝑑 on the 

local tangent vectors 
𝜕𝐫

𝜕u
 and 

𝜕𝐫

𝜕v
); and Q𝑒 = 𝑚J𝑇𝒂 is the generalized external force due to the support 

acceleration. By deriving the first three terms of Eq. (5) as specified in [12,13] and by denoting as 

M𝑞 = 𝑚J𝑇J the generalized mass matrix of the absorber, the following nonlinear matrix differential 

equation is obtained, representing the fully nonlinear 3D BTMD model [13]: 

 M𝑞𝐪̈ + Q𝑖 + 𝑚𝑔∇𝑤 = −𝑚J𝑇𝒂 − (𝐌̇𝑞q̇ −
𝜕𝑇

𝜕q
) (6) 

where the three terms on the left-hand side respectively represent the generalized inertia force vector, the 

generalized dissipative force vector and the generalized gravitational restoring force vector, while the two 
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terms on the right-hand side respectively represent the generalized external force vector and a second-

order term that couples q and q̇.  

The dissipative term on the left-hand side is on its turn expressed by: 

 Q𝑖 = −J𝑇𝐟𝑑 = 𝑓𝑐J𝑇𝐜̂ + 𝑓𝑝J𝑇𝐩̂ + 𝑓𝜇J𝑇 𝐭̂ + 𝑓𝑟J𝑇𝐤̂ (7) 

where the four terms on the right-hand side can be developed as follows: 

 𝑓𝑐J𝑇𝐜̂ = 𝑐𝑠̇𝑐J𝑇𝐜̂ = 𝑐 (
𝜕𝑠𝑐

𝜕q
)

𝑇
q̇

𝜕𝑠𝑐

𝜕q
= 𝑐[𝑱𝑇𝒄̂𝒄̂𝑇𝑱]q̇ (8) 

 𝑓𝑝J𝑇𝐩̂ = sign(𝑠̇𝑝) 𝑝J𝑇𝐩̂ = sign ((
𝜕𝑠𝑝

𝜕q
)

𝑇

q̇)  𝑝
𝜕𝑠𝑝

𝜕q
= sign(𝐩̂𝑇Jq̇)𝑝J𝑇𝐩̂ (9) 

 𝑓𝜇J𝑇 𝐭̂ =  𝜇(𝐪)𝑁 J𝑇Jq̇ √q̇𝑇J𝑇Jq̇⁄  (10) 

 𝑓𝑟J𝑇𝐤̂ = 𝑓𝑟∇𝑤 (11) 

and represent, respectively, the generalized viscous, axial-friction, tangential-friction and bumper force 

vectors. Eqs. (8), (10) and (11) are already present in [13]. Eq. (9) is implicitly present in [12]. 

 

2.4 The fully nonlinear 3D model of the absorber on a linear MDOF structure 

The dynamic equation of motion of a linear multi-degree-of-freedom (MDOF) structure equipped with the 

BTMD and subjected to external forces and ground accelerations is expressed by: 

 𝐌𝑠𝐪̈𝑠 + 𝐂𝑠q̇𝑠 + 𝐊𝑠q𝑠 + L𝑇𝛌𝒅 = f𝑠 − 𝐌𝑠𝐑𝑠𝐫̈𝑔 (12) 

where q𝑠 is the structural DOFs vector; 𝐌𝑠, 𝐂𝑠 and 𝐊𝑠 are the structural mass, damping and stiffness 

matrices; f𝑠 is the external force vector; 𝐫̈𝑔 = [𝑢̈𝑔  𝑣̈𝑔  𝑤̈𝑔]
𝑇

 is the ground acceleration vector; 𝛌𝒅 is the 

dynamic interaction force vector between the BTMD and its structural support; L is the kinematic 

transformation matrix; and 𝐑𝑠 is the input topological matrix. 

By expressing the absolute acceleration at the structural support as 𝒂 =  L(𝐪̈𝑠 + 𝐑𝑠𝐫̈𝑔) and the relative 

acceleration of the BTMD as 𝐫̈ =  J𝐪̈ + J̇q̇, the dynamic interaction force 𝛌𝒅 in Eq. (12) can be given as 

[12,13]: 

 𝛌𝒅 = 𝑚(𝒂 + 𝐫̈) = 𝑚(𝐋𝐪̈𝑠 + 𝐋𝐑𝑠𝐫̈𝑔 + 𝐉𝐪̈ + 𝐉̇𝐪̇) (13) 

By combining Eqs. (6), (12) and (13), the fully nonlinear 3D coupled equation of motion of the structure-

BTMD combined system under external force and ground acceleration input is finally obtained as: 

        [
𝐌𝑠 + 𝑚L𝑇L 𝑚L𝑇J 

𝑚J𝑇L M𝑞 ] [
𝐪̈𝑠

𝐪̈
] + [

𝐂𝑠 𝟎 
𝟎 𝟎

] [
q̇𝑠

q̇
] + [

𝟎
Q𝑖

] + [
𝐊𝑠 𝟎 
𝟎 𝟎

] [
q𝑠

q ] =  

 = [
f𝑠

𝟎
] − [

𝐌𝑠 + 𝑚L𝑇L

𝑚J𝑇L
] 𝐑𝑠𝐫̈𝑔 − [

𝑚L𝑇 J̇q̇

𝐌̇𝑞q̇ −
𝜕𝑇

𝜕q

] (14) 

 

2.5 The first-order 3D model  

By developing in Taylor series each expression of Eqs. (7) to (11) and by truncating higher-order terms, 

the first-order approximation of the fully nonlinear 3D model of the absorber is obtained as in [12,13]. In 

particular, the various terms are approximated as follows: 

- the generalized inertia force vector in Eq. (6) becomes M𝑞𝐪̈ ≈ 𝑚𝐪̈; 

- the surface gradient vector in Eq. (6) becomes ∇𝑤 ≈ H𝑤q, where [12,13]: 

 H𝑤 = [
1/𝐿𝑥 0 

0 1/𝐿𝑦
] = [

ℎ𝑤𝑥 0 
0 ℎ𝑤𝑦

] (15) 

is the Hessian matrix of 𝑤(𝐪) in 𝐪 = 𝟎, and 𝐿𝑥 and 𝐿𝑦 are the pendulum lengths along 𝑥 and 𝑦, with 

𝐿𝑥 ≤ 𝐿𝑦 all through this paper, by convention;  

- the generalized restoring force vector in Eq. (6) becomes 𝑚𝑔∇𝑤 ≈ 𝑚𝑔H𝑤q = K𝑤q, where [12,13]: 

 K𝑤 = [
𝑚𝑔/𝐿𝑥 0 

0 𝑚𝑔/𝐿𝑦
] = [

𝑘𝑤𝑥 0 
0 𝑘𝑤𝑦

] (16) 

is the equivalent pendulum stiffness matrix, and 𝑘𝑤𝑥 and 𝑘𝑤𝑦 are the equivalent pendulum stiffness 

coefficients along 𝑥 and 𝑦; 
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- the generalized viscous force vector in Eq. (8), assuming that the undeformed viscous damper lies in 

the 𝑥𝑦 plane, becomes [13]: 

 𝑓𝑐J𝑇𝐜̂ ≈ 𝑐[𝐜̂0ℎ𝐜̂0ℎ
𝑇 ] = 𝑐 [

𝑐̂0𝑥
2 𝑐̂0𝑥𝑐̂0𝑦

𝑐̂0𝑥𝑐̂0𝑦 𝑐̂0𝑦
2 ] q̇ = 𝐂q̇ (17) 

where 𝐜̂0ℎ = 𝐜̂0(1: 2) = [𝑐̂0𝑥 , 𝑐̂0𝑦]
𝑇

 and 𝐂 is the BTMD viscous damping matrix; 

- the generalized friction force vector in Eq. (9), assuming that the undeformed friction damper is 

vertically oriented, becomes [12]: 

 𝑓𝑝J𝑇𝐩̂ ≈ 𝑓𝑝H𝑝q = sign(𝑠̇𝑝)𝑝H𝑝q = sign(𝑠̇𝑝)K𝑝q (18) 

where:  

 H𝑝 = [
1/𝐿𝑥 + 1/𝑙𝑝0 0 

0 1/𝐿𝑦 + 1/𝑙𝑝0
] = [

ℎ𝑝𝑥 0 

0 ℎ𝑝𝑦
] (19) 

is the Hessian matrix of 𝑠𝑝(𝐪) in 𝐪 = 𝟎,  

 K𝑝 = 𝑝H𝑝 = 𝑝 [
ℎ𝑝𝑥 0 

0 ℎ𝑝𝑦
] = [

𝑘𝑝𝑥 0 

0 𝑘𝑝𝑦
] (20) 

is the equivalent axial-friction stiffness matrix, and  

 𝑠̇𝑝 = 𝐪𝑇H𝑝
𝑇q̇ = ℎ𝑝𝑥𝑢𝑢̇ + ℎ𝑝𝑦𝑣𝑣̇ (21) 

is the first-order approximation of the friction damper axial elongation rate. 

- the friction coefficient in Eq. (10), assuming the friction pattern expressed by Eq. (2), becomes: 

 𝜇(𝐪) ≈ ‖𝛍𝟎𝐇𝑤𝐪‖ (22) 

- the normal component of the reaction force vector in Eq. (10) becomes [13]: 

 𝑁 ≈ 𝑚(𝑔 + 𝑎𝑧) = 𝑚𝑔𝑁0 (23) 

where its weight-normalized expression 𝑁0 = 𝑁 𝑚𝑔⁄ = (1 + 𝑎𝑧 𝑔⁄ ) has been introduced; 

- the generalized friction force vector in Eq. (10), considering Eqs. (22) and (23) and observing that 

J𝑇Jq̇ ≈ q̇ and √q̇𝑇J𝑇Jq̇ ≈ √q̇𝑇q̇ = ‖q̇‖, becomes [13]: 

 𝑓𝜇J𝑇 𝐭̂ ≈  𝑚𝑔𝑁0‖𝛍𝟎𝐇𝑤𝐪‖ 𝐪̇ ‖q̇‖⁄ = 𝑁0‖𝛍𝟎𝐊𝑤𝐪‖ 𝐪̇ ‖q̇‖⁄  (24) 

- the generalized bumper force in Eq. (11), observing that the bumper is not activated in the small-

displacement domain, becomes 𝑓𝑟J𝑇𝐤̂ = 𝟎; 

- the generalized external force vector in Eq. (6) becomes −𝑚J𝑇𝒂 = −𝑚𝒂ℎ − 𝑚∇𝑤 ≈ −𝑚𝒂ℎ −

𝑎𝑧 𝑔⁄ K𝑤q, where 𝒂ℎ = 𝒂(1: 2) = [𝑎𝑥 , 𝑎𝑦]
𝑇

 and 𝑎𝑧 = 𝒂(3) are the horizontal and vertical components 

of the vector of support accelerations, respectively; 

- the second-order term in Eq. (6) becomes 𝐌̇𝑞q̇ −
𝜕𝑇

𝜕q
≈ 𝟎. 

With the approximations listed above, the first-order 3D model of the BTMD finally becomes: 

 𝑚𝐪̈ + 𝐂q̇ + 𝑁0K𝑤q + sign(𝑠̇𝑝)K𝑝q + 𝑁0‖𝛍𝟎𝐊𝑤𝐪‖ 𝐪̇ ‖q̇‖⁄ = −𝑚𝒂ℎ (25) 

and the first-order 3D model of the coupled structure-BTMD system becomes: 

[
𝐌𝑠 + 𝑚𝐋ℎ

𝑇 Lℎ 𝑚𝐋ℎ
𝑇  

𝑚Lℎ 𝑚I
] [

𝐪̈𝑠

𝐪̈
] + [

𝐂𝑠 𝟎 

𝟎 𝐂 + 𝑁0 ‖𝛍𝟎𝐊𝑤𝐪‖ ‖q̇‖⁄
] [

q̇𝑠

q̇
] + 

 + [
𝐊𝑠 𝟎 
𝟎 𝑁0K𝑤 + sign(𝑠̇𝑝)K𝑝

] [
q𝑠

q ] = [
f𝑠

𝟎
] − [

𝐌𝑠 + 𝑚𝐋ℎ
𝑇 Lℎ

𝑚Lℎ
] 𝐑𝑠𝐫̈𝑔 (26) 

where Lℎ = L(1: 2) are the first two columns of L, and 𝑠̇𝑝 is given by Eq. (21). 

The following fundamental properties of the BTMD, valid in the small-displacement domain, are 

expressed by Eq. (25): 

(i) the inertia force vector 𝑚𝐪̈ and the restoring force vector 𝑁0K𝑤q are linear and uncoupled along 𝑥 and 

𝑦; if multiple viscous dampers are modelled, the viscous force vector 𝐂q̇ in Eq. (25) results from the 

summation of their respective contributions, each computed according to Eq. (17); if, as here assumed, all 

viscous dampers lie in the horizontal plane, 𝐂q̇ is linear too and independent from the length of the 

dampers, though not uncoupled unless every damper is parallel to either 𝑥 or 𝑦, which would make 𝐂 

diagonal; 
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(ii) through the 𝑁0 term, the vertical support acceleration 𝑎𝑧 affects the horizontal response of the BTMD 

even in the first-order model, entering both the restoring force and the tangential-friction force vectors; 

(iii) the generalized axial-friction force vector sign(𝑠̇𝑝)K𝑝q has modulus and direction defined by the 

product K𝑝q, linear in q and radially oriented, but has the sign of 𝑠̇𝑝, which, according to Eq. (21), 

ultimately makes it a nonlinear coupled function of 𝐪 and q̇;  

(iv) the generalized tangential-friction force vector 𝑁0‖𝛍𝟎𝐊𝑤𝐪‖ 𝐪̇ ‖q̇‖⁄  has modulus 𝑁0‖𝛍𝟎𝐊𝑤𝐪‖ and 

has direction and sign of the tangent versor 𝐪̇ ‖q̇‖⁄ ; because modulus, direction and sign are nonlinear and 

coupled, the generalized tangential-friction force vector too is a nonlinear coupled function of 𝐪 and q̇;  

(v) both the generalized axial-friction and tangential-friction force vectors are homogeneous functions of 

𝐪 and q̇ (i.e. functions proportionally affected by any arbitrary scalar 𝛾 factor of 𝐪 and q̇); because all 

terms on the left-hand side of Eq. (25) are also homogeneous, the equation itself is homogeneous and its 

solution is proportional to the horizontal acceleration 𝒂ℎ appearing at the right-hand side (not to the 

vertical acceleration 𝑎𝑧, though), which makes each friction BTMD a first-order nonlinear but 

homogeneous system. 

   

2.6 The simplified 2D model  

In order to establish an optimal BTMD design method, it is convenient to further simplify the 3D first-

order models by assuming that: (i) the problem is planar in one vertical coordinate plane, so the 3D model 

degenerates into a 2D model in that plane; (ii) in that plane, the structural target frequency is far from the 

other structural frequencies, so the MDOF structure can be modelled as a 1DOF mode-generalized system 

[16]; (iii) the vertical acceleration input 𝑎𝑧 is negligible (i.e. 𝑁0 = 1). Under these conditions, assuming 

with no loss of generality that the said vertical plane is 𝑥𝑧, Eqs. (25) and (26) respectively become:   

 𝑚𝑢̈ + 𝑐𝑥u̇ + 𝑘𝑤𝑥[1 + sign(𝑢𝑢̇)𝜒𝑥 + sign(𝑢𝑢̇)𝜇0𝑥]u = −𝑚𝑎𝑥 (27) 

and: 

[
𝑚𝑠𝑥 + 𝑚 𝑚 

𝑚 𝑚
] [

𝑢̈𝑠

𝑢̈
] + [

𝑐𝑠𝑥 0 
0 𝑐𝑥

] [
u̇𝑠

u̇
] + [

𝑘𝑠𝑥 0 

0 𝑘𝑤𝑥[1 + sign(𝑢𝑢̇)𝜒𝑥 + sign(𝑢𝑢̇)𝜇0𝑥]
] [
u𝑠

u
] = 

 = [
𝑓𝑠𝑥

0
] − [

𝑚𝑠𝑥 + 𝑚
𝑚

] 𝑢̈𝑔 (28) 

where u𝑠 is the relative displacement of the main structure along x; 𝑚𝑠𝑥, 𝑐𝑠𝑥 and 𝑘𝑠𝑥 are the generalized 

mass, damping coefficient and stiffness of the main structure along x; 𝑓𝑠𝑥 is the external force acting on 

the main structure along x; 𝑐𝑥 is the viscous damping coefficient of the BTMD along x; and 

 𝜒𝑥 =
𝑘𝑝𝑥

𝑘𝑤𝑥
=

𝑝

𝑚𝑔
(1 +

𝐿𝑥

𝑙𝑝0
) (29) 

is the axial-friction damping ratio along x. 

Dividing Eq. (27) and the second line of Eq. (28) by 𝑚, and the first line of Eq. (28) by 𝑚𝑠𝑥, Eqs. (27) and 

(28) can be respectively recast in modal terms as follows: 

 𝑢̈ + 2𝜁𝑥𝜔𝑥u̇ + 𝜔𝑥
2[1 + sign(𝑢𝑢̇)𝜒𝑥 + sign(𝑢𝑢̇)𝜇0𝑥]u = −𝑎𝑥 (30) 

 

[
1 + 𝑚𝑅𝑥 𝑚𝑅𝑥  

1 1
] [

𝑢̈𝑠

𝑢̈
] + 2𝜔𝑠𝑥 [

𝜁𝑠𝑥 0 
0 𝜁𝑥𝜔𝑅𝑥

] [
u̇𝑠

u̇
] + 

 +𝜔𝑠𝑥
2 [

1 0 
0 𝜔𝑅𝑥

2 [1 + sign(𝑢𝑢̇)𝜒𝑥 + sign(𝑢𝑢̇)𝜇0𝑥]] [
u𝑠

u
] = [𝑓𝑠̅𝑥

0
] − [

1 + 𝑚𝑅𝑥

1
] 𝑢̈𝑔 (31) 

where 𝑚𝑅𝑥 = 𝑚/𝑚𝑠𝑥 is the BTMD mass ratio along x; 𝜔𝑠𝑥 = √𝑘𝑠𝑥/𝑚𝑠 and  𝜔𝑥 = √𝑔/𝐿𝑥 = √𝑘𝑤𝑥/𝑚 

are the circular frequencies of the main structure and of the BTMD along x; 𝜔𝑅𝑥 = 𝜔𝑥/𝜔𝑠𝑥 is the BTMD 

frequency ratio along x; 𝜁𝑠𝑥 = 𝑐𝑠𝑥/(2𝜔𝑠𝑥𝑚𝑠𝑥) and 𝜁𝑥 = 𝑐𝑥/(2𝜔𝑥𝑚) are the viscous damping ratios of the 

main structure and the BTMD along x; and 𝑓𝑠̅𝑥 = 𝑓𝑠𝑥/𝑚𝑠𝑥 is the mass-normalized external force acting on 

the main structure along x. 

Significantly, Eqs. (27), (28), (30) and (31) show that the first-order 2D analytical models of the two 

friction mechanisms are identical, but for the fact that their respective multiplicative factor is 𝜒𝑥 for the 

axial friction and 𝜇0𝑥 for the tangential friction. This was not the case for the first-order 3D models of 
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Eqs. (25) and (26). This result proves that the same optimization criterion and the same response are 

expected for the two friction options in 2D problems, whereas a different performance is expected in 3D 

problems. 

According to Eq. (31), once the structure and the external input are assigned, the first-order response of 

the system entirely depends on the five dimensionless parameters 𝑚𝑅𝑥, 𝜔𝑅𝑥, 𝜁𝑥 , 𝜒𝑥 and 𝜇0𝑥, which 

completely define the BTMD and whose optimization is left to the following Section 3. 

 

3. The design method 

In this section, assuming the three damping types as mutually exclusive, the models derived in Section 2 

are used to establish an optimal design method for a BTMD of either viscous type (V-BTMD) or 

homogeneous axial-friction type (HA-BTMD) or homogeneous tangential-friction type (HT-BTMD), with 

the aim of minimizing the displacement response of the structure to external force excitations. For any 

BTMD type, the design procedure comprises three stages, namely: (i) a 2D first-order optimization, (ii) a 

3D first-order reconciliation and (iii) a 3D design completion, which develop as follows. 

 

3.1 The 2D first-order optimization  

The first stage consists in the optimization of the parameters of the BTMD under the main assumption that 

its motion be uncoupled along 𝑥 and 𝑦 and confined to the small-displacement domain. If, moreover, the 

main structure can be schematized, in each horizontal direction, as a SDOF linear system under an 

external force input, then the optimization can be separately conducted along 𝑥 and 𝑦 based on the 

simplified 2D model presented in Section 2.6, formalized by Eq. (31) along 𝑥 and by an analogue 

expression along 𝑦. Because the HA-BTMD and the HT-BTMD are described by the same 2D model, the 

procedure is unique for the two friction options.  

Referring to the 𝑥 direction for simplicity, optimization is here posed according to two possible classical 

design criteria. The first one is the H∞ design criterion, aimed at the minimization of the worst-case 

steady-state structural response to a unit-amplitude harmonic input [5]. The second one is the H2 design 

criterion, aimed at the minimization of the root-mean-square (rms) structural response to a stationary 

Gaussian zero-mean white-noise input [17]. The two criteria have been widely used in the past to design 

linear TMDs [16], and the H∞ criterion has been recently used by the author in [13] to design 

homogeneous friction TMDs on a structure undergoing ground accelerations. However, none of the two 

criteria has ever been applied to homogeneous friction TMDs on structures subjected to force excitations, 

and the H2 criterion has never been rigorously applied to homogeneous friction TMDs at all. In this 

section, the H∞ and the H2 optimal design problems are set and solved for the V-BTMD and the two H-

BTMD types, for a force input acting on the main structure. The H∞-optimal and the H2-optimal BTMDs 

are subsequently evaluated through first an H∞ performance analysis and then an H2 performance analysis, 

to illustrate the trade-off between the two design options. 

Assuming the structure known and the BTMD mass ratio established according to cost-benefit 

expectations, the only two free design parameters, i.e. the frequency ratio and the damping ratio for the V-

BTMD and the frequency ratio and the friction ratio for both H-BTMD types, are determined by 

minimizing either the H∞ norm or the H2 norm of a selected input-output transfer function of the structure-

BTMD system. Denoting with 𝜔 the circular frequency of the external force input, the adopted transfer 

function is here the force-to-displacement transfer function 𝑇u𝑠𝑓𝑠̅𝑥
(𝜔), computed from 𝑓𝑠̅𝑥 to u𝑠. 

Introducing the response ratio 𝑅𝑥 = ‖𝑇u𝑠𝑓𝑠̅𝑥
‖

𝑛

𝑐𝑜𝑛
‖𝑇u𝑠𝑓𝑠̅𝑥

‖
𝑛

𝑢𝑛𝑐
⁄  as the ratio of the controlled to the 

uncontrolled Hn norm of 𝑇u𝑠𝑓𝑠̅𝑥
(𝜔) (n standing either for ∞ or for 2), both the H∞ and the H2 optimization 

problems can be formalized as follows: 

(i) for the V-BTMD: 

 𝑅𝑥𝑜𝑝𝑡 = min𝜔𝑅𝑥,𝜁𝑥
𝑅𝑥 (32) 

(ii) for the HA-BTMD: 

 𝑅𝑥𝑜𝑝𝑡 = min𝜔𝑅𝑥,𝜒𝑥
𝑅𝑥 (33) 

(iii) for the HT-BTMD: 
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 𝑅𝑥𝑜𝑝𝑡 = min𝜔𝑅𝑥,𝜇0𝑥
𝑅𝑥 (34) 

which respectively provide the V-BTMD optimal parameters 𝜔𝑅𝑥𝑜𝑝𝑡 and 𝜁𝑥𝑜𝑝𝑡, the HA-BTMD optimal 

parameters 𝜔𝑅𝑥𝑜𝑝𝑡 and 𝜒𝑥𝑜𝑝𝑡, and the HT-BTMD optimal parameters 𝜔𝑅𝑥𝑜𝑝𝑡 and 𝜇0𝑥𝑜𝑝𝑡. Because of the 

said equivalence between the two friction models, Eqs. (33) and (34) are in fact the same problem and 

produce the same optimal solution, valid for both H-BTMD types. Moreover, because 𝑅𝑥 only depends on 

the structural damping ratio 𝜁𝑠𝑥 and on the dimensionless BTMD parameters, the solutions to Eqs. (32) to 

(34) turn out to exclusively depend on 𝜁𝑠𝑥 and 𝑚𝑅𝑥. 

Of the three optimization problems above, Eq. (32) is the classical formulation for linear TMDs, already 

solved analytically for undamped structures and numerically for damped structures, both in H∞ and in H2 

terms [16,5,18,19]. Eqs. (33) and (34) are instead new. Their solution is here obtained through a numerical 

optimization, based on a branch and bound algorithm followed by a nonlinear least-square solver. The 

objective function 𝑅𝑥, which can be computed in an exact way for the linear system in Eq. (32), can only 

be computed in an approximate way for the nonlinear system in Eqs. (33) or (34), no matter if the H∞ or 

the H2 strategy is adopted. In the H∞ case, the transfer function 𝑇u𝑠𝑓𝑠̅𝑥
, which for the linear system in Eq. 

(32) admits a closed-form expression, must be computed by points for the nonlinear system in Eqs. (33) or 

(34), i.e. through simulating the system separately under each harmonic input frequency, until the 

response amplitude becomes acceptably steady. The maximum of 𝑇u𝑠𝑓𝑠̅𝑥
over all the explored frequencies 

provides the desired H∞ norm. In the H2 case, the stationary rms response, which for the linear system can 

be obtained from the output covariance matrices by solving the classical Lyapunov equation [20], must be 

computed through Monte Carlo simulations for the nonlinear system, i.e. by averaging the rms response of 

the system to several realizations of the stochastic input process. To achieve a satisfactory stabilization, 

200 realizations are here considered, each one having duration 𝑡𝑡𝑜𝑡 = 3600𝑇𝑠𝑥 and sampling time 𝑡𝑠 = 

0.01𝑇𝑠𝑥, where 𝑇𝑠𝑥 = 2𝜋 𝜔𝑠𝑥⁄  is the period of the main structure. 

For 𝜁𝑠𝑥 = 2% and 𝑚𝑅𝑥 = 3%, the solution of the H∞ optimization problem is reported in Figure 2a, where 

the transfer functions drawn for, respectively, the optimal V-BTMD and the optimal H-BTMD appear 

nearly identical, with the H-BTMD transfer function slightly lower and shifted rightwards. Figures 2b to 

2d report, for the same two optimal absorbers, the time response of the system under the first 15 cycles of 

a sinusoidal input, 𝑓𝑠̅𝑥 = 𝑓𝑠̅𝑥0sin (𝜔𝑠𝑥𝑡), applied at the frequency of the uncontrolled structure. For 

generality, all displacements are normalized to the static displacement amplitude 𝑢𝑠0 = 𝑚𝑠𝑥 𝑓𝑠̅𝑥0 𝑘𝑠𝑥⁄ =
𝑓𝑠̅𝑥0 𝜔𝑠𝑥

2⁄  and all forces to the equivalent force amplitude 𝑚𝑠𝑥𝑓𝑠̅𝑥0. In particular, Figures 2b and 2c report 

the time-histories of the normalized displacements of, respectively, the structure and the BTMD, while 

Figure 2d reports the normalized hysteresis loops of the BTMD, with 𝑓𝑑𝑥 denoting the 𝑥 component of the 

dissipative force 𝐟𝑑. Like Figure 2a, Figures 2b and 2c show that the V-BTMD and the H-BTMD produce 

similar overall results. Figure 2d shows the different constitutive laws of the two mechanisms, which 

result in elliptic loops for the V-BTMD and in triangular loops for the H-BTMD, but which provide a 

nearly identical cyclic energy dissipation, independently from the excitation amplitude. Denoting by 𝑢𝑚𝑎𝑥 

the steady-state displacement amplitude of the H-BTMD, by 𝐸𝑑 its cyclic energy dissipation, equalling 

2𝑘𝑤𝑥𝜒𝑥𝑢𝑚𝑎𝑥
2  for the HA-BTMD and 2𝑘𝑤𝑥𝜇0𝑥𝑢𝑚𝑎𝑥

2  for the HT-BTMD, and by 𝐸𝑤 =
1

2
 𝑘𝑤𝑥𝑢𝑚𝑎𝑥

2  its 

maximum stored potential energy, the equivalent viscous damping ratio of the H-BTMD can be classically 

expressed as 𝜁𝑥,𝑒𝑞 =
1

4𝜋

𝐸𝑑

𝐸𝑤
 and turns out to equal 𝜒𝑥/𝜋 for the HA-BTMD and 𝜇0𝑥/𝜋 for the HT-BTMD.  

By repeating the H∞ optimization for 𝑚𝑅𝑥 ranging from 1‰ to 20%, Table 1 and Figure 3 are obtained, 

which provide the H∞-optimal dimensionless parameters and the corresponding H∞ response ratios for the 

V-BTMD and for both H-BTMD types. For convenience, in both Table 1 and Figure 3b the optimal 

friction ratios 𝜒𝑥𝑜𝑝𝑡 and 𝜇0𝑥𝑜𝑝𝑡 are expressed in terms of equivalent viscous damping, i.e. divided by 𝜋.  

Referring to the V-BTMD (red dotted lines), Figure 3 shows well-known trends, with both 𝜔𝑅𝑥𝑜𝑝𝑡 and 

𝑅𝑥𝑜𝑝𝑡 decreasing from 1, and 𝜁𝑥𝑜𝑝𝑡 increasing from 0. Referring to the H-BTMD (blue continuous lines), 

Figure 3 shows that: (i) 𝜔𝑅𝑥𝑜𝑝𝑡 decreases from 1 much less rapidly than in the viscous case: the larger the 

mass ratio, the stiffer the optimal H-BTMD w.r.t. the optimal V-BTMD (i.e. the more concave the H-
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BTMD profile w.r.t. the V-BTMD profile); (ii) 𝜒𝑥𝑜𝑝𝑡/𝜋 and 𝜇0𝑥𝑜𝑝𝑡/𝜋 are lower than 𝜁𝑥𝑜𝑝𝑡 but converge 

to it as 𝑚𝑅𝑥 tends to zero; (iii) 𝑅𝑥𝑜𝑝𝑡 is nearly identical but systematically smaller than its viscous 

counterpart; therefore, if correctly optimized, homogeneous friction proves even more effective than 

viscous damping for TMD applications. Beside the V-BTMD (red line) and the H-BTMD (blue line), 

Figure 3c also presents a third type of BTMD (green line), denoted as the H-BTMD*, here defined, as in 

[12], as the suboptimal H-BTMD whose frequency ratio 𝜔𝑅𝑥𝑜𝑝𝑡 equals that of the optimal V-BTMD (red 

line in Figure 2b), and whose equivalent viscous damping ratio, 𝜒𝑥𝑜𝑝𝑡/𝜋 or 𝜇0𝑥𝑜𝑝𝑡/𝜋, equals the damping 

ratio 𝜁𝑥𝑜𝑝𝑡 of the optimal V-BTMD (red line in Figure 3b). Clearly from Figure 3, the H-BTMD* appears 

as effective as the optimal H-BTMD for very small values of 𝑚𝑅𝑥, i.e. when the optimal parameters for 

the H-BTMD and for the V-BTMD tend to coincide (Figures 3a and 3b), but less effective for larger 

values of 𝑚𝑅𝑥, when the optimal H-BTMD gets much stiffer and less damped than its viscous counterpart. 

For 𝑚𝑅𝑥 = 10%, e.g., 𝑅𝑥𝑜𝑝𝑡 is 35% larger for the H-BTMD* than for the H-BTMD. 

 

                                                 
 

                                               
 

          

Figure 2. Frequency and time response of a structure-BTMD system under harmonic force input, for 𝜁𝑠𝑥 = 

2% and 𝑚𝑅𝑥 = 3%: (a) transfer function; (b) structural displacement; (c) BTMD stroke; (d) BTMD 

constitutive law. 

 

 
Table 1. H optimal design of V-BTMDs and H-BTMDs under force excitation as a function of 𝑚𝑅𝑥, for 𝜁𝑠𝑥 = 2%. 

𝑚𝑅𝑥 

 

V-BTMD  H-BTMD 

𝜔𝑅𝑥𝑜𝑝𝑡 𝜁𝑥𝑜𝑝𝑡 𝑅𝑥𝑜𝑝𝑡  𝜔𝑅𝑥𝑜𝑝𝑡 𝜒0𝑥𝑜𝑝𝑡/𝜋 ; 𝜇0𝑥𝑜𝑝𝑡/𝜋  𝑅𝑥𝑜𝑝𝑡 

0.001 0.9977 0.0221 0.6807  0.9988 0.0221 0.6802 

0.002 0.9963 0.0301 0.5916  0.9983 0.0300 0.5909 

0.005 0.9926 0.0460 0.4681  0.9973 0.0458 0.4669 

0.010 0.9869 0.0638 0.3785  0.9958 0.0632 0.3765 

0.020 0.9761 0.0887 0.2981  0.9932 0.0871 0.2950 

0.030 0.9658 0.1076 0.2566  0.9907 0.1045 0.2526 

0.040 0.9558 0.1233 0.2298  0.9883 0.1185 0.2251 

0.050 0.9461 0.1370 0.2106  0.9857 0.1302 0.2053 

0.060 0.9366 0.1491 0.1960  0.9832 0.1403 0.1902 

0.070 0.9274 0.1602 0.1843  0.9804 0.1485 0.1780 

𝜔 𝜔𝑠𝑥⁄  

 

 

𝑢(𝑡) 𝑢𝑠0⁄  

 

𝜔𝑠𝑥𝑡 (2𝜋)⁄  

 

𝜔𝑠𝑥𝑡 (2𝜋)⁄  

 

(a) (b) 

(c) (d) 

|𝑇u𝑠𝑓̅𝑠𝑥
(𝜔)|

𝒄𝒐𝒏

‖𝑇u𝑠𝑓𝑠̅𝑥
‖

∞

𝑢𝑛𝑐  
𝑢𝑠(𝑡)

𝑢𝑠0
 

𝑢(𝑡)

𝑢𝑠0
 

−
𝑓𝑑𝑥(𝑡)

𝑚𝑠𝑥𝑓̅𝑠𝑥0
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0.080 0.9184 0.1704 0.1747  0.9779 0.1564 0.1681 

0.090 0.9095 0.1798 0.1666  0.9750 0.1629 0.1596 

0.100 0.9009 0.1886 0.1596  0.9722 0.1690 0.1524 

0.120 0.8841 0.2046 0.1483  0.9670 0.1808 0.1406 

0.140 0.8680 0.2190 0.1393  0.9615 0.1901 0.1313 

0.160 0.8525 0.2321 0.1320  0.9558 0.1982 0.1237 

0.180 0.8376 0.2441 0.1259  0.9501 0.2052 0.1174 

0.200 0.8232 0.2552 0.1207  0.9445 0.2113 0.1121 

 

 

                   
 

 

Figure 3. H optimal design of the V-BTMD and the H-BTMD under force excitation as a function of 

𝑚𝑅𝑥, for 𝜁𝑠𝑥 = 2%: (a) optimal frequency ratios; (b) optimal damping ratios; (c) optimal response ratios 

(including the H-BTMD* option).  

 

 

Similarly, Table 2 and Figure 4 report the results of the H2 optimization problem. The overall trends 

recognized in Table 1 and Figure 3 for the H∞ case are here confirmed, with the optimal parameters only 

slightly modified (Figures 4a and 4b) and the optimal response ratios obviously increased (Figure 4c), as it 

is always the case whenever a TMD is evaluated in H∞ terms rather than in H2 terms. Strongly reduced 

are, however, the differences between the response ratios corresponding to, respectively, the optimal H-

BTMD and the suboptimal H-BTMD* (Figure 4c), with the latter being now defined based on the 

parameters of the H2-optimal V-BTMD. For 𝑚𝑅𝑥 = 10%, e.g., 𝑅𝑥𝑜𝑝𝑡 is only 2% larger for the H-BTMD* 

than for the H-BTMD. Clearly, the H-BTMD* approximates the optimal H-BTMD much better when the 

design is conducted in H2 terms than in H∞ terms. Because the H-BTMD and the H-BTMD* are still 

characterized by significantly different parameters, this good approximation reveals the greater 

insensitivity of the H2 performance to deviations of the TMD parameters from optimality, w.r.t. the H∞ 

performance.  

 

 
Table 2. H2 optimal design of V-BTMDs and H-BTMDs under force excitation as a function of 𝑚𝑅𝑥, for 𝜁𝑠𝑥 = 2%. 

𝑚𝑅𝑥 

 

V-BTMD  H-BTMD 

𝜔𝑅𝑥𝑜𝑝𝑡 𝜁𝑥𝑜𝑝𝑡 𝑅𝑥𝑜𝑝𝑡  𝜔𝑅𝑥𝑜𝑝𝑡 𝜒0𝑥𝑜𝑝𝑡/𝜋 ; 𝜇0𝑥𝑜𝑝𝑡/𝜋  𝑅𝑥𝑜𝑝𝑡 

0.001 0.9989 0.0158 0.8972  0.9990 0.0159 0.8974 

0.002 0.9981 0.0223 0.8493  0.9988 0.0226 0.8494 

0.005 0.9956 0.0353 0.7693  0.9981 0.0357 0.7691 

0.010 0.9916 0.0498 0.6996  0.9972 0.0504 0.6994 

0.020 0.9839 0.0702 0.6259  0.9956 0.0703 0.6257 

0.030 0.9765 0.0856 0.5823  0.9938 0.0857 0.5822 

0.040 0.9693 0.0985 0.5518  0.9922 0.0990 0.5517 

0.050 0.9622 0.1098 0.5284  0.9905 0.1095 0.5284 

0.060 0.9553 0.1198 0.5095  0.9888 0.1192 0.5095 

0.070 0.9485 0.1290 0.4937  0.9871 0.1278 0.4939 

𝑅𝑥𝑜𝑝𝑡 

 
𝜔𝑅𝑥𝑜𝑝𝑡 

 
𝜁𝑥𝑜𝑝𝑡  

 
𝜒

𝑥𝑜𝑝𝑡

𝜋
 

 
𝜇0𝑥𝑜𝑝𝑡

𝜋
  

 

 

 

𝑚𝑅𝑥 

 

𝑚𝑅𝑥 

 

𝑚𝑅𝑥 

 

(a) (b) (c) 

𝜁𝑥𝑜𝑝𝑡 

 

 
𝜇0𝑥𝑜𝑝𝑡

𝜋
  

 
𝜒

𝑥𝑜𝑝𝑡

𝜋
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0.080 0.9418 0.1374 0.4803  0.9853 0.1358 0.4805 

0.090 0.9353 0.1452 0.4686  0.9835 0.1430 0.4690 

0.100 0.9289 0.1525 0.4582  0.9815 0.1498 0.4588 

0.120 0.9165 0.1660 0.4405  0.9777 0.1623 0.4415 

0.140 0.9045 0.1781 0.4259  0.9734 0.1733 0.4273 

0.160 0.8929 0.1891 0.4135  0.9690 0.1833 0.4152 

0.180 0.8817 0.1993 0.4026  0.9644 0.1924 0.4048 

0.200 0.8708 0.2087 0.3931  0.9598 0.2007 0.3957 

 

 

                 
 

 

Figure 4. H2 optimal design of the V-BTMD and the H-BTMD under force excitation as a function of 

𝑚𝑅𝑥, for 𝜁𝑠𝑥 = 2%: (a) optimal frequency ratios; (b) optimal damping ratios; (c) optimal response ratios 

(including the H-BTMD* option). 

 

 

To clarify this point, Figure 5 shows the H∞ and the H2 response ratios obtained for a V-BTMD (red lines, 

on the left) and for an H-BTMD (blue lines, on the right), each optimized according to either the H 

criterion or the H2 criterion. For both BTMD types, it appears that the H2 response is not much influenced 

by the adopted design criterion (the two higher curves in each figure are quite coincident, with the H2-

designed BTMD outperforming the H∞-designed BTMD by less than 1.7%), whilst the H∞ response 

significantly depends on the adopted design criterion (the two lower curves in each figure show large 

differences, with the H∞-designed BTMD outperforming the H2-designed BTMD by more than 18%). This 

suggests that the H∞ design is generally more robust than the H2 design for TMD applications and should 

be practically preferred whenever the excitation might possibly switch from a random input to a harmonic 

input concentrated in the frequency range of the main structure. Also, replacing the H2 design with the H∞ 

design  affects the H2 response ratios of the V-BTMD and the H-BTMD by substantially the same 

percentage, keeping their relative performance unchanged. For these reasons, in the remaining of this 

paper the H∞ design will be considered as the standard approach and systematically adopted in all 

simulations.  

What obtained above in the 𝑥 direction equally holds in the 𝑦 direction too, as long as the BTMD motion 

is supposed uncoupled. If, additionally, the two structural target modes along 𝑥 and 𝑦 have the same 

damping ratio 𝜁𝑠𝑥 = 𝜁𝑠𝑦 = 𝜁𝑠 and the same generalized mass 𝑚𝑠𝑥 = 𝑚𝑠𝑦 = 𝑚𝑠, as it will be constantly 

assumed in the sequel for simplicity, then the BTMD will have the same mass ratio 𝑚𝑅𝑥 = 𝑚𝑅𝑦 = 𝑚𝑅 

and therefore the same dimensionless optimal parameters along 𝑥 and 𝑦: 𝜔𝑅𝑥𝑜𝑝𝑡 = 𝜔𝑅𝑦𝑜𝑝𝑡 = 𝜔𝑅𝑜𝑝𝑡, 

𝜁𝑥𝑜𝑝𝑡 = 𝜁𝑦𝑜𝑝𝑡 = 𝜁𝑜𝑝𝑡, 𝜒𝑥𝑜𝑝𝑡 = 𝜒𝑦𝑜𝑝𝑡 = 𝜒𝑜𝑝𝑡, and 𝜇0𝑥𝑜𝑝𝑡 = 𝜇0𝑦𝑜𝑝𝑡 = 𝜇0𝑜𝑝𝑡. The physical soundness of 

these parameters is discussed in Section 3.2 next. 
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Figure 5. H and H2 response ratios for the V-BTMD (left) and the H-BTMD (right) optimized according 

to either the H criterion or the H2 criterion, as a function of 𝑚𝑅𝑥 for 𝜁𝑠𝑥 = 2%. 

 

 

3.2 The 3D first-order reconciliation 

While the first stage of the procedure provides the dimensionless parameters of the BTMD which 

separately optimize its first-order 2D response along 𝑥 and 𝑦, the second stage derives its corresponding 

physical parameters. This derivation, which is exact and univocal for the V-BTMD and the HT-BTMD, 

generally requires, for the HA-BTMD, an adjustment of the optimal dimensionless parameters obtained in 

the previous stage, to reconcile them with the constraints inherent in the spatial geometry of the device. 

In fact, while for the V-BTMD the condition 𝜁𝑥𝑜𝑝𝑡 = 𝜁𝑦𝑜𝑝𝑡 is satisfied by adopting distinct dampers along 

𝑥 and 𝑦, and for the HT-BTMD the condition 𝜇0𝑥𝑜𝑝𝑡 = 𝜇0𝑦𝑜𝑝𝑡 is satisfied by adopting 𝜇0 = 𝜇0𝑜𝑝𝑡 in Eq. 

(4), for the HA-BTMD the condition 𝜒𝑥𝑜𝑝𝑡 = 𝜒𝑦𝑜𝑝𝑡 is incompatible with the definition of 𝜒𝑥 and 𝜒𝑦 given 

by Eq. (29) and by its analogue expression in the 𝑦 direction, except if 𝐿𝑥 = 𝐿𝑦 (axial-symmetry) or 

𝑙𝑝0 → ∞. In all other cases, at least one between 𝜒𝑥 and 𝜒𝑦 cannot be optimal. To minimize the distance 

of 𝜒𝑥 and 𝜒𝑦 from 𝜒𝑜𝑝𝑡, the position is therefore made that 𝜒𝑜𝑝𝑡 = √𝜒𝑥𝜒𝑦 which, recalling that 𝐿𝑥 ≤ 𝐿𝑦, 

results in the following expressions for 𝜒𝑥 and 𝜒𝑦: 

 𝜒𝑥 = 𝜒𝑜𝑝𝑡√
1+𝐿𝑥/𝑙𝑝0

1+𝐿𝑦/𝑙𝑝0
≤ 𝜒𝑜𝑝𝑡         and        𝜒𝑦 = 𝜒𝑜𝑝𝑡√

1+𝐿𝑦/𝑙𝑝0

1+𝐿𝑥/𝑙𝑝0
≥ 𝜒𝑜𝑝𝑡 (35) 

and in the following expression for the slip force: 

 𝑝 = 𝑚𝑔
𝜒𝑜𝑝𝑡

√(1+𝐿𝑥/𝑙𝑝0)(1+𝐿𝑦/𝑙𝑝0)
 (36) 

If 𝐿𝑥 = 𝐿𝑦 or 𝑙𝑝0 → ∞, Eq. (36) ensures the HA-BTMD, both along 𝑥 and 𝑦, the same 2D response as the 

optimal HT-BTMD. In all other cases, Eq. (36) makes the HA-BTMD suboptimal in both directions, 

namely underdamped along 𝑥 and overdamped along 𝑦, to an extent which increases with the ratio 𝐿𝑦 𝐿𝑥⁄  

and decreases with 𝑙𝑝0. In all cases, 𝑙𝑝0 appears an independent design parameter for the HA-BTMD, 

always affecting its first-order response.  

In conclusion, once the optimal dimensionless parameters 𝜔𝑅𝑜𝑝𝑡, 𝜁𝑜𝑝𝑡, 𝜒𝑜𝑝𝑡 and 𝜇0𝑜𝑝𝑡 are known, they 

can be used, together with 𝑚𝑅, 𝑙𝑝0 and all the relevant structural parameters, to determine all BTMD 

dimensional parameters involved in the first-order model, i.e.: the BTMD mass (𝑚 = 𝑚𝑅𝑚𝑠); the 

pendulum frequencies (𝜔𝑥 = 𝜔𝑅𝑜𝑝𝑡𝜔𝑠𝑥 and 𝜔𝑦 = 𝜔𝑅𝑜𝑝𝑡𝜔𝑠𝑦) and lengths (𝐿𝑥 = 𝑔/𝜔𝑥
2 and 𝐿𝑦 = 𝑔/𝜔𝑦

2); 

the damping coefficients for the V-BTMD (𝑐𝑥 = 2𝜁𝑜𝑝𝑡𝜔𝑥𝑚 and 𝑐𝑦 = 2𝜁𝑜𝑝𝑡𝜔𝑦𝑚, if one damper is 

supposed in each direction); the slip force for the HA-BTMD (𝑝 according to Eq. (36)); and the friction 

pattern for the HT-BTMD (𝜇 = 𝜇0𝑜𝑝𝑡‖∇𝑤‖). The remaining BTMD parameters, involved beyond the 

range of small displacements, are instead determined as explained in Section 3.3 next.  
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3.3 The 3D design completion 

The third stage of the procedure is the 3D design completion, meant to provide the BTMD parameters 

which, affecting the response of the absorber only in the large-displacement domain, are excluded from 

the previous stages. These parameters include the shape of the pendulum surface far from the origin, the 

length of the viscous dampers and the bumper characteristics. They also include the friction pattern far 

from the origin, unless already determined by a friction pattern law. Although these parameters too could 

be the object of a specific optimization based on the fully nonlinear model, they are left here to the free 

choice of the designer. This section offers possible guidelines for their selection. 

 

3.3.1 The pendulum shape  

The optimal pendulum lengths derived in Section 3.2 completely define the pendulum surface locally 

around the origin. Away from it, instead, distinct surfaces may correspond to the same 𝐿𝑥 and 𝐿𝑦 pair. For 

an ellipsoid of equation 𝑤(𝑢, 𝑣) = 𝑏𝑧 (1 − √1 − 𝑢2 𝑏𝑥
2⁄ − 𝑣2 𝑏𝑦

2⁄ ), e.g., there are 1 ways of choosing 

the semi-axes 𝑏𝑥, 𝑏𝑦 and 𝑏𝑧 to obtain the desired 𝐿𝑥 and 𝐿𝑦, according to the relations 
1

𝐿𝑥
=

𝜕2𝑤

𝜕𝑢2 |
𝟎

=
𝑏𝑧

𝑏𝑥
2 

and 
1

𝐿𝑦
=

𝜕2𝑤

𝜕𝑣2 |
𝟎

=
𝑏𝑧

𝑏𝑦
2. In this case the designer could freely impose, for instance, the further condition 

𝑏𝑧 = √𝑏𝑥𝑏𝑦 (leading to a spherical pendulum if 𝐿𝑥 = 𝐿𝑦), in order to uniquely determine the ellipsoidal 

axes as follows: 𝑏𝑥 = √𝐿𝑥
3 𝐿𝑦

4
, 𝑏𝑦 = √𝐿𝑥𝐿𝑦

34
 and 𝑏𝑧 = √𝐿𝑥𝐿𝑦. Alternative shapes could obviously be 

preferred, including for example the torus or the elliptic paraboloid. The search for the best option is here 

left for future work, and the ellipsoidal shape with 𝑏𝑧 = √𝑏𝑥𝑏𝑦  will be adopted in all the following 

simulations. 

 

3.3.2 The friction pattern  

Similarly, the optimal friction pattern derived in Section 3.1 completely defines the friction coefficient 

only locally around the origin. Eqs. (4) and (22) are two of the infinite alternatives to extend it elsewhere. 

If an ellipsoidal pendulum is chosen and if Eq. (4) is adopted, the entire friction pattern is described by 

[13]: 

 𝜇(𝐪) = 𝜇0√(
𝑢2

𝐿𝑥
2 +

𝑣2

𝐿𝑦
2 ) (1 −

𝑢2

𝑏𝑥
2 −

𝑣2

𝑏𝑦
2)⁄ = 𝜇0 ‖𝐇𝑤𝐪‖ [1 − 𝑤(𝐪) 𝑏𝑧⁄ ]⁄  (37) 

It can be easily shown [13] that: 

 around the origin: 𝜇(𝐪) ≈ 𝜇0‖𝐇𝑤𝐪‖ → 0; 

 at the ellipsoid equator: 𝜇(𝐪) → ∞; 

 elsewhere: the iso-friction lines 𝜇(𝐪) = 𝜇̅ and the level curves 𝑤(𝐪) =  𝑤̅ coincide if 𝐿𝑥 = 𝐿𝑦, 

otherwise they intersect along the surface as shown in Figure 6, where an ellipsoid is drawn having 

𝐿𝑦 = 2𝐿𝑥 (and so 𝑏𝑥 ≅ 1.19𝐿𝑥, 𝑏𝑦 ≅ 1.68𝐿𝑥 and 𝑏𝑧 = √2𝐿𝑥), truncated at 𝑤𝑚𝑎𝑥 = 𝑏𝑧 2⁄ = 𝐿𝑥 √2⁄ . 

In the axonometric view, the 𝑧 dimension is doubled for clarity. Both figures show 11 level curves, 

uniformly spaced between 0 and 𝑤𝑚𝑎𝑥 and 11 iso-friction lines, uniformly spaced between 0 and 2𝜇0. 

 

 

(a) 
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Figure 6. Intersection of level curves (black) and iso-friction lines (red) for 𝐿𝑦 𝐿𝑥⁄ = 2: (a) 𝑥𝑦 view; (b) 

axonometric view (the 𝑧 dimension being doubled for the sake of clarity).  

 

 

3.3.3 Number and length of the viscous dampers  

The optimal values of 𝑐𝑥 and 𝑐𝑦 are obtained in Section 3.2 by assuming a single damper in each 

horizontal direction. If more dampers are deployed in each direction, the corresponding coefficient must 

be subdivided among them. The length of the dampers is excluded from optimization and shall be chosen 

by the designer as appropriate, considering that the sensitivity of the damper to second-order effects 

decreases with its length. In all simulations, two dampers will be assumed henceforth in each direction, 

symmetrically disposed around the 𝑧 axis, and the same length 𝑙𝑐0𝑗 = √𝐿𝑥𝐿𝑦 = 𝑏𝑧 will be assigned to all 

dampers, with 𝑗 = 1: 4.  

 

3.3.4 The bumper  

The bumper is excluded from optimization too. Its stiffness and damping coefficient will be assigned to 

simulate a relatively rigid inelastic impact. Stiffness is taken as 𝑘𝑟 = 𝑚𝜔𝑟
2, with 𝜔𝑟 = 20√𝜔𝑥𝜔𝑦 [21]. 

Damping is taken as 𝑐𝑟 = 2𝜁𝑟𝜔𝑟𝑚, where 𝜁𝑟 = −
ln 𝑒𝑟

√𝜋2+ln2 𝑒𝑟
 and 𝑒𝑟 is the elastic restitution coefficient 

[22]. Assuming here 𝑒𝑟 = 0.5, it follows that 𝜁𝑟 = 0.2155. Finally, clearance is taken as 𝑤𝑟 = 𝑏𝑧 2⁄ . 

 

4. Simulations in the small-displacement domain 

In this section, the V-BTMD, HA-BTMD and HT-BTMD are compared in the small-displacement 

domain. In all cases, the BTMD is assumed to be designed according to the H∞ criterion exposed in 

Section 3.1, here preferred because of its greater robustness. First 2D models and then 3D models are 

simulated under white-noise force input. In all cases, the structure is modelled as a 2%-damped SDOF 

system in each active horizontal direction.  

 

4.1 2D models 

The simplified first-order 2D model expressed by Eq. (28) is adopted. Optimization is conducted for the 

three BTMD types according to Sections 3.1 and 3.2, based on the H∞ design criterion. Assuming for 

simplicity 𝐿𝑥 = 𝐿𝑦, Eq. (35) implies for the HA-BTMD that 𝜒𝑥 = 𝜒𝑜𝑝𝑡, i.e. that the optimal HA-BTMD 

and HT-BTMD are equivalent and can be jointly referred to as the H-BTMD. With their optimal 

parameters selected according to Table 1, the V-BTMD and the H-BTMD are here evaluated by 

computing the system response to a stationary Gaussian zero-mean white-noise input process. As in 

Section 3.1, the stationary rms response is obtained through either solving the Lyapunov equation or 

performing Monte Carlo simulations, depending whether the system is linear or nonlinear. In the case of 

Monte Carlo simulations, 100 realizations are considered, assuming 𝑡𝑡𝑜𝑡 = 3600𝑇𝑠𝑥 and 𝑡𝑠 = 0.01𝑇𝑠𝑥. By 

introducing the instantaneous power dissipated by the main structure as 𝑊𝑠 = 𝒒̇𝑠
𝑇𝐂𝑠q̇𝑠 = 𝑐𝑠𝑥u̇𝑠

2 + 𝑐𝑠𝑦𝑣̇𝑠
2, 

(b) 
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three structural response quantities are used to measure the control performance, namely the rms structural 

displacement u𝑠,𝑟𝑚𝑠 (indeed corresponding to the H2 norm of the transfer function 𝑇u𝑠𝑓𝑠̅𝑥
(𝜔)), the rms 

absorber stroke u𝑟𝑚𝑠, and the mean structural dissipated power 𝑊𝑠,𝑚𝑒𝑎𝑛. Dividing the controlled by the 

uncontrolled values of the said three responses, the following three response ratios are obtained, adopted 

as performance indices: 𝑅𝑑𝑥 = 𝑢𝑠,𝑟𝑚𝑠
𝑐𝑜𝑛 𝑢𝑠,𝑟𝑚𝑠

𝑢𝑛𝑐⁄  (indeed corresponding to the H2 response ratio 𝑅𝑥 adopted 

in Section 3.1), 𝑅𝑠𝑥 = 𝑢𝑟𝑚𝑠
𝑐𝑜𝑛 𝑢𝑟𝑚𝑠

𝑢𝑛𝑐⁄  and 𝑅𝑊 = 𝑊𝑠,𝑚𝑒𝑎𝑛
𝑐𝑜𝑛 𝑊𝑠,𝑚𝑒𝑎𝑛

𝑢𝑛𝑐⁄ .  

For the V-BTMD and the H-BTMD, 𝑅𝑑𝑥, 𝑅𝑠𝑥 and 𝑅𝑊 are reported in Figure 7 for 𝑚𝑅𝑥 ranging from 1‰ 

to 20%. The response ratios are nearly the same for the two types, with 𝑅𝑑𝑥 and 𝑅𝑊 slightly smaller for 

the H-BTMD and 𝑅𝑠𝑥 slightly smaller for the V-BTMD. This result confirms the substantial equivalence 

of the V-BTMD and the H-BTMD in the presence of white noise input. 

 

 

                
 
Figure 7. First-order 2D model under white-noise force input. Response ratios as a function of 𝑚𝑅𝑥. 

 

 

4.2 3D models  

The H2 bidirectional performance of the three BTMD types, designed according to Sections 3.1. and 3.2 

based on the H∞ criterion, is here assessed by adopting the first-order 3D model of Eq. (26), with the input 

components 𝑓𝑠𝑥 and 𝑓𝑠𝑦 described as two independent stationary Gaussian zero-mean white-noise 

excitations, having rms values 𝑓𝑠𝑥0 and 𝑓𝑠𝑦0, duration 𝑡𝑡𝑜𝑡 and sampling time 𝑡𝑠. Based on this model, the 

equations of motion along 𝑥 and 𝑦 are still linear and uncoupled for the V-BTMD but nonlinear and 

coupled for the HA-BTMD and the HT-BTMD. 

 

4.2.1 Introductory example  

As a preliminary step towards the assessment of the bidirectional performance of BTMDs, the case is first 

examined of an H∞-optimal BTMD having 𝑚𝑅 = 3% (the subscript 𝑥 being here removed because 

𝑚𝑅𝑥 = 𝑚𝑅𝑦 = 𝑚𝑅), mounted on a structure having mass 𝑚𝑠 = 1 kg and natural periods 𝑇𝑠𝑥 = 𝑇𝑠𝑦 (axial-

symmetry). Because 𝑇𝑠𝑥 = 𝑇𝑠𝑦 implies 𝐿𝑥 = 𝐿𝑦 and therefore 𝜒𝑥 = 𝜒𝑦 = 𝜒𝑜𝑝𝑡, the optimal HA-BTMD 

does not depend on 𝑙𝑝0 (see again Eq. (35)) and, until a unidirectional excitation is considered, it performs 

exactly as the optimal HT-BTMD. If, instead, a bidirectional white-noise input is applied characterized by 

𝑓𝑠𝑥0 = 𝑓𝑠𝑦0 = 1 N, 𝑡𝑡𝑜𝑡 = 60 s and 𝑡𝑠 = 0.01 s, the response of the system in four possible configurations 

(no TMD, V-BTMD, HA-BTMD and HT-BTMD) is shown in Figure 8, where the following additional 

response quantities have been introduced: 𝑊 = 𝒓̇𝑇𝐟𝑑, representing the instantaneous power dissipated by 

the BTMD; 𝑊𝑡𝑜𝑡 = 𝑊𝑠 + 𝑊, representing the total instantaneous power dissipated by the overall system; 

𝐸𝑠(𝑡) = ∫ 𝑊𝑠(𝜏)𝑑𝜏
𝑡

0
, 𝐸(𝑡) = ∫ 𝑊(𝜏)𝑑𝜏

𝑡

0
 and 𝐸𝑡𝑜𝑡(𝑡) = ∫ 𝑊𝑡𝑜𝑡(𝜏)𝑑𝜏

𝑡

0
, representing the energy dissipated 

until time 𝑡 by, respectively, the structure, the BTMD and the overall system.  

Figures 8 depicts the main features of the three BTMD types. Figures 8a to 8f compare the four 

configurations in terms of response time-histories and trajectories, the black curves referring to the 

uncontrolled structure, the red, green and blue curves to the structure equipped with, respectively, the V-

𝑚𝑅𝑥 

 

𝑚𝑅𝑥 

 

𝑚𝑅𝑥 

 

𝑅𝑑𝑥 

 𝑅𝑠𝑥 

 

𝑅𝑊 

 

(a) (b) (c) 



 18 

BTMD, the HA-BTMD and the HT-BTMD. Figures 8g to 8i, focused on the absorber dissipative 

behaviour during the last 20 seconds of simulation, report the planar view of the BTMD trajectories, 

discretized at every sample instant by monochrome circles of different intensities, the intensity being 

proportional to the power dissipated by the absorber at that instant, with a null intensity (white circle) 

corresponding to a null power and with a maximum intensity (black circle) corresponding to the maximum 

instantaneous power dissipated by the three BTMDs during those 20 seconds. 

Two fundamental results are expressed by Figure 8. 

The first result is that the V-BTMD and the HT-BTMD present a similar satisfactory bidirectional 

performance. In particular: (i) the structural displacements (Figures 8a and 8c) and the absorber strokes 

(Figures 8b and 8d) are similar for the two types; (ii) the absorber dissipated power, although exhibiting 

larger excursions in the case of the V-BTMD, present a similar mean trend, finally resulting in similar 

cumulative dissipated energy curves (Figure 8e and 8f); (iii) the “dissipative trajectories” shown in 

Figures 8g and 8i, although reflecting the different features of the two dissipative models (dissipation 

tends to increase with the absorber velocity for the V-BTMD and with the absorber stroke for the HT-

BTMD), appear on the whole quite similar to each other. 

 

                      
   

                    
 

              
 

Figure 8. First-order 3D model under bidirectional white-noise force input. Response time-histories and 

trajectories for 𝑇𝑠𝑥 = 𝑇𝑠𝑦 = 1.0 s and 𝑚𝑅 = 3%. Figures (a) to (f): black = uncontrolled; red = V-BTMD; 

green = HA-BTMD; blue = HT-BTMD. Figure (f): dashed = 𝐸; continuous = 𝐸𝑡𝑜𝑡. Figures (g) to (i): 𝑊 

increasing from white to black. 
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The second result, new to the best of the author’s knowledge, is that the response of the HA-BTMD 

drastically diverges from the response of the other two types, soon after an initial transient period. The 

reason for this divergence clearly emerges from the HA-BTMD trajectories reported in Figures 8d and 8h, 

which appear as wide, nearly circular, scarcely-dissipative loops. The same damping impairment is visible 

in Figure 8e, where long time intervals are seen where the HA-BTMD dissipated power is nearly absent. 

Evidently, partly constrained by the radial arrangement of the axial-friction damper and partly encouraged 

by the axial-symmetry of the pendulum surface and by the equal value of the two horizontal force 

components, the motion of the HA-BTMD evolves through a series of virtually undamped revolutions 

around the 𝑧 axis (non-dissipative because accompanied by no elongation of the friction damper), 

separated by non-circular, non-horizontal, pseudo-rotational loops, where a certain amount of energy 

dissipation is allowed by the damper elongation. By looking back at Eq. (21), which provides the first-

order approximation of the friction damper axial elongation rate, it can be easily recognized that 

undamped loops are all those which, described by the equation ℎ𝑝𝑥𝑢𝑢̇ + ℎ𝑝𝑦𝑣𝑣̇ = 0, annul the axial 

elongation 𝑠̇𝑝 of the damper, thus inhibiting its damping capability. The final result is that the equivalent 

damping ratio of the HA-BTMD drops, its stroke increases and its control effectiveness gets largely 

reduced (Figures 8a and 8f).  

 

4.2.2 Generalization  

The previous example is here generalized as follows: (i) the mass ratio 𝑚𝑅 is alternatively set at 1%, 3% 

and 10%; (ii) keeping 𝑇𝑠𝑥 = 1 s, the ratio 𝑇𝑠𝑦 𝑇𝑠𝑥⁄  between the two structural periods is ranged from 1 to 

2; (iii) for any 𝑇𝑠𝑦 𝑇𝑠𝑥⁄ ≠ 1, because of the lost axial-symmetry, 𝜒𝑥 and 𝜒𝑦 now depend on 𝑙𝑝0, which is 

alternatively set at 0, √𝐿𝑥𝐿𝑦 or ∞ for comparison; (iv) the rms and mean responses are averaged over 100 

realizations of the stochastic input process, each realization having duration 𝑡𝑡𝑜𝑡 = 600 s.  

Results are reported in Figure 9 in terms of the following H2 response ratios: 𝑅𝑑 = √𝑅𝑑𝑥𝑅𝑑𝑦, 𝑅𝑠 =

√𝑅𝑠𝑥𝑅𝑠𝑦 and 𝑅𝑊, where 𝑅𝑑𝑥, 𝑅𝑠𝑥 and 𝑅𝑊 are defined as in Section 4.1, and 𝑅𝑑𝑦 and 𝑅𝑠𝑦 are the analogue 

of 𝑅𝑑𝑥 and 𝑅𝑠𝑥 in the 𝑦 direction. It appears that: (i) the V-BTMD response ratios are constant with 

𝑇𝑠𝑦 𝑇𝑠𝑥⁄ ; (ii) the HT-BTMD response ratios are approximately constant and nearly equal to the V-BTMD 

response ratios; (iii) the performance degradation of the HA-BTMD (revealed by an increase in both the 

structural response and the TMD stroke), confirmed for all mass ratios, strongly depends on 𝑇𝑠𝑦 𝑇𝑠𝑥⁄ , 

being maximum in the axial-symmetrical case and diminishing as 𝑇𝑠𝑦 𝑇𝑠𝑥⁄  increases, less rapidly as 𝑚𝑅 

gets larger; (iv) results for the HA-BTMD are slightly influenced by 𝑙𝑝0; the intermediate value, 𝑙𝑝0 =

√𝐿𝑥𝐿𝑦, achieves the best trade-off among the three response ratios, and will be therefore constantly 

adopted in the remaining of this paper.  

 

To investigate how the response of the BTMD, and particularly of the HA-BTMD, depends on the relative 

amplitude of the two horizontal force components, the same simulations are repeated for different values 

of their respective ratio 𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ . Results are reported in Figure 10 for 𝑚𝑅= 3%, omitting 𝑅𝑠 for brevity. 

𝑅𝑑 and 𝑅𝑊 appear independent from 𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄  for the V-BTMD, and nearly independent for the HT-

BTMD. For the HA-BTMD, instead, 𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄  scarcely affects 𝑅𝑊 but strongly influences 𝑅𝑑, which 

largely increases (even beyond the unit value which corresponds to the uncontrolled case) as 𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄  

moves away from 1. This is evidently the result of the coupling effect induced by the above-mentioned 

undamped rotational motion of the HA-BTMD, which may increase the structural response in the less 

excited direction well beyond the uncontrolled value.  
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Figure 9. First-order 3D model under white-noise force input. Response ratios as a function of 𝑇𝑠𝑦 𝑇𝑠𝑥⁄  for 

𝑚𝑅 = 1%, 3% and 10%.  

 

 

5. Simulations in the large-displacement domain  

This section extends the results of Section 4 to the large-displacement domain, to show the dependence of 

the BTMD behaviour on the excitation amplitude. Again, the H∞-optimal BTMD is evaluated under white-

noise force excitation. 

 

5.1 2D models  

Based on the fully nonlinear model expressed by Eq. (14), a 2%-damped SDOF structure having 𝑚𝑠𝑥 = 1 

kg and 𝑇𝑠𝑥 = 1 s, equipped with an H∞-optimal BTMD having 𝑚𝑅𝑥 = 3%, is here observed under a 

unidirectional white-noise force input having rms amplitude 𝑓𝑠𝑥0, duration 𝑡𝑡𝑜𝑡 = 600 s and sampling time 

𝑡𝑠 = 0.01 s. Because under large values of 𝑓𝑠𝑥0 the BTMD motion occurs in the large-displacement 

domain, simulations involve here other BTMD parameters than the few strictly necessary in first-order 

simulations. These other parameters, which for the present 2D problem include the pendulum shape, the 

friction pattern far from the origin, the length of the 𝑥-oriented viscous damper and the bumper 

characteristics, are here taken as suggested in Section 3.3, assuming for simplicity 𝐿𝑦 = 𝐿𝑥. 

Under these assumptions, the resulting H2 response ratios 𝑅𝑑𝑥, 𝑅𝑠𝑥 and 𝑅𝑊 are reported in Figure 11 as a 

function of 𝑓𝑠𝑥0 ranging from 0 to 5 N. 

 

𝑅𝑊 
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Figure 10. First-order 3D model under white-noise force input. Response ratios as a function of 𝑇𝑠𝑦 𝑇𝑠𝑥⁄  

for 𝑚𝑅 = 3% and for different values of 𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ .  

 

For 𝑓𝑠𝑥0 = 0, Figure 11 confirms the first-order results obtained in Section 4.1. As 𝑓𝑠𝑥0 increases, however, 

as typical of pendulum absorbers [11], the control effectiveness worsens (𝑅𝑑𝑥 and 𝑅𝑊 increase) and the 

BTMD stroke decreases because of bumping and mistuning, for all BTMD types. The control loss appears 

similar for the V-BTMD and the HA-BTMD, and reduced (or delayed) for the HT-BTMD. This superior 

robustness of the HT-BTMD resides in the amplitude-increasing energy dissipation ensured by the 

gradient-proportional friction law, compared to the amplitude-decreasing equivalent damping provided by 

the viscous and the axial-friction dampers under large displacements.  

 

                  
 

 

Figure 11. Fully nonlinear 2D model under white-noise force input. Response ratios as a function of 𝑓𝑠𝑥0 

for 𝑚𝑅= 3%. 

 

5.2 3D models  

The problem described in Section 5.1 is here generalized to the case of a bidirectional force input having 

𝑓𝑠𝑥0 = 𝑓𝑠𝑦0. Keeping 𝑇𝑠𝑥 = 1 s, two values of 𝑇𝑠𝑦  𝑇𝑠𝑥⁄  are considered, respectively equal to 1 and to 1.5. 

All other independent parameters are kept as in Section 5.1. Results are reported in Figure 12, which 

shows the H2 response ratios 𝑅𝑑, 𝑅𝑠 and 𝑅𝑊 as a function of 𝑓𝑠𝑥0 = 𝑓𝑠𝑦0, for the two chosen combinations 

of 𝑇𝑠𝑥 and 𝑇𝑠𝑦. Figure 12 confirms the trends of performance loss already observed for the unidirectional 
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𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =1/2 

𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =10 
𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =1/10 

𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =1 
𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =2 

𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =1/2 

𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =10 
𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =1/10 

𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =1 
𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =2 

𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =1/2 

𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =10 
𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =1/10 

𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =1 
𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =2 

𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =1/2 

𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =10 
𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =1/10 

𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =1 
𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =2 

𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =1/2 

𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =10 
𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =1/10 

𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =1 
𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =2 

𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =1/2 

𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =10 
𝑓𝑠𝑦0 𝑓𝑠𝑥0⁄ =1/10 

𝑅𝑊 𝑅𝑊 𝑅𝑊 

𝑅𝑑 𝑅𝑑 𝑅𝑑 

𝑅𝑊 𝑅𝑑𝑥 𝑅𝑠𝑥 

𝑓𝑠𝑥0 (N) 𝑓𝑠𝑥0 (N) 𝑓𝑠𝑥0 (N) 

(a) (b) (c) 
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case in Figure 11, further aggravated for the HA-BTMD by the peculiar low-dissipative rotational 

behaviour of the axial-friction damper, already evident at small input amplitudes and particularly 

detrimental when 𝑇𝑠𝑦 𝑇𝑠𝑥⁄ = 1 (axial-symmetry). Again, the HT-BTMD performs similarly to the V-

BTMD for small amplitudes, and better for large ones.  

 

 

                        
 

 

                      
 

 

Figure 12. Fully nonlinear 3D model under white-noise force input. Response ratios as a function of 

𝑓𝑠𝑥0 = 𝑓𝑠𝑦0 for 𝑚𝑅= 3%. Figures a to c: 𝑇𝑠𝑥 = 𝑇𝑠𝑦 = 1 s; Figures d to f: 𝑇𝑠𝑥 = 1 s and 𝑇𝑠𝑦 = 1.5 s. 

 

 

6. Case study: wind control of a high-rise building 

In this section, an H∞-optimal absorber of either V-, HA- or HT-BTMD types is simulated on an MDOF 

model of a high-rise building structure under wind excitation, based on the fully nonlinear model 

expressed by Eq. (14). 

 

6.1 The structure  

The structure is a 42-storey 168 m tall high-rise building, having constant 25 m x 25 m square section with 

4.2 m chamfers at the corners. The building is modelled as a 10-elements tapered cantilever beam, with 

masses lumped at the nodes. The flexural stiffness is 1.21 times smaller along 𝑦 than along 𝑥, resulting in 

natural periods 1.1 longer along 𝑦 than along 𝑥. Main structural data are summarized in Table 3. The 

building shape, mass and stiffness are taken from [23], although scaled to increase the structural 

sensitivity to the across-wind component. The first three modes along 𝑥 have periods of 4.00 s, 1.23 s and 

0.52 s and participating modal masses of 45.3%, 21.8% and 11.1%. The modes along 𝑦 are identical, 

except that periods are increased 1.1 times. Not to overemphasize the effectiveness of the absorber, a 2% 

damping ratio is assumed in each mode, which can be regarded as an upper bound for high-rise buildings 

in operational conditions [24].  

 

 

 

𝑇𝑠𝑥 = 𝑇𝑠𝑦 = 1 s 

𝑅𝑊 𝑅𝑑 𝑅𝑠 

𝑓𝑠𝑥0 = 𝑓𝑠𝑦0 (N) 𝑓𝑠𝑥0 = 𝑓𝑠𝑦0 (N) 𝑓𝑠𝑥0 = 𝑓𝑠𝑦0 (N) 

𝑓𝑠𝑥0 = 𝑓𝑠𝑦0 (N) 𝑓𝑠𝑥0 = 𝑓𝑠𝑦0 (N) 𝑓𝑠𝑥0 = 𝑓𝑠𝑦0 (N) 

(d) (e) (f) 

(a) (b) (c) 

𝑇𝑠𝑥 = 𝑇𝑠𝑦 = 1 s 𝑇𝑠𝑥 = 𝑇𝑠𝑦 = 1 s 

𝑇𝑠𝑥 = 1 s ; 𝑇𝑠𝑦 = 1.5 s 

 

𝑇𝑠𝑥 = 1 s ; 𝑇𝑠𝑦 = 1.5 s 

 

𝑇𝑠𝑥 = 1 s ; 𝑇𝑠𝑦 = 1.5 s 

 
𝑅𝑊 𝑅𝑑 𝑅𝑠 
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Table 3. Main structural data of the 42-storey case-study building 

Node number 
Height above the 

ground 
Mass 

Flexural stiffness 

along 𝑥 

Flexural stiffness 

along 𝑦 

Tributary wind 

area 

(-) (m) (kg·106) (Nm2·1012) (Nm2·1012) (m2) 

1 21.4 3.54 55.90 46.20 515.0 

2 41.2 3.13 33.00 27.27 495.0 

3 61.0 2.96 21.60 17.85 468.8 

4 78.7 2.73 13.80 11.40 442.5 

5 96.4 2.43 7.85 6.49 442.5 

6 114.1 2.00 4.03 3.33 387.5 

7 127.4 1.51 1.69 1.40 332.5 

8 140.7 1.60 1.03 0.85 332.5 

9 154.0 1.45 0.55 0.45 341.3 

10 168.0 1.34 0.22 0.18 175.0 

 

6.2 The BTMD  

The BTMD mass is taken as 1% the total mass of the building (𝑚 = 226900 kg). According to 

Warburton’s classical approach [16], the corresponding ‘effective’ mass ratio is 𝑚𝑅 = 6.45% in both 

horizontal directions. Interpolating from Table 1 with 𝑚𝑅 = 6.45% provides the H∞-optimal dimensionless 

parameters for the three absorber types. Table 4 reports such parameters in columns 2 to 5, and the 

corresponding main dimensional parameters in the following columns. It can be noticed that: (i) for the 

two H-BTMDs the dimensionless parameters and consequently the pendulum shape are (obviously) the 

same; (ii) the pendulum shape is narrower for the H-BTMDs than for the V-BTMD; (iii) the friction 

damping ratio 𝜇0 for the HT-BTMD, equal to 0.452, is sufficiently less than unity to ensure the re-centring 

capability of the device.   

 
Table 4. Design parameters for the three BTMD types on the 42-storey building.  

 𝜔𝑅 𝜁 𝜒 𝜇0 𝑇𝑥 𝑇𝑦 𝐿𝑥 𝐿𝑦 𝑏𝑥 𝑏𝑦 𝑏𝑧 𝑙𝑐0𝑗 𝑙𝑝0 𝑤𝑟 

 (-) (-) (-) (-) (s) (s) (m) (m) (m) (m) (m) (m) (m) (m) 

V-BTMD 0.932 0.154 - - 4.29 4.72 4.57 5.53 4.79 5.27 5.03 5.03 - 2.51 

HA-BTMD 0.982 - 0.452 - 4.07 4.48 4.12 4.99 4.32 4.76 4.53 - 4.53 2.27 

HT-BTMD 0.982 - - 0.452 4.07 4.48 4.12 4.99 4.32 4.76 4.53 - - 2.27 

 

6.3 The wind load  

Simulations are conducted by subjecting the structure to a moderate-to-high wind flow, blowing for 1 hour 

either in the 𝑥 direction or in the 𝑦 direction. In either case, deterministic wind load time-histories are 

applied to the structural nodes, obtained as the realization of a stationary (in time) and nonhomogeneous 

(in space) stochastic process, including both along-wind and across-wind components, so as to excite the 

structure simultaneously in the two horizontal directions. Aeroelastic effects are neglected because 

irrelevant in the present case.  

Along-wind loads are computed based on Davenport’s along-wind load spectrum [25]. The one-sided drag 

force spectrum is taken as: 

 𝑆𝐹𝑖𝐹𝑗
(𝜔) = 24𝐾0𝑊̅10

2 𝐶𝑑
2 (

𝑧𝑖𝑧𝑗

100
)

𝛼
𝐴𝑖𝐴𝑗𝑐𝑜ℎ(𝑧𝑖 , 𝑧𝑗 , 𝜔)

𝑆𝑉(𝜔)

2𝜋
 (38) 

where the spanwise correlation function of the fluctuating force can be expressed as: 

 𝑐𝑜ℎ(𝑧𝑖 , 𝑧𝑗 , 𝜔) = exp (−
𝐶1|𝜔||𝑧𝑖−𝑧𝑗|

2𝜋𝑉10
) (39) 

and the along-wind fluctuating wind velocity spectrum 𝑆𝑉(𝜔) can be expressed as: 

 𝑆𝑉(𝜔) =
2𝑡2

3𝑓(1+𝑡2)4 3⁄  (40) 

in which 𝑓 = 𝜔 (2𝜋)⁄  is the input frequency (expressed in Hz); 𝑡 = 1200 𝑓 𝑉̅10⁄ ; 𝑉̅10 is the reference 

mean wind velocity at 10 m above the ground (expressed in m/s); 𝑊̅10 = 1 2⁄ 𝜌𝑎𝑉̅10
2  is the mean wind 

pressure at 10 m; 𝜌𝑎 is the air density; 𝐾0 is the surface drag coefficient; 𝐶𝑑 is the drag coefficient; 𝛼 is 
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the exponent for the mean velocity profile power law; 𝐶1 is a constant; 𝑧𝑖 and 𝑧𝑗 are the heights of the i-th 

and j-th storey mass above the ground respectively; 𝐴𝑖 and 𝐴𝑗 are the tributary areas of the i-th and j-th 

mass respectively. 

Across-wind loads are computed based on the spectrum proposed by Vickery and Clarke [26]. The one-

sided across-wind spectrum is expressed as: 

 𝑆𝐹𝑖𝐹𝑗
(𝜔) =

(𝜌𝑎𝐶𝑙𝑉̅𝑖𝑉̅𝑗)
2

𝐴𝑖𝐴𝑗

8𝜋1.5𝐵𝑠√𝑓𝑠𝑖
𝑓𝑠𝑗

cos(𝛼1𝑅)exp[−(𝑅 𝛼2⁄ )2]√exp [−
(1−𝑓 𝑓𝑠𝑖

⁄ )
2

+(1−𝑓 𝑓𝑠𝑗
⁄ )

2

𝐵𝑠
2 ] (41) 

where cos(𝛼1𝑅)exp[−(𝑅 𝛼2⁄ )2] is the spanwise correlation function of the across-wind wake excitation; 

𝑅 = 2 |𝑧𝑖 − 𝑧𝑗| (𝐷𝑖 + 𝐷𝑗)⁄ ; 𝛼1 and 𝛼2 are non-dimensional coefficients pertaining to the correlation 

length; 𝐷𝑖 and 𝐷𝑗 are the sides of the square section at the heights 𝑧𝑖 and 𝑧𝑗 respectively; 𝑉̅𝑖 =

𝑉̅10(𝑧𝑖 10⁄ )𝛼 and 𝑉̅𝑗 = 𝑉̅10(𝑧𝑗 10⁄ )
𝛼

 are the mean wind velocities at 𝑧𝑖 and 𝑧𝑗 respectively; 𝐶𝑙 is the lift 

coefficient; 𝐵𝑠 is a measure of the relative width of the spectral peak; 𝑓𝑠𝑖
= 𝑆𝑉̅𝑖 𝐷𝑖⁄  and 𝑓𝑠𝑗

= 𝑆𝑉̅𝑗 𝐷𝑗⁄  are 

the vortex shedding frequency at 𝑧𝑖 and 𝑧𝑗 respectively; 𝑆 is the Strouhal number. 

Assuming the fluctuating wind velocity as a Gaussian process, the synthesis formula of the fluctuating 

wind load at point i is given as follows [27]: 

 𝐹𝑖(𝑡) = ∑ ∑ |𝛤𝑖𝑗(𝜔𝑘)|√2∆𝜔𝑘
𝑁𝑠
𝑘=1

𝑖
𝑗=1 cos(𝜔𝑘𝑡 + 𝜑𝑗𝑘),      𝑖 = 1, 2, …, 𝑁 (42) 

in which 𝐻𝑖𝑗(𝜔𝑘) is the non-zero component of a lower triangular matrix 𝚪(𝜔), obtained by decomposing 

the stochastic cross-spectrum matrices in Eqs. (38) and (41) using Cholesky’s method; 𝑁 is the number of 

lumped masses;∆𝜔𝑘is the frequency interval; 𝜔𝑘 = (𝑘 − 1)∆𝜔𝑘; 𝑁𝑠 is the number of frequency 

intervals; 𝜑𝑗𝑘 is an independent random phase angle uniformly distributed between 0 and 2𝜋.  

In this example, the aerodynamic data pertaining to along-wind excitation are taken as follows [23]: 𝑉̅10 = 

25.0 m/s; 𝛼 = 0.25; 𝐶𝑑 = 1.2; 𝜌𝑎 = 1.23 kg/m3; 𝐶1 = 7.0; 𝐾0 = 0.01; those pertaining to cross-wind 

excitation are as follows [27]: 𝐶𝑙 = 0.40; 𝑆 = 0.12; 𝐵𝑠 = 0.26; 𝛼1 = 0.5; 𝛼2 = 5.0. With such data, the 

along- and across-wind spectra are obtained from Eqs. (38) and (39), and then deterministic time-histories 

of along and across wind-loads are simulated according to Eq. (42), for each structural node and for the 

duration of 1 hour. In Eq. (42), ∆𝜔𝑘 = 0.01 rad/s; 𝑁𝑠 = 211; 𝜔𝑁𝑠
 = 20.47 rad/s.  

 

6.4 Results  

Results are reported in Tables 5 to 8. Tables 5 and 6 refer to the wind blowing in the 𝑥 direction, Tables 7 

and 8 to the wind blowing in the 𝑦 direction. In each table, 7 configurations are compared, respectively 

corresponding to: (i) the uncontrolled structure; (ii) a bidirectional linear TMD; (iii) a V-BTMD; (iv) an 

HA-BTMD; (v) an HT-BTMD; (vi) an H-BTMD (equivalently of the HA- or of the HT- types) under the 

along-wind force component only; (vii) an H-BTMD under the across-wind force component only. 

Considering both along and across wind components, configurations (i) to (v) fully account for the 

bidirectional response of the structure-BTMD system. Considering only one wind component, 

configurations (vi) and (vii) account only for the 2D response of the structure-BTMD system, thus 

cancelling the friction-coupling effect. By comparing configurations (vi) and (vii) with configurations (iv) 

and (v), the influence of such coupling effect is assessed. For each configuration, several response 

quantities are reported in Tables 5 to 8 as a measure of the absorber performance. Denoting by u𝑠𝑁, v𝑠𝑁 

and r𝑠𝑁 respectively the 𝑥 component, the 𝑦 component and the modulus of the top storey displacement, 

by u, v and r respectively the 𝑥 component, the 𝑦 component and the modulus of the absorber stroke, by 

𝑎𝑥, 𝑎𝑦 and 𝑎ℎ respectively the 𝑥 component, the 𝑦 component and the modulus of the structural top storey 

acceleration, and by 𝑊𝑠 the instantaneous power dissipated by the main structure, Tables 5 and 7 report 

the maximum (over time and in absolute value) structural displacement, the maximum TMD stroke, the 

maximum structural acceleration and the maximum friction damping ratio obtained during simulations, 

while Tables 6 and 8 report the rms structural displacement, the rms TMD stroke, the rms structural 

acceleration and the mean structural dissipated power. 
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Table 5. Wind blowing in the X direction – Maximum (in-time) responses 

Configuration  
u𝑠𝑁,𝑚𝑎𝑥 v𝑠𝑁,𝑚𝑎𝑥 r𝑠𝑁,𝑚𝑎𝑥 u𝑚𝑎𝑥 v𝑚𝑎𝑥 r𝑚𝑎𝑥 𝑎𝑥,𝑚𝑎𝑥 𝑎𝑦,𝑚𝑎𝑥 𝑎ℎ,𝑚𝑎𝑥 𝜇𝑚𝑎𝑥 

(cm) (cm) (cm) (cm) (cm) (cm) (cm/s2) (cm/s2) (cm/s2) (-) 

Uncontrolled 15.8 79.4 79.4 0.0 0.0 0.0 47.4 167 167 - 

Linear TMD 11.4 39.1 39.6 18.7 110 110 32.1 84.5 84.8 - 

V-BTMD 11.4 39.1 39.7 18.8 109 109 32.1 84.6 84.8 - 

HA-BTMD 44.9 60.4 60.4 142 149 149 121 120 121 - 

HT-BTMD 10.3 37.8 38.4 17.3 107 107 34.5 103 103 0.10 

H-BTMD along 10.9 - - 17.2 - - 28.9 - - 0.02 

H-BTMD across - 39.4 - - 105 - - 107 - 0.10 

 
Table 6. Wind blowing in the X direction – RMS (in-time) responses and mean power dissipation 

Configuration  
u𝑠𝑁,𝑟𝑚𝑠 v𝑠𝑁,𝑟𝑚𝑠 r𝑠𝑁,𝑟𝑚𝑠 u𝑟𝑚𝑠 v𝑟𝑚𝑠 r𝑟𝑚𝑠 𝑎𝑥,𝑟𝑚𝑠 𝑎𝑦,𝑟𝑚𝑠 𝑎ℎ,𝑟𝑚𝑠 𝑊𝑠,𝑚𝑒𝑎𝑛 

(cm) (cm) (cm) (cm) (cm) (cm) (cm/s2) (cm/s2) (cm/s2) (kW) 

Uncontrolled 5.0 26.8 27.3 0.0 0.0 0.0 13.3 55.2 56.8 31.1 

Linear TMD 3.1 13.4 13.7 5.9 37.1 37.5 8.6 28.7 30.0 8.12 

V-BTMD 3.1 13.4 13.8 6.0 36.9 37.4 8.6 28.8 30.1 8.17 

HA-BTMD 11.8 16.7 20.5 45.2 49.5 67.0 25.5 34.1 42.5 17.4 

HT-BTMD 3.4 13.3 13.7 5.0 37.4 37.8 9.0 30.6 31.9 8.63 

H-BTMD along 3.1 - - 6.0 - - 8.8 - - - 

H-BTMD across - 13.5 - - 35.9 - - 31.3 - - 

 
Table 7. Wind blowing in the Y direction – Maximum (in-time) responses 

Configuration  
u𝑠𝑁,𝑚𝑎𝑥 v𝑠𝑁,𝑚𝑎𝑥 r𝑠𝑁,𝑚𝑎𝑥 u𝑚𝑎𝑥 v𝑚𝑎𝑥 r𝑚𝑎𝑥 𝑎𝑥,𝑚𝑎𝑥 𝑎𝑦,𝑚𝑎𝑥 𝑎ℎ,𝑚𝑎𝑥 𝜇𝑚𝑎𝑥 

(cm) (cm) (cm) (cm) (cm) (cm) (cm/s2) (cm/s2) (cm/s2) (-) 

Uncontrolled 73.8 18.0 74.0 0.0 0.0 0.0 176 45.6 177 - 

Linear TMD 35.5 14.4 36.1 99.2 26.9 101 85.3 41.2 86.2 - 

V-BTMD 35.5 14.4 36.1 98.8 26.8 101 85.3 40.9 86.1 - 

HA-BTMD 49.0 49.9 53.3 134 140 140 116 96.6 129 - 

HT-BTMD 36.2 17.6 36.9 98.6 22.4 99.3 91.9 45.9 92.8 0.11 

H-BTMD along - 14.8 - - 25.0 - - 41.6 - 0.02 

H-BTMD across 36.5 - - 99.9 - - 91.6 - - 0.11 

 

 
Table 8. Wind blowing in the Y direction – RMS (in-time) responses 

Configuration  
u𝑠𝑁,𝑟𝑚𝑠 v𝑠𝑁,𝑟𝑚𝑠 r𝑠𝑁,𝑟𝑚𝑠 u𝑟𝑚𝑠 v𝑟𝑚𝑠 r𝑟𝑚𝑠 𝑎𝑥,𝑟𝑚𝑠 𝑎𝑦,𝑟𝑚𝑠 𝑎ℎ,𝑟𝑚𝑠 𝑊𝑠,𝑚𝑒𝑎𝑛 

(cm) (cm) (cm) (cm) (cm) (cm) (cm/s2) (cm/s2) (cm/s2) (kW) 

Uncontrolled 26.7 6.0 27.3 0.0 0.0 0.0 65.3 13.3 66.6 40.2 

Linear TMD 11.8 4.0 12.5 33.0 8.0 34.0 28.2 9.2 29.6 7.89 

V-BTMD 11.9 4.0 12.5 33.0 8.0 33.9 28.3 9.2 29.8 7.96 

HA-BTMD 14.6 16.0 21.6 48.3 45.3 66.2 34.0 30.8 45.9 20.3 

HT-BTMD 11.9 4.4 12.6 33.3 6.1 33.8 29.5 10.0 31.1 8.41 

H-BTMD along - 4.0 - - 7.6 - - 9.5 - - 

H-BTMD across 11.8 - - 33.3 - - 29.6 - - - 
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6.5 Discussion  

Results in Table 5 to 8 can be commented as follows: 

1) For the uncontrolled structure, the response to the across wind component is around 4÷5 times 

prevalent. The maximum and the rms displacements are respectively around 0.8 m and 0.3 m. 

2) The ideally linear TMD proves quite effective: both the max and the rms responses drop to about 50% 

(displacements and accelerations) and to 20÷25% (power). Effectiveness is maximum for the across-wind 

component (which induces on the structure a larger dynamic amplification), and almost the same for the 

wind blowing along 𝑥 or 𝑦. The maximum and the rms TMD displacements are respectively around 1÷1.1 

m and 0.35÷0.4 m. 

3) The V-BTMD gives nearly identical results to the linear TMD. TMD strokes are relatively small and 

the bumper is far from being activated, so the first-order approximated model proves accurate.  

4) The HA-BTMD exhibits, under bidirectional input, a substantial performance degradation with respect 

to all other configurations. A strong coupling occurs between the two directions, which may even increase 

the structural response beyond its uncontrolled value in the less excited direction (i.e. in the along-wind 

direction). With respect to the V-BTMD, structural displacements and accelerations increase on average 

by a factor of 1.5, 𝑊𝑠 by a factor of 2.3 and TMD strokes by factors of 1.4 and 1.9, respectively in 

maximum and rms terms. This degradation does not completely annul the effectiveness of the absorber, 

but produces a structural response halfway between the uncontrolled one and the one obtained with the V-

BTMD. 

5) The HT-BTMD exhibits, under bidirectional input, a performance only very slightly reduced with 

respect to the V-BTMD: accelerations increase by about 10% and 𝑊𝑠 by around 6%, but structural 

displacements and TMD strokes slightly decrease by about 1%. The maximum value of the tangential-

friction coefficient met by the absorber during its motion is 0.11.  

6) Both H-BTMD types exhibit, under unidirectional input, nearly the same overall performance of the V-

BTMD: displacements are unvaried, TMD strokes decrease by about 3%, accelerations and 𝑊𝑠 increase by 

about 5%. Comparing these results to those obtained for the HA-BTMD and the HT-BTMD under 

bidirectional motion confirms the little influence that friction coupling has for the HT-BTMD and the 

detrimental role it has instead for the HA-BTMD.  

7) Depending on the adopted type of BTMD, the absorber maximum stroke approximately varies in the 

range 1÷1.5 m. Should a single concavity allowing for such strokes be considered impractically large, two 

concavities facing each other with a roller or a slider in between could be used instead, halving its size 

[11].  

 

7. Conclusions 

The main achievements of this study can be summarized as follows: 

1) A unifying analytical model is established for simulating viscous (V-BTMD), axial-friction (HA-

BTMD) and tangential-friction (HT-BTMD) BTMDs, rigorously accounting for their mechanical 

and geometrical nonlinearities. Its first-order reduction highlights the main properties of the three 

types, including some undocumented issues of fundamental practical importance, such as the 

control loss observable in symmetrical or nearly-symmetrical HA-BTMDs under bidirectional 

motion.  

2) The H∞ and the H2 optimal design problems are rigorously posed and numerically solved for 

friction BTMDs on linear structures under harmonic or white-noise force excitations. Tables and 

figures providing the optimal BTMD parameters and the resulting control performance as a 

function of the BTMD mass ratio are presented that can be directly used as a practical design tool. 

The H∞ design proves more robust than the H2 design, in that the H∞-designed device exhibits an 

H2 performance only slightly less than optimal, whereas the H2-designed device exhibits an H∞ 

performance which may be much less than optimal. Compared with the exact optimal solution, the 

suboptimal solution proposed in previous studies, based on friction-to-viscous equivalence, proves 

only slightly less effective in reducing the H2 structural response, but significantly less effective in 

reducing the H∞ structural response, especially in the case of large mass ratios.  
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3) In 2D first-order problems, the HA-BTMD and the HT-BTMD are exactly equivalent, and if 

properly designed their effectiveness proves nearly the same as that of the V-BTMD, 

independently from the excitation level. 

4) In 3D first-order problems, the performance of the V-BTMD remains unchanged and that of the 

HT-BTMD gets only slightly reduced by friction coupling. The HA-BTMD response, instead, 

becomes dramatically dependent on the pendulum shape: if the ratio between the two pendulum 

lengths is far from 1, the performance appears similar to that of the other two types; but as the 

ratio approaches 1, the control effectiveness diminishes and the TMD strokes increase because of 

the insurgence of a peculiar insufficiently-damped rotational mode of the HA-BTMD around the 

vertical axis.  

5) If analyses are extended to the large-displacement domain, the main trends depicted above remain 

unchanged except that for all BTMD types the control performance progressively reduces as the 

excitation amplitude increases, because of bumping and mistuning; this reduction is smaller for 

the HT-BTMD because of the favourable features of the assumed friction law. 

In conclusion, once properly designed and until stroke demand does not exceed their intrinsic stroke 

limitations, BTMDs appear an effective alternative to translational TMDs, applicable through a variety of 

damping options. The two homogeneous friction mechanisms, and particularly the tangential one, are 

promising novel paradigms to provide amplitude-independent damping to engineering pendular systems. 
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