
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Fault-Independent Test-Generation for Software-Based Self-Testing / Georgiou, Panagiotis; Kavousianos, Xrysovalantis;
Cantoro, Riccardo; Reorda, Matteo Sonza. - In: IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY. -
ISSN 1530-4388. - STAMPA. - (2019), pp. 1-1.

Original

Fault-Independent Test-Generation for Software-Based Self-Testing

ieee

Publisher:

Published
DOI:10.1109/TDMR.2019.2911022

Terms of use:
openAccess

Publisher copyright

copyright 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating .

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2733948 since: 2019-05-22T22:04:20Z

ieee

1530-4388 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDMR.2019.2911022, IEEE
Transactions on Device and Materials Reliability

TDMR-2018-09-0230-SS-IOLTS

Fault-Independent Test-Generation for
Software-Based Self-Testing

Panagiotis Georgiou, Xrysovalantis Kavousianos, Member, IEEE, Riccardo Cantoro, Member, IEEE and Matteo
Sonza Reorda, Fellow, IEEE

Abstract—Software-based self-test (SBST) is being widely used
in both manufacturing and in-the-field testing of processor-based
devices and Systems-on-Chips. Unfortunately, the stuck-at fault
model is increasingly inadequate to match the new and different
types of defects in the most recent semiconductor technologies,
while the explicit and separate targeting of every fault model
in SBST is cumbersome due to the high complexity of the
test-generation process, the lack of automation tools, and the
high CPU-intensity of the fault-simulation process. Moreover,
defects in advanced semiconductor technologies are not always
covered by the most commonly used fault-models, and the
probability of defect-escapes increases even more. To overcome
these shortcomings we propose the first fault-independent method
for generating software-based self-test procedures. The proposed
method is almost fully automated, it offers high coverage of non-
modeled faults by means of a novel SBST-oriented probabilistic
metric, and it is very fast as it omits the time-consuming test-
generation/fault-simulation processes. Extensive experiments on
the OpenRISC OR1200 processor show the advantages of the
proposed method.

Index Terms—Fault coverage, Non-modeled Defects, Output
Deviations, Software-Based Self-Test (SBST), Testing.

I. INTRODUCTION

The deep sub-micron semiconductor technologies combined
with the advanced architectural innovations have significantly
improved the performance of modern Systems on Chip (SoCs).
Especially when used in safety-critical applications, SoCs
require advanced testing techniques for screening defective
devices. However, the strict design constraints and the need to
test the target devices at the normal mode of operation impose
the use of non-intrusive test methods [26]. In addition, any test
applied in-the-field should not compromise the internal state
of the Device Under Test (DUT) [34]. Therefore, design-for-
testability solutions are complemented with functional solu-
tions, such as SBST for processor-based ICs and SoCs.

SBST executes test programs that activate potential faults
inside the circuit and propagate the errors to observable sites,
like the memory [33], [34], [39]. SBST has several properties,
which are very important for in-field test of safety-critical
devices. At first it does not require the assistance of any

This work was submitted for review on 19/09/2018. A preliminary version of
this work has been presented at the 24th IEEE International Symposium on
On-Line Testing and Robust System Design.
P. Georgiou and X. Kavousianos are with the Department of Computer
Science, University of Ioannina, Ioannina 45445, Greece (e-mail: pgeor-
gio@cs.uoi.gr, kabousia@cs.uoi.gr).
R. Cantoro and M. Sonza Reorda are with the Department of Control and
Computer Engineering, Politecnico di Torino, Turin 10129, Italy (e-mail:
riccardo.cantoro@polito.it; matteo.sonzareorda@polito.it).

automatic-test-equipment (ATE), therefore it is completely
autonomous. In addition, it is not intrusive (it does not alter the
circuit structure), therefore it does not affect the performance
of the processor. Moreover, it is applied exactly at the operat-
ing conditions, while at the same time it does not excite any
redundant faults avoiding thus over-testing the core under test.
Finally, SBST facilitates the periodic monitoring in-the-field
with limited intrusiveness with respect to the normal-mission
operation [19], [31], and it does not compromise the internal
state of the circuit [34].

Based on the SBST paradigm, several semiconductor and
IP companies provide nowadays self-test libraries with their
products, which can be easily integrated by their customer
into the application code [1]–[6]. The major challenge in the
development of these self-test libraries is the generation of
small test-programs that offer high fault coverage in short test-
time [32], [41], [45]. SBST programs can be generated man-
ually [38], semi-automatically [20] or automatically, targeting
different processor architectures and fault models [39]. Various
methods target microprocessors with caches [17], shared-
memory schemes [8], floating-point units [46] and dual-issue
processors [13]. Deterministic techniques exploit the regularity
of sub-modules [11], [12], [21], [22], [28], [29], [35], while
others use automatic-test-pattern-generation (ATPG) [37] and
evolutionary algorithms [10], [37], [40]. Several methods
explore the application of SBST to test peripheral modules
[9], [25]. In [14] the effectiveness of SBST for a given level
of dependability is evaluated.

Despite their benefits, SBST methods suffer from several
drawbacks. At first they often target only the stuck-at fault
model, which is inadequate for detecting many defects. In
addition, most SBST techniques are not systematic, therefore
they require extensive human intervention and long develop-
ment times. Moreover, they involve the CPU-intensive process
of fault-simulating multi-million gate designs for multi-million
clock cycles using multiple fault models and specialized
functional (non-scan) simulators. Besides these deficiencies,
the shrinking process technologies, the physical limits of
photo-lithographic processes and new materials introduce new
defects that are not always accurately modeled even by the
most commonly used fault models [42]. Therefore, fast, low-
cost and highly effective SBST-based techniques are required
to improve the defect screening of processor-based devices.

In this paper, we present the first fault-independent SBST
method. The proposed method offers short test-program gen-
eration time as it is almost fully systematic, and it exploits
multiple design models of the device-under-test (DUT) in

Copyright (c) 2019 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained by
sending a request to pubs-permissions@ieee.org

Matteo
Casella di testo

Matteo
Casella di testo

1530-4388 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDMR.2019.2911022, IEEE
Transactions on Device and Materials Reliability

Fig. 1. Output deviation calculation example

order to maximize the non-modeled fault coverage of the test-
programs under strict test-application-time and test-program-
size constraints. The test-programs are evaluated by means
of a novel and very effective SBST-oriented probabilistic
metric, which considers both the architectural model and
the synthesized gate-level netlist of the DUT. The proposed
metric is very fast as it omits the time-consuming functional
fault-simulation, and it can be applied to any SBST-based
method. In addition, the very high fault-coverage ramp-up of
the generated test-programs offers additional test-time benefits
in periodic-testing as well as in abort-at-first-fail environments
in manufacturing testing. Extensive experiments on a core
corresponding to the OpenRISC OR1200 processor [7] show
the advantages of the proposed method.

The organization of this paper is as follows: Section II
presents background material and the motivation of this work.
Section III presents the proposed test-generation method.
Section IV presents an experimental evaluation of the method,
and Section V concludes the paper.

II. MOTIVATION

The large computational overhead, the long running times
and the high test-generation complexity prevent SBST me-
thods from targeting other fault models than the stuck-at fault
model. As it is shown in Section IV, even the simple task of
fault simulating 50Kbytes of test code on the Open Risc 1200
processor using commercial tools, requires several days for
stuck-at faults and even weeks for transition faults. By taking
into account that test-generation is highly complex and even
more CPU-intensive than fault simulation, we understand why
most SBST methods target only the stuck-at fault model [10]–
[14], [20]–[22], [28]–[31], [33]–[35], [37], [39], [40], [45],
[46] .

Even though targeting multiple fault models is a rather
unrealistic goal for SBST, the defect coverage of the test
programs can be enhanced by probabilistically evaluating
their potential to detect arbitrary defects without targeting
any particular fault model. Such an approach was proposed
in [23], [36] for non-scan sequential circuits modeled at the
register-transfer level (RTL). However, RTL models limit the
effectiveness of these methods for detecting silicon defects.
Moreover, these methods require an automatic-test-equipment
(ATE) to apply the test sequences and to monitor the outputs at
each clock cycle, whereas SBST implies the observation of the
content of the data memory at the end of the test. Therefore,
they are not suitable for SBST, which is by definition fully
autonomous and ready to be applied in-the-field without the
need of any ATE.

Gate-level output-deviations were shown to be very effective
in detecting silicon defects in structural testing [27], [43],

[44]. They are probability measures that reflect the likelihood
of error detection at circuit outputs and they are computed
without explicit fault grading, hence the computation is fea-
sible for large circuits (the computational cost grows linearly
with the number of gates). Initially, a probability map, the
confidence-level (CL) vector, is assigned to every circuit
gate. For every input pattern, each line i is assigned signal
probabilities p0i , p

1
i to be at logic 0 and 1, respectively. The

CL vector Ri of gate Gi with m inputs has 2m components
r0...00i , r0...01i , . . . , r1...11i , each denoting the probability that
the gate output is correct for the respective input combination.
For example, r11i denotes the probability that the output y of
the 2-input gate Gi is correct when the logic values at the
inputs a, b of the gate are set equal to ab = 11. Every 2-input
logic gate Gi is assigned a CL vector Ri = (r00i r01i r10i r11i).
Let Gi be a NAND gate. Then the CL vector can be used to
define the probability that the output y is correct as follows:

p0y = p0ap
0
b(1− r00i) + p0ap

1
b(1− r01i) + p1ap

0
b(1− r10i) + p1ap

1
br

11
i

p1y = p0ap
0
br

00
i + p0ap

1
br

01
i + p1ap

0
br

10
i + p1ap

1
b(1− r11i)

Note that p0y + p1y = 1. Signal probabilities can be computed
for other gate types as well [43]. The gate-level CL vectors can
be generated from simple transistor-level failure probabilities
[43], or by using alternative ways, like layout information,
inductive-fault analysis [24], and failure-data analysis.

For any gate Gi let its fault-free output value for input
pattern tj be d, with d ∈ 0, 1. The output deviation ∆Gi,j

of Gi for tj is defined as P d′

Gi
(d′ is the complement of d),

and it is a measure of the likelihood that the gate output is
incorrect for input pattern tj . The deviation values at the circuit
outputs are indicative of the probability for arbitrary defects to
be detected at these outputs (the higher is the deviation value
at an output, the higher is the likelihood of observing an error
at the corresponding output).

Example 1. Fig. 1 shows a circuit consisting of three gates
G1, G2, and G3, with two different confidence level vectors
(R1 and R2) assigned to the NOR and NAND gates [43].
The first column of the Table in Fig. 1 presents three test
patterns and their respective fault free value at output z. The
next six columns present the signal probabilities computed at
the internal circuit nodes using the aforementioned confidence
level vectors. For each input pattern, the output-deviation is the
probability the output ‘z’ to be faulty, which is shown in bold
in the two last columns of the Table. Note that the deviation
at output z is higher when the last test pattern is applied (it
is equal to 0.396) as compared to the other two patterns (it
is equal to 0.114 and 0.163 respectively). Therefore, the last
test pattern (a, b, c, d) = (1, 1, 1, 1) is the most promising for
detecting defects as it provides the highest output deviation
value. �

In this paper we propose the first output-deviation-based
metric that exploits the architectural and the gate-level models
of the processor to evaluate SBST sequences. Even though
this metric can enhance the non-modeled fault-coverage of
any SBST technique, we apply it on the particular case of test
macros [20], [30] that have been proven to be very effective for
stuck-at faults. A test-macro is a sequence of assembly-level

2

1530-4388 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDMR.2019.2911022, IEEE
Transactions on Device and Materials Reliability

Synthesize TM1, TM2, ..., TMK

Generate N random instances
for each TMi

Run logic simulation and extract
functional test-vectors

Calculate W(TMi
j) for all i,j

Select next TMIi
j with the largest

weight W(TMi
j) and update weights

M
instances
selected?

i = 1

i = i+1i = K ?

Reorder all selected TMIi
j

No

Yes

No

Yes

l.movhi ra, XH
l.ori ra, ra, XL
l.movhi rb, YH
l.ori rb, rb, YL

l.add rc, ra, rb
l.sw Z(r0), rc

Test Macro

ra rb

ALU

rc

(a)

(b)

(d)

C
en

tr
al

 In
st

ru
ct

io
n

(C
I)

W
rapper Instructions (W

Is)

1

2

3

4

5

0110...1 1001...1

1111...1

CC 1
CC 2 (FV1)
CC 3
CC 4 (FV2)
CC 5
CC 6 (FV3)
CC 7
CC 8 (FV4)
 CC 9 (FV5)

 CC 10 (FV6)

Functional Test-Vectors

(c)

Fig. 2. (a) Test Flow (b) TMI example (c) Functional Vectors (d) ALU Test

instructions, with one instruction executing a specific function
and additional instructions that set the macro parameters (i.e.,
the operand values) and propagate the results to observable
memory positions. At the architectural level, instruction-based
test-macros are synthesized that exercise the various modules
of the processor and observe the responses. Multiple instances
of every test-macro are generated by combining instructions
that maximize the probability of detecting non-modeled faults,
and by randomly varying their operands. Each test-macro
instance (TMI) is evaluated by means of a novel output-
deviation-based metric computed on the gate-level netlist of
the processor, and the most effective ones are selected to
synthesize test programs, according to specific test-time and
test-program-size constraints.

III. SBST USING OUTPUT-DEVIATIONS

In this section we present the proposed test generation
method. We first introduce the basic test generation flow for
detecting non-modeled faults, and then we elaborate on the
particular case of non-modeled delay-faults at computational
units.

A. Basic test generation flow

The basic test generation method consists of five steps and it
is shown in Fig. 2a. Initially, one test-macro is manually gen-
erated for every instruction of the processor. This instruction
is called hereafter the Central-Instruction (CI) of the macro
and it exercises specific units of the processor. For example,
the instruction add rc, ra, rb of the OR 1200 processor [7]

executes the arithmetic operation rc = ra + rb (ra, rb, rc are
general purpose registers), and it exercises both the ALU and
the control unit. If the result of the addition is observable, then
this instruction constitutes a test for these units. The quality
of this test depends on the contents of ra, rb, which are set
by means of additional instructions, the Wrapper-Instructions
(WIs). The wrapper-instructions assign specific values to the
operands of the central-instruction, and store the result at
observable memory positions.

Example 2. The test-macro generated for the instruction add
rc, ra, rb is shown in Fig. 2b. The first four instructions
are wrapper-instructions that load the high/low 16-bit parts
of registers ra, rb with the 16-bit values XH , XL, YH , YL.
The next instruction is the central-instruction and the last
instruction is a wrapper-instruction that stores the result at the
physical address obtained by combining the immediate offset
Z with register r0 that holds always the value 0. �

Similar macros are generated for every instruction of the
processor, with two exceptions. The first one is related to
wrapper-instructions. Such instructions do not necessarily be-
come central-instructions, because the faults activated by them
are observable when they are executed as wrapper-instructions.
Second, the central-instructions that do not produce directly
observable results (e.g. branch instructions) use wrapper-
instructions to provide the observable results. For example,
upon correct execution of a branch-based central-instruction,
a wrapper-instruction stores a pre-determined value at an
observable memory position, thereby making the results of
the branch instruction observable. Even though the generation
of the test-macros requires some knowledge of the instruction
set and the architecture of the processor, it is an one-time and
rather simple task for every processor architecture.

The fault coverage of every test-macro depends on the
operands of the central and wrapper-instructions. Unfortu-
nately, there is no straightforward method to select the most
effective operands for detecting non-modeled faults. To this
end, we propose an almost fully automated process to generate
test-macro instances (TMIs) with high non-modeled fault
coverage. Let K be the number of different macros TM1,
TM2, . . . , TMK generated at the first step (one for every
CI). Then, N random instances TMI1i , TMI2i , . . . , TMINi
are generated for every TMi at the second step, by randomly
varying every operand of TMi. For the particular macro shown
in Fig. 2b the TMIs are generated by varying registers ra,
rb and the values for X , Y , and as a result register rc and the
value for Z also change (we note that whenever a TMI with
invalid values is generated it is discarded).

At the third step, we run logic simulation on the gate-level
netlist of the processor using the N × K TMIs generated
at the previous step, and the logic values generated at the
inputs/outputs of selected units of the processor are recorded at
the clock cycles when these units are excited by each TMIji .
For example, when the CI shown in Fig. 2b is executed, the
inputs/outputs of the ALU are recorded during the clock cycle
when the arithmetic values stored into registers ra and rb are
applied to the inputs of the ALU (see Fig. 2d). These logic
values constitute one functional test-vector/response applied

3

1530-4388 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDMR.2019.2911022, IEEE
Transactions on Device and Materials Reliability

by the TMI . Every TMI generates a number of functional
test-vectors/responses that excite various units of the processor
and propagate the results to observable sites of the processor.
These vectors are generated during the clock cycles when their
responses are observable either immediately (e.g. the output of
the ALU stored into register rC) or later through the wrapper-
instructions.

One example is shown in Fig. 2c for the test-macro of
Fig. 2b. The first four instructions require two clock cycles
to be executed and the functional test-vectors are generated
at their second clock cycles. The last two instructions require
one clock cycle to be executed and the functional test-vectors
are generated at both clock cycles. The more effective are
the functional test-vectors of TMIji in detecting defects, the
higher is the test-quality of TMIji . The potential of TMIji
for detecting non-modeled faults depends on the quality of the
functional test-vectors/responses generated by TMIji . When
a functional test-vector generated by TMIji activates a defect
and propagates the error to the output of the exercised module,
then there is a high probability that this error will propagate
to an observable site of the processor.

In order to evaluate the functional test-vectors of the TMIs
we propose a new output-deviation-based metric. Specifically,
the combinational logic of every processor unit exercised by
a functional test-vector is used to calculate the deviations of
its outputs for this test-vector, as it is shown in Section II.
For example, in Fig. 2d we show the functional test-vector
FV 5 generated during the execution of the CI shown in
Fig. 2b, where the ALU receives inputs from registers ra, rb
and it stores the result in register rc. The computation starts
from the inputs to the outputs of the ALU (note that, in the
general case, the mapping between inputs and outputs of every
combinational block may not be trivial).

According to the theory of output-deviations the most effec-
tive test-vectors are the test vectors that produce the highest
deviation values at the outputs of the circuits under test [43]. In
order to identify those vectors, we apply first all the generated
functional vectors that excite one unit, and we calculate the
maximum deviation value that is generated at every output
bit p of that unit. This process is applied separately for
every TMi, because different test-macros exercise different
parts of the units. Let NVi be the number of functional test-
vectors generated by TMi. In the particular case of TMIji
the functional vectors FV (TMIji , 1), FV (TMIji , 2), . . . ,
FV (TMIji , NVi) are generated. The output deviations of
FV (TMIji , k) are computed for j ∈ [1, N], k ∈ [1, NVi],
and the proximity of each deviation value to the highest
deviation value found at every output among all the generated
functional vectors is calculated. Let Max(TMi, p, v) be the
highest deviation value found for all functional test-vectors of
every instance TM j

i of TMi (j ∈ [1, N]) at output p for logic
response v (v = 0, 1). Then, for each FV (TMIji , k) all the
pairs (p, v) with deviation values Dev(FV (TMIji , k), p, v)
higher than a threshold value constitute the set MS(TMIji , k)
(the rest of the pairs are not further considered for this func-
tional test-vector). This threshold value THR is a percentage
of the highest deviation value Max(TMi, p, v) at this output,

i.e., Dev(FV (TMIji , k), p, v) ≥ THR × Max(TMi, p, v),
with THR usually in the range 90% − 100%. Note that the
higher is the value of THR, the more strict is the selection
process towards pairs (p, v) with high deviation values.

Besides the high deviation values, the potential of
FV (TMIji , k) to detect defects at the outputs p and logic
response v with (p, v) ∈ MS(TMIji , k) depends on two
additional parameters. The first one is the number of faults that
are observable at output p, Faults(p), which is proportional to
the size of the logic cone driving p. This parameter is modeled
by setting Faults(p) equal to the number of gates in the fan-
in cone size of p. The second one is the number of functional
test-vectors generated by all random instances of TMi that
provide high deviation for each pair (p, v). The higher is this
number, the higher is the probability that, eventually, some of
the selected TMIs will provide functional test-vectors with
high deviation values for this pair. Therefore, this output-logic
value pair is considered as an easy pair, and it is given low
priority PR(TMi, p, v) to bias the selection towards TMIs
that embed functional test-vectors with high deviation values at
more difficult pairs. PR(TMi, p, v) is set equal to the inverse
of the proportion of all functional test-vectors generated by
every random instance of TMi that offer high deviation value
for (p, v). FV (TMIji , k) is assigned a weight equal to

WFV (TMIji , k) =
∑

(p,v)∈MS(TMIj
i ,k)

Faults(p)× PR(TMi, p, v) (1)

Note that the weight increases as the fan-in cone-size of p
and the priority of (p, v) increase. Then, a weight is assigned
to TMIji equal to the sum of the weights of its functional
test-vectors

W (TMIji) =
∑

k=1...NVi

WFV (TMIji , k) (2)

The higher is the value of W (TMIji), the more effective is
the instance TMIji for detecting non-modeled faults.

Every instance TMIji with high weight W (TMIji) is
expected to detect many defects at the outputs p ∈
MS(TMIji , k), i.e., the outputs with high deviation values
at the functional test-vectors generated by TMIji . When this
instance is selected, the potential of the rest of the instances
of the same test-macro to detect defects at the same outputs
p ∈ MS(TMIji , k) decreases (less defects are anticipated to
remain undetected at the logic cones of these outputs). To
reflect this fact the number of faults Faults(p) at the logic
cone of every output p ∈ MS(TMIji , k) is divided by a con-
stant factor F after TMIji is selected. This reduces the weight
of all the functional test-vectors that provide a high-deviation
value at output p, since their effectiveness for detecting defects
drops after the selection of TMIji . The higher is the value
of F , the higher is the priority given to instances with high
deviation values at other outputs. Therefore, all the weights
are re-computed by applying again eq. (1), (2) and the next
instance with the highest weight is selected. This process is
iterated until M instances are selected for every test-macro.

The M most effective instances selected from every test-
macro maximize the defect coverage at the particular processor

4

1530-4388 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDMR.2019.2911022, IEEE
Transactions on Device and Materials Reliability

l.movhi ra, XH
l.ori ra, ra, XL
l.movhi rb, YH
l.ori rb, rb, YL
l.movhi rc, QH
l.ori rc, rc, QL

l.add rd, ra, rb
l.add rd, rc, rd
l.sw Z(r0), rd

A
cc

um
ul

at
ed

Te

st
 M

ac
ro

l.movhi ra, XH
l.ori ra, ra, XL
l.movhi rb, YH
l.ori rb, rb, YL
l.movhi rc, QH
l.ori rc, rc, QL

Independent Test Macro
l.movhi rd, PH
l.ori rd, rd, PL

l.add re, ra, rb
l.add rf, rc, rd
l.sw Z1(r0), re
l.sw Z2(r0), rf

(b)(a)

Fig. 3. (a) A-TM example (b) I-TM example

units excited by the respective test-macro under test-program-
size constraints. Therefore, in order to achieve high defect-
coverage ramp-up for the whole processor, the test-macro
instances must be applied in the specific order that maximizes
the defect-coverage at all processor units at the same time. To
this end, after the M most effective instances of every test-
macro are selected, all the M×K instances are evaluated again
and they are re-ordered by considering the whole processor
circuit. In particular, all the M × K instances are evaluated
together by considering all the targeted units of the processor.
First, we reset the values of Faults(p) at their initial values
and the weights W (TMIji) are re-computed. Then, M × K
iterations are applied, and at each iteration the instance with
the highest weight is selected as the next in the order, and the
values of Faults(p) are updated as shown before. We note
that the final order of the test-macro instances depends on both
the size of the excited units and the quality of the generated
functional vectors, as it is evaluated by the proposed output-
deviation based metric.

Even though the test program generation is not fully au-
tomatic, it requires only limited designer/test-engineer inter-
vention, mostly during the development of the test-macro
templates. However, this intervention is at the architectural
level and it does not require the specific gate-level or transistor-
level model of the processor, which decouples the proposed
method from any implementation details. We note that, such
an intervention is an one-time task, while the rest of the test-
generation method (which is usually applied multiple times
during the development process) is fully automatic.

B. Test generation for high delay-defect coverage.

Even though the test-macros generated using the method
proposed in Section III-A are very effective in detecting non-
modeled faults, they offer limited detection of delay-faults
in execution units like the ALU. Detection of delay-faults
requires pairs of test-vectors to be applied to the inputs of the
exercised units. Therefore, delay-fault oriented test-macros are
developed that embed pairs of central instructions exercising
the processor units in successive clock cycles with different
test-vectors. Such macros are called Independent-Test Macros
(I-TMs).

Even though I-TMs can be generated for most of the pro-
cessor’s units, some units are accumulator-type units (like the
Multiply-Accumulate unit of the OR1200 processor), which
are designed to execute successive operations of accumulator-
type only. Such operations require one operand of the second
central instruction to be the result of the execution of the first

central instruction. For such units I − TMs are inapplicable,
and Accumulated-Test Macros (A-TMs) are used instead. Each
A − TM embeds two similar successive central-instructions,
where one operand of the second CI is the result of the first
CI.

Fig. 3 presents an example of an A-TM and an I-TM
test-macro. Since both CIs in every A-TM instance (A-TMI)
consist of the same instruction, the test-generation flow is
exactly the same with the flow shown in Fig. 2a except of
the additional functional test-vector that is generated by the
second CI . However, in the case of I-TMs separate evaluation
and selection of the first and second central-instructions is
required (note that both of them detect defects, but most of the
delay-defects are detected by the second central-instruction).
To this end, different priority values PR and sets MS of
outputs with high deviation values are manipulated for the
first and the second central-instruction of all I-TMIs.

The generation of the I-TMIs is done as follows: multiple
random instances of regular TMIs with a single central-
instruction are generated, but only the functional test-vector
of their central-instruction is evaluated using eq. (1), (2). The
two central-instructions with the highest weights are combined
to generate an I-TMI (the central-instruction with the highest
weight is used as second in the pair to favor the detection
of delay defects). Then, the selected central-instructions are
removed and the same process is repeated for generating the
next N I-TMIs using the remaining central-instructions.

Even though A − TMs can be potentially used to test all
the units of the processor, I − TMs are conjectured to offer
higher delay fault coverage than A − TMs because they do
not suffer from the correlation between the operands of the
first and the second central-instruction. Moreover, A − TMs
can be considered as a specialization of I − TMs, because
every A−TMI can be substituted by an equivalent I−TMI
with one of the operands of the second CI be a value equal to
the expected result of the execution of the first CI . Therefore,
A− TMs are used only for accumulator-type units, and I −
TMs are used for the rest of the units.

The synthesis of A−TMs and I−TMs is straightforward
for computational units like the ALU but there are various
non-computational units that require the synthesis of special
test-macros in order to detect delay faults. One such example is
the Load-Store unit of the OR1200 processor, which transfers
the data between the processor and the memory. Even though
some delay faults of this unit are exercised by the wrapper
instructions of the test-macros generated for other units, most
of them remain undetected unless specific test-macros are
synthesized for this unit. One test-macro example targeting
delay-faults at this unit is presented in Fig. 4a. The main
purpose of this macro is to exercise the Load-Store unit by the
means of different memory addresses and data transferred be-
tween the registers and the memory. Specifically, the wrapper-
instructions load the registers ra, rb with the 32-bit values
X(XH , XL) and Y (YH , YL), while the central instructions
transfer these data between the registers and the cache memory
of the processor (the value X is moved from register ra to
a memory position defined by the contents of rb, then it is
transferred to register rc and finally from register rc to memory

5

l.movhi ra,XH

l.ori ra,ra,XL

l.movhi rb,YH

l.ori rb,rb,YL

l.sh Z(rb),ra

l.lhs rc, Z(rb)
l.sh 0(r0),rc

Lo
ad

 S
to

re
 U

n
it

C
en

tr
al

 In
st

ru
ct

io
ns

l.movhi ra,XH

l.ori ra,ra,XL

l.movhi rb,YH

l.ori rb,rb,YL

l.movhi rc,QH

l.ori rc,rc,QL

l.movhi rd,PH

l.ori rd,rd,PL

l.add re,ra,rb

l.ror rf, rc, rd

l.sw Z1(r0),re

l.sw Z2(r0),rf

C
o

n
tr

o
l U

n
it

C
en

tr
al

 In
st

ru
ct

io
ns

(a) (b)

Fig. 4. Load-Store Unit & Control Unit TM Example

position 0).
Another unit that requires the synthesis of special test-

macros is the Control unit. Similar to the Load-Store unit, the
Control unit is also exercised by the wrapper and central in-
structions of all test-macros, but it cannot be sufficiently tested
for delay defects unless multiple combinations of different
instructions targeting different units are applied in consecutive
clock-cycles. In Fig. 4b, a test-macro example for the Control
unit is presented. The first eight instructions are wrapper-
instructions that load the registers ra, rb, rc, rd with the 32-
bit values X,Y,Q, P , then two arbitrary central-instructions
follow that apply an arithmetic and a logical computation using
these registers, and the last two wrapper-instructions store the
results of the computations at the physical addresses Z1, Z2.
In a similar manner test-macros can be synthesized for every
unit of the processor.

IV. EXPERIMENTAL RESULTS

The proposed method was developed using C++ and
Python, and experiments were performed using the 32-bit
scalar OR1200 RISC processor. The OR1200 processor has
a Harvard micro-architecture, 5-stage integer pipeline, virtual-
memory support (MMU) and basic DSP capabilities. The pro-
cessor has one embedded instruction cache and one embedded
data cache of 8KB each. The gate level netlist of the pro-
cessor was synthesized using the NanGate 45nm technology
and commercial tools. The gate-level netlist (excluding the
memories) consists of 17.6K cells. One instruction is fetched
from the cache at every clock cycle, while additional clock
cycles are required when the data are fetched from the memory
and/or conditional branch instructions are executed. The clock
frequency for the OR 1200 processor was set equal to 200
MHz.

Almost all units of the processor were targeted, i.e. the ALU,
the Multiply-Accumulate (MAC), the Load-Store, the Program
Counter Generator, the Instruction Fetcher, the Operands
Mux, the Write-Back Mux and the Instruction-Decoder (the
Exception-Handling unit and the caches require special test
generation mechanisms). 137 test-macros (including A −
TMIs, I − TMIs, Load-Store and Control unit TMIs)
were generated, each consisting of 3 to 17 instructions. For
each test-macro 120 random instances were generated (overall

20%	

25%	

30%	

35%	

40%	

45%	

50%	

55%	

60%	

1	 301	 601	 901	 1201	 1501	 1801	

Tr
an

si
'o

n	
Fa
ul
t	C

ov
er
ag
e	

Number	of	Clock	Cycles	

Baseline	(A-TM)	 Prop	(A-TM)	

Baseline	(I-TM)	 Prop	(I-TM)	

Fig. 5. I − TMs vs A− TMs for unit (ALU)

16,440 TMIs) and 6 test-programs were semi-automatically
generated as follows:

• Baseline: 2, 4 and 8 instances were selected randomly
out of the 120 instances generated for every test-macro
(overall 274, 548 and 1,096 TMIs).

• Proposed: 274, 548 and 1,096 TMIs were selected using
the proposed method.

We note that the values of 2, 4 and 8 instances were inten-
tionally chosen in order to generate small, medium and large
test-programs, respectively. The running time of the proposed
method on a single 64-bit CPU running at 1.2 GHz was less
than one day in the worst case.

All test-programs were evaluated for detecting non-modeled
faults using two surrogate fault models: the stuck-at and the
transition-delay fault models. None of these models were ex-
plicitly targeted by the test-macro generation process. Instead,
they were used to evaluate the potential of the proposed
method to detect non-modeled faults. Even though the pro-
posed method does not involve any fault simulations, such
simulations were used to evaluate the generated test-programs
and thus assess the effectiveness of the proposed method.
These simulations were applied using commercial tools on a
server with 48 CPUs running at 2.5 GHz. The stuck-at fault-
simulation time for each test-program was between 5 hours
(for 274 TMIs on the Write-Back Mux unit) up to 5 days
(for 1,096 TMIs on the Multiply-Accumulate unit), and the
transition-delay fault-simulation time was between 6 hours and
6.5 days on the respective cases. The stuck-at fault simulation
and the transition-fault simulation on the whole processor (for
1,096 TMIs) require 11.5 days and 2 weeks, respectively.

As it was explained in Section III-B, both A − TMs and
I − TMs can be used for most of the processor-units, but
the superiority of I−TMs in detecting transition delay faults
makes them more favorable as compared to A− TMs. As it
is shown in Fig. 5, I − TMs are more effective than A −
TMs on the ALU unit of the OR1200 processor in both the
proposed and the baseline approaches. Therefore, all the test-
programs were composed of I − TMs for every unit, except
of the Multiply − Accumulate unit, where only A − TMs
are applicable.

In order to show that the efficiency of the proposed method
only slightly depends on the randomness of the initial set
of TMIs, we generated (randomly) three different initial
sets of 16,440 TMIs, and we run the proposed method

6

1530-4388 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDMR.2019.2911022, IEEE
Transactions on Device and Materials Reliability

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

0.23 0.25 0.27 0.29 0.31 0.33 0.35 0.37

St
u

ck
-A

t
Fa

u
lt

 C
o

ve
ra

ge

Time (msec)

Baseline 01 Baseline 02 Baseline 03

Proposed 01 Proposed 02 Proposed 03

Fig. 6. Stuck-at fault variation results of ALU

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36

Tr
an

si
ti

o
n

 F
au

lt
 C

o
ve

ra
ge

Time (msec)

Baseline 01 Baseline 02 Baseline 03

Proposed 01 Proposed 02 Proposed 03

Fig. 7. Transition-fault variation results of ALU

20%

30%

40%

50%

60%

70%

80%

90%

0.26 0.28 0.30 0.32 0.34 0.36

Tr
an

si
ti

o
n

 F
au

lt
 C

o
ve

ra
ge

Time (msec)

Baseline 01 Baseline 02 Baseline 03

Proposed 01 Proposed 02 Proposed 03

Fig. 8. Stuck-at fault variation results of MAC unit

5%

15%

25%

35%

45%

55%

65%

75%

0.26 0.28 0.30 0.32 0.34 0.36

Tr
an

si
ti

o
n

 F
au

lt
 C

o
ve

ra
ge

Time (msec)

Baseline 01 Baseline 02 Baseline 03

Proposed 01 Proposed 02 Proposed 03

Fig. 9. Transition-fault variation results of MAC unit

TABLE I
SOFTWARE-BASED-SELF-TESTING RESULTS

Test Program Test Time Stuck-At Transition
Size (KBytes) (msec) FC (%) FC (%)

TMIs # BSL Prop BSL Prop BSL Prop BSL Prop

2x
13

7 1
10.9 13.2 0.064 0.079

82.58 87.45 59.00 73.32
2 83.01 87.84 60.04 73.79
3 81.96 87.08 58.70 73.32

4x
13

7 1
19.8 23.5 0.109 0.122

86.39 88.92 66.85 75.89
2 86.53 88.91 66.91 76.06
3 86.44 88.86 66.84 76.04

8x
13

7 1
37.5 41.8 0.186 0.203

88.14 89.56 73.51 77.62
2 87.81 89.67 72.62 77.36
3 88.08 89.78 72.62 77.40

three times selecting each time the 274, 548 and 1,096 most
effective TMIs from each one of these sets. We repeated the
same approach for the baseline approach, and we generated
3 different baseline test-programs for every different number
of 274, 548 and 1,096 TMIs. Fig. 6 and Fig. 7 present
the stuck-at and the transition fault-coverage for the ALU
unit for the three test-programs generated using the proposed
approach, as well as the three test-programs generated using
the baseline approach. Fig. 8 and Fig. 9 present the stuck-
at and the transition fault-coverage for the MAC unit for the
respective cases. In every chart the x-axis presents the test-
time (in msec) and the y-axis presents the fault-coverage. It
is obvious that there is no significant variation on the fault
coverage of the proposed test-programs, while in all cases the
proposed method clearly outperforms the baseline approach.
The proposed method offers very high coverage ramp-up,
which can further reduce the test-time in strictly constrained
manufacturing and periodic-test applications.

We note that the proposed method cannot achieve complete
stuck-at fault coverage on the OR1200 processor, due to the
existence of functionally untestable faults, but it achieves a
stuck-at fault coverage that is close to the one achieved by the
method in [28], which is based on manual test generation and
represents one of the highest reported values in the literature
for the OR1200 processor. Moreover, the use of a processor
for specific applications may restrict the usage of certain parts
of the processor [18], thereby further reducing the maximum
attainable fault-coverage for these devices. For example, the
stuck-at fault coverage for the MAC unit is 99.0% in [28] and
95.67% in the proposed method. The results for the ALU unit
are 91.9% in [28] and 88.57% in the proposed method, and the
results for the Instruction Fetch unit are 23.5% and 74.19%,
respectively. The number of instructions composing the test
according to [28] is equal to 31.728 while in the proposed
method it was equal to 8,487. We have to note that these
results were obtained using different synthesized netlists of
the processors and different fault lists.

Table I presents the test-program size, the test-time, the
stuck-at fault-coverage and the transition fault-coverage of the
baseline (BSL) and the proposed approaches for each one
of the three proposed and baseline test-programs. We note
that the proposed method offers the highest benefits when a
small number of TMIs are selected because the proposed

7

1530-4388 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDMR.2019.2911022, IEEE
Transactions on Device and Materials Reliability

TABLE II
STUCK-AT & TRANSITION FAULT COVERAGE PER UNIT

Stuck-At Transition Number
Faults (%) Faults (%) of Faults

TMIs BSL Prop BSL Prop per Unit

M
U

LT

2x137 87.60 94.92 63.79 86.14
32,8444x137 92.54 95.41 73.64 86.96

8x137 94.00 95.67 80.87 88.23

A
L

U

2x137 76.90 80.78 47.64 57.46
12,3684x137 82.41 85.86 57.97 67.19

8x137 85.34 88.57 67.71 70.05

G
E

N
PC 2x137 57.78 58.84 31.71 33.56

4,0724x137 58.93 59.91 33.22 34.26
8x137 60.44 60.73 35.56 36.09

C
T

R
L 2x137 83.67 84.30 73.26 74.25

3,9824x137 83.94 84.80 74.14 74.40
8x137 84.19 84.87 75.03 75.11

O
PM

U
X 2x137 97.16 97.16 93.36 93.65

2,5744x137 97.16 97.16 93.64 93.71
8x137 97.16 97.16 93.73 93.73

IF

2x137 71.41 73.42 50.84 52.74
2,3224x137 72.69 73.90 52.58 54.08

8x137 73.57 74.19 53.55 54.51

L
SU

2x137 82.45 84.69 55.95 59.89
2,2824x137 84.87 85.91 58.05 60.51

8x137 85.37 85.97 58.75 61.09

W
B

M
U

X 2x137 75.28 76.78 53.81 56.30
1,8264x137 75.61 77.04 55.94 57.22

8x137 76.79 77.97 56.72 57.88

output-deviation based metric is very effective in identifying
the TMIs with the highest non-modeled fault coverage (when
the number of the selected TMIs increases some less effective
TMIs are inevitably selected and the large gap between the
proposed and the baseline approach reduces). Therefore, its
effectiveness depends mostly on the potential of the output-
deviation based metric to identify the most effective TMIs,
and less on the amount of randomization (the variation of the
proposed method among the three test programs is less than
0.5% in almost all cases). Moreover, the proposed method
tends to select TMIs with large numbers of WIs, therefore
it generates test-programs slightly larger than the baseline
method, even though they both select the same number of
TMIs. Nevertheless, the defect coverage of the proposed
method remains higher even in cases that the baseline test-
programs contain more TMIs.

Table II compares the proposed method against BSL in
terms of the average (among the three test-programs) fault
coverage achieved for every targeted unit of the processor. The
results on the various units are reported in descending order
of the size of the units (the large units are reported first). It
is obvious that the proposed method achieves higher stuck-at
and transition fault coverage in almost all cases, but the higher
benefits are on the two largest units, the ALU and the Multiply-
Accumulate (MAC) unit. We note that the variation of the fault
coverage of the proposed method was very low (less than 1%)
in all cases, while it was higher for the baseline method.
For example, the stuck-at fault coverage for the Multiply-
Accumulate (MAC) unit for 274 TMIs was between 84.48%
and 89.18% for the baseline method and between 94.48% and

20%

30%

40%

50%

60%

70%

80%

90%

0.23 0.43 0.63 0.83 1.03 1.23 1.43 1.63

St
u

ck
-A

t
Fa

u
lt

 C
o

ve
ra

ge

Time (msec)

Proposed P1 P2 P3 P4 P5 P6

Fig. 10. Comparisons with other SBST programs (stuck-at faults).

10%

20%

30%

40%

50%

60%

70%

0.23 0.43 0.63 0.83 1.03 1.23 1.43 1.63

Tr
an

si
ti

o
n

 F
au

lt
 C

o
ve

ra
ge

Time (msec)

Proposed P1 P2 P3 P4 P5 P6

Fig. 11. Comparisons with other SBST programs (transition faults).

95.17% for the proposed method. The corresponding ranges
for the Write-Back Mux unit were 75.14% − 75.68% and
76.68%− 76.86% respectively.

In Fig. 10 and Fig. 11 we compare test-programs generated
using the proposed method with 274 TMIs against SBST
programs P1 to P6 (details about these test programs can be
found in [15], [16]) in terms of stuck-at and transition-fault
coverage. Test programs P1 to P6 have been generated man-
ually, requiring several weeks of significant test-engineering
effort. The proposed test-programs clearly outperform the rest
of the programs in terms of test-time and test-program size (the
test-program size is proportional to the test-time in most of the
cases), while they offer higher or similar (in some cases) stuck-
at and transition fault-coverage. Nevertheless, in every case
the proposed test-programs offer considerably higher defect-
coverage ramp-up, and taking also into account that they
were generated very fast and almost fully systematically, the
superiority of the proposed method becomes apparent.

V. CONCLUSIONS

In this paper we have presented an SBST test generation
method that offers high non-modeled fault coverage in a semi-
automatic manner and with short computational time. Instead
of applying time-consuming fault-simulations using multiple
fault-models, the proposed method uses logic simulation and
a novel SBST-oriented probabilistic metric that exploits both

8

1530-4388 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDMR.2019.2911022, IEEE
Transactions on Device and Materials Reliability

the architectural and the gate-level model of the processor.
The proposed method is fast, it is almost fully automated, and
it achieves high non-modeled fault-coverage ramp-up. Exper-
iments on the OR1200 processor demonstrate the advantages
of the proposed SBST method.

REFERENCES

[1] [Online]. Available: https://developer.arm.com/technologies/
functional-safety

[2] [Online]. Available: http://ww1.microchip.com/downloads/en/
DeviceDoc/52076a.pdf

[3] [Online]. Available: https://www.renesas.com/en-eu/products/synergy/
software/add-ons.html#read

[4] [Online]. Available: http://www.cypress.com/file/249196/download
[5] [Online]. Available: http://www.st.com/content/ccc/resource/technical/

document/application note/02/1a/91/78/e4/15/4d/35/CD00290100.pdf/
files/CD00290100.pdf/jcr:content/translations/en.CD00290100.pdf

[6] [Online]. Available: https://www.hitex.com/software-components/
selftest-libraries-safety-libs/pro-sil-safetcore-safetlib/

[7] “Openrisc 1200.” [Online]. Available: {https://opencores.org/ocsvn/
openrisc/openrisc/trunk/or1200/doc/openrisc1200 spec.pdf}

[8] A. Apostolakis, D. Gizopoulos, M. Psarakis, and A. Paschalis,
“Software-based self-testing of symmetric shared-memory multiproces-
sors,” IEEE Trans. on Computers, vol. 58, no. 12, pp. 1682–1694, 2009.

[9] A. Apostolakis, D. Gizopoulos, M. Psarakis, D. Ravotto, and M. Sonza
Reorda, “Test Program Generation for Communication Peripherals in
Processor-Based SoC Devices,” IEEE Design Test of Computers, vol. 26,
no. 2, pp. 52–63, March 2009.

[10] P. Bernardi et al., “On-line software-based self-test of the address
calculation unit in risc processors,” in 17th IEEE ETS, May 2012.

[11] ——, “On the functional test of the register forwarding and pipeline
interlocking unit in pipelined processors,” in 14th Intern. Workshop on
Microprocessor Test and Verification, Dec 2013, pp. 52–57.

[12] ——, “On the in-field functional testing of decode units in pipelined risc
processors,” in IEEE Intern. Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT), Oct 2014, pp. 299–304.

[13] ——, “Software-based self-test techniques of computational modules
in dual issue embedded processors,” in 20th IEEE European Test
Symposium (ETS), May 2015, pp. 1–2.

[14] P. Bernardi, M. Grosso, E. Sanchez, and O. Ballan, “Fault grading of
software-based self-test procedures for dependable automotive applica-
tions,” in Design, Automation Test in Europe, March 2011.

[15] R. Cantoro, S. Carbonara, A. Floridia, E. Sanchez, M. Sonza Reorda,
and J.-G. Mess, “An analysis of test solutions for COTS-based systems
in space applications,” in IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC), 2018.

[16] R. Cantoro, E. Sanchez, and M. Sonza Reorda, “On the detection of
board delay faults through the execution of functional programs,” in
18th IEEE Latin American Test Symposium (LATS), 2017.

[17] S. D. Carlo, P. Prinetto, and A. Savino, “Software-based self-test of set-
associative cache memories,” IEEE Transactions on Computers, vol. 60,
no. 7, pp. 1030–1044, July 2011.

[18] H. Cherupalli, H. Duwe, W. Ye, R. Kumar, and J. Sartori, “Bespoke
processors for applications with ultra-low area and power constraints,”
in 2017 ACM/IEEE 44th ISCA, 2017, pp. 41–54.

[19] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco, “A flexible
software-based framework for online detection of hardware defects,”
IEEE Trans. on Computers, vol. 58, no. 8, pp. 1063–1079, Aug 2009.

[20] F. Corno, M. Sonza Reorda, G. Squillero, and M. Violante, “On the Test
of Microprocessor IP Cores,” in IEEE DATE, 2001, pp. 209–213.

[21] F. Corno, E. Sanchez, M. Sonza Reorda, and G. Squillero, “Automatic
test program generation: a case study,” IEEE Design Test of Computers,
vol. 21, no. 2, pp. 102–109, Mar 2004.

[22] E. Sanchez and M. Sonza Reorda, “On the functional test of branch
prediction units,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 23, no. 9, pp. 1675–1688, Sept 2015.

[23] H. Fang, K. Chakrabarty, A. Jas, S. Patil, and C. Tirumurti, “Functional
test-sequence grading at register-transfer level,” IEEE Trans. on VLSI
Systems, vol. 20, no. 10, pp. 1890–1894, Oct 2012.

[24] F. J. Ferguson and J. P. Shen, “A cmos fault extractor for inductive fault
analysis,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 7, no. 11, pp. 1181–1194, Nov 1988.

[25] M. Grosso, W. Perez, D. Ravotto, E. Sanchez, M. Sonza Reorda,
and J. V. Medina, “A software-based self-test methodology for system
peripherals,” in 2010 15th IEEE European Test Symposium, May 2010,
pp. 195–200.

[26] ISO/DIS26262, “Road vehicles - functional safety,” 2009.
[27] X. Kavousianos, V. Tenentes, K. Chakrabarty, and E. Kalligeros,

“Defect-oriented lfsr reseeding to target unmodeled defects using stuck-
at test sets,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 19, no. 12, pp. 2330–2335, Dec 2011.

[28] N. Kranitis, A. Merentitis, G. Theodorou, A. Paschalis, and D. Gizopou-
los, “Hybrid-sbst methodology for efficient testing of processor cores,”
IEEE Design Test of Computers, vol. 25, no. 1, pp. 64–75, Jan 2008.

[29] N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis, “Software-
based self-testing of embedded processors,” IEEE Transactions on
Computers, vol. 54, no. 4, pp. 461–475, April 2005.

[30] N. Kranitis, A. Paschalis, D. Gizopoulos, and Y. Zorian, “Effective
software self-test methodology for processor cores,” in DATE, 2002,
pp. 592–597.

[31] A. Paschalis and D. Gizopoulos, “Effective software-based self-test
strategies for on-line periodic testing of embedded processors,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 24, no. 1, pp. 88–99, Jan 2005.

[32] A. Paschalis, D. Gizopoulos, N. Kranitis, M. Psarakis, and Y. Zo-
rian, “Deterministic software-based self-testing of embedded processor
cores,” in DATE 2001, 2001, pp. 92–96.

[33] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Sonza Reorda, “Micro-
processor software-based self-testing,” IEEE Design Test of Computers,
vol. 27, no. 3, pp. 4–19, May 2010.

[34] F. Reimann, M. Glaß, J. Teich, A. Cook, L. R. Gómez, D. Ull, H. J.
Wunderlich, U. Abelein, and P. Engelke, “Advanced diagnosis: Sbst
and bist integration in automotive e/e architectures,” in 2014 51st
ACM/EDAC/IEEE DAC, June 2014, pp. 1–6.

[35] D. Sabena, M. Sonza Reorda, and L. Sterpone, “A new SBST algorithm
for testing the register file of VLIW processors,” in DATE 2012, pp.
412–417.

[36] A. Sanyal, K. Chakrabarty, M. Yilmaz, and H. Fujiwara, “Rt-level
design-for-testability and expansion of functional test sequences for
enhanced defect coverage,” in IEEE ITC, Nov 2010, pp. 1–10.

[37] M. Schölzel, T. Koal, and H. T. Vierhaus, “Systematic generation of
diagnostic software-based self-test routines for processor components,”
in 19th IEEE European Test Symposium, May 2014, pp. 1–6.

[38] P. Singh, D. L. Landis, and V. Narayanan, “Test generation for precise
interrupts on out-of-order microprocessors,” in 10th International Work-
shop on Microprocessor Test and Verification, Dec 2009, pp. 79–82.

[39] M. A. Skitsas, C. A. Nicopoulos, and M. K. Michael, “Daemonguard:
O/s-assisted selective software-based self-testing for multi-core sys-
tems,” in IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFTS), Oct 2013, pp. 45–51.

[40] G. Squillero, “Artificial evolution in computer aided design: from the
optimization of parameters to the creation of assembly programs,”
Computing, vol. 93, no. 2-4, pp. 103–120, Oct. 2011.

[41] S. M. Thatte and J. A. Abraham, “Test Generation for Microprocessors,”
IEEE Trans. on Computers, vol. C-29, no. 6, pp. 429–441, June 1980.

[42] B. Vermeulen, C. Hora, B. Kruseman, E. Marinissen, and R. Rijsinge,
“Trends in testing integrated circuits,” in ITC, 2004, pp. 688–697.

[43] Z. Wang and K. Chakrabarty, “Test-quality/cost optimization using
output-deviation-based reordering of test patterns,” IEEE Trans. on CAD,
vol. 27, no. 2, pp. 352 –365, 2008.

[44] Z. Wang, H. Fang, K. Chakrabarty, and M. Bienek, “Deviation-based
lfsr reseeding for test-data compression,” IEEE Trans. on CAD, vol. 28,
no. 2, pp. 259 –271, 2009.

[45] C. H. P. Wen, L.-C. Wang, and K.-T. Cheng, “Simulation-based func-
tional test generation for embedded processors,” IEEE Transactions on
Computers, vol. 55, no. 11, pp. 1335–1343, Nov 2006.

[46] G. Xenoulis, D. Gizopoulos, M. Psarakis, and A. Paschalis, “Instruction-
based online periodic self-testing of microprocessors with floating-point
units,” IEEE Trans. on Dependable and Secure Computing, vol. 6, no. 2,
pp. 124–134, April 2009.

9

