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Abstract—Vehicle-to-infrastructure millimeter-wave
(mmWave) communication represents a potential solution
to capacity shortage in mobile networks. However,
effective beam alignment between senders and receivers
requires knowledge of the position of vehicles, which is
often impractical to obtain in real time. We propose to
solve this problem by leveraging the traffic signals, e.g.,
semaphores, that regulate the vehicular mobility. As an
example, we may coordinate beams with red semaphore
lights, as they correspond to higher vehicle densities and
lower speeds. In order to evaluate such intuition, we
propose a mmWave communication model accounting
for both the distance and the speed of vehicles being
served, and use such a model to compare several beam
design strategies. For increased realism, we consider as
our reference scenario a large-scale, real-world vehicular
trace depicting the mobility in Luxembourg. Our results
show that our approach outperforms static beam design
based on road topology alone, and, remarkably, it yields
a performance comparable to that of solutions based on
real-time mobility information.

I. INTRODUCTION

High-definition maps, their real-time updates, and
on-board multimedia systems are just few of the ap-
plications that concur to make vehicles, both ordinary
and self-driving, prime consumers of network traffic.
Indeed, automotive services – safety – as well as
entertainment-related – are among the reference use
cases for several next-generation network technolo-
gies [1], [2], including C-V2X, 802.11p/ITS-G5, and
5G. In spite of the important differences among these
technologies, they all share the goal of providing more
network capacity to vehicles and their drivers.

Whenever more capacity is needed, millimeter-wave
(mmWave) communications are an appealing option [3].
On the negative side, mmWave suffers from harsh prop-
agation conditions, with severe attenuation and high
blockage probability. This has led to the design of
directional antenna systems, where the available power
is concentrated on one or more beams. It follows that the
performance of mmWave networks critically depends
on beam design, i.e., deciding the number, direction, and
amplitude of the beams to form. Successful beam design
requires knowledge about the location of the user(s)
to serve, which explains why the earliest and most
mature mmWave applications target static or quasi-static
scenarios.

Fig. 1. A semaphore-regulated road crossing, with a mmWave gNB
deployed at the center. The north-south road has a green light; the
east-west one has a red light. Assume that the gNB can generate
two beams, and we have to decide their direction: pointing east
and west (red beams) allows us to cover many more vehicles than
pointing north and south (green beams), thus improving the network
performance. Since traffic light programs are known in advance, there
is no need to measure the vehicular traffic and adapt to it in real time.

The need to use narrow, concentrated beams in order
to establish mmWave links, complicates, in particular,
the initial phases in link establishment such as cell
discovery and initial access. Due to the need for beam
alignment, beams must be searched at both the base
station (gNB) and user side to align them at both ends.
The authors in [4] evaluate three potential solutions
for the initial access procedure: exhaustive brute-force
sequential search, two-stage iterative search, and an
algorithm that leverages context information such as
GPS location, obtained from legacy LTE base station.
For mmWave-based vehicular mobile networks too,
beam training is often identified as the main challenge
to overcome, due to the associated control overhead and
delay [3]. Most popular approaches are predicated on
hoarding and leveraging as much location information
as possible, coming from road-side sensors as well as
from the vehicles themselves [3], [5] and transferred
through non-mmWave control channels [5]. Collecting
the information, processing it, and re-aligning the beams
in near-real-time is a very challenging task. As a conse-
quence, some works, e.g., [6], envision dispensing with
beam realignment altogether, statically setting the beam
orientation using road topology information.

All of the above mentioned works focus on beam
aligning for each individual gNB-user equipment (UE)
pair, implicitly assuming that each narrow beam is
employed to transmit to a single UE only. However, in



ultra dense scenarios, it is highly likely that even a beam
as narrow as 5◦ can cover several UEs simultaneously at
any given time, UEs that can be multiplexed within the
same beam. Therefore, in this work, instead of focusing
on perfectly aligning beams for each gNB-UE pair, we
rather look at how to align the beams at the gNB so
as to increase the number of covered vehicular UEs
with quality links, i.e., links with acceptable values of
signal-to-interference-and-noise (SINR) ratio.

Specifically, we leverage the fact that in urban envi-
ronments it is possible to know a great deal of infor-
mation about vehicular mobility without detecting it in
real time. Consider the situation depicted in Fig. 1: red
semaphore lights are associated with a higher vehicle
density and lower speeds – two factors that can improve
the achievable total throughput. This is very valuable
information, and is known a priori, thus allowing to
design the beams without the need to make real-time
decisions.

Our high-level purpose is to assess the performance
of this approach, i.e., using traffic signal state informa-
tion to complement and replace real-time mobility data.
To this end, we make the following main contributions:

• we adopt a simplified channel and beamforming
model, able to capture the interplay between di-
rectivity gain and coverage. Importantly, we tailor
aspects of our model using empirical results ob-
tained through real-world traces;

• we formulate the beam configuration problem as
an optimization problem, aiming at maximizing
the quality of coverage of vehicular UEs. In light
of the problem complexity, we define four alter-
native beam design strategies, requiring different
types of information and working at different time
scales. Among these, we propose a low-complexity
scheme, named Traffic Light (TL), which leverages
road topology information and traffic light signals
to efficiently configure the beams of the gNBs;

• we evaluate the above strategies leveraging a large-
scale trace, including the real-world urban topol-
ogy and realistic vehicular mobility of Luxem-
bourg City, Luxembourg. Our results show that,
in spite of its much lower complexity, the TL
scheme yields a performance comparable to that of
solutions based on real-time mobility information.

The remainder of this paper is organized as follows.
We detail our mmWave communication model in Sec. II
and the beam design strategies we consider in Sec. III.
Then, in Sec. IV, we describe our reference scenario
and some present numerical results. Finally, Sec. V
concludes the paper.

II. MMWAVE COMMUNICATION

Here, we introduce the mmWave channel characteri-
zation and the antenna model. It is worth highlighting

(a) (b)

Fig. 2. Empirical vs. tailored LoS probability model (a); sectored
antenna model (b).

that, although our study can be easily extended to uplink
communications, in the following we focus on downlink
transmissions, from the gNB to the vehicular UEs, in
virtue of the traffic asymmetry that still holds.

As previously mentioned, mmWaves experience
higher path loss and blockage due to their high fre-
quency, thus accurately modeling line-of-sight (LoS)
conditions is crucial. To determine whether the
transmitter-receiver pair are in LoS, NLoS, or outage
(no communication link possible), we draw on the
model in [7] and use the following distance-based
probabilities:

pout = max(0, 1− eaoutd+bout)

pLoS = (1− pout)e
−aLoSd (1)

pnLoS = 1− pLoS − pout,

where d is the distance and the parameters aLoS , aout,
and bout can be tailored to the particular scenario.
Consistently with outdoors models in the literature, we
do not explicitly perform ray-tracing.

Since the reference scenario under study, described in
detail in Sec. IV, is based on real-world data, we adjust
the model parameters to fit the particular environment
of our scenario. In particular, taking advantage of the
knowledge we have about the locations of the buildings,
road topology, and vehicle positions and speed, we can
derive empirically the LoS condition of each gNB-
vehicle pair, at a given time. This allows us to draw
an empirical LoS probability curve as a function of the
distance between the gNB and the vehicle, depicted in
Fig. 2(a) with blue dots. Optimized values for model
parameters aLoS , aout, and bout, can then be obtained
by applying curve fitting against the empirical proba-
bility curve. The optimized model is compared to the
empirical curve in Fig. 2(a).

We assume that the gNBs are equipped with di-
rectional steerable antenna arrays composed of Ntx

elements, which can support multiple simultaneous
beams. A UE is also equipped with directional steerable
antenna arrays composed of Nrx elements, but it can
support one beam at a time only. We consider that
the channel between the transmitter and the receiver



includes a certain number of path clusters, as described
in [7].

For analytical tractability, it is common to approxi-
mate the actual antenna array beam pattern by a step
function with a constant main-lobe over the beamwidth
and a constant side-lobe otherwise [8], as shown in
Fig. 2(b). This simple model captures the interplay
between directivity gain, which ultimately affects the
transmission range, i.e., the coverage and half-power
beamwidth1. Specifically, the gain of the main lobe
for a single beam pattern is calculated through the ap-
proximation provided in [9]: Gml =

41000
Θ◦

hpΦ
◦
hp

where Θ◦
hp

and Φ◦
hp are the half-power beamwidths (in degrees),

in the azimuth and elevation planes, respectively. For
simplicity and consistency with the assumptions made
in [9], we set Gsl = 0.

Finally, we can describe the effective channel that two
communicating endpoints experience, including beam-
forming gains at both ends, H(t), as

H(t)=
1

L

�

k,l

hk,l(t)
�
Grx(θrxk,l,φ

rx
k,l)Gtx(θtxk,l,φ

tx
k,l)

Therein K is the number of clusters and L is the
number of paths within a cluster, hk,l are the small-scale
fading gains, while Gtx and Grx are the gain values
of the transmit and receive antennas, respectively, as
functions of the azimuth (θ) and elevation (φ) arrival
and departure angles. The small-scale fading gains are
generated as described in [7].

III. GNB SELECTION AND BEAM DESIGN

We now focus on the main aspects of the mmWave
communication system we intend to address and on
the approach we propose to overcome the existing hur-
dles. In particular, Sec. III-A introduces an optimization
formulation for the beam design problem, formally
stating its objective and constraints. Then Sec. III-B
presents the heuristic approaches we compare in our
performance evaluation, among which our proposed
scheme, named Traffic Lights.

A. Optimization formulation

The essential trade-off in mmWave communications
is between the directionality gain that can be achieved
using beamforming and the spatial coverage that can
be offered. Thus, it is clear that both the width and the
number of beams used by the gNB should be treated as
design considerations during beamforming. Depending
on the vehicle distribution and mobility, fewer wider
beams may be preferred over multiple narrower beams,
and vice-versa.

Based on the above observations, we aim to address
the following questions: i) how many beams should

1The half-power beamwidth refers to the angular width of the
main lobe of the antenna pattern between the points that are half
the intensity of the maximum beam level (beam peak).

a gNB transmit, and of what beamwidth; ii) which
directions should they transmit at; and, finally, iii)
which vehicular UEs should be scheduled on which
beam. The goal is to find answers to these questions
while maximizing coverage and network throughput.
For the sake of simplicity, we do not jointly optimize
the number, width, and direction of beams; rather, we
study several number/width combinations and optimize,
for each of them, the direction of the beams.

We consider that the set of gNBs, denoted by B, and
the set of vehicular UEs, denoted by U , are already
mutually aware of the direction they can communicate
in. This is a fair assumption, since vehicles routinely
broadcast their location and speed [5] in the cooperative
awareness message (CAMs), also used for automotive
safety-related applications. We further denote the down-
link direction between a gNB b and a UE u, as τb,u.
Let nb be the maximum number of beams a gNB can
simultaneously transmit, and Θb the width of the beams.
We only consider the beam directions in the azimuth
plane, i.e., we assume that the elevation angles are fixed
towards the optimal direction.

We can then formulate the choice of the direc-
tions θb,i, i ∈ [1 . . . n] of the beams as an optimization
problem, where the decision variables are represented
by the θ-values themselves. The objective function to
maximize is the (expected) number of served vehicles,
i.e., vehicles that are able to exchange information with
at least one gNB. For a vehicle u to be served, we need
that: (1) there is at least one beam of a gNB covering
that vehicle; (2) such a (gNB, vehicle) pair is not in
outage. Item 1 depends on the direction θb,i of each
beam i of gNB b (which is a decision variable) and its
width Θb (which is a parameter). Specifically, beam i
of gNB b covers vehicle u if:

|τb,u − θb,i| ≤
Θb

2
. (2)

Item 2 depends on the blockage model; from the view-
point of the optimization problem, it is summarized by a
parameter pout(b, u) ∈ [0, 1], expressing the probability
that the path from gNB b to vehicle u is blocked, as
computed in (1).

Combining condition (2) and parameter pout(b, u),
we can write the objective function as:

max
θ

�

u∈U
max

b∈B,i∈[1...n]

�
1− pout(b, u)1|τb,u−θb,i|≤Θb

2

�
.

The above equation can be read from right to left, as
follows. The condition within the indicator function is
the one in (2); thus, the indicator function takes 1 for
those beams that cover vehicle u and 0 otherwise. We
then weigh the value of the indicator function by the
probability that the path from b to u is not in outage,
i.e., 1−pout. Finally, for each vehicle, we only consider
the beam with the highest value of 1−pout, since we do



TABLE I
COMPARISON AMONG THE DIFFERENT STRATEGIES

Strategy Reconfiguration Needed traffic
information

Clustering

Static Never Statistics Hierarchical [10]
Dynamic At every step Real-time Hierarchical [10]
DBSCAN At every step Real-time DBSCAN [11]
Traffic Light Periodic None No

not allow the same vehicle to be covered by multiple
beams. In summary, our objective function expresses
the expected number of served vehicles, given the
beam directions, the vehicle positions, and the blockage
model.

As far as the constraints are concerned, two beams
from the same gNB cannot overlap, i.e.,

|θb,i − θb,j | ≥ Θb, ∀b ∈ B, i, j ∈ [1 . . . n] : i �= j .

B. Beam design heuristics

Directly solving the above optimization problem, has
a very high computational complexity. Indeed, the indi-
cator function and the modulo operators both result in
binary variables, which means that the problem falls in
the mixed-integer linear programming (MILP) category.
Such problems are well-known to be NP-hard (see the
reduction from the vertex cover problem in [12]).

In light of this, we cast the problem of maximizing
the number of vehicles for which condition (2) holds
as a one-dimensional clustering2 problem. Indeed, each
beam i can be seen as a cluster of directions whose
center is θb,i and whose maximum amplitude is Θb.
To solve such a problem, we compare four different
strategies, detailed next and whose main features are
summarized inTab. I.

Static. Under this strategy, the directions of the
beams, i.e., the θb,i values, do not change over time. To
determine such directions, we formulate a hierarchical
clustering problem as follows:

1) we divide the time in discrete steps;
2) for each vehicle and time step, we create one

observation (i.e., one data point) corresponding
to the vehicle’s position;

3) we compute the pairwise angular distances be-
tween observations;

4) we feed the resulting distance matrix to the Voor
Hees Algorithm [10], setting the maximum intra-
cluster distance to Θb;

5) we consider the n largest clusters, i.e., the clusters
including the highest number of observations;

6) for each such cluster, we set the direction θb,i as
the mean between the minimum and maximum
angle of the vehicles it includes, i.e., θb,i ←
1
2 [minu τ(b, u) + maxu τ(b, u)].

2Clustering here does not refer to the path clusters dealt with in
Sec. II.

Note that, in step 2, we may create multiple observa-
tions with the same coordinates, e.g., if two vehicles are
observed in the same position at different times. This
is intentional and allows us to properly account for the
fact that we are more likely to find a vehicle in some
locations of the topology than in others.

The angular distance used in step 3 is a metric
connected with the cosine similarity. For two generic
vectors �a,�b ∈ Rn, we have d(�a,�b) = 1 − cos−1 s(�a,�b)

π

where s(�a,�b) = �a·�b
|�a||�b| is the cosine similarity [13].

Such a metric is very well-suited to our scenario, as
the beam amplitude Θb limits the angular distance
between vehicles served by the same beam rather than
the Euclidean one.

The Vor Hees algorithm we run in step 4 starts by
creating singletons, i.e., clusters with only one observa-
tion each. Then, at every iteration, it merges the two
closest clusters; the algorithm stops when additional
merges would result in clusters with a size larger than
a set threshold (Θb in our case). Note that, unlike the
more popular k-means algorithm, this approach has the
advantage that the number of clusters do not have to be
set in advance.

The static strategy is arguably the simplest way
to leverage aggregate traffic statistics; also, it can be
performed offline and requires no reconfiguration of
the beams. On the negative side, it cannot account for
the time evolution of vehicular mobility, e.g., different
traffic patterns at different hours of the day.

Dynamic. It works as the Static one, with the impor-
tant difference that decisions are re-made at every time
step, i.e., the clustering procedure described above is
repeated at every time step. Implementing the Dynamic
strategy would require real-time knowledge of vehicular
mobility and almost-instantaneous beam reconfiguration
– aspects that render the strategy impractical for real-
world implementations. Nonetheless, we use it as a
benchmark to compare against.

DBSCAN. It is a variant of the Dynamic strategy,
using (as the name suggests) the popular DBSCAN
clustering algorithm [11] in lieu of the Vor Hees one.
DBSCAN is very popular and highly effective: similarly
to hierarchical approaches, it returns an undetermined
number of clusters with a target maximum inter-cluster
distance. Unlike hierarchical approaches, DBSCAN can
be seamlessly extended to account for additional factors,
e.g., the vehicles distance and speed, hence the data rate
they can achieve. This makes DBSCAN a potentially
better-performing alternative to the Vor Hees algorithm.

Traffic Lights (TL). Vehicular mobility is con-
strained not only by the road topology, but also by the
state of traffic signals, e.g., semaphores. The TL strategy
leverages the available information on semaphore states
and points the beams available at each gNB towards
the road segments where the semaphore light is red. As



Fig. 3. Real-world scenario: Luxembourg city
center. The red circles denote the locations of
the traffic lights.

Fig. 4. Total throughput yielded by each
strategy, as the number and amplitude of
beams changes.

Fig. 5. CDF of the vehicles data rate under
each strategy when there are two 5-degree
beams.

exemplified in Fig. 1, this increases both the number
of vehicles that can be covered and the data rate they
can obtain. The TL strategy is more flexible than the
Static one, in that beam directions account for the
vehicles mobility. At the same time, it is much more
practical than the Dynamic and DBSCAN strategies, as
it does not require any real-time mobility information
and beam reconfigurations are less frequent. In fact,
the TL strategy requires no knowledge whatsoever of
vehicular mobility, hence it can be applied in situations
where such information is unavailable or unreliable.

IV. PERFORMANCE EVALUATION

Reference Scenario. We consider the publicly-
available Luxembourg scenario [14], which combines:

• the real-world topology of Luxembourg City;
• the location of semaphores and bus stops therein;
• semaphore states (red, yellow, green) at all times;
• the realistic mobility of around 14,000 vehicles

over a period of 12 hours, generated with SUMO
and based on real-world traffic flows, e.g., com-
muters traveling to the city center.

We consider a 2 × 2 km2 area of the city center, as
depicted in Fig. 3. Throughout such a road topology,
we place a total of 51 gNBs, corresponding to traffic
lights. Their positions are marked by red dots.

We set the center frequency available for mmWave
communication to fc = 76GHz, as typically assumed
for vehicular networks [15], and the available bandwidth
to BW = 1GHz. All gNBs are equipped with a 32×32
uniform planar array (UPA) with up to 4 RF chains, and
vehicular UEs are equipped with a 8 × 8 UPA. The
parameters used for modeling the mmWave wireless
channel are the same as those used in [7], except
for the parameters of the blockage model, which are
tailored to the Luxembourg scenario. Specifically, we
set: aout = 0.006, bout = 0.3, and aLoS = 0.001.

For all strategies, we consider two possible half-
power beamwidths: Θ◦

HP = 5◦, 10◦, while the number
of simultaneous beams vary from 2 to 4. Given the beam

directions, for each gNB-UE pair, we compute the SINR
as well as the throughput, using the model in [7]:

R = BW min
�
log2

�
1 + 100.1(SINR−Δ)

�
, rmax

�
,

where Δ is a loss factor set to 3 dB [7] and rmax

is the maximum spectral efficiency. Since future net-
works will support modulation schemes as advanced as
1024 QAM, rmax is set to 9.26 bps/Hz as per 3GPP
TR 36.213.

Numerical Results. The first aspect we are interested
in is the performance of the set-up beams discussed
in Sec. III-B, i.e., the total network throughput they
can guarantee: these results are summarized in Fig. 4.
First, observe that, as expected, having more or wider
beams results in better performance, regardless of the
strategy. Second, the number of beams (two or four)
has a more significant impact than their amplitude (5 or
15 degrees); indeed, in urban scenarios, a narrow beam
is often sufficient to illuminate most of the vehicles in
a road lane.

Interestingly, TL significantly outperforms Static and
yields a throughput that is comparable to that of the
Dynamic and DBSCAN strategies. This is a very impor-
tant result, confirming our intuition that traffic signals –
semaphores in this case – can indeed provide valuable
information for beam design decisions. Also, recall
that, as summarized in Tab. I, Dynamic and DBSCAN
require real-time mobility information and are thus not
practical to implement. The CDF of the vehicles data
rate yielded by different strategies is depicted in Fig. 5,
in the case of two 5-degree beams.

Fig. 6(a) is devoted to the second of such major
factors, i.e., the number of users each strategy can serve
with each beam. We note that DBSCAN serves the
highest number of users, a hint that such a clustering
algorithm may be more effective than the Voor Hees al-
gorithm used by the other strategies. All other schemes
serve a very similar number of users, which means that
their difference in performance (see Fig. 4) is almost
entirely due to the different SINR (hence, data rate)
such users experience, as depicted in Fig. 5.

Fig. 6(b), depicting the number of beams serving each
user under different strategies, sheds further light on the



(a) (b) (c)

Fig. 6. Number of vehicles served (a) and number of beams serving each vehicle (b) under the different strategies when there are four
15-degree beams; number of handovers under different strategies and configurations (c).

performance of the beam configurations. Under the Dy-
namic and DBSCAN strategies, beams are much more
likely to overlap than under the Static and TL ones.
Indeed, under Dynamic and DBSCAN, gNBs direct
their beams towards whichever area of the topology is
more crowded, regardless of what neighboring gNBs are
doing. In TL this effect is less evident, as consecutive
semaphores on the same road tend to show different
colors. Finally, for Static, overlaps are even less frequent
since considering the whole trace duration instead of
just one time step makes more likely that neighboring
gNBs serve different areas.

A higher number of overlapping beams in Fig. 6(b)
corresponds, as shown in Fig. 6(c), to a higher number
of handovers between different gNBs. This is a very
important result, indeed, as discussed in Sec. II, in our
model handovers are ideal and result in no performance
penalty, however this is not the case in real-world cellu-
lar networks. Typically, a higher number of handovers
translates into a significantly higher control overhead
and into a higher load on the core network entities (e.g.,
the Mobility Management Entity (MME) in LTE EPC).
From this viewpoint, the TL strategy represents the
safest option, guaranteeing a performance comparable
to Dynamic and DBSCAN, with a number of handovers
comparable to that of Static.

V. CONCLUSION

We have identified mmWave as a promising technol-
ogy for vehicular networks. However, the performance
of mmWave networks depends upon the alignment of
beams between gNBs and vehicles, and such an align-
ment requires knowledge of the vehicles position and
speed. Instead of relying on real-time mobility informa-
tion, in this paper we proposed to rely on traffic signals,
e.g., semaphores, which influence the mobility itself.
Leveraging traffic semaphore state information for beam
design, results in a network performance that exceeds
that of baseline approaches (namely, static beam align-
ment) and is comparable to that of approaches using
real-time mobility information. Furthermore, our ap-
proach leads to a reduced overlap between beams, hence
to a lower number of handover procedures.
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